
3 Pairs and Lists

3.1 Formal vs. Informal Proofs

The question of what, exactly, constitutes a proof of a mathematical claim has
challenged philosophers throughout the ages. A rough and ready definition,
though, could be this: a proof of a mathematical proposition P is a written
(or, sometimes, spoken) text that instills in the reader or hearer the certainty
that P is true. That is, a proof is an act of communication.

Now, acts of communication may involve different sorts of readers. On one
hand, the “reader” can be a program like Coq, in which case the “belief” that
is instilled is a simple mechanical check that P can be derived from a certain
set of formal logical rules, and the proof is a recipe that guides the program
in performing this check. Such recipies are called formal proofs.

Alternatively, the reader can be a human being, in which case the proof
will be written in English or some other natural language, thus necessarily
informal. Here, the criterial for success are less clearly specified. A “good”
proof is one that makes the reader believe P. But the same proof may be
read by many different readers, some of whom may be convinced by a par-
ticular way of phrasing the argument, while others may not be. One reader
may be particularly pedantic, inexperienced, or just plain thick-headed; the
only way to convince them will be to make the argument in painstaking de-
tail. But another reader, more familiar in the area, may find all this detail so
overwhelming that they lose the overall thread. All they want is to be told
the main ideas, because it is easier to fill in the details for themselves. Ulti-
mately, there is no universal standard, because is no single way of writing
an informal proof that is guaranteed to convince every conceivable reader. In
practice, however, mathematicians have developed a rich set of conventions
and idioms for writing about complex mathematical objects that, within a
certain community, make communication fairly reliable. The conventions of

26 3 Pairs and Lists

this stylized form of communication give a fairly clear standard for judging
proofs good or bad.

Because we will be using Coq in this course, we will be working heavily
with formal proofs. But this doesn’t mean we can ignore the informal ones!
Formal proofs are useful in many ways, but they are not very efficient ways
of communicating ideas between human beings.

For example, consider this statement:

Theorem plus_assoc ′ : forall n m p : nat,

plus n (plus m p) = plus (plus n m) p.

Coq is perfectly happy with this as a proof:

Proof. intros n m p. induction n as [| n ′]. reflexivity.

simpl. rewrite → IHn ′. reflexivity. Qed.

For a human, however, it is difficult to make much sense of this. If you’re
used to Coq you can probably step through the tactics one after the other
in your mind and imagine the state of the context and goal stack at each
point, but if the proof were even a little bit more complicated this would be
next to impossible. Instead, a mathematician would write it as in Figure 3-
1: The overall form of the proof is basically similar. (This is no accident, of
course: Coq has been designed so that its induction tactic generates the
same sub-goals, in the same order, as the bullet points that a mathematician
would write.) But there are significant differences of detail: the formal proof
is much more explicit in some ways (e.g., the use of reflexivity) but much
less explicit in others; in particular, the “proof state” at any given point in the
Coq proof is completely implicit, whereas the informal proof reminds the
reader several times where things stand.

3.1.1 EXERCISE [FF]: In Lists.v, you will find a Coq proof of a theorem called
plus_comm ′, which was an exercise last week. In a comment following the
formal proof, write the corresponding informal proof, using the informal
proof of plus_assoc ′ as a model. 2

3.1.2 EXERCISE [FF]: In Lists.v, you will find a careful informal proof of a
theorem called beq_nat_refl. Write a corresponding Coq proof. 2

3.2 Pairs of Numbers

Each constructor of an inductive type can take any number of parameters—
none (as with true and O), one (as with S), or more than one:

3.2 Pairs of Numbers 27

Proof: By induction on n.

• First, suppose n = 0. We must show

plus 0 (plus m p) = plus (plus 0 m) p.

This follows directly from the definition of plus.

• Next, suppose n = S n ′, with

plus n ′ (plus m p) = plus (plus n ′ m) p.

We must show

plus (S n ′) (plus m p) = plus (plus (S n ′) m) p.

By the definition of plus, this follows from

S (plus n ′ (plus m p)) = S (plus (plus n ′ m) p),

which is immediate from the induction hypothesis.

Figure 3-1 A mathematician’s inductive proof

Inductive natprod : Set :=

pair : nat → nat → natprod.

This declaration can be read: “There is just one way to construct a pair of
numbers: by applying the constructor pair to two arguments of type nat.”

Here are some simple function definitions illustrating pattern matching on
two-argument constructors:

Definition fst (p : natprod) : nat :=

match p with

| pair x y => x

end.

Definition snd (p : natprod) : nat :=

match p with

| pair x y => y

end.

28 3 Pairs and Lists

Since pairs are used quite a bit, it is nice to be able to write them with the
standard mathematical notation (x,y) instead of pair x y. We can instruct
Coq to allow this with a Notation declaration.

Notation "(x , y)" := (pair x y).

The new notation is supported both in expressions like fst (3,4) and in
pattern matches:

Definition swap_pair (p : natprod) : natprod :=

match p with

| (x,y) => (y,x)

end.

3.2.1 EXERCISE [FF]: Prove snd_fst_is_swap in Lists.v. 2

3.2.2 EXERCISE [FF, OPTIONAL]: Proof fst_swap_is_snd in Lists.v. 2

3.3 Lists of Numbers

Generalizing the definition of pairs a little, we can describe the type of lists
of numbers like this: “A list can be either the empty list or else a pair of a
number and another list.”

Inductive natlist : Set :=

| nil : natlist

| cons : nat → natlist → natlist.

For example, here is a three-element list:

Definition l123 := cons 1 (cons 2 (cons 3 nil)).

As with pairs, it is more convenient to write lists in familiar mathematical
notation. The following two declarations allow us to use :: as an infix cons
operator and square brackets as an “outfix” notation for constructing lists.

Notation "x :: l" := (cons x l)
(at level 60, right associativity).

Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).

It is not necessary to fully understand the second line of the first declara-
tion, but in case you are interested, here is roughly what’s going on. The
right associativity annotation tells Coq how to parenthesize expres-
sions involving several uses of :: so that, for example, the next three decla-
rations mean exactly the same thing:

3.3 Lists of Numbers 29

Definition l123 ′ := 1 :: (2 :: (3 :: nil)).

Definition l123 ′′ := 1 :: 2 :: 3 :: nil.

Definition l123 ′′′ := [1,2,3].

The at level 60 part tells Coq how to parenthesize expressions that involve
both :: and some other infix operator. For example, if we define + as infix
notation for the plus function at level 50,

Notation "x + y" := (plus x y)
(at level 50, left associativity).

then + will bind tighter than ::, and 1 + 2 :: [3] will be parsed correctly
as (1 + 2) :: [3] rather than 1 + (2 :: [3]).

A number of functions are useful for manipulating lists. For example, the
repeat function takes a number n and a count and returns a list of length
count where every element is n.

Fixpoint repeat (n count : nat) {struct count} : natlist :=

match count with

| O => nil

| S count ′ => n :: (repeat n count ′)

end.

The length function calculates the length of a list.

Fixpoint length (l:natlist) {struct l} : nat :=

match l with

| nil => O

| h :: t => S (length t)

end.

The app function concatenates two lists.

Fixpoint app (l1 l2 : natlist) {struct l1} : natlist :=

match l1 with

| nil => l2

| h :: t => h :: (app t l2)

end.

In fact, app will be used so pervasively in some parts of what follows that it
is convenient to have an infix operator for it.

Notation "x ++ y" := (app x y)
(right associativity, at level 60).

30 3 Pairs and Lists

Two more small examples. The hd function returns the first element (the
“head”) of the list, while tl (“tail”) returns everything but the first element.

Definition hd (l:natlist) : nat :=

match l with

| nil => 0 (* arbitrarily *)

| h :: t => h

end.

Definition tl (l:natlist) : natlist :=

match l with

| nil => nil

| h :: t => t

end.

3.3.1 EXERCISE [F]: Complete the definitions of nonzeros, oddmembers and
countoddmembers in Lists.v. 2

3.3.2 EXERCISE [FF]: Complete the definition of alternate. This exercise il-
lustrates the fact that it sometimes requires a little extra thought to satisfy
Coq’s requirement that all Fixpoint definitions be “obviously terminat-
ing.” There is an easy way to write the alternate function using just a
single match...end, but Coq will not accept it as obviously terminating.
Look for a slightly more verbose solution with two nested match...end
constructs. Note that each match must be terminated by an end. 2

3.3.3 EXERCISE [FF, OPTIONAL]: A bag (or multiset) is a set where each element
can appear any finite number of times. One reasonable implementation of
bags is to represent a bag of numbers as a list.

Definition bag := natlist.

Stubs for several bag-manipulating functions (count, union, etc.) can be
found in Lists.v. Complete them. 2

3.4 Reasoning About Lists

Just as with numbers, simple facts about list-processing functions can some-
times be proved entirely by simplification. For example, simplification is
enough for this theorem...

Theorem nil_app : forall l:natlist,

[] ++ l = l.

3.4 Reasoning About Lists 31

... because the [] is substituted into the match position in the definition of
app, allowing the match itself to be simplified. Also like numbers, it is some-
times helpful to perform case analysis on the possible shapes (empty or non-
empty) of an unknown list.

Theorem tl_length_pred : forall l:natlist,

pred (length l) = length (tl l).

Proof.

intros l. destruct l as [| n l ′].

Case "l = nil".

reflexivity.

Case "l = cons n l ′".

reflexivity.

Qed.

Notice that the as annotation on the destruct tactic here introduces two
names, n and l ′, corresponding to the fact that the cons constructor for lists
takes two arguments (the head and tail of the list it is constructing).

Usually, though, interesting theorems about lists require induction for
their proofs.

Proofs by induction over non-numeric data types are perhaps a little less
familiar than natural number induction, but the basic idea is equally simple.
Each Inductive declaration defines a set of data values that can be built up
from the declared constructors: a number can be either O or S applied to a
number; a boolean can be either true or false; a list can be either nil or
cons applied to a number and a list. Moreover, applications of the declared
constructors to one another are the only possible shapes that elements of an
inductively defined set can have, and this fact directly gives rise to a way
of reasoning about inductively defined sets: a number is either O or else it
is S applied to some smaller number; a list is either nil or else it is cons
applied to some number and some smaller list; etc. So, if we have in mind
some proposition P that mentions a list l and we want to argue that P holds
for all lists, we can reason as follows. First, show that P is true of l when l is
nil. Then show that P is true of l when l is cons n l ′ for some number n
and some smaller list l ′, asssuming that P is true for l ′. Since larger lists can
only be built up from smaller ones, stopping eventually with nil, these two
things together establish the truth of P for all lists l.

For example, the associativity of the ++ operation...

Theorem ass_app : forall l1 l2 l3 : natlist,

l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

32 3 Pairs and Lists

... can be shown by induction on l1:

Proof.

intros l1 l2 l3. induction l1 as [| n l1 ′].

Case "l1 = nil".

reflexivity.

Case "l1 = cons n l1 ′".

simpl. rewrite → IHl1 ′. reflexivity.

Qed.

Again, this Coq proof is not especially illuminating as a static written
document—it is easy to see what’s going on if you are reading the proof
in an interactive Coq session and you can see the current goal and context at
each point, but this state is not visible in the written-down parts of the Coq
proof. A human-readable (informal) proof needs to include more explicit—in
particular, it helps the reader a lot to be reminded exactly what the induction
hypothesis is in the second case.

3.4.1 THEOREM: For all l1, l2, and l3,

l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

Proof: By induction on l1.

• First, suppose l = []. We must show

[] ++ (l2 ++ l3) = ([] ++ l2) ++ l3,

which follows directly from the definition of ++.

• Next, suppose l = n::l ′, with

l1 ′ ++ l2 ++ l3 = (l1 ′ ++ l2) ++ l3.

We must show

(n :: l1 ′) ++ l2 ++ l3 = ((n :: l1 ′) ++ l2) ++ l3.

By the definition of ++, this follows from

n :: (l1 ′ ++ l2 ++ l3) = n :: ((l1 ′ ++ l2) ++ l3),

which is immediate from the induction hypothesis. 2

For a slightly more involved example of an inductive proof over lists, sup-
pose we define a “cons on the right” function snoc like this...

3.4 Reasoning About Lists 33

Fixpoint snoc (l:natlist) (v:nat) {struct l} : natlist :=

match l with

| nil => [v]

| h :: t => h :: (snoc t v)

end.

... and use it to define a list-reversing function rev line this:

Fixpoint rev (l:natlist) {struct l} : natlist :=

match l with

| nil => nil

| h :: t => snoc (rev t) h

end.

We can now prove that reversing a list doesn’t change it’s length as follows.
First we prove a lemma relating length and snoc.

3.4.2 LEMMA: For all numbers n and lists l,

length (snoc l n) = S (length l).

Proof: By induction on l.

• First, suppose l = []. We must show

length (snoc [] n) = S (length []),

which follows directly from the definitions of length and snoc.

• Next, suppose l = n ′::l ′, with

length (snoc l ′ n) = S (length l ′).

We must show

length (snoc (n ′ :: l ′) n) = S (length (n ′ :: l ′)).

By the definitions of length and snoc, this follows from

S (length (snoc l ′ n)) = S (S (length l ′)),

which is immediate from the induction hypothesis. 2

Now we can use this lemma to prove the fact we wanted about length
and rev.

34 3 Pairs and Lists

3.4.3 THEOREM: For all lists l,

length (rev l) = length l.

Proof: By induction on l.

• First, suppose l = []. We must show

length (rev []) = length [],

which follows directly from the definitions of length and rev.

• Next, suppose l = n::l ′, with

length (rev l ′) = length l ′.

We must show

length (rev (n :: l ′)) = length (n :: l ′).

By the definition of rev, this follows from

length (snoc (rev l ′) n) = S (length l ′),

which, by the previous lemma, is the same as

S (length (rev l ′)) = S (length l ′).

This is immediate from the induction hypothesis. 2

Obviously, the style of these proofs is rather longwinded and pedantic. After
we’ve seen a few of them, we might begin to find it easier to follow proofs
that give a little less detail overall (since we can easily work them out in
our own minds or on scratch paper if necessary) and just highlight the non-
obvious steps. In this more compressed style, the above proof might look
more like this:

3.4.4 THEOREM: For all lists l,

length (rev l) = length l.

Proof: First, observe that

length (snoc l n) = S (length l)

for any l. This follows by a straightforward induction on l.
The main property now follows by another straightforward induction on

l, using the observation together with the induction hypothesis in the case
where l = n ′::l ′. 2

3.5 Options 35

Which style is preferable in a given situation depends on the sophistication
of the expected audience and on how similar the proof at hand is to ones that
the audience will already be familiar with. The more pedantic style is usually
a safe fallback.

3.4.5 EXERCISE [FF]: Find the section marked “A bunch of exercises” in
Lists.v and complete all the proofs you find there. 2

3.4.6 EXERCISE [FF]: (1) Find a non-trivial equational property involving ::,
snoc, and ++. (2) Prove it. Fill in your theorem and proof in the file Lists.v
just after the string “Design exercise.” 2

3.4.7 EXERCISE [FF, OPTIONAL]: If you did Exercise 3.3.3, then prove the
theorems count_member_nonzero and remove_decreases_count in
Lists.v. 2

3.5 Options

Here is another type definition that is quite useful in day-to-day program-
ming:

Inductive natoption : Set :=

| Some : nat → natoption

| None : natoption.

We can use natoption as a way of returning “error codes” from func-
tions. For example, suppose we want to write a function that returns the nth
element of some list. If we give it type nat→natlist→nat, then we’ll have
to return some number when the list is too short!

Fixpoint index_bad (n:nat) (l:natlist) {struct l} : nat :=

match l with

| nil => 42 (* arbitrary! *)

| a :: l ′ => match beq_nat n O with true => a

| false => index_bad (pred n) l ′ end

end.

On the other hand, if we give it type nat→natlist→natoption, then
we can return None when the list is too short and Some a when the list has
enough members and a appears at position n.

Fixpoint index (n:nat) (l:natlist) {struct l} : natoption :=

match l with

36 3 Pairs and Lists

| nil => None

| a :: l ′ => match beq_nat n O with true => Some a

| false => index (pred n) l ′ end

end.

Example test_index1 : index 0 [4,5,6,7] = Some 4.

Example test_index2 : index 3 [4,5,6,7] = Some 7.

Example test_index3 : index 10 [4,5,6,7] = None.

This example is also an opportunity to introduce one more small feature
of Coq’s programming language: conditional expressions.

Fixpoint index ′ (n:nat) (l:natlist) {struct l} : natoption :=

match l with

| nil => None

| a :: l ′ => if beq_nat n O then Some a else index (pred n) l ′

end.

Coq’s conditionals are exactly like those in every other language, with one
small generalization. Since the boolean type is not built in, Coq actually al-
lows conditional expressions over any inductively defined type with exactly
two constructors. The guard is considered “true” if it evaluates to the first
constructor in the Inductive definition and “false” if it evaluates to the
second.

3.5.1 EXERCISE [FF]: Complete the definition of hd_opt in Lists.v. 2

3.5.2 EXERCISE [FF]: Prove option_elim_hd in Lists.v. 2

3.5.3 EXERCISE [FF]: Define a function beq_natlist for comparing lists of
numbers for equality. Prove that beq_natlist l l yields true for every
list l. (Stubs are provided in Lists.v.) 2

3.6 The apply Tactic

This section still needs to be written. Please have a look at the corresponding material
in Lists.v, where you’ll find plenty of descriptive text...

3.6.1 EXERCISE [FF]: Prove silly_ex in Lists.v without using the simpl
tactic. 2

3.6.2 EXERCISE [FFF]: Prove rev_exercise1 and beq_nat_sym in Lists.v.
2

3.6.3 EXERCISE [FFF]: Provide an informal proof of beq_nat_sym in Lists.v.
2

3.7 Varying the Induction Hypothesis 37

3.7 Varying the Induction Hypothesis

One subtlety in these inductive proofs is worth noticing here. For example,
look back at the proof of the app_ass theorem. The induction hypothesis (in
the second subgoal generated by the induction tactic) is

l1 ′ ++ l2 ++ l3 = (l1 ′ ++ l2) ++ l3.

That is it makes a statement about l1 ′ together with the particular lists l2
and l3. The lists l2 and l3, which were introduced into the context by the
intros at the top of the proof, are “held constant” in the induction hypoth-
esis. If we set up the proof slightly differently by introducing just n into the
context at the top, then we get an induction hypothesis that makes a stronger
claim:

forall l2 l3, l1 ′ ++ l2 ++ l3 = (l1 ′ ++ l2) ++ l3.

(Use Coq to see the difference for yourself.) In the present case, the differ-
ence between the two proofs is minor, since the definition of the ++ function
just examines its first argument and doesn’t do anything interesting with its
second argument. But we’ll soon come to situations where setting up the in-
duction hypothesis one way or the other can make the difference between a
proof working and failing.

3.7.1 EXERCISE [FF]: Finish the proof of ass_app ′ at the end of Lists.v. 2

	Preface
	Introduction
	I Functional Programming
	Basics
	Enumerated Types
	Booleans
	Numbers
	Proof by Simplification
	The intros Tactic
	Proof by Rewriting
	Case Analysis
	Naming Cases
	Induction
	Formal vs. Informal Proofs
	Proofs Within Proofs

	Pairs and Lists
	Formal vs. Informal Proofs
	Pairs of Numbers
	Lists of Numbers
	Reasoning About Lists
	Options
	The apply Tactic
	Varying the Induction Hypothesis

	More Coq Tactics
	A Simple Evaluator
	More On Induction

	II Logic
	Programming with Propositions
	Logical Connectives
	More on Induction
	Relations as Propositions
	The Computational View of Proofs
	Dependent Types

	III Operational Semantics
	Semantics of While Programs
	A Small-Step Abstract Machine
	Basic Coq Automation

	IV Types
	A First Taste of Types
	The Simply Typed Lambda-Calculus
	Products and Records
	Subtyping
	References

