
CIS 5000:
SOFTWARE FOUNDATIONS

Lecture 1

Steve Zdancewic Fall 2022

COVID
• Follow the Penn Covid Guidelines

– https://coronavirus.upenn.edu/

• For now, we REQUIRE you to wear properly-fitted masks
for lectures, office hours, etc.

• If you contract COVID
– follow the university procedures for isolation, quarantine
– let us know about your status
– course lectures are recorded, material is online
– accommodations for HW, exams, participation, etc.

Our primary concern is the health and wellbeing of
all students, and facilitating their success in this class.

https://coronavirus.upenn.edu/

SOFTWARE FOUNDATIONS

How do we build software?
that works^

(and be convinced
that it does)

^

Critical Software
Individual programs

• Operating systems
• Network stacks
• Crypto
• Medical devices
• Flight control systems
• Power plants
• Home security
• Blockchain
• …

Programming languages
• Compilers
• Static type system
• Data abstraction and

modularity features
• Security controls

SOFTWARE FOUNDATIONS

Logic

+ Reasoning about
individual programs

+ Reasoning about
whole programming
languages

LOGICAL FOUNDATIONS

Q: How do we know something is true?
A: We prove it.
Q: How do we know that we have a proof?
A: We need to know what it means for something to be

a proof.
First cut: A proof is a “logical” sequence of arguments,
starting from some initial assumptions.

Q: How do we agree on what is a valid sequence of
arguments? Can any sequence be a proof? E.g.

All humans are mortal
All Greeks are human
Therefore, I am a Greek!

A: No, no, no! We need to think harder about valid
ways of reasoning...

Aristotle
384 – 322 BC

Euclid
~300 BC

First we need a language…
• Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

• 1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
– First rigorous treatment of functions and

quantified variables
– ⊢ A, ¬A, ∀x.F(x)
– First notation able to express arbitrarily

complicated logical statements

Gottlob Frege
1848-1925

Images in this & following slides taken from Wikipedia.

Formalization of Arithmetic
Frege made great progress, introducing:

• 1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
• 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
• 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)

Frege’s goals:
– isolate logical principles of inference
– derive laws of arithmetic from first principles
– set mathematics on a solid foundation of logic

The plot thickens…

Just as Volume 2 was going to print in 1903,
Frege received a letter…

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this

volume was nearing its completion.”

– Frege, 1903

Bertrand Russell
• Russell’s paradox:

• Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

• Frege’s logical system could derive anything.
(Oops!)

Bertrand Russell
1872 - 1970

1. Set comprehension notation:
{ x | P(x) } “The set of x such that P(x)”

2. Let X be the set (of sets) { Y | Y ∉ Y }.

3. Ask the logical question:
Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
If X ∉ X then X ∈ X.

David Hilbert

German recognized as one of the most influential mathematicians ever.
– studied algebra, axiomatization of geometry, physics,…

1900: published his "23 Problems"
– Problem #2: Prove that the axioms of arithmetic are consistent

David Hilbert
1862 – 1943

1920's: Hilbert's Program
A plan to secure the foundations of mathematics:

• Develop a formal system of all mathematics.
– Mathematical statements should be written in a precise formal language
– Mathematical proofs should proceed by well-specified rules

• Prove completeness
– i.e., that all true mathematical

statements can be proved

• Prove consistency
– i.e., that no contradictory

conclusions can be proved

• Prove decidability
– i.e., there should be an algorithm

for determining whether a given
statement has a proof

Aftermath of Frege and Russell
• Frege came up with a fix… but it made his

logic trivial :-(

• 1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

• 1910, 1912, 1913, (revised 1927):
Principia Mathematica (Whitehead & Russell)
– Goal: axioms and rules from which all

mathematical truths could be derived.
– It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow,
when arithmetical addition has been defined,
that 1+1=2."
—Volume I, 1st edition, page 379

Nevertheless, things were going well,
following Russell & Whitehead, until…

Logic in the 1930s and 1940s
• 1931: Kurt Gödel’s first and second incompleteness

theorems.
– Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be complete.
– Big idea: write down "This statement is not provable."

as an arithmetic statement.

• 1936: Genzen proves consistency of arithmetic.
• 1936: Church introduces the l-calculus.
• 1936: Turing introduces Turing machines

– Is there a decision procedure for arithmetic?
– Answer: no, it’s undecidable
– The famous “halting problem”

• n.b.: only in 1938 did Turing get his Ph.D.

• 1940: Church introduces the simple theory of types
Alonzo Church

1903 - 1995
Alan Turing
1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

Fast Forward…
• Two logicians in 1958 (Haskell Curry) and 1969 (William Howard)

observe a remarkable correspondence:

• 1967 – 1980’s: N.G. de Bruijn runs Automath project
– uses the Curry-Howard correspondence for

computer-verified mathematics

• 1971: Jean-Yves Girard introduces System F
• 1972: Girard introduces Fw
• 1972: Per Marin-Löf introduces intuitionistic type theory
• 1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn
1918 - 2012

Basis for modern
type systems:
OCaml, Haskell,
Scala, Java, Rust,
Swift, …

Haskell Curry
1900 – 1982

William Howard
1926 –

… to the Present
• 1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
• 1985: Coquand introduces the

calculus of constructions
– combines features from intuitionistic type

theory and Fw

• 1989: Coquand and Paulin extend CoC to
the calculus of inductive constructions
– adds “inductive types” as a primitive

• 1992: Coq ported to Xavier Leroy’s OCaml

• 1990’s: up to Coq version 6.2
• 2000-2015: up to Coq version 8.4
• 2013: Coq receives ACM Software System

Award
• 2022: Coq version 8.15.2 ← CIS 5000

Thiery Coquand
1961 –

Gérard Huet
1947 –

Too many contributors
to list here…

and, many other provers:
• Isabelle/HOL
• Agda
• LEAN
• ...

PROGRAMMING FOUNDATIONS

So much for foundations… what about the “software” part?

(LANGUAGE)

Building Reliable Software
• Suppose you work at (or run) a software company.

• Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Nissan
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller
– The next big blockchain

• Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

• How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound type systems
– Formal verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Lightweight,
inexpensive techniques
(that may miss problems)

This isn’t a tradeoff… all of
these methods should be used.

Even the most “formal” argument
can still have holes:
• Did you prove the right thing?
• Do your assumptions match reality?

• Knuth: “Beware of bugs in the above
code; I have only proved it correct, not
tried it.”

Can Formal Methods Scale?

• Bedrock – web; packet filters
• CakeML – SML compiler
• CertiKOS – certified OS kernel
• CompCert – C compiler
• EasyCrypt – crypto protocols

• Kami – RISCV architecture
• HS2Coq – Library validation
• SEL4 – OS microkernel
• Vellvm – LLVM IR
• VST – C software
• Ynot – DBMS, web services

Academia Industry

Flagship Example: CompCert

24

[Xavier Leroy, et al. INRIA, 2010 - present]

Optimizing C Compiler:
implemented and proved correct end-to-end with machine-checked proof in Coq

This is a large, sophisticated proof
development, but ultimately it
relies on the concepts introduced
in CIS 5000.

Input:
C source code

Output:
Power PC / x86 assembly

Does it work?

Random test-case
generation

LLVM

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in

total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

CompCert
<10 bugs found only in the (at the time unverified) front-end component

Regehr’s Group Concludes

The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are
absent. As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack
of trying: we have devoted about six CPU-years to the task.
The apparent unbreakability of CompCert supports a
strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit
and machine-checked, has tangible benefits for compiler
users.

CIS 5000
• Foundations

– Functional programming
– Constructive logic
– Logical foundations
– Proof techniques for inductive definitions

• Semantics
– Operational semantics
– Modeling imperative “While” programs
– Hoare logic for reasoning about program correctness

• Type Systems
– Simply typed l-calculus
– Type safety
– Subtyping
– Dependently-typed programming

• Coq interactive theorem prover
– turns doing proofs & logic into programming fun!

COURSE MECHANICS

Administrivia
• Instructor: Steve Zdancewic

Office hours: See web page (currently Mondays 4-5)
Levine 511

• TAs: Jessica Shi, Adam Stein, and Joey Valez-Ginorio

• E-mail: cis5000@seas.upenn.edu (goes to all course staff)

• Web site: http://www.seas.upenn.edu/~cis5000
• Infrastructure:

– Ed Discussion
– Poll Everywhere (for in-class quizzes, not graded)
– Gradescope (for homework submission)
– Canvas (only to host zoom videos)

mailto:cis5000@seas.upenn.edu
http://www.seas.upenn.edu/~cis5000

• Course textbook:
Software Foundations, volumes 1 and 2
– Electronic edition tailor-made for

this class

Use the version available from the
cis5000 course web pages!!

(A new version of each chapter will
generally go live just before class. :-)

• Additional resources:
– Types and Programming Languages

(Pierce, 2002 MIT Press)
– Interactive Theorem Proving and Program

Development
(Bertot and Castéran, 2004 Springer)

– Certified Programming with
Dependent Types
(Chlipala, electronic edition)

Resources

How to CIS5000
Class participation is strongly encouraged

– Live lectures will be as interactive as possible!
– Ask lots of questions
– Focus on the class instead of multitasking

Lecture Recordings
– Every lecture will be recorded
– Should be available online a few hours later
– Feel free to use them (and the textbook) to supplement the material

Note: If you are not feeling well, or if you test positive for covid,
please do not attend lecture!

Class Participation

• We will be using Poll Everywhere, an online polling platform, for
– in-class mini quizzes
– real-time “polls” during lectures
– (not graded!)

• For next time: download the Poll Everywhere app for your
smartphone.

Course Policies
Prerequisites:

– Significant programming experience
– “Mathematical sophistication”
– Undergraduate functional programming or compilers class helpful

Grading:
• 30% Homework (~12 weekly assignments)
• 20% Midterm I (in class, early October)

• 20% Midterm 2 (in class, early November)
• 30% Final (date TBA)

“Regular” vs. “Advanced” Tracks
• “Regular” track

– Usual mode of participation for Masters students and Undergraduates

• “Advanced” track
– More and harder exercises
– More challenging exams, emphasizing written proofs
– Covers a superset of the “regular” material

• Ph.D. Students must follow the advanced track.
– The advanced track final exam is the WPE I
– Others wishing to take the advanced track (e.g., maybe a good idea if you

plan to apply to PhD programs) should contact the course staff.

• “Regular” and “Advanced” tracks are graded separately
– “Regular” track students are encouraged to try advanced-track problems.
– A regular-track student's grades cannot be harmed by their performance on

advanced-track material.
– “Advanced” track problems are not bonus points and cannot replace regular

track problems.
– However: a consistent track record of doing advanced track material may earn

you an improved over all letter grade

WPE-I Policy
• If you wish to take CIS5000 for WPE-I (Written Preliminary Exam, part

I) credit toward a CIS PhD degree, you have two choices:
– Final exam only option: WPE-I credit only (no need to be registered for

the course). Passing score for WPE-I credit is determined by the CIS5000
instructors (Pierce, Weirich, Zdancewic). Historically, this has been
around a B+ grade on the exam.

– Full course participation option: Must be registered for the course. WPE-I
credit awarded for a weighted average grade of B+ on homework and all
three exams.
• You can take the course P/F and also receive WPE-I credit (following the same

criteria)

Homework
Structure
• Homework consists of Coq source files that you complete individually.
• Advanced track students must complete (or attempt) all non-optional

exercises including those marked “advanced”.
– Missing “advanced” exercises will count against your score.

• Regular track students must complete (or attempt) all non-optional
exercises except those marked “advanced”.
– Missing “advanced” exercises will not count against your score.
– But you are welcome to try them!

• Subsequent homework assignments build on earlier ones
– you should keep up with the course material

Submission
– HW will be submitted to an autograder via Gradescope
– homework that does not compile will not be graded and will receive a 0

Note: the HW difficulty level ramps up significantly. If you struggle
early, that is bad, but don’t be deceived if you think it’s easy.

Late Homework
Late Policy

– HW cannot be submitted more than 48 hours late
(unless you have unusual circumstances)

– HW submitted after the due date will accrue “late days,” one late day for
each 24 hours, or fraction thereof, that the assignment is late.

– Any homework that is not submitted at all receives a score of 0 and
accrues 2 late days

– Late days are atomic, indivisible units, and partial late days are not
permitted.

Accrued late days do not impact any individual homework score. Instead, they
apply to the final weighted, letter grade of the class, as follows:

0 – 8 late days: no grade penalty
9 – 16 late days: one-third grade penalty (A ⇒ A- B+ ⇒ B etc.)
17 – 20 late days: two-thirds grade penalty (A ⇒ B+ B+ ⇒ B- etc.)
21 – 24 late days: full grade penalty (A ⇒ B B+ ⇒ C+etc.)

Unusual Circumstances
If you have a medical, family, or other emergency

– Please contact the instructor as soon as possible
(in advance of the due date or exam if you know ahead of time)

– If you do not contact the instructor in advance, it is up to their
discretion whether you accrue late days due to the emergency

We will do our best to accommodate your unusual circumstances.

(The primary goal is for you to master the course material.)

Academic Integrity

Not OK
–Copying or otherwise looking at someone else’s code
– Sharing your code in any way

(copy-paste, github, paper and pencil, …)
–Using code from a previous semester

OK (and encouraged!)
–Discussions of concepts
–Discussion of debugging strategies
–Verbally sharing experience

Penn’s code of academic integrity:
http://www.upenn.edu/academicintegrity

Submitted material must be your own work.

TODO (for you)
• Before next class:

– Check out Ed Discussion (let us know if you are not already registered)
– Try to log in to Gradescope
– Download Poll Everywhere app on your phone
– Install VSCode + Coq
– Start reading: Preface and Basics

• HW1: Exercises in Basics.v
– Due: Tuesday, September 6th at 10:00PM
– Available from course web page
– Complete all non-optional exercises

• There are no “advanced” problems for this HW

– Submit via Gradescope

COQ

Coq in CIS 5000
• We’ll use Coq version 8.15.2

– We recommend using VSCode + Docker
– Course web pages have installation instructions.

• See also the web pages at: coq.inria.fr

• Other available user interfaces
– CoqIDE – a standalone GUI / editor
– ProofGeneral – an Emacs-based editing environment

Coq’s Full Capabilities

Subset Used in CIS 5000

To start. By the end of the
semester.

BASICS.V

Getting acquainted with Coq…

