1.1

Basics

Our laboratory for this course is the Coq proof assistant. Coq can be seen as
a combination of two things:

1. a simple and slightly idiosyncratic (but, in its way, extremely expressive)
programming language, and

2. a set of tools for stating logical assertions (including assertions about the
behavior of programs) and assembling evidence of their truth.

We will be investigating both aspects together.

Enumerated Types

In Coq’s programming language, almost nothing is built in—mnot even
booleans or numbers! Instead, it provides powerful tools for defining new
types of data and functions that process and transform them.

Let’s start with a very simple example. The following definition tells Coq
that we are defining a new set of data values. The set is called day and its
members are monday, tuesday, etc. The lines of the definition can be read
“monday is a day, tuesday is a day, etc.”

Inductive day : Set :=
| monday : day
tuesday : day
wednesday : day
thursday : day
friday : day
saturday : day
sunday : day.

1 Basics

Having defined this set, we can write functions that operate on its members.

Definition next_weekday (d:day) : day :=
match d with
monday => tuesday
tuesday => wednesday
wednesday => thursday

|
|
|
| thursday => friday
| friday => monday

| saturday => monday
| sunday => monday

end.

One thing to note is that the argument and return types of this function are
explicitly declared. Like most functional programming languages, Coq can
often work out these types even if they are not given explicitly, but we'll
always include them to make reading easier.

Having defined a function, we might like to check how it works on some
examples. There are actually three different ways to do this in Coq.

1. We can use the command Eval to evaluate a compound expression in-
volving next_weekday. For example, if we give Coq the following input

Eval simpl in (next_weekday (next_weekday saturday)) .

it will print the simplified result and its type:

> = tuesday
: day

The keyword simpl (for “simplify”) tells Coq precisely how to evaluate
the expression we give it. For the moment, simpl is the only one we’ll
need; later on we’ll see some alternatives that are sometimes useful.

If you have a computer handy, now would be an excellent moment to
fire up the Coq interpreter under your favorite IDE—either Coqlde or
Proof General—and try this for yourself. Load the file Basics . v from the
book’s accompanying Coq sources, find the above example a little ways
from the top, send it to Coq, and observe the result.

2. We can record what we expect the result to be in the form of a Coq
Example:

1.2

1.2 Booleans 3

Example test_next_weekday:

(next_weekday (next_weekday saturday)) = tuesday.

This declaration does two things: It makes an assertion (that the second
weekday after saturday is tuesday), and it gives it a name that can be
used to refer to it later.

Having made the assertion, we can also ask Coq to verify it, like this:

Proof. simpl. reflexivity. Qed.

The details are not important for now (we’ll come back to them in a few
chapters), but essentially this can be read “The assertion we’ve just made
can be proved by observing that both sides of the equality are the same
after simplification.”

3. Third, we can ask Coq to “extract,” from a Definition, a program in
some other, more conventional, programming language (OCaml, Scheme,
or Haskell) with a high-performance compiler.

This facility is very interesting, since it gives us a way to construct fully
certified programs in mainstream languages. This is actually one of the
main uses for which Coq was developed. We’ll have more to say about
this a little later on.

Booleans

Similarly, we can define the type bool of booleans, with constants t rue and
false.

Inductive bool : Set :=
| true : bool
| false : bool.

Although we are rolling our own booleans here for the sake of building up
everything from scratch, Coq does, of course, provide a default implemen-
tation of the booleans in its standard library, together with a multitude of
useful functions and lemmas. (Take a look at Cog.Init.Datatypes in the
Coq library documentation if you're interested.) Whenever possible, we'll
name our own definitions and theorems so that they exactly coincide with
the ones in the standard library.
Functions over booleans can be defined in the same way as above:

1.2.1

1.3

1 Basics

Definition negb (b:bool) := if b then false else true.
Definition andb (bl b2:bool) : bool := ifb bl b2 false.
Definition orb (bl b2:bool) : bool := ifb bl true b2.

The second and third illustrate the syntax for multi-argument function defi-
nitions.

The following four “unit tests” constitute a complete specification—a truth
table—for the orb function:

Example test_orbl: (orb true false) = true.
Example test_orb2: (orb false false) = false.
Example test_orb3: (orb false true) = true.
Example test_orb4: (orb true true) = true.

The proofs of these properties are precisely the same as what we saw above.
From now on, proofs will generally be omitted, unless they are particularly
relevant to the discussion. They can always be found in full in the accompa-
nying Coq sources.

EXERCISE [%]: In the Coq source file Basics.v, you will find a com-
ment containing incomplete implementations of two more boolean func-
tions, norb and and3b. Uncomment and finish them, making sure that Coq
can verify the provided unit tests. 0

The Check command causes Coq to print the type of an expression. For
example, when presented with

Check (negb true).
Coq prints

» negb true
: bool

Functions like negb itself are also data values, just like true and false.
Their types are called function types. The type of negb, written bool—bool,
is pronounced “bool arrow bool” and can be read, “Given an input of type
bool, this function produces an output of type bool.” Similarly, the type of
andb, written bool—bool—bool, can be read, “Given two inputs, both of
type bool, this function produces an output of type bool.”

Numbers

The types we have defined so far are examples of “enumerated types”: their
definitions explicitly enumerate a finite collection of elements. A more inter-

1.3 Numbers 5

esting way of defining a type is to give a collection of inductive rules describ-
ing its elements. For example, we can define the natural numbers as follows:

Inductive nat : Set :=
| O : nat
| S : nat — nat.

The clauses of this definition can be read:
1. 0Ois anatural number (note that this is the letter “0O,” not the numeral “0”).

2. Sisa constructor that takes a natural number and yields another one—that
is, if n is a natural number, then S n is too.

We can write simple functions that pattern match on natural numbers just
as we did above:

Definition pred (n : nat) : nat :=
match n with

| O => 0
| S n’ =>n'

end.

Definition minustwo (n : nat) : nat :=
match n with

| O => 0
| SO =>0
| S (s n’) =>n'

end.

Because natural numbers are such a pervasive form of data, Coq provides
a tiny bit of special built-in magic for parsing and printing them: ordinary
arabic numerals can be used as an alternative to the “unary” notation defined
by the constructors S and 0. Coq prints numbers in arabic form by default,

Check (S (s (s (S 0)))).

nat

and expands arabic numerals in its input into appropriate sequences of ap-
plications of S to O:

Eval simpl in (minustwo 4).

1 Basics

nat

The constructor S has the same type as functions like minustwo and pred:
both

Check minustwo.
Check S.

yield
» ... : nat — nat

signifying that these are things that can be applied to a number to yield a
number. However, there is a fundamental difference: functions like pred
and minustwo come with computation rules—e.g., the definition of pred says
that pred n can be simplified tomatch nwith | 0=>0 | Sm’ =>m’ end—
while S has no such behavior attached. Although it is a function in the sense
that it can be applied to an argument, it does not “do” anything at all!
What's going on here is that every inductively defined set (weekday, nat,
bool, and many others we’ll see below) is actually a set of expressions. The
definition of nat says how expressions in the set nat can be constructed:

o the expression O belongs to the set nat;

e if nisan expression belonging to the set nat, then S n is also an expression
belonging to the set nat; and

e expressions formed in these two ways are the only ones belonging to the
set nat.

These three conditions are the precise force of the Inductive declaration.
They imply that the expression O, the expression S O, the expression S (S 0),
the expression S (S (S 0)), and so on all belong to the set nat, while other
expressions like t rue and S (S false) do not.

For most function definitions over numbers, pure pattern matching is not
enough: we need recursion. For example, to check that a number n is even,
we may need to recursively check whether n-2 is even. To write such func-
tions, we use the keyword Fixpoint.

Fixpoint evenb (n:nat) {struct n} : bool :=
match n with

| O => true
| S O => false
| S (S n/) => evenb n’

end.

1.3 Numbers 7

The most important thing to note about this definition is the annotation
{struct n} on the first line. This instructs Coq to check that we are per-
forming a “structural recursion” over the argument n—i.e., that we make
recursive calls only on strictly smaller values of n. This implies that all calls
to evenb will eventually terminate.

We can define oddb by a similar Fixpoint declaration, but here is a sim-
pler definition that will be easier to work with later:

Definition oddb (n:nat) : bool = negb (evenb n).

Naturally, we can also define multi-argument functions by recursion.

Fixpoint plus (n : nat) (m : nat) {struct n} : nat :=
match n with
| O =>m
| s n =>5 (plus n’ m)
end.

Adding three to two now gives us five, as we’d expect.

Eval simpl in (plus (S (S (S 0))) (S (S 0))).

The simplification that Coq performs to reach this conclusion can be visual-
ized as follows:

plus (S (S (S0))) (S (50))
= S (plus (5 (S0)) (S (S0))) by thesecond clause of the match
= S (S (plus (SO) (S (S0)))) by thesecond clause of the match
= S (S (S (plusO (S (S0))))) by thesecond clause of the match
= S (S(S(S(50)))) by the first clause of the mat ch.

As a notational convenience, if two or more arguments have the same
type, they can be written together. In the following definition, (nm : nat)
is means just the same as if we had written (n : nat) (m: nat).

Fixpoint mult (n m : nat) {struct n} : nat :=
match n with
| O =>0
| S n’ => plus m (mult n’ m)

end.

1.3.1

1.3.2

14

1 Basics

Other arithmetic functions like minus and exp can be defined similarly (see
Basics.v).

EXERCISE []: Recall that the factorial function is defined like this in con-
ventional mathematical notation:

factorial(0) = 1
factorial(n) = nx (factorialln—1)) ifn >0

Translate this into Coq’s notation. (An incomplete definition can be found in
a comment in Basics.v.) |

When we say that Coq comes with nothing built-in, we really mean it: even
equality testing for numbers is a user-defined operation!

Fixpoint beg_nat (n m : nat) {struct n} : bool :=
match n with
| O => match m with
| O => true
| S m' => false
end
| S n => match m with
| O => false
| S m' => beq nat n’ m’
end
end.

EXERCISE [%]: Complete the definitions (in Basics.v) of the comparison
functions ble_nat and blt_nat. |

Proof by Simplification

Now that we’ve defined a few datatypes and functions, let’s turn to the ques-
tion of how to state and prove properties of their behavior.

Actually, in a sense, we've already started doing this: each Example in the
previous sections makes a precise claim about the behavior of some function
on some particular inputs. The proofs of these claims were always the same:
use the function’s definition to simplify the expressions on both sides of the
= and notice that they become identical.

The same sort of “proof by simplification” can be used to prove more inter-
esting properties as well. For example, the fact that 0 is a “neutral element”

1.5

1.5 The intros Tactic 9

for plus on the left can be proved just by observing that plus 0 n reduces
to n no matter what n is, since the definition of plus is recursive in its first
argument.

Theorem plusp_1l : forall n:nat, plus 0 n = n.
Proof.

simpl. reflexivity.
Qed.

The form of this theorem and proof are almost exactly the same as the
examples above: the only differences are that we’ve added the quanti-
fier forall n:nat and that we’ve used the keyword Theorem instead of
Example. Indeed, the latter difference is purely a matter of style; the key-
words Example and Theorem (and a few others, including Lemma, Fact,
and Remark) mean exactly the same thing to Coq.

The keywords simple and reflexivity are examples of tactics. A tactic
is a command that is used between Proof and Qed to tell Coq how it should
check the correctness of some claim we are making. We will see several more
tactics in the rest of this lecture, and yet more in future lectures.

Actually, reflexivity implicitly simplifies both sides of the equality be-
fore testing to see if they are the same. So we can omit the explicit use of
simpl just before any use of reflexivity, and we'll generally do so from
now on.

Quite a few simple facts about addition and multiplication can be proved
in this way. Here are a couple more examples:

Theorem plusi_1 : forall n:nat, plus 1 n = S n.

Theorem multo_1 : forall n:nat, mult 0 n

(The _1 suffix in the names of these theorems is pronounced “on the left.”)

The intros Tactic

Aside from unit tests, which apply functions to particular arguments, most
of the properties we will be interested in proving about programs will be-
gin with some quantifiers (e.g., “for all numbers n, ...”) and/or hypothesis
(“assuming m=n, ...”). In such situations, we will need to be able to reason
by assuming the hypothesis—i.e., we start by saying “OK, suppose n is some
arbitrary number,” or “OK, suppose m=n.”

The intros tactic permits us to do this, by moving one or more quantifiers
or hypotheses from the goal to a context of current assumptions.

For example, here is a similar theorem with a slightly different proof.

10

1.6

1 Basics

Theorem plusi_1 : forall n:nat, plus 1 n = S n.
Proof.

intros n. reflexivity.
Qed.

Step through this proof in Coq and notice how the goal and context change
at each point.

Proof by Rewriting
Here is a slightly more interesting theorem:

Theorem plus_id_example : forall n m:nat,

n=m— plus n n = plus m m.

Instead of making a completely universal claim about all numbers n and m,
this theorem talks about a more specialized property that only holds when
n = m. The arrow symbol, written — in typeset code and —> in ascii .v files, is
pronounced implies.

Since n and m are arbitrary numbers, we can’t just use simplification to
prove this theorem. Instead, we prove it by observing that, if we are assum-
ing n = m, then we can replace n with m in the goal statement and obtain an
equality with the same expression on both sides. The tactic that tells Coq to
perform this replacement is called rewrite.

Proof.
intros n m. (» move both quantifiers into the context x)
intros H. (» move the hypothesis into the context x)
rewrite — H. (x Rewrite the goal using the hypothesis x)
reflexivity.

Qed.

The first line of the proof moves the universally quantified variables n and
m into the context. The second moves the hypothesis n =m into the con-
text and gives it the name H. The third tells Coq to rewrite the current goal
(plus n n =plus mm) by replacing the left side of the equality hypothesis H
with the right side.

(The arrow symbol in the rewrite has nothing to do with implication: it
tells Coq to apply the rewrite from left to right. To rewrite from right to left,
you can use rewrite <-.Try making this change in the above proof and see
what difference it makes in Coq’s behavior.)

1.6.1

1.6.2

1.7

1.7 Case Analysis 11

EXERCISE [%]: Inthe Basics.v file, you'll see that the proof of the theorem
plus_id_exercise hasbeenreplaced by Admitted. The Admitted com-
mand tells Coq that we want to give up trying to prove this theorem and just
accept it as a given. This can be useful for developing longer proofs, since
we can state subsidiary facts that we believe will be useful for making some
larger argument, use Admitted to accept them on faith for the moment, and
continue thinking about the larger argument until we are sure it makes sense;
then we can go back and fill in the proofs we skipped. Be careful, though: ev-
ery time you say Admitted you are leaving a door open for total nonsense
to enter Coq’s nice, rigorous, formally checked world!

Prove plus_id_exercise. O

We can also use the rewrite tactic with a previously proved theorem
instead of a hypothesis from the context.

Theorem multo_plus : forall n m : nat,
mult (plus 0 n) m = mult n m.
Proof.
intros n m.
rewrite — plusp_1l.
reflexivity.
Qed.

EXERCISE [%]: Prove the theorem mult;_plusinBasics.v. O

Case Analysis

Of course, not everything can be proved by simple calculation: In general,
unknown, hypothetical values (arbitrary numbers, booleans, lists, etc.) can
show up in the "head position" of functions that we want to reason about,
blocking simplification. For example, if we try to prove the following fact
using the simpl tactic as above, we get stuck.

Theorem plusi_neqo_firsttry : forall n,
beg _nat (plus n 1) 0 = false.

The reason for this is that the definitions of both beq_nat and plus begin
by performing a match on their first argument. But here, the first argument
to plus is the unknown number n and the argument to neq_nat is the com-
pound expression plus n 1; neither can be simplified.

What we need is to be able to consider the possible forms of n separately.
If n is O, then we can calculate the final result of beq_nat (plusn 1) 0and

12

1 Basics

check that it is, indeed, false. And if n = S n’ for some n’, then, although
we don’t know exactly what number plus n 1 yields, we can calculate that,
at least, it will begin with one S, and this is enough to calculate that, again,
beqg nat (plusn1l) 0will yield false.

The tactic that tells Coq to consider the cases where n =0 and where
n = S n’ separately is called destruct.

Theorem plusi_neqo : forall n,
beg_nat (plus n 1) 0 = false.
Proof.
intros n. destruct n as [| n'].
reflexivity.
reflexivity.
Qed.

The destruct generates tfwo subgoals, which we must then prove, sepa-
rately, in order to get Coq to accept the theorem as proved. (No special com-
mand is needed for moving from one subgoal to the other. When the first
subgoal has been proved, it just disappears and we are left with the other “in
focus.”) In this case, each of the subgoals is easily proved by a single use of
reflexivity.

The annotation “as [| n’]” is called an intro pattern. It tells Coq what vari-
able names to introduce in each subgoal. In general, what goes between the
square brackets is a list of lists of names, separated by |. Here, the first com-
ponent is empty, since the O constructor is nullary (it doesn’t carry any data).
The second component gives a single name, n’, since S is a unary constructor.

The destruct tactic can be used with any inductively defined datatype.
For example, we use it here to prove that boolean negation is “involutive”—
i.e., that negation is its own inverse.

Theorem negb_involutive : forall b : bool,
negb (negb b) = b.
Proof.

intros b. destruct b.
reflexivity.
reflexivity.

Qed.

Note that the dest ruct here has no as clause because none of the subcases
of the destruct need to bind any variables, so there is no need to specify
any names. (We could also have written “as []”.) In fact, we can omit the as
clause from any dest ruct and Coq will fill in variable names automatically.

1.7.1

1.8

1.8 Naming Cases 13

However, although this is convenient, it is arguably bad style, since Coq often
makes confusing choices of names when left to its own devices.

EXERCISE [%]: Prove the theorem zero_nbeq_plus;inBasics.v. O

Naming Cases

The fact that there is no explicit command for moving from one branch of a
case analysis to the next can make proof scripts rather hard to read. In larger
proofs, with nested case analyses, it can even become hard to stay oriented
when you're sitting with Coq and stepping through the proof. (Imagine try-
ing to remember that the first five subgoals belong to the inner case analysis
and the remaining seven are the cases that are left of the outer one...) Disci-
plined use of indentation and comments can help, but a better way is to use
the Case tactic.

Theorem andb_true_1 : forall b c,
andb b ¢ = true — b = true.
Proof.
intros b ¢ H.
destruct b.
Case "b = true".
reflexivity.
Case "b = false".
rewrite <- H. reflexivity.
Qed.

Case does something very trivial: It simply adds a string that we choose
(tagged with the identifier “Case”) to the context for the current goal. When
subgoals are generated, this string is carried over into their contexts. When
the last of these subgoals is finally proved and the next top-level goal (a sib-
ling of the current one) becomes active, this string will no longer appear in
the context and we will be able to see that the case where we introduced it
is complete. Also, as a sanity check, if we try to execute a new Case tactic
while the string left by the previous one is still in the context, we get a nice
clear error message.

For nested case analyses (i.e., when we want to use a destruct to solve a
goal that has itself been generated by a destruct), there is an SCase (“sub-
case”) tactic. For deeper nesting there are SSCase, SSSCase, etc.

Case and its friends are not actually built-in facilities of Coq: they can be
programmed using “Ltac,” Coq’s language for writing user-defined tactics.
You can see the actual definitions at this point in the Basics. v file, if you're

14

1.8.1

1.9

1 Basics

curious, but there’s no need to understand any of the details of how they
work.

EXERCISE [%]: Prove the theorem andb_true_rinBasics.v,using Case
(or sCase) to mark the branches of each destruct. |

Induction

We proved above that 0 is a neutral element for plus on the left using a
simple partial evaluation argument. The fact that it is also a neutral element
on the right...

Theorem pluso_r : forall n:nat, plus n 0 = n.

... cannot be proved in the same simple way. Just applying reflexivity
doesn’t work: the n in plus 0 n is an arbitrary unknown number, so the
match in the definition of plus can’t be simplified. And reasoning by cases
using destruct n doesn’t get us much further: the branch of the case anal-
ysis where we assume n = 0 goes through, but in the branch where n = S n’
for some n’ we get stuck in exactly the same way. We could use destruct n’
to get one step further, but since n can be arbitrarily large, if we continue this
way we'll never be done.

To prove such facts—indeed, to prove most interesting facts about num-
bers, lists, and other inductively defined sets—we need a more powerful
reasoning principle: induction.

Recall (from high school) the principle of induction over natural numbers:
If P (n) is some proposition involving a natural number n and we want to
show that P holds for all numbers n, we can reason like this:

1. show that P (0) holds;
2. show that, for any n’, if P (n’) holds, then so does P (S n’);
3. conclude that P (n) holds for all n.

In Cogq, the steps are the same but the order is backwards: we begin with
the goal of proving P (n) for all n and break it down (by applying the
induction tactic) into two separate subgoals: first showing P (0) and then
showing P (n’) — P (S n’). Here’s how this works for the theorem we are
trying to prove at the moment:

19.1

1.10

1.10 Formal vs. Informal Proofs 15

Proof.
intros n. induction n as [| n’].
Case "n = 0". reflexivity.
Case "n = S n'". simpl. rewrite — IHn'. reflexivity.
Qed.
Like destruct, the induction tactic takes an as... clause that speci-

fies the names of the variables to be introduced in the subgoals. In the first
branch, n is replaced by 0 and the goal becomes plus 0 0 = 0, which follows
by simplification. In the second, n is replaced by S n’ and the assumption
plus n’ 0 =n’is added to the context (with the name IHn’, i.e., the Induc-
tion Hypothesis for n’). The goal in this case becomes plus (Sn’) 0 =Sn’,
which simplifies to S (plus n’ 0) = S n’, which in turn follows from the in-
duction hypothesis.

EXERCISE [%]: Use induction to prove the following theorems:

Theorem multo_r : forall n:nat,
mult n 0 = 0.

Theorem plus_n_Sm : forall n m : nat,

S (plus n m) = plus n (S m).

Theorem plus_comm : forall n m : nat,

plus n m = plus m n.

Formal vs. Informal Proofs

The question of what, exactly, constitutes a proof of a mathematical claim has
challenged philosophers throughout the ages. A rough and ready definition,
though, could be this: a proof of a mathematical proposition P is a written
(or, sometimes, spoken) text that instills in the reader or hearer the certainty
that P is true. That is, a proof is an act of communication.

Now, acts of communication may involve different sorts of readers. On one
hand, the “reader” can be a program like Coq, in which case the “belief” that
is instilled is a simple mechanical check that P can be derived from a certain
set of formal logical rules, and the proof is a recipe that guides the program
in performing this check. Such recipies are called formal proofs.

Alternatively, the reader can be a human being, in which case the proof
will be written in English or some other natural language, thus necessarily
informal. Here, the criterial for success are less clearly specified. A “good”
proof is one that makes the reader believe P. But the same proof may be

16

1.10.1

1 Basics

read by many different readers, some of whom may be convinced by a par-
ticular way of phrasing the argument, while others may not be. One reader
may be particularly pedantic, inexperienced, or just plain thick-headed; the
only way to convince them will be to make the argument in painstaking de-
tail. But another reader, more familiar in the area, may find all this detail so
overwhelming that they lose the overall thread. All they want is to be told
the main ideas, because it is easier to fill in the details for themselves. Ulti-
mately, there is no universal standard, because is no single way of writing
an informal proof that is guaranteed to convince every conceivable reader. In
practice, however, mathematicians have developed a rich set of conventions
and idioms for writing about complex mathematical objects that, within a
certain community, make communication fairly reliable. The conventions of
this stylized form of communication give a fairly clear standard for judging
proofs good or bad.

Because we will be using Coq in this course, we will be working heavily
with formal proofs. But this doesn’t mean we can ignore the informal ones!
Formal proofs are useful in many ways, but they are not very efficient ways
of communicating ideas between human beings.

For example, consider this statement:

Theorem plus_assoc : forall n m p : nat,
plus n (plus m p) = plus (plus n m) p.

Coq is perfectly happy with this as a proof:

Proof. intros n m p. induction n as [| n'l. reflexivity.

simpl. rewrite — IHn'. reflexivity. Qed.

For a human, however, it is difficult to make much sense of this. If you're
used to Coq you can probably step through the tactics one after the other
in your mind and imagine the state of the context and goal stack at each
point, but if the proof were even a little bit more complicated this would be
next to impossible. Instead, a mathematician would write it as in Figure 1-
1: The overall form of the proof is basically similar. (This is no accident, of
course: Coq has been designed so that its induction tactic generates the
same sub-goals, in the same order, as the bullet points that a mathematician
would write.) But there are significant differences of detail: the formal proof
is much more explicit in some ways (e.g., the use of reflexivity)butmuch
less explicit in others; in particular, the “proof state” at any given point in the
Coq proof is completely implicit, whereas the informal proof reminds the
reader several times where things stand.

EXERCISE [%%]: InBasics.v, youwill find a Coq proof of a theorem called

1.10.2

1.11

1.11 Proofs Within Proofs 17

Proof: By induction on n.

e First, suppose n = 0. We must show
plus 0 (plusmp) =plus (plus Om) p.
This follows directly from the definition of plus.
e Next, suppose n = S n’, with
plusn’ (plusmp) =plus (plusn’m) p.
We must show
plus (Sn’) (plusmp) =plus (plus (Sn’) m) p.
By the definition of plus, this follows from
S (plusn’ (plusmp)) =S (plus (plusn’'m) p),

which is immediate from the induction hypothesis.

Figure 1-1 A mathematician’s inductive proof

beg_nat_refl. In a comment following the formal proof, write the cor-
responding informal proof, using the informal proof of plus_assoc as a
model. O

EXERCISE [%%]: In Basics.v, you will find a careful informal proof of a
theorem called beq_nat_sym. Write a corresponding Coq proof. o

Proofs Within Proofs

In Cogq, as in informal mathematics, large proofs are very often broken into
sequence of theorems, with later proofs referring to earlier theorems. Occa-
sionally, however, a proof will need some miscellaneous fact that is too trivial
(and of too little general interest) to bother giving it its own top-level name.
In such cases, it is convenient to be able to simply state and prove the needed
“sub-theorem” right at the point where it is used. The assert tactic allows
us to do this. For example, our earlier proof of the multo_plus theorem re-

18

1 Basics

ferred to a previous theorem named plusg_1. We can also use assert to
state and prove pluso_1 in-line:

Proof.
intros n m.
assert (plus 0 n = n).
Case "Proof of assertion". reflexivity.
rewrite — H.
reflexivity.
Qed.

The assert tactic introduces two sub-goals. The first is the assertion itself.
(We mark this with a Case, both for readability and so that, when using Coq
interactively, we can see when we’re finished proving the assertion by ob-
serving when the "Proof of assertion" string disappears from the con-
text.) The second goal is the same as the one at the point where we invoke
assert, except that, in the context, we have an assumption, called H, that
plus 0 n=n. Thatis, assert generates one subgoal where we must prove
the asserted fact and a second subgoal where we can use the asserted fact to
make progress on whatever we were trying to prove in the first place.

Actually, assert will turn out to be handy in many sorts of situations. For
example, suppose we want to prove that

plus (plusnm) (pluspdqg) =plus (plusmn) (pluspq).

The only difference between the two sides of the = is that the arguments m
and n to the first inner plus are swapped, so it seems we should be able
to use the commutativity of addition (plus_comm) to rewrite one into the
other. However, the rewrite tactic is a little stupid about where it applies
the rewrite. There are three uses of plus here, and it turns out that do-
ing rewrite — plus_comm will affect only the outer one. (Try it!) To get
plus_comm to apply at the point where we want it, we can introduce a local
lemma stating that plus nm=plus mn (for the particular m and n that we
are talking about here), prove this lemma using plus_comm, and then use
this lemma to do the desired rewrite.

Proof.
intros nm p g.
assert (plus n m = plus m n).
Case "Proof of assertion".
rewrite — plus_comm. reflexivity.
rewrite — H. reflexivity.
Qed.

1.11.1

1.11.2

1.11.3

1.11 Proofs Within Proofs 19

EXERCISE [k]: Use assert to help prove the theorem plus_swap in
Basics.v. Then use plus_swap to prove mult_comm. O

EXERCISE [%%]: The theorem evenb_n__ oddb_Sn in Basics.v states
that if n is even, then its successor is odd. Prove it. o

EXERCISE [%]: Take a piece of paper. Find the section marked “More exer-
cises” in Basics.v. For each of the theorems there, first think about whether
(a) it can be proved using only simplification and rewriting, (b) it also re-
quires case analysis (destruct), or (c) it also requires induction. Write down
your prediction. Then fill in the proof. (There is no need to turn in your piece
of paper; this was just to encourage you to think before hacking!)]

	Basics
	Enumerated Types
	Booleans
	Numbers
	Proof by Simplification
	The intros Tactic
	Proof by Rewriting
	Case Analysis
	Naming Cases
	Induction
	Formal vs. Informal Proofs
	Proofs Within Proofs

