
CIS 500 � Software Foundations

Midterm II

Answer key

March 31, 2010

1. (4 points) The syntax and big-step semantics of IMP programs (over numbers and lists) are provided
for your reference in the Appendix. Throughout the exam, we use informal notations in programs
to make them easier to read; for example, we write 3 + 3 instead of APlus (ANum 3) (ANum 3) and
h :: t instead of ACons h t.

Recall the de�nition of equivalence for IMP programs:

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st’:state), (c1 / st ==> st’) ↔ (c2 / st ==> st’).

Which of the following pairs of programs are equivalent? Write �yes� or �no� for each one. (Where it
appears, a is an arbitrary aexp � i.e., you should write �yes� only if the two programs are equivalent
for every a.)

(a) Y ::= a :: X

and

Y ::= a :: (head X) :: (tail X)

Answer: No; consider when X starts out as nil.

(b) WHILE IsCons Z DO
Z ::= tail Z

END

and

Z ::= nil

Answer: No. For example, if Z has the value 0, the �rst program leaves it as 0 (since 0 is
interpreted as Nil) but the second program sets it to nil.

(c) WHILE X <> 0 DO
X ::= X + 1

END

and

WHILE X <> 0 DO
Y ::= Y + 1

END

Answer: Yes



(d) Y ::= 0;
WHILE 0 <= X DO
Y ::= Y + 3;
X ::= X - 1

END

and

Y ::= 3 * X;
X ::= 0

Answer: No. The �rst program does not terminate.

2. (10 points) Indicate whether or not each of the following Hoare triples is valid by writing either �valid�
or �invalid.� Also, for those that are invalid, give a counter-example. Where it appears, a is an arbitrary
aexp�i.e., you should write �valid� only if the triple is valid for every a.

(a) { True } X ::= a { X = a }

Answer: Invalid. For example, is not satis�ed when a = X + 1.

(b) { X <= Y }
IF Y == 0 THEN Y ::= 3 ELSE X ::= 0 FI

{ X = 0 }

Answer: Valid

(c) { X = h :: t }
Y ::= 0;
WHILE IsCons X DO
IF Y == 0 THEN
Y ::= head X

ELSE
SKIP

FI;
X ::= tail X

END
{ Y = h }

Answer: Invalid. For example, if X = 0 :: 3 :: [], then Y will end up as 3 rather than 0.

(d) { 1 <= Y ∧ Y = a }
Z ::= 0;
WHILE Y <> 0 DO
Z ::= Z + Y;
X ::= X - 1

END
{ Z = a * a }

Answer: Valid; the loop does not terminate.

(e) { True }
WHILE Z <> 2 DO
Z ::= Z + 2

END
{ False }

Answer: Invalid; the loop does terminate if Z starts out as 0.

1



3. (16 points) Recall the simple expression language with plus and numeric constants, which we intro-
duced in Smallstep.v. (It is reproduced in the Appendix with both big-step and small-step semantics.)

The following theorem captures the intuition that �big-step reduction implies small-step.�

Theorem: For all t and v, if t ==> v then t -->* v.

In the space below, write a careful proof of this theorem in English. You may use the following lemmas
without proving them:

Lemma stepmany_congr_1 : forall t1 t1’ t2,
t1 -->* t1’ →
tm_plus t1 t2 -->* tm_plus t1’ t2.

Lemma stepmany_congr_2 : forall t1 t2 t2’,
value t1 →
t2 -->* t2’ →
tm_plus t1 t2 -->* tm_plus t1 t2’.

Lemma rsc_trans : forall (X:Type) (R: relation X) (x y z : X),
refl_step_closure R x y →
refl_step_closure R y z →
refl_step_closure R x z.

Answer: Proof: By induction on a derivation of t ==> v.

• Suppose the �nal rule used to show t ==> v is E_Const. Then t = tm_const n = v. We must
show stepmany (tm_const n) (tm_const n). This holds by rsc_refl.

• Suppose the �nal rule used to show t ==> v is E_Plus. Then t = tm_plus t1 t2, and
we know that t1 ==> tm_const n1 and t2 ==> tm_const n2 for some n1 and n2. The
IH tells us that t1 -->* tm_const n1 and t2 -->* tm_const n2. We must show that
tm_plus t1 t2 -->* tm_const (plus n1 n2).

First, notice that

tm_plus t1 t2 -->* tm_plus (tm_const n1) t2

by stepmany_congr_1 and the stepmany derivation for t1. Observing that tm_const n1 is a
value, we also notice

tm_plus (tm_const n1) t2 -->*
tm_plus (tm_const n1) (tm_const n2)

by stepmany_congr_2 and the stepmany derivation for t2. It's also easy to see by
ST_PlusConstConst that

tm_plus (tm_const n1) (tm_const n2) -->
tm_const (plus n1 n2)

and so, by rsc_step and rsc_refl, that the same is true for -->*. We can now use transitivity
of -->* to stitch these derivations, proving

tm_plus t1 t2 -->* tm_const (plus n1 n2).

Grading scheme: 0-6 points for missing or very garbled proofs, or for proofs of the wrong theorem.
7-11 points for proofs that included most of the important ideas but weren't put together completely
correctly. 12-16 points for correct proofs, perhaps with small problems.

2



4. (8 points) Conversely, we also saw in Smallstep.v that �small-step implies big-step.� State the theorem
(in formal Coq notation) that expresses this precisely. (Do not give a proof � just the statement of
the theorem.)

Answer:

Theorem stepmany__eval : forall t v,
normal_form_of t v → t ==> v.

Grading scheme: -1 each for misapplication of �>* and ==>. -1 for requiring a value instead of a
normal form. -4 for failing to constrain the small-step reduct at all. -1 for Coq syntax errors.

5. (10 points) Recall the de�nition of stack machine programs and their small-step semantics (omitting
the SMinus and SMult instructions):

Inductive sinstr : Type :=
| SPush : nat → sinstr
| SLoad : id → sinstr
| SPlus : sinstr.

Definition stack := list nat.
Definition prog := list sinstr.

Inductive stack_step : state → prog * stack → prog * stack → Prop :=
| SS_Push : forall st stk n p’,

stack_step st (SPush n :: p’, stk) (p’, n :: stk)
| SS_Load : forall st stk i p’,

stack_step st (SLoad i :: p’, stk) (p’, st i :: stk)
| SS_Plus : forall st stk n m p’,

stack_step st (SPlus :: p’, n::m::stk) (p’, (m+n)::stk).

Suppose we want stack machine programs to also support a store instruction:

Inductive sinstr : Type :=
... (* same instructions as before... *)

| SStore : id → sinstr.

Write down a new version of stack_step that handles the new instruction. Executing SStore X should
have the e�ect of popping a value from the top of the stack and assigning it to X.

Answer:

Inductive stack_step : prog * (state * stack) → prog * (state * stack) → Prop :=
| SS_Push : forall st stk n p’,
stack_step (SPush n :: p’, (st, stk)) (p’, (st, n::stk))

| SS_Load : forall st stk i p’,
stack_step (SLoad i :: p’, (st, stk)) (p’, (st, st i :: stk))

| SS_Plus : forall st stk n m p’,
stack_step (SPlus :: p’, (st, n::m::stk)) (p’, (st, (m+n)::stk))

| SS_Store : forall st stk n p’,
stack_step (SStore x :: p’, (st, n::stk)) (p’, (update st x n, stk)).

Grading scheme: 3 points for mentioning (update st x n) or something of the sort. 4 points for adding
an output state to the type of the step relation. 3 points for implementing the rules correctly.

3



6. (9 points) Recall the cstep relation, which de�nes the small-step variant of the operational semantics
of IMP (the full de�nition is given in the Appendix).

Consider extending the syntax of IMP programs with a new primitive command called ANYTHING:

Inductive com : Type :=
...
| CAnything : com.

Notation "’ANYTHING’" := CAnything.

The behavior of ANYTHING is completely nondeterministic: after it executes, the memory can be left in
any state whatsoever. However, ANYTHING is guaranteed to always terminate.

(a) What needs to be added to the de�nition of cstep to give ANYTHING this behavior?

Answer:

| CS_Anything : forall st st’, ANYTHING / st --> SKIP / st’.

(b) Write down a Hoare rule for reasoning about ANYTHING, and explain why it is the right rule.

Answer: The right rule is { True } ANYTHING { True }. We can't say anything about the �nal
state, so the only thing we can put as the postcondition is True. Any precondition will make the
triple valid, so we may as well put the weakest possible precondition, namely True.

Grading scheme: Distribution of points: part (a) 4 points, part (b) 5 points. Most common mistake
on part (a) was forgetting to write SKIP as the result of the step: -2 points. Part (b): 1 point for
writing the correct rule; 4 points for correct explanation, partial credit was given.

4



7. (15 points) Recall the de�nition of the length function from Basics.v:

Fixpoint length (xs:natlist) : nat :=
match xs with
| nil => O
| h :: t => S (length t)
end.

Here is a small Imp program that implements the same calculation:

{X = xs}
Y ::= 0;
WHILE X <> [] DO
Y := Y + 1;
X ::= tail(X)

END
{Y = length xs}

In the space below, write a fully decorated version of this program demonstrating that it validates the
stated pre- and post-conditions.

Answer:

{X = l} =>
{0 + length X = length l}

Y ::= 0;
{Y + length X = length l}

WHILE X <> [] DO
{Y + length X = length l ∧ X <> []} =>
{Y + 1 + length (tail X) = length l}

Y := Y + 1;
{Y + length (tail X) = length l}

X ::= tail(X)
{Y + length X = length l}

END
{Y + length X = length l ∧ ~(X <> [])} =>
{Y = length l}

Grading scheme: Each line of the program was worth a maximum of 3 points for applying the ap-
propriate Hoare rule correctly. Incorrect uses of the assignment rule lost 3 points the �rst time and 2
points each subsequent time. Partial credit was given in individual cases.

8. (8 points) Here is a Coq function that returns true i� its argument is a list containing only zeros.

Fixpoint allzero (xs:natlist) : bool :=
match xs with
| nil => true
| h :: t => andb (beq_nat h 0) (allzero t)
end.

Here is an Imp program that performs the same test: when it terminates, the variable Y will be set to
0 i� the variable X at the beginning contains only zeros. If we want to prove that the program behaves
as speci�ed � i.e., that the program together with the indicated pre- and post-conditions forms a valid
Hoare triple � what invariant would we need to use for the loop; (i.e., what assertion should we write
in place of ???)?

Answer:

{Y = 0 ↔ allzero (rev Z) ∧ (rev Z)++X = xs}

5



Grading scheme: -1 for allzero Z instead of allzero (rev Z) (waived if below 6 already). -5 (as
appropriate) for over/under speci�cation of how much of X/Z/xs are nonzero i� Y = 0. -3 for failing
to constrain X/Z/xs. (There was a fair bit of variation in answers to this one. A lot of people forgot
one or another conjunct, resulting in 5/8. Others tried to constrain Y and X directly, or even Y and
xs! We deducted -5 or more in this case.)

6


