CIS 500 — Software Foundations
Midterm 1

Answer key

February 17, 2010

1. (10 points)

(a) Fill in the definition of the Coq function insertUnique below.

The function is intended to be applied to a type X, an equality function eq for X, an el-
ement x of type X, and a list 1 of type list X. If if 1 already contains x, the returned
list should be identical to 1. On the other hand, if 1 does not already contain x, then
the result should be a list which is identical to 1 except that it also contains x at the
very end. For example, insertUnique nat beq_nat 6 [1,2,4,3] yields [1,2,4,3,6], while
insertUnique nat beq_nat 4 [1,2,4,3] yields [1,2,4,3].

Fixpoint insertUnique (X : Type) (eq : X — X — bool) (x : X) (1 : list X)
: list X :=

Answer:

match 1 with

| nil => [x]
| h:: t == if eq x h thenh :: t

else h :: (insertUnique _ eq x t)
end.

Why do we need to pass an equality-testing function eq as an argument to insertUnique instead
of just using = to test for equality?

Answer: = yields a proposition, not a boolean.

Grading scheme: -2 for failing to say something close to “= yields a proposition, not a boolean”.
Note that “because = is not polymorphic” (or words to that effect) is incorrect: = is polymorphic.

2. (8 points)

(a)

Briefly explain the use and behavior of the apply tactic.

Answer: The apply tactic is used with a hypothesis from the current context or a previously
defined theorem. If the conclusion of that hypothesis or theorem matches the current goal, it is
eliminated and new subgoals are generated for each premise of the applied theorem. In this way,
apply facilitates “backwards” reasoning.

Briefly explain the use and behavior of the apply... in... tactic.

Answer: apply H1 in H2 may be used when H2 is a hypothesis in the current context. H1 should be
another hypothesis or a previously defined theorem, and a premise of H1 must match H2. Using the
tactic transforms H2 into the conclusion of H1, and new subgoals are generated for each additional
premise of H1. apply ... in ... facilitates forward reasoning.

Grading scheme: There was significant variation in this problem. Many errors other than the
ones mentioned here are individually indicated. Common errors include: -1 point for not being
general enough (suggesting apply /apply in only work when the applied hypothesis has exactly one

premise); -2 points for saying that apply H1 in H2 provides n new assumptions where H1 has the
form H2 — P1 — P2 ... — Pn; -1 point for saying apply...in... can be used to modify both
assumptions and the goal.

. (10 points)
Consider the following induction principle:

bar_ind
: forall (X : Type) (P : bar X — Prop),
P (barl X) —
(forall (x : X) (f : bar X), Pf — P (bar2 X x f)) —
(forall (n : nat) (f : bar X), Pf — P (bar3 X n f)) —
forall (£ : bar X), P £

Write out the corresponding inductive type definition.

Answer:

Inductive bar (X : Type) : Type :=
| barl : bar X
| bar2 : X — bar X — bar X
| bar3 : nat — bar X — bar X.

Grading scheme: Binary grading, 2pts per part.

. (10 points) Suppose we make the following inductive definition:
Inductive foo (X : Type) : Type :=
| fool : foo X

| foo2 : X — foo X
| foo3 : nat — foo X — foo X.

Write out the induction principle that will be generated by Coq.
Answer:

foo_ind :
forall (X : Type) (P : foo X — Prop),
P (fool X) —
(forall x : X, P (foo2 X x)) —
(forall (n : nat) (f : foo X), P f1 — P (foo3 X n f)) —
forall f : foo X, P £

Grading scheme: -1 point for forgetting the type arguments to foo’s constructors. -2 points per line for
other significant errors.

. (10 points) Define an inductive predicate all_same X 1, which should be provable exactly when
1 is a list (with elements of type X) where all the elements are the same. For example,
all_same nat [1,1,1] and all_same nat [] should be provable, while all_same nat [1,2,1] and
all_same bool [true, false] should not be.

Inductive all_same (X:Type) : list X — Prop :=

Answer:

| as_nil : all_same X nil
| as_sing : forall (x : X), all_same X [x]
| as_cons : forall x 1,

all_same X (x :: 1) —
all_same X (x :: x :: 1).

6. (8 points) Recall the appears_in relation, which expresses that an element a appears in a list 1.

Inductive appears_in (X:Type) (a:X) : list X — Prop :=
| ai_here : forall 1, appears_in X a (a::1)
| ai_later : forall b 1, appears_in X a 1 — appears_in X a (b::1).

Complete the definition of the following proof object:

Definition appears_example : forall x y : nat, appears_in nat 4 [x,4,y] :=

Answer:

fun (x y : nat) => ai_later nat 4 x [4,y] (ai_here nat 4 [y]).

7. (8 points)
Consider the following partial proof:

Theorem toil_and_trouble : forall n m,
double n = double m —
n = m.
Proof.
intros n m. induction n as [| n’].
Case "n = 0". simpl. intros eq. destruct m as [| m’].
SCase "m = 0". reflexivity.
SCase "m = S m’". inversion eq.
Case "'n = S n’". intros eq. destruct m as [| m’].
SCase "m = 0". inversion eq.
SCase "m = Sm’".
assert (n’ =m’) as H.
SSCase "Proof of assertion".
(* stopped here *)

Here is what the “goals” display looks like after Coq has processed this much of the proof:

2 subgoals
SSCase := "Proof of assertion" : String.string
SCase := "m = S m’" : String.string
Case := "n =S n’" : String.string
n’ : nat
m’ : nat

IHn’ : double n’ = double (Sm’) — n’” =S m’
eq : double (S n’) = double (S m’)

n’ =m’
subgoal 2 is:
Sn’” =S

This proof attempt is not going to succeed. Briefly explain why and say how it can be fixed. (Do not
write the repaired proof in detail—just say briefly what needs to be changed to make it work.)

Answer: Because the induction hypothesis is insufficiently general. It gives us a fact involving one
particular m, but to finish the last step of the proof we need to know something about a different m. To
fix it, either use generalize dependent m before induction or do not intros m and eq to begin with.

Grading scheme: 38 points for identifying the problem, and 3 for explaining out to fix it. -2 points for

not mentioning that the problem involves the IH. -1 point for being vague about nature of the problem
(at the least, it should be made clear that the IH is too specific).

8. (16 points) Give an informal proof, in English, of the following theorem.

Theorem distr_rev : forall X:Type, forall 11 12 : list X,
rev (11 ++ 12) = (rev 12) ++ (rev 11).

The definition of rev is given in the exam Appendix. You may assume without proof the two lemmas
app_nil_end and snoc_with_append, which are also stated in the Appendix.

Proof: Consider an arbitrary type X and an arbitrary list 12. We show that, for all 11 : 1list X,
rev (11 ++ 12) = (rev 12) ++ (rev 11), by induction on 11.

e Suppose 11 = []. We must show that rev ([] ++ 12) = rev (12 ++ []). The left hand side
of the equality simplifies to rev 12. By Lemma app_nil_end the right hand side is also equal to
rev 12.

e Suppose 11 = x::11', where rev (11'++12) = (rev 12) ++ (rev 11’). We must show that
rev (x::11 ++ 12) = rev 12 ++ rev (x::11’). The left hand side of the equality simplifies
to snoc (rev (11’++12)) x and the right hand side simplifies to rev 12 ++ snoc (rev 11') x.
Now by the induction hypothesis the left hand side is equal to snoc ((rev 12) ++ (rev 11)) x,
which by Lemma snoc_with_append is equal to rev 12 ++ snoc (rev 11’) x as required.

Appendix
The function rev is defined as follows.

Fixpoint snoc {X:Type} (1:list X) (x:X)

: list X :=
match 1 with

| nil = [x]
| h:: t =h:: (snoc t x)
end.

Fixpoint rev {X:Type} (1:1list X)

: list X :=
match 1 with

| nil => nil
| h :: t = snoc (rev t) h
end.

For question 8 you may assume without proof the following two lemmas.

Theorem app_nil_end : forall X (1

: list X),
1 ++ [] =1.

Theorem snoc_with_append : forall X : Type,

forall 11 12 : list X,
forall x : X,
snoc (11 ++ 12) x = 11 ++ (snoc 12 x).

