
CIS 5000:
SOFTWARE FOUNDATIONS
Steve Zdancewic Fall 2024

SOFTWARE FOUNDATIONS

How do we build software?
that works^

(and be convinced
that it does)

^

Critical Software
Individual programs

• Operating systems
• Network stacks
• Crypto
• Medical devices
• Flight control systems
• Power plants
• Home security
• Blockchain
• …

Programming languages
• Compilers
• Static type system
• Data abstraction and

modularity features
• Security controls

SOFTWARE FOUNDATIONS

Logic

+ Reasoning about
 individual programs

+ Reasoning about
 whole programming
 languages

 LOGICAL FOUNDATIONS

Q: How do we know something is true?
A: We prove it
Q: How do we know that we have a proof?

A: We need to know what it means for something to be
a proof.
First cut: A proof is a “logical” sequence of
arguments, starting from some initial assumptions

Q: How do we agree on what is a valid sequence of
arguments? Can any sequence be a proof? E.g.

 All humans are mortal
 All Greeks are human
 Therefore I am a Greek!
A: No, no, no! We need to think harder about valid

ways of reasoning...

Aristotle
384 – 322 BC

Euclid
~300 BC

First we need a language…
• Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

• 1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
– First rigorous treatment of functions and

quantified variables
– ⊢ A, ¬A, ∀x.F(x)
– First notation able to express arbitrarily

complicated logical statements

Gottlob Frege
1848-1925

Images in this & following slides taken from Wikipedia.

Formalization of Arithmetic
• 1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
• 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
• 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)

• Frege’s goals:
– isolate logical principles of inference
– derive laws of arithmetic from first principles
– set mathematics on a solid foundation of logic

The plot thickens…

Just as Volume 2 was going to print in 1903,
Frege received a letter…

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this

volume was nearing its completion.”

– Frege, 1903

Bertrand Russell
• Russell’s paradox:

• Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

• Frege’s logical system could derive anything.
(Oops!)

Bertrand Russell
 1872 - 1970

1. Set comprehension notation:
 { x | P(x) } “The set of x such that P(x)”

2. Let X be the set (of sets) { Y | Y ∉ Y }.

3. Ask the logical question:
 Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
 If X ∉ X then X ∈ X.

Aftermath of Frege and Russell
• Frege came up with a fix… but it made his

logic trivial :-(

• 1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

• 1910, 1912, 1913, (revised 1927):
Principia Mathematica (Whitehead & Russell)
– Goal: axioms and rules from which all

mathematical truths could be derived.
– It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow,
when arithmetical addition has been defined,
that 1+1=2."
—Volume I, 1st edition, page 379

Logic in the 1930s and 1940s
• 1931: Kurt Gödel’s first and second

incompleteness theorems.
– Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

– Write down: "This statement is not provable."
as an arithmetic statement.

• 1936: Genzen proves consistency of arithmetic.
• 1936: Church introduces the l-calculus.
• 1936: Turing introduces Turing machines

– Is there a decision procedure for arithmetic?
– Answer: no, it’s undecidable
– The famous “halting problem”

• N.b.: Only in 1938 did Turing get his Ph.D.

• 1940: Church introduces the simple theory of
types

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

Alonzo Church
 1903 - 1995

Alan Turing
 1912 - 1954

Fast Forward…
• Two logicians in 1958 (Haskell Curry) and 1969 (William Howard)

observe a remarkable correspondence:

• 1967 – 1980’s: N.G. de Bruijn runs Automath project
– uses the Curry-Howard correspondence for

computer-verified mathematics

• 1971: Jean-Yves Girard introduces System F
• 1972: Girard introduces Fw
• 1972: Per Marin-Löf introduces intuitionistic type theory

• 1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

Basis for modern
type systems:
OCaml, Haskell,
Scala, Java, C#, …

Haskell Curry
1900 – 1982

William Howard
1926 –

N.G. de Bruijn
 1918 - 2012

… to the Present
• 1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
• 1985: Coquand introduces the

calculus of constructions
– combines features from intuitionistic type

theory and Fw
• 1989: Coquand and Paulin extend CoC to

the calculus of inductive constructions
– adds “inductive types” as a primitive

• 1992: Coq ported to Xavier Leroy’s OCaml
• 1990’s: up to Coq version 6.2
• 2000-2015: up to Coq version 8.4

• 2013: Coq receives ACM Software System
Award

• 2024: Coq version 8.19.1 ← CIS 5000

Thiery Coquand
1961 –

The picture can't
be displayed.

Gérard Huet
1947 –

Too many contributors
to list here…

Thiery Coquand
1961 –

Gérard Huet
1947 –

NOTE: by the end of 2024,
Coq will be renamed Rocq.
(we'll stick with Coq for now)

Related technologies are gaining popularity: LEAN and Agda

PROGRAMMING FOUNDATIONS

So much for foundations… what about the “software” part?

(LANGUAGE)

Building Reliable Software
• Suppose you work at (or run) a software company.
• Suppose, like Frege, you’ve sunk 30+ person-years into developing the

“next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Nissan
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller
– Next big blockchain

• Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

• How do you avoid getting a letter like the one Frege got from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound type systems
– Formal verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Lightweight,
inexpensive techniques (that may
miss problems)

This isn’t a tradeoff… all of
these methods should be used.

Even the most “formal” argument
can still have holes:
• Did you prove the right thing?
• Do your assumptions match reality?

• Knuth: “Beware of bugs in the above
 code; I have only proved it correct, not
 tried it.”

Can Formal Methods Scale?

• Bedrock – web; packet filters
• CakeML – SML compiler
• CertiKOS – certified OS kernel
• CompCert – C compiler

• EasyCrypt – crypto protocols
• Kami – RISCV architecture
• HS2Coq – Library validation
• SEL4 – OS microkernel

• Vellvm – LLVM IR
• VST – C software
• Ynot – DBMS, web services

Academia Industry

Flagship Example: CompCert

22

[Xavier Leroy, et al. INRIA, 2010 - present]

Optimizing C Compiler:
 implemented and proved correct end-to-end with machine-checked proof in Coq

This is a large, sophisticated proof
development, but ultimately it
relies on the concepts introduced
in CIS 5000.

Input:
C source code

Output:
Power PC / x86 assembly

Does it work?

Random test-case
generation

LLVM

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in

total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

CompCert
 <10 bugs found only in the (at the time unverified) front-end component

Regehr’s Group Concludes

The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are
absent. As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack
of trying: we have devoted about six CPU-years to the task.
The apparent unbreakability of CompCert supports a
strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit
and machine-checked, has tangible benefits for compiler
users.

CIS 5000
• Foundations

– Functional programming
– Constructive logic
– Logical foundations
– Proof techniques for inductive definitions

• Semantics
– Operational semantics
– Modeling imperative “While” programs
– Hoare logic for reasoning about program correctness

• Type Systems
– Simply typed l-calculus
– Type safety
– Subtyping
– Dependently-typed programming

• Coq interactive theorem prover
– turns doing proofs & logic into programming fun!

COURSE MECHANICS

Administrivia
• Instructor: Steve Zdancewic

 Office hours: See web page (currently Mondays 4-5)
 Levine 511

• TAs: (see web page for office hours)
– Zain Aamer
– Cuthbert Li

– Elan Roth

• E-mail: cis5000@seas.upenn.edu (goes to all course staff)

• Web site: http://www.seas.upenn.edu/~cis5000
• Infrastructure:

– Ed Discussion
– Gradescope
– PollEverywhere (for in-class quizzes – not graded)
– Canvas (only for roster)

mailto:cis500@seas.upenn.edu

• Course textbook: Software Foundations,
volumes 1 and 2
– Electronic edition tailor-made for

 this class

Use the version available from the
cis5000 course web pages!!

(A new version of each chapter will
generally go live just before class. :-)

• Additional resources:
– Types and Programming Languages

(Pierce, 2002 MIT Press)
– Interactive Theorem Proving and Program

Development
(Bertot and Castéran, 2004 Springer)

– Certified Programming with
Dependent Types
(Chlipala, electronic edition)

Resources

How to CIS5000
Class participation is strongly encouraged!

– Check out the material before lecture
– Live lectures will be as interactive as possible!
– Ask lots of questions
– Focus on the class instead of multitasking

Lecture recordings
– Every lecture will be recorded
– Should be available on Canvas a few hours later
– Feel free to use them (and the textbook) instead of attending live if that

works better for you

If you are not feeling well, please stay home and take care of
yourself and your classmates!

Class Participation

• We will be using Poll Everywhere, an online polling platform, for
– in-class mini quizzes
– real-time “polls” during lectures
– (not graded!)

• For next time: download the Poll Everywhere app for your
smartphone.

Course Policies
• Prerequisites:

– Significant programming experience
– “Mathematical sophistication”
– Undergraduate functional programming or compilers class helpful

Grading:
• 25% Homework (~12 weekly assignments)
• 20% Midterm I (in class, early October)
• 20% Midterm 2 (in class, early November)

• 35% Final (date TBA)

“Regular” vs. “Advanced” Tracks
• “Regular” track

– Default for masters students and undergraduates

• “Advanced” track:
– More and harder exercises
– More challenging exams
– Covering a superset of the “regular” material
– PhD students who wish to take CIS 5000 for breadth requirement credit

must follow the advanced track.

• “Regular” and “Advanced” tracks are graded separately
– ”Regular” students are welcome and encouraged to try advanced-track

problems

Homework
Structure
• Homework consists of Coq source files that you complete individually.
• Advanced track students must complete (or attempt) all non-optional

exercises including those marked “advanced”.
– Missing “advanced” exercises will count against your score.

• Regular track students must complete (or attempt) all non-optional
exercises except those marked “advanced”.
– Missing “advanced” exercises will not count against your score.
– But you are welcome to try them!

• Subsequent homework assignments build on earlier ones
– you should keep up with the course material

Submission
– HW will be submitted to an autograder via Gradescope
– homework that does not compile will not be graded and will receive a 0

Note: the HW difficulty level ramps up significantly. If you struggle
early, that is bad, but don’t be deceived if you think it’s easy.

Late Homework
Late Policy

– HW cannot be submitted more than 48 hours late
(unless you have unusual circumstances)

– HW submitted after the due date will accrue “late days,” one late day for
each 24 hours, or fraction thereof, that the assignment is late.

– Any homework that is not submitted at all receives a score of 0 and
accrues 2 late days

– Late days are atomic, indivisible units, and partial late days are not
permitted.

Accrued late days do not impact any individual homework score. Instead, they
apply to the final weighted, letter grade of the class, as follows:
 0 – 8 late days: no grade penalty
 9 – 16 late days: one-third grade penalty (A ⇒ A- B+ ⇒ B etc.)
 17 – 20 late days: two-thirds grade penalty (A ⇒ B+ B+ ⇒ B- etc.)
 21 – 24 late days: full grade penalty (A ⇒ B B+ ⇒ C+ etc.)

Unusual Circumstances
If you have a medical, family, or other emergency

– Please contact the instructor as soon as possible
(in advance of the due date or exam if you know ahead of time)

– If you do not contact the instructor in advance, it is up to their
discretion whether you accrue late days due to the emergency

We will do our best to accommodate your unusual circumstances.

(The primary goal is for you to master the course material.)

Academic Integrity

Not OK
–Copying or otherwise looking at someone else’s code
– Sharing your code in any way

(copy-paste, github, paper and pencil, …)
–Using code from a previous semester

OK (and encouraged!)
–Discussions of concepts
–Discussion of debugging strategies
–Verbally sharing experience

Penn’s code of academic integrity:
http://www.upenn.edu/academicintegrity

Submitted material must be your own work.

TODO (for you)
• Before next class:

– Register for Ed (if you are not already registered)
– Try to log in to Canvas
– Get Coq running (see instructions on course web page)
– Download Poll Everywhere app on your phone
– Start reading: Preface and Basics

• HW1: Exercises in Basics.v
– Due: Tuesday, September 3rd at 10pm
– Available from course web page
– Complete all non-optional exercises

• There are no “advanced” problems for this HW

– Submit via Gradescope

COQ

Coq in CIS 5000
• We’ll use Coq version 8.19.1

– We recommend obtaining it via VSCode and Docker
– Instructions are available on the course web page

• See the web pages at: coq.inria.fr

• Alternative user interfaces
– CoqIDE – a standalone GUI / editor
– ProofGeneral – an Emacs-based editing environment

• Course web pages have more information.

Coq’s Full Capabilities

Subset Used in CIS 5000

To start.To start. By the end of the
semester.

BASICS.V

Time to start getting acquainted with Coq…

