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1. (10 points) Circle True or False for each statement.

(a) All functions defined in Coq via Fixpoint must terminate on all inputs.

True False

(b) The proof of an implication P -> Q is a function that uses a proof of the proposition P to
produce a proof of the proposition Q.

True False

(c) The proposition true = false is provable in Coq.

True False

(d) Given a function f of type nat -> bool, it is possible to define a proposition that holds when
when f returns true for all natural numbers.

True False

(e) There are no empty types in Coq. In other words, for any type A, there is some Coq expression
that has type A.

True False

(f) If H : true = false is a current assumption, then the tactic inversion H will solve any
goal.

True False

(g) If H : S x = S (S y) is a current assumption, then the tactic inversion H will solve any
goal.

True False

(h) If H : x <> y is a current assumption, then the tactic inversion H will solve any goal.

True False

(i) If the goal is A /\ B, then the tactic split will produce two subgoals, one for A and one for
B.

True False

(j) If H : x1 :: y1 = x2 :: y2 is a current assumption, then we know that x1 is equal to x2.

True False
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2. (10 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it does
not have one. (The references section contains the definitions of some of the mentioned functions
and propositions.)

(a) beq_nat 3 4

(b) 3=4

(c) forall (X:Type), forall (x:X), x = x

(d) fun (X:Prop) => X -> X

(e) fun (x:nat) => x :: x
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3. (8 points) Recall the definition of flat_map from the homework (The ++ function is given in
the references):

Fixpoint flat_map {X Y:Type} (f:X -> list Y) (l:list X) : (list Y) :=

match l with

| [] => []

| h :: t => (f h) ++ (flat_map f t)

end.

This function applies f to each element in the list and appends the results together. For example:

Example test_flat_map1:

flat_map (fun (n:nat) => [n;n;n]) [1;5;4] = [1; 1; 1; 5; 5; 5; 4; 4; 4].

(a) Complete the definition of the list filter function using flat_map. (You will receive no
credit if your answer uses Fixpoint!)

Definition filter {X : Type} (test: X->bool) (l:list X) : (list X) :=

Your filter should satisfy the same tests as the filter we saw in class. For example:

Example test_filter1: filter evenb [1;2;3;4] = [2;4].

(b) Complete the definition of the list map using flat_map. (You will receive no credit if your
answer uses Fixpoint!)

Definition map {X Y:Type} (f : X -> Y) (l : list X) : list Y :=

Again, your map should satisfy the same tests as the map we saw in class. For example:

Example test_map1: map (plus 3) [2;0;2] = [5;3;5].
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4. (17 points) An alternate way to encode lists in Coq is the jlist type, shown below.

Inductive jlist (X:Type) : Type :=

| j_nil : jlist X

| j_one : X -> jlist X

| j_app : jlist X -> jlist X -> jlist X.

(* Make the type parameter implicit *)

Arguments j_nil {X}.

Arguments j_one {X} _.

Arguments j_app {X} _ _.

We can convert a jlist to a regular list with the following function:

Fixpoint to_list {X : Type} (jl : jlist X) : list X :=

match jl with

| j_nil => []

| j_one x => [x]

| j_app j1 j2 => to_list j1 ++ to_list j2

end.

(a) Note that there may be multiple jlists that represent the same list. Demonstrate
this fact by giving definitions of example1 and example2 such that the Lemma below
(distinct_jlists_to_same_list) is provable (there is no need to prove it).

Definition example1 : jlist nat :=

Definition example2 : jlist nat :=

Lemma distinct_jlists_to_same_list :

example1 <> example2 /\ (to_list example1) = (to_list example2).
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(b) It is also possible to define most list operations directly on the jlist representation. Complete
the following function for mapping over a jlist:

Fixpoint j_map {X Y :Type} (f : X -> Y) (x : jlist X) : jlist Y :=

(c) What is the type of the expression j_one ?

(d) What is the type of the expression j_map (fun (x:nat) => beq_nat x 0) ?
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(e) Your j_map function from part (b) should satisfy the following correctness lemma that states
that it agrees with the list map operation. (The list map function is shown in the refer-
ences.) The proof of this lemma for our definition of j_map is shown below. This proof uses
an auxiliary lemma (map_app), not shown.

Lemma j_map_correct : forall (X:Type) (Y:Type) (f : X -> Y) (l:jlist X),

to_list (j_map f l) = map f (to_list l).

Proof.

intros X Y f l. induction l as [|x|l1 IHl1 l2 IHl2].

Case "j_nil".

simpl. reflexivity.

Case "j_one".

simpl. reflexivity.

Case "j_app".

simpl. rewrite IHl1. rewrite IHl2. apply map_app.

Qed.

The j_app case of the j_map correctness proof makes use of two different induction hypotheses,
called IHl1 and IHl2. Circle the correct statement of IHl1 used in this case of the proof.

i. IHl1: to_list (j_app l1 l2) = map f (to_list (j_app l1 l2))

ii. IHl1: to_list (j_map f l1) = map f (to_list l1)

iii. IHl1: forall l1:jlist X. to_list (j_map f l1) = map f (to_list l1)

iv. IHl1: forall l2:jlist X. to_list (j_app l1 l2) = map f (to_list (j_app l1 l2))

Circle the statement of the lemma map_app, necessary to complete the j_app case of the
j_map correctness proof.

i. Lemma map_app : forall X Y (f:X -> Y) l1 l2,

j_map f (j_app l1 l2) = j_app (j_map f l1) (j_map f l2)

ii. Lemma map_app : forall X Y (f:X -> Y) l1 l2,

map f (l1 ++ l2) = j_map f (j_app l1 l2)

iii. Lemma map_app : forall X Y (f:X -> Y) l1 l2,

map f l1 ++ map f l2 = j_app (j_map f l1) (j_map f l2)

iv. Lemma map_app : forall X Y (f:X -> Y) l1 l2,

map f l1 ++ map f l2 = map f (l1 ++ l2).

6



5. (12 points) Write a careful informal proof of the following theorem. Make sure to state the
induction hypothesis explicitly in the inductive step.

Theorem: Addition is commutative. For all x and y, x + y = y + x.

In your proof, you may use the following lemmas

• Lemma plus n 0: 0 is a right identity for addition. i.e. for all n, n + 0 = n.

• Lemma plus n Sm: The successor of (n + m) is equal to n plus the successor of m.
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6. (13 points) In this question, we’ll consider two different implementations of the same list
function—one as an inductively defined relation and one as a Fixpoint.

(a) The function f_repeat takes an element x and a number n and returns a list containing n

copies of the element. For example:

f_repeat true 3 = [true; true; true]

f_repeat 4 0 = []

Complete the Fixpoint definition of f_repeat.

Fixpoint f_repeat {X : Type} (x : X) (n : nat) : list X :=

(b) Similarly, the relation r_repeat is a three place relation that holds between an element x, a
number n, and a list xs if and only if xs is the list obtained by repeating the element n times.
For example, the following are provable instances of r_repeat.

r_repeat true 3 [true; true; true]

r_repeat 4 0 []

Complete an Inductive definition of r_repeat. Note, your answer must not use f_repeat.

Inductive r_repeat {X : Type} : X -> nat -> list X -> Prop :=
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(c) Suppose we want to show the equivalence between the functional definition of repetition and
the relational specification. As part of that, we should prove the following lemma:

Lemma repeat_f_to_r : forall X x n (l : list X),

f_repeat x n = l -> r_repeat x n l.

An ill-advised proof of this lemma might start as follows:

Proof.

intros X x n l H. induction n as [|n’].

Case "0".

admit. (* skipping base case for now. *)

Case "n = S n’".

destruct l as [|x0 l0].

SCase "l=[]". simpl in H. inversion H.

SCase "l=x0 :: l0".

At this point, the proof state looks like the following:

SCase := "l=x0 :: l0" : String.string

Case := "S n’" : String.string

X : Type

x : X

n’ : nat

x0 : X

l0 : list X

H : f_repeat x (S n’) = x0 :: l0

IHn’ : f_repeat x n’ = x0 :: l0 -> r_repeat x n’ (x0 :: l0)

============================

r_repeat x (S n’) (x0 :: l0)

What are the next steps in the proof? What is the problem with this proof attempt after
those steps have been taken? How might this problem be resolved? Be specific. (Use the
next page if you need more space.)
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(Extra space for the previous problem.)
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For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive True : Prop :=

I : True.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Notation "x <> y" := (~ (x = y)) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity) : nat_scope.

Fixpoint mult (n : nat) (m : nat) : nat :=

match n with

| 0 => 0

| S n’ => m + (mult n’ m)

end.

Notation "x * y" := (mult x y)(at level 40, left associativity) : nat_scope.

Fixpoint beq_nat (n m : nat) : bool :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.
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Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.

Inductive beautiful : nat -> Prop :=

b_0 : beautiful 0

| b_3 : beautiful 3

| b_5 : beautiful 5

| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Fixpoint app (X : Type) (l1 l2 : list X) : (list X) :=

match l1 with

| nil => l2

| cons h t => cons X h (app X t l2)

end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=

match l with

| [] => []

| h :: t => (f h) :: (map f t)

end.

Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=

match l with

| [] => []

| h :: t => if test h then h :: (filter test t)

else filter test t

end.
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