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Announcements
• HW12: Sub.v

– due: Monday, Dec. 12th at midnight
– NOTE: See submission instructions on ED about the “short 

answer” questions.

• Final exam: 
Tuesday, Dec. 20th 9:00 – 11:00AM
Location: Skirkanich Auditorium

• Course status:
– We will be working on compiling the course grades, 

statistics, etc., during the next week.
– If you have questions about how you stand in the course, 

please contact me.



Final Exam Coverage
• The exam is comprehensive, but emphasizes more recent material:
• General Coq principles: 

– Propositions, induction, and inductively-defined propositions
– Functional programming

• Imp Semantics:
– large- and small-step operational semantics
– program equivalence
– Hoare logic

• Simply-typed Lambda Calculus:
– operational semantics of higher-order functions, substitution
– type system and proofs: canonical forms, preservation, progress
– variants: products, sums, fix, records, etc.

• Subtyping
– properties of the subtyping relation <: 
– inversion lemmas

• Mutable state
– references, store typing   (details less emphasized since there was no HW)

We will provide definitions, 
reminders, etc., so there is less 
emphasis on memorization.



Standard vs Advanced [WPE I]
• As with the previous exams there will be a “standard” track and an 

“advanced” track.

• PhD Students and WPE-I exam students must take the advanced track
– It will include some form of written proof
– WPE-I exams often include more “synthesis” problems (i.e., explore a 

variant language, proofs, etc.)

• See the example final exams that are available on the course web 
page.



Remote Exam Option
• Some students with extenuating circumstances have asked to take the 

exam remotely.

• The remote option will be the same format.
• Released on Gradescope for a 24-hour duration starting at the same 

time as the in-person exam.
• There will be a 2-hour (+ a bit extra) window to download, complete, 

(scan if necessary), and upload the exam to Gradescope.

• Send mail to me before Thursday, December 15th if you wish to be 
considered for the remote option.



COURSE RECAP



SOFTWARE FOUNDATIONS

Logic

+ Reasoning about 
individual programs

+ Reasoning about 
whole programming 
languages



CIS 5000
• Foundations

– Functional programming
– Constructive logic
– Logical foundations
– Proof techniques for inductive definitions 

• Semantics
– Operational semantics
– Modeling imperative “While” programs
– Hoare logic for reasoning about program correctness

• Type Systems
– Simply typed l-calculus
– Type safety
– Subtyping
– Dependently-typed programming

• Coq interactive theorem prover
– turns doing proofs & logic into programming                 fun!



Subset Used in CIS 5000

To start. By the end of the
semester.



Coq’s Full Capabilities



Can Formal Methods Scale?

• Bedrock – web; packet filters
• CakeML – SML compiler
• CertiKOS – certified OS kernel
• CompCert – C compiler
• EasyCrypt – crypto protocols

• Kami – RISCV architecture
• HS2Coq – Library validation
• SEL4 – OS microkernel
• Vellvm – LLVM IR 
• VST – C software
• Ynot – DBMS, web services

Academia Industry



The Science of Deep Specifications

12

Expeditions Grant
deepspec.org



Deep Specifications

• Rich – expressive description
• Formal – mathematical, machine-checked
• 2-Sided – tested from both sides
• Live – connected to real, executable code

Goal: Advance the reliability, safety, security, and 
cost-effectiveness of software (and hardware).

[deepspec.org]



14



SMART CONTRACTS
case study



Formal Methods for Blockchain

[Tolmach, et al. 2021]

Academic Work:
A Survey of Smart Contract Formal Specification and Verification

Uses deep spec 
results



Smart Contracts

blockchain
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Vulnerabilities?

contract DAO {      
pay(to){…}

}

VM
CODE

buggy/malicious 
contract         

incorrect compilation

flaws in the VM design

broken crypto

bad network protocol

compromised OS



Smart Contract Vulnerabilities

contract SimpleDAO {
mapping (address ⇒ uint) public credit;

function pay(address to) {
credit[to] += msg.value

}

function withdraw(uint amount) {
if (credit[msg.sender] >= amount) {

msg.sender.call.value(amount);
credit[msg.sender] -= amount;

}
} 

function getCredit(address to) {…}
}

[Atzei, et al. 2017]

1. check the credit
2. transfer the amount
3. deduct the amount

from available credit
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Smart Contract Vulnerabilities
[Atzei, et al. 2017]

contract SimpleDAO {
mapping (address ⇒ uint) public credit;

function pay(address to) {
credit[to] += msg.value
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6 And the loop continues
until SimpleDAO runs
out of ether, or the attack
runs out of “gas”.



Smart Contract Vulnerabilities
[Atzei, et al. 2017]

contract SimpleDAO {
mapping (address ⇒ uint) public credit;

function pay(address to) {
credit[to] += msg.value

}

function withdraw(uint amount) {
if (credit[msg.sender] >= amount) {

credit[msg.sender] -= amount;
msg.sender.call.value(amount);

}
} 

function getCredit(address to) {…}
}

contract Mallory {
SimpleDao public dao = SimpleDao(0x354…);

address owner;

function Mallory(){owner = msg.sender;}

function (){ dao.withdraw(dao.getCredit(this)); }

function stealItAll() { owner.send(this.balance); }
}

simple fix:
decrement the credit before
transferring the amount.



Formal Verification



Deep Specification

state

mathematical model
- hides implementation details
- describes the system behaviors
- implemented in an 

interactive theorem prover

1. Coq
2. LEAN
3. F*
4. Isabelle/HOL
5. Agda

sem : code x state → state



Correctness Definition
[Grischenko, et al. 2018]

For the DAO attack, the problem can be characterized
as a failure of a property known as call integrity, 
reentrant code controlled by attacker.
Definition call_integrity (p:code) :=

∀(s1, s2:state), 
(sem (p,s1) = s1’) →
(sem (p,s2) = s2’) → c(s1’) ~ c(s2’).

Definition OK (p:code) : ℙ := …

Theorem call_safety : ∀ p, OK(p) ⇒
call_integrity ⟦p⟧.

Define a predicate that determines if a program good:Specification:
An attacker shouldn’t be able 
to  interfere with uses of the
fallback method.

Conformance check:
Says how to determine
whether a program satisfies the 
specification.



Formal Verification

contract DAO {      
pay(to){…}

}

⟦DAO contract⟧ : code = {…}

Lemma buggy_DAO : not (OK(DAO)).
Proof. … 
Qed.

Lemma safe_FixedDAO : OK(FixedDAO).
Proof. … 
Qed.

1. Embed the smart contract
2. Use the formal semantics

to check its properties

⇒ proof engineering
- constructing proofs at scale
- modeling techniques
- proof principles
- tactics, automation

This … hides a
lot of (sometimes)
manual effort and
a very large proof.



Formal Verification ⇒ Fewer Vulnerbilities

contract DAO {      
pay(to){…}

}

VM
CODE

malicious contract
verified Result:

Proving the systems 
satisfies call integrity 
rules out the DAO 
malicious contract!incorrect compilation

flaws in the VM design

broken crypto

bad network protocol

compromised OS

?



VELLVM – VERIFIED LLVM IR
case study



LLVM Compiler Infrastructure
[Lattner et al.]

39

LLVM

optimizations/
transformations

typed SSA IR

analysis

front 
ends

code 
gen/jit



define i64 @factorial(i64 %n) {
%acc = alloca i64
store i64 1, i64* %acc
br label %start

start:
%n1 = phi i64 [%n, %0], [%n2, %then]
%c = icmp sgt i64 %n1, 0
br i1 %c, label %then, label %end

then:
%x1 = load i64, i64* %acc
%x2 = mul i64 %x1, %n1
store i64 %x2, i64* %acc
%n2 = sub i64 %n1, 1
br label %start

end:
%ans = load i64, i64* %acc
ret i64 %ans

}

LLVM IR 
=

Control-flow Graphs:
+ Labeled blocks  
+ Straight-line Code
+ Block Terminators
+ Static Single Assignment
+ Phi Nodes

Types:
- i64  ⇒ 64-bit integers  
- i64* ⇒ pointer 



Other LLVM IR Features

• C-style data values 
– ints, structs, arrays, pointers, 

vectors

• Type system
– used for layout/alignment/padding

• Relaxed-memory concurrency 
primitives

• Intrinsics
– extend the language malloc, 

bitvectors, etc.

• Transformations & Optimizations

Make targeting LLVM IR
easy and attractive for 
developers!



But… it's complex

LLVM Reference Manual
table of contents



One Example: undef

The undef "value" represents an arbitrary,
but indeterminate bit pattern for any type.

Used for:  
- uninitialized registers
- reads from volatile memory
- results of some underspecified operations



What is the value of %y after running the following?

One plausible answer: 0
Not LLVM’s semantics!

(LLVM is more liberal to permit more aggressive optimizations)

%x = or i8 undef, 1
%y = xor i8 %x, %x



Partially defined values are interpreted 
nondeterministically as sets of possible values:

⟦%x⟧ = {a or b | a∈⟦i8 undef⟧, b ∈⟦1⟧}
= {1,3,5,…,255}

⟦%y⟧ = {a xor b | a∈⟦%x⟧, b∈⟦%x⟧}
= {0,2,4,…,254}

⟦i8 undef⟧ = {0,…,255}
⟦i8 1⟧ = {1}

%x = or i8 undef, 1
%y = xor i8 %x, %x



Interactions with Optimizations
Consider:

versus:

46

%y = mul i8 %x, 2

%y = add i8 %x, %x

⟦%x⟧ = ⟦i8 undef⟧
= {0,1,2,3,4,5,…,255}

⟦%y⟧ = {a mul 2 | a∈⟦%x⟧}
= {0,2,4,…,254}

⟦%x⟧ = ⟦i8 undef⟧
= {0,1,2,3,4,5,…,255}

⟦%y⟧ = {a + b | a∈⟦%x⟧, 
b∈⟦%x⟧}

= {0,1,2,3,4,…,255}



Interactions with Optimizations
Consider:

versus:

47

%y = mul i8 %x, 2

%y = add i8 %x, %x

Upshot: if %x is undef, we 
can't optimize mul to add



• Many more such subtle features:
– poison, inttoptr, ptrtoint, aliasing rules, …

• Complex language feature interactions
– hard to reason about LLVM IR code 

(for people & compilers)

• Compiler bugs
– miscompilations

– Inconsistent optimizations

What's the problem?

48



LLVM Compiler Infrastructure

optimizations/
transformations

typed SSA IR

analysis

[Lattner et al.]

49

LLVM

front 
ends

code 
gen/jit



The Vellvm Project

optimizations/
transformations

typed SSA IR

analysis

• Formal semantics
– for a large subset of LLVM 

• Tools for creating correctness 
proofs

• Coq implementation
• Extraction of passes for use with 

LLVM compiler
• Applications:

– verified memory safety 
instrumentation

– validated optimizations

[Zhao et al. POPL 2012, CPP 2012, PLDI 2013, Mansky et al. CAV2015]

50



Vellvm Framework

transform
C Source 

Code
other

optimizations
LLVM

IR target

LLVM

Coq
syntax

semantics

memory models

type system
and SSA

proof techniques & metatheory

51

LLVM
IR

OCaml bindings
printerparser

extract



Vellvm Framework

C Source 
Code

other
optimizations

LLVM
IR target

LLVM
OCaml bindings

printerparser

Coq
syntax

semantics

memory models

type system
and SSA

proof techniques & metatheory

52

LLVM
IR

Verified
Transform
extract



VELLVM – Previous Results
• SoftBound [POPL 2012]

– Memory Safety  

• mem2reg [PLDI 2013]
– Register promotion, defined 

in terms of a stack of 
"micro-optimizations"

• Verified dominator analysis [CPP 2012]
– Cooper-Harvey-Kennedy Algorithm [2000]

• Better memory models
– ptrtoint casts [PLDI 2015]
– modular formalization [CAV 2015]

• Better representation for effectful programs
in Coq [POPL2020]

• Improved LLVM IR semantics [ICFP 2021]

max �s�

LAS/LAA�

DSE�

DAE�

elim ��

Find 
alloca�

optimizations



Modular LLVM IR Semantics

• Core: LLVM control-flow-graph interpreter
• Memory Model [CAV 15]

– interprets loads/stores
– support for casts  [PLDI 15]
– other effects

LLVM SSA
core IR

Undef / Effects
Memory 

Model

External calls 
&

Concurrency



LLMV Memory Model (simplified )

55

(* IO interactions for the LLVM IR *)
Inductive IO : Type -> Type :=
| Alloca : ∀ (t:dtyp), (IO dvalue)
| Load : ∀ (t:dtyp) (a:dvalue), (IO dvalue)
| Store : ∀ (a:dvalue) (v:dvalue), (IO unit)
| GEP : ∀ (t:dtyp) (v:dvalue) (vs:list dvalue), (IO dvalue)
| ItoP : ∀ (i:dvalue), (IO dvalue)
| PtoI : ∀ (a:dvalue), (IO dvalue)
| Call : ∀ (f:string) (args:list dvalue), (IO dvalue)
.

output values of 
the Call event

type of the result
provided by the 

environment

Describes the interface
for "observations" of 
LLVM IR programs.



LLVM Interpreter in Coq

56

interpreter returns
an interaction tree
with "LLVM" effects.

The interpreter 
"calls out" to the memory
model by generating
visible effects…

Extract to executable
interpreter (Ocaml).



Vellvm Effects
1. External Calls
2. Intrinsics
3. Global Environment
4. Local Environment
5. Stack
6. Memory
7. Nondeterminism
8. Undefined Behavior
9. (Debugging)

57

Each layer  of effects can
be interpreted separately,
making proofs modular and
changes orthogonal.
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Model supports nondeterminism
defines a set of possible behaviors.
⇒ to account for undef

Executable reference intepreter
⇒ for debugging and validation

Obtain refinement proof
for free!



DENOTATIONAL SEMANTICS
Compositionality

60



Compositional LLVM Semantics

61

⟦ - ⟧expr expressions 

⟦ - ⟧instr instructions

⟦ - ⟧block blocks

⟦ - ⟧cfg control-flow graphs

⟦ - ⟧llvm programs 
(mutually recursive functions)

Meaning built up by induction
on the structure of the syntax.
- open programs
- fixpoint combinators
- pure monadic computations

Operational Semantics
- not defined purely by induction on syntax
- extra “bookkeeping”: evaluation contexts,

program counters, etc.
- L



Compositional Reasoning

62

Rules to reason about control-flow graph composition.

Lemmas about “contextual program equivalences”.



VELLVM DEMO
Exectuability

64



So What?

• Debugging

• Validate Vellvm Semantics against other implementations
– test suite of ~140 “semantic tests”
– e.g., integrate with QuickChick, Csmith, ALIVE

• Find bugs in the existing LLVM infrastructure
– thinking hard about corner cases while formalizing is a good way 

to find real bugs
– identify inconsistent assumptions about the LLVM compiler

65



Deep Specifications

• Rich – expressive description
• Formal – mathematical, machine-checked
• 2-Sided – tested from both sides
• Live – connected to real, executable code

66

?



SPIRAL / HELIX

67

DSL for high-performance numerical computing.  
[Püschel, et al. 2005] [Franchetti et al., 2005, 2018] [Zaliva et al., 2015 2018, 2019]



HELIX Compilation Pipeline

68

HCOL ∑-HCOL MHCOL DHCOL FHCOL LLVM IR

formula

SPIRAL
OL

SPIRAL
∑-OL

Translation Validated
Optimizations

SPIRAL acts as (untrusted)
optimization oracle

Verified Compiler



Compiler Correctness Proof

≈POST

FHCOL LLVM IRcompile

itree Eimp unit

denote

itree Easm unit

denote

itree E Σllvm

interp statellvm

itree E Σhelix

interp statehelix



WHAT NEXT?
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After CIS 5000
• Research Conferences:

– Certified Programs and Proofs (CPP)
– Interactive Theorem Proving (ITP)
– Theorem Proving and Higher-order Logics (TPHOLS)
– Principles of Programming Languages (POPL)
– Programming Languages Design and Implementation (PLDI)
– International Conference on Functional Programming (ICFP)
– …

• Other Theorem Provers:
– LEAN
– Isabelle/HOL
– Agda
– F*



After CIS 5000
• More Software Foundations Volumes

– written in the same style as SF and PLF



Thanks!
• To our three fantastic TAS:

Jessica Shi Adam Stein Joey Velez-Ginorio

And, thanks to all of you!


