Chapter 2

Universal RAM Programs and
Undecidability of the Halting Problem

The goal of this chapter is to prove three of the main
results of computability theory:

(1) The undecidability of the halting problem for RAM
programs (and Turing machines).

(2) The existence of universal RAM programs.

(3) The existence of the Kleene T-predicate.

All three require the ability to code a RAM program as
a natural number.

Godel pioneered the technique of encoding objects such

as proofs as natural numbers in his famous paper on the
(first) incompleteness theorem (1931).

109

110 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

One of the technical issues is to code (pack) a tuple of
natural numbers as a single natural number, so that
the numbers being packed can be retrieved.

Godel designed a fancy function whose defintion does not

involve recursion (Godel’s 8 function; see Kleene [?] or
Shoenfield |?]).

For our purposes, a simpler function J due to Cantor
packing two natural numbers m and n as a single natural
number J(m, n) suffices.

Another technical issue is the fact it is possible to re-
duce most of computability theory to numerical functions

f: N™ — N, and even to functions f: N — N.

Indeed, there are primitive recursive coding and decoding
functions Dy : >* — N and C: N — >* such that C} o
Dy = idg+, where X = {aq, ..., a;}.

[t is simpler to code programs (or Turing machines) tak-
ing natural numbers as input.

2.1. PAIRING FUNCTIONS 111

2.1 Pairing Functions

Pairing functions are used to encode pairs of integers into
single integers, or more generally, finite sequences of inte-
gers into single integers.

We begin by exhibiting a bijective pairing function,
J: N? — N.

The function J has the graph partially showed below:

Y
410
hY
36 11
NN
23 7 12
NN
11 48 13
NN N N

112 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The tunction J corresponds to a certain way of enumer-
ating pairs of integers. Note that the value of 4y is con-
stant along each descending diagonal, and consequently,
we have

J(x,y)=1+24 -+ (x+y) +uz,
=((x+y)lz+y+1)+2x)/2,
= (z+y)° +3z+y)/2,

that is,

J(z,y) = ((x+y)*+ 3z +71)/2

Definition 2.1. The pairing function J: N> — N is
defined by

J(z,y) = ((z +y)*+3x+y)/2 forallz,y €N

The functions K: N — N and L: N — N are the projec-
tion functions onto the axes, that is, the unique functions
such that

K(J(a,b)) =a and L(J(a,b)) =0,
for all a,b € N.

The functions J, K, L are called Cantor’s pairing func-
tions.

2.1. PAIRING FUNCTIONS 113

Clearly, J is a recursive function (even primitive recur-
sive), since it is given by a polynomial.

In Definition 2.1, we implicitly assumed that J is bijective
in order to define K and L.

Neither injectivity nor surjectivity of J are easy to prove.

Theorem 2.1. The pairing function J: N> — N de-
fined by

J(z,y) = ((x +y)* +3x+y)/2 forall z,y €N

1s a bijection. There are unique functions K: N — N
and L: N — N such that

K(J(a,b)) =a
L(J(a,b)) =10
J(K(z),L(z)) =z

for all a,b,z € N.

The proof of Theorem 2.1 yields explicit formulae for K
and L.

114 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM
If we define

Qi(z) =|([vV8z+1]+1)/2] —1

Q2(2) = 22 — (Qu(2))?,
then it can be shown that

K(2) = 2(Qal2) ~ Qu(2))

L(z) = Qi) = 5(Qufz) — Qi(2)).

Tthe floor function from R to N is defined such that
| x| is the largest integer < x (for example, [2.3| = 2,

|v/2] = 1). The above expressions can be used to show
that K and L are primitive recursive.

Using the fact that J is bijective and that

r<J(z,y) and y < J(z,y),

we also obtain the formulae
K(z) = min(z < 2)(3y < 2)[J(z,y) = 2]

and
L(z) =min(y < z)(Jz < 2)|J(x,y) = 2|

2.1. PAIRING FUNCTIONS 115

The above expressions also prove that K and L are prim-
1itive recursive.

The pairing function J(x, y) is also denoted as (x, y), and
K and L are also denoted as II; and II5.

The notation (z,y) is “intentionally ambiguous,” in the
sense that it can be interpreted as the actual ordered pair
consisting of the two numbers z and y, or as the number
(x,y) = J(x,y) that encodes the pair consisting of the
two numbers x and y.

The context should make it clear which interpretation is
intended. In this chapter and the next, it is the number
(code) interpretation.

We can define bijections between N” and N by induction
forall n > 1.

116 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 2.2. The function (—,...,—),: N* = N
called an extended pairing function is defined as follows.

We let

<ZL’1,5L’2>2 = <331,332>7

and
<ZE1, e ooy Ly $n+1>n+1 = <ZE1, cey In—1, <$n7 $n+1>>n>
for all z,x9,..., 2,11 € N.

Again we stress that (x1,...,Z,), is a natural number.

2.1. PAIRING FUNCTIONS

For example.

3= <ZU1, <372, $3>>2

= (@1, (2, 73))
<$1,$2,333,334>4 <I y L2, (5133,5134>>3
= {
5 = {
= {

L <332, <$37 $4>>>

<$1, X2, x3>

8

<£U1,.I'2,3§'3,3§'4,3§'5> Xy, X2, X3, <x47$5>>4

It can be shown by induction on n that

<331, “ e ,xn, $n+1>n_|_1 — <$17 <Zl72, e ,.Tn_|_1>n>.

T1, (T2, (¥3, (T4, T5))))-

117

118 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We can define a uniform projection function, II, with
the following property:

if 2 = (x1,...,%,)n, with n > 2, then

(i, n, z) = x;
for all 7, where 1 <17 < n.
The idea is to view z as an n-tuple, and II(i,n, z) as
the i-th component of that n-tuple, but if z, n and ¢ do
not fit this interpretation, the function must be still be

defined and we give it a “crazy’ value by default using
some simple primitive recursive clauses.

2.1. PAIRING FUNCTIONS 119

Definition 2.3. The uniform projection function
I[T: N* — N is defined by cases as follows:

[1(z,0,2) =0, foralli>0,
[1(¢,1,2) = 2z, forallz >0,
[1(3,2,2) = (2), i0<i<I,
[1(,2, z) = lly(2), forall i > 2,

and for all n > 2,

[1(z,n, 2) if 0 <i<n,
[H(z,n+1,2) = I1(Il(n,n, 2)) ifi=n,
[Is(Il(n,n, 2)) ifi > n.

By the results of Section 1.8, this is a legitimate primitive
recursive definition.

When ¢ =0o0r ¢ >n+1, we get “bogus” values.

120 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Remark: One might argue that it would have been prefer-
able to order the arguments of I1 as (n, 4, z) rather than
(2,1, 2).

We use the order (i, n, z) in conformity with Machtey and
Young [?].

Some basic properties of II are given as exercises; see the
notes.

2.1. PAIRING FUNCTIONS 121

As a first application, we observe that we need only con-
sider partial computable functions of a single argument.

Indeed, let ¢: N" — N be a partial computable function
of n > 2 arguments. Let

P(z) =e(I(1,n, 2),...,1(n,n, 2)),
for all z € N,

Then, © is a partial computable function of a single ar-
gument, and ¢ can be recovered from @, since

@(5171, s 73771) — ¢(<$17 s 7xn>n>
Thus, using (—, —) and II as coding and decoding func-

tions, we can restrict our attention to functions of a single
argument.

122 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

From now on, since the context usually makes it clear we
abbreviate (x1,...,Tn)n as (T1,...,T,).

[t can be shown that there exist coding and decoding
functions between ¥* and {a1}*, and that partial com-
putable functions over X* can be recoded as partial com-
putable functions over {a;}*. For details, see the notes.

Since {a1}* is isomorphic to N, this shows that we can
restrict out attention to functions defined over N.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 123

2.2 Coding of RAM Programs; The Halting Problem

In this section we present a specific encoding of RAM
programs which allows us to treat programs as integers.

This encoding will allow us to prove one of the most im-
portant results of computability theory first proven by
Turing for Turing machines (1936-1937), the undecid-
ability of the halting problem for RAM programs (and
Turing machines).

Encoding programs as integers also allows us to have pro-
orams that take other programs as input, and we obtain
a unwversal program.

Universal programs have the property that given two in-
puts, the first one being the code of a program and the
second one an input data, the universal program simu-
lates the actions of the encoded program on the input
data.

124 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

A coding scheme is also called an indexing or a Godel
numbering, in honor to Godel, who invented this tech-
nique.

From results of the previous Chapter, without loss of gen-
erality, we can restrict out attention to RAM programs
computing partial functions of one argument over N.

Furthermore, we only need the following kinds of instruc-
tions, each instruction being coded as shown below. Be-
cause we are only considering functions over N, there is
only one kind of instruction of the form add and jmp (and
add increments by 1 the contents of the specified register

Rj).

Recall that a conditional jump causes a jump to the clos-
est address Nk above or below iff Rj is nonzero, and if
Rj is null, the next instruction is executed.

We assume that all lines in a RAM program are num-
bered. This is always feasible, by labeling unnamed in-
structions with a new and unused line number.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM

125

Definition 2.4. Instructions of a RAM program (oper-

ating on N) are coded as follows:

N1 add Rj7 code
N1 tail Rj7 code
N1 continue code
Nt Rj jmp Nka code
Nt Rj jmp Nkb code

o~ o .
W
<
[NSIN
~
<
(-
~— S~ S 7

The code of an wnstruction I is denoted as #1.

To simplify the notation, we introduce the following de-
coding primitive recursive functions Typ, LNum, Reg,

and Jmp, defined as follows:

The functions yield the type, line number, register name,

and line number jumped to, if any,
coded by x.

for an instruction

126 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We can define the (primitive) recursive predicate INST,
such that INST(x) holds iff x codes an instruction.

First, we need the connective = (implies), defined such
that
P = Q ift =PV Q

Definition 2.5. The primitive recursive predicate
INST(z) is defined by

1 < Typ(z) < 5] A[1 < Reg(z)]A
Typ(z) < 3 = Jmp(x) = 0]A
Typ(z) = 3 = Reg(z) = 1]

The predicate INST(z) says that if x is the code of an
instruction, say x = (¢, 4,7, k), then 1 < ¢ <5, 7> 1,if
c < 3, then k =0, and if ¢ = 3 then we also have 57 = 1.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 127

Definition 2.6. Program are coded as follows. It P is a

RAM program composed of the n instructions Iy, ..., I,
the code of P, denoted as #P, is

#HP = (n,#1,...,#I,).
Recall from Property (%) in Section 2.1 that
(n, #1131 n) = (n, (#1,-- #E1 D))
Also recall that

(z,y) = ((z +y)* + 3z +y)/2.

128 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Example 2.1. Consider the following program Padd?2
computing the function add2: N — N given by

add2(n) =n + 2.

]1 . 1 add R1
]2 . 2 add R1
Is: 3 continue
We have
411 =(1,1,1,0), = (1, (1, (1,0))) = 37
#12=(1,2,1,0), = (1,(2,(1,0))) =92
#13=(3,3,1,0)4, = (3,(3,(1,0))) = 234
and

#Padd2 = (3, #I1, 412, #13)4 = (3, (37, (92, 234))
= 1018748 519973070 618.

The codes get big fast!

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 129

We define the (primitive) recursive functions Ln, Pg, and
Line, such that:

Ln(x) =11(1, 2, z),
Pe(z) =11(2,2, x),
Line(z, z) = T1(4, Ln(x), Pg(x)).

The function Ln yields the length of the program (the
number of instructions), Pg yields the sequence of instruc-
tions in the program (really, a code for the sequence), and
Line(7, x) yields the code of the ith instruction in the pro-
gram.

If x does not code a program, there is no need to interpret
these functions.

130 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The (primitive) recursive predicate PROG is defined such
that PROG(z) holds iff & codes a program.

Thus, PROG(x) holds if each line codes an instruction,
each jump has an instruction to jump to, and the last
istruction 1s a continue.

Definition 2.7. The primitive recursive predicate

PROG(x) is given by

Vi <Ln(x)i > 1=

[INST(Line(z, z)) A Typ(Line(Ln(z), x)) = 3

A [Typ(Line(i, z)) = 4 =

45 <i—1[j > 1 A LNum(Line(j, z)) = Jmp(Line(, z))]]A
Typ(Line(i, z)) = 5 =

37 < Ln(x)[j > i« A LNum(Line(j, z)) = Jmp(Line(z, x))]]|]

Note that we have used Proposition 1.7 which states that
if f is a primitive recursive function and if P is a primi-
tive recursive predicate, then dz < f(y)P(x) is primitive
recursive.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 131

We are now ready to prove a fundamental result in the
theory of algorithms. This result points out some of the
limitations of the notion of algorithm.

Theorem 2.2. (Undecidability of the halting prob-
lem) There is no RAM program Decider which halts
for all mputs and has the following property when
started with input x in register R1 and with input i in
register R2 (the other registers being set to zero):

(1) Decider halts with output 1 iff i codes a program
that eventually halts when started on input x (all
other registers set to zero).

(2) Decider halts with output 0 in R1 iff i codes a
program that runs forever when started on input x
in R1 (all other registers set to zero).

(3) If i does not code a program, then Decider halts
with output 2 in R1.

132 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Proof. Assume that Decider is such a RAM program,
and let () be the following program with a single input:

[R2 + R1

Decider

Program @ (code q) ¢ N1 continue

R1 jmp Nla
continue

\

Let ¢z be the code of some program P.

Key point: the termination behavior of () on input @
15 exactly the opposite of the termaination behavior of
Decider on input © and code 1.

(1) If Decider says that program P coded by i halts on
input ¢, then R1 just after the continue in line N1
contains 1, and @) loops forever.

(2) If Decider says that program P coded by 4 loops
forever on input ¢, then R1 just after continue in
line N1 contains 0, and @) halts.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 133

The program () can be translated into a program using
only instructions of type 1, 2, 3, 4, 5, described previously,
and let g be the code of this program.

Let us see what happens if we run the program () on
input q in R1 (all other registers set to zero).

Just after execution of the assignment R2 < R1, the
program Decider is started with ¢ in both R1 and R2.

Since Decider is supposed to halt for all inputs, it even-
tually halts with output 0 or 1 in R1.

If Decider halts with output 1 in R1 (which means that
() halts on input ¢q), then @ goes into an infinite loop,
while if Decider halts with output 0 in R1 (which means
that @) loops forever on input ¢), then @ halts.

But then, we see that Decider says that () halts when
started on input ¢ iff () loops forever on input ¢, a con-
tradiction.

Therefore, Decider cannot exist.]

134 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The argument used in the proof of 2.2 is quite similar in
spirit to “Russell’s Paradox.”

If we identify the notion of algorithm with that of a RAM
program which halts for all inputs, the above theorem
says that there is no algorithm for deciding whether a
RAM program eventually halts for a given input.

We say that the halting problem for RAM programs is
undecidable (or unsolvable).

The above theorem also implies that the halting problem
for Turing machines s undecidable.

2.2. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 135

Indeed, if we had an algorithm for solving the halting
problem for Turing machines, we could solve the halt-
ing problem for RAM programs as follows: first, apply
the algorithm for translating a RAM program into an
equivalent Turing machine, and then apply the algorithm
solving the halting problem for Turing machines.

The argument is typical in computability theory and is
called a “reducibility argument.”

Our next goal is to define a primitive recursive function
that describes the computation of RAM programs.

136 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

2.3 Universal RAM Programs

To describe the computation of a RAM program, we need
to code not only RAM programs but also the contents of
the registers.

Assume that we have a RAM program P using n registers
R1,..., Rn, whose contents are denoted as r1,...,r,.

We can code ry, ..., 7, into a single integer (r1,...,7,).
Conversely, every integer x can be viewed as coding the

contents of R1,..., Rn, by taking the sequence
(1, n,x),...,I[(n,n,x).

2.3. UNIVERSAL RAM PROGRAMS 137

Actually, it is not necessary to know n, the number of
registers, if we make the following observation:

Reg(Line(i, x)) < Line(i, x) < Pg(z) < x
for all 7, z € N.

Then, if = codes a program, then R1,..., Rx certainly
include all the registers in the program. Also note that
from a previous exercise,

(riy oo yrn, 0,00.,0) = (ry, ...,y 0).

We now define the (primitive) recursive functions Nextline,
Nextcont, and Comp, describing the computation of RAM
programs.

There are a lot of tedious technical details that the reader
should skip upon first reading. However, to be rigorous,
we must spell out all these details.

The most important function to define is Comp, and
this function requires the auxiliary functions Nextline and
Nextcont.

For the sake of simplicity we only define Comp; full details
are given in the notes.

138 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 2.8. Let x code a program and let ¢ be such
that 1 < ¢ < Ln(x). The function Comp is defined such
that

Comp(zx,y,m) = (i, z), where i and z are defined such
that after running the program coded by x for m steps,
where the initial contents of the program registers are
coded by y, the next instruction to be executed s the
1th one, and z 1s the code of the current contents of
the registers.

Proposition 2.3. The functions Nextline, Nextcont,
and Comp, are (primitive) recursive.

We can now reprove that every RAM computable func-
tion is partial computable. Indeed, assume that x codes
a program P.

2.3. UNIVERSAL RAM PROGRAMS 139

We would like to define the partial function End so that
for all x,y, where x codes a program and y codes the
contents of its registers, End(x, y) is the number of steps
for which the computation runs before halting, if it halts.
If the program does not halt, then End(x, y) is undefined.

The following definition works (see the notes).

Definition 2.9. The partial function End(zx,y) is de-
fined by

End(z,y) = min m[Il;(Comp(z,y, m)) = Ln(x)].

Note that End is a partial computable function; it can be
computed by a RAM program involving only one while
loop searching for the number of steps m.

The function involved in the minimization is primaitive
recursive. However, in general, End is not a total func-
tion.

140 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

If ¢ is the partial computable function computed by the
program P coded by z, then we claim that

ply) = M (Iy(Comp(z, (y, 0), End(z, {y,0))))-

The above fact is worth recording as the following propo-
sition which is a variant of a result known as the Kleene
normal form

Proposition 2.4. (Kleene normal form for RAM pro-
grams) If ¢ is the partial computable function com-
puted by the program P coded by x, then we have

p(y) = I (Iy(Comp(z, (y, 0), End(z, (y,0)))),
for all y € N.

Observe that ¢ is written in the form ¢ = g omin f, for
some primitive recursive functions f and g.

[t will be convenient to denote the function ¢ computed
by the RAM program P coded by x as ¢,. We also
denote the program P coded by x as P,.

2.3. UNIVERSAL RAM PROGRAMS 141

We can also exhibit a partial computable function which
enumerates all the unary partial computable functions.
It is a unwversal function.

Abusing the notation slightly, we will write (x,y) for
o({(x,y)), viewing ¢ as a function of two arguments (how-
ever, ¢ is really a function of a single argument).

We define the function ¢, as follows:

[T (Iz(Comp(z, (y, 0), End(z, {y, 0))))

undefined otherwise.

The function @, 1s a partial computable function with
the following property: for every x coding a RAM pro-
eram P, for every input vy,

qunw(xa y) — 90£U<y)7

the value of the partial computable function ¢, computed
by the RAM program P coded by x. If x does not code
a program, then ,,;,(x,y) is undefined for all .

142 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

By Proposition 1.9, the partial function ,,;,;, 1s not com-
putable (recursive).!

Indeed, being an enumerating function for the partial
computable functions, it is an enumerating function for
the total computable functions, and thus, it cannot be
computable.

Being a partial function saves us from a contradiction.

The existence of the universal function @, is sufficiently
important to be recorded in the following proposition.

Proposition 2.5. (Universal RAM program) For the
indexing of RAM programs defined earlier, there is a
universal partial computable function ., such that,
for all x,y € N, if ©, s the partial computable func-
tion computed by the program P, coded by x, then

Pr(Y) = Puniv((T, Y))-

The program UNIV computing ¢, can be viewed as an
interpreter for RAM programs.

IThe term recursive function is now considered old-fashion. Many researchers have switched to the term
computable function.

2.3. UNIVERSAL RAM PROGRAMS 143

By giving the universal program UNIV the “program” x
and the “data” y, we get the result of executing program
P, on input y. We can view the RAM model as a stored
program computer.

By Theorem 2.2 and Proposition 2.5, the halting problem
for the single program UNIV is undecidable.

Otherwise, the halting problem for RAM programs would
be decidable, a contradiction.

[t should be noted that the program UNIV can actually
be written (with a certain amount of pain).

The existence of the function ©,,,;, leads us to the notion
of an wndexing of the RAM programs.

144 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

2.4 Indexing of RAM Programs

We can define a listing of the RAM programs as follows.

If z codes a program (that is, if PROG(x) holds) and P

is the program that x codes, we call this program P the
xth RAM program and denote it as P,.

If x does not code a program, we let P, be the program
that diverges for every input:

N1 add R1
N1 R1 jmp Nla
N1 continue

Therefore, in all cases, P, stands for the xth RAM pro-
oram.

Thus, we have a listing of RAM programs,

Py, P, P5, Ps, ..., such that every RAM program (of the
restricted type considered here) appears in the list exactly
once, except for the “infinite loop” program.

2.4. INDEXING OF RAM PROGRAMS 145

For example, the program Padd2 (adding 2 to an integer)
appears as

}?1018748519973070618-

In particular, note that ¢,,;, being a partial computable
function, it is computed by some RAM program UNIV
that has a code univ and is the program P,,,;, in the list.

Having an indexing of the RAM programs, we also have
an indexing of the partial computable functions.

Definition 2.10. For every integer x > 0, we let P, be
the RAM program coded by x as defined earlier, and ¢,
be the partial computable function computed by P,.

For example, the function add2 (adding 2 to an integer)
appears as

¥1018748519973070618-

146 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Remark: Kleene used the notation {x} for the partial
computable function coded by x. Due to the potential
confusion with singleton sets, we follow Rogers, and use
the notation ,.

[t is important to observe that different programs P,
and P, may compute the same function, that is, while
P, # P, for all x # y, it is possible that ¢, = ¢,

In fact, it is undecidable whether ¢, = ¢,

2.5. UNDECIDABILITY AND REDUCIBILITY 147

2.5 Undecidability and Reducibility

In Section 1.5 we defined the listable (computably enu-
merable) languages and the computable languages in terms
of Turing machines.

In view of the equivalence of RAM-computability and
Turing- computability it will be convenient to define such
languages in terms of computable or partial computable
functions.

Given a set L C N of more generally L C X*, recall that
the characteristic function Cy, of L is defined by

1 ifzel
C p—
@) {O if v ¢ L.

In other words, C';, decides membership in L.

We have the following equivalent definitions of the listable
(computably enumerable) languages and the computable
languages.

148 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 2.11. A set L C N (or L C ¥*) is com-
putable (or recursive) (or decidable) if its characteristic
function C, is total computable.

Aset L C N (or L C X¥) is listable or computably
enumerable (or partially decidable) if it is the domain
of a partial computable function.

Aset L € N (or L C ¥*) is undecidable iff L is not
computable.

Thus, a set L is listable (computably enumerable) iff there
is a partial computable function f: N — N (or f: X* —
>7*) such that

f(x) is defined iff x € L.

If we think of f as computed by a Turing machine, then
this is equivalent to Definition 1.12.

2.5. UNDECIDABILITY AND REDUCIBILITY 149

The following important result is a special case of a propo-
sition proven in the notes.

Proposition 2.6. A set L C N (or L C ¥*) is listable
(computably enumerable) if and only if either L = ()
or L 1is the range of a total computable function f,

that is, L = f(N) (or L = f(¥%)).

Intuitively, the computable function f is a method for
effectively listing all (and only) elements in L.

A closer look at the proof of the undecidability of the
halting problem (Theorem 2.2) shows that the set of codes
of RAM programs that halt on their own code as input

K ={x € N| p,(x) is defined}

is not computable (not recursive).

150 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

However, since K is the domain of the partial computable
function f(x) = Qunin(x,), it is listable.

Therefore, the set K is a set that is listable but not
computable (not recursive).

Proposition 2.7. A set L is computable (recursive)
iff both L and L are listable (computably enumerable).

For a proof, see the notes.
From the above, we conclude that

K ={x € N| p,(x) is undefined}

1s not listable.

2.5. UNDECIDABILITY AND REDUCIBILITY 151

The undecidability of the halting problem (Theorem 2.2)
also shows that the set

Ko = {(z,y) € N| ¢.(y) is defined}

is not computable (recursive). This set is an encoding of
the halting problem.

However, since K, is the domain of the partial com-
putable function f(z) = wuniv(Il1(2), [l5(2)), it is listable.

The set Ky is another set that s listable but not com-
putable (not recursive).

By Proposition 2.7, the set Kj is not listable.

152 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Even more surprising, the set

TOTAL = {z | ¢, is a total function}

is not listable. We will prove this later.

This shows that the notion of a total computable function
is a very elusive notion, from a computable point of view.

We can’t even enumerate computably the total computable
functions!

Due to their importance let us record K, Ky and TOTAL
in the following definition:

Definition 2.12. The sets of natural numbers K, K
and TOTAL are defined as follows:

K ={x € N| p,(x) is defined}
Ky ={{z,y) € N | p,(y) is defined}
TOTAL = {x | ¢, is a total function}.

Both K and K| are listable but not computable, and
TOTAL is not even listable.

2.5. UNDECIDABILITY AND REDUCIBILITY 153

Consider the set

Hy = {z € N| ¢,(0) is defined},

the set of codes of RAM programs that halt on input 0.

We claim that H is not computable, but how do we prove
this?

We use a technique known as reducibility.
We construct a (total) computable function f such that:

Given an integer 7, the code of the RAM program P;, the
number f(¢) is the code of the program Py obtained
from P; by adding instructions before P; to initialize reg-
ister R1 with the value 7.

This new program Py ignores the initial value of its
input and replaces it by 1. After that, it simulates P,
on input 1.

1564 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Thus, observe that P; halts on input i iff Py halts on
input 0 (since Py ignores its input and then simu-
lates P; on input).

This fact can be stated as

ie K iff f(i) € H,.

Therefore, if we had an algorithm to decide computably
membership in Hy, namely it C'y, was computable, then
we would have an algorithm to decide computably mem-
bership in K, since Cx = Cp, o f is also computable as
the composition of two computable functions.

However K is not computable, so Hj is not computable
either.

The above is an instance of reducibility:.

2.5. UNDECIDABILITY AND REDUCIBILITY 155

Definition 2.13. Let A and B be subsets of N (or ¥%).
We say that the set A is many-one reducible to the set
B if there is a total computable function (total recursive

function) f: N — N (or f: X* — 3*) such that

reA it f(x)e B forallzeN.

We write A < B (or more precisely A <,,, B), and for
short, we say that A is reducible to B.

Intuitively, deciding membership in B is as hard as de-
ciding membership in A.

This is because any method for deciding membership in
B can be converted to a method for deciding membership
in A by first applying f to the number (or string) to be
tested.

156 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Here is another example of the use of reducibility to show
that a set is not computable (not recursive).

Let us prove that

TOTAL = {z | ¢, is a total function}

is not computable by providing a reduction from Hj to
TOTAL.

We construct a (total) computable function f such that:

Given an integer 7, the code of the RAM program P;, the
number f(i) is the code of the program Py obtained
from P; by adding instructions before FP; to initialize reg-
ister R1 with the value 0.

The program Py ignores the initial value of its input
and replaces it by 0. After that, it simulates P; on
input 0.

2.5. UNDECIDABILITY AND REDUCIBILITY 157

Now, observe that FP; halts for input 0 iff Py halts
for all inputs (since Py ignores its input and then
simulates P; on input ().

This fact can be stated as

i€ Hy iff f(i) e TOTALL

Therefore, if we had an algorithm to decide computably
membership in TOTAL, namely if Crorar, was computable,
then we would have an algorithm to decide computably
membership in Hy, since Cy, = CtoTaL © [18 also com-
putable as the composition of two computable functions.

However Hj is not computable, so TOTAL is not com-
putable either.

We have the following general result.

158 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Proposition 2.8. Let A, B, C' be subsets of N (or ¥*).
The following properties hold:

(1) IfA< B and B<C, then A <C.
(2) If A< B then A < B.
(3) IfA < B and B is c.e. (r.e.), then A is c.e. (r.e.).

(4) If A < B and A is not c.e. (not r.e.), then B is
not c.e. (not r.e.).

(5) If A < B and B is computable (recursive), then A

is computable (recursive).

(6) If A < B and A is not computable (not recursive),
then B is not computable (not recursive).

In most cases, we use (4) and (6).

A remarkable (and devastating) result of Rice shows that
all nontrivial sets of partial computable functions are not
computable (not recursive).

2.5. UNDECIDABILITY AND REDUCIBILITY 159

Let C be any set of partial computable functions.

We define the set Py as
PC:{CCEN|QOxEC}.

We can view C' as a property of some of the partial com-
putable functions. For example

C' = {all total computable functions}.

Observe that if ; € C' for some partial computable func-
tion ;, equivalently ¢ € Pg, then 7 € Po for all j € N
such that ¢; = p;.

In other words, if P~ contains the code ¢ of some program
P; computing a partial computable function ¢; € C, then
Pr contains the code of every program computing ;.
Steve Cook calls such a set Po a function index set.

160 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We say that C'is nontrivial if C' is neither empty nor the
set of all partial computable functions.

Equivalently C' is nontrivial iff Po # () and Po # N.

We also say that C'is trivial iff Po = or Po = N.

Theorem 2.9. (Rice’s Theorem) For any set C of
partial computable functions, the set

Po={rxeN| g, € C}
is not computable (not recursive) unless C' is trivial.

For proot of Theorem 2.9, see the notes.

The idea is construct a reduction from K to Py, where
(' is any nontrivial set of partial computable functions.

Rice’s Theorem shows that all nontrivial properties of the
input /output behavior of programs are undecidable!

2.5. UNDECIDABILITY AND REDUCIBILITY 161

It is important to understand that Rice’s theorem says
that the set Po of indices of all partial computable
functions equal to some function i a given set C' of
partial computable functions is not computable it C' is
nontrivial, not that the set C' is not computable it C' is
nontrivial.

The second statement does not make any sense because
our machinery only applies to sets of natural numbers (or
sets of strings).

For example, the set C' = {;,} consisting of a single
partial computable function is nontrivial, and being fi-
nite, under the second wrong interpretation it would be
computable.

But we need to consider the set
PC:{nEN“On:SOiO}
of indices of all partial computable functions ¢,, that are

equal to ¢;,, and by Rice’s theorem, this set is not com-
putable.

162 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

In other words, it is undecidable whether an arbitrary
partial computable function is equal to some fixed partial
computable function.

The scenario to apply Rice’s Theorem to a class C' of
partial functions is to show that some partial computable
function belongs to C' (C' is not empty), and that some
partial computable function does not belong to C (C
is not all the partial computable functions).

This demonstrates that C' is nontrivial.

For example, in (a) of the next proposition, we need to
exhibit a constant partial computable function, such as
zero(n) = 0, and a nonconstant partial computable func-
tion, such as the identity function (or succ(n) =n + 1).

2.5. UNDECIDABILITY AND REDUCIBILITY 163

In particular, the following properties are undecidable.

Proposition 2.10. The following properties of partial
computable functions are undecidable.

(a) A partial computable function is a constant func-
tion.

(b) Given any integer y € N, is y in the range of some
partial computable function.

(c) Two partial computable functions p, and ¢, are
identical. More precisely, the set {{x,y) | v, =
@y} is not computable.

(d) A partial computable function p, is equal to a given
partial recursive function @,.

(e) A partial computable function yields output z on
input y, for any gen y,z € N.

(f) A partial computable function diverges for some
mnput.

(9) A partial computable function diverges for all in-
put.

We conclude with the following crushing result which
shows that TOTAL is not only undecidable, but not even
listable.

164 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Proposition 2.11. The set
TOTAL = {x | ¢, is a total function}

is not listable (not recursively enumerable).

Proof. It TOTAL was listable, then there would be a total
computable function f such that TOTAL = range(f).
Define g as follows:

g(l’) — Spf(x)(x) +1= Spumv(f<x)7x) + 1

for all z € N. Since f is total and ¢g(,) is total for all
x € N, the function ¢ is total computable. Let e be an
index such that

9g=%Pre:
Since ¢ is total, g(e) is defined. Then, we have
g(e) = pre(e) +1=gle) +1,
a contradiction. Hence, TOTAL is not listable.]

2.6. KLEENE'S T-PREDICATE 165

2.6 Kleene’s T-Predicate

The object of this Section is to show the existence of
Kleene's T-predicate. This will yield another important
normal form. In addition, the T-predicate is a basic tool
in recursion theory:.

In Section 2.2, we have encoded programs. The idea of
this Section is to also encode computations of RAM pro-
orams.

Assume that = codes a program, that y is some input
(not a code), and that z codes a computation of P, on
mput y.

The predicate T'(x,y, z) is defined as follows:

T(z,y, z) holds iff x codes a RAM program, y is an input,
and z codes a halting computation of P, on input y.

[t can be shown that the predicate T is (primitive) recur-
sive; see the notes.

166 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

In order to extract the output of P, from z, we define the
(primitive) recursive function Res as follows:

Res(z) = T, (T(T(Ln(2), Ln(z), 2))).

Using the T-predicate, we get the so-called Kleene normal
form.

Theorem 2.12. (Kleene Normal Form) Using the in-
dexing of the partial computable functions defined ear-
lier, we have

px(y) = Resmin 2(T'(x, y, 2))],

where T'(x,y, z) and Res are (primitive) recursive.

Note that the universal function ., can be defined as

Cuniv(x,y) = Resjmin 2(T(x, y, 2))].

2.7. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 167

2.7 A Non-Computable Function; Busy Beavers

Total functions that are not computable must grow very
fast and thus are very complicated.

Yet, in 1962, Rado published a paper in which he defined
two functions ¥ and S (involving computations of Turing
machines) that are total and not computable.

Consider Turing machines with a tape alphabet I' =
{1, B} with two symbols (B being the blank).

We also assume that these Turing machines have a special
final state gp, which is a blocking state (there are no
transitions from qp).

We do not count this state when counting the number of
states of such Turing machines.

168 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The game is to run such Turing machines with a fixed
number of states n starting on a blank tape, with the goal
of producing the maximum number of (not necessarily
consecutive) ones (1).

Definition 2.14. The function ¥ (defined on the posi-
tive natural numbers) is defined as the maximum number
> (n) of (not necessarily consecutive) 1’s written on the

tape after a Turing machine with n > 1 states started on
the blank tape halts.

The function S is defined as the maximum number S(n)
of moves that can be made by a Turing machine of the
above type with n states before it halts, started on the
blank tape.

A Turing machine with n states that writes the maximum
number Y(n) of 1’s when started on the blank tape is
called a busy beaver.

2.7. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 169

Busy beavers are hard to find, even for small n.

First, it can be shown that the number of distinct Turing
machines of the above kind with n states is (4(n + 1))*".

Second, since it is undecidable whether a Turing machine
halts on a given input, it is hard to tell which machines
loop or halt after a very long time.

Here is a summary of what is known for 1 < n < 6. Ob-
serve that the exact value of 3(6) and S(6) is unknown.

n >i(n) S(n)
1 1 1
2 4 6
3 6 21
4 13 107
5 4098 47,176, 870
6 > 95,524,079 | > 8,690, 333, 381, 690, 951
6 > 3.515 x 1018207 > 7.412 x 1070234

170 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The first entry in the table for n = 6 corresponds to a
machine due to Heiner Marxen (1999).

his record was surpassed by Pavel Kropitz in 2010, which
corresponds to the second entry for n = 6.

The machines achieving the record in 2017 for n = 4,5
are shown below, where the blank is denoted A instead

of B, and where the special halting states is denoted H:

4-state busy beaver:

A B C D
AR B) (ILL,A) |(1,R,H)| (1,R, D)
1 (I,L,B) (A, L,C) | (1,L,D) | (A, R, A)

The above machine output 13 ones in 107 steps. In fact,
the output is

IATTT1I11111111.

2.7. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 171

H-state best busy beaver:

A B C D
AR B) (1R CO) (1,R,D) (1,
I, L B 1

1 () 70) (17R7) <A7L7E> ()

A
D) (A

~

)

~| T

H)
A

L
L)

) J Y

The above machine output 4098 ones in 47, 176, 870 steps.
The tape actually contains a total of 12289 symbols, 4098
if which are 1’s, and the other the blank A.

The fact that this machine is a busy beaver was estab-
lished in 2024 with the help of the Coq proof assistant.

The proot is an enumeration of roughly 180 million ma-
chines, which are checked for termination with specialized
deciders that recognize specific behaviors. This is quite a
“tour de force.”

The reason why it is so hard to compute 2 and S is that
they are not computable!

Theorem 2.13. The functions > and S are total func-
tions that are not computable (not recursive).

172 CHAPTER 2. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The “zoo” of computable and non-computable functions
is illustrated in Figure 2.1.

Busy Beaver

o partial computable
Only initial cases computed.

built from primitive recursive
and minimization

total computabale

primitive
recursive add

rational expressions

terminates for all input

functions that computer can't calculate
grow too fast: overflow

Figure 2.1: Computability Classification of Functions.

