CIS 500 — Software Foundations

Midterm 1

February 15, 2012

Name:

Pennkey:

Scores:

O |0 | N[O | T | k=W | N |-

Total (80 max)

1. (8 points) A 2-3 tree is a tree data structure in which (1) every node is labeled with a value
(drawn from some set X), and (2) every node has zero, two, or three children. For example, here is

a 2-3 tree of numbers:

(a) Complete the following inductive definition of 2-3 trees:

Inductive ttree {X : Type} : Type :=

(b) Write down a term of type ttree nat representing the tree shown above.

2. (6 points) Briefly explain the behavior of the apply and apply... with... tactics in Coq.

3. (6 points) For each of the following types, define a function (using Definition or Fixpoint)
with the given type.

(a) nat -> list (list nat)

(b) forall X Y : Type, list X -> (X -> Y) -> list Y

4. (8 points) Write down the type of each of the following expressions. (For example, for the
expression

fun (x y : nat) => beq_nat (x+y) 10

you’d write nat -> nat -> bool.) If an expression is not typeable, write “ill typed.”

(a) fun (x : nat) =>x :: []

(c) fun (X : Type) (1 : list X) =>
match 1 with
0= 1l
| h :: t =>h
end

(d) fun (X Y Z : Type) (f : X->Y) (g : Y->Z) (a : X) =>
g (f a)

5. (12 points) In this question, we’ll consider two different implementations of the same transfor-
mation on lists — one as an inductively defined relation and one as a Fixpoint.

(a) The relation rdrop is a three-place relation that holds between a number n, a list xs, and
a list xs’ if and only if xs’ is the list obtained by dropping the first n elements of xs. For
example, the following are all provable instances of rdrop.

rdrop 3 [1,2,3,4,5] [4,5]
rdrop 2 [5,4,3,2,1] [3,2,1]
rdrop 5 [1,2,3] []

Complete the following definition of rdrop.

Inductive rdrop {X : Type} : nat -> list X -> list X -> Prop :=

(b) Similarly, fdrop is a function that takes a number n and a list xs and returns the list consisting

of all except the first n the elements of xs. For example:

fdrop 3 [1,2,3,4,5]
fdrop 2 [5,4,3,2,1]
fdrop 5 [1,2,3] = []

[(4,5].
[3,2,1].

Complete the following Fixpoint definition of fdrop.

Fixpoint fdrop {X : Type} (n : nat) (xs

: list X) : list X :=

6. (20 points) Recall the definition of beq_nat:
Fixpoint beq_nat (n m : nat) : bool :=
match n with
| 0 => match m with
| 0 => true
| S m’> => false

end
| S n’ => match m with
| 0 => false
| S m’> => beq_nat n’ m’
end

end.
Write out a careful informal proof of the following theorem, using the pedantic “template” style
discussed in the notes. Make sure to state the induction hypothesis explicitly.

Theorem: For all natural numbers n and m, if beq_nat n m = true thenn = m.

Proof:

7. (10 points) Recall the inductive definitions of logical conjunction and the property beautiful

Inductive and (P Q : Prop) : Prop :=
conj : P ->Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive beautiful : nat -> Prop :=

b_0 : beautiful O
| b_3 : beautiful 3
| b_5 : beautiful 5

| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).
Suppose we have already proved the following theorem:

Theorem b1000: beautiful 1000.

Give a proof object for the following proposition. Show all parts of the proof object explicitly (i.e.,
do not use _ anywhere).

Definition b_facts : forall x,
beautiful x ->
(beautiful (1000 + x) /\ beautiful 3) :=

8. (2 points) How many different proof objects are there for the proposition in the previous
question?

9. (8 points) Recall the definition of existential quantification:

Inductive ex (X:Type) (P : X->Prop) : Prop :=
ex_intro : forall (witness:X), P witness -> ex X P.

(a) Write a proposition capturing the claim “there is some number whose successor is beautiful.”

(b) Give a proof object for this proposition.

