
7 More On Induction

NOTE: This is a preliminary version of this chapter. A complete, revised
version will be released on Wednesday.

7.1 Quick Review

We’ve now seen a bunch of Coq’s fundamental tactics—enough, in fact, to
do pretty much everything we’ll want for a while. We’ll introduce one or two
more as we go along through the next few lectures, and later in the course
we’ll introduce some more powerful automation tactics that make Coq do
more of the low-level work in many cases, but basically this is the set we
need. Figure 7-1 gives a summary.

7.2 Programming with Propositions

A proposition is a statement expressing a factual claim. In Coq, propositions
are written as expressions of type Prop. Although we haven’t mentioned it
explicitly, we have already seen numerous examples of such expressions.

Check (plus 2 2 = 4).

I plus 2 2 = 4
: Prop

Check (ble_nat 3 2 = false).

I ble_nat 3 2 = false
: Prop

Both provable and unprovable claims are perfectly good propositions.
Simply being a proposition is one thing; being provable is something else! Both
plus 2 2 = 4 and plus 2 2 = 5 are expressions of type Prop.

7.2 Programming with Propositions 57

intros move hypotheses/variables from goal to context
reflexivity finish the proof (when the goal looks like e = e)
apply prove goal using a hypothesis, lemma, or con-

structor
apply... in H apply a hypothesis, lemma, or constructor to a hy-

pothesis in the context (forward reasoning)
apply... with... explicitly specify values for variables that cannot

be determined by pattern matching
simpl simplify computations in the goal
simpl in H ... or a hypothesis
rewrite use an equality to rewrite the goal
rewrite ... in H ... or a hypothesis
unfold replace a defined constant by its RHS in the goal
unfold... in H ... or a hypothesis
destruct... as... case analysis on values of inductively defined

types
induction... with... induction on values of inductively defined types
inversion reason by injectivity and distinctness of construc-

tors
remember (e) as x give a name (x) to an expression (e) so that we can

destruct x without “losing” e
assert (e) as H introduce a “local lemma” e and call it H

Figure 7-1 Tactics we’ve seen so far

One important role for propositions in Coq is as the subjects of Theorems,
Examples, etc. But they can be used in many other ways. For example, we
can give a name to a proposition using a Definition, just as we have given
names to expressions of other sorts (numbers, functions, types, type func-
tions, . . .).

Definition plus_fact : Prop := plus 2 2 = 4.

Now we can use this name in any situation where a proposition is
expected—for example, as the subject of a theorem.

Theorem plus_fact_is_true :

plus_fact.

(Because of the Definition, the proof of this theorem involves an unfold
in addition to the usual reflexivity.)

So far, all the propositions we have seen are equality propositions. But we
can build on equality propositions to make other sorts of claims. For exam-

58 7 More On Induction

ple, what does it mean to claim that “a number n is even”? We have already
defined a function that tests evenness, so one reasonable definition could be
“n is even iff evenb n = true.”

Definition even (n:nat) :=

evenb n = true.

This defines even as a parameterized proposition. It can be thought of as a
function that, when applied to a number n, yields a proposition claiming that
n is even.

The type of even is nat→Prop. This type can be pronounced in two ways:
either simply “even is a function from numbers to propositions” or, perhaps
more helpfully, “even is a family of propositions, indexed by a number n.”

Functions returning propositions are completely first-class citizens in Coq;
we can do all the same sorts of things with them as with any other kinds of
functions. We can, for example, use them in other definitions.

Definition even_n__even_SSn (n:nat) :=

(even n) → (even (S (S n))).

We can define them to take multiple arguments...

Definition between (n m o: nat) : Prop :=

andb (ble_nat n o) (ble_nat o m) = true.

... and then partially apply them.

Definition teen : nat→Prop := between 13 19.

And we can pass propositions—even parameterized propositions—as argu-
ments to functions.

Definition true_for_zero (P:nat→Prop) : Prop :=

P 0.

Definition preserved_by_S (P:nat→Prop) : Prop :=

forall n ′, P n ′ → P (S n ′).

Definition true_for_all_numbers (P:nat→Prop) : Prop :=

forall n, P n.

Definition nat_induction (P:nat→Prop) : Prop :=

(true_for_zero P)→ (preserved_by_S P)→ (true_for_all_numbers P).

7.3 Induction Axioms 59

The last of these is interesting. If we unfold all the definitions, here is what it
means in concrete terms.

Example nat_induction_example : forall (P:nat→Prop),

nat_induction P

= ((P 0)→ (forall n ′, P n ′ → P (S n ′))→ (forall n, P n)).

That is, nat_induction expresses exactly the principle of induction for nat-
ural numbers that we’ve been using for most of our proofs about numbers.
Indeed, we can use the induction tactic to prove very straightforwardly
that nat_induction P holds for all P.

Theorem our_nat_induction_works : forall (P:nat→Prop),

nat_induction P.

7.3 Induction Axioms

In fact, the connection between nat_induction and Coq’s built-in princi-
ple of induction is even closer than this suggests: modulo bound variable
names, they are precisely the same!

Check nat_ind.

I nat_ind : forall P : nat → Prop,
P 0→ (forall n : nat, P n → P (S n))→ forall n : nat, P n

The first “:” here can be pronounced “...records the truth of the proposi-
tion...” In general, every time we declare a new datatype t with Inductive,
Coq automatically generates an axiom t_ind (i.e., a theorem whose truth is
assumed rather than being proved from other axioms). This axiom expresses
the induction principle for t. The induction tactic is a straightforward
wrapper that, at its core, simply performs apply t_ind.

To see this more clearly, let’s experiment a little with using apply nat_ind
directly, instead of induction, to carry out some proofs. First, here is a di-
rect proof of the validity of our formulation of the induction principle. The
proof amounts to observing that, after unfolding the names we defined, our
principle coincides with the built-in one.

Theorem our_nat_induction_works ′ :

forall P, nat_induction P.

60 7 More On Induction

Proof.

intros P.

unfold nat_induction, true_for_zero,

preserved_by_S, true_for_all_numbers.

apply nat_ind. 2

And here’s an alternate proof of a theorem that we saw in Chapter 2 (Exer-
cise 2.9.1):

Theorem mult_0_r ′ : forall n:nat,

mult n 0 = 0.

Proof.

apply nat_ind.

Case "O". reflexivity.

Case "S". simpl. intros n IHn. rewrite → IHn.

simpl. reflexivity. 2

Several details in this proof are worth noting. First, in the induction step of
the proof (the "S" case), we have to do a little bookkeeping manually (the
intros) that induction does automatically. Second, we do not introduce
n into the context before applying nat_ind—the conclusion of nat_ind
is a quantified formula, and apply needs this conclusion to exactly match
the shape of the goal state, including the quantifier. The induction tactic
works either with a variable in the context or a quantified variable in the
goal. Third, the apply tactic automatically chooses variable names for us
(in the second subgoal, here), whereas induction lets us specify (with the
as... clause) what names should be used. The automatic choice is actually
a little unfortunate, since it re-uses the name n for a variable that is different
from the n in the original theorem. This is why the Case annotation is just
S—if we tried to write it out in the more explicit form that we’ve been using
for most proofs, we’d have to write n = S n, which doesn’t make a lot of
sense! All of these conveniences make inductive nicer to use in practice
than applying induction principles like nat_ind directly. But it is important
to realize that, modulo this little bit of bookkeeping, applying nat_ind is
what we are really doing.

7.3.1 EXERCISE [FF]: Prove theorem plus_one_r ′ in Logic.v without using
the induction tactic.

7.3.2 EXERCISE [FF]: Prove the same theorem again (plus_one_r ′′) using our
re-formulation of the induction principle, nat_induction (and without us-
ing induction or apply nat_ind).

7.4 Induction Principles for Other Datatypes 61

7.4 Induction Principles for Other Datatypes

[...]→
7.4.1 EXERCISE [F, OPTIONAL]: Write out the induction principle that Coq will

generate for the following datatype:

Inductive tree (X:Set) : Set :=
| leaf : X → tree X
| node : tree X → tree X → tree X.

Compare your answer with what Coq prints.

7.4.2 EXERCISE [F, OPTIONAL]: Suppose we had written natlist a little differ-
ently:

Inductive natlist1 : Set :=
| nnil1 : natlist1
| nsnoc1 : natlist1 → nat → natlist1.

What would the induction principle for natlist1 look like?

7.4.3 EXERCISE [F, OPTIONAL]: Here is an induction principle for an inductively
defined set:

ExSet_ind :
forall P : ExSet → Prop,

(forall b : bool, P (con1 b))→ (forall (n : nat) (e : ExSet), P e → P (con2 n e))→ forall e : ExSet, P e

Give an Inductive definition of ExSet.

7.4.4 EXERCISE [F, OPTIONAL]: Write out the induction principle that Coq will
generate for the following datatype:

Inductive tree (X:Set) : Set :=
| leaf : X → tree X
| node : tree X → tree X → tree X.

Compare your answer with what Coq prints.

7.4.5 EXERCISE [F, OPTIONAL]: Find an inductive definition that gives rise to the
following induction principle:

mytype_ind :
forall (X : Set) (P : mytype X → Prop),

62 7 More On Induction

(forall x : X, P (constr1 X x))→ (forall n : nat, P (constr2 X n))→ (forall m : mytype X, P m → forall n : nat,
P (constr3 X m n))→ forall m : mytype X, P m

7.4.6 EXERCISE [F, OPTIONAL]: Find an inductive definition that gives rise to the
following induction principle:

foo_ind :
forall (X Y : Set) (P : foo X Y → Prop),

(forall x : X, P (bar X Y x))→ (forall y : Y, P (baz X Y y))→ (forall f1 : nat → foo X Y,
(forall n : nat, P (f1 n)) → P (quux X Y f1))→ forall f2 : foo X Y, P f2

7.5 A Closer Look at Induction Hypotheses

The induction principle for numbers

forall P : nat → Prop,
P 0→ (forall n : nat, P n → P (S n))→ forall n : nat, P n

is a generic statement that holds for all propositions P—or rather, strictly
speaking, for all families of propositions P indexed by a number n. Each time
we use this principle, we are choosing P to be a particular expression of type
nat→Prop.

We can make this more explicit by giving this expression a name. For ex-
ample, instead of stating the theorem mult_0_r as “forall n, mult n 0 = 0,”
we can write it as “forall n, P_m0r n”, where P_m0r is defined as

Definition P_m0r (n:nat) : Prop :=

mult n 0 = 0.

or equivalently as:

Definition P_m0r ′ : nat→Prop :=

fun n => mult n 0 = 0.

This extra naming step isn’t something that we’ll do in normal proofs, but it
is something that we should be able to do, because it allows us to see exactly
what is the induction hypothesis. If we prove forall n, P_m0r n by induc-
tion on n (using either induction or apply nat_ind), we see that the first

7.6 A Closer Look at the induction Tactic 63

subgoal requires us to prove P_m0r 0 (“P holds for zero”), while the sec-
ond subgoal requires us to prove forall n ′, P_m0r n ′ → P_m0r n ′ (S n ′)
(that is “P holds of S n ′ if it holds of n ′” or, more elegantly, “P is preserved
by S”). The induction hypothesis is the premise of this latter implication—the
assumption that P holds of n ′, which we are allowed to use in proving that
P holds for S n ′.

[Need a couple of exercises here?? Or just use the next section for this.]→
7.6 A Closer Look at the induction Tactic

[...]→
7.7 Generalizing the Induction Hypothesis

7.7.1 EXERCISE [FFF]: Prove theorems plus_n_n_injective_take2 and
index_after_last in Logic.v.

7.7.2 EXERCISE [FFF]: Provide an informal proof corresponding to your coq
proof of index_after_last in Logic.v.

7.7.3 EXERCISE [FFF, OPTIONAL]: Prove length_snoc ′′′, eqnat_false_S,
and length_append_cons in Logic.v.

7.7.4 EXERCISE [FFFF]: Prove theorem length_appendtwice in Logic.v.

	Preface
	Introduction
	I Sets and Functions
	Basics
	Enumerated Types
	Booleans
	Numbers
	Proof by Simplification
	The intros Tactic
	Proof by Rewriting
	Case Analysis
	Naming Cases
	Induction
	Formal vs. Informal Proofs
	Proofs Within Proofs

	Pairs and Lists
	Formal vs. Informal Proofs
	Pairs of Numbers
	Lists of Numbers
	Reasoning About Lists
	Options
	The apply Tactic
	Varying the Induction Hypothesis

	Programming with Types
	Polymorphism
	Implicit Type Arguments
	Polymorphic Pairs
	Polymorphic Options

	Programming With Functions
	Higher-Order Functions
	Partial application
	Anonymous Functions
	Polymorphic Lists, Continued
	The unfold Tactic
	Functions as Data

	More Coq Tactics
	Inversion
	Applying Tactics in Hypotheses
	Using destruct on Compound Expressions
	The remember Tactic
	The apply ... with ... Tactic
	Challenge problem

	II Logic
	More On Induction
	Quick Review
	Programming with Propositions
	Induction Axioms
	Induction Principles for Other Datatypes
	A Closer Look at Induction Hypotheses
	A Closer Look at the induction Tactic
	Generalizing the Induction Hypothesis

	Dependent Types

	III Operational Semantics
	Semantics of While Programs
	A Small-Step Abstract Machine
	Basic Coq Automation

	IV Types
	A First Taste of Types
	The Simply Typed Lambda-Calculus
	Products and Records
	Subtyping
	References

