CIS 500 - Software Foundations
 Midterm I

February 15, 2012

Answer key

1. (8 points) A 2-3 tree is a tree data structure in which (1) every node is labeled with a value (drawn from some set X), and (2) every node has zero, two, or three children. For example, here is a 2-3 tree of numbers:

(a) Complete the following inductive definition of 2-3 trees:
```
Inductive ttree {X : Type} : Type :=
```

Answer:

```
| t_leaf : X -> ttree
| t_two : X -> ttree -> ttree -> ttree
| t_three : X -> ttree -> ttree -> ttree -> ttree.
```

(b) Write down a term of type ttree nat representing the tree shown above.

Answer:

```
t_three 1 (t_two 2 (t_leaf 5) (t_leaf 6)) (t_leaf 3) (t_leaf 4).
```

2. (6 points) Briefly explain the behavior of the apply and apply... with... tactics in Coq.

Answer: Invoking the tactic apply H, where H is some hypothesis or previously proved theorem, matches the conclusion of H with the current goal and generates new subgoals for each premise of H . The apply...with...variant allows us to supply values for variables that appear in the premises of H but do not appear in its conclusion.
3. (6 points) For each of the following types, define a function (using Definition or Fixpoint) with the given type.
(a) nat -> list (list nat)

Answer:
Definition foo1 (n:nat): list (list nat) := [n::nil].
(b) forall X Y : Type, list X -> (X -> Y) -> list Y

Answer:
Fixpoint foo3 (X Y:Type) (l: list X) (f:X->Y) : list Y:= match 1 with
| [] \Rightarrow []
| x::t => (f x)::(foo3 X Y t f)
end.
4. (8 points) Write down the type of each of the following expressions. (For example, for the expression

```
fun (x y : nat) => beq_nat ( }\textrm{x}+\textrm{y}\mathrm{ ) 10
```

you'd write nat -> nat -> bool.) If an expression is not typeable, write "ill typed."
(a) fun (x : nat) $\Rightarrow \mathrm{x}$:: []

Answer:
(b) (2 :: 3 :: []) :: []

Answer:
list (list nat)
(c) fun (X : Type) (l : list X) =>
match 1 with
[] => []
| h : : t => h end
Answer: Ill typed
(d) fun (X Y Z : Type) (f : X->Y) (g : Y->Z) (a : X) => g (f a)
Answer:
forall X Y Z : Type, (X->Y) -> (Y->Z) -> X -> Z
5. (12 points) In this question, we'll consider two different implementations of the same transformation on lists - one as an inductively defined relation and one as a Fixpoint.
(a) The relation rdrop is a three-place relation that holds between a number n , a list xs , and a list $x s^{\prime}$ if and only if $x s^{\prime}$ is the list obtained by dropping the first n elements of xs. For example, the following are all provable instances of rdrop.

```
rdrop 3 [1,2,3,4,5] [4,5]
rdrop 2 [5,4,3,2,1] [3,2,1]
rdrop 5 [1,2,3] []
```

Complete the following definition of rdrop.

```
Inductive rdrop {X : Type} : nat -> list X -> list X -> Prop :=
```

Answer:

```
| d_zero : forall xs : list X, rdrop 0 xs xs
| d_drop : forall (n : nat) (x : X) (xs ys : list X),
    rdrop n xs ys ->
    rdrop (S n) (x :: xs) ys
| d_S_nil : forall n, rdrop (S n) nil nil.
```

(b) Similarly, fdrop is a function that takes a number n and a list xs and returns the list consisting of all except the first n the elements of xs. For example:

```
fdrop 3 [1,2,3,4,5] = [4,5].
fdrop 2 [5,4,3,2,1] = [3,2,1].
fdrop 5 [1,2,3] = []
```

Complete the following Fixpoint definition of fdrop.

```
    Fixpoint fdrop \{X : Type\} (n : nat) (xs : list X) : list X :=
    match (n, xs) with
    | 0, _ => xs
    | S n', \(x\) :: xs' \(=>\) fdrop \(n^{\prime}\) xs'
    | S n', [] => []
    end.
```

One can also write this using nested matches:

```
Fixpoint fdrop \{ X : Type\} (n : nat) (xs : list X) : list X :=
    match n with
    | 0 => xs
    | S n' =>
        match xs with
            | [] => []
            | x :: \(\mathrm{xs} \mathrm{s}^{\prime}=>\) fdrop \(\mathrm{n}^{\prime} \mathrm{xs}{ }^{\prime}\)
            end
    end.
```

6. (20 points) Recall the definition of beq_nat:
```
Fixpoint beq_nat (n m : nat) : bool :=
    match n with
        | 0 => match m with
            | 0 => true
            | S m' => false
            end
        | \(\mathrm{S} \mathrm{n}^{\prime}\) => match m with
            | 0 => false
                        | S m' => beq_nat n' m'
                        end
```

 end.
 Write out a careful informal proof of the following theorem, using the pedantic "template" style discussed in the notes. Make sure to state the induction hypothesis explicitly.

Theorem: For all natural numbers n and m , if beq_nat $\mathrm{n} \mathrm{m}=$ true then $\mathrm{n}=\mathrm{m}$.
Proof: We show, by induction on n, that, for all m, if true $=$ beq_nat $n m$, then $n=m$.

- Suppose $\mathrm{n}=0$. We must show, for all m , that if true $=$ beq_nat 0 m , then $0=\mathrm{m}$. We proceed by cases on m.
- If $\mathrm{m}=0$, we must show $0=0$, which holds by reflexivity.
- If m = S m', the hypothesis states that true $=$ beq_nat 0 (Sm '). But beq_nat 0 (Sm m) reduces to false, so this is absurd.
- Otherwise, $\mathrm{n}=\mathrm{S} \mathrm{n}$ ', and the induction hypothesis states that for all natural numbers m', if true = beq_nat $n^{\prime} m^{\prime}$, then $n^{\prime}=m^{\prime}$. We must show that if true = beq_nat ($\mathrm{S} \mathrm{n}^{\prime}$) m, then $S n^{\prime}=m$. We again proceed by cases on m.
- If $m=0$, the hypothesis states that true $=$ beq_nat ($\mathrm{S} \mathrm{n}^{\prime}$) 0 , which is absurd.
- Otherwise $m=S m^{\prime}$. Our hypothesis now states that true = beq_nat ($S n^{\prime}$) ($S \mathrm{~m}^{\prime}$), which simplifies to true $=$ beq_nat $n^{\prime} m^{\prime}$. We may therefore apply the induction hypothesis (instantiated at m^{\prime}) to conclude that $n^{\prime}=m^{\prime}$, which immediately implies that S n' $=S \mathrm{~m}^{\prime}$.

7. (10 points) Recall the inductive definitions of logical conjunction and the property beautiful:
```
Inductive and (P Q : Prop) : Prop :=
    conj : P -> Q -> (and P Q).
Notation "P /\ Q" := (and P Q) : type_scope.
Inductive beautiful : nat -> Prop :=
    b_0 : beautiful 0
| b_3 : beautiful 3
| b_5 : beautiful 5
| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).
```

Suppose we have already proved the following theorem:
Theorem b1000: beautiful 1000.
Give a proof object for the following proposition. Show all parts of the proof object explicitly (i.e., do not use _ anywhere).

```
Definition b_facts : forall x,
    beautiful x ->
    (beautiful (1000 + x) /\ beautiful 3) :=
```

Answer:

```
fun x H =>
    conj (beautiful (1000 + x)) (beautiful 3) (b_sum 1000 x b1000 H) b_3.
```

8. (2 points) How many different proof objects are there for the proposition in the previous question?

Answer: Infinitely many.
9. (8 points) Recall the definition of existential quantification:

```
Inductive ex (X:Type) (P : X->Prop) : Prop :=
    ex_intro : forall (witness:X), P witness -> ex X P.
```

(a) Write a proposition capturing the claim "there is some number whose successor is beautiful."

Answer: ex nat (fun n => beautiful (S n))
Or: exists n , beautiful (S n)
(b) Give a proof object for this proposition.

Answer: ex_intro nat (fun n => beautiful (S n)) 2 b_3

