
CIS 500 — Software Foundations

Midterm II

(Standard and advanced versions together)

November 11, 2014

Answer key



(8 points)

1. Hoare triples
Which of the the Hoare triples below are valid? If a triple is valid, circle the rules of

Hoare logic that are necessary to justify the validity of that triple. You may need to circle
more than one rule for a given triple, but do not circle a particular rule if the triple can be
justified without it. Otherwise, if the triple is invalid, circle the last bullet.

For reference, the rules of Hoare logic are given in the Appendix, starting on page 14.

(a) {{ 0 ≤ 3 + 4 }} X ::= 3 + 4 {{ 0 ≤ X }}

• hoare asgn

• hoare skip

• hoare while

• hoare consequence

• Not a valid Hoare Triple

hoare asgn

(b) {{X = X + 1 }} X ::= X + 1 {{True }}

• hoare asgn

• hoare skip

• hoare while

• hoare consequence

• Not a valid Hoare Triple

hoare consequence and hoare asgn

(c) {{True }} X ::= X + 1 {{X = X + 1 }}

• hoare asgn

• hoare skip

• hoare while

• hoare consequence

• Not a valid Hoare Triple

Not a valid Hoare Triple

(d) {{True }} WHILE BTrue DO SKIP END {{False }}

• hoare asgn

• hoare skip
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• hoare while

• hoare consequence

• Not a valid Hoare Triple

hoare while, hoare skip and hoare consequence

Grading scheme: 2 points for each bullet. 1 point for getting valid/invalid correct and
an additional point for marking the correct rules. No points were awarded for answers that
were left blank: this problem asked how to prove these triples with the Hoare rules.
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(15 points)

2. Properties of Imp relations
Which of the following propositions about Imp are provable in Coq? (You may reason

using the axiom functional extensionality, if needed.) Circle True or False. If the
property is not provable, explain why or provide a counterexample.

For reference, the relations ceval (c /st ⇓ st′), cequiv, and Hoare triples ({{P }} c {{Q }})
appear on pages 14 and 15.

(a) ∃c, ∀st st′, ∼(c/st ⇓ st′)

Answer: true

(b) ∀c st st′, (c/st ⇓ st′)

Answer: false If c = WHILE TRUE DO SKIP END, then there are no finite
derivations of its evaluation (for any states).

(c) ∀c st st1 st2, (c/st ⇓ st1)→ (c/st ⇓ st2)→ st1 = st2

Answer: true

(d) ∀c st st1 st2, (c/st1 ⇓ st)→ (c/st2 ⇓ st)→ st1 = st2

Answer: false Consider when c = X ::= 3, st1 = empty state, st2 =

extend empty state X 4, st = extend empty state X 3

(e) ∀P Q c1 c2, {{P }} c1 {{Q }}→ {{P }} c2 {{Q }}→ cequiv c1 c2

Answer: false If P is True and Q is False, then c1 and c2 can be any
commands.

(f) ∀P Q c1 c2, cequiv c1 c2→ ({{P }} c1 {{Q }}↔ {{P }} c2 {{Q }})

Answer: true

Grading scheme: 2 points for true, 1 point for false, 2 points for counterexample
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(10 points)

3. Decorated Programs
Recall the factorial function, written in Coq:

Fixpoint fact (n:nat) : nat :=

match n with

| O => 1

| S n’ => n * (fact n’)

end.

The following Imp program computes the factorial of X and places the answer into Y.

Y ::= 1

WHILE X <> 0 DO

Y ::= Y * X

X ::= X - 1

END

On the next page, add appropriate annotations to the program in the provided spaces
to show that the Hoare triple given by the outermost pre- and post-conditions is valid.
Use informal notations for mathematical formulae and assertions (and abbreviate fact

x with !x, but please be completely precise and pedantic in the way you apply the Hoare
rules — i.e., write out assertions in exactly the form given by the rules (rather than logically
equivalent ones). The provided blanks have been constructed so that, if you work backwards
from the end of the program, you should only need to use the rule of consequence in the
places indicated with ->>.

The implication steps in your decoration may rely (silently) on the following facts, as
well as the usual rules of arithmetic:

• minus_n_0 : forall n, n - 0 = n

• mult_assoc : forall m n p, m * (n * p) = (m * n) * p

• mult_1_r : forall m, m * 1 = m

The Hoare rules and the rules for well-formed decorated programs are provided on pages
15 and 16, for reference.

4



{{ X = m }} ->>

{{ 1 * X! = m! }}

Y ::= 1;;

{{ Y * X! = m! }}

WHILE X <> 0

DO {{ Y * X! = m! /\ X <> 0 }} ->>

{{ Y * X * (X - 1)! = m! }}

Y ::= Y * X;;

{{ Y * (X - 1)! = m! }}

X ::= X - 1

{{ Y * X! = m! }}

END

{{ Y * X! = m! /\ ~(X <> 0) }} ->>

{{ Y = m! }}

Grading scheme:

• 1 point per implication

• 3 points for correct “back propagation” of the mechanical parts of the annotation pro-
cess

• 4 points for the loop invariant

We permited loop invariants of the form X! = m! / Y, though technically we haven’t de-
fined division in Coq.
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(20 points)

4. Imp Extensions
In this exercise, consider extending Imp with for loops, similar to those found in many

other imperative programming language. Our concrete syntax for these loops might look
something like this:

FOR ( initialization ;; condition ;; increment )

loopbody

END

The initialization command is run before the loop begins. The condition is some boolean
expression, and terminates the loop if false. The increment command is performed exactly
once every time at the end of each loop iteration.

To formalize the extended language, we first add a clause to the definition of commands
with the four components of this new command.

Inductive com : Type :=

...

| CFor : com -> bexp -> com -> com -> com.

(For simplicitly in the exam, we will not define a Coq notation for this command.) For
example, we might represent the following for loop, written in the concrete syntax,

FOR (X ::= 0 ;; X <= 10 ;; X ::= X + 1)

Y ::= Y * X

END

as the following Coq expression:

CFor (X ::= ANum 0) (* initialization *)

(BLe (AId X) (ANum 10)) (* condition *)

(X ::= APlus (AId X) (ANum 1)) (* increment *)

(Y ::= AMult (AId Y) (AId X)) (* loopbody *)

(Problem continues on the next page.)
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(a) Refer to the definition of ceval (page 14) for the evaluation relation of Imp. What
rule(s) must be added to this definition to formalize the behavior of CFor? Write out
the additional rule(s) in formal Coq notation.

Inductive ceval : com -> state -> state -> Prop :=

Answer:

| E_ForTrue : forall b st1 st2 st3 st4 st5 cinit cstep cbody,

cinit / st1 || st2 ->

beval st2 b = true ->

cbody / st2 || st3 ->

cstep / st3 || st4 ->

(CFor SKIP b cstep cbody) / st4 || st5 ->

(CFor cinit b cstep cbody) / st1 || st5

| E_ForFalse : forall b st1 st2 cinit cstep cbody,

cinit / st1 || st2 ->

beval st2 b = false ->

(CFor cinit b cstep cbody) / st1 || st2

Grading scheme: 8 points total. This was a difficult problem. Common errors in-
cluded:

• evaluating cinit too many times.

• not evaluating cinit

• not evaluating cstep

• not evaluating cbody

• not looping

• not terminating the loop

• wrong order of evaluation, or incorrect sequencing of states

(b) For each purported theorem about Imp with CFor commands below, write either
“provable” if the claim is provable, or give a brief (one sentence) explanation, with
a counterexample if possible, of why the claim is not provable. For your reference,
the definition of cequiv, which remains unchanged from standard Imp, is found on
page 14.

i. Theorem thm1 : forall cincr,

cequiv SKIP (CFor SKIP BTrue cincr SKIP).

Answer: Not provable. The for loop is an infinite loop.

ii. Theorem thm2 :

cequiv (CFor SKIP BTrue SKIP SKIP)

(WHILE BTrue DO SKIP).

Answer: Provable. Both commands are infinite loops.
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iii. Theorem thm3 : forall cinit bcond cincr cstep,

cequiv (CFor cinit bcond cincr cstep)

(cinit ;; CFor SKIP bcond (cincr ;; cstep) SKIP).

Answer: Not Provable, it should be (cstep ;; cincr) in the second command.

Grading scheme: 3 pts for parts (a) and (b) each. Part (c) was not graded as it
was trickier than intended.
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(c) Write a Hoare proof rule for the CFor command. (For reference, the standard Hoare
rules for Imp are provided on page 15.)

Your rule must be sound. It should also be as precise as possible.

{{P }} ci {{Q }} {{Q ∧ b }} cb {{R }} {{R }} cs {{Q }}

{{P }} CFor ci b cs cb {{Q ∧ ∼ b }}
(hoare for)

Grading scheme: 6 points. Common errors included:

• Not using Q for the post condition of cs (2 pts)

• Missing ∼ b in the postcondition

• Q instead of R

• P instead of R

• Other errors at discretion
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(8 points)

5. Program approximation
In this question, we define an assymmetric variant of program equivalence we call pro-

gram approximation. We say that program c1 approximates program c2 when, for each of
the initial states for which c1 terminates, c2 also terminates and produces the same final
state. Formally, program approximation can be defined as follows:

Definition capprox (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) -> (c2 / st || st’).

For example, the program c1 = WHILE X <> 1 DO X := X - 1 END approximates the
program c2 = X := 1, but c2 does not approximate c1 because c1 does not terminate when
X = 0. If two programs approximate eachother, then they are equivalent.

(a) Find two programs, c3 and c4, such that neither approximates the other. Your
programs should be short (3 lines max).

c3 = X ::= 1

c4 = X ::= 2

Grading scheme: 4 points

(b) Find a program cmin that approximates every other program. Formally, the proposi-
tion forall c’, capprox cmin c’ should be provable. (Again, 3 lines max).

cmin = WHILE true DO SKIP END

Grading scheme: 4 points
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(9 points)

6. [Standard] Hoare Logic
Are the following Hoare logic rules of inference valid? Write Valid or Invalid. Addition-

ally, if the rule is invalid, give a counterexample.

(a)
{{P }} c {{Q }}

{{P }} IF b THEN c ELSE c FI {{Q }}
(hoare bothif)

Valid

Grading scheme: 3 points

(b)
{{P ∧ b }} c {{Q }}

{{P }} WHILE b DO c END {{Q ∧ ∼ b }}
(hoare whilealt)

Invalid. Consider this instance: {{X = 0 }} WHILE X > 1 DO X := 1 END {{X =
1 ∧ ∼(X > 1) }}

Grading scheme: 3pts. 1 for saying invalid, 2 for counterexample. A counter example
is some triple {{P }} c {{Q }} (including definitions of P , c, and Q) that this rule
derives, but is not valid according to the definitions.

(c)

{{P }} X ::= a {{P [X 7→ a] }}
(hoare assn forward)

Invalid.

Consider this instance. {{X = 0 }} X := X + 1 {{X + 1 = 0 }} Grading scheme: 3pts.
1 for saying invalid, 2 for counterexample
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(9 points)

7. [Advanced] Informal proof
Recall that the command WHILE BTrue DO SKIP END is an infinite loop.
Write a careful, informal proof of this fact. In other words, prove:

∀st st′, ∼(WHILE BTrue DO SKIP END/st ⇓ st′)

Answer: Let st and st’ be arbitrary. Suppose that there is some evaluation
WHILE BTrue DO SKIP END/st ⇓ st′.
We will prove by induction that this evaluation is impossible.
By the form of the command, there are just two cases to consider

(a) (WHILE BTrue DO SKIP END) / st ⇓ st’ by rule E WhileEnd, with st’ = st and
beval st BTrue = false. However, the evaluation of BTrue is true, which cannot
equal false, so this case is impossible.

(b) (WHILE BTrue DO SKIP END) / st ⇓ st’ by rule E WhileLoop, with beval st BTrue

= true and SKIP / st ⇓ st1 and (WHILE BTrue DO SKIP END) / st1 ⇓ st’. By
inversion of the evaluation SKIP / st ⇓ st1, we know that st1 = st. We know by
induction that the subevaluation (WHILE BTrue DO SKIP END) / st ⇓ st’ is im-
possible, so this case also cannot occur.

Grading scheme: Common errors included:

• Failure to use induction (4pts)

• Incorrect use of the IH (2pts)

• Missing inversion on the evaluation of SKIP (1pt)

• Other errors at discretion
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Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |

APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :

aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ;; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).
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Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ;; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).
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Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1;; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P _ P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare consequence post)
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Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}

SKIP

{{ P }}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to asser-
tions P and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally
consistent (with respect to Q and R):

{{ P }}

c1;;

{{ Q }}

c2

{{ R }}

(c) An assignment is locally consistent if its precondition is the appropriate substitution
of its postcondition:

{{ P [X |-> a] }}

X ::= a

{{ P }}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions
at the top of its ”then” and ”else” branches are exactly P /\ b and P /\ ~b and if
its ”then” branch is locally consistent (with respect to P /\ b and Q) and its ”else”
branch is locally consistent (with respect to P /\ ~b and Q):

{{ P }}

IFB b THEN

{{ P /\ b }}

c1

{{ Q }}

ELSE

{{ P /\ ~b }}

c2

{{ Q }}

FI

{{ Q }}
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(e) A while loop with precondition P is locally consistent if its postcondition is P /\ ~b

and if the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}

WHILE b DO

{{ P /\ b }}

c1

{{ P }}

END

{{ P /\ ~b }}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second
(in all states):

{{ P }} ->>

{{ P’ }}
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