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1. (12 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it
does not have one.

(a) fun n:nat => [n]::nil

(b) forall X (l1 l2 : list X), l1 :: l2 = l2 :: l1

(c) forall X, X -> list X -> list X

(d) and False

(e) fun n1 => if beq_nat n1 0 then ble_nat 5 else beq_nat n1

(f) fun n : nat => forall m:nat, ble_nat m n = true
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2. (12 points) For each of the types below, write a Coq expression that has that type.

(a) nat -> bool -> nat

(b) forall X, X -> list X

(c) forall X Y : Type, X -> (X -> Y) -> Y

(d) Prop

(e) forall X:Prop, X \/ X -> X

(f) forall X:Prop, X /\ ~ X -> False

2



3. (10 points) Suppose that we wanted to prove the following theorem:

Theorem beq_nat_true : forall m n : nat, beq_nat m n = true -> m = n.

(The definition of beq_nat is given in the appendix, for easy reference.)

(a) What induction hypothesis will be generated by induction for the second subgoal (the in-
duction step) if we start this way (doing intros on both m and n)?

Proof. intros m n. induction m as [|m’].

(b) What induction hypothesis will be generated by induction for the second subgoal (doing
intros on just m)?

Proof. intros m. induction m as [|m’].

(c) Which of these two strategies is more likely to succeed? Why?
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4. (12 points) Write a careful informal proof of the following theorem. Make sure to state the
induction hypothesis explicitly in the inductive step.

Theorem: beq_nat m n = beq_nat n m, for all natural numbers m and n.
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5. (10 points) In the first and second homework assignments, we worked with binary numbers
encoded as a Coq inductive type. Here is one version of that encoding:

Inductive bin : Type :=

| BZ : bin

| T2 : bin -> bin

| T2P1 : bin -> bin.

For example, T2P1 (T2P1 BZ)) represents the number 3, while T2 (T2 (T2P1 BZ)) represents 4.

(a) Recall that the incr function takes a binary number and returns its successor. For example,
incr (T2P1 (T2P1 BZ) = T2 (T2 (T2P1 BZ)).

Complete the following definition of incr:

Fixpoint incr (m:bin) : bin :=

(b) The bin_to_nat function takes a binary number and returns its nat (unary) representation.
For example, bin_to_nat (T2P1 (T2P1 BZ)) = S (S (S O)).

Complete the following definition of bin_to_nat:

Fixpoint bin_to_nat (m:bin) : nat :=
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6. (12 points) In this problem, your task is to find a short English summary of the meaning of a
proposition defined in Coq. For example, if we gave you this definition...

Inductive D : nat -> nat -> Prop :=

| D1 : forall n, D n 0

| D2 : forall n m, (D n m) -> (D n (n + m)).

... your summary could be “D m n holds when m divides n with no remainder.”

(a) Inductive R (X : Type) : X -> list X -> Prop :=

| R1 : forall x l, R x (x::l)

| R2 : forall x y l, (R x l) -> (R x (y::l)).

R X x l holds when:

(b) Inductive R (X : Type) : list X -> list X -> Prop :=

| R1 : R [] []

| R2 : forall x l1 l2, (R l1 l2) -> (R l1 (x::l2))

| R3 : forall x l1 l2, (R l1 l2) -> (R (x::l1) (x::l2)).

R X l1 l2 holds when:

(c) Inductive R (X : Type) : list X -> list X -> Prop :=

| R1 : R [] []

| R2 : forall x l1 l2 l3 l4,

(R (l1++l2) (l3++l4)) ->

(R (l1++[x]++l2) (l3++[x]++l4)).

R X l1 l2 holds when:

(d) Definition R (m : nat) :=

m > 1 /\ (forall n, 1 < n -> n < m -> ~(D n m)).

(where D is given at the top of the page).

R m holds when:
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7. (12 points) Regular expressions are a convenient way of describing sets of strings. Here’s a
definition of regular expressions (where the “characters” in the strings are numbers) as a Coq data
type.

Inductive regex : Type :=

| Literal : list nat -> regex

| Union : regex -> regex -> regex

| Concat : regex -> regex -> regex

| Star : regex -> regex.

Informally, a regular expression r matches a list of numbers s according to the following rules:

• Literal s only matches s itself.

• Union r1 r2 matches strings that are matched by either r1 or r2.

• Concat r1 r2 matches by strings of the form s1 ++ s2, such that s1 is matched by r1 and
s2 is matched by r2.

• Star r matches a string s if s = [] or if s = s1 ++ s2 ++ ... ++ sn and each substring
is matched by r.

Your task (on the next page) will be to formalize the above specification by translating it into
an inductive relation matches of type regex -> list nat -> Prop. For instance, the following
propositions should be provable...

matches (Literal [1,2,3]) [1,2,3]

matches (Union (Literal []) (Literal [2,1])) []

matches (Concat (Literal [1,2,3]) (Literal [1])) [1,2,3,1]

matches (Star (Literal [1])) [1,1,1,1,1]

...whereas the following shouldn’t hold:

matches (Literal [1]) [1,2,3]

matches (Star (Literal [2])) [1]

matches (Concat (Literal [3]) (Literal [3])) [3,3,3]
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Complete the definition of matches below.

Inductive matches : list nat -> regex -> Prop :=

8



For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Inductive ex (X:Type) (P : X->Prop) : Prop :=

ex_intro : forall (witness:X), P witness -> ex X P.

Notation "’exists’ x , p" := (ex _ (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity)

: nat_scope.
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Fixpoint beq_nat (n m : nat) : nat :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.
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