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Midterm I
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Answer key

1. (8 points) A 2-3 tree is a tree data structure in which (1) every node is labeled with a value
(drawn from some set X), and (2) every node has zero, two, or three children. For example, here is
a 2-3 tree of numbers:

1

3 42

65

(a) Complete the following inductive definition of 2-3 trees:

Inductive ttree {X : Type} : Type :=

Answer:

| t_leaf : X -> ttree
| t_two : X -> ttree -> ttree -> ttree
| t_three : X -> ttree -> ttree -> ttree -> ttree.

(b) Write down a term of type ttree nat representing the tree shown above.

Answer:

t_three 1 (t_two 2 (t_leaf 5) (t_leaf 6)) (t_leaf 3) (t_leaf 4).



2. (6 points) Briefly explain the behavior of the apply and apply... with... tactics in Coq.

Answer: Invoking the tactic apply H, where H is some hypothesis or previously proved theorem,
matches the conclusion of H with the current goal and generates new subgoals for each premise of H.
The apply...with...variant allows us to supply values for variables that appear in the premises
of H but do not appear in its conclusion.

3. (6 points) For each of the following types, define a function (using Definition or Fixpoint)
with the given type.

(a) nat -> list (list nat)

Answer:
Definition foo1 (n:nat): list (list nat) := [n::nil].

(b) forall X Y : Type, list X -> (X -> Y) -> list Y

Answer:
Fixpoint foo3 (X Y:Type) (l: list X) (f:X->Y) : list Y:=
match l with
| [] => []
| x::t => (f x)::(foo3 X Y t f)
end.

4. (8 points) Write down the type of each of the following expressions. (For example, for the
expression

fun (x y : nat) => beq_nat (x+y) 10

you’d write nat -> nat -> bool.) If an expression is not typeable, write “ill typed.”

(a) fun (x : nat) => x :: []

Answer:
nat -> list nat

(b) (2 :: 3 :: []) :: []

Answer:
list (list nat)

(c) fun (X : Type) (l : list X) =>
match l with
[] => []

| h :: t => h
end

Answer: Ill typed

(d) fun (X Y Z : Type) (f : X->Y) (g : Y->Z) (a : X) =>
g (f a)

Answer:
forall X Y Z : Type, (X->Y) -> (Y->Z) -> X -> Z

1



5. (12 points) In this question, we’ll consider two different implementations of the same transfor-
mation on lists — one as an inductively defined relation and one as a Fixpoint.

(a) The relation rdrop is a three-place relation that holds between a number n, a list xs, and
a list xs’ if and only if xs’ is the list obtained by dropping the first n elements of xs. For
example, the following are all provable instances of rdrop.

rdrop 3 [1,2,3,4,5] [4,5]
rdrop 2 [5,4,3,2,1] [3,2,1]
rdrop 5 [1,2,3] []

Complete the following definition of rdrop.

Inductive rdrop {X : Type} : nat -> list X -> list X -> Prop :=

Answer:

| d_zero : forall xs : list X, rdrop 0 xs xs
| d_drop : forall (n : nat) (x : X) (xs ys : list X),

rdrop n xs ys ->
rdrop (S n) (x :: xs) ys

| d_S_nil : forall n, rdrop (S n) nil nil.

(b) Similarly, fdrop is a function that takes a number n and a list xs and returns the list consisting
of all except the first n the elements of xs. For example:

fdrop 3 [1,2,3,4,5] = [4,5].
fdrop 2 [5,4,3,2,1] = [3,2,1].
fdrop 5 [1,2,3] = []

Complete the following Fixpoint definition of fdrop.

Fixpoint fdrop {X : Type} (n : nat) (xs : list X) : list X :=
Answer:

match (n, xs) with
| 0, _ => xs
| S n’, x :: xs’ => fdrop n’ xs’
| S n’, [] => []
end.

One can also write this using nested matches:

Fixpoint fdrop {X : Type} (n : nat) (xs : list X) : list X :=
match n with
| 0 => xs
| S n’ =>
match xs with
| [] => []
| x :: xs’ => fdrop n’ xs’
end

end.
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6. (20 points) Recall the definition of beq_nat:

Fixpoint beq_nat (n m : nat) : bool :=
match n with
| O => match m with

| O => true
| S m’ => false
end

| S n’ => match m with
| O => false
| S m’ => beq_nat n’ m’
end

end.

Write out a careful informal proof of the following theorem, using the pedantic “template” style
discussed in the notes. Make sure to state the induction hypothesis explicitly.

Theorem: For all natural numbers n and m, if beq_nat n m = true then n = m.

Proof: We show, by induction on n, that, for all m, if true = beq_nat n m, then n = m.

• Suppose n = 0. We must show, for all m, that if true = beq_nat 0 m, then 0 = m. We
proceed by cases on m.

– If m = 0, we must show 0 = 0, which holds by reflexivity.

– If m = S m’, the hypothesis states that true = beq_nat 0 (S m’). But beq_nat 0 (S m’)
reduces to false, so this is absurd.

• Otherwise, n = S n’, and the induction hypothesis states that for all natural numbers m’, if
true = beq_nat n’ m’, then n’ = m’. We must show that if true = beq_nat (S n’) m,
then S n’ = m. We again proceed by cases on m.

– If m = 0, the hypothesis states that true = beq_nat (S n’) 0, which is absurd.

– Otherwise m = S m’. Our hypothesis now states that true = beq_nat (S n’) (S m’),
which simplifies to true = beq_nat n’ m’. We may therefore apply the induction hy-
pothesis (instantiated at m’) to conclude that n’ = m’, which immediately implies that
S n’ = S m’.
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7. (10 points) Recall the inductive definitions of logical conjunction and the property beautiful:

Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive beautiful : nat -> Prop :=
b_0 : beautiful 0

| b_3 : beautiful 3
| b_5 : beautiful 5
| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).

Suppose we have already proved the following theorem:

Theorem b1000: beautiful 1000.

Give a proof object for the following proposition. Show all parts of the proof object explicitly (i.e.,
do not use _ anywhere).

Definition b_facts : forall x,
beautiful x ->
(beautiful (1000 + x) /\ beautiful 3) :=

Answer:

fun x H =>
conj (beautiful (1000 + x)) (beautiful 3) (b_sum 1000 x b1000 H) b_3.

8. (2 points) How many different proof objects are there for the proposition in the previous
question?

Answer: Infinitely many.

9. (8 points) Recall the definition of existential quantification:

Inductive ex (X:Type) (P : X->Prop) : Prop :=
ex_intro : forall (witness:X), P witness -> ex X P.

(a) Write a proposition capturing the claim “there is some number whose successor is beautiful.”

Answer: ex nat (fun n => beautiful (S n))

Or: exists n, beautiful (S n)

(b) Give a proof object for this proposition.

Answer: ex_intro nat (fun n => beautiful (S n)) 2 b_3
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