
CIS 500 � Software Foundations

Midterm I

February 17, 2010

Name:

Email:

Score

1

2

3

4

5

6

7

8

Total



Instructions

• This is a closed-book exam: you may not use any books or notes.

• You have 80 minutes to answer all of the questions.

• The exam is worth 80 points. However, questions vary signi�cantly in di�culty, and the point value
of a given question is not always exactly proportional to its di�culty. Do not spend too much time on
any one question.

• Partial credit will be given.

• Good luck!

1



1. (10 points)

(a) Fill in the de�nition of the Coq function insertUnique below.

The function is intended to be applied to a type X, an equality function eq for X, an el-
ement x of type X, and a list l of type list X. If if l already contains x, the returned
list should be identical to l. On the other hand, if l does not already contain x, then
the result should be a list which is identical to l except that it also contains x at the
very end. For example, insertUnique nat beq_nat 6 [1,2,4,3] yields [1,2,4,3,6], while
insertUnique nat beq_nat 4 [1,2,4,3] yields [1,2,4,3].

Fixpoint insertUnique (X : Type) (eq : X → X → bool) (x : X) (l : list X)
: list X :=

(b) Why do we need to pass an equality-testing function eq as an argument to insertUnique instead
of just using = to test for equality?

2



2. (8 points)

(a) Brie�y explain the use and behavior of the apply tactic.

(b) Brie�y explain the use and behavior of the apply... in... tactic.

3



3. (10 points)

Consider the following induction principle:

bar_ind
: forall (X : Type) (P : bar X → Prop),
P (bar1 X) →
(forall (x : X) (f : bar X), P f → P (bar2 X x f)) →
(forall (n : nat) (f : bar X), P f → P (bar3 X n f)) →
forall (f : bar X), P f

Write out the corresponding inductive type de�nition.

Inductive bar ________________________ : _____________________________ :=

| bar1 : _____________________________________________________

| bar2 : _____________________________________________________

| bar3 : _____________________________________________________ .

4



4. (10 points) Suppose we make the following inductive de�nition:

Inductive foo (X : Type) : Type :=
| foo1 : foo X
| foo2 : X → foo X
| foo3 : nat → foo X → foo X.

Write out the induction principle that will be generated by Coq.

foo_ind :

5



5. (10 points) De�ne an inductive predicate all_same X l, which should be provable exactly when
l is a list (with elements of type X) where all the elements are the same. For example,
all_same nat [1,1,1] and all_same nat [] should be provable, while all_same nat [1,2,1] and
all_same bool [true,false] should not be.

Inductive all_same (X:Type) : list X → Prop :=

6



6. (8 points) Recall the appears_in relation, which expresses that an element a appears in a list l.

Inductive appears_in (X:Type) (a:X) : list X → Prop :=
| ai_here : forall l, appears_in X a (a::l)
| ai_later : forall b l, appears_in X a l → appears_in X a (b::l).

Complete the de�nition of the following proof object:

Definition appears_example : forall x y : nat, appears_in nat 4 [x,4,y] :=

7



7. (8 points)

Consider the following partial proof:

Theorem toil_and_trouble : forall n m,
double n = double m →
n = m.

Proof.
intros n m. induction n as [| n’].
Case "n = O". simpl. intros eq. destruct m as [| m’].
SCase "m = O". reflexivity.
SCase "m = S m’". inversion eq.

Case "n = S n’". intros eq. destruct m as [| m’].
SCase "m = O". inversion eq.
SCase "m = S m’".
assert (n’ = m’) as H.
SSCase "Proof of assertion".
(* stopped here *)

Here is what the �goals� display looks like after Coq has processed this much of the proof:

2 subgoals

SSCase := "Proof of assertion" : String.string
SCase := "m = S m’" : String.string
Case := "n = S n’" : String.string
n’ : nat
m’ : nat
IHn’ : double n’ = double (S m’) → n’ = S m’
eq : double (S n’) = double (S m’)
============================
n’ = m’

subgoal 2 is:
S n’ = S m’

This proof attempt is not going to succeed. Brie�y explain why and say how it can be �xed. (Do not
write the repaired proof in detail�just say brie�y what needs to be changed to make it work.)

8



8. (16 points) Give an informal proof, in English, of the following theorem.

Theorem distr_rev : forall X:Type, forall l1 l2 : list X,
rev (l1 ++ l2) = (rev l2) ++ (rev l1).

The de�nition of rev is given in the exam Appendix. You may assume without proof the two lemmas
app_nil_end and snoc_with_append, which are also stated in the Appendix.

Proof:

9



Appendix

The function rev is de�ned as follows.

Fixpoint snoc {X:Type} (l:list X) (x:X) : list X :=
match l with
| nil => [x]
| h :: t => h :: (snoc t x)
end.

Fixpoint rev {X:Type} (l:list X) : list X :=
match l with
| nil => nil
| h :: t => snoc (rev t) h
end.

For question 8 you may assume without proof the following two lemmas.

Theorem app_nil_end : forall X (l : list X),
l ++ [] = l.

Theorem snoc_with_append : forall X : Type,
forall l1 l2 : list X,
forall x : X,

snoc (l1 ++ l2) x = l1 ++ (snoc l2 x).

10


