
9 Logical Connectives

Like its built-in programming language, Coq’s built-in logic is extremely
small: universal quantification (forall) and implication (→) are primitive,
but all the other familiar logical connectives—conjunction, disjunction, nega-
tion, existential quantification, even equality—can be defined using just these
and Inductive.

9.1 Conjunction

The logical conjunction of propositions A and B is represented by the follow-
ing inductively defined proposition.

Inductive and (A B : Prop) : Prop :=

conj : A → B → (and A B).

Note that, like the definition of ev, this definition is parameterized; however,
in this case, the parameters are themselves propositions.

The intuition behind this definition is simple: to construct evidence for
and A B, we must provide evidence for A and evidence for B. More precisely:

1. conj e1 e2 can be taken as evidence for and A B if e1 is evidence for A
and e2 is evidence for B; and

2. this is the only way to give evidence for and A B—that is, if someone gives
us evidence for and A B, we know it must have the form conj e1 e2,
where e1 is evidence for A and e2 is evidence for B.

9.1.1 EXERCISE [F]: What does the induction principle and_ind look like?

Since we’ll be using conjunction a lot, let’s introduce a more familiar-
looking infix notation for it.

Notation "A ∧ B" := (and A B) : type_scope.

9.2 Bi-implication (Iff) 69

(The type_scope annotation tells Coq that this notation will be appearing
in propositions, not values.)

Besides the elegance of building everything up from a tiny foundation,
what’s nice about defining conjunction this way is that we can prove state-
ments involving conjunction using the tactics that we already know. For ex-
ample, if the goal statement is a conjuction, we can prove it by applying the
single constructor conj, which (as can be seen from the type of conj) solves
the current goal and leaves the two parts of the conjunction as subgoals to be
proved separately.

Theorem and_example :

(ev 0) ∧ (ev 4).

Proof.

apply conj.

Case "left". apply ev_0.

Case "right". apply ev_SS. apply ev_SS. apply ev_0. 2

The split tactic is a convenient shorthand for apply conj.
Conversely, the inversion tactic can be used to investigate a conjunction

hypothesis in the context and calculate what evidence must have been used
to build it.

9.1.2 EXERCISE [F]: Look at the proof of and_1 and prove and_2 in Logic.v.

9.1.3 EXERCISE [FF]: Prove that conjunction is associative.

Theorem and_assoc : forall A B C : Prop,

A ∧ (B ∧ C) → (A ∧ B) ∧ C.

9.1.4 EXERCISE [FF]: Now we can prove the other direction of the equivalence
of even and ev:

Theorem even_ev : forall n : nat,

(even n → ev n) ∧ (even (S n) → ev (S n)).

Notice that the left-hand conjunct here is the statement we are actually in-
terested in; the right-hand conjunct is needed in order to make the induction
hypothesis strong enough that we can carry out the reasoning in the induc-
tive step. (To see why this is needed, try proving the left conjunct by itself
and observe where things get stuck.)

9.2 Bi-implication (Iff)

The familiar logical “if and only if” is just the conjunction of two implica-
tions.

70 9 Logical Connectives

Definition iff (A B : Prop) := (A → B) ∧ (B → A).

Notation "A ↔ B" := (iff A B) : type_scope.

9.2.1 EXERCISE [F]: Using the proof that ↔ is symmetric (iff_sym) as a guide,
prove that it is also reflexive and transitive (iff_refl and iff_trans).

Unfortunately, propositions phrased with ↔ are a bit inconvenient to use
as hypotheses or lemmas, because they have to be deconstructed into their
two directed components in order to be applied. (The basic problem is that
there’s no way to apply an iff proposition directly. If it’s a hypothesis, you
can invert it, which is tedious; if it’s a lemma, you have to destruct it into
hypotheses, which is worse.) Consequently, many Coq developments avoid↔, despite its appealing compactness. It can actually be made much more
convenient using a Coq feature called “setoid rewriting,” but that is a bit
beyond the scope of this course.

9.2.2 EXERCISE [FF]: We have seen that the families of propositions MyProp and
ev actually characterize the same set of numbers (the even ones). Prove
that MyProp n ↔ ev n for all n (MyProp_iff_ev in Logic.v). Just for fun,
write your proof as an explicit proof object, rather than using tactics.

9.3 Disjunction

Disjunction (“logical or”) can also be defined as an inductive proposition.

Inductive or (A B : Prop) : Prop :=

| or_introl : A → or A B

| or_intror : B → or A B.

9.3.1 EXERCISE [F]: What does the induction principle or_ind look like?

Since A ∨ B has two constructors, doing inversion on a hypothesis of
type A ∨ B yields two subgoals.

Theorem or_commut : forall A B : Prop,

A ∨ B → B ∨ A.

Proof.

intros A B H.

inversion H as [HA | HB].

Case "left". apply or_intror. apply HA.

Case "right". apply or_introl. apply HB. 2

9.4 Falsehood 71

From here on, we’ll use the handy tactics left and right in place of
apply or_introl and apply or_intror:

Theorem or_commut ′ : forall A B : Prop,

A ∨ B → B ∨ A.

Proof.

intros A B H.

inversion H as [HA | HB].

Case "left". right. apply HA.

Case "right". left. apply HB. 2

9.3.2 EXERCISE [FF]: Using the proof of or_distributes_over_and_1 as a
guide, prove or_distributes_over_and_2.

9.3.3 EXERCISE [F]: Prove the distributivity of ∧ and ∨ as an iff proposition
(or_distributes_over_and).

We’ve already seen several places where analogous structures can be
found in Coq’s computational (Set) and logical (Prop) worlds. Here is one
more: the boolean operators andb and orb are obviously analogs, in some
sense, of the logical connectives ∧ and ∨. This analogy can be made more
precise by the following theorems, which show how to “translate” know-
ledge about andb and orb’s behaviors on certain inputs into propositional
facts about those inputs.

Theorem andb_true : forall b c,

andb b c = true → b = true ∧ c = true.

Theorem andb_false : forall b c,

andb b c = false → b = false ∨ c = false.

Theorem orb_true : forall b c,

orb b c = true → b = true ∨ c = true.

Theorem orb_false : forall b c,

orb b c = false → b = false ∧ c = false.

9.3.4 EXERCISE [F]: The proof of andb_true is given in Logic.v. Fill in the
other three.

9.4 Falsehood

Falsehood can be represented in Coq as an inductively defined proposition
with no constructors.

Inductive False : Prop := .

72 9 Logical Connectives

9.4.1 EXERCISE [F]: Can you predict what the induction principle False_ind
will look like?

Since False has no constructors, inverting it always yields zero subgoals,
allowing us to immediately prove any goal.

Theorem False_implies_nonsense :

False → plus 2 2 = 5.

Proof.

intros contra.

inversion contra. 2

Actually, since the proof of False_implies_nonsense doesn’t actually
have anything to do with the specific nonsensical thing being proved; it can
easily be generalized to work for an arbitrary P:

Theorem ex_falso_quodlibet : forall (P:Prop),

False → P.

The Latin ex falso quodlibet means, literally, “from falsehood follows whatever
you please.” This theorem is also known as the principle of explosion.

Conversely, the only way to prove False is if there is already something
nonsensical or contradictory in the context:

Theorem nonsense_implies_False :

plus 2 2 = 5 → False.

Proof.

intros contra.

inversion contra. 2

9.5 Truth

Since we have defined falsehood in Coq, we should also mention that it is, of
course, possible to define truth in the same way.

9.5.1 EXERCISE [FF]: Define True as another inductively defined proposition.
What induction principle will Coq generate for your definition? (The intution
is that True should be a proposition for which it is trivial to give evidence.
Alternatively, you may find it easiest to start with the induction principle and
work backwards to the inductive definition.)

However, unlike False, which we’ll use extensively, True is basically a
theoretical curiosity: since it is trivial to prove as a goal, it carries no useful
information as a hypothesis.

9.6 Negation 73

9.6 Negation

The logical complement of a proposition A is written not A or, for shorthand,
~A:

Definition not (A:Prop) := A → False.

The intuition is that, if A is not true, then anything at all (even False) should
follow from assuming A.

It takes a little practice to get used to working with negation in Coq. Even
though you can see perfectly well why something is true, it can be a little
hard at first to figure out how to get things into the right configuration so
that Coq can see it! Logic.v contains proofs of a view familiar facts about
negation to get you warmed up.

Theorem not_False :

~ False.

Theorem contradiction_implies_anything : forall A B : Prop,

(A ∧ ~A) → B.

Theorem double_neg : forall A : Prop,

A → ~~A.

Theorem five_not_even :

~ ev 5.

9.6.1 EXERCISE [FF]: double_neg_in FIX ME

9.6.2 EXERCISE [FF]: Prove the following fact:

Theorem contrapositive : forall A B : Prop,

(A → B) → (~B → ~A).

9.6.3 EXERCISE [F]: Prove the following simple fact:

Theorem not_both_true_and_false : forall A : Prop,

~ (A ∧ ~A).

9.6.4 EXERCISE [F]: Theorem five_not_even in Logic.v confirms the unsur-
prising fact that that five is not an even number. Prove this more interesting
fact:

Theorem ev_not_ev_S : forall n,

ev n → ~ ev (S n).

9.6.5 EXERCISE [FFFF, OPTIONAL]: For those who like a challenge, here is an
exercise taken from the Coq’Art book. The following five statements are often

74 9 Logical Connectives

considered as characterizations of classical logic (as opposed to constructive
logic, which is what is “built in” to Coq). We can’t prove them in Coq, but
we can consistently add any one of them as an unproven axiom if we wish
to work in classical logic. Prove that these five propositions are equivalent.

Definition peirce := forall P Q: Prop,

((P→Q)→P)→P.

Definition classic := forall P:Prop,

~~P → P.

Definition excluded_middle := forall P:Prop,

P ∨~P.

Definition de_morgan_not_and_not := forall P Q:Prop,

~(~P∧~Q) → P∨Q.

Definition implies_to_or := forall P Q:Prop,

(P→Q) → (~P∨Q).

9.7 Inequality

Saying x <> y is just the same as saying ~(x = y).

Notation "x <> y" := (~ (x = y)) : type_scope.

Since inequality involves a negation, it again requires a little practice to be
able to work with it fluently. Here is one very useful trick. If you are trying to
prove a goal that is nonsensical (e.g., the goal state is false = true), apply
the lemma ex_falso_quodlibet to change the goal to False. This makes
it easier to use assumptions of the form ~P that are available in the context—
in particular, assumptions of the form x<>y.

9.7.1 EXERCISE [FF]: Use Coq to read through the proof of this theorem.

Theorem not_false_then_true : forall b : bool,

b <> false → b = true.

Use the same idea to prove that the numeric comparison function beq_nat
yields false on unequal numbers.

Theorem not_eq_false_beq : forall n n ′ : nat,

n <> n ′→ false = beq_nat n n ′.

9.7.2 EXERCISE [FFFF, OPTIONAL]: The converse of beq_false_not_eq says
that if beq_nat yields false then its arguments are unequal. Prove it.

Theorem beq_false_not_eq : forall n m,

false = beq_nat n m → n <> m.

9.8 Existential Quantification 75

9.8 Existential Quantification

Another extremely important logical connective is existential quantification.

Inductive ex (X : Set) (P : X → Prop) : Prop :=

ex_intro : forall witness:X, P witness → ex X P.

The intuition behind this definition is that, in order to give evidence for
the assertion “there exists an x for which the proposition P holds" we must
actually name a witness—a specific value x—and then give evidence for P x.

We can use Coq’s notation definition facility to introduce more standard
notation for writing existentially quantified propositions, exactly parallel to
the built-in syntax for universally quantified propositions. Instead of writ-
ing (ex nat (fun x => ev x)) to express the proposition that there exists
some number that is even, for example, we can write exists x:nat, ev x.
(The exact definition of the notation is in Logic.v, of course, but it is not
necessary to understand the details).

We can use the same tactics as always for manipulate existentials. For ex-
ample, if to prove an existential, we apply the constructor ex_intro. Since
the premise of ex_intro involves a variable (witness) that does not ap-
pear in its conclusion, we need to explicitly give its value when we use
apply.

Example exists_example_1 : exists n, plus n (mult n n)

= 6.

Proof.

apply ex_intro with (witness:=2).

reflexivity. 2

Or, instead of writing apply ex_intro with (witness:=...), we can
use the shorthand tactic exists

Proof.

exists 2.

reflexivity. 2

Conversely, if we have an existential hypothesis in the context, we can
eliminate it with destruct.

Theorem exists_example_2 : forall n,

(exists m, n = plus 4 m)→ (exists o, n = plus 2 o).

Proof.

intros n H.

76 9 Logical Connectives

inversion H as [m Hm].

exists (plus 2 m).

apply Hm. 2

Note the use of the as... pattern to name the variable that Coq introduces
to name the witness value. (If we don’t explicitly choose one, Coq will just
call it witness, which makes proofs confusing.) *)

9.8.1 EXERCISE [F]: Prove that “P holds for all x” and “there is no x for which P
does not hold” are equivalent assertions.

Theorem dist_not_exists : forall (X:Set) (P : X → Prop),

(forall x, P x) → ~ (exists x, ~ P x).

9.8.2 EXERCISE [FF]: Prove that existential quantification distributes over dis-
junction.

Theorem dist_exists_or : forall (X:Set) (P Q : X → Prop),

(exists x, P x ∨ Q x) ↔ (exists x, P x) ∨ (exists x, Q x).

9.9 Equality

Even Coq’s equality relation is not actually built in. It has the following in-
ductive definition:

Inductive eq (A:Set) : A → A → Prop :=

refl_equal : forall x, eq A x x.

Notation "x = y" := (eq _ x y) : type_scope.

This definition is a bit subtle. The way to think about it is that, given a set
A, it defines a family of propositions “x is equal to y,” indexed by pairs of
values (x and y) from A. There is just one way of constructing evidence for
members of this family: by applying the constructor refl_equal to two
identical arguments.

Actually, the Coq library defines equality in a slightly different way:

Inductive eq ′ (A:Set) (x:A) : A → Prop :=

refl_equal ′ : eq ′ A x x.

Although this definition probably looks even more puzzling than the first
one, they are actually equivalent.

9.9.1 EXERCISE [FFF, OPTIONAL]: Verify that the two definitions are equivalent
(theorem two_defs_of_eq_coincide in Logic.v).

9.10 Inversion, Again 77

The advantage of the second definition is that the induction principle that
Coq derives for it is precisely the familiar principle of Leibniz equality: what
we mean when we say “x and y are equal” is that every property on A that
is true of x is also true of y.

Check eq’_ind.

I eq’_ind
: forall (A : Set) (x : A) (P : A → Prop),

P x → forall y : A, eq’ A x y → P y

9.9.2 EXERCISE [FFF]: Prove (again) that equality is transitive without using
rewrite or reflexivity. (If you’re stumped, try some of the tactics we’ve
used with other inductively defined datatypes in the past.) This is theorem
trans_eq ′ in Logic.v.

9.10 Inversion, Again

See Logic.v for the text of this section.

9.11 Induction principles in Prop

See Logic.v for the text of this section.

9.11.1 EXERCISE [FFF]: Do the exercise marked p_provability in Logic.v.

10 Relations

A proposition parameterized over a number (like ev) can be thought of as a
predicate—i.e., it defines a subset of nat, namely those numbers for which the
proposition is provable. In the same way, a two-argument proposition can be
thought of as a relation—i.e., it defines a set of pairs for which the proposition
is provable. In this chapter, we explore the consequences of this observation.

10.1 Relations as Propositions

We’ve already seen an inductive definition of one fundamental relation:
equality. Another very useful one is the “less than or equal to” relation on
numbers:

Inductive le : nat → nat → Prop :=

| le_n : forall n, le n n

| le_S : forall n m, (le n m) → (le n (S m)).

Notation "m <= n" := (le m n).

This definition should be fairly intuitive. It says that there are two ways to
give evidence that one number is less than or equal to another: either observe
that they are the same number, or give evidence that the first is less than or
equal to the predecessor of the second.

This is a fine definition of the <= relation, but we can streamline it a little
by observing that the left-hand argument n is the same everywhere in the
definition, so we can actually make it a “general parameter” to the whole
definition, rather than an argument to each constructor.

Inductive le (n:nat) : nat → Prop :=

| le_n : le n n

| le_S : forall m, (le n m) → (le n (S m)).

10.1 Relations as Propositions 79

The reason to prefer the second definition even though it is a little less
symmetric, so less intuitive, is that (like the second definition of =) it gives
rise to a simpler induction principle:

Check le_ind. (* the second one *)

I le_ind
: forall (n : nat) (P : nat → Prop),
P n →
(forall m : nat, n <= m → P m → P (S m)) →
forall n0 : nat, n <= n0 → P n0

By contrast, the induction principle that Coq calculates for the first definition
has a lot of extra quantifiers, which makes it messier to work with when
proving things by induction.

Check le_ind. (* the first one *)

I le_ind
: forall P : nat → nat → Prop,

(forall n : nat, P n n) →
(forall n m : nat, FirstLe.le n m → P n m → P n (S m)) →
forall n n0 : nat, FirstLe.le n n0 → P n n0

Proofs of facts about <= using the constructors le_n and le_S follow the
same patterns as proofs about predicates, like ev in the previous chapter. We
can apply the constructors to prove <= goals (e.g., to show that 3<=3 or
3<=6), and we can use tactics like inversion to extract information from
<= hypotheses in the context (e.g., to prove that ~(2 <= 1).)

Here are some other simple relations on numbers:

Inductive square_of : nat → nat → Prop :=

sq : forall n:nat, square_of n (mult n n).

Inductive next_nat (n:nat) : nat → Prop :=

| nn : next_nat n (S n).

Inductive next_even (n:nat) : nat → Prop :=

| ne_1 : ev (S n) → next_even n (S n)

| ne_2 : ev (S (S n)) → next_even n (S (S n)).

10.1.1 EXERCISE [FF]: Define an inductive relation total_relation that holds
between every pair of natural numbers.

10.1.2 EXERCISE [FF]: Define an inductive relation empty_relation (on num-
bers) that never holds.

80 10 Relations

10.1.3 EXERCISE [FFF]: We can define three-place relations, four-place relations,
etc., in just the same way as binary relations. For example, consider the fol-
lowing three-place relation on numbers:

Inductive R : nat → nat → nat → Prop :=

| c1 : R 0 0 0

| c2 : forall m n o, R m n o → R (S m) n (S o)

| c3 : forall m n o, R m n o → R m (S n) (S o)

| c4 : forall m n o, R (S m) (S n) (S (S o)) → R m n o

| c5 : forall m n o, R m n o → R n m o.

1. Which of the following propositions are provable?

(a) R 1 1 2

(b) R 2 2 6

2. If we dropped constructor c5 from the definition of R, would the set of
provable propositions change? Briefly (1 sentence) explain your answer.

3. If we dropped constructor c4 from the definition of R, would the set of
provable propositions change? Briefly (1 sentence) explain your answer.

10.1.4 EXERCISE [FFFF, CHALLENGE PROBLEM]: One of the main purposes of
Coq is to prove that programs match their specifications. To this end, let’s
prove that our definition of filtermatches a specification. Here is the spec-
ification, written out informally in English.

Suppose we have a set X, a function test: X→bool, and a list l of
type list X. Suppose further that l is an in-order merge of two lists,
l1 and l2, such that every item in l1 satisfies test and no item in l2
satisfies test. Then filter test l = l1.

Your job is to translate this specification into a Coq theorem and prove it.
(Hint: You’ll need to begin by defining what it means for one list to be a
merge of two others. Do this with an inductive relation, not a Fixpoint.)

10.2 Relations, in General

See Logic.v for the text of this section.

10.2.1 EXERCISE [FF]: Prove that the total relation is not a partial function, but
that the empty relation is.

10.2.2 EXERCISE [FF]: Show the transitivity of lt directly, by induction on the
derivation.

10.3 Some Facts about Orderings 81

10.2.3 EXERCISE [FF]: Show the transitiveity of lt directly, by induction on o (the
greatest variable).

10.2.4 EXERCISE [F]: Prove the following theorem about le:

Theorem le_S_n : forall n m,

(S n <= S m) → (n <= m).

10.2.5 EXERCISE [FF]: Write an informal proof of le_Sn_n: ∀n, ¬(n + 1 <= n).

10.2.6 EXERCISE [F]: Using your informal proof, construct a formal proof of
le_Sn_n.

10.2.7 EXERCISE [FF]: Show that le is not symmetric.

10.2.8 EXERCISE [FF]: Show that le is antisymmetric.

10.3 Some Facts about Orderings

Let’s pause briefly to record several facts about the <= and < relations and
the ble_nat function that we are going to need later in the course.

Theorem O_le_n : forall n,

0 <= n.

Theorem le_plus : forall a b,

a <= a + b.

Theorem plus_lt : forall n1 n2 m,

plus n1 n2 < m →
n1 < m ∧ n2 < m.

Theorem n_le_m__Sn_le_Sm : forall n m,

n <= m → S n <= S m.

Theorem lt_S : forall n m,

n < m →
n < S m.

Theorem le_step : forall n m p,

n < m →
m <= S p →
n <= p.

Theorem ble_nat_true : forall n m,

ble_nat n m = true → n <= m.

82 10 Relations

Theorem ble_nat_n_Sn_false : forall n m,

ble_nat n (S m) = false →
ble_nat n m = false.

Theorem ble_nat_false : forall n m,

ble_nat n m = false → ~(n <= m).

10.3.1 EXERCISE [FF, OPTIONAL]: Prove some or all of these.

	Preface
	Introduction
	I Sets and Functions
	Basics
	Enumerated Types
	Booleans
	Numbers
	Proof by Simplification
	The intros Tactic
	Proof by Rewriting
	Case Analysis
	Naming Cases
	Induction
	Formal vs. Informal Proofs
	Proofs Within Proofs

	Pairs and Lists
	Pairs of Numbers
	Lists of Numbers
	Reasoning About Lists
	Options
	The apply Tactic
	Varying the Induction Hypothesis

	Programming with Types
	Polymorphism
	Implicit Type Arguments
	Polymorphic Pairs
	Polymorphic Options

	Programming With Functions
	Higher-Order Functions
	Partial application
	Anonymous Functions
	Polymorphic Lists, Continued
	The unfold Tactic
	Functions as Data

	More Coq Tactics
	Inversion
	Applying Tactics in Hypotheses
	Using destruct on Compound Expressions
	The remember Tactic
	The apply ... with ... Tactic
	Challenge problem

	II Logic
	More On Induction
	Quick Review
	Programming with Propositions
	Induction Axioms
	Induction Principles for Other Datatypes
	A Closer Look at Induction Hypotheses
	A Closer Look at the induction Tactic
	Generalizing the Induction Hypothesis

	Evidence
	Constructing Evidence
	Manipulating Evidence

	Logical Connectives
	Conjunction
	Bi-implication (Iff)
	Disjunction
	Falsehood
	Truth
	Negation
	Inequality
	Existential Quantification
	Equality
	Inversion, Again
	Induction principles in Prop

	Relations
	Relations as Propositions
	Relations, in General
	Some Facts about Orderings

	Dependent Types

	III Operational Semantics
	Semantics of While Programs
	A Small-Step Abstract Machine
	Basic Coq Automation

	IV Types
	A First Taste of Types
	The Simply Typed Lambda-Calculus
	Products and Records
	Subtyping
	References

