
CIS 500 — Software Foundations

Final Exam

May 9, 2011

Answer key

Hoare Logic

1. (7 points) What does it mean to say that the Hoare triple {{P}} c {{Q}} is valid?

Answer: {{P}} c {{Q}} means that, for any states st and st’, if st satisfies P and c / st ⇓
st’, then st’ satisfies Q.

2. (18 points) Recall the Hoare rule for reasoning about sequences of commands:

{{P}} c1 {{Q}} {{Q}} c2 {{R}}
{{P}} c1;c2 {{R}}

Hoare Seq

Formally, this rule corresponds to a theorem:

Theorem hoare_seq : forall P Q R c1 c2,
{{P}} c1 {{Q}} ->
{{Q}} c2 {{R}} ->
{{P}} c1;c2 {{R}}.

Give a careful informal proof (in English) of this theorem.

Answer: To show that the Hoare triple {{P}} c1;c2 {{R}} is valid, we must show that, for any
states st and st’’, if st satisfies P and c1;c2 / st ⇓ st’’, then st’’ satisfies R. So suppose st
satisfies P and c1;c2 / st ⇓ st’.

By the definition of the evaluation relation, there must be some state st’ such that c1 / st ⇓
st’ and c2 / st’ ⇓ st’’. Since {{P}} c1 {{Q}} is a valid triple, we know that st’ satisfies Q.
But then, since {{Q}} c2 {{R}} is a valid triple, we know that st’’ satisfies R, as required.

3. (12 points) In the Imp program below, we have provided a precondition and postcondition.
In the blank before the loop, fill in an invariant that would allow us to annotate the rest of the
program.

{ True }
X := n
Y := X
Z := 0

{ ___ }
WHILE Y <> 0 DO

Z := Z + X;
Y := Y - 1

END
{ Z = n*n }

Answer: Z + Y*n = n*n ∧ X = n

Grading scheme: Common mistakes included

• Using subtraction to state the invariant without including an assertion about the relative sizes
of the things being subtracted (-2 points)

• Omitting X = n from the invariant (-3 points)

Otherwise, 4 points each for:

• invariant holds before the loop

• invariant is preserved by the loop

• invariant and negation of loop test implies final assertion

1

STLC

4. (16 points) Recall the definition of the substitution operation in the simply typed lambda-
calculus (with no extensions, and omitting base types such as booleans for brevity):

Fixpoint subst (s:tm) (x:id) (t:tm) : tm :=
match t with
| tm_app t1 t2 => tm_app (subst s x t1) (subst s x t2)
| tm_var x’ => if beq_id x x’ then s else t
| tm_abs x’ T t1 => tm_abs x’ T (if beq_id x x’ then t1 else (subst s x t1))
end.

This definition uses Coq’s Fixpoint facility to define substitution as a function. Suppose, instead,
we wanted to define substitution as an inductive relation substi. We’ve begun the definition by
providing the Inductive header and one of the constructors; your job is to fill in the rest of the
constructors. (Your answer should be such that subst s x t = t’ <-> substi s x t t’, for all
s, x, t, and t’, but you do not need to prove it).
Answer:

Inductive substi (s:tm) (x:id) : tm -> tm -> Prop :=
| s_app : forall t1 t2 t1’ t2’,

substi s x t1 t1’ ->
substi s x t2 t2’ ->
substi s x (tm_app t1 t2) (tm_app t1’ t2’)

| s_var1 :
substi s x (tm_var x) s

| s_var2 : forall x’,
beq_id x x’ = false ->
substi s x (tm_var x’) (tm_var x’)

| s_abs1 : forall T t1,
substi s x (tm_abs x T t1) (tm_abs x T t1)

| s_abs2 : forall x’ T t1 t1’,
beq_id x x’ = false ->
substi s x t1 t1’ ->
substi s x (tm_abs x’ T t1) (tm_abs x’ T t1’).

2

References

5. (12 points) The next few problems concern the STLC extended with natural numbers and
references (reproduced on page 13, with the same informal notations as we’re using here).

(a) In this system, is there a type T that makes

x:T; [] |- (\x:Nat. 2 * x) (x x) : Nat

provable? If so, what is it?

Answer: No.

(b) Is there a type T that makes

empty; [] |- (\x:Ref Nat. ((_:Unit. !x), (\y:Nat. x := y))) (ref 0) : T

provable? If so, what is it?

Answer: (Unit->Nat)*(Nat->Unit)

(c) Is there a type T that makes

x:T; [] |- !(!(!x)) : Nat

provable? If so, what is it?

Answer: Ref (Ref (Ref Nat))

(d) Is there a type T that makes

x:T; [] |- (\y:Nat*Nat. pred (y.fst)) (x.snd x.fst) : Nat

provable? If so, what is it?

Answer: S * (S -> Nat*Nat), for any type S.

3

6. (8 points) Briefly explain the term aliasing. Give one reason why it is a good thing and one
reason why it is bad.

Answer: Aliasing can happen in any language with a pointers and a heap. It occurs when two
different variables both refer to the same heap cell — or, more generally, when a single heap cell is
accessible to a program via multiple “paths” of pointers. It is both a good thing and a bad thing:
good, because it is the basis of shared state and so fundamental to mainstream OO programming;
but also bad, because it makes reasoning about programs more difficult. For example, executing the
assignments x := 5; y := 6 leaves x set to 5 unless x and y are aliases for the same cell.

4

7. (24 points) Recall the preservation theorem for the STLC with references. In formal Coq
notation it looks like this:

Theorem preservation : forall ST t t’ T st st’,
has_type empty ST t T ->
store_well_typed empty ST st ->
t / st ==> t’ / st’ ->
exists ST’,
(extends ST’ ST /\
has_type empty ST’ t’ T /\
store_well_typed empty ST’ st’).

Informally, it looks like this:

Theorem (Preservation): If empty; ST |- t : T with ST |- st, and t in store st
takes a step to t’ in store st’, then there exists some store typing ST’ that extends ST
and for which empty; ST’ |- t’ : T and ST’ |- st’.

(a) Briefly explain why the extra (compared to preservation for the pure STLC) refinement
“exists ST’...” is needed here.

Answer: Because reducing a term of the form ref v allocates a new location l and yields l
as the result of reduction, but l is not in the domain of ST and hence not typable under ST.

5

(b) The proof of this theorem relies on some subsidiary lemmas:

Lemma store_weakening : forall Gamma ST ST’ t T,
extends ST’ ST ->
has_type Gamma ST t T ->
has_type Gamma ST’ t T.

Lemma store_well_typed_snoc : forall ST st t1 T1,
store_well_typed ST st ->
has_type empty ST t1 T1 ->
store_well_typed (snoc ST T1) (snoc st t1).

Lemma assign_pres_store_typing : forall ST st l t,
l < length st ->
store_well_typed ST st ->
has_type empty ST t (store_ty_lookup l ST) ->
store_well_typed ST (replace l t st).

Lemma substitution_preserves_typing : forall Gamma ST x s S t T,
has_type empty ST s S ->
has_type (extend Gamma x S) ST t T ->
has_type Gamma ST (subst x s t) T.

Suppose we carry out a proof of preservation by induction on the given typing derivation. In
which cases of the proof are the above lemmas used?

Match names of lemmas to proof cases by drawing a line from from each lemma to each proof
case that uses it.

store weakening

store well typed snoc

assign pres store typing

substitution preserves typing

T Abs

T App

T Ref

T Deref

T Assign

Answer:

• store_weakening is used in the T_App and T_Assign cases.
• store_well_typed_snoc is used in the T_Ref case.
• assign_pres_store_typing is used in the T_Assign case.
• substitution_preserves_typing is used in the T_App case.

Grading scheme: 2 points for each correct line drawn, -1 point for each incorrect line

6

(c) Here is the beginning of the T Ref case of the proof. Complete the case.

Theorem (Preservation): If empty; ST |- t : T with ST |- st, and t in store st takes a
step to t’ in store st’, then there exists some store typing ST’ that extends ST and for which
empty; ST’ |- t’ : T and ST’ |- st’.

Proof: By induction on the given derivation of empty; ST |- t : T.

• ...cases for other rules...

• If the last rule in the derivation is T_Ref, then t = ref t1 for some t1 and, moreover,
empty; ST |- t1 : T1 for some T1, with T = Ref T1.

Answer: There are two cases to consider, one for each rule that could have been used to
show that ref t1 takes a step to t’.

– Suppose ref t1 takes a step by ST_Ref, with t1 stepping to t1’ and new store
st’. Then by the IH there is some store typing ST’ such that ST’ extends ST,
st’ is well typed with respect to ST’, and empty; ST’ |- t1’ : T1. Hence,
empty; ST’ |- ref t1’ : Ref T1 by T_Ref.

– Suppose ref t1 takes a step by ST_RefValue. Then t1 is a value, st’ = snoc st t1,
and t’ is the length of st – i.e., the location of t1 in st’. If we choose ST’ = snoc ST T1,
we obtain
∗ ST’ extends ST by construction
∗ st’ is well typed with respect to ST’ by the store well typed snoc lemma,

and
∗ empty; ST’ |- l : Ref T1 by T_Loc,

as required.

Grading scheme:

• Correct case analysis of step: 2 points

• ST Ref case: 4 points

• ST RefValue case: 4 points

7

Subtyping

8. (8 points) Recall the simply-typed lambda calculus extended with products and subtyping
(reproduced on page 15).

The subtyping rule for products

S1 <: T1 S2 <: T2
-------------------- (S_Prod)

S1*S2 <: T1*T2

intuitively corresponds to the “depth” subtyping rule for records. Extending the analogy, we might
consider adding a “permutation” rule

-------------- (S_ProdP)
T1*T2 <: T2*T1

for products.

Is this a good idea? Briefly explain why or why not.

Answer: No, since it will break preservation: (true,unit).1 has type Unit according to this
rule, but reduces to true, which does not have type Unit.

Grading scheme: 1 point for “no,” remaining points for clarity of explanation why.

8

9. (15 points) The preservation and progress theorems about the STLC with subtyping (page 15)
depend on a number of technical lemmas, including the following one, which describes the possible
“shapes” of types that are subtypes of an arrow type:

Lemma: For all types U, V1, and V2, if U <: V1 -> V2, then there
exist types U1 and U2 such that

(a) U = U1 -> U2,

(b) V1 <: U1, and

(c) U2 <: V2.

The following purported proof of this lemma contains two significant mistakes. Explain what
is wrong and how the proof should be corrected.

Proof : By induction on a derivation of U <: V1 -> V2.

• The last rule in the derivation cannot be S Prod or S Top since V1 -> V2 is not a product
type or Top.

• If the last rule in the derivation is S Arrow, all the desired facts follow directly from the
form of the rule.

• Suppose the last rule in the derivation is S Trans. Then, from the form of the rule, there
is some type U’ with U <: U’ and U’ <: V1 -> V2. We must show that U’ = U1’ -> U2’,
with V1 <: U1’ and U2’ <: V2; this follows from the induction hypothesis.

Answer :

• The case for S Refl is omitted. In that case U = V1 -> V2 and we have V1 <: V1 and
V2 <: V2 by S Refl.

• The S Trans case is incomplete: it does not show anything about U. Once we know
that U <: U1’ -> U2’, we must apply the IH again to conclude that U = U1 -> U2 where
U1’ <: U1 and U2 <: U2’. Since we also know V1 <: U1’ and U2’ <: V2, by two applica-
tions of S Trans we conclude that V1 <: U1 and U2 <: V2. This finally gives us what we
wanted to show.

Grading scheme: 5 points for the Refl part, 10 for the Trans part.

9

For Reference...

IMP programs

Here are the key definitions for the syntax and big-step semantics of IMP programs:

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

10

---------------- (E_Skip)
SKIP / st ⇓ st

aeval st a1 = n
-------------------------------- (E_Ass)
l := a1 / st ⇓ (update st l n)

c1 / st ⇓ st’
c2 / st’ ⇓ st’’
------------------- (E_Seq)
c1;c2 / st ⇓ st’’

beval st b1 = true
c1 / st ⇓ st’

------------------------------------- (E_IfTrue)
IF b1 THEN c1 ELSE c2 FI / st ⇓ st’

beval st b1 = false
c2 / st ⇓ st’

------------------------------------- (E_IfFalse)
IF b1 THEN c1 ELSE c2 FI / st ⇓ st’

beval st b1 = false
------------------------------ (E_WhileEnd)
WHILE b1 DO c1 END / st ⇓ st

beval st b1 = true
c1 / st ⇓ st’

WHILE b1 DO c1 END / st’ ⇓ st’’
--------------------------------- (E_WhileLoop)
WHILE b1 DO c1 END / st ⇓ st’’

11

Hoare logic rules

{{assn sub V a Q}} V := a {{Q}}
Hoare Asgn

{{P′}} c {{Q′}} P −→ P ′ Q′ −→ Q

{{P}} c {{Q}}
Hoare Consequence

{{P′}} c {{Q}} P −→ P ′

{{P}} c {{Q}}
Hoare Pre

{{P}} c {{Q′}} Q′ −→ Q

{{P}} c {{Q}}
Hoare Post

{{P}} SKIP {{P}}
Hoare Skip

{{P}} c1 {{Q}} {{Q}} c2 {{R}}
{{P}} c1 ; c2 {{R}}

Hoare Seq

{{P ∧ b}} c1 {{Q}} {{P ∧ ∼ b}} c2 {{Q}}
{{P}} IFB b THEN c1 ELSE c2 FI {{Q}}

Hoare If

{{P ∧ b}} c {{P}}
{{P}} WHILE b DO c END {{P ∧ ∼ b}}

Hoare While

12

STLC with references

(Some of the questions concerning STLC with references also use natural numbers and arithmetic
operations; the syntax and semantics of these constants and operators is standard.)

Syntax

T ::= Unit t ::= x v ::=
| T -> T | t t | unit
| Ref T | \x:T. t | \x:T. t

| unit | loc n
| ref t
| !t
| t := t
| loc n

Operational semantics

value v2
------------------------------------- (ST_AppAbs)
(\a:T.t12) v2 / st ==> [v2/a]t12 / st

t1 / st ==> t1’ / st’
--------------------------- (ST_App1)
t1 t2 / st ==> t1’ t2 / st’

value v1 t2 / st ==> t2’ / st’
---------------------------------- (ST_App2)

v1 t2 / st ==> v1 t2’ / st’

-------------------------------- (ST_RefValue)
ref v1 / st ==> loc |st| / st,v1

t1 / st ==> t1’ / st’
----------------------------- (ST_Ref)
ref t1 / st ==> ref t1’ / st’

l < |st|
---------------------------------- (ST_DerefLoc)
!(loc l) / st ==> lookup l st / st

t1 / st ==> t1’ / st’
----------------------- (ST_Deref)
!t1 / st ==> !t1’ / st’

13

l < |st|
-- (ST_Assign)
loc l := v2 / st ==> unit / (replace l v2 st)

t1 / st ==> t1’ / st’
----------------------------------- (ST_Assign1)
t1 := t2 / st ==> t1’ := t2 / st’

t2 / st ==> t2’ / st’
----------------------------------- (ST_Assign2)
v1 := t2 / st ==> v1 := t2’ / st’

Typing

Gamma x = T
------------------ (T_Var)
Gamma; ST |- x : T

Gamma, x:T11; ST |- t12 : T12
---------------------------------- (T_Abs)
Gamma; ST |- \x:T11.t12 : T11->T12

Gamma; ST |- t1 : T11->T12
Gamma; ST |- t2 : T11

-------------------------- (T_App)
Gamma; ST |- t1 t2 : T12

------------------------ (T_Unit)
Gamma; ST |- unit : Unit

l < |ST|
-------------------------------------- (T_Loc)
Gamma; ST |- loc l : Ref (lookup l ST)

Gamma; ST |- t1 : T1
---------------------------- (T_Ref)
Gamma; ST |- ref t1 : Ref T1

Gamma; ST |- t1 : Ref T11
------------------------- (T_Deref)
Gamma; ST |- !t1 : T11

Gamma; ST |- t1 : Ref T11
Gamma; ST |- t2 : T11

---------------------------- (T_Assign)
Gamma; ST |- t1 := t2 : Unit

14

STLC with products and subtyping

Syntax

T ::= Top t ::= x v ::= \x:T. t
| T -> T | t t | (v,v)
| T * T | \x:T. t

| (t,t)
| t.fst
| t.snd

Operational semantics

--------------------------- (ST_AppAbs)
(\a:T.t12) v2 ==> [v2/a]t12

t1 ==> t1’
---------------- (ST_App1)
t1 t2 ==> t1’ t2

t2 ==> t2’
---------------- (ST_App2)
v1 t2 ==> v1 t2’

t1 ==> t1’
-------------------- (ST_Pair1)
(t1,t2) ==> (t1’,t2)

t2 ==> t2’
-------------------- (ST_Pair2)
(v1,t2) ==> (v1,t2’)

t1 ==> t1’
------------------ (ST_Fst1)
t1.fst ==> t1’.fst

------------------ (ST_FstPair)
(v1,v2).fst ==> v1

t1 ==> t1’
------------------ (ST_Snd1)
t1.snd ==> t1’.snd

------------------ (ST_SndPair)
(v1,v2).snd ==> v2

15

Subtyping

------ (S_Refl)
T <: T

S <: U U <: T
---------------- (S_Trans)

S <: T

-------- (S_Top)
S <: Top

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1->S2 <: T1->T2

S1 <: T1 S2 <: T2
-------------------- (S_Prod)

S1*S2 <: T1*T2

16

Typing

Gamma x = T
-------------- (T_Var)
Gamma |- x : T

Gamma , x:T11 |- t12 : T12
---------------------------- (T_Abs)
Gamma |- \x:T11.t12 : T11->T12

Gamma |- t1 : T11->T12
Gamma |- t2 : T11

---------------------- (T_App)
Gamma |- t1 t2 : T12

Gamma |- t1 : T1 Gamma |- t2 : T2
--------------------------------------- (T_Pair)

Gamma |- (t1,t2) : T1*T2

Gamma |- t1 : T11*T12
--------------------- (T_Fst)
Gamma |- t1.fst : T11

Gamma |- t1 : T11*T12
--------------------- (T_Snd)
Gamma |- t1.snd : T12

Gamma |- t : S S <: T
------------------------- (T_Sub)

Gamma |- t : T

17

