
CIS 500 — Software Foundations

Final Exam

May 3, 2012

Answer key

This exam includes material on the Imp language and the simply-typed lambda calculus. Some of
the key definitions are repeated, for easy reference, in the accompanying handout. The version of
Imp we consider in this exam only has arithmetic expressions that reduce to numbers; you don’t
need to worry about lists.

1. (12 points) Recall the fold function in Coq:

Fixpoint fold {X Y:Type} (f: X->Y->Y) (l:list X) (b:Y) : Y :=
match l with
| nil => b
| h :: t => f h (fold f t b)
end.

Use the function fold to complete the definitions of the following Coq functions. Your solutions
should not use Fixpoint.

(a) A function that sums all the elements of l1 : list nat; for example, if we apply the function
you define to the list [1,4,3] it should return 8.

Definition f1 (l1:list nat) : nat :=

fold plus l1 0

(b) A function that returns true iff at least one of the elements of l2 : list bool is true; if
we apply the function you define to [true,false,true] it should return true, while if we
apply it to [false,false] or [] it should return false.

Definition f2 (l2:list bool) : bool :=

fold orb l2 false

(c) A function that behaves the same as map (the standard definition of map is repeated on page 9,
for reference).

Definition map’ {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=

fold (fun x xs => (f x)::xs) l3 nil

2. (12 points) Recall that Coq represents proofs internally as proof-objects — terms whose type
is the proposition under consideration. For example, here is the proof object for the proposition
forall A B : Prop, A /\ B -> A:

fun (A B : Prop) (H : A /\ B) =>
match H with
| conj HA HB => HA
end.

Note the use of match to destruct the given proof object H.
Prove the following claims by providing proof objects as evidence. (For reference, the definitions

of the logical connectives and and or are provided on page 10.)

(a) forall A B C : Prop, (A /\ B -> C) -> A -> B -> C.

fun (A B C : Prop) (H : A /\ B -> C) (HA : A) (HB : B) => H (conj A B HA HB).

(b) forall A B C : Prop, (A -> B -> C) -> A /\ B -> C.

fun (A B C : Prop) (H1 : A -> B -> C) (H2 : A /\ B) =>
match H2 with
| conj HA HB => H1 HA HB
end.

(c) forall A B : Prop, A /\ B -> A \/ B

fun (A B : Prop) (H : A /\ B) =>
match H with
| conj HA HB => or_introl A B HA
end.

(or something similar with or_intror)

Grading scheme: The first two arguments to tt and and or were defined as explicit (not inferred)
in Logic.v, but are implicit according to the standard definitions in the Coq library, which we have
been using in the second half of the course. We gave full credit both to answers that included them
(correctly!) and to answers that omitted them.

1

3. (12 points) Each part of this question makes a general claim about program equivalences in
Imp. For each one, indicate whether it is true or false. If it is false, give a counter-example. (For
reference, the definition of program equivalence is provided on page 12.)

(a) For all commands c and boolean expressions b,

cequiv (WHILE b DO c END)
(IF b THEN c ELSE SKIP FI; WHILE b DO c END)

True.

(b) For all arithmetic expressions e1 and e2,

cequiv (X ::= e1; Y ::= e2)
(Y ::= e2; X ::= e1)

False. If e1 is the expression Y and e2 is the expression X, then the commands in question
are: c1 = (X ::= Y; Y ::= X), and c2 = (Y ::= X, X ::= Y). Consider a starting state
st where X has value 1, and Y has value 2. c1 then ends in a state with both X and Y equalling
2, while c2 goes to a state where they both equal 1.

(c) For all boolean expressions b1 and b2 so that bequiv b1 BTrue and bequiv b2 BFalse,

cequiv (WHILE b1 DO (WHILE b2 DO SKIP END) END)
(WHILE b2 DO (WHILE b1 DO SKIP END) END)

False. Starting from any state, the first command does not terminate, and the second always
terminates in the same state.

2

4. (10 points) Indicate whether or not each of the following Hoare triples is valid by writing either
“valid” or “invalid” next to it. Also, for those that are invalid, give a counter-example. (The
definition of valid Hoare triples is given on page 13, for reference.)

(a) {{ X = 0 }} Y ::= X {{ X = 0 }}

Answer: Valid. (Note that this is the case whether or not we assume Y∼ = X.)

(b) {{ True }} X ::= Y + 1 {{ X <> 0 }}

Answer: Valid.

(c) {{ True }} X ::= Y - 1 {{ X <> 0 }}

Answer: Invalid: if Y starts as 0 or 1, then X becomes 0.

(d) {{ True }} X ::= a {{ X = a }}

(Note that the variable a represents an arbitrary aexp – i.e., you should write “valid” only if
the triple is valid for every a. If you give a counter-example, make sure it includes a specific
arithmetic expression a.)

Answer: Invalid: consider a = X + 1

(e) {{ True }}
WHILE X <> 0 DO
Y ::= 1;
X ::= X - 1;

END;
{{ Y = 1 }}

Answer: Invalid: consider the case where X starts as 0, in which case Y’s value remains
unchanged.

Grading scheme: 2 points for each; for the invalid triples 1 point for the answer and 1 point for
the counterexample

3

5. (20 points) The following Imp program calculates the integer division and remainder of two
numbers a and b.

X ::= a;
Y ::= b;
Z ::= 0;
WHILE Y <= X DO
X ::= X - Y;
Z ::= Z + 1

END

Note that we’re using informal notations as usual in Imp examples, for example writing this...

WHILE (Y <= X)

...instead of this:

WHILE (BLe (AId Y) (AId X))

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal
notations for mathematical formulae and assertions, but please be completely precise and pedantic
in the way you apply the Hoare rules — i.e., write out assertions in exactly the form given by
the rules (rather than logically equivalent ones). The provided blanks have been constructed so
that, if you work backwards from the end of the program, you should only need to use the rule of
consequence in the places indicated with =>.

The Hoare logic rules and the guidelines for decorated programs are provided on page 13, for
reference.

{{ True }} =>
{{ b * 0 + a = a /\ b = b }}

X ::= a;
{{ b * 0 + X = a /\ b = b }}

Y ::= b;
{{ Y * 0 + X = a /\ b = Y }}

Z ::= 0;
{{ Y * Z + X = a /\ b = Y }}

WHILE Y <= X DO
{{ Y * Z + X = a /\ b = Y /\ Y<=X }} =>
{{ Y * (Z + 1) + (X - Y) = a /\ b = Y }}

X ::= X - Y;
{{ Y * (Z + 1) + X = a /\ b = Y }}

Z ::= Z + 1
{{ Y * Z + X = a /\ b = Y }}

END;
{{ Y * Z + X = a /\ b = Y /\ Y > X }} =>
{{ b * Z + X = a /\ b > X }}

Grading scheme: 14 points minor mistakes, 12 points logic mistake but correct invariant, 8-12
correct sketch of invariant wrong use of some rules, 4-8 some ideas, 0-4 not clear idea.

4

6. (20 points) Consider the simply typed lambda-calculus with booleans and the fixed-point
operator fix. (You can find the syntax, typing rules, and small-step evaluation rules for this
language beginning on page 16.) The progress theorem for this language can be stated as follows:

Theorem: If ` t : T, then either t is a value or it can take a step.

Fill in the blanks in the following proof.

Proof: By induction on the given typing derivation.

• The last rule of the derivation cannot be T_Var, since a variable is never well typed in an
empty context.

• The T_True and T_False cases are trivial, since in each of these cases we know immediately
that t is a value.

• (The case where the last rule in the derivation is T_If is omitted for brevity.)

• If the last rule of the derivation is T_Abs, then t is an abstraction and thus a value, by
definition.

• If the last rule of the derivation is T_App, then t = t1 t2, and we know that t1 and t2 are also
well typed in the empty context; in particular, there exists a type T2 such that ` t1 : T2→ T
and ` t2 : T2. By the induction hypothesis, either t1 is a value or it can take an evaluation
step.

– If t1 is a value, we now consider t2, which by the other induction hypothesis must also
either be a value or take an evaluation step.

∗ Suppose t2 is a value. Since t1 is a value with an arrow type, it must be an ab-
straction; hence t1 t2 can take a step by ST_AppAbs.

∗ Otherwise, t2 can take a step, and hence so can t1 t2 by ST_App2.

– If t1 can take a step, then so can t1 t2 by ST_App1.

• If the last rule of the derivation is T_Fix, then t = fix t1, and we know that t1 is also well
typed in the empty context; in particular, there exists a type T1 such that ` t1 : T1→ T1. By
the induction hypothesis, either t1 is a value or it can take an evaluation step.

– If t1 is a value, then since it has an arrow type, it must be an abstraction; hence fix t1
can take a step by ST_FixAbs.

– If t1 can take a step, then so can fix t1 by ST_Fix1.

5

7. (20 points) In this exercise we investigate how the properties of the simply-typed lambda
calculus with fix (the same language as in the previous problem) would change if we added new
rules to the small-step reduction relation or to the typing relation. For each of the properties, either
write “remains true” or else write “becomes false” and give a counterexample.

(a) Suppose we add the following new rule to the reduction relation:

---------------------------------- (ST_FunnyIfTrue)
(if true then t1 else t2) ==> true

Which of the following properties remain true in the presence of this rule? (Remember to
give counterexamples for the ones that do not.)

• Determinism of step (==>) Answer: becomes false, counterexample:

(if true then false else false) ==> false
(if true then false else false) ==> true

• Progress Answer: remains true

• Preservation Answer: becomes false, counterexample:

` (if true then (\x:Bool.x) else (\x:Bool.x)) : Bool -> Bool
(if true then (\x:Bool.x) else (\x:Bool.x)) ==> true

but it’s not the case that

` true : Bool -> Bool

(b) Suppose instead that we add the following two new rules to the reduction relation:

value v
---------------- (ST_FunnyAppTrue)
true v ==> false

value v
---------------- (ST_FunnyAppFalse)
false v ==> true

Which of the following properties remain true in the presence of these rules?

• Determinism of step (==>) Answer: remains true

• Progress Answer: remains true

• Preservation Answer: remains true

(c) Suppose instead that we add the following new rule to the typing relation:

Γ ` t1 : Bool->Bool->Bool
Γ ` t2 : Bool

--------------------------- (T_FunnyApp)
Γ ` t1 t2 : Bool

Which of the following properties remain true in the presence of this rule?

6

• Determinism of step (==>) Answer: remains true

• Progress Answer: remains true

• Preservation Answer: becomes false, counterexample:

` (\x:Bool. \y:Bool. x) true : Bool
(\x:Bool. \y:Bool. x) true ==> \y:Bool. true

but it’s not the case that

` (\y:Bool. true) : Bool

(d) Suppose we add the following new rule to the typing relation:

Γ ` t1 : Bool
------------------- (T_FunnyFix)
Γ ` fix t1 : Bool

Which of the following properties remain true in the presence of this rule?

• Determinism of step (==>) Answer: remains true

• Progress Answer: becomes false, counterexample:

` fix true : Bool

but fix true is a stuck term.

• Preservation Answer: remains true

7

8. (14 points) The subtyping relations among a collection of types can be visualized compactly
in picture form: we draw a graph so that S <: T iff we can get from S to T by following arrows
in the graph (either directly or indirectly). For example, a picture for the types Top*Top, A*Top,
Top*(Top*Top), and Top*(A*A) would look like this (it actually happens to form a tree):

Top*Top

A*Top Top*(Top*Top)

Top*(A*A)

Suppose we have defined types Student and Person so that Student <: Person. Draw a picture
for the following six types.

Student -> Person
Top
Student -> Top
Person -> Student
Top -> Student
Top -> Top -> Person

Answer:
Top

Student->Top

Student->Person

Person->Student

Top->Student

Top->Top->Person

8

For Reference...

The map function

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=
match l with
| [] => []
| h :: t => (f h) :: (map f t)
end.

9

Definitions of logical connectives in Coq

Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).

Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.

Notation "P /\ Q" := (and P Q) : type_scope.
Notation "P \/ Q" := (or P Q) : type_scope.

10

Formal definitions for Imp

Syntax

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "X ’::=’ a" :=
(CAss X a) (at level 60).

Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

11

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,

SKIP / st || st
| E_Ass : forall st a1 n X,

aeval st a1 = n ->
(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,
c1 / st || st’ ->
c2 / st’ || st’’ ->
(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,
beval st b1 = true ->
c1 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,
beval st b1 = false ->
c2 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,
beval st b1 = false ->
(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,
beval st b1 = true ->
c1 / st || st’ ->
(WHILE b1 DO c1 END) / st’ || st’’ ->
(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st’ : state),
(c1 / st || st’) <-> (c2 / st || st’).

12

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)
(at level 90, c at next level)
: hoare_spec_scope.

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P Q" := (assert_implies P Q) (at level 80).

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}
{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}
{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P P ′

Q′ Q

{{P }} c {{Q }}
(hoare consequence)

Decorated programs

A decorated program consists of the program text interleaved with assertions. To check that a
decorated program represents a valid proof, we check that each individual command is locally
consistent with its accompanying assertions in the following sense:

• SKIP is locally consistent if its precondition and postcondition are the same:

13

{{ P }}
SKIP
{{ P }}

• The sequential composition of commands c1 and c2 is locally consistent (with respect to
assertions P and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally
consistent (with respect to Q and R):

{{ P }}
c1;
{{ Q }}
c2
{{ R }}

• An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P where a is substituted for X }}
X ::= a
{{ P }}

• A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its “then” and “else” branches are exactly P ∧ b and P ∧ ∼b and if its “then”
branch is locally consistent (with respect to P ∧ b and Q) and its “else” branch is locally
consistent (with respect to P ∧ ∼b and Q):

{{ P }}
IFB b THEN
{{ P ∧ b }}
c1
{{ Q }}

ELSE
{{ P ∧ ∼b }}
c2
{{ Q }}

FI
{{ Q }}

• A while loop is locally consistent if its postcondition is P ∧ ∼b (where P is its precondition)
and if the pre- and postconditions of its body are exactly P ∧ b and P :

{{ P }}
WHILE b DO
{{ P ∧ b }}
c1
{{ P }}

END
{{ P ∧ ∼b }}

14

• A pair of assertions separated by => is locally consistent if the first implies the second (in all
states):

{{ P }} =>
{{ Q }}

15

STLC with booleans and fix

Syntax

T ::= Bool t ::= x v ::=
| T -> T | t t | true

| \x:T. t | false
| true | \x:T. t
| false
| if t then t else t
| fix t

Small-step operational semantics

value v2
---------------------------- (ST_AppAbs)
(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’
---------------- (ST_App1)
t1 t2 ==> t1’ t2

value v1
t2 ==> t2’

---------------- (ST_App2)
v1 t2 ==> v1 t2’

-------------------------------- (ST_IfTrue)
(if true then t1 else t2) ==> t1

--------------------------------- (ST_IfFalse)
(if false then t1 else t2) ==> t2

t1 ==> t1’
-- (ST_If)
(if t1 then t2 else t3) ==> (if t1’ then t2 else t3)

t1 ==> t1’
------------------ (ST_Fix1)
fix t1 ==> fix t1’

F = \xf:T1.t2
----------------------- (ST_FixAbs)
fix F ==> [xf:=fix F]t2

16

Typing

Γ x = T
----------- (T_Var)
Γ ` x : T

Γ, x:T11 ` t12 : T12
--------------------------- (T_Abs)
Γ ` \x:T11.t12 : T11->T12

Γ ` t1 : T11->T12
Γ ` t2 : T11

------------------- (T_App)
Γ ` t1 t2 : T12

----------------- (T_True)
Γ ` true : Bool

------------------ (T_False)
Γ ` false : Bool

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T
-- (T_If)

Γ ` if t1 then t2 else t3 : T

Γ ` t1 : T1->T1
----------------- (T_Fix)
Γ ` fix t1 : T1

17

STLC with pairs and subtyping (excerpt)

Types

T ::= ...
| Top
| T -> T
| T * T

Subtyping relation

S <: U U <: T
---------------- (S_Trans)

S <: T

------ (S_Refl)
T <: T

-------- (S_Top)
S <: Top

S1 <: T1 S2 <: T2
-------------------- (S_Prod)

S1*S2 <: T1*T2

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1->S2 <: T1->T2

18

