
CIS 500 — Software Foundations

Midterm I

February 16, 2011

Answer key

1. (10 points) Consider the following Inductive definition:

Inductive ptree (X:Type) : Type :=
| c1 : X -> X -> ptree X
| c2 : ptree X -> ptree X -> ptree X.

Implicit Arguments c1 [[X]].
Implicit Arguments c2 [[X]].

For each of the following types, define a function (using Definition or Fixpoint) with the
given type.

(a) nat -> nat -> ptree nat

Answer:

Definition blug : nat -> nat -> ptree nat :=
fun x y => c1 1 1.

(b) forall X Y : Type, ptree X -> (X -> Y) -> ptree Y

Answer:

Fixpoint flug {X Y:Type} (l : ptree X) (f : X -> Y) : ptree Y :=
match l with
| c1 x1 x2 => c1 (f x1) (f x2)
| c2 g h => c2 (flug g f) (flug h f)
end.



2. (8 points) Recall the definition of \/ from Logic.v:

Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Write down a term of type forall (P Q R:Prop), (P \/ Q -> R) -> Q -> R.
Answer:

fun (P Q R:Prop) (H : P \/ Q -> R) (X:Q) => H (or_intror P Q X)

Grading scheme: -1 for bad application order or syntax issues. -2 for missing arguments to
or intror or missing function declarations. -2 for attempts to use case analysis (match). Further
points were taken for serious syntactic confusion. 1 point was given to terms which recognized the
need for or intror, but were otherwise confused.

3. (8 points) Recall the inductively defined proposition le from Logic.v:

Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m, (le n m) -> (le n (S m)).

(a) What is the type of the le_n constructor? (I.e., what is printed if we send Coq the command
Check le_n?)

Answer: forall (n:nat), le n n

(b) Write down a term whose type is

forall (n:nat), le 2 n -> le 2 (S (S n)).

Answer: fun (n:nat) (pf: le 2 n) => le S 2 (S n) (le S 2 n pf)

Grading scheme: 2 points for the first part, 6 for the second.

4. (14 points) Recall that a list l3 is an “in-order merge” of lists l1 and l2 if it contains all the
elements of l1, in the same order as l1, and all the elements of l2, in the same order as l2, with
elements from l1 and l2 interleaved in any order. For example, the following lists (among others)
are in-order merges of [1,2,3] and [4,5]:

[1,2,3,4,5]
[4,5,1,2,3]
[1,4,2,5,3]

Complete the following inductively defined relation in such a way that merge l1 l2 l3 is provable
exactly when l3 is an in-order merge of l1 and l2.

Inductive merge {X:Type} : list X -> list X -> list X -> Prop :=

1



Answer:

| merge_empty :
merge [] [] []

| merge_left : forall l1 l2 l3 x,
merge l1 l2 l3 ->
merge (x::l1) l2 (x::l3)

| merge_right : forall l1 l2 l3 x,
merge l1 l2 l3 ->
merge l1 (x::l2) (x::l3).

5. (16 points) A list l1 is a permutation of another list l2 if l1 and l2 have exactly the same
elements (with each element occurring exactly the same number of times), possibly in different
orders. For example, the following lists (among others) are permutations of the list [1,1,2,3]:

[1,1,2,3]
[2,1,3,1]
[3,2,1,1]
[1,3,2,1]

On the other hand, [1,2,3] is not a permutation of [1,1,2,3], since 1 does not occur twice.
Complete the following inductively defined relation in such a way that permutation l1 l2 is

provable exactly when l1 is a permutation of l2. Feel free to create other inductive definitions
besides permutation if you find it helpful.

Inductive permutation {X:Type} : list X -> list X -> Prop :=

Answer:

| perm_id : forall l, permutation l l
| perm_ins : forall x l1 l2 l2’,

insertion x l2 l2’
-> permutation l1 l2
-> permutation (x :: l1) l2’.

Inductive insertion {X:Type} : X -> list X -> list X -> Prop :=
| ins_here : forall x l, insertion x l (x::l)
| ins_later : forall x y l1 l2,

insertion x l1 l2
-> insertion x (y::l1) (y::l2).

6. (8 points) Here is an induction principle for an inductively defined type myT.

myT_ind :
forall (X : Type) (P : myT -> Prop),
(forall x : X, P (c1 x)) ->
(forall s : myT, P s -> forall t : myT, P t -> P (c2 s t))
forall t : myT, P t

2



What is the definition of myT?

Answer:

Inductive myT {X:Type} : Type :=
| c1 : X -> myT
| c2 : myT -> myT -> myT.

Note that the fact that myT appears in the induction principle without explicitly being applied to
X implies that the parameter X in the definition must be introduced in curly braces, not parens.
(This bit was unintentionally tricky!)

7. (16 points) Recall the definition of double:

Fixpoint double (n:nat) :=
match n with
| O => O
| S n’ => S (S (double n’))
end.

Write an informal proof of this theorem:

Theorem: For any natural numbers n and m, if double n = double m, then n = m.

Answer:
Proof: Let m be a nat. We prove by induction on m that, for any n, if double n = double m

then n = m.

• Suppose m = 0, and suppose n is a number such that double n = double m. We must show
that n = 0.

Since m = 0, by the definition of double we have double n = 0. If n = 0 we are done, since
this is what we wanted to show. On the other hand, it cannot be that n = S n’ for some
n’, since then, by the definition of double we would have n = S (S (double n’)), which
contradicts the assumption that double n = 0.

• Suppose m = S m’, and suppose n is again a number such that double n = double m.
We must show that n = S m’, using the induction hypothesis that for every number s, if
double s = double m’ then s = m’.

By the fact that m = S m’ and the definition of double, we have double n = S (S (double m’)).
If n = 0, then by definition double n = 0, a contradiction. Thus, we may assume that
n = S n’ for some n’, and again by the definition of double we have

S (S (double n’)) = S (S (double m’)),

which implies that double n’ = double m’.

Instantiating the induction hypothesis with n’ thus allows us to conclude that n’ = m’, and
it follows immediately that S n’ = S m’. Since S n’ = n and S m’ = m, this is just what
we wanted to show.

3



Grading scheme: 11-16 points for answers where the basic argument was correct and reasonably
clear. 1-10 points for answers with important parts missing or major confusions.

4


