
CIS 500 — Software Foundations

Midterm II

March 30, 2011

Answer key



The core definitions of the Imp language are repeated, for easy reference, in the handout (pages 7
to 8). Now consider extending Imp with commands of the form

FLIP X

where X is an identifier. The effect of executing FLIP X is to assign either 0 or 1 to X, nondeter-
ministically. For example, after executing the program

FLIP Y;
Z := Y + 2

the value of Z might be 2 or it might be 3, and those are the only two possibilities. (Note that we
are not saying anything about the probabilities of the two outcomes—just that both can happen.)

Let’s call this new language Flimp (“Imp extended with FLIP”). Questions 1–4 all refer to
Flimp.

1. (6 points) To formalize the extended language, we first add a clause to the definition of
commands:

Inductive com : Type :=
...
| CFlip : id -> com.

Notation "’FLIP’ l" := (CFlip l) (at level 60).

Next, we must extend the operational semantics. The cstep relation (shown on page 8) defines
a small-step semantics for Imp. What rule(s) must be added to the definition of cstep to formalize
the behavior of the FLIP command in Flimp? Write out the additional rule(s) in formal Coq
notation.

Answer:

| CS_Flip0 : forall st i,
(FLIP i) / st ==> SKIP / update st i 0

| CS_Flip1 : forall st i,
(FLIP i) / st ==> SKIP / update st i 1

or

| CS_Flip : forall st i n,
(n = 0 \/ n = 1) ->
(FLIP i) / st ==> SKIP / update st i n

2. (6 points) Write down a Hoare logic rule for FLIP commands, and briefly explain why it is the
right rule. (For reference, the standard Hoare rules for Imp are provided on page 9 of the handout.)

Answer:

{assn sub X 0 P ∧ assn sub X 1 P} FLIP X {P}
Hoare Flip

1



In order to prove that P will hold after executing FLIP X, we need to know that P holds both when
substituting 0 and 1 for X, since we don’t know ahead of time which value X will take on.

3. (10 points) Which of the following pairs of programs are equivalent? Write “yes” or “no” for
each one.

(a) WHILE X > 0 DO
X ::= X + 1

END

and WHILE X > 0 DO
Y ::= Y - 1

END
Answer: Yes

(b) IFB X < 10 THEN
X ::= X + Y - Z;
Y ::= X * 3 - 4
WHILE X < 10 DO
X ::= X + Y - Z;
Y ::= X * 3 - 4

END
ELSE
SKIP

FI

and WHILE X < 10 DO
X ::= X + Y - Z;
Y ::= X * 3 - 4

END

Answer: Yes

(c) WHILE X <> 0 DO
FLIP Y;
X ::= X + 1

END

and WHILE X <> 0 DO
SKIP

END

Answer: Yes

(d) Z ::= 1;
WHILE X <> 0 DO
FLIP X;
FLIP Z

END

and X ::= 0;
Z ::= 1

Answer: No

(e) WHILE X <> 1 DO
FLIP X

END

and X ::= 1

Answer: Yes

Grading scheme: 1 point each for parts a, b, c, and f. 2 points for the others.

4. (10 points) Indicate whether or not each of the following Hoare triples is valid by writing either
“valid” or “invalid.” Also, for those that are invalid, give a counter-example. (Note that, in part
d, the variable a represents an arbitrary aexp – i.e., you should write “valid” only if the triple is
valid for every a. If you give a counter-example, specify which a it applies to.)

2



(a) { X = 1 } X ::= 1 { X = 1 }

Answer: Valid.

(b) { X = 0 }
WHILE X > 0 DO
X ::= X + 1

END
{ X > 0 }

Answer: Invalid

(c) { X = 0 } FLIP Y { X = 0 }

Answer: Valid.

(d) { X = a } FLIP Y { X = a }

Answer: Invalid: consider a = Y

(e) { True }
FLIP X;
IFB X = 0 THEN Y ::= 2 ELSE Y ::= 1 FI
{ Y > X }

Answer: Invalid: consider the case where X gets set to 1, in which case Y also becomes 1.

(f) { False }
FLIP X;
{ X = 0 }

Answer: Valid

(g) { True }
FLIP X;
WHILE X <> 0 DO
Y ::= X

END;
{ Y = 1 }

Answer: Invalid: consider the case where X gets set to 0, in which case Y’s value remains
unchanged.

5. (24 points) We can define the mathematical min function in Coq as follows:

Definition min (x:nat) (y:nat) : nat :=
if beq_nat (x - y) 0 then x else y.

3



The following Imp program calculates the minimum of two numbers a and b, in the sense that,
when it terminates, the program variable Z will be set to min a b.

X ::= a;
Y ::= b;
Z ::= 0;
WHILE (X <> 0 /\ Y <> 0) DO
X := X - 1;
Y := Y - 1;
Z := Z + 1;

END

Note that, as usual when dealing with decorated programs, we’re using informal notations, for
example writing

WHILE (X <> 0 /\ Y <> 0)

instead of:

WHILE (BAnd (BNot (BEq (AId X) (ANum 0)))
(BNot (BEq (AId Y) (ANum 0))))

On the next page, add appropriate annotations to the program in the provided spaces to demon-
strate this fact. Use informal notations for mathematical formulae and assertions, but please be
completely precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in
exactly the form given by the rules (rather than logically equivalent ones). Note that the provided
blanks have been constructed so that, if you work backwards from the end of the program, you
should only need to use the rule of consequence in the places indicated with =>. (Again, remember
that the Hoare rules are provided on page 9 of the handout.)

For the => steps in your annotations, you may rely (silently) on the following facts about min

Lemma lemma1 : forall x y,
(x=0 \/ y=0) -> min x y = 0.

Lemma lemma2 : forall x y,
min (x-1) (y-1) = (min x y) - 1.

plus, as usual, standard high-school algebra.

Solution:

{{ True }}
=>
{{ 0 + min a b = min a b }}

X ::= a;
{{ 0 + min X b = min a b }}

Y ::= b;
{{ 0 + min X Y = min a b }}

Z ::= 0;

4



{{ Z + min X Y = min a b }}
WHILE (X <> 0 /\ Y <> 0) DO

{{ Z + min X Y = min a b /\ (X<>0 /\ Y<>0) }}
=>
{{ Z+1 + min (X-1) (Y-1) = min a b }}

X := X - 1;
{{ Z+1 + min X (Y-1) = min a b }}

Y := Y - 1;
{{ Z+1 + min X Y = min a b }}

Z := Z + 1;
{{ Z + min X Y = min a b }}

END
{{ Z + min X Y = min a b /\ ~(X<>0 /\ Y<>0) }}
=>
{{ Z = min a b }}

6. (24 points) Suppose we define a simple language of numbers and constants, similar to the toy
language used in the Smallstep.v chapter. Terms t are either of the form const n for some natural
number constant n, or of the form add t1 t2 for some terms t1 and t2:

t ::= const n | add t t

We defined a big-step evaluation relation t ⇓ n for this language as follows:

const n ⇓ n
E Const

t1 ⇓ n1 t2 ⇓ n2

add t1 t2 ⇓ n1 + n2
E Plus

We also defined a small-step evaluation relation t =⇒ t′:

add (const n1) (const n2) =⇒ const (n1 + n2)
ST PlusConstConst

t1 =⇒ t′
1

add t1 t2 =⇒ add t′
1 t2

ST Plus1

t2 =⇒ t′
2

add (const n1) t2 =⇒ add (const n1) t′
2

ST Plus2

In Smallstep.v, we proved the equivalence of these two ways of presenting the semantics. One
piece of that proof was the lemma shown below. Write out a careful informal proof of this lemma
in English.

Lemma: For all terms t and t′ and numbers n, if t =⇒ t′ and t′ ⇓ n, then t ⇓ n.
Answer:

Proof: Let t and t′ be terms. We prove by induction on a derivation of t =⇒ t′ that, for all
natural numbers n, if t′ ⇓ n then t ⇓ n.

5



• Suppose the last rule in the derivation of t =⇒ t′ was ST PlusConstConst. Then t =
add (const n1) (const n2) and t′ = const (n1 + n2) for some n1 and n2. Let n be a natural
number and suppose const (n1 + n2) ⇓ n. We must show that add (const n1) (const n2) ⇓ n.
But we know by inversion on const (n1 + n2) ⇓ n that n1 + n2 = n, and hence this follows by
E Plus and two applications of E Const.

• Suppose the last rule in the derivation of t =⇒ t′ was ST Plus1. Then t = add t1 t2 and
t′ = add t′

1 t2 where t1 =⇒ t′
1. The induction hypothesis tells us that for all natural numbers

n′, if t′
1 ⇓ n′ then t1 ⇓ n′.

Now let n be a natural number and suppose add t′
1 t2 ⇓ n; we must show that add t1 t2 ⇓ n.

By inversion, there are natural numbers n1 and n2 such that t′
1 ⇓ n1, t2 ⇓ n2, and n = n1+n2.

By the induction hypothesis (with n′ = n1), we know t1 ⇓ n1 as well, and hence the desired
result follows by E Plus.

• The case where the last rule is ST Plus2 is similar.

6



IMP programs

Here are the key definitions for the syntax and small-step semantics of IMP programs:

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

7



(Remember that the ==>a and ==>b relations — not shown here — are small-step reduction relations
for aexps and bexps.)

Inductive cstep : (com * state) -> (com * state) -> Prop :=
| CS_AssStep : forall st i a a’,
a / st ==>a a’ ->
(i ::= a) / st ==> (i ::= a’) / st

| CS_Ass : forall st i n,
(i ::= (ANum n)) / st ==> SKIP / (update st i n)

| CS_SeqStep : forall st c1 c1’ st’ c2,
c1 / st ==> c1’ / st’ ->
(c1 ; c2) / st ==> (c1’ ; c2) / st’

| CS_SeqFinish : forall st c2,
(SKIP ; c2) / st ==> c2 / st

| CS_IfTrue : forall st c1 c2,
IFB BTrue THEN c1 ELSE c2 FI / st ==> c1 / st

| CS_IfFalse : forall st c1 c2,
IFB BFalse THEN c1 ELSE c2 FI / st ==> c2 / st

| CS_IfStep : forall st b b’ c1 c2,
b / st ==>b b’ ->
IFB b THEN c1 ELSE c2 FI / st ==> (IFB b’ THEN c1 ELSE c2 FI) / st

| CS_While : forall st b c1,
(WHILE b DO c1 END) / st

==> (IFB b THEN (c1; (WHILE b DO c1 END)) ELSE SKIP FI) / st

where " t ’/’ st ’==>’ t’ ’/’ st’ " := (cstep (t,st) (t’,st’)).

8



Hoare logic rules

{assn sub V a Q} V := a {Q}
Hoare Asgn

{P ′} c {Q′} P −→ P ′ Q′ −→ Q

{P} c {Q}
Hoare Consequence

{P ′} c {Q} P −→ P ′

{P} c {Q}
Hoare Pre

{P} c {Q′} Q′ −→ Q

{P} c {Q}
Hoare Post

{P} SKIP {P}
Hoare Skip

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

Hoare Seq

{P ∧ b} c1 {Q} {P ∧ ∼ b} c2 {Q}
{P} IFB b THEN c1 ELSE c2 FI {Q}

Hoare If

{P ∧ b} c {P}
{P} WHILE b DO c END {P ∧ ∼ b}

Hoare While

9


