
CIS 500: Software Foundations Midterm II
April 7, 2016

(Standard and Advanced versions together)

Directions: This exam booklet contains both the standard and advanced track questions.
Questions with no annotation are for both tracks. Other questions are marked “Standard
Only” or “Advanced Only”. Do not do the questions intended for the other track.

Mark the box of the track you wish to follow.

Standard

1 /9

2 /12

3 /12

4 /12

5 /19

6 /16

7 ADVANCED ONLY/−

Total /80

Advanced

1 /9

2 /12

3 /12

4 /12

5 /19

6 STANDARD ONLY/−

7 /16

Total /80

NOTE: Throughout this exam, we use slightly informal notation for Imp boolean ex-
pressions. For example, we write X <> Y to mean “X is not equal to Y”. instead of the
much more verbose BNot (BEq X Y).

1. Loop Invariants (9 points)

Recall that the assertion P appearing in the hoare_while rule is called the loop invariant.
For each loop shown below, indicate which assertions are loop invariants. (There may be zero
or more than one such assertion.)

(a) WHILE X<100 DO X ::= X+1 END

i. X > 10

ii. X < 100

iii. X ≤ 100

(b) WHILE X>10 DO X ::= X+1 END

i. X > 10

ii. X < 100

iii. X ≤ 100

(c) WHILE Y>0 DO Y := Y-1; Z ::= Z+1 END

i. X > 10

ii. X = Y + Z

iii. Y < Z

1

2. Program Equivalances (12 points)

For each pair of (standard) Imp commands below, write “equivalent” if the two programs are
behaviorally equivalent (as defined by cequiv in the Appendix), or give a counterexample
consisting of a single start state st that leads to different behaviors. You can indicate values
for the variables in st by writing, for instance, st X = n. We have done the first one for you.

(a) c1 = IFB X > 10 THEN X := 0 ELSE SKIP FI c2 = SKIP
Answer: Counterexample: st X = 500 (or st X = n for any n larger than 10).

(b) c1 = WHILE 1 <= X DO
X ::= X + 1

END

c2 = WHILE 2 <= X DO
X ::= X + 1

END

Answer: Counterexample st such that st X = 1

(c) c1 = X := Y;; Y := X c2 = Y := X;; X := Y

Answer: Counterexample st such that st X <> st Y

(d) c1 = X := 0 ;;
WHILE X <> Y DO

X ::= X + 1
END

c2 = X := Y

Answer: Equivalent

(e) c1 = IFB X <> Y THEN
WHILE BTrue DO SKIP

ELSE
SKIP

FI

c2 = WHILE X <> Y DO
X := X + 1;;
Y := Y + 1;;

END

Answer: Equivalent

2

3. Hoare triples (12 points)

Which of the the Hoare triples below are valid? If a triple is valid, circle the rules of Hoare
logic that are necessary to justify the validity of that triple. You may need to circle more
than one rule for a given triple, but do not circle a particular rule if the triple can be justified
without it. Otherwise, if the triple is invalid, circle the last bullet.

For reference, the rules of Hoare logic are given in the Appendix, starting on page 12.

(a) {{X + 1 > 3 }} X ::= X + 1 {{X > 3 }}

• hoare_asgn
• hoare_skip
• hoare_while
• hoare_consequence
• Not a valid Hoare Triple

(b) {{X > (Y + Y) }} X ::= X - Y {{X > Y }}

• hoare_asgn
• hoare_skip
• hoare_while
• hoare_consequence
• Not a valid Hoare Triple

(c) {{X = X + 1 }} SKIP {{True }}

• hoare_asgn
• hoare_skip
• hoare_while
• hoare_consequence
• Not a valid Hoare Triple

(d) {{True }} WHILE BTrue DO X ::= X + 1 END {{X = 2 }}

• hoare_asgn
• hoare_skip
• hoare_while

• hoare_consequence
• Not a valid Hoare Triple

Grading scheme: 2 points for each bullet. 1 point for getting valid/invalid correct and an
additional point for marking the correct rules. No points were awarded for answers that were
left blank: this problem asked how to prove these triples with the Hoare rules.

3

4. Decorated Programs (12 points)

The following Imp program computes the square of X and places the answer into Z.

Y ::= X ;;
Z ::= 0 ;;
WHILE Y <> 0 DO

Z ::= Z + X ;;
Y ::= Y - 1 ;;

END

On the next page, add appropriate annotations to the program in the provided spaces to
show that the Hoare triple given by the outermost pre- and post-conditions is valid. Please
be completely precise and pedantic in the way you apply the Hoare rules — i.e., write out
assertions in exactly the form given by the rules (rather than logically equivalent ones). The
provided blanks have been constructed so that, if you work backwards from the end of the
program, you should only need to use the rule of consequence in the places indicated with
->>.

The implication steps in your decoration may rely (silently) on usual rules of natural-number
arithmetic, including:

• mult_dist_sub : forall m n, m * (n - 1) = (m * n) - m

The Hoare rules and the rules for well-formed decorated programs are provided on pages 13
and 14, for reference.

4

{{ X = m }} ->>
{{ X = m /\ 0 + X * X = m * m }}
Y ::= X ;;
{{ X = m /\ 0 + X * Y = m * m }};;
Z ::= 0
{{ X = m /\ Z + X * Y = m * m }}
WHILE Y <> 0 DO

{{ X = m /\ Z + X * Y = m * m /\ Y <> 0 }} ->>
{{ X = m /\ (Z + X) + X * (Y - 1) = m * m }}
Z ::= Z + X ;;
{{ X = m /\ Z + X * (Y - 1) = m * m }};;
Y ::= Y - 1 ;;
{{ X = m /\ Z + X * Y = m * m }}

END
{{ X = m /\ Z + X * Y = m * m /\ ~(Y <> 0) }} ->>
{{ Z = m * m }}

Grading scheme:

• 1 point per implication

• 3 points for correct “back propagation” of the mechanical parts of the annotation process

• 4 points for the loop invariant

5

5. Operational Semantics (19 points)

Some programming languages like Java and C have effectful expressions. For instance, X++
evaluates to a number, but has the side effect of updating the state associated with variable
X to increment its value. In this problem we consider adding such expressions to Imp.

This “post-increment” operator returns the old value of X before updating the state. That is,
if in state st we have st X = 0 then the behavior of X++ is to return 0 and modify the state
to st’ such that st’ X = 1.

The datatype below is a variant of aexp that includes the new post-increment operator (we
omit minus and times for simplicity).

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AIncr : id -> aexp. (* <----- NEW *)

The notation X++ stands for AIncr X, where X is AId 0.

The old operational semantics given by the aeval function won’t work because it does not
allow us to return the modified state. To fix that problem, we modify aeval as shown below
so that it returns both a natural number and the potentially modified state:

Fixpoint aeval (st : state) (a : aexp) : (nat * state) :=
match a with
| ANum n => (n, st)
| AId x => (st x, st)
| APlus a1 a2 =>

let (n1, st1) := aeval st a1 in
let (n2, st2) := aeval st1 a2 in
(n1 + n2, st2)

| AIncr x => (st x, t_update st x (1 + st x))
end.

(Problem continues on the next page, nothing to do here.)

6

(a) (13 points) As with the original version of aeval we can also give relational small-step
semantics for these expressions. This is defined by a relation on pairs of expressions and
states, written a / st ⇒a a′ / st′, with the intuitive reading “Arithmetic expression a
takes a small step starting from state st to a’, updating the state to be st’”.
The “informal” small step rules given below have holes marked by boxes. Fill in the boxes
so that these rules agree with the aeval function above. We have given you the rule for
identifiers. There is no rule for ANum n terms.

AId x / st⇒a ANum(st x) / st (id)

a1 / st⇒a a1
′ / st′

APlus a1 a2 / st⇒a APlus a1′ a2 / st′
(plus_left)

a2 / st⇒a a2
′ / st′

APlus (ANum n) a2 / st⇒a APlus (ANum n) a2′ / st′
(plus_right)

APlus (ANum n1) (ANum n2) / st⇒a (ANum (n1+ n2)) / st
(plus)

AIncr (AId x) / st⇒a ANum(st x) / t_update st x (1+ (st x))
(incr)

(b) (2 points) Which of the following is the best explanation for why there is no rule for
stepping an ANum n expression? (Choose one.)

• ANum n is a normal form of the ⇒a relation.
• We want to treat ANum n as a value, so for any st, the pair ANum n / st should be

a normal form of the ⇒a relation.
• We want to treat ANum n as a value, so for any expression a there should exist an n

and st’ such that a / st ⇒a ANum n / st’.
• AIncr (ANum n) should be considered a stuck state, and adding a step for ANum n

would allow it to progress.

7

(c) (4 points) Adding side effects to the expression language can makes the order of evaluation
import. The definition of aeval uses left-to-right evaluation order for APlus terms. Write
down a term a that would evaluate to one answer using aeval as shown but give a different
answer if we implemented aeval using right-to-left evaluation order.
Hint: this is equivalent to showing that the APlus operator of Imp’s arithmetic language
is not commutative. That is: APlus a1 a2 will not necessarily yield the same result as
APlus a2 a1
(X + X) + (X++)

6. (Standard Only) Language Theory Concepts (16 points)

(a) (4 points) Formulate the appropriate correctness theorem that shows that the Fixpoint
definition of the version of aeval from problem 5 is equivalent to the multistep closure
of the relational definition of ⇒a. There is no need to prove the theorem, just state it.
(Use the informal notation for ⇒a.)
Theorem aeval_equiv_asteps:

∀ a,n,st,st’. (aeval st a = (n, st’)) ⇔ (a / st⇒∗a ANum n / st′)

8

(b) (3 points) Briefly describe one advantage of formalizing a language’s operational seman-
tics by using a Coq relation rather than Coq’s Fixpoint.
Relations can be used to describe partial semantics (i.e. those that might diverge or are
otherwise undefined).

(c) (3 points) Briefly describe one advantage of formalizing a language’s semantics by using
a small-step semantics rather than a big-step semantics.
Big-step semantics cannot distinguish stuck states from divergence. Also, small-step
semantics can also be used to express concurrency, and other fine grained evaluation-
order specific features.

(d) (6 points) Suppose we were to add to Imp a new command print a whose intended
semantics is to output the value of the arithmetic expression a to the user via the terminal.
Describe how you would modify Imp’s large-step evaluation relation to formalize this new
behavior. Hint: It might be helpful to think about what the type of the modified version
of ceval should be.

9

7. (Advanced Only) Informal Proof (16 points)

Write a careful informal proof showing that if the boolean expression b is equivalent to BTrue,
then the command IFB b THEN c1 ELSE c2 FI is equivalent to c1—i.e., formally:

∀ b c1 c2, (bequiv b BTrue) → cequiv (IFB b THEN c1 ELSE c2 FI) c1

The definitions of bequiv and cequiv are given in the Appendix, for reference.

• →We must show, for all st and st’, that if IFB b THEN c1 ELSE c2 F / st⇓ st’ then
c1 / st ⇓ st’. We proceed by cases on the rules that could possibly have been used to
show IFB b THEN c1 ELSE c2 F / st ⇓ st’ namely EIfTrue and EIfFalse.

– Suppose the final rule rule in the derivation of IFB b THEN c1 ELSE c2 F / st⇓
st’ was EIfTrue. By the premises of EIfTrue we have that c1 / st ⇓ st’, which
is exactly what we set out to prove.

– On the other hand, suppose the final rule in the derivation of IFB b THEN c1 ELSE c2 F / st
⇓ st’ was EIfFalse. We then know that beval st b = false and c2/st ⇓ st’. Re-
call that b is equivalent to BTrue, i.e. forall st, beval st b = beval st BTrue.
In particular, this means that beval st b = true, since beval st BTrue = true.
But this is a contradiction, since EIfFalse requires that beval st b = false.
Thus, the final rule in the derivation could not have been EIfFalse.

• ←Wemust show, for all st and st’, that if c1 / st ⇓ st’ then IFB b THEN c1 ELSE c2 F / st
⇓ st’. Since b is equivalent to BTrue, we know that beval st b = beval st BTrue = true.
Together with the assumption that c1 / st ⇓ st’, we can apply EIfTrue to derive
IFB b THEN c1 ELSE c2 F / st ⇓ st’ as desired.

10

For Reference

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :
aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

11

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,

SKIP / st || st
| E_Ass : forall st a1 n X,

aeval st a1 = n ->
(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,
c1 / st || st’ ->
c2 / st’ || st’’ ->
(c1 ;; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,
beval st b1 = true ->
c1 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,
beval st b1 = false ->
c2 / st || st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,
beval st b1 = false ->
(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,
beval st b1 = true ->
c1 / st || st’ ->
(WHILE b1 DO c1 END) / st’ || st’’ ->
(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

12

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn_sub X a Q }} X := a {{Q }}
(hoare_asgn)

{{P }} SKIP {{P }}
(hoare_skip)

{{P }} c1 {{Q }}
{{Q }} c2 {{R }}

{{P }} c1;; c2 {{R }}
(hoare_seq)

{{P ∧ b }} c1 {{Q }}
{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare_if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare_while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence)

{{P ′ }} c {{Q }}
P _ P ′

{{P }} c {{Q }}
(hoare_consequence_pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence_post)

13

Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}
SKIP
{{ P }}

2. The sequential composition of c1 and c2 is locally consistent (with respect to assertions P
and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}
c1;;
{{ Q }}
c2
{{ R }}

3. An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}
X ::= a
{{ P }}

4. A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the
top of its "then" and "else" branches are exactly P /\ b and P /\ ~b and if its "then" branch
is locally consistent (with respect to P /\ b and Q) and its "else" branch is locally consistent
(with respect to P /\ ~b and Q):

{{ P }}
IFB b THEN

{{ P /\ b }}
c1
{{ Q }}

ELSE
{{ P /\ ~b }}
c2
{{ Q }}

FI
{{ Q }}

14

5. A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}
WHILE b DO

{{ P /\ b }}
c1
{{ P }}

END
{{ P /\ ~b }}

6. A pair of assertions separated by ->> is locally consistent if the first implies the second (in all
states):

{{ P }} ->>
{{ P’ }}

Relations

Definition relation (X: Type) := X->X->Prop.

Inductive multi {X:Type} (R: relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),

R x y ->
multi R y z ->
multi R x z.

Notation " t ’==>*’ t’ " := (multi step t t’) (at level 40).

15

