9.1

9.1.1

Logical Connectives

Like its built-in programming language, Coq’s built-in logic is extremely
small: universal quantification (forall) and implication (—) are primitive,
but all the other familiar logical connectives—conjunction, disjunction, nega-
tion, existential quantification, even equality—can be defined using just these
and Inductive.

Conjunction

The logical conjunction of propositions A and B is represented by the follow-
ing inductively defined proposition.
Inductive and (A B : Prop) : Prop :=

conj : A= B — (and A B).

Note that, like the definition of ev, this definition is parameterized; however,
in this case, the parameters are themselves propositions.

The intuition behind this definition is simple: to construct evidence for
and A B, we must provide evidence for A and evidence for B. More precisely:

1. conj el e2 can be taken as evidence for and A B if el is evidence for A
and e?2 is evidence for B; and

2. this is the only way to give evidence for and A B—that is, if someone gives
us evidence for and A B, we know it must have the form conjel e2,
where el is evidence for A and e2 is evidence for B.

EXERCISE [%]: What does the induction principle and_ind look like?

Since we’ll be using conjunction a lot, let’s introduce a more familiar-
looking infix notation for it.

Notation "A V B" := (and A B) : type_scope.

68

9.1.2
9.1.3

9.14

9.2

9 Logical Connectives

(The type_scope annotation tells Coq that this notation will be appearing
in propositions, not values.)

Besides the elegance of building everything up from a tiny foundation,
what’s nice about defining conjunction this way is that we can prove state-
ments involving conjunction using the tactics that we already know. For ex-
ample, if the goal statement is a conjuction, we can prove it by applying the
single constructor conj, which (as can be seen from the type of con j) solves
the current goal and leaves the two parts of the conjunction as subgoals to be
proved separately.

Lemma and_example
(ev 0) V (ev 4).
Proof.
apply conj.
Case "left". apply ev_0O.
Case "right". apply ev_SS. apply ev_SS. apply ev_0. O

The split tactic is a convenient shorthand for apply coni.

Conversely, the inversion tactic can be used to investigate a conjunction
hypothesis in the context and calculate what evidence must have been used
to build it.

EXERCISE [%]: Look at the proof of and_1 and prove and_2 in Logic.v.
EXERCISE [%%]: Prove that conjunction is associative.

Lemma and_assoc : forall A B C : Prop,
AV BV C — AV B) VC.

EXERCISE [%%%]: Now we can prove the other direction of the equivalence
of even and ev:

Lemma even_ev : forall n : nat,

(even n — ev n) V (even (S n) — ev (S n)).

Notice that the left-hand conjunct here is the statement we are actually in-
terested in; the right-hand conjunct is needed in order to make the induction
hypothesis strong enough that we can carry out the reasoning in the induc-
tive step. (To see why this is needed, try proving the left conjunct by itself
and observe where things get stuck.)

Bi-implication (Iff)

The familiar logical “if and only if” is just the conjunction of two implica-
tions.

9.21

922

9.3

9.3.1

9.3 Disjunction 69

Definition iff (A B : Prop) := (A — B) V (B — A).
Notation "A < B" := (iff A B) : type_scope.

EXERCISE [%]: Using the proof that < is symmetric (1£f_sym) as a guide,
prove that it is also reflexive and transitive (1£f_refl and 1ff_trans).

Unfortunately, propositions phrased with < are a bit inconvenient to use
as hypotheses or lemmas, because they have to be deconstructed into their
two directed components in order to be applied. (The basic problem is that
there’s no way to apply an iff proposition directly. If it's a hypothesis, you
can invert it, which is tedious; if it’s a lemma, you have to destruct it into
hypotheses, which is worse.) Consequently, many Coq developments avoid
&, despite its appealing compactness. It can actually be made much more
convenient using a Coq feature called “setoid rewriting,” but that is a bit
beyond the scope of this course.

EXERCISE []: We have seen that the families of propositions MyProp and
ev actually characterize the same set of numbers (the even ones). Prove
that MyProp n & ev n forall n (MyProp_iff_evin Logic.v). Just for fun,
write your proof as an explicit proof object, rather than using tactics.

Disjunction
Disjunction (“logical or”) can also be defined as an inductive proposition.

Inductive or (A B : Prop) : Prop :=
| or_introl : A — or A B
| or_intror : B — or A B.

EXERCISE [%]: What does the induction principle or_ind look like?

Since A /A B has two constructors, doing inversion on a hypothesis of
type A /A B yields two subgoals.

Lemma or_commut : forall A B : Prop,
AANB — BAA.
Proof.

intros A B H.

inversion H.
Case "left". apply or_intror. apply HO.
Case "right". apply or_introl. apply HO. O

9 Logical Connectives

From here on, we'll use the handy tactics 1eft and right in place of
apply or_introl and apply or_intror:

Lemma or_commut’ : forall A B : Prop,
AAB — BAA.
Proof.

intros A B H.

inversion H.
Case "left". right. apply HO.
Case "right". left. apply HO. O

9.3.2 EXERCISE [k]: Using the proof of or_distributes_over_and_1 as a
guide, prove or_distributes_over_and_2.

9.3.3 EXERCISE [%]: Prove the distributivity of V and A as an iff proposition
(or_distributes_over_and).

We've already seen several places where analogous structures can be
found in Coq’s computational (Set) and logical (Prop) worlds. Here is one
more: the boolean operators andb and orb are obviously analogs, in some
sense, of the logical connectives V and A. This analogy can be made more
precise by the following theorems, which show how to “translate” know-
ledge about andb and orb’s behaviors on certain inputs into propositional
facts about those inputs.

Lemma andb_true : forall b c,

andb b ¢ = true — b = true V c = true.
Lemma andb_false : forall b c,

andb b ¢ = false — b = false A c = false.
Lemma orb_true : forall b c,

orb b ¢ = true - b = true A ¢ = true.
Lemma orb_false : forall b c,

orb b ¢ = false — b = false V ¢ = false.

9.3.4 EXERCISE [%%, OPTIONAL]: The proof of andb_true is givenin Logic.v.
Fill in the other three.

9.4 Falsehood

Falsehood can be represented in Coq as an inductively defined proposition
with no constructors.

Inductive False : Prop :=

94.1

9.5

9.5.1

9.5 Truth 71

EXERCISE [%]: Can you predict what the induction principle False_ind
will look like?

Since False has no constructors, inverting it always yields zero subgoals,
allowing us to immediately prove any goal.

Lemma False_implies_nonsense
False — plus 2 2 = 5.
Proof.
intros contra.

inversion contra. 0O

Actually, since the proof of False_implies_nonsense doesn’t actually
have anything to do with the specific nonsensical thing being proved; it can
easily be generalized to work for an arbitrary P:

Lemma ex_falso_quodlibet : forall (P:Prop),
False — P.

The Latin ex falso quodlibet means, literally, “from falsehood follows whatever
you please.” This theorem is also known as the principle of explosion.

Conversely, the only way to prove False is if there is already something
nonsensical or contradictory in the context:

Lemma nonsense_implies_False
plus 2 2 = 5 — False.
Proof.
intros contra.

inversion contra. 0O

Truth

Since we have defined falsehood in Coq, we should also mention that it is, of
course, possible to define truth in the same way.

EXERCISE [%%]: Define True as another inductively defined proposition.
What induction principle will Coq generate for your definition? (The intution
is that True should be a proposition for which it is trivial to give evidence.
Alternatively, you may find it easiest to start with the induction principle and
work backwards to the inductive definition.)

However, unlike False, which we’ll use extensively, True is basically a
theoretical curiosity: since it is trivial to prove as a goal, it carries no useful
information as a hypothesis.

72

9.6

9.6.1

9.6.2

9.6.3

9 Logical Connectives

Negation

The logical complement of a proposition A is written not 2 or, for shorthand,
~Al

Definition not (A:Prop) := A — False.

The intuition is that, if A is not true, then anything at all (even False) should
follow from assuming A.

It takes a little practice to get used to working with negation in Coq. Even
though you can see perfectly well why something is true, it can be a little
hard at first to figure out how to get things into the right configuration so
that Coq can see it! Logic. v contains proofs of a view familiar facts about
negation to get you warmed up.

Lemma not_False
~ False.

Lemma contradiction_implies_anything : forall A B : Prop,
(A V ~A) — B.

Lemma double_neg : forall A : Prop,
A — ~~A.

Lemma five_not_even

~ ev 5.

EXERCISE [%%]: Here are two more simple facts for you to prove.

Lemma contrapositive : forall A B : Prop,
(A = B) — (~B — ~A).

Lemma not_both_true_and_false : forall A : Prop,
~ (A V ~n).

EXERCISE [%%, OPTIONAL]: Theorem five_not_even in Logic.v con-
firms the unsurprising fact that that five is not an even number. Prove this
more interesting fact:

Lemma ev_not_ev_S : forall n,

evn — ~ev (S n).

EXERCISE [%%%%, OPTIONAL]: For those who like a challenge, here is an
exercise taken from the Coq’Art book. The following five statements are often
considered as characterizations of classical logic (as opposed to constructive
logic, which is what is “built in” to Coq). We can’t prove them in Coq, but
we can consistently add any one of them as an unproven axiom if we wish
to work in classical logic. Prove that these five propositions are equivalent.

9.7

9.7.1

9.7 Inequality 73

Definition peirce := forall P Q: Prop,
((P—Q) —=P) —P.

Definition classic := forall P:Prop,
~~pP — P.

Definition excluded_middle := forall P:Prop,
P A~P.

Definition de_morgan_not_and_not := forall P Q:Prop,
~(~PV~Q) — PAQ.

Definition implies_to_or := forall P Q:Prop,

(P—Q) — (~PAQ).

Inequality

Saying x <> y is just the same as saying ~ (x = y) .
Notation "x <> y" := (~ (x = y)) : type_scope.

Since inequality involves a negation, it again requires a little practice to be
able to work with it fluently. Here is one very useful trick. If you are trying to
prove a goal that is nonsensical (e.g., the goal state is false = true), apply
thelemma ex_falso_quodlibet to change the goal to False. This makes
it easier to use assumptions of the form ~P that are available in the context—
in particular, assumptions of the form x<>y.

EXERCISE []: Use Coq to read through the proof of this theorem.

Lemma not_false_then_true : forall b : bool,
b <> false — b = true.

Use the same idea to prove that the numeric comparison function beqg_nat
yields false on unequal numbers.

Lemma beq_nat_n_n' : forall n n’ : nat,
n <> n’

— beq_nat n n’ = false.

	Logical Connectives
	Conjunction
	Bi-implication (Iff)
	Disjunction
	Falsehood
	Truth
	Negation
	Inequality

