
CIS 500 — Software Foundations

Final Exam

(Standard version)

December 13, 2013

Name:

Pennkey (e.g. bcpierce):

Scores:

1 12

2 16

3 16

4 16

5 12

6 20

7 10

8 8

Total: 110

1. (12 points) Multiple Choice — Coq Programming
Circle the correct answer. (Each question has one unique correct answer.)

(a) What is the type of the Coq term: (fun n:nat => n = 0)?

i. nat -> nat

ii. Prop

iii. nat -> Prop

iv. forall n:nat, n = 0

v. ill typed

(b) What is the type of the Coq term: (forall n:nat, n = 0)?

i. nat -> nat

ii. Prop

iii. nat -> Prop

iv. forall n:nat, n = 0

v. ill typed

(c) What is the type of the Coq term: (fun (P:nat -> Prop) (n:nat) (Q:P n) => Q)?

i. nat -> Prop -> nat -> Prop -> Prop

ii. forall (P : nat -> Prop), nat -> Prop

iii. (nat -> Prop) -> (n:nat -> P n) -> Q

iv. forall (P : nat -> Prop) (n : nat), P n -> P n

v. ill typed

(d) What is the type of the Coq term: ((fun P:Prop => P) (3 = 4))

i. Prop

ii. nat

iii. nat -> Prop

iv. Prop -> nat

v. ill typed

1

2. (16 points) Multiple Choice — Imp Equivalence
Circle all correct answers. There may be zero or more than one. For reference, the definition

of Imp, its evaluation semantics, and program equivalence (cequiv) start on page 14.

(a) Consider the Imp program:

IF X > 0 THEN

WHILE X > 0 DO SKIP END

ELSE

SKIP

FI

Which of the following are equivalent to it, according to cequiv?

i. WHILE X > 0 DO ii. SKIP iii. X ::= 0 iv. IF X > 1 THEN

SKIP WHILE X > 0 DO SKIP END

END ELSE

WHILE X > 0 DO SKIP END

FI

(b) Consider the Imp program:

X ::= 0;;

Y ::= X + 1;;

Which of the following are equivalent to it, according to cequiv?

i. Y ::= 1;; ii. Y ::= 0;; iii. Y ::= 1;; iv. Y ::= 2;;

X ::= 0;; X ::= Y + 1;; WHILE X <> 0 DO X ::= X - X;;

X ::= X - 1 Y ::= Y - 1;;

END

(c) Consider an arbitrary Imp command c. Which of the following are equivalent to c, according
to cequiv?

i. c ;; c ii. X := 1;; iii. IF X > 0 THEN iv. IF X < 0 THEN

WHILE X > 0 DO c SKIP

c ;; X ::= X - 1 ELSE SKIP FI ELSE c FI

DONE

(d) Which of the following propositions are provable?

i. forall c, (exists st:state, c / st || st) -> cequiv c SKIP

ii. forall c1 c2 st1 s3,

((c1 ;; c2) / st1 || st3) -> (exists st2:state, c1 / st1 || st2 /\ c2 / st2 || st3).

iii. forall c1 c2, (cequiv c1 c2) -> (cequiv (c1;;c2) (c2;;c1))

iv. forall c, (forall st, c / st || st) -> cequiv c SKIP.

2

3. (16 points) Hoare Logic
The following Imp program computes m * n, placing the answer into Z.

{{ True }}

X ::= 0 ;;

Z ::= 0 ;;

WHILE X <> n DO

Y ::= 0 ;;

WHILE Y <> m DO

Z ::= Z + 1 ;;

Y ::= Y + 1 ;;

END

X ::= X + 1 ;;

END

{{ Z = m * n }}

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal
notations for mathematical formulae and assertions, but please be completely precise and pedantic
in the way you apply the Hoare rules — i.e., write out assertions in exactly the form given by
the rules (rather than logically equivalent ones). The provided blanks have been constructed so
that, if you work backwards from the end of the program, you should only need to use the rule of
consequence in the places indicated with ->>.

The Hoare rules and the rules for well-formed decorated programs are provided on pages 16
and 17, for reference.

3

Mark the implication step(s) in your decoration (by circling the ->>) that rely on the following
fact. You may use other arithmetic facts silently.

• m * a + m = m * (a + 1)

{{ True }} ->>

{{ }}

X ::= 0;;

{{ }}

Z ::= 0;;

{{ }}

WHILE X <> n DO

{{ }} ->>

{{ }}

Y ::= 0;;

{{ }}

WHILE Y <> m DO

{{ }} ->>

{{ }}

Z ::= Z + 1;;

{{ }}

Y ::= Y + 1;;

{{ }}

END

{{ }} ->>

{{ }}

X ::= X + 1;;

{{ }}

END

{{ }} ->>

{{ Z = m * n }}

4

4. (16 points) Inductive Definitions and Scoping
Consider the following Coq definitions for a simple language of arithmetic expressions with

constants, variables, plus, and let.

Definition id := nat.

Inductive tm : Type :=

| tnum : nat -> tm (* Constants 0, 1, 2, ... *)

| tvar : id -> tm (* Variables X Y Z ... *)

| tplus : tm -> tm -> tm (* Plus: t1 + t2 *)

| tlet : id -> tm -> tm -> tm. (* Let: let X = t1 in t2 *)

The let construct follows the usual variable scoping rules. That is, in let X = t1 in t2, written
in Coq as (tlet X t1 t2), the variable X is bound in t2.

Recall that a variable X appears free in a term t if there is an occurrence of X that is not bound
by a corresponding let. Complete the following Coq definition of afi as an inductively defined
relation such that afi X t is provable if and only if X appears free in t.

Inductive afi : id -> tm -> Prop :=

5

5. (12 points) Multiplce Choice — Simply-typed Lambda Calculus
Mark all correct answers. There may be zero or more than one.
In this problem we consider a variant of the simply-typed lambda calculus with natural numbers,

the syntax, small-step semantics, and typing rules for which are given starting on page 19. Note:
for this problem we do not consider STLC with subtyping, fix, or other extensions.

This language is type safe, a fact that can be proved using the standard preservation, and
progress proofs, and evaluation is deterministic.

(a) Which of the following properties would still hold if we remove the predicate value v1 from
the ST_App2 rule?

i. step is deterministic

ii. Progress

iii. Preservation

(b) Which of the following properties would still hold if we add the following rule to the step

relation?

(0 0) ==> 0

i. step is deterministic

ii. Progress

iii. Preservation

(c) Which of the following properties would still hold if we replace the T_App rule with the
following variant?

Γ ` t1 ∈ Nat -> T12

Γ ` t2 ∈ Nat

Γ ` t1 t2 ∈ T12

i. step is deterministic

ii. Progress

iii. Preservation

(d) Which of the following properties would still hold if we added the following typing rule?

Γ ` t1 ∈ Nat

Γ ` t2 ∈ Nat

Γ ` t1 t2 ∈ Nat

i. step is deterministic

ii. Progress

iii. Preservation

6

6. (20 points) STLC with Natural Number Induction
In this problem we will develop a variant of the simply-typed lambda calculus with natural

numbers and an induction operator. The starting point is the plain simply typed lambda with a
base type of natural numbers and constructors for the constant zero 0 and successor S.

You can find the syntax, typing rules, and small-step evaluation rules for this part of the
language beginning on page 19. Note: for this problem we do not consider STLC with subtyping,
fix, or other extensions.

(a) Recall that we can draw typing derivations as “trees” where each node is a judgment of the
form Γ ` t ∈ T. The root of the tree (pictured at the bottom of the drawing) is the desired
conclusion, and each premise is a subtree that instantiates a typing rule. For example, the
following is a legal typing derivation:

---------------- T_Zero

x:Nat ` 0 ∈ Nat

------------------ T_Succ

x:Nat ` S 0 ∈ Nat

----------------------------- T_Abs

` \x:Nat.(S 0) ∈ Nat -> Nat

Complete the typing derivation given below. Label the inference rule used at each node of
the tree. Note that the type of the root judgment needs to be filled in.

-- (T_Abs)

x:Nat ` \y:(Nat -> Nat). S (y (S x)) ∈

7

(b) Rather than adding if0 and the general recursion operator fix, here we follow Coq and add
a built-in form of natural-number induction.

t ::= ...

| nat_ind t t t

The term nat_ind tz ts tn acts like a fold over the natural number datatype. The term
tz specifies what to do for the base (zero) case of the induction, and the term ts (successor)
shows how to compute the answer for S n given n itself and the inductive result for n. The
argument tn is the natural number over which induction is being done.

Once we have added nat_ind to the STLC, we can write many familiar programs using
natural numbers. For example, here is a function that adds two natural numbers, defined by
induction on n. The base case is just m and the inductive step computes the successor of the
recursive result:

(* Nat_plus *) \n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat.S y) n

The steps it takes when computing Nat_plus 2 1 look like this, where we have marked the
novel behavior of nat_ind with !!:

(\n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat.S y) n) (S S 0) (S 0)

==>

(\m:Nat. nat_ind m (\x:Nat.\y:Nat.S y) (S S 0)) (S 0)

==>

nat_ind (S 0) (\x:Nat.\y:Nat.S y) (S S 0)

==> !! inductive case

(\x:Nat.\y:Nat.S y) (S 0) (nat_ind (S 0) (\x:Nat.\y:Nat.S y) (S 0))

==> !! inductive case

(\x:Nat.\y:Nat.S y) (S 0) ((\x:Nat.\y:Nat.S y) 0 (nat_ind (S 0) (\x:Nat.\y:Nat.S y) 0))

==> !! base case

(\x:Nat.\y:Nat.S y) (S 0) ((\x:Nat.\y:Nat.S y) 0 (S 0))

==>

(\x:Nat.\y:Nat.S y) (S 0) ((\y:Nat.S y) (S 0))

==>

(\x:Nat.\y:Nat.S y) (S 0) (S (S 0))

==>

(\y:Nat.S y) (S (S 0))

==>

S (S (S 0))

In general, the small step semantics of nat_ind should work like:

nat_ind vz vs 3 ==>* vs 2 (vs 1 (vs 0 vz)

where we write 3 as a shorthand for S S S 0, etc.

8

Define the small-step operational semantics for nat_plus. There are three “structural” rules
that evaluate the arguments to nat_ind in order from left-to-right. The first such rule is:

tz ==> tz’

nat_ind tz ts tn ==> nat_ind tz’ ts tn

Write the other two structural rules below. Use the value predicate as appropriate.

After reducing all three arguments to values, the “interesting” rules of the small step semantics
do case analysis on the third argument, yielding the base case, or performing a recursive call
as appropriate. Complete these two rules for the small-step operational semantics of nat_ind.

value vz value vs

--

nat_ind vz vs 0 ==>

value vz value vs value vn

--

nat_ind vz vs (S vn) ==>

9

(c) It remains to give a typing rule for nat_ind. We know that the third argument to nat_ind

is supposed to be a Nat, so that part is easy. The result type of a nat_ind expression can be
any type T, since we could conceivably construct any value by induction on a natural number.
We have filled in those parts of the typing rule below.

Your job is to complete the typing rule. Consider that this rule should be sound (i.e. satisfy
preservation and progress) with respect to the operational semantics outlined above. For
example, the term Nat_plus defined in part (b) should be well-typed according to your rule.

Γ ` tz ∈

Γ ` ts ∈

Γ ` tn ∈ Nat

--

Γ ` nat_ind tz ts tn ∈ T

10

(d) Part (b) used nat_ind to define the Nat_plus function. Use Nat_plus and nat_ind to define
multiplication of two numbers. We have provided the type of Nat_mult to get you started:

(* Nat_mult : Nat -> Nat -> Nat *)

(e) A harder function to define using nat_ind is natural number equality, a function Nat_eq

of type Nat -> Nat -> Nat such that Nat_eq n m ==>* 0 if n and m are different natural
numbers and nat_eq n m ==>* 1 if they are the same.

We have started the definition. Fill in the two blanks to complete it.

(* Nat_eq : Nat -> Nat -> Nat *)

\n:Nat. nat_ind (___) (* base case *)

___ (* inductive case *)

n (* do induction on n *)

11

7. (10 points) Subtyping
The rules for STLC with pairs and subtyping are given on page 21 for your reference. The

subtyping relations among a collection of types can be visualized compactly in picture form: we
draw a graph so that S <: T iff we can get from S to T by following arrows in the graph (either
directly or indirectly). For example, a picture for the types Top*Top, A*Top, Top*(Top*Top), and
Top*(A*A) would look like this (it happens to form a tree, but that is not necessary in general):

Top*Top

A*Top Top*(Top*Top)

Top*(A*A)

Suppose we have defined types A and B so that A <: B. Draw a picture for the following six types.

Top -> (A * B)

Top -> (A * A)

(B * A) -> (B * A)

(A * B) -> (B * A)

(B * A) -> Top

Top

12

8. (8 points) True or False
For each question, indicate whether it is true or false. Very briefly justify your answer.

(a) In the STLC with subtyping (see the rules on page 21) there exists a type T such that
(\x:T. x x) is typeable.

(b) In the STLC with subtyping, there is at most one typing derivation for each term t.

(c) In the STLC with subtyping and records, the empty record type {} is a subtype of all other
records.

(d) In the STLC with subtyping and records, it is sound (i.e. both preservation and progress still
hold) to add the subtyping rule Top <: {}.

13

Formal definitions for Imp

Syntax

Inductive aexp : Type :=

| ANum : nat -> aexp

| AId : id -> aexp

| APlus : aexp -> aexp -> aexp

| AMinus : aexp -> aexp -> aexp

| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

14

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

15

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P _ P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare consequence post)

16

Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}

SKIP

{{ P }}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to assertions P

and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}

X ::= a

{{ P }}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its ”then” and ”else” branches are exactly P /\ b and P /\ ~b and if its ”then”
branch is locally consistent (with respect to P /\ b and Q) and its ”else” branch is locally
consistent (with respect to P /\ ~b and Q):

{{ P }}

IFB b THEN

{{ P /\ b }}

c1

{{ Q }}

ELSE

{{ P /\ ~b }}

c2

{{ Q }}

FI

{{ Q }}

17

(e) A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}

WHILE b DO

{{ P /\ b }}

c1

{{ P }}

END

{{ P /\ ~b }}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second (in
all states):

{{ P }} ->>

{{ P’ }}

18

STLC with Natural Numbers

Syntax

(* Types *) (* Terms *) (* Values *)

T ::= Nat t ::= x v ::= 0

| T -> T | t t | S v

| \x:T. t | \x:T. t

| 0

| S t

Small-step operational semantics

value v2

---------------------------- (ST_AppAbs)

(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’

---------------- (ST_App1)

t1 t2 ==> t1’ t2

value v1

t2 ==> t2’

---------------- (ST_App2)

v1 t2 ==> v1 t2’

t1 ==> t1’

---------------- (ST_Succ)

S t1 ==> S t1’

19

Typing

Γ x = T

----------- (T_Var)

Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12

--------------------------- (T_Abs)

Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12

Γ ` t2 ∈ T11

------------------- (T_App)

Γ ` t1 t2 ∈ T12

-------------- (T_Zero)

Γ ` 0 ∈ Nat

Γ ` t ∈ Nat

---------------- (T_Succ)

Γ ` S t ∈ Nat

20

STLC with pairs and subtyping (excerpt)

Types

T ::= ...

| Top

| T -> T

| T * T

Subtyping relation

S <: U U <: T

---------------- (S_Trans)

S <: T

------ (S_Refl)

T <: T

-------- (S_Top)

S <: Top

S1 <: T1 S2 <: T2

-------------------- (S_Prod)

S1*S2 <: T1*T2

T1 <: S1 S2 <: T2

-------------------- (S_Arrow)

S1->S2 <: T1->T2

21

