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1. (12 points) Recall the definition of the fold function on lists (given in the appendix, page 1).
Use it to define a function sum_list_list that, given a list (list nat), returns the sum of all
the nats in it. E.g.

sum_list_list [[1,3],[5,6]] = 15

(Note that the first line we’ve given you starts with Definition, not Fixpoint: your solution
should be non-recursive.)

Definition sum_list_list (l : list (list nat)) : nat :=

1



2. (12 points) Complete the definition at the bottom of the page of an inductive proposition count

that counts the number of elements of a list satisfying some predicate P. For example, if we define

Definition iszero (n : nat) : Prop :=

n = 0.

then the propositions

count iszero [] 0

count iszero [1,2,3] 0

count iszero [0,1,2,3] 1

count iszero [1,0,0,2,3,0] 3

should all be provable, whereas the propositions

count iszero [1,2,3] 3

count iszero [0,0] 4

count iszero [] 1

should not be provable.

Inductive count {X : Type} (P : X -> Prop) : list X -> nat -> Prop :=
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3. (10 points) For each of the types below, write a Coq expression that has that type. (For
example, if the type given were nat->nat, you might write fun x:nat, x+5.) The definitions of
/\ and \/ are given in the appendix (page 2) for reference.

(a) forall X Y, (X -> Y) -> X -> list Y

(b) forall (X : Type), (X -> Prop) -> Prop

(c) forall (X Y : Prop), X -> Y -> (X \/ Y) /\ Y

(d) forall (X Y W Z : Prop), (X /\ Y) \/ (W /\ Z) -> (X \/ Z)

3



4. (5 points) The propositions below concern basic properties of the Imp language. For each
proposition, indicate whether it is true or false by circling either T or F.

(a) The cequiv relation is transitive.

T F

(b) A command that doesn’t terminate on any input is equivalent to every other program.

T F

(c) If cequiv c1 c2, then cequiv (c1;c2) (c2;c1).

T F

(d) If cequiv c1 c2, then cequiv (c1;c) (c;c2) for any c.

T F

(e) If cequiv c1 c2 and {{P }} c1 {{Q }}, then {{P }} c2 {{Q }}.

T F
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5. (12 points) The following Imp program sets R to the sum of the initial values of X and Y modulo
the initial value of Z:

R ::= X + Y;

WHILE Z <= R DO

R ::= R - Z

END

Your task is to fill in assertions to make this a well-decorated program (see page 3 of the appendix),
relative to an appropriate and post-condition. Please fill in annotations in the spaces provided
below.

{{ True }} ->>

{{ }}

R ::= X + Y;

{{ }}

WHILE Z <= R DO

{{ }} ->>

{{ }}

R ::= R - Z

{{ }}

END

{{ }} ->>

{{ R = (X + Y) mod Z }}

Finally, please mark (by circling the associated arrow ->> and writing either 1 or 2 or both, as
appropriate) any places where the following facts about modular arithmetic are needed to validate
the correctness of the decorations:

(1) a mod z = (a + z) mod z

(2) a < z -> (a mod z) = a
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6. (10 points) A triangular number is one that can be expressed as a sum of the form

1 + 2 + 3 + ...+ n

for some n. In Coq notation:

Fixpoint tri (n : nat) : nat :=

match n with

0 => 0

| S n’ => n + (tri n’)

end.

Definition triangular (t : nat) : Prop :=

exists n, t = tri n.

The following Imp program will terminate only when the initial value of the variable T is a
triangular number.

{{ True }}

X ::= 0;

A ::= 0;

WHILE A <> T DO

X ::= X + 1;

A ::= A + X;

{{ I }}

END

{{ triangular T }}

In the space below, write a suitable invariant for this loop — i.e., an assertion I such that, if we
add I as the annotation at the end of the loop as shown, we can fill in annotations on the rest of
the program to make it well decorated. (The spaces for these additional annotations are not shown,
and you do not need to provide them.)

I =
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7. (10 points) Suppose that we extend the STLC with a new constant tzap...

Inductive tm : Type :=

...

| tzap : tm.

... and add a new rule for the evaluation relation.

Inductive step : tm -> tm -> Prop :=

...

| ST_Zap : forall t, t ==> tzap.

Do the properties below hold of this extension? Write “yes” if the property holds, or give a
counterexample if it doesn’t.

(a) Progress:

(b) Preservation:

(c) step is deterministic:
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8. (15 points) Suppose L is some variant of STLC with the same syntax but in which the typing
and single-step reduction rules have been changed in some way (by adding, removing, or changing
rules). Consider the following schematic statement:

“If the (A) theorem (B) for L, then changing L’s (C) relation by (D) a rule might cause
it to (E).”

If we substitute “preservation” for (A), “holds” for (B), “typing” for (C), “adding” for (D), and
“fail” for (E), we obtain the statement “If the preservation theorem holds for L, then changing L’s
typing relation by adding a rule might cause it to fail,” which happens to be true: adding a rule to
the typing relation of a language like the STLC can sometimes destroy the preservation property.

Fill in the last column of the following table to indicate whether the statement obtained by
similarly substituting the values in columns (A) to (E) is true or false. (We’ve done the first one
for you.)

(A) (B) (C) (D) (E) T/F

preservation holds typing adding fail T

preservation holds single-step reduction removing fail

preservation holds typing removing fail

preservation holds single-step reduction adding fail

progress holds typing removing fail

progress holds single-step reduction removing fail

progress holds typing adding fail

progress holds single-step reduction adding fail

preservation fails typing removing hold

preservation fails single-step reduction removing hold

preservation fails typing adding hold

preservation fails single-step reduction adding hold

progress fails typing removing hold

progress fails single-step reduction removing hold

progress fails typing adding hold

progress fails single-step reduction adding hold
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9. (9 points) Name and briefly discuss two advantages of the small-step style over the big-step
style of operational semantics.
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10. (10 points) Consider the following propositions about typing in STLC. For each one, either give
values for the existentially quantified variables to make the term typeable, or write “not typeable”
and briefly explain why not.

(a) There exist types T and T1 such that

empty |- (λx:T. if x then true else x) ∈ T1

T =

T1 =

(b) For some types T2 and T1,

y:T2 |- (λx:T1. x (y (y x) y)) ∈ Bool

T2 =

(c) For all types T, there exist types T1 and T2 such that

y:T2, x:T1 |- (y (x true) x) ∈ T

T1 =

T2 =

(d) For all types T2 and T1, there exists a type T such that

y:T2 |- (λx:T1. if y x then true else x) ∈ T

T =

(e) There exist types T1 and T2 such that

empty |- (λy:T2. λx:T1. if x then y (y (y x)) else x) ∈ Bool

T1 =

T2 =

10



11. (10 points) The Preservation theorem is sometimes called “subject reduction” because, if we
think of the term t as the subject of the sentence “t has type T in context Γ,” then Preservation
amounts to saying that the truth of this sentence is preserved when we reduce the subject.

Conversely, we might wonder about the following property:

Theorem subject_expansion : forall (t t’ : tm) (T : ty),

empty |- t’ ∈ T ->

t ==> t’ ->

empty |- t ∈ T

Does this property hold in STLC? If so, briefly explain why; otherwise, provide a counterexample.
For reference, the original definition of preservation is given in the appendix.
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12. (5 points) The STLC with records and subtyping is summarized in the appendix for reference
(page 10). Indicate whether each of the following claims is true or false for this language.

(a) If T <: S, then (T -> U) <: (S -> U).

T F

(b) The subtype relation contains an infinite descending chain — that is, there is an infinite
sequence of types T1, T2, T3, ... such that, for each i, we have Ti+1<:Ti but not Ti<:Ti+1.

T F

(c) There is a record type T that is a supertype of every other record type (that is, S <: T for
every record type S).

T F

(d) There is a type T that is a subtype of every other type (that is, T <: S for every type S).

T F

(e) There is a record type T that is a subtype of every other record type (that is, T <: S for
every record type S).

T F

12



For Reference...

Some functions on lists

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : list Y :=

match l with

| [] => []

| h :: t => (f h) :: (map f t)

end.

Fixpoint fold {X Y:Type} (f:X->Y->Y) (y:Y) (l:list X) : Y :=

match l with

| [] => y

| h :: t => f h (fold f y t)

end.

1



Definitions of logical connectives in Coq

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P /\ Q" := (and P Q) : type_scope.

Notation "P \/ Q" := (or P Q) : type_scope.
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Formal definitions for Imp

Syntax

Inductive aexp : Type :=

| ANum : nat -> aexp

| AId : id -> aexp

| APlus : aexp -> aexp -> aexp

| AMinus : aexp -> aexp -> aexp

| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "X ’::=’ a" :=

(CAss X a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).
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Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).
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Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)

(at level 90, c at next level)

: hoare_spec_scope.

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P _ Q" := (assert_implies P Q) (at level 80).

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

Decorated programs

A decorated program consists of the program text interleaved with assertions. To check that a
decorated program represents a valid proof, we check that each individual command is locally
consistent with its accompanying assertions in the following sense:

• SKIP is locally consistent if its precondition and postcondition are the same:
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{{ P }}

SKIP

{{ P }}

• The sequential composition of commands c1 and c2 is locally consistent (with respect to
assertions P and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally
consistent (with respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

• An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P where a is substituted for X }}

X ::= a

{{ P }}

• A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its “then” and “else” branches are exactly P ∧ b and P ∧ ∼b and if its “then”
branch is locally consistent (with respect to P ∧ b and Q) and its “else” branch is locally
consistent (with respect to P ∧ ∼b and Q):

{{ P }}

IFB b THEN

{{ P ∧ b }}

c1

{{ Q }}

ELSE

{{ P ∧ ∼b }}

c2

{{ Q }}

FI

{{ Q }}

• A while loop is locally consistent if its postcondition is P ∧ ∼b (where P is its precondition)
and if the pre- and postconditions of its body are exactly P ∧ b and P :

{{ P }}

WHILE b DO

{{ P ∧ b }}

c1

{{ P }}

END

{{ P ∧ ∼b }}
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• A pair of assertions separated by => is locally consistent if the first implies the second (in all
states):

{{ P }} ->>

{{ Q }}
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STLC with booleans

Syntax

T ::= Bool t ::= x v ::= true

| T -> T | t t | false

| \x:T. t | \x:T. t

| true

| false

| if t then t else t

Small-step operational semantics

value v2

---------------------------- (ST_AppAbs)

(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’

---------------- (ST_App1)

t1 t2 ==> t1’ t2

value v1

t2 ==> t2’

---------------- (ST_App2)

v1 t2 ==> v1 t2’

-------------------------------- (ST_IfTrue)

(if true then t1 else t2) ==> t1

--------------------------------- (ST_IfFalse)

(if false then t1 else t2) ==> t2

t1 ==> t1’

---------------------------------------------------- (ST_If)

(if t1 then t2 else t3) ==> (if t1’ then t2 else t3)
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Typing

Γ x = T

----------- (T_Var)

Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12

--------------------------- (T_Abs)

Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12

Γ ` t2 ∈ T11

------------------- (T_App)

Γ ` t1 t2 ∈ T12

----------------- (T_True)

Γ ` true ∈ Bool

------------------ (T_False)

Γ ` false ∈ Bool

Γ ` t1 ∈ Bool Γ ` t2 ∈ T Γ ` t3 ∈ T

------------------------------------------ (T_If)

Γ ` if t1 then t2 else t3 ∈ T

Properties of STLC

Theorem preservation :

forall t t’ T,

empty |- t ∈ T ->

t ==> t’ ->

empty |- t’ ∈ T.

Theorem progress :

forall t T,

empty |- t ∈ T ->

value t \/ exists t’, t ==> t’.
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STLC with booleans, records and subtyping

Syntax

T ::= ... t ::= ... v ::= ...

| {i1:T1, ..., in:Tn} | {i1=t1, ..., in=tn} | {i1=v1, ..., in=vn}

| Top | t.i

Small-step operational semantics

...

ti ==> ti’

----------------------------------------- (ST_Rcd)

{i1=v1, ..., im=vm, in=ti, ...}

==> {i1=v1, ..., im=vm, in=ti’, ...}

t1 ==> t1’

---------------- (ST_Proj1)

t1.i ==> t1’.i

-------------------------- (ST_ProjRcd)

{..., i=vi, ...}.i => vi

Typing

...

Γ ` t1 ∈ T1 ... Γ ` tn ∈ Tn

------------------------------------------------ (T_Rcd)

Γ ` {i1=t1,...,in=tn} ∈ {i1:T1,...,in:Tn}

Γ ` t ∈ {...,i:T,...}

------------------------------------------------ (T_proj)

Γ ` t.i ∈ T

Γ ` t ∈ S S <: T

--------------------------------------- (T_Sub)

Γ ` t ∈ T
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Subtyping

S <: U U <: T

---------------- (S_Trans)

S <: T

------ (S_Refl)

T <: T

-------- (S_Top)

S <: Top

T1 <: S1 S2 <: T2

-------------------- (S_Arrow)

S1->S2 <: T1->T2

n > m

--------------------------------- (S_RcdWidth)

{i1:T1...in:Tn} <: {i1:T1...im:Tm}

S1 <: T1 ... Sn <: Tn

---------------------------------- (S_RcdDepth)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

{i1:S1...in:Sn} is a permutation of {i1:T1...in:Tn}

--------------------------------------------------- (S_RcdPerm)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

11


