
CIS 500: �
SOFTWARE FOUNDATIONS

Lecture 1

Steve Zdancewic Spring 2016

CIS 500: Fall 2014

Administrivia
•  Instructor: Steve Zdancewic �

 Office hours: Tuesdays�
 Levine 511

•  TAs:
–  Meyer Kizner

 Office hours: TBA

–  Matthew Weaver�
 Office hours: TBA

•  Location: 303 Towne
•  E-mail: cis500@seas.upenn.edu
•  Web site: http://www.seas.upenn.edu/~cis500
•  Canvas: https://upenn.instructure.com
•  Piazza: http://piazza.com/upenn/spring2016/cis500

CIS 500: Fall 2014

Dr.	Zdancewic	will	be	at	a	research	
mee3ng	01/21	and	01/21	
	
CLASS	CANCELLED:	01/21	
GUEST	LECTURE:	01/26	

Resources
•  Course textbook: Software Foundations

–  Electronic edition tailor-made for�
 this class

�
Use the version available from the �
cis500 course web pages!

•  Additional books:
–  Types and Programming Languages�

(Pierce, 2002 MIT Press)
–  Interactive Theorem Proving and Program

Development�
(Bertot and Castéran, 2004 Springer)

–  Certified Programming with �
Dependent Types�
(Chlipala, electronic edition)

CIS 500: Fall 2014

Course Policies
•  Prerequisites:

–  Significant programming experience
–  Mathematical sophistication
–  Undergraduate functional programming or compilers class

Grading:
•  24% Homework ~12 weekly assignments
•  18% Midterm I (tentatively) Feb. 18th
•  18% Midterm 2 (tentatively) April 5th
•  36% Final
•  4% Class participation

⇒ Lecture attendance is crucial!

“Regular” and “Advanced” tracks (graded separately).
 CIS 500: Fall 2014

“Regular” vs. “Advanced” Tracks
•  “Advanced” track:

–  More and harder exercises
–  More challenging exams.
–  It is a superset of the “regular” material.

•  All students start in the advanced track by default.
•  Students who wish to take CIS 500 for WPE I credit (Ph.D.) must take

the advanced track.
•  Students may switch from advanced to regular track at any time.

–  Notify the course staff in writing (by e-mail).
–  The change is permanent after the first midterm.

•  Students wishing to switch (back) to the advanced track:
–  Must do so before the first midterm exam.
–  Must make up all the advanced exercises (or accept the grade penalty).

•  Only students taking the advanced track are eligible for an A+.

CIS 500: Fall 2014

Participation Policy
•  Class attendance is mandatory.

•  We will be using “clickers” for
–  in-class mini quizzes
–  in-class polls about course material

•  TurningPoint clickers use will be your
attendance record.

•  For next time: buy a clicker.

•  Any TurningPoint RF clicker will work, see
note on course website.

CIS 500: Fall 2014

Homework Policies
•  Homework is to be done individually.
•  Homework must be submitted via Canvas
•  Homework that is late is subject to:

–  25% penalty for 1 day late
–  50% penalty for 2 days late
–  75% penalty for 3 days late

•  Homework is due at 8:00pm on the due date (generally Thurs.).

•  Advanced track students must complete (or try to complete) all non-
optional exercises.
–  Missing “advanced” exercises will count against your score.

•  Regular track students must complete (or try to complete) all non-
optional exercises except those marked “advanced”.
–  Missing “advanced” exercises will not count against your score.
–  (But may help in your understanding of the material)

CIS 500: Fall 2014

 �
SOFTWARE FOUNDATIONS

 �
 LOGICAL FOUNDATIONS

A: How do we know something is true?
B: We test it out
A: But that isn’t truth; testing can only give us evidence.

How do we know something is true?
B: We prove it
A: How do we know that we have a proof?
B: We need to define what it means to be a proof. �

A proof is a logical sequence of arguments, starting
from some initial assumptions

A: How do we know that we have a valid sequence of
arguments? Can any list be a proof?

 All humans are mortal
 All Greeks are human

 I am a Greek
B: No, no, no! We need to think about how we

think….

CIS 500: Fall 2014

Aristotle
384 – 322 BC

Euclid
~300 BC

First we need a language…
•  Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

•  1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
–  First rigorous treatment of functions and

quantified variables
–  ⊢ A, ¬A, ∀x.F(x)
–  First notation able to express arbitrarily

complicated logical statements

CIS 500: Fall 2014

Gottlob Frege �
1848-1925

Images in this & following slides taken from Wikipedia.

Formalization of Arithmetic
•  1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
•  1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
•  1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
•  Frege’s Goals:

–  isolate logical principles of inference
–  derive laws of arithmetic from first principles
–  set mathematics on a solid foundation of logic

•  David Hilbert: a German recognized as one of the�
most influential mathematicians ever.
–  algebra, axiomatization of geometry, physics,…
–  1900: published his "23 Problems"

•  Problem #2: Prove that the axioms of arithmetic�
are consistent

CIS 500: Fall 2014

David Hilbert�
1862 – 1943

The plot thickens…

Just as Volume 2 was going to print in 1903, �
Frege received a letter…

Bertrand Russell
•  Russell’s paradox:

•  Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

•  Frege’s logical system could derive anything.�
Oops(!!)

CIS 500: Fall 2014

Bertrand Russell �
 1872 - 1970

1. Set comprehension notation:
 { x | P(x) } “The set of x such that P(x)”

2. Let X be the set { Y | Y ∉ X }.

3. Ask the logical question: �
 Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.

 If X ∉ X then X ∈ X.

Addendum to Frege’s 1903 Book

CIS 500: Fall 2014

 “Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of

Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.”

– Frege, 1903

Aftermath of Frege and Russell
•  Frege came up with a fix, but it made his logic

trivial…

•  1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

•  1910, 1912, 1913, (revised 1927):�
Principia Mathematica (Whitehead & Russell)
–  Goal: axioms and rules from which all

mathematical truths could be derived.
–  It was a bit unwieldy…

CIS 500: Fall 2014

Whitehead Russell

"From this proposition it will follow, �
when arithmetical addition has been defined, �
that 1+1=2."
—Volume I, 1st edition, page 379

1920's: Hilbert's Program
A plan to secure the foundations of mathematics:

•  Develop a formal system of all mathematics.

–  Mathematical statements should be written in a precise formal language
–  Mathematical proofs should proceed by well-specified rules

•  Prove completeness
–  i.e. that all true mathematical �

statements can be proved

•  Prove consistency
–  i.e. that no contradictory �

conclusions can be proved

•  Prove decidability
–  i.e. there should be an algorithm �

for determining whether a given�
statement has a proof

CIS 500: Fall 2014

Things were going well, following Russell &�
Whitehead, until…

Logic in the 1930s and 1940s
•  1931: Kurt Gödel’s first and second

incompleteness theorems.
–  Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

–  Write down: "This statement is not provable."�
as an arithmetic statement.

•  1936: Genzen proves consistency of arithmetic.
•  1936: Church introduces the λ-calculus.
•  1936: Turing introduces Turing machines

–  Is there a decision procedure for arithmetic?
–  Answer: no it’s undecidable
–  The famous “halting problem”

•  only in 1938 did Turing get his Ph.D.

•  1940: Church introduces the simple theory of
types

CIS 500: Fall 2014

Alonzo Church �
 1903 - 1995

Alan Turing �
 1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

Fast Forward…
•  1958 (Haskell Curry) and 1969 (William Howard) observe a

remarkable correspondence:

•  1967 – 1980’s: N.G. de Bruijn runs Automath project

–  uses the Curry-Howard correspondence for �
computer-verified mathematics

•  1971: Jean-Yves Girard introduces System F
•  1972: Girard introduces Fω
•  1972: Per Marin-Löf introduces intuitionistic type theory
•  1974: John Reynolds independently discovers System F

CIS 500: Fall 2014

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn�
 1918 - 2012

Basis for modern�
type systems:
OCaml, Haskell,�
Scala, Java, C#, …

Haskell Curry�
1900 – 1982

William Howard�
1926 –

… to the Present
•  1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
•  1985: Coquand introduces the �

calculus of constructions
–  combines features from intuitionistic type theory

and Fω
•  1989: Coquand and Paulin extend CoC to the

calculus of inductive constructions
–  adds “inductive types” as a primitive

•  1992: Coq ported to Xavier Leroy’s Caml

•  1990’s: up to Coq version 6.2
•  2000-2010: Coq version 8.3
•  2012: Coq version 8.4pl6 ← CIS 500

•  2013: Coq receives ACM Software System
Award

CIS 500: Fall 2014

Thiery Coquand
1961 –

Gérard Huet
1947 –

http://coq.inria.fr/refman/Reference-Manual002.html

Too many contributors�
to mention here…

 �
SOFTWARE FOUNDATIONS

So much for foundations… what about software?

CIS 500: Fall 2014

Building Reliable Software
•  Suppose you work at (or run) a software company.

•  Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
–  Boeing Dreamliner2 flight controller
–  Autonomous vehicle control software for Nissan
–  Gene therapy DNA tailoring algorithms
–  Super-efficient green-energy power grid controller

•  Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

•  How do you avoid getting a letter like the one from Russell?

CIS 500: Fall 2014

Or, worse yet, not getting the letter�
to disastrous consequences?

Approaches to Software Reliability
•  Social

–  Code reviews
–  Extreme/Pair programming

•  Methodological
–  Design patterns
–  Test-driven development
–  Version control
–  Bug tracking

•  Technological
–  “lint” tools, static analysis
–  Fuzzers, random testing

•  Mathematical
–  Sound type systems
–  “Formal” verification

CIS 500: Fall 2014

More “formal”: eliminate �
with certainty as many problems �
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of �
these methods should be used.

Even the most “formal” can still�
have holes:
•  Did you prove the right thing?
•  Do your assumptions match reality?
•  Knuth. “Beware of bugs in the above
 code; I have only proved it correct, not
 tried it.”

Five Interwoven Threads
1.  basic tools from logic for making and justifying precise claims about

programs

2.  the use of proof assistants to construct rigorous, machine checkable,

logical arguments

3.  the idea of functional programming, both as a method of
programming and as a bridge between programming and logic

4.  techniques for formal verification of properties of specific programs

5.  the use of type systems for establishing well-behavedness guarantees
for all programs in a given language

CIS 500: Fall 2014

Can it Scale?
•  Use of theorem proving to verify “real” software is still considered to be the

bleeding edge of PL research.

•  CompCert – fully verified C compiler �
 Leroy, INRIA

•  Vellvm – formalized LLVM IR�
 Zdancewic, Penn

•  Ynot – verified DBMS, web services�
 Morrisett, Harvard

•  Verified Software Toolchain �
 Appel, Princeton

•  Bedrock – web programming, packet filters�
 Chlipala, MIT

•  CertiKOS – certified OS kernel�
 Shao & Ford, Yale

CIS 500: Fall 2014

Does it work?

LLVM

Random test-case
generation

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in
total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

Verified Compiler: CompCert [Leroy et al.]�
<10 bugs found in unverified front-end component

Regehr’s Group Concludes

CIS 500: Fall 2014

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

(emphasis mine)

•  National Science Foundation "Expedition" Project
–  $10M over five years
–  Penn: Zdancewic / Weirich / Pierce
–  Princeton: Appel
–  Yale: Shao
–  MIT: Chlipala

•  Many ways to get involved (especially after CIS 500!)
•  See www.deepspec.org

CIS 500: Fall 2014

Why CIS 500?
•  Foundations

–  Functional programming
–  Constructive logic
–  Logical foundations
–  Proof techniques for inductive definitions

•  Semantics
–  Operational semantics
–  Modeling imperative “While” programs
–  Hoare logic for reasoning about program correctness

•  Type Systems
–  Simply typed λ-calculus
–  Type safety
–  Subtyping
–  Dependently-typed programming

•  Coq interactive theorem prover
–  turns doing proofs & logic into programming fun!

CIS 500: Fall 2014

�
COQ

CIS 500: Fall 2014

Coq in CIS 500
•  We’ll use Coq version 8.4pl6

–  Available on CETS systems
–  Easy to install on your own machine

•  See the web pages at: coq.inria.fr

•  Two different user interfaces
–  CoqIDE – a standalone GUI / editor
–  ProofGeneral – an Emacs-based editing environment

•  Course web pages have more information.

CIS 500: Fall 2014

Coq’s Full System

CIS 500: Fall 2014

Subset Used in CIS 500

CIS 500: Fall 2014

To start. By the end of the�
semester.

�
BASICS.V

Getting acquainted with Coq.

CIS 500: Fall 2014

CIS 500: TODO
•  Soon:

–  Register for Piazza
–  Try to log in to Canvas
–  Reading: Preface and Basics

•  Before next time:
–  Install Coq v. 8.4pl6
–  Obtain a clicker

•  HW1: Finish Basics.v
–  Due: Thursday, January 21st at 8:00pm
–  Available on the web pages
–  Complete all non-optional exercises
–  There are no “advanced” problems for this HW
–  Submit to Canvas

CIS 500: Fall 2014

