
4 Programming with Types

4.1 Polymorphism

We’ve been working a lot with lists of numbers, but clearly programs also
need to be able to manipulate lists whose elements are drawn from other
types—lists of strings, lists of booleans, lists of lists, etc. We could define a
new inductive datatype for each of these...

Inductive boollist : Set :=

| bool_nil : boollist

| bool_cons : bool → boollist → boollist.

... but this would quickly become tedious, partly because we have to make
up different constructor names for each datatype but mostly because we
would also need to define new versions of all our list manipulating functions
(length, rev, etc.) for each new datatype definition.

To avoid all this repetition, Coq supports polymorphic inductive type defi-
nitions. For example, here is a polymorphic list data type.

Inductive list (X:Set) : Set :=

| nil : list X

| cons : X → list X → list X.

This is exactly like the definition of natlist on page 28 except that the
nat argument to the cons constructor has been replaced by an arbitrary
set X, a binding for X has been added to the first line, and the occurrences
of natlist in the types of the constructors have been replaced by list X.
(We’re able to re-use the constructor names nil and cons because the earlier
definition of natlist was inside of a Module definition that is now out of
scope.)

With this definition, when we use the constructors nil and cons to build
lists, we need to specify what sort of lists we are building—that is, nil and
cons are now polymorphic constructors.

4.1 Polymorphism 39

Check nil.

I nil
: forall X : Set, list X

Check cons.

I cons
: forall X : Set, X → list X → list X

The “forall X” in these types should be read as an additional argument
to the constructors that determines the expected types of the arguments that
follow. When nil and cons are used, these arguments are supplied in the
same way as the others. For example, the list containing 2 and 1 is written
(cons nat 2 (cons nat 1 (nil nat))).

We can now go back and make polymorphic versions of all the list-
processing functions that we wrote before. Here is length, for example.

Fixpoint length (X:Set) (l:list X) {struct l} : nat :=

match l with

| nil => 0

| cons h t => S (length X t)

end.

Note that the uses of nil and cons in match patterns do not require any
type annotations: we already know that the list l contains elements of type
X, so there’s no reason to include X in the pattern. (More formally, the set X is a
parameter of the whole definition of list, not of the individual constructors.
So when we pattern)

Just as we did with nil and cons, to use length we apply it first to a
type and then to its list argument:

Example test_length1 :

length nat (cons nat 1 (cons nat 2 (nil nat))) = 2.

To use our length with other kinds of lists, we simply instantiate it with an
appropriate type parameter:

Example test_length2 :

length bool (cons bool true (nil bool)) = 1.

Similarly, here is a polymorphic app function.

Fixpoint app (X : Set) (l1 l2 : list X) {struct l1}

: (list X) :=

40 4 Programming with Types

match l1 with

| nil => l2

| cons h t => cons X h (app X t l2)

end.

Poly.v also gives polymorphic variants of snoc and rev.

4.2 Implicit Type Arguments

Whenever we use a polymorphic function, we need to pass it one or more
sets in addition to its other arguments. For example, the recursive call in the
body of the length function above must pass along the set X. But this is a
bit heavy and verbose: Since the second argument to length is a list of Xs,
it seems entirely obvious that the first argument can only be X—why should
we have to write it explicitly?

Fortunately, Coq permits us to avoid this kind of redundancy. In place of
any type argument,1 we can write the implicit argument _ , which can be read
“Please figure out for yourself what set belongs here.” More precisely, when
Coq encounters a _ , it will attempt to unify all locally available information—
the type of the function being applied, the types of the other arguments, and
the type expected by the context in which the application appears—to deter-
mine what concrete set should replace the _.

Using implicit arguments, the length function can be written like this:

Fixpoint length ′ (X:Set) (l:list X) {struct l} : nat :=

match l with

| nil => 0

| cons h t => S (length ′ _ t)

end.

In this instance, the savings of writing _ instead of X is small. But in other
cases the difference is significant. For example, suppose we want to write
down a list containing the numbers 1, 2, and 3. Instead of writing

Definition l123 :=

cons nat 1 (cons nat 2 (cons nat 3 (nil nat))).

we can use implicit arguments to write:

Definition l123 ′ := cons _ 1 (cons _ 2 (cons _ 3 (nil _))).

1. Actually, _ can be used in place of any argument, as long as there is enough local informa-
tion that Coq can determine what value is intended; but this feature is mainly used for type
arguments.

4.3 Polymorphic Pairs 41

Better yet, we can use implicit arguments in the right-hand side of Notation
declarations to obtain the same abbreviations for constructing polymorphic
lists as we had before for lists of numbers.

Notation "x :: y" := (cons _ x y)
(at level 60, right associativity).

Notation "[]" := (nil _).
Notation "[x , .. , y]" := (cons _ x .. (cons _ y []) ..).
Notation "x ++ y" := (app _ x y)

(at level 60, right associativity).

Now our list can be written just the way we’d hope:

Definition l123 ′′ := [1, 2, 3].

Indeed, we can go a step further and tell Coq that we always want it to infer
some of the arguments of particular functions:

Implicit Arguments nil [X].
Implicit Arguments cons [X].
Implicit Arguments length [X].
Implicit Arguments app [X].

In what followed, we’ll make a habit of adding an Implicit Arguments
declaration after every polymorphic function. To avoid clutter, we won’t
show any of these in the typeset notes.

One small problem with declaring arguments Implicit is that, occasion-
ally, there will not be enough local information to determine a type argument
and we will need to tell Coq specially that we want to give it explicitly even
though we’ve declared it to be Implicit. For example, if we write

Definition mynil := nil.

Coq will give us an error, because it doesn’t know what type argument to
supply to nil. We can supply it explicitly by annotating the nil with an @,
which tells Coq to ignore the Implicit declaration for this use of nil:

Definition mynil := @nil nat.

4.2.1 EXERCISE [FF]: Finish the missing parts of definitions and proofs in the
section marked “Polymorphism exercises” in Poly.v. 2

4.3 Polymorphic Pairs

Similarly, the type definition we gave above for pairs of numbers can be gen-
eralized to polymorphic pairs:

42 4 Programming with Types

Inductive prod (X Y : Set) : Set :=

pair : X → Y → prod X Y.

We can use implicit arguments to help define the familiar concrete notation
for pairs.

Notation "(x , y)" := (pair _ _ x y).

We can use the same Notation mechanism to define the standard notation
for pair types:

Notation "X * Y" := (prod X Y) : type_scope.

(The annotation : type_scope tells Coq that this abbreviation should be
used when parsing types.)

The first and second projection functions now look just as they would in
any functional programming language.

Definition fst (X Y : Set) (p : X * Y) : X :=

match p with (x,y) => x end.

Definition snd (X Y : Set) (p : X * Y) : Y :=

match p with (x,y) => y end.

4.3.1 EXERCISE [FF]: Consider the following function definition:

Fixpoint combine (X Y : Set) (lx : list X) (ly : list Y)

{struct lx} : list (X*Y) :=

match lx with

| [] => []

| x::tx => match ly with

| [] => []

| y::ty => (x,y) :: (combine _ _ tx ty)

end

end.

1. What is the type of combine (i.e., what does Check combine print?)

2. What does

Eval simpl in (combine _ _ [1,2] [false,false,true,true]).

print? (Use Coq to check your answers.)

3. The combine function transforms a pair of lists into a list of pairs. The
inverse transformation, split, takes a list of pairs and returns a pair of
lists. For example,

4.4 Polymorphic Options 43

split _ _ [(1,false),(2,false)]

yields:

([1,2],[false,false])

Write out the definition of split and make sure that it passes the unit
test test_split in Poly.v.

4. We can think of combine and split as inverses. We can prove part of
this formally with the following theorem:

Theorem split_combine : forall X Y (l : list (X * Y)) l1 l2,
split l = (l1, l2) →
combine l1 l2 = l.

What other theorem must you prove to show that combine and split
really are inverses? How would you state it? (Hint: for all lists of pairs,
combine is split’s inverse. For what domain is split the inverse of
combine?) 2

4.4 Polymorphic Options

One last polymorphic type for now: polymorphic options. The type declaration
generalizes the one for natoption on page 35.

Inductive option (X:Set) : Set :=

| Some : X → option X

| None : option X.

4.4.1 EXERCISE [F]: Complete the definition of the polymorphic index function
in Poly.v. 2

4.4.2 EXERCISE [F]: Complete the definition of the polymorphic hd_opt func-
tion in Poly.v. 2

5 Programming With Functions

5.1 Higher-Order Functions

Like many other modern programming languages—including, of course,
all functional languages—Coq allows functions to be passed as arguments
to other functions and returned as results from other functions. Functions
that operate on other functions in this way are called higher-order functions.
Here’s a simple one:

Definition doit3times (X:Set) (f:X→X) (n:X) : X :=

f (f (f n)).

The argument f here is itself a function (from X to X); the body of
doit3times applies f three times to some value n.

Example test_doit3times1: doit3times nat minustwo 9 = 3.

Example test_doit3times2: doit3times bool negb true = false.

5.2 Partial application

In fact, the multiple-argument functions we have already seen are also
examples of higher-order functions. For instance, the type of plus is
nat→nat→nat. Since → associates to the right, this type can equivalently
be written nat → (nat→nat)—i.e., it can be read as saying that “plus is
a one-argument function that takes a nat and returns a one-argument func-
tion that takes another nat and returns a nat.” In the examples above, we
have always applied plus to both of its arguments at once, but if we like we
can supply just the first. This is called “partial application.”

Definition plus3 := plus 3.

5.3 Anonymous Functions 45

Example test_plus3 : plus3 4 = 7.

Example test_plus3 ′ : doit3times plus3 0 = 9.

5.2.1 EXERCISE [FF,OPTIONAL]: In Coq, a function f : A → B → C really has the
type A → (B → C). That is, if you give f a value of type A, it will give you
function f ′ : B → C. If you then give f ′ a value of type B, it will return a
value of type C. Processing a list of arguments with functions that return
functions is called "currying", named in honor of the logician Haskell Curry.

Conversely, we can reinterpret the type A → B → C as (A * B) → C. This is
called "uncurrying". In an uncurried binary function, both arguments must
be given at once as a pair; there is no partial application.

1. We can define currying as follows:

Definition prod_curry (X Y Z : Set)

(f : X * Y → Z) (x : X) (y : Y) : Z := f (x, y).

Define its inverse, prod_uncurry.

2. Prove that the two are inverses: the theorems uncurry_curry and
curry_uncurry. 2

5.3 Anonymous Functions

It is also possible to construct a function “on the fly” without declaring it at
the top level and giving it a name; this is analogous to the notation we’ve
been using for writing down constant lists, etc.

Example test_anon_fun:

doit3times (fun (n:nat) => mult n n) 2 = 256.

The expression fun (n:nat) => mult n n here can be read “The function
that, given a number n, returns times n n.”

One small that we don’t actually need to bother declaring the type of the
argument n; Coq can see that it must be nat by looking at the context.

Example test_anon_fun ′:

doit3times (fun n => mult n n) 2 = 256.

5.4 Polymorphic Lists, Continued

We’ve seen some very simple higher-order functions. Here is a more useful
one, which takes a list and a predicate (a function from bool to bool) and

46 5 Programming With Functions

“filters” the list, returning just those elements for which the predicate returns
true.

Fixpoint filter (X:Set) (test: X→bool) (l:list X)

{struct l} : (list X) :=

match l with

| [] => []

| h :: t => if test h then h :: (filter _ test t)

else filter _ test t

end.

For example, if we apply filter to the predicate even and a list l, it returns
a list containing just the even members of l.

Example test_filter1: filter evenb [1,2,3,4] = [2,4].

We can use filter to give a pleasantly concise version of the countoddmembers
function from Exercise 3.3.1.

Definition countoddmembers ′ (l:list nat) : nat :=

length (filter oddb l).

Another extremely handy higher-order function is map.

Fixpoint map (X:Set) (Y:Set) (f:X→Y) (l:list X) {struct l}

: (list Y) :=

match l with

| [] => []

| h :: t => (f h) :: (map _ _ f t)

end.

It takes a function f and a list l = [n1, n2, n3, ...] and returns the list
[f n1, f n2, f n3,...], where f has been applied to each element of l in
turn. For example:

Example test_map1: map nat nat (plus 3) [2,0,2] = [5,3,5].

Example test_map2: map oddb [2,1,2,5] = [false,true,false,true].

Note that the element types of the input and output lists need not be the
same (note that it takes two type arguments, X and Y). This map it can thus
be applied to a list of numbers and a function from numbers to booleans to
yield a list of booleans:

Example test_map2: map oddb [2,1,2,5] = [false,true,false,true].

It can even be applied to a list of numbers and a function from numbers to
lists of booleans to yield a list of lists of booleans:

5.5 The unfold Tactic 47

Example test_map3:

map (fun n => [evenb n,oddb n]) [2,1,2,5] =

[[true,false],[false,true],[true,false],[false,true]].

5.4.1 EXERCISE [F]: The definitions in Poly.v corresponding to this section (i.e.,
the polymorphic filter and map functions and their unit tests) use im-
plicit arguments in many places. Replace every _ by an explicit set and use
Coq to check that you’ve done so correctly. (You may also have to remove
Implicit Arguments commands for Coq to accept explicit arguments.)
This exercise is not to be turned in; it is probably easiest to do it on a copy
of Poly.v that you can throw away afterwards. 2

5.4.2 EXERCISE [FF,OPTIONAL]: Prove that the polymorphic definitions map
and rev commute (map_rev). You will most likely need an auxiliary lemma.
2

5.4.3 EXERCISE [F]: The function map maps a list X to a list Y using a func-
tion of type X → Y. We can define a similar function, flat_map, which maps
a list X to a list Y using a function f of type X → list Y. Your definition
should work by ’flattening’ the results of f, like so:

flat_map (fun n => [n,n,n]) [1,5,4]
= [1, 1, 1, 5, 5, 5, 4, 4, 4].

5.5 The unfold Tactic

The precise behavior of the simpl tactic is somewhat subtle: even expert
Coq users tend to just try it and see what it does in particular situations,
rather than trying to predict in advance. However, one point is worth noting:
simpl never expands names that have been declared as Definitions. For
example, because plus3 is a Definition, these two expressions do not
simplify to the same result.

Eval simpl in (plus 3 5).

I = 8
: nat

Eval simpl in (plus3 5).

I = plus3 5
: nat

The unfold tactic can be used to explicitly replace a defined name by the
right-hand side of its definition. For example, we need to use it to prove this
fact about plus3:

48 5 Programming With Functions

Theorem unfold_example :

plus3 5 = 8.

Proof.

unfold plus3.

reflexivity.

Qed.

5.6 Functions as Data

The higher-order functions we have seen so far all take functions as argu-
ments. Now let’s look at some examples involving returning functions as the
results of other functions.

To begin, here is a function that takes a value x (drawn from some set X)
and returns a function from nat to X that returns x whenever it is called.

Definition constfun (X : Set) (x : X) :=

fun (k:nat) => x.

Similarly, but a bit more interestingly, here is a function that takes a func-
tion f from numbers to some set X, a number k, and a value x, and constructs
a function that behaves exactly like f except that, when called with the argu-
ment k, it returns x.

Definition override (X : Set) (f : nat→X) (k:nat) (x:X) :=

fun k ′ => if beq_nat k k ′ then x else f k ′.

We’ll use function overriding heavily in parts of the rest of the course, and
we will end up using quite a few of its properties. For example, we’ll need to
know that, if we override a function at some argument k and then look up k,
we get back the overriden value.

Theorem override_eq : forall (X:Set) x k (f : nat→X),

(override f k x) k = x.

(The proof of this theorem is straightforward, but note that it requires
unfold to unfold the definition of override.)

5.6.1 EXERCISE [FF]: Check that you understand each part of the following the-
orem and can paraphrase it in English. Then prove it in Coq.

Theorem override_example : forall (b:bool),

(override (constfun b) 3 true) 2 = b.

2

5.6 Functions as Data 49

5.6.2 EXERCISE [FF]: Prove the following theorem:

Theorem override_neq : forall (X:Set) x1 x2 k1 k2 (f : nat→X),

f k1 = x1 →
beq_nat k2 k1 = false →
(override f k2 x2) k1 = x1.

2

In what follows, we will see several other, more interesting, properties of
override. But to prove them, we’ll need to know a few more of Coq’s tac-
tics; developing these is the main topic of the next chapter.

6 More Coq Tactics

6.1 Inversion

Recall the definition of natural numbers:

Inductive nat : Set :=

| O : nat

| S : nat → nat.

It is clear from this definition that every number has one of two forms: either
it is the constructor O or it is built by applying the constructor S to another
number. But there is more here than meets the eye: implicit in the definition
(and in our informal understanding of how datatype declarations work in
other programming languages) are two other facts:

1. The constructor S is injective.1 That is, the only way we can have S n = S m
is if n = m.

2. The constructors O and S are disjoint—that is, O is not equal to S n for any
n.

Similar principles apply to all inductively defined types: all constructors are
injective, and the values built from distinct constructors are never equal. For
lists, the cons constructor is injective and nil is different from every non-
empty list. For booleans, true and false are unequal. (Since neither true
nor false take any arguments, their injectivity is not an issue.) Coq pro-
vides a tactic, called inversion, that allows us to exploit these principles in
making proofs.

The inversion tactic is used like this. Suppose H is a hypothesis in the
context (or a previously proven lemma) of the form e = f, where e and f are

1. Recall that, in mathematics, saying that a function f is injective means that its results are equal
only when its arguments are—that is, f x = f y implies x = y.

6.2 Applying Tactics in Hypotheses 51

expressions of some inductively defined type. Moreover, suppose e and f
are “concrete,” in the sense that e = c a1 a2 ... an for some constructor c
and arguments a1 through an and similarly f = d b1 b2 ... bm for some
constructor d and arguments b1 through bm. Then inversion H instructs
Coq to “invert” this equality to extract the information it gives us about the
subcomponents of e and f:

1. If c and d are the same constructor, then we know, by the injectivity of
this constructor, that a1 = b1, a2 = b2, etc., and inversion H adds
these facts to the context.

2. If c and d are different constructors, then the hypothesis e=f is contradic-
tory. That is, a false assumption has crept into the context, and this means
that any goal whatsoever is provable! In this case, inversion H marks
the current goal and completed and pops it off the goal stack.

The inversion tactic is probably easier to understand from at examples
than from general descriptions like the above. Poly.v contains several small
examples illustrating its behavior and a larger example, beq_nat_eq, show-
ing how it is used in a more interesting proof.

6.1.1 EXERCISE [F]: Prove sillyex1 using the inversion tactic to destruct the
equalities. 2

6.1.2 EXERCISE [F]: Prove sillyex2 using the inversion tactic to solve a goal
with contradictory hypotheses. 2

6.1.3 EXERCISE [FF]: Write an informal proof of beq_nat_eq. 2

6.1.4 EXERCISE [F]: Prove the following theorem:

Theorem override_same : forall (X:Set) x1 k1 k2 (f : nat→X),

f k1 = x1 →
(override f k1 x1) k2 = f k2.

6.1.5 EXERCISE [FF]: Prove beq_nat_eq ′; note the care used when stating the
theorem and introducing variables. 2

6.1.6 EXERCISE [FF]: Do the exercises in the Practice session in Poly.v. 2

6.2 Applying Tactics in Hypotheses

By default, most tactics work on the goal formula and leave the context un-
changed. But tactics often come with a variant that performs a similar oper-
ation on a statement in the context.

52 6 More Coq Tactics

For example, the tactic simpl in H performs simplification in the hypoth-
esis named H in the context.

Similarly, the tactic apply L in H matches some conditional statement L
(of the form L1→L2, say) against a hypothesis H in the context. However,
unlike ordinary apply (which rewrites a goal matching L2 into a subgoal
L1), apply L in H matches H against L1 and, if successful, replaces it with
L2.

In other words, apply L in H gives us a form of forward reasoning: from
L1→L2 and a hypothesis matching L1, it gives us a hypothesis matching L2.
By contrast, apply L is backward reasoning: it says that, if we know L1→L2
and we are trying to prove L2, it suffices to prove L1. In general, Coq tends
to favor backward reasoning, but in some situations the forward style can be
easier to think about.
Poly.v contains a number of additional examples.

6.2.1 EXERCISE [FF]: Prove the following theorem using the unfold ... in ...
tactic:

Theorem plus_n_n_injective : forall n m,

plus n n = plus m m→ n = m.

6.3 Using destruct on Compound Expressions

We have seen many examples where the [destruct] tactic is used to perform
case analysis of the value of some variable. But sometimes we need to reason
by cases on the result of some expression. We can also do this with destruct.
Poly.v contains several examples.

6.3.1 EXERCISE [F]: Prove sillyfun_odd using destruct on compound ex-
pressions. (Don’t cheat and use sillyfun_false!) 2

6.3.2 EXERCISE [F]: Prove the override_shadow theorem. 2

6.3.3 EXERCISE [FF]: Prove split_combine (you may want to look back at ex-
ercise 4.3.1). 2

6.4 The remember Tactic

We have seen how the destruct tactic can be used to perform case analysis
of the results of arbitrary computations. If e is an expression whose type is
some inductively defined set T, then, for each constructor c of T, the tactic

6.5 The apply ... with ... Tactic 53

destruct e generates a subgoal in which all occurrences of e (in the goal
and in the context) are replaced by c.

Sometimes, however, this substitution process loses information that we
need in order to complete the proof. For example, suppose we define a func-
tion sillyfun1 like this...

Definition sillyfun (n : nat) : bool :=

if beq_nat n 3 then false

else if beq_nat n 5 then false

else false.

... and suppose that we want to convince Coq of the rather obvious observa-
tion that sillyfun1 n yields true only when n is odd. By analogy with the
proofs we did with sillyfun above, it is natural to start the proof like this:

Theorem sillyfun1_odd_FAILED : forall (n : nat),

sillyfun1 n = true→ oddb n = true.

Proof.

intros n eq. unfold sillyfun1 in eq.

destruct (beq_nat n 3).

Admitted.

At this point, we are stuck: the context does not contain enough informa-
tion to prove the goal! The problem is that the substitution peformed by
destruct is too brutal – it threw away every occurrence of beq_nat n 3,
but we need to keep at least one of these because we need to be able to rea-
son that since, in this branch of the case analysis, beq_nat n 3 = true, it
must be that n = 3, from which it follows that n is odd.

What we would really like is not to use destruct directly on
beq_nat n 3 and substitute away all occurrences of this expression, but
rather to use destruct on something else that is equal to beq_nat n 3—
e.g., if we had a variable that we knew was equal to beq_nat n 3, we could
destruct this variable instead.

The remember tactic allows us to introduce such a variable.
[Stopped here. See Poly.v for the rest...]→

6.4.1 EXERCISE [FF,OPTIONAL]: Prove filter_exercise. 2

6.5 The apply ... with ... Tactic

6.5.1 EXERCISE [FF]: Solve the exercises at the end of the apply ... with ...
section in Poly.v. 2

54 6 More Coq Tactics

6.6 Challenge problem

6.6.1 EXERCISE [FFF, CHALLENGE PROBLEM]: Define two recursive Fixpoints,
forallb and existsb. The first checks whether every element in a list sat-
isfies a given predicate:

forallb oddb [1,3,5,7,9] = true
forallb negb [false,false] = true
forallb evenb [0,2,4,5] = false
forallb (beq_nat 5) [] = true

The second checks whether there exists at least one element in the list that
satisfies the given predicate:

existsb (beq_nat 5) [0,2,3,6] = false
existsb (andb true) [true,true,false] = true
existsb oddb [1,0,0,0,0,3] = true
existsb evenb [] = false

Next, write a nonrecursive Definition, existsb ′, using forallb and
negb. Prove that existsb ′ and existsb have the same behavior. 2

	Preface
	Introduction
	I Functional Programming
	Basics
	Enumerated Types
	Booleans
	Numbers
	Proof by Simplification
	The intros Tactic
	Proof by Rewriting
	Case Analysis
	Naming Cases
	Induction
	Formal vs. Informal Proofs
	Proofs Within Proofs

	Pairs and Lists
	Formal vs. Informal Proofs
	Pairs of Numbers
	Lists of Numbers
	Reasoning About Lists
	Options
	The apply Tactic
	Varying the Induction Hypothesis

	Programming with Types
	Polymorphism
	Implicit Type Arguments
	Polymorphic Pairs
	Polymorphic Options

	Programming With Functions
	Higher-Order Functions
	Partial application
	Anonymous Functions
	Polymorphic Lists, Continued
	The unfold Tactic
	Functions as Data

	More Coq Tactics
	Inversion
	Applying Tactics in Hypotheses
	Using destruct on Compound Expressions
	The remember Tactic
	The apply ... with ... Tactic
	Challenge problem

	A Simple Evaluator
	More On Induction

	II Logic
	Programming with Propositions
	Logical Connectives
	More on Induction
	Relations as Propositions
	The Computational View of Proofs
	Dependent Types

	III Operational Semantics
	Semantics of While Programs
	A Small-Step Abstract Machine
	Basic Coq Automation

	IV Types
	A First Taste of Types
	The Simply Typed Lambda-Calculus
	Products and Records
	Subtyping

