
CIS 500 — Software Foundations

Midterm I

(Standard and advanced versions together)

February 13, 2013

Answer key

1. (12 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it
does not have one.

(a) fun n:nat => [n]::nil

Answer: nat -> list (list nat)

(b) forall X (l1 l2 : list X), l1 :: l2 = l2 :: l1

Answer: ill-typed

(c) forall X, X -> list X -> list X

Answer: Type

(d) and False

Answer: Prop -> Prop

(e) fun n1 => if beq_nat n1 0 then ble_nat 5 else beq_nat n1

Answer: nat -> nat -> bool

(f) fun n : nat => forall m:nat, ble_nat m n = true

Answer: nat -> Prop

2. (12 points) For each of the types below, write a Coq expression that has that type.

(a) nat -> bool -> nat

Possible answers:
fun (n : nat) (b : bool) => n,
fun (n : nat) (b : bool) => if b then n else n + 1

...

(b) forall X, X -> list X

Possible answers:
fun X (x : X) => [x]

fun X (x : X) => nil



(c) forall X Y : Type, X -> (X -> Y) -> Y

Possible answers:
fun X Y => fun (x : X) => fun (f : X -> Y) => f x

(d) Prop

Possible answers:
True

False

forall n:nat, n = n

...

(e) forall X:Prop, X \/ X -> X

Answer:

fun X (H : X \/ X) =>

match H with

| or_introl HX => HX

| or_intror HX => HX

end.

(f) forall X:Prop, X /\ ~ X -> False

Answer:

fun X (H : X /\ ~ X) =>

match H with

| conj H1 H2 => H2 H1

end.

3. (10 points) Suppose that we wanted to prove the following theorem:

Theorem beq_nat_true : forall m n : nat, beq_nat m n = true -> m = n.

(The definition of beq_nat is given in the appendix, for easy reference.)

(a) What induction hypothesis will be generated by induction for the second subgoal (the in-
duction step) if we start this way (doing intros on both m and n)?

Proof. intros m n. induction m as [|m’].

Answer: beq_nat m’ n = true -> m’ = n

(b) What induction hypothesis will be generated by induction for the second subgoal (doing
intros on just m)?

Proof. intros m. induction m as [|m’].
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Answer: forall n, beq_nat m’ n = true -> m’ = n

(c) Which of these two strategies is more likely to succeed? Why? Answer: The second one
is the correct one. If we start with tactics in the first item, on the case where m = S m’,
we have the hypothesis beq_nat (S m’) n = true, which doesn’t help us with the provided
induction hypothesis.

4. [Standard] (8 points) Briefly explain the difference between the apply and rewrite tactics.
(3-4 sentences at the most.)

Grading scheme:

• Important differences: (3 each)

– Apply doesn’t require an equality/equivalence, rewrite does

– Apply discharges the current goal (rewrite only substitutes only part of the current goal)

• Smaller differences: (2 each)

– Rewrite is more syntactic (apply simpl a bit first)

• Minor: (no points, unless very small grade) - 1 each

– both can generate subgoals

– applied to hypothesis or separate lemma

– rewrite can be applied in both sense

5. [Standard] (6 points) For each of the given theorems, which set of tactics is needed to prove
it? (If more than one of the sets of tactics will work, choose the smallest set.)

(a) forall n m : nat, beq_nat m n = true -> beq_nat (S m) (S n) = true

i. intros, simpl, rewrite, reflexivity, and induction

ii. intros, simpl, rewrite, and reflexivity

iii. intros, rewrite, and reflexivity

iv. intros and reflexivity

Answer: i

(b) forall (B : Prop), exists (A : Prop), A -> B

i. intros, exists, and rewrite

ii. intros, exists, and apply

iii. intros and exists

iv. intros and rewrite

Answer: ii
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(c) forall n, n + 0 = 0 -> n = 0

i. intros, rewrite, induction, and inversion

ii. intros, rewrite, and reflexivity

iii. intros, destruct, and reflexivity

iv. intros, destruct, inversion and reflexivity

Answer: iv

6. [Standard] (10 points) A “fold function” captures a very common computation pattern:
iterating over a data structure while accumulating a result. For instance, here is how you can use
the fold function on lists (which we called simply fold in the notes) to sum all the elements of a
list:

fold plus 0 [1,2,3,4]

When evaluated, this expression simplifies to 10.
We can also write fold functions for other kinds of data structures. For example, consider the

following definition of binary trees:

Inductive tree (X : Type) :=

| leaf : tree X

| node : X -> tree X -> tree X -> tree X.

In this problem, we will write a fold_tree function to perform the same pattern of iteration
as in the list case. The type of fold_tree will be:

fold_tree : forall X Y, (X -> Y -> Y -> Y) -> Y -> tree X -> Y

Here is an example application of fold_tree:

fold_tree (fun b n1 n2 => b + n1 + n2)

0

(node 4

(node 3 leaf leaf)

(node 1 leaf leaf))

When evaluated, this expression simplifies to 8.
Complete the definition of fold_tree below.

Fixpoint fold_tree {X Y} (f : X -> Y -> Y -> Y)

(y : Y) (t : tree X) : Y :=

Answer:

match t with

| leaf => y

| node x lt rt => f x (fold_tree f y lt) (fold_tree f y rt)

end.
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Grading scheme:
Only base case: 2pt
Implicit argument mistakes -1pt
Base case and kind of recursive calls: 4pt
wrong base case -4pt
only top level pattern match 1pt

7. [Advanced] (12 points) Write a careful informal proof of the following theorem. Make sure to
state the induction hypothesis explicitly in the inductive step.

Theorem: beq_nat m n = beq_nat n m, for all natural numbers m and n.
Answer: We show, by induction on n, that beq_nat m n = beq_nat n m, for all natural numbers
m. There are two cases to consider:

• n = 0: If m = 0, then the theorem simplifies to true = true by the definition of beq_nat.
Otherwise, m = S m’ for some m’, and the goal simplifies to false = false by the definition
of beq_nat.

• n = S n’, with beq_nat m n’ = beq_nat n’ m for all m. We must show that

beq_nat m (S n’) = beq_nat (S n’) m

for all m.

If m = 0, then the goal simplifies to false = false by the definition of beq_nat.

Otherwise, m = S m’ for some m’. In this case the goal simplifies to

beq_nat m’ n’ = beq_nat n’ m’

by the definition of beq_nat, which is an instance of the IH.

8. (10 points) In the first and second homework assignments, we worked with binary numbers
encoded as a Coq inductive type. Here is one version of that encoding:

Inductive bin : Type :=

| BZ : bin

| T2 : bin -> bin

| T2P1 : bin -> bin.

For example, T2P1 (T2P1 BZ)) represents the number 3, while T2 (T2 (T2P1 BZ)) represents 4.

(a) Recall that the incr function takes a binary number and returns its successor. For example,
incr (T2P1 (T2P1 BZ) = T2 (T2 (T2P1 BZ)).

Complete the following definition of incr:

Fixpoint incr (m:bin) : bin :=

Answer:
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match m with

| BZ => T2P1 BZ

| T2 m’ => T2P1 m’

| T2P1 m’ => T2 (incr m’)

end.

(b) The bin_to_nat function takes a binary number and returns its nat (unary) representation.
For example, bin_to_nat (T2P1 (T2P1 BZ)) = S (S (S O)).

Complete the following definition of bin_to_nat:

Fixpoint bin_to_nat (m:bin) : nat :=

Answer:

match m with

| BZ => O

| T2 m’ => 2 * bin_to_nat m’

| T2P1 m’ => 1 + 2 * bin_to_nat m’

end.

9. (12 points) In this problem, your task is to find a short English summary of the meaning of a
proposition defined in Coq. For example, if we gave you this definition...

Inductive D : nat -> nat -> Prop :=

| D1 : forall n, D n 0

| D2 : forall n m, (D n m) -> (D n (n + m)).

... your summary could be “D m n holds when m divides n with no remainder.”

(a) Inductive R (X : Type) : X -> list X -> Prop :=

| R1 : forall x l, R x (x::l)

| R2 : forall x y l, (R x l) -> (R x (y::l)).

R X x l holds when x occurs in the list l

(b) Inductive R (X : Type) : list X -> list X -> Prop :=

| R1 : R [] []

| R2 : forall x l1 l2, (R l1 l2) -> (R l1 (x::l2))

| R3 : forall x l1 l2, (R l1 l2) -> (R (x::l1) (x::l2)).

R X l1 l2 holds when l1 is a subsequence of l2

(c) Inductive R (X : Type) : list X -> list X -> Prop :=

| R1 : R [] []

| R2 : forall x l1 l2 l3 l4,

(R (l1++l2) (l3++l4)) ->

(R (l1++[x]++l2) (l3++[x]++l4)).

R X l1 l2 holds when l1 is a permutation of l2
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(d) Definition R (m : nat) :=

m > 1 /\ (forall n, 1 < n -> n < m -> ~(D n m)).

(where D is given at the top of the page).

R m holds when m is prime

10. [Advanced] (12 points) Regular expressions are a convenient way of describing sets of strings.
Here’s a definition of regular expressions (where the “characters” in the strings are numbers) as a
Coq data type.

Inductive regex : Type :=

| Literal : list nat -> regex

| Union : regex -> regex -> regex

| Concat : regex -> regex -> regex

| Star : regex -> regex.

Informally, a regular expression r matches a list of numbers s according to the following rules:

• Literal s only matches s itself.

• Union r1 r2 matches strings that are matched by either r1 or r2.

• Concat r1 r2 matches by strings of the form s1 ++ s2, such that s1 is matched by r1 and
s2 is matched by r2.

• Star r matches a string s if s = [] or if s = s1 ++ s2 ++ ... ++ sn and each substring
is matched by r.

Your task (on the next page) will be to formalize the above specification by translating it into
an inductive relation matches of type regex -> list nat -> Prop. For instance, the following
propositions should be provable...

matches (Literal [1,2,3]) [1,2,3]

matches (Union (Literal []) (Literal [2,1])) []

matches (Concat (Literal [1,2,3]) (Literal [1])) [1,2,3,1]

matches (Star (Literal [1])) [1,1,1,1,1]

...whereas the following shouldn’t hold:

matches (Literal [1]) [1,2,3]

matches (Star (Literal [2])) [1]

matches (Concat (Literal [3]) (Literal [3])) [3,3,3]
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Complete the definition of matches below.

Inductive matches : list nat -> regex -> Prop :=

| MLiteral : forall s,

matches (Literal s) s

| MUnionL : forall s r1 r2,

matches r1 s -> matches (Union r1 r2) s

| MUnionR : forall s r1 r2,

matches r2 s -> matches (Union r1 r2) s

| MConcat : forall s1 r1 s2 r2,

matches r1 s1 -> matches r2 s2 -> matches (Concat r1 r2) (s1 ++ s2)

| MStarEmpty : forall r,

matches (Star r) []

| MStarApp : forall s1 s2 r,

matches r s1 -> matches (Star r) s2 -> matches (Star r) (s1 ++ s2).
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For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Inductive ex (X:Type) (P : X->Prop) : Prop :=

ex_intro : forall (witness:X), P witness -> ex X P.

Notation "’exists’ x , p" := (ex _ (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity)

: nat_scope.

8



Fixpoint beq_nat (n m : nat) : nat :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.
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