
Chapter 3

The Lambda-Calculus

The original motivation of Alonzo Church for inventing
the �-calculus was to provide a type-free foundation for
mathematics (alternate to set theory) based on higher-
order logic and the notion of function in the early 1930’s
(1932, 1933).

This attempt to provide such a foundation for mathemat-
ics failed due to a form of Russell’s paradox.

Church was clever enough to turn the technical reason for
this failure, the existence of fixed-point combinators, into
a success, namely to view the �-calculus as a formalism for
defining the notion of computability (1932,1933,1935).

173

174 CHAPTER 3. THE LAMBDA-CALCULUS

The �-calculus is indeed one of the first computation
models, slightly preceding the Turing machine.

Kleene proved in 1936 that all the computable functions
(recursive functions) in the sense of Herbrand and Gödel
are definable in the �-calculus, showing that the �-calculus
has universal computing power .

In 1937, Turing proved that Turing machines compute the
same class of computable functions. (This paper is very
hard to read, in part, because the definition of a Turing
machine is not included in this paper).

In short, the �-calculus and Turing machines have the
same computing power .

Here we have to be careful. To be precise we should
have said that all the total computable functions (total
recursive functions) are definable in the �-calculus.

175

In fact, it is also true that all the partial computable
functions (partial recursive functions) are definable in the
�-calculus but this requires more care.

Since the �-calculus does not have any notion of tape, reg-
ister, or any other means of storing data, it quite amazing
that the �-calculus has so much computing power.

The �-calculus is based on three concepts:

(1) Application.

(2) Abstraction (also called �-abstraction).

(3) �-reduction (and �-conversion).

If f is a function, say the exponential function f : N! N
given by f (n) = 2n, and if n a natural number, then the
result of applying f to a natural number, say 5, is written
as

(f 5)

instead of f (5), and is called an application .

176 CHAPTER 3. THE LAMBDA-CALCULUS

Here we can agree that f and 5 do not have the same
type , in the sense that f is a function and 5 is a number,
so applications such as (f f) or (5 5) do not make sense,
but the �-calculus is type-free so expressions such as (f f)
as allowed.

This may seem silly, and even possibly undesirable, but
allowing self application turns out to a major reason for
the computing power of the �-calculus.

Given an expression M containing a variable x, say

M(x) = x2 + x + 1,

as x ranges over N, we obtain the function represented in
standard mathematical notation by x 7! x2 + x + 1.

If we supply the input value 5 for x, then the value of the
function is 52 + 5 + 1 = 31.

177

Church introduced the notation

�x. (x2 + x + 1)

for the function x 7! x2 + x + 1.

Here, we have an abstraction , in the sense that the static
expression M(x) for x fixed becomes an “abstract” func-
tion denoted �x. M .

It would be pointless to only have the two concepts of
application and abstraction.

The glue between these two notions is a form of evaluation
called �-reduction .1

Given a �-abstraction �x. M and some other term N
(thought of as an argument), we have the “evaluation”
rule, we say �-reduction ,

(�x. M)N
+�!� M [x := N],

where M [x := N] denotes the result of substituting N
for all occurrences of x in M .

1
Apparently, Church was fond of Greek letters.

178 CHAPTER 3. THE LAMBDA-CALCULUS

For example, if M = x2+x+1 and N = 2y+1, we have

(�x. (x2 + x + 1))(2y + 1)
+�!� (2y + 1)2 + 2y + 1 + 1.

Observe that �-reduction is a purely formal operation
(plugging N wherever x occurs in M), and that the ex-
pression (2y +1)2 +2y +1+ 1 is not instantly simplified
to 4y2 + 6y + 3.

In the �-calculus, the natural numbers as well as the arith-
metic operations + and ⇥ need to be represented as �-
terms in such a way that they “evaluate” correctly using
only �-conversion.

In this sense, the �-calculus is an incredibly low-level pro-
gramming language. Nevertheless, the �-calculus is the
core of various functional programming languages such
as OCaml , ML, Miranda and Haskell , among others.

179

We now proceed with precise definitions and results. But
first we ask the reader not to think of functions as the
functions we encounter in analysis or algebra. Instead
think of functions as rules for computing (by moving
and plugging arguments around), a more combinatory
(which does not mean combinatorial) viewpoint.

180 CHAPTER 3. THE LAMBDA-CALCULUS

3.1 Syntax of the Lambda-Calculus

We begin by defining the lambda-calculus , also called
untyped lambda-calculus or pure lambda-calculus , to
emphasize that the terms of this calculus are not typed.

This formal system consists of

1. A set of terms, called �-terms .

2. A notion of reduction, called �-reduction , which al-
lows a term M to be transformed into another term
N in a way that mimics a kind of evaluation.

First we define (pure) �-terms.

We have a countable set of variables {x0, x1, . . . , xn . . .}
that correspond to the atomic �-terms.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 181

Definition 3.1. The �-terms M are defined inductively
as follows.

(1) If xi is a variable, then xi is a �-term.

(2) If M and N are �-terms, then (MN) is a �-term
called an application .

(3) If M is a �-term, and x is a variable, then the expres-
sion (�x. M) is a �-term called a �-abstraction .

The fact that self-application is allowed in the untyped �-
calculus is what gives it its computational power (through
fixed-point combinators, see Section 3.5).

182 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.2. The depth d(M) of a �-term M is de-
fined inductively as follows.

1. If M is a variable x, then d(x) = 0.

2. If M is an application (M1M2), then
d(M) = max{d(M1), d(M2)} + 1.

3. If M is a �-abstraction (�x. M1), then
d(M) = d(M1) + 1.

It is pretty clear that �-terms have representations as
(ordered) labeled trees.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 183

Definition 3.3. Given a �-term M , the tree tree(M)
representing M is defined inductively as follows:

1. If M is a variable x, then tree(M) is the one-node
tree labeled x.

2. If M is an application (M1M2), then tree(M) is the
tree with a binary root node labeled . , and with a left
subtree tree(M1) and a right subtree tree(M2).

3. If M is a �-abstraction (�x. M1), then tree(M) is the
tree with a unary root node labeled �x, and with one
subtree tree(M1).

Definition 3.3 is illustrated in Figure 3.1.

x
M = x

tree (M)
1 2M = (M M) •

M1
M2

tree(M)
M = λx • M λx

tree(M)

M1

tree()
tree()

tree()

1

Figure 3.1: The tree tree(M) associated with a pure �-term M .

184 CHAPTER 3. THE LAMBDA-CALCULUS

Obviously, the depth d(M) of �-term is the depth of its
tree representation tree(M).

Unfortunately �-terms contain a profusion of parentheses
so some conventions are commonly used:

(1) A term of the form

(· · · ((FM1)M2) · · · Mn)

is abbreviated (association to the left) as

FM1 · · · Mn.

(2) A term of the form

(�x1. (�x2. (· · · (�xn. M) · · ·)))

is abbreviated (association to the right) as

�x1 · · · xn. M.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 185

Matching parentheses may be dropped or added for con-
venience. Here are some examples of �-terms (and their
abbreviation):

y y

(yx) yx

(�x. (yx)) �x. yx

((�x. (yx))z) (�x. yx)z

(((�x. (�y. (yx)))z)w) (�xy. yx)zw.

Note that �x. yx is an abbreviation for (�x. (yx)), not
((�x. y)x).

The variables occurring in a �-term are free or bound.

186 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.4. For any �-term M , the set FV (M)
of free variables of M and the set BV (M) of bound
variables in M are defined inductively as follows:

(1) If M = x (a variable), then

FV (x) = {x}, BV (x) = ;.

(2) If M = (M1M2), then

FV (M) = FV (M1) [FV (M2)

BV (M) = BV (M1) [BV (M2).

(3) if M = (�x. M1), then

FV (M) = FV (M1)� {x}
BV (M) = BV (M1) [{x}.

If x 2 FV (M1), we say that the occurrences of the
variable x occur in the scope of �.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 187

A �-term M is closed or a combinator if FV (M) = ;,
that is, if it has no free variables.

For example

FV
�
(�x. yx)z

�
= {y, z}, BV

�
(�x. yx)z

�
= {x},

and

FV
�
(�xy. yx)zw

�
= {z, w}, BV

�
(�xy. yx)zw

�
= {x, y}.

Before proceeding with the notion of substitution we must
address an issue with bound variables.

188 CHAPTER 3. THE LAMBDA-CALCULUS

The point is that bound variables are really place-holders
so they can be renamed freely without changing the re-
duction behavior of the term as long as they do not clash
with free variables.

For example, the terms �x. (x(�y. x(yx)) and
�x. (x(�z. x(zx)) should be considered as equivalent.

Similarly, the terms �x. (x(�y. x(yx)) and
�w. (w(�z. w(zw)) should be considered as equivalent.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 189

One way to deal with this issue is to use the tree repre-
sentation of �-terms given in Definition 3.3.

For every leaf labeled with a bound variable x, we draw
a backpointer to an ancestor of x determined as follows.

Given a leaf labeled with a bound variable x, climb up to
the closest ancestor labeled �x, and draw a backpointer
to this node. Then all bound variables can be erased.

An example is shown in Figure 3.2 for the term M =
�x. x(�y. (x(yx))).

λx

•

x λy

•

•

x

x
y

tree(λx • x(λy • x(yx)))

Figure 3.2: The tree representation of a �-term with backpointers.

190 CHAPTER 3. THE LAMBDA-CALCULUS

A clever implementation of the idea of backpointers is the
formalism of de Bruijn indices ; see Pierce [?] (Chapter
6) or Barendregt [?] (Appendix C).

Church introduced the notion of ↵-conversion to deal
with this issue. First we need to define substitutions.

Definition 3.5. A substitution ' is a finite set of pairs
' = {(x1, N1), . . . , (xn, Nn)}, where the xi are distinct
variables and the Ni are �-terms.

We write

' = [N1/x1, . . . , Nn/xn] or

' = [x1 := N1, . . . , xn := Nn].

The second notation indicates more clearly that each
term Ni is substituted for the variable xi, and it seems to
have been almost universally adopted.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 191

Definition 3.6. Given a substitution
' = [x1 := N1, . . . , xn := Nn], for any variable xi, we de-
note by '�xi the new substitution where the pair (xi, Ni)
is replaced by the pair (xi, xi) (that is,the new substitu-
tion leaves xi unchanged).

Definition 3.7.Given any �-term M and any substitu-
tion ' = [x1 := N1, . . . , xn := Nn], we define the �-term
M ['], the result of applying the substitution ' to M ,
as follows:

(1) If M = y, with y 6= xi for i = 1, . . . , n, then M ['] =
y = M .

(2) If M = xi for some i 2 {1, . . . , n}, then M ['] = Ni.

(3) If M = (PQ), then M ['] = (P [']Q[']).

(4) If M = �x. N and x 6= xi for i = 1, . . . , n, then
M ['] = �x. N ['],

(5) If M = �x. N and x = xi for some i 2 {1, . . . , n},
then
M ['] = �x. N [']�xi.

192 CHAPTER 3. THE LAMBDA-CALCULUS

The term M is safe for the substitution
' = [x1 := N1, . . . , xn := Nn] if
BV (M)\ (FV (N1)[· · ·[FV (Nn)) = ;, that is, if the
free variables in the substitution terms Ni do not become
bound.

Note that Clause (5) ensures that a substitution only
substitutes the terms Ni for the variables xi free in M .
Thus if M is a closed term, then for every substitution
', we have M ['] = M .

More generally, if none of the variables xi occurs free in
M , then M ['] = M .

There is a problem with the present definition of a sub-
stitution in Cases (4) and (5), which is that the result
of substituting a term Ni containing the variable x free
causes this variable to become bound after the substitu-
tion.

We say that x is captured . We should only apply a sub-
stitution ' to a term M if M is safe for '.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 193

To remedy this problem, Church defined ↵-conversion .

Definition 3.8. The binary relation �!↵ on �-terms
called immediate ↵-conversion2 is the smallest relation
satisfying the following properties: for all �-terms M, N,
P, Q:

�x. M �!↵ �y. M [x := y], for all y /2 FV (M)[BV (M)

if M �!↵ N, then MQ �!↵ NQ and PM �!↵ PN

if M �!↵, N then �x. M �!↵ �x. N.

The least equivalence relation

⌘↵= (�!↵ [�!�1
↵)⇤

containing �!↵ (the reflexive and transitive closure of
�!↵ [�!�1

↵) is called ↵-conversion .

Here �!�1
↵ denotes the converse of the relation �!↵,

that is, M �!�1
↵ N i↵ N �!↵ M .

2
We told you that Church was fond of Greek letters.

194 CHAPTER 3. THE LAMBDA-CALCULUS

For example,

�fx. f (f (x)) = �f.�x. f (f (x)) �!↵ �f.�y. f (f (y))

�!↵ �g.�y. g(g(y))

= �gy. g(g(y)).

Now given a �-term M and a substitution
' = [x1 := N1, . . . , xn := Nn], before applying ' to
M , we first perform some ↵-conversion to obtain a
term M 0 ⌘↵ M whose set of bound variables BV (M 0)
is disjoint from FV (N1) [· · · [FV (Nn) so that M 0 is
safe for ', and the result of the substitution is M 0['].

For example,
�
�yz. (xy)z

�
[x := yz] ⌘↵

�
�uv. (xu)v

�
[x := yz]

= �uv. ((yz)u)v.

3.1. SYNTAX OF THE LAMBDA-CALCULUS 195

From now on, we consider two �-terms M and M 0 such
that M ⌘↵ M 0 as identical (to be rigorous, we deal with
equivalence classes of terms with respect to ↵-conversion).

Even the experts are lax about ↵-conversion so we hap-
pily go along with them. The convention is that bound
variables are always renamed to avoid clashes (with
free or bound variables).

Note that the representation of �-terms as trees with
back-pointers also ensures that substitutions are safe. How-
ever, this requires some extra e↵ort.

No matter what, it takes some e↵ort to deal properly with
bound variables.

196 CHAPTER 3. THE LAMBDA-CALCULUS

3.2 �-Reduction and �-Conversion; the Church–Rosser

Theorem

The computational engine of the �-calculus is �-reduction.

Definition 3.9. The relation �!�, called immediate
�-reduction , is the smallest relation satisfying the fol-
lowing properties for all �-terms M, N, P, Q:

(�x. M)N �!� M [x := N],where M is safe for [x := N]

if M �!� N, then MQ �!� NQ and PM �!� PN

if M �!� N, then �x. M �!� �x. N.

The transitive closure of�!� is denoted by
+�!�, the re-

flexive and transitive closure of �!� is denoted by
⇤�!�,

and we define �-conversion , denoted by
⇤ !�, as the

smallest equivalence relation

⇤ !� = (�!� [�!�1
�)⇤

containing �!�.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 197

To study properties of �-reduction sequences it is impor-
tant to define precisely where a subterm occurs inside of
a term.

This notion is quite clear if we view a term M as the cor-
responding tree tree(M). Then a subterm N corresponds
to a subtree tree(N) of tree(M).

Since the same subtree can occur in several places, we
need to exercise some care.

We use the fact that the root of the subtree tree(N) is
reached from the root of the tree tree(M) along a unique
path described by a string over the alphabet {1, 2}.

We have the usual lexicographic ordering � on the set
of strings {1, 2}⇤, where for any two strings u, v 2 {1, 2}⇤,
u � v if either u is a prefix of v, namely v = ux
for some x 2 {1, 2}⇤, or u = x1y, v = x2z, for some
x, y, z 2 {1, 2}⇤.

198 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.10. Let M be a �-term. The set of occur-
rences of subterms in M , Occ(M), is the set of pairs
(u, N), with u 2 {1, 2}⇤ and N a �-term, defined as
follows.

(1) If M is the variable x, then Occ(M) = {(✏, x)}.
(2) If M is an application M = (M1M2), then

Occ(M) = {(✏, M)} [{(1u, N1) | (u, N1) 2 Occ(M1)}
[{(2v, N2) | (v, N2) 2 Occ(M2)}.

(3) If M is an abstraction M = �x. M1, then

Occ(M) = {(✏, M)}[{(1u, N1) | (u, N1) 2 Occ(M1)}.

If (u, N) 2 Occ(M), we say that N occurs at u in M .

Note that M itself occurs at ✏ in M .

If N occurs at u in M and N 0 occurs at v in M , we say
that u is a proper ancestor of v if v = ux for some
x 6= ✏.

In this case, we say that N 0 is a proper subterm of N .

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 199

Example 3.1. The term

M =

✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆

w

has the following set of occurrences of subterms:

(111111, z), (111112, y),
⇣
11111, (zy)

⌘
, (11112, y),

⇣
1111, ((zy)y)

⌘
,
⇣
111,

�
�y. ((zy)y)

�⌘
,

(112, z),

✓
11,
⇣�
�y. ((zy)y)

�
z
⌘◆

,

1,

✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆!

, (2, w),

✏,

✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆

w

!
.

200 CHAPTER 3. THE LAMBDA-CALCULUS

The subterm z occurs at 111111 and 112 and the subterm
y occurs at 111112 and 1112.

The subterm (zy) (which occurs at 11111) is a proper

subterm of the subterm
⇣�
�y. ((zy)y)

�
z
⌘
(which occurs

at 11).

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 201

Definition 3.11. Given a �-term M , a subterm R of
M of the form R = (�x. M1)N1 is called a redex . If M
�-reduces to M 0, because the redex R occurring at u in
M �-reduces, namely

R = (�x. M1)N1 �!� M1[x := N1],

we write

M
⇤�!u,R,� M 0.

A �-term M is a �-normal form if there is no �-term
N such that M �!� N , equivalently if M contains no
�-redex.

202 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.2. The term

M =

✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆

w

has two �-redexes.

(1) The term M itself.

(2) The subterm
⇣�
�y. ((zy)y)

�
z
⌘
at 11.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 203

Example 3.3. The term

M =

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w

has three �-redexes.

(1) The term M itself.

(2) The subterm
⇣�
�x. (xz)

�
u
⌘
at 111.

(3) The subterm
⇣�
�y. (yz)

�
v
⌘
at 112.

204 CHAPTER 3. THE LAMBDA-CALCULUS

Proposition 3.1. A �-term M is a �-normal form if
and only if one of the following conditions hold:

(1) M is a variable x.

(2) M = xM1 · · · Mn, where x is variable and M1, . . . , Mn

are �-normal forms.

(3) M = �x. M1, where M1 is a �-normal form.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 205

Definition 3.12.We say that a redex R occurring at u
in M is maximal if there is no redex R0 occurring at v
in M such that v is a proper ancestor of u, equivalently
R is not a proper subterm of R0.

A redex R occurring at u in M is the leftmost maximal
redex in M if R is maximal and if for any other redex R0

at v which is also maximal, then u � v.

This means that in the tree tree(M), the root of tree
tree(R) occurs on a path of the form x1y, and the root
of tree tree(R0) occurs on a path of the form x2z.

206 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.13. A reduction sequence such that the
leftmost maximal redex is �-reduced at every step is called
a normal reduction (or leftmost reduction).

Normal reductions are important because according to a
theorem of Curry, if a term M has a �-normal form M ⇤,
then there is a normal reduction from M to M ⇤.

The weaker notion of quasi-leftmost reduction will be con-
sidered later in Section 3.6.

In Example 3.2, there is a unique maximal redex, namely
M itself, so it is the leftmost maximal redex, and similarly
in Example 3.3.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 207

Example 3.4. The term

M = w

 ✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆

u

! ✓
�z.
⇣�
�y. (zy)

�
z
⌘◆

v

!!

has two maximal �-redexes

✓
�z.
⇣�
�y. ((zy)y)

�
z
⌘◆

u,

✓
�z.
⇣�
�y. (zy)

�
z
⌘◆

v,

and the blue redex is the leftmost maximal redex.

208 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.5.The subterm
�
(�x. (�y. x))u

�
is the max-

imal leftmost �-redex in the term
�
(�x. (�y. x))u

�
v.

We have

(�xy. x)uv =
�
(�x. (�y. x))u

�
v

�!� ((�y. x)[x := u])v = (�y. u)v

�!� u[y := v] = u.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 209

The subterm
�
(�x. (�y. y))u

�
is the maximal leftmost �-

redex in the term
�
(�x. (�y. y))u

�
v.

We have

(�xy. y)uv =
�
(�x. (�y. y))u

�
v

�!� ((�y. y)[x := u])v = (�y. y)v

�!� y[y := v] = v.

This shows that �xy. x behaves like the projection onto
the first argument and �xy. y behaves like the projection
onto the second.

210 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.6. The normal reduction from the term

M =

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w

is shown below:

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w

+�!�

⇣�
�x. (xw)

�
u
⌘⇣�

�y. (yw)
�
v
⌘

+�!� (uw)
⇣�
�y. (yw)

�
v
⌘

+�!� (uw)(vw).

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 211

Example 3.7.More interestingly, if we let

! = �x. (xx),

then

⌦ = !! = (�x. (xx))(�x. (xx))

�!� (xx)[x := �x. (xx)]

= !! = ⌦.

The above example shows that �-reduction sequences
may be infinite. This is a curse and a miracle of the
�-calculus!

212 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.8. There are even �-reductions where the
evolving term grows in size:

(�x. (xx)x)(�x. (xx)x)
+�!�

�
(�x. (xx)x)(�x. (xx)x)

�
(�x. (xx)x)

+�!�

⇣�
(�x. (xx)x)(�x. (xx)x)

�
(�x. (xx)x)

⌘
(�x. (xx)x)

+�!� · · ·

There is only one maximal (leftmost) redex shown in blue.
This term has no �-normal form.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 213

Example 3.9. The term

L = (�x. (xx)y)(�x. (xx)y)

also does not have a �-normal form. Indeed,

L = (�x. (xx)y)(�x. (xx)y)
+�!�

�
�x. (xx)y)(�x. (xx)y

�
y

+�!�

�
�x. (xx)y)(�x. (xx)y

�
yy

+�!� · · · ,

namely

L
+�!� Ly

+�!� Lyy
+�!� · · · .

� A term M may have a �-normal form, but also some
infinite �-reduction sequence.

214 CHAPTER 3. THE LAMBDA-CALCULUS

Consider the term

P = (�u. v)L = (�u. v)
⇣
(�x. xxy)(�x. xxy)

⌘
.

which is the unique maximal redex (and thus the leftmost
maximal redex).

We have the �-reduction

P = (�u. v)L
+�!� v[u := L] = v,

where v is a �-normal form, but also the infinite �-
reduction sequence

P = (�u. v)L
+�!�(�u. v)(Ly)

+�!�(�u. v)(Lyy)
+�!� · · · .

As we will see later, in general, there is no algorithm to
decide whether a term has a �-normal form, or whether
all �-reduction sequences terminate.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 215

In general, a �-term contains many di↵erent �-redex.

One then might wonder if there is any sort of relationship
between any two terms M1 andM2 arising through two �-
reduction sequences M

⇤�!�M1 and M
⇤�!�M2 starting

with the same term M .

The answer is given by the following famous theorem.

Theorem 3.2. (Church–Rosser Theorem) The follow-
ing two properties hold.

(1) The �-calculus is confluent: for any three �-terms
M, M1, M2, if M

⇤�!� M1 and M
⇤�!� M2, then

there is some �-term M3 such that M1
⇤�!� M3

and M2
⇤�!� M3. See Figure 3.3.

(2) The �-calculus has the Church–Rosser prop-

erty: for any two �-terms M1, M2, if M1
⇤ !�M2,

then there is some �-term M3 such that M1
⇤�!�M3

and M2
⇤�!� M3. See Figure 3.4.

Furthermore (1) and (2) are equivalent, and if a �-
term M �-reduces to a �-normal form N , then N is
unique (up to ↵-conversion).

216 CHAPTER 3. THE LAMBDA-CALCULUS

M

* *

Given

M M1 2
0 M

* *

M M1 2

M3

Confluence

* *

Figure 3.3: The confluence property.

M M1 2
*

Given

0 M M1 2
*

M3
Church-Rosser

* *

Figure 3.4: The Church–Rosser property.

Another immediate corollary of the Church–Rosser theo-
rem is that if M

⇤ !� N and if N is a �-normal form,
then in fact M

⇤�!� N . We leave this fact as an exerise

This fact will be useful in showing that the recursive func-
tions are computable in the �-calculus.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 217

Example 3.10. Consider the term

M =

✓
�z.
⇣�
�y. (zyy)

�
z
⌘◆

w.

We have the reductions

M =

✓
�z.
⇣�
�y. (zyy)

�
z
⌘◆

w

�!�

⇣
�z.
�
zzz
�⌘

w = M1

and

M =

✓
�z.
⇣�
�y. (zyy)

�
z
⌘◆

w

�!�

⇣�
�y. (wyy)

�
w
⌘
= M2.

218 CHAPTER 3. THE LAMBDA-CALCULUS

We have confluence because

M1 =
⇣
�z.
�
zzz
�⌘

w �!� www = M3

and

M2 =
⇣�
�y. (wyy)

�
w
⌘
�!� www = M3.

3.2. �-REDUCTION AND �-CONVERSION; THE CHURCH–ROSSER THEOREM 219

Example 3.11. Consider the term

M =

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w.

We have the reduction sequences

M =

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w

�!�

�z.

✓�
uz
�⇣�

�y. (yz)
�
v
⌘◆!

w

�!�

✓
�z.
⇣�

uz
��

vz
�⌘◆

w = M1

and

M =

�z.

✓⇣�
�x. (xz)

�
u
⌘⇣�

�y. (yz)
�
v
⌘◆!

w

�!�

✓⇣�
�x. (xw)

�
u
⌘⇣�

�y. (yw)
�
v
⌘◆

= M2.

220 CHAPTER 3. THE LAMBDA-CALCULUS

Confluence holds because

M1 =

✓
�z.
⇣�

uz
��

vz
�⌘◆

w �!�

�
(uw)(vw)

�
= M3

and

M2 =

✓⇣�
�x. (xw)

�
u
⌘⇣�

�y. (yw)
�
v
⌘◆

�!�

✓⇣
uw
⌘⇣�

�y. (yw)
�
v
⌘◆

�!�

�
(uw)(vw)

�
= M3.

3.3. SOME USEFUL COMBINATORS 221

3.3 Some Useful Combinators

In this section we provide some evidence for the expressive
power of the �-calculus.

First we make a remark about the representation of func-
tions of several variables in the �-calculus.

The �-calculus makes the implicit assumption that a func-
tion has a single argument.

This is the idea behind application: given a term M
viewed as a function and an argument N , the term (MN)
represents the result of applying M to the argument N ,
except that the actual evaluation is suspended .

Evaluation is performed by �-conversion. To deal with
functions of several arguments we use a method known
as Currying (after Haskell Curry).

222 CHAPTER 3. THE LAMBDA-CALCULUS

In this method, a function of n arguments is viewed as
a function of one argument taking a function of n � 1
arguments as argument .

Consider the case of two arguments, the general case be-
ing similar.

Consider a function f : N⇥N! N. For any fixed x, we
define the function Fx : N! N given by

Fx(y) = f (x, y) y 2 N.

Using the �-notation we can write

Fx = �y. f (x, y),

and then the function x 7! Fx, which is a function from
N to the set of functions [N! N] (also denoted NN), is
denoted by the �-term

F = �x. Fx = �x. (�y. f (x, y)).

3.3. SOME USEFUL COMBINATORS 223

And indeed,

(FM)N
+�!� FMN

+�!� f (M, N).

Remark: Currying is a way to realizing the isomor-
phism between the sets of functions
[N ⇥ N ! N] and [N ! [N ! N]] (or in the standard
set-theoretic notation, between NN⇥N and (NN)N.

Does this remind you of the identity

(mn)p = mn⇤p?

It should.

The function space [N! N] is called an exponential .

224 CHAPTER 3. THE LAMBDA-CALCULUS

Proposition 3.3. If I,K,K⇤, and S are the combi-
nators defined by

I = �x. x

K = �xy. x

K⇤ = �xy. y

S = �xyz. (xz)(yz),

then for all �-terms M, N, P , we have

IM
+�!� M

KMN
+�!� M

K⇤MN
+�!� N

SMNP
+�!� (MP)(NP)

KI
+�!� K⇤

SKK
+�!� I.

3.3. SOME USEFUL COMBINATORS 225

For example,

SMNP =
�
�xyz. (xz)(yz)

�
MNP �!���

�yz. (xz)(yz)
�
[x := M]

�
NP

=
�
�yz. (Mz)(yz)

�
NP �!���

�z. (Mz)(yz)
�
[y := N]

�
P

=
�
�z. (Mz)(Nz)

��
P �!��

(Mz)(Nz)
�
[z := P] = (MP)(NP).

The need for a conditional construct if then else such that
if T then P else Q yields P and if F then P else Q yields
Q is indispensable to write nontrivial programs.

There is a trick to encode the boolean values T and
F in the �-calculus to mimick the above behavior of
if B then P else Q, provided that B is a truth value.

Since everything in the �-calculus is a function, the booleans
values T and F are encoded as �-terms.

226 CHAPTER 3. THE LAMBDA-CALCULUS

At first, this seems quite odd, but what counts is the
behavior of if B then P else Q, and it works!

The truth values T,F and the conditional construct
if B then P else Q can be encoded in the �-calculus as
follows.

Proposition 3.4. Consider the combinators given by
T = K,F = K⇤, and

if then else = �b. (�x. (�y. (bx)y)) = �bxy. bxy.

Then for all �-terms M, P, Q we have

if M then P else Q = (((if then else)M)P)Q
+�!� (MP)Q = MPQ.

In particular,

if T then P else Q
+�!� P

if F then P else Q
+�!� Q.

3.3. SOME USEFUL COMBINATORS 227

The boolean operations ^,_, ¬ can be defined in terms
of if then else.

For example,

Not b = if b then F elseT

And b1b2 = if b1 then (if b2 thenT else F) else F

Or b1b2 = if b1 thenT else (if b2 thenT else F).

Remark: If B is a term di↵erent from T or F, then
if B then P else Q may not reduce at all, or reduce to
something di↵erent from P or Q.

The problem is that the conditional statement that we
designed only works properly if the input B is of the
correct type, namely a boolean.

If we give garbage as input, then we can’t expect a correct
result.

The �-calculus being type-free, it is unable to check for
the validity of the input. In this sense this is a defect, but
it also accounts for its power.

228 CHAPTER 3. THE LAMBDA-CALCULUS

The ability to construct ordered pairs is also crucial.

Proposition 3.5. For any two �-terms M and N
consider the combinator hM, Ni and the combinators
⇡1 and ⇡2 given by

hM, Ni = �z. zMN = �z. if z then M else N

⇡1 = �z. zK

⇡2 = �z. zK⇤.

Then

⇡1hM, Ni +�!� M

⇡2hM, Ni +�!� N

hM, NiT +�!� M

hM, NiF +�!� N.

For example,

⇡1hM, Ni =
�
�z. zK

��
�z. zMN

�

�!�

�
zK
�
[z := �z. zMN] =

�
�z. zMN)K

�!� (zMN)[z := K] = KMN
+�!� M,

by Proposition 3.3.

3.3. SOME USEFUL COMBINATORS 229

Observe that if we define the combinator

pair = �x. (�y. (�z. (zx)y)) = �xyz. zxy,

then

pairMN
+�!� �z. zMN = hM, Ni.

The combinator pair is very closely related to the com-
binator if then else = �zxy. zxy.

Both combinators contain the term zxy, but in pair,
the variables are abstracted in the order xyz, and in
if then else, they are abstracted in the order zxy. So

pairPQM
+�!� MPQ

(if then else)MPQ
+�!� MPQ.

230 CHAPTER 3. THE LAMBDA-CALCULUS

3.4 Representing the Natural Numbers

Historically the natural numbers were first represented in
the �-calculus by Church in the 1930’s.

Later in 1976 Barendregt came up with another repre-
sentation which is more convenient to show that the re-
cursive functions are �-definable. We start with Church’s
representation.

First, given any two �-terms F and M , for any natural
number n 2 N, we define Fn(M) inductively as follows.

F 0(M) = M

Fn+1(M) = F (Fn(M)).

Observe that

Fn(M) = F
⇣
F
�
· · · (F

| {z }
n

M) · · ·
�⌘

.

3.4. REPRESENTING THE NATURAL NUMBERS 231

Definition 3.14. (Church Numerals) The Church nu-
merals c0, c1, c2, . . . are defined by

cn = �fx. fn(x).

c0 = �fx. x = K⇤,
c1 = �fx. fx,
c2 = �fx. f (fx),
c3 = �fx. f (f (fx)), etc.

The Church numerals are �-normal forms.

232 CHAPTER 3. THE LAMBDA-CALCULUS

Observe that

cnFz = (�fx. fn(x))Fz
+�!� Fn(z). (†)

This shows that cn iterates n times the function repre-
sented by the term F on initial input z.

This is the trick behind the definition of the Church nu-
merals.

Definition 3.15.The iteration combinator Iter is given
by

Iter = �nfx. nfx.

Observe that

Iter cn F X
+�!� FnX,

that is, the result of iterating F for n steps starting with
the initial term X .

3.4. REPRESENTING THE NATURAL NUMBERS 233

Remark: The combinator Iter is actually equal to the

combinator

if then else = �bxy. bxy

of Definition 3.4.

Remarkably, if n (or b) is a boolean, then this combinator
behaves like a conditional, but if n (or b) is a Church
numeral, then it behaves like an iterator.

234 CHAPTER 3. THE LAMBDA-CALCULUS

A closely related combinator is Fold, defined by

Fold = �xfn. nxf.

The only di↵erence is that the abstracted variables are
listed in the order x, f, n, instead of n, f, x.

In fact,
Fold = pair,

as defined earlier.

This version of an iterator is used when the Church nu-
merals are defined as �xf. fn(x) instead of �fx. fn(x),
where x and f are permuted in the �-binder.

3.4. REPRESENTING THE NATURAL NUMBERS 235

Let us show how some basic functions on the natural
numbers can be defined.

We begin with the constant function Z given by Z(n) = 0
for all n 2 N.

We claim that Zc = �x. c0 works.

Indeed, we have

Zc cn = (�x. c0)cn �!� c0[x := cn] = c0

since c0 is a closed term.

The successor function Succ is given by

Succ(n) = n + 1.

We claim that

Succc = �nfx. f (nfx)

computes Succ.

236 CHAPTER 3. THE LAMBDA-CALCULUS

Indeed we have

Succc cn = (�nfx. f (nfx))cn

�!�

�
�fx. f (nfx)

�
[n := cn] = �fx. f (cnfx)

�!� �fx. f (fn(x))

= �fx. fn+1(x) = cn+1.

The function IsZero which tests whether a natural num-
ber is equal to 0 is defined by the combinator

IsZeroc = �x. x(KF)T.

Addition and multiplication are a little more tricky to
define.

3.4. REPRESENTING THE NATURAL NUMBERS 237

Proposition 3.6. (J.B. Rosser) Define Add and Mult

as the combinators given by

Add = �mnfx. mf (nfx)

Mult = �mnz. m(nz).

We have

Add cmcn
+�!� cm+n

Mult cmcn
+�!� cm⇤n

for all m, n 2 N.
Proof. We have

Add cmcn = (�mnfx. mf (nfx))cmcn
+�!� (�fx. cmf (cnfx))
+�!� �fx. fm(fn(x))

= �fx. fm+n(x) = cm+n.

238 CHAPTER 3. THE LAMBDA-CALCULUS

For multiplication, we have

Mult cmcn = (�mnz. m(nz))cmcn
+�!� �z. (cm(cnz))

= �z. ((�fy. fm(y))(cnz))
+�!� �zy. (cnz)

m(y).

To finish, we need to prove by induction on m that

(cnz)
m(y)

⇤�!� zm⇤n(y).

This is left as an exercise.

3.4. REPRESENTING THE NATURAL NUMBERS 239

As an exercise the reader should prove that addition and
multiplication can also be defined in terms of Iter (see
Definition 3.15) by

Add = �mn. ItermSuccc n

Mult = �mn. Iterm (Addn) c0.

The above expressions are close matches to the primitive
recursive definitions of addition and multiplication.

A function that plays an important technical role is the
predecessor function Pred defined such that

Pred(0) = 0

Pred(n + 1) = n.

It turns out that it is quite tricky to define this function
in terms of the Church numerals.

240 CHAPTER 3. THE LAMBDA-CALCULUS

Church and his students struggled for a while until Kleene
found a solution in his famous 1936 paper.

The story goes that Kleene found his solution when he
was sittting in the dentist’s chair!

The trick is to make use of pairs. Kleene’s solution is

PredK = �n. ⇡2(Itern (�z. hSuccc(⇡1z), ⇡1zi) hc0, c0i).

In the above expression, Iter is applied to the three ar-
guments n, (�z. hSuccc(⇡1z), ⇡1zi), and hc0, c0i.

Thus we have

PredK cn
+�!� ⇡2((�z. hSuccc(⇡1z), ⇡1zi)nhc0, c0i).

3.4. REPRESENTING THE NATURAL NUMBERS 241

The reason this works is that we can prove that

(�z. hSuccc(⇡1z), ⇡1zi)0hc0, c0i
+�!� hc0, c0i,

and by induction that

(�z. hSuccc(⇡1z), ⇡1zi)n+1hc0, c0i
+�!� hcn+1, cni.

Then we have

PredK c0
+�!� ⇡2(hc0, c0i) = c0

and

PredK cn+1
+�!� ⇡2(hcn+1, cni) = cn.

Here is another tricky solution due to J. Velmans (accord-
ing to H. Barendregt):

Predc = �xyz. x(�pq. q(py))(Kz)I.

242 CHAPTER 3. THE LAMBDA-CALCULUS

The ability to construct pairs together with the Iter com-
binator allows the definition of a large class of functions,
because Iter is “type-free” in its second and third argu-
ments so it really allows higher-order primitive recursion.

For example, the factorial function defined such that

0! = 1

(n + 1)! = (n + 1)n!

can be defined.

First we define h by

h = �mn.MultSucccn m

and then

fact = �n. ⇡1(Itern (�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i)
hc1, c0i).

3.4. REPRESENTING THE NATURAL NUMBERS 243

The above expression, Iter is applied to the arguments
n, (�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i), and hc1, c0i.

We have

h cn! cn
+�!� MultSuccc cn cn!

+�!� Mult cn+1 cn!
+�!� c(n+1)!,

and

fact cn
+�!� ⇡1((�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i)n hc1, c0i).

244 CHAPTER 3. THE LAMBDA-CALCULUS

This works because

(�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i)0 hc1, c0i
+�!� hc1, c0i = hc0!, c0i,

and by induction,

(�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i)n+1 hc1, c0i
+�!�hc(n+1)!, cn+1i.

Then we have

fact cn
+�!� ⇡1((�z. hh(⇡1z) (⇡2z),Succc(⇡2z)i)n hc1, c0i)
+�!� ⇡1(hcn!, cni)

+�!� cn!.

3.4. REPRESENTING THE NATURAL NUMBERS 245

Barendregt came up with another way of representing the
natural numbers that makes things easier.

Definition 3.16. (Barendregt Numerals) The Baren-
dregt numerals bn are defined as follows:

b0 = I = �x. x

bn+1 = hF,bni.

The Barendregt numerals are �-normal forms.

The Barendregt numerals are tuples, which makes oper-
ating on them simpler than the Church numerals which
encode n as the composition fn.

246 CHAPTER 3. THE LAMBDA-CALCULUS

Proposition 3.7.The functions Succ,Pred and IsZero

are defined in terms of the Barendregt numerals by the
combinators

Succb = �x. hF, xi
Predb = �x. (xF)

IsZerob = �x. (xT),

and we have

Succb bn
+�!� bn+1

Predb b0
+�!� b0

Predb bn+1
+�!� bn

IsZerob b0
+�!� T

IsZerob bn+1
+�!� F.

Since there is an obvious bijection between the Church
combinators and the Barendregt combinators there should
be combinators e↵ecting the translations.

3.4. REPRESENTING THE NATURAL NUMBERS 247

Proposition 3.8. The combinator T given by

T = �x. (xSuccb)b0

has the property that

T cn
+�!� bn for all n 2 N.

There is also a combinator defining the inverse map but
it is defined recursively and we don’t know how to express
recursive definitions in the �-calculus.

This is achieved by using fixed-point combinators.

Remark: With some work, it is possible to show that
lists and trees can be represented in the �-calculus.

248 CHAPTER 3. THE LAMBDA-CALCULUS

3.5 Fixed-Point Combinators and Recursively Defined

Functions

Fixed-point combinators are the key to the definability of
recursive functions in the �-calculus. We begin with the
Y-combinator due to Curry.

Proposition 3.9. (Curry Y-combinator) If we define
the combinator Y as

Y = �f. (�x. f (xx))(�x. f (xx)),

then for any �-term F we have

F (YF)
⇤ !� YF.

We say that YF is a fixed-point of F .

Observe that F (YF) andYF both �-reduce to F (WW),

whereW = �x. F (xx), but neither F (YF)
+�!�YF nor

YF
+�!� F (YF).

3.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS249

This is a slight disadvantage of the Curry Y-combinator.

Turing came up with another fixed-point combinator that
does not have this problem.

Proposition 3.10. (Turing ⇥-combinator) If we de-
fine the combinator ⇥ as

⇥ = (�xy. y(xxy))(�xy. y(xxy)),

then for any �-term F we have

⇥F
+�!� F (⇥F).

We say that ⇥F is a fixed-point of F .

Both Y and ⇥ have no �-normal form.

Now we show how to use the fixed-point combinators to
represent recursively-defined functions in the �-calculus.

250 CHAPTER 3. THE LAMBDA-CALCULUS

For example, there is a combinator G such that

GX
+�!� X(XG) for all X.

Informally the idea is to consider the “functional” F =
�gx. x(xg), and to find a fixed-point of this functional.

Pick

G = ⇥�gx. x(xg) = ⇥F.

Since by Proposition 3.10 we haveG = ⇥F
+�!�F (⇥F) =

FG, and we also have

FG = (�gx. x(xg))G �!� �x. x(xG),

so
G

+�!� �x. x(xG), which implies

GX
+�!� (�x. x(xG))X �!� X(XG).

3.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS251

In general, if we want to define a function G recursively
such that

GX
+�!� M(X, G)

where M(X, G) is �-term containing recursive calls to G
applied to various functions ofX , we let F = �gx. M(x, g)
and

G = ⇥F.

Then we have

G
+�!� FG = (�gx. M(x, g))G �!� �x. M(x, g)[g := G]

= �x. M(x, G),

so

GX
+�!� (�x. M(x, G))X �!� M(x, G)[x := X]

= M(X, G),

as desired.

252 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.12. Here is how the factorial function can
be defined (using the Church numerals). Let

F = �gn. if IsZeroc n then c1 elseMultn g(Predc n).

Then the term G = ⇥F defines the factorial function.

Since G is a fixed-point of F we have G
+�!� FG. If

n = 0, we have

G c0
+�!� FG c0
+�!� if IsZeroc c0 then c1 elseMult c0 G(Predc c0)
+�!� if T then c1 elseMult c0 (G c0)
+�!� c1.

So, G c0
+�!� c1, which corresponds to 0! = 1.

3.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS253

Otherwise, if n � 1, we have

G cn
+�!� (FG) cn

+�!� if IsZeroc cn then c1 elseMult cn G(Predc cn)
+�!� if F then c1 elseMult cn (G cn�1)
+�!� Mult cn (G cn�1)

+�!� Mult cn (F G) cn�1
+�!� · · ·

+�!� Mult cn (Mult cn�1 (G cn�2))
+�!� · · ·

+�!� Mult cn (Mult cn�1 (Mult cn�2(· · ·
(Mult c2 (Mult c1(G c0))) · · ·)))

+�!� Mult cn (Mult cn�1 (Mult cn�2(· · ·
(Mult c2 (Mult c1c1))) · · ·)))

+�!� cn!.

The details are left as an exercise.

As usual with recursive definitions there is no guarantee
that the function that we obtain terminates for all input.

254 CHAPTER 3. THE LAMBDA-CALCULUS

For example, if we consider

F = �gn. if IsZeroc n then c1 elseMultn g(Succc n)

then for n � 1 the reduction behavior is

Gcn
+�!� Mult cn G cn+1,

which does not terminate.

3.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS255

We leave it as an exercise to show that the inverse of the
function T mapping the Church numerals to the Baren-
dregt numerals is given by the combinator

⇥(�fx. if IsZerob x then c0 else Succc(f (Predb x)).

It is remarkable that the �-calculus allows the implemen-
tation of arbitrary recursion without a stack, just using
�-terms as the data-structure and �-reduction.

This does not mean that this evaluation mechanism is e�-
cient but this is another story (as well as evaluation strate-
gies, which have to do with parameter-passing strategies,
call-by-name, call-by-value).

256 CHAPTER 3. THE LAMBDA-CALCULUS

Now we have all the ingredients to show that all the total
computable functions are definable in the �-calculus.

It is also true that all the partial computable functions
are definable in the �-calculus, but this is significantly
harder to prove.

The di�culty is that if F is the �-term computing
f (n1, . . . , nm) when it is defined, then if f (n1, . . . , nm)
is undefined, we need to prove that F cn1 . . . cnm does
not have a �-normal form.

This involves a trick and the use of a deep theorem about
quasi-leftmost reductions.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 257

3.6 �-Definability of the Total Computable Functions

We begin by reviewing the definition of the computable
functions (recursive functions)
(à la Herbrand–Gödel–Kleene).

For our purposes it su�ces to consider functions (partial
or total) f : Nn ! N as opposed to the more general case
of functions f : (⌃⇤)n ! ⌃⇤ defined on strings.

Definition 3.17. The base functions are the functions
Z, S, Pn

i defined as follows:

(1) The constant zero function Z such that

Z(n) = 0, for all n 2 N.

(2) The successor function S such that

S(n) = n + 1, for all n 2 N.

(3) For every n � 1 and every i with 1  i  n, the
projection function Pn

i such that

Pn
i (x1, . . . , xn) = xi, x1, . . . , xn 2 N.

258 CHAPTER 3. THE LAMBDA-CALCULUS

Next comes (extended) composition.

Definition 3.18. Given any partial or total function
g : Nm ! N (m � 1) and any m partial or total func-
tions hi : Nn ! N (n � 1), the composition of g and
h1, . . . , hm, denoted g � (h1, . . . , hm), is the partial or
total function function f : Nn ! N given by

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)),

x1, . . . , xn 2 N.

If g or any of the hi are partial functions, then f (x1, . . . , xn)
is defined if and only if all hi(x1, . . . , xn) are defined and
g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is defined .

� Note that even if g “ignores” one of its arguments, say
the ith one, g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is

undefined if hi(x1, . . . , xn) is undefined.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 259

Definition 3.19. Given any partial or total functions
g : Nm ! N and h : Nm+2 ! N (m � 1), the partial
or total function function f : Nm+1 ! N is defined by
primitive recursion from g and h if f is given by:

f (0, x1, . . . , xm) = g(x1, . . . , xm)

f (n + 1, x1, . . . , xm) = h(f (n, x1, . . . , xm), n, x1, . . . , xm)

for all n, x1, . . . , xm 2 N. If m = 0, then g is some fixed
natural number and we have

f (0) = g

f (n + 1) = h(f (n), n).

It can be shown that if g and h are total functions, then
so if f .

260 CHAPTER 3. THE LAMBDA-CALCULUS

Note that the second clause of the definition of primitive
recursion is

f (n+1, x1, . . . , xm) = h(f (n, x1, . . . , xm), n, x1, . . . , xm)
(⇤1)

but in an earlier definition it was

f (n+1, x1, . . . , xm) = h(n, f (n, x1, . . . , xm), x1, . . . , xm),
(⇤2)

with the first two arguments of h permuted.

Since

h�(Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2)(n, f (n, x1, . . . , xm),

x1, . . . , xm) = h(f (n, x1, . . . , xm), n, x1, . . . , xm)

and

h�(Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2)(f (n, x1, . . . , xm), n,

x1, . . . , xm) = h(n, f (n, x1, . . . , xm), x1, . . . , xm),

the two definitions are equivalent.

In this section we chose version (⇤1) because it matches
the treatment in Barendregt [?] and will make it easier
for the reader to follow Barendregt [?] if they wish.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 261

The last operation is minimization (sometimes called
minimalization).

Definition 3.20. Given any partial or total function
g : Nm+1 ! N (m � 0), the partial or total function func-
tion f : Nm ! N is defined as follows: for all x1, . . . , xm 2
N,

f (x1, . . . , xm) = the least n 2 N such that

g(n, x1, . . . , xm) = 0,

and undefined if there is no n such that
g(n, x1, . . . , xm) = 0.

We say that f is defined by minimization from g, and
we write

f (x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0].

For short, we write f = µg.

262 CHAPTER 3. THE LAMBDA-CALCULUS

Even if g is a total function, f may be undefined for some
(or all) of its inputs.

Definition 3.21. (Herbrand–Gödel–Kleene) The set of
partial computable (or partial recursive) functions is the
smallest set of partial functions (defined on Nn for some
n � 1) which contains the base functions and is closed
under

(1) Composition.

(2) Primitive recursion.

(3) Minimization.

The set of computable (or recursive) functions is the
subset of partial computable functions that are total func-
tions (that is, defined for all input).

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 263

We proved earlier the Kleene normal form, which says
that every partial computable function f : Nm ! N is
computable as

f = g � µh,

for some primitive recursive functions g : N ! N and
h : Nm+1 ! N.

The significance of this result is that f is built up from to-
tal functions using composition and primitive recursion,
and only a single minimization is needed at the end.

264 CHAPTER 3. THE LAMBDA-CALCULUS

Before stating our main theorem, we need to define what
it means for a (numerical) function to be definable in
the �-calculus. This requires some care to handle partial
functions.

Since there are combinators for translating Church nu-
merals to Barendregt numerals and vice-versa, it does
not matter which numerals we pick.

We pick the Church numerals because primitive recursion
is definable without using a fixed-point combinator.

Definition 3.22. A function (partial or total) f : Nn !
N is �-definable if for all m1, . . ., mn 2 N, there is a com-
binator (a closed �-term) F with the following properties:

(1) The value f (m1, . . . , mn) is defined if and only if
Fcm1 · · · cmn reduces to a �-normal form (necessar-
ily unique by the Church–Rosser theorem).

(2) If f (m1, . . . , mn) is defined, then

Fcm1 · · · cmn

⇤ !� cf(m1,...,mn).

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 265

In view of the Church–Rosser theorem (Theorem 3.2) and
the fact that cf(m1,...,mn) is a �-normal form, we can re-
place

Fcm1 · · · cmn

⇤ !� cf(m1,...,mn)

by

Fcm1 · · · cmn

⇤�!� cf(m1,...,mn).

Note that the termination behavior of f on inputs
m1, . . . , mn has to match the reduction behavior of
Fcm1 · · · cmn.

An equivalent way to state (1) is to assert that if
f (m1, . . . , mn) is defined, then Fcm1 · · · cmn reduces to
a �-normal form,

and if f (m1, . . . , mn) is undefined, then no reduction se-
quence from Fcm1 · · · cmn reaches a �-normal form.

266 CHAPTER 3. THE LAMBDA-CALCULUS

Condition (2) ensures that if f (m1, . . . , mn) is defined,
then the correct value cf(m1,...,mn) is computed by some
reduction sequence from Fcm1 · · · cmn.

If we only care about total functions, then (1) requires
that Fcm1 · · · cmn reduces to a �-normal for all m1, . . . , mn.

It is important to note that if f (m1, . . . , mn) is defined,
then there must be some reduction from Fcm1 · · · cmn to
a �-normal form equal to cf(m1,...,nm), but this does not
mean that all reductions from Fcm1 · · · cmn are finite .

Some reductions from Fcm1 · · · cmn could be infinite.

This leads to the question: are there reduction strategies
that are guaranteed to terminate with a normal form if it
exists?

There are indeed such strategies, for example normal re-
ductions as defined in Definition 3.11.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 267

The study of reduction strategies is a beautiful but tech-
nically di�cult subject. Some key contributors besides
Curry are Barendregt, Klop and Levy.

A stronger and more elegant version of �-definabilty that
better captures when a function is undefined for some
input is considered in Section 3.9.

We have the following remarkable theorems.

Theorem 3.11. If a total function f : Nn ! N is �-
definable, then it is (total) computable. If a partial
function f : Nn ! N is �-definable, then it is partial
computable.

Although Theorem 3.11 is intuitively obvious since com-
putation by �-reduction sequences are “clearly” computable,
a detailed proof is long and very tedious.

268 CHAPTER 3. THE LAMBDA-CALCULUS

One has to define primitive recursive functions to mimick
�-conversion, etc.

Most books sweep this issue under the rug.

Barendregt observes that the “�-calculus is recursively
axiomatized,” which implies that the graph of the func-
tion beeing defined is recursively enumerable, but no de-
tails are provided; see Barendregt [?] (Chapter 6, Theo-
rem 6.3.13).

Kleene (1936) provides a detailed and very tedious proof.
This is an amazing paper, but very hard to read.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 269

Theorem 3.12. (Kleene, 1936) If a total function
f : Nn ! N is computable, then it is �-definable.

Proof. There are several steps.

Step 1 . The base functions are �-definable.

We already showed that Zc computes Z and that Succc
computes S. Observe that Un

i given by

U
n
i = �x1 · · · xn. xi

computes Pn
i .

270 CHAPTER 3. THE LAMBDA-CALCULUS

Step 2 . Closure under composition.

If g is �-defined by the combinator G and h1, . . . , hm are
�-defined by the combinators H1, . . . , Hm, then
g � (h1, . . . , hm) is �-defined by

F = �x1 · · · xn. G(H1x1 · · · xn) . . . (Hmx1 · · · xn).

Since the functions are total, there is no problem.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 271

Step 3 . Closure under primitive recursion.

We could use a fixed-point combinator but the combina-
tor Iter and pairing do the job.

If f is defined by primitive recursion from g and h, and if
G �-defines g and H �-defines h, then f is �-defined by

F = �nx1 · · · xm. ⇡1

�
Iter n �z. hH ⇡1z ⇡2z x1 · · · xm,

Succc(⇡2z)i hGx1 · · · xm, c0i
�
.

The reason F works is that we can prove by induction
that

�
�z. hH ⇡1z ⇡2z cn1 · · · cnm, Succc(⇡2z)i

�n

hGcn1 · · · cnm, c0i
+�!� hcf(n,n1,...,nm), cni.

272 CHAPTER 3. THE LAMBDA-CALCULUS

We can also show that primitive recursion can be achieved
using a fixed-point combinator. Define the combinators
J and F by

J = �fxx1 · · · xm. if IsZeroc x then Gx1 · · · xm

else H(f (Predc x)x1 · · · xm)(Predc x)x1 · · · xm,

and
F = ⇥J.

Then F �-defines f , and since the functions are total,
there is no problem.

This method must be used if we use the Barendregt nu-
merals.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 273

Step 4. Closure under minimization.

Suppose f is total and defined by minimization from g
and that g is �-defined by G.

Define the combinators J and F by

J = �fxx1 · · · xm. if IsZeroc Gx x1 · · · xm then x

else f (Succc x)x1 · · · xm

and

H = ⇥J.

Since H
+�!� JH , we have

H cn cn1 . . . cnm

+�!� (JH) cn cn1 . . . cnm

+�!� if IsZeroc G cn cn1 . . . cnm then cn

else H(Succc cn) cn1 . . . cnm

+�!� if IsZeroc G cn cn1 . . . cnm then cn

else H cn+1 cn1 . . . cnm.

274 CHAPTER 3. THE LAMBDA-CALCULUS

Since the combinator G computes g, we deduce that

H cn cn1 . . . cnm

+�!�(
cn if g(n, n1, . . . , nm) = 0

H cn+1 cn1 · · · cnm otherwise.

Let F be the combinator defined by

F = �x1 . . . xm. Hc0 x1 . . . xm,

so that

F cn1 . . . cnm

+�!� Hc0 cn1 . . . cnm.

3.6. �-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 275

Since we assumed that f is total, there is a least n such
that g(n, n1, . . . , nm) = 0, and so the definition of
H cn cn1 . . . cnm shows by induction on p  n that since
g(q, n1,nm) 6= 0 for q < p,

H c0 cn1 . . . cnm

+�!� H cp cn1 . . . cnm,

and thus

H c0 cn1 . . . cnm

+�!� cn

if n � 0 is the smallest integer such that
g(n, n1, . . . , nm) = 0.

Since F cn1 . . . cnm

+�!�Hc0 cn1 . . . cnm, we conclude that
F �-defines f .

We leave the details as an exercise.

This finishes the proof that every total computable func-
tion is �-definable.

276 CHAPTER 3. THE LAMBDA-CALCULUS

3.7 �-Definability of the Partial Computable Functions

To prove Theorem 3.12 for the partial computable func-
tions we appeal to the Kleene normal form: every partial
computable function f : Nm ! N is computable as

f = � µg,

for some primitive recursive functions : N ! N and
g : Nm+1 ! N.

Thus we are back to the previous case where we are trying
to find the least n such that g(n, n1, . . . , nm) = 0, if any.

Our previous proof yields combinators H and F and it
appears that F defines

'(n1, . . . , nm) = µx[g(x, n1, . . . , nm) = 0].

The minimization of g may fail, but since g is a total
function, one might think that it should be clear that F
computes '.

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 277

However this is not obvious because we need to prove that
Hc0 cn1 . . . cnm has no normal form if g(n, n1, . . . , nm) 6=
0 for all n 2 N.

But H is defined in terms of a fixed-point combinator, so
in fact the proof is tricky.

We sketch how to proceed, adapting Hindley and Seldin
[?] who give a detailed proof (Chapter 4, Theorems 4.15
and 4.18).

The adaptation has to do with the fact that Hindley and
Seldin minimize g with respect to the last argument in-
stead of the first.

Theorem 3.13. If a partial function f : Nn ! N is
partial computable, then it is �-definable.

Proof. The first step is to define H without using the
fixed-point combinator ⇥.

278 CHAPTER 3. THE LAMBDA-CALCULUS

First we define a variant D of the pairing function by

D = �xyz. z(Ky)x.

Since

DXY cn
+�!� cn(KY)X

+�!� (KY)nX,

we can easily check that

DXY Z =

(
X if Z = c0

Y if Z = cn, n � 1.

Assume that the combinator defines and G defines
g.

Next we define R and P by

R = DU
m+1
2

⇣
�uxy1 . . . ym. u (G (Succcx) y1 . . . ym)u

(Succcx) y1 . . . ym

⌘

P = �xy1 . . . ym.R(Gxy1 . . . ym)Rxy1 . . . ym.

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 279

We can prove that

(1) If Gcn cn1 . . . cnm

+�!� c0, then

Pcn cn1 . . . cnm

+�!� cn.

(2) If Gcn cn1 . . . cnm

+�!� cp (p � 1), then

Pcn cn1 . . . cnm

⇤ !� P(Succc cn) cn1 . . . cnm.

In fact, we proved that

Pcn cn1 . . . cnm

+�!�

R(Gcn cn1 . . . cnm)Rcn cn1 . . . cnm

+�!� R (Gcn+1 cn1 . . . cnm)Rcn+1 cn1 . . . cnm.

Now if we define F by

F = �x1 . . . xm. (Pc0 x1 . . . xm),

we see immediately that F computes f if f (n1, . . . , nm)
is defined.

280 CHAPTER 3. THE LAMBDA-CALCULUS

Furthermore, it can be shown that F has a �-normal
form, which is not the case of the previous F obtained
with the Turing fixed-point combinator.

But if f (n1, . . . , nm) is undefined, we have to make sure
that F has no �-normal form.

A trick to achieve this is to define eF by

eF = �x1 . . . xm. (Pc0 x1 . . . xm) I(F x1 . . . xm).

If f (n1, . . . , nm) is defined, then there is a least n � 0
such that g(n, n1, . . . , nm) = 0, so Case (1) above arises
and we have

eF cn1 . . . cnm

+�!� (Pc0 cn1 . . . cnm)I(F cn1 . . . cnm)
+�!� cn I(F cn1 . . . cnm)

+�!� I
n(F cn1 . . . cnm)

+�!� F cn1 . . . cnm

+�!� cf(n1,...,nm),

so eF cn1 . . . cnm computes f (n1, . . . , nm).

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 281

If f (n1, . . . , nm) is undefined, since g(n, n1, . . . , nm) 6= 0
for all n � 0, Gcn cn1 . . . cnm never reduces to c0, so we
have the infinite reduction sequence

eF cn1 . . . cnm

+�!�(Pc0 cn1 . . . cnm)I(F cn1 . . . cnm)
+�!� (R(Gc0 cn1 . . . cnm)Rc0 cn1 . . . cnm)I(F cn1 . . . cnm)
+�!� (R(Gc1 cn1 . . . cnm)Rc1 cn1 . . . cnm)I(F cn1 . . . cnm)
+�!� (R(Gc2 cn1 . . . cnm)Rc2 cn1 . . . cnm)I(F cn1 . . . cnm)
+�!� · · · .

This turns out to be what is known as an infinite quasi-
leftmost reduction, and this implies that eF cn1 . . . cnm

has no �-normal form.

The reader should review Definition 3.11 in order to un-
derstand the next definition.

282 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.23. Given a �-term M0, a reduction se-
quence

M0
+�!u0,R0,� M1

+�!u1,R1,� M2
+�!u2,R2,� M3

+�!�

· · · +�!� Mn�1
+�!un�1,Rn�1,� Mn

+�!� · · ·

is a quasi-leftmost reduction if the following condition
holds:

for all i � 0, if M0
+�!� Mi and Mi is not a �-normal

form, then there is some j � i such that

Mj
+�!uj,Rj,� Mj+1 is a leftmost

maximal reduction. (qlr)

If the reduction is finite and ends with Mn, then Mn is
a �-normal form, since otherwise Condition (qlr) would
require that Mn �-reduces in order for a leftmost maximal
reduction to occur later.

Observe that an infinite reduction is a quasi-leftmost re-
duction i↵ it contains infinitely many letfmost maximal
steps Mj

+�!uj,Rj,� Mj+1.

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 283

Example 3.13. Let

L = (�x. (xx)y)(�x. (xx)y)

be the term from Example 3.9. Recall that

L
+�!� Ly

+�!� Lyy
+�!� · · ·

and that L has no �-normal form. Consider the term

M =
⇣�
�u. (�v. w)

�
L
⌘
L.

The redex L occurs at 12 and 2 and neither occurrence
is maximal.

The redex
�
�u. (�v. w)

�
L is leftmost maximal.

284 CHAPTER 3. THE LAMBDA-CALCULUS

The term M has the �-normal form w, but there are
infinite reductions from M obtained by reducing either
occurrence of L.

There are also finite quasi-leftmost reductions such as the
following.

M =
⇣�
�u. (�v. w)

�
L
⌘
L

+�!�
⇣�
�u. (�v. w)

�
(Lyp)

⌘
L

+�!� (�v. w)L

+�!� (�v. w)(Lyq)
+�!� w,

where the leftmost maximal redexes are shown in red.

It is easily verified that the reduction above from
eF cn1 . . . cnm is a quasi-leftmost reduction.

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 285

The importance of quasi-leftmost reductions is captured
by the following theorem.

Theorem 3.14. Let M be a �-term. If M has a �-
normal form M ⇤, then every quasi-leftmost reduction
is finite and terminates with M ⇤.

As a corollary, since a finite quasi-leftmost reduction ter-
minates with a �-normal form, a �-term M has no �-
normal form i↵ some quasi-leftmost reduction is infi-
nite.

See Hindley and Seldin [?] (Chapters 3, Theorem 3.19,
and Corollary 3.19.1).

The fact that the existence of an infinite quasi-leftmost re-
duction implies that there is no �-normal is a consequence
of a deep theorem whose proof is hard, the standardiza-
tion theorem.

Full details can be found in Barendregt [?] (Chapter 11,
Theorem 11.4.7, Chapter 13, Theorem 13.2.2 and Theo-
rem 13.2.6).

286 CHAPTER 3. THE LAMBDA-CALCULUS

Combining Theorem 3.11, Theorem 3.12 and Theorem
3.13, we have established the remarkable result that the
set of �-definable total functions is exactly the set of (to-
tal) computable functions, and similarly for partial func-
tions.

So the �-calculus has universal computing power.

The proof actually shows that every total or partial com-
putable function is computed by a �-term that has a �-
normal form.

Remark: With some work, it is possible to show that
lists can be represented in the �-calculus.

Since a Turing machine tape can be viewed as a list, it
should be possible (but very tedious) to simulate a Turing
machine in the �-calculus.

This simulation should be somewhat analogous to the
proof that a Turing machine computes a computable func-
tion (defined à la Herbrand–Gödel–Kleene).

3.7. �-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 287

Since the �-calculus has the same power as Turing ma-
chines we should expect some undecidabity results analo-
gous to the undecidability of the halting problem or Rice’s
theorem.

We state the following analog of Rice’s theorem without
proof. It is a corollary of a theorem known as the Scott–
Curry theorem.

Theorem 3.15. (D. Scott) Let A be any nonempty
set of �-terms not equal to the set of all �-terms. If A
is closed under �-reduction, then it is not computable
(not recursive).

Theorem 3.15 is proven in Barendregt [?] (Chapter 6,
Theorem 6.6.2) and Barendregt [?].

As a corollary of Theorem 3.15 it is undecidable whether
a �-term has a �-normal form, a result originally proved
by Church.

This is an analog of the undecidability of the halting prob-
lem, but it seems more spectacular because the syntax of
�-terms is really very simple.

288 CHAPTER 3. THE LAMBDA-CALCULUS

The problem is that �-reduction is very powerful and
elusive.

In the pure �-calculus, some �-terms have no �-normal
form, and worse, it is undecidable whether a �-term has
a �-normal form.

Church realized that by adding types, we can restrict
when a term M can be applied to a term N , and in
particular, “wild” applications can be avoided.

The idea is to introduce type-checking rules and only
work with terms that type-check.

As a result, we obtain a system called the simply-typed
lambda calculus , and by Theorem 3.18, every �-term
that type-checks in the simply-typed �-calculus has a �-
normal form.

The idea of introducing types as a mechanism to increase
“safe practice” in writing programs has been picked up
by programming language designers.

3.8. THE SIMPLY-TYPED �-CALCULUS 289

3.8 The Simply-Typed �-Calculus

The first step is to define simple types.

We assume that we have a countable set
{T0,T1, . . . ,Tn, . . .} of base types (or atomic types).

For example, the base types may include types such as
Nat for the natural numbers, Bool for the booleans, String
for strings, Tree for trees, etc.

In the Curry–Howard isomorphism they correspond to
the propositional symbols {P0,P1, . . . ,Pn, . . .}.

Definition 3.24. The simple types � are defined in-
ductively as follows.

(1) If Ti is a base type, then Ti is a simple type.

(2) If � and ⌧ are simple types, then (� ! ⌧) is a simple
type.

290 CHAPTER 3. THE LAMBDA-CALCULUS

Thus (T1 ! T1), (T1 ! (T2 ! T1)),
((T1 ! T2)! T1), are simple types.

The standard abbreviation for
(�1 ! (�2 ! (· · ·! �n))) is �1 ! �2 ! · · ·! �n.

There is obviously a bijection between propositions and
simple types.

Every propositional symbol Pi can be viewed as a base
type, and the proposition (P) Q) corresponds to the
simple type (P ! Q).

The only di↵erence is that the custom is to use) to
denote logical implication and ! for simple types.

The reason is that intuitively a simple type (� ! ⌧)
corresponds to a set of functions from a domain of type
� to a range of type ⌧ .

3.8. THE SIMPLY-TYPED �-CALCULUS 291

The next crucial step is to define simply-typed �-terms.
This is done in two stages.

First we define raw simply-typed �-terms .

They have a simple inductive definition but they do not
necessarily type-check so we define some type-checking
rules that turn out to be the Gentzen-style deduction
proof rules annotated with simply-typed �-terms .

These simply-typed �-terms are representations of natu-
ral deductions.

We have a countable set of variables {x0, x1, . . . , xn . . .}
that correspond to the atomic raw �-terms.

These are also the variables that are used for tagging
assumptions when constructing deductions.

292 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.25. The raw simply-typed �-terms (for
short raw terms or �-terms) M are defined inductively
as follows.

(1) If xi is a variable, then xi is a raw term.

(2) If M and N are raw terms, then (MN) is a raw term
called an application .

(3) If M is a raw term, � is a simple type, and x is a
variable, then the expression (�x : �. M) is a raw term
called a �-abstraction .

Matching parentheses may be dropped or added for con-
venience.

Definition 3.26. In a raw �-term M , a variable x ap-
pearing in an expression �x : � is said to be bound in M .
The other variables in M (if any) are said to be free in
M . A �-term M is closed if it has no free variables.

3.8. THE SIMPLY-TYPED �-CALCULUS 293

Example 3.14. For example, in the term �x : �. (yx),
the variable x is bound and the variable y is free. This
term is not closed.

The term �y : � ! �. (�x : �. (yx)) is closed.

The intuition is that a term of the form �x : �. M repre-
sents a function.

How such a function operates will be defined in terms of
�-reduction.

Definition 3.27. The depth d(M) of a raw �-term M
is defined inductively as follows.

1. If M is a variable x, then d(x) = 0.

2. If M is an application (M1M2), then
d(M) = max{d(M1), d(M2)} + 1.

3. If M is a �-abstraction (�x : �. M1), then d(M) =
d(M1) + 1.

294 CHAPTER 3. THE LAMBDA-CALCULUS

It is pretty clear that raw �-terms have representations
as (ordered) labeled trees.

Definition 3.28.Given a raw �-termM , the tree tree(M)
representing M is defined inductively as follows.

1. If M is a variable x, then tree(M) is the one-node
tree labeled x.

2. If M is an application (M1M2), then tree(M) is the
tree with a binary root node labeled . and with a left
subtree tree(M1) and a right subtree tree(M2).

3. If M is a �-abstraction (�x : �. M1), then tree(M) is
the tree with a unary root node labeled �x : � and
with one subtree tree(M1).

Definition 3.28 is illustrated in Figure 3.5.

3.8. THE SIMPLY-TYPED �-CALCULUS 295

x
M = x

tree (M)
1 2M = (M M) •

M1
M2

tree(M)
M = λx:σ • M λx: σ

tree(M)

M1

tree()
tree()

tree()

1

Figure 3.5: The tree tree(M) associated with a raw �-term M .

Obviously, the depth d(M) of raw �-term is the depth of
its tree representation tree(M).

Definition 3.28 could be used to deal with bound vari-
ables.

For every leaf labeled with a bound variable x, we draw
a backpointer to an ancestor of x determined as follows.

Given a leaf labeled with a bound variable x, climb up
to the closest ancestor labeled �x : �, and draw a back-
pointer to this node. Then all bound variables can be
erased.

296 CHAPTER 3. THE LAMBDA-CALCULUS

See Figure 3.6 for an example.

λx: σ

x

x

Figure 3.6: Using backpointers to deal with bound variables.

Definition 3.25 allows the construction of undesirable terms
such as (xx) or (�x : �. (xx))(�x : �. (xx)) because no
type-checking is done.

Part of the problem is that the variables occurring in a
raw term have not been assigned types.

This can be done using a context (or type assignment).

3.8. THE SIMPLY-TYPED �-CALCULUS 297

Definition 3.29. A context (or type assignment) is a
set of pairs � = {x1 : �1, . . . , xn : �n}, where the �i are
simple types and the variables xi are pairwise distinct.

Once a type assignment has been provided, the type-
checking rules are basically the proof rules of natural de-
duction in Gentzen-style.

Definition 3.30. The fact that a raw term M has type
� given a type assignment � that assigns types to all the
free variables in M is written as

� . M : �.

Such an expression is called a judgement . The symbol
. is used instead of the symbol ! because ! occurs in
simple types.

Here are the typing-checking rules.

298 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.31.The type-checking rules of the simply-
typed �-calculus �! are listed below:

�, x : � . x : � (axioms)

�, x : � . M : ⌧

� . (�x : �. M) : � ! ⌧
(abstraction)

� . M : � ! ⌧ � . N : �

� [� . (MN) : ⌧
(application)

In the axioms and in the (abstraction) rule, it is assumed
that x : � /2 �.

In the (application) rule, it is assumed that � and � are
consistent, which means that if x : �1 2 � and x : �2 2 �,
then �1 = �2.

We write ` � . M : � to express that the judgement
� . M : � is provable.

Given a raw simply-typed �-term M , if there is a type-
assigment � and a simple type � such that the judgement
� . M : � is provable, we say that M type-checks with
type �.

3.8. THE SIMPLY-TYPED �-CALCULUS 299

It can be shown by induction on the depth of raw terms
that for a fixed type-assigment �, if a raw simply-typed
�-term M type-checks with some simple type �, then �
is unique.

The correspondence between proofs in natural deduction
and simply-typed �-terms (the Curry/Howard isomor-
phism) is now clear: the abstraction rule corresponds
to implication-introduction, the application rule corre-
sponds to implication elimination, and the blue term is a
representation of the deduction of the sequents
�, x : � ! �, �! �) ⌧ , and � [�! ⌧ , with the types
�, � ! ⌧ and ⌧ viewed as propositions.

Note that proofs correspond to closed �-terms.

300 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.15. For example, we have the type-checking
proof

y : ((R! R)! Q) . y : ((R! R)! Q)

z : R . z : R

. �z : R. z : R! R

y : ((R! R)! Q) . y(�z : R. z) : Q

. �y : ((R! R)! Q). y(�z : R. z) : ((R! R)! Q)! Q

which shows that the simply-typed �-term

M = �y : ((R! R)! Q). y(�z : R. z)

represents the proof

y : ((R) R)) Q)! ((R) R)) Q)
z : R! R
! R) R

y : ((R) R)) Q)! Q

! ((R) R)) Q)) Q

3.8. THE SIMPLY-TYPED �-CALCULUS 301

The proposition ((R) R)) Q)) Q being proven
corresponds to the type ((R ! R) ! Q) ! Q of the
�-term M .

The tree representing the �-term
M = �y : ((R) R)) Q). y(�z : R. z) is shown in
Figure 3.7.

λy: ((R0R)0Q)

•

y
λz : R

z

Tree(M)

Figure 3.7: The tree representation of the �-term M .

Furthermore, and this is the deepest aspect of the
Curry/Howard isomorphism, proof normalization corre-
sponds to �-reduction in the simply-typed �-calculus.

302 CHAPTER 3. THE LAMBDA-CALCULUS

The notion of �-reduction is defined in terms of substitu-
tions.

Definition 3.32.A substitution ' is a finite set of pairs
' = {(x1, N1), . . . , (xn, Nn)}, where the xi are distinct
variables and the Ni are raw �-terms. We write

' = [N1/x1, . . . , Nn/xn]

or
' = [x1 := N1, . . . , xn := Nn].

The second notation indicates more clearly that each term
Ni is substituted for the variable xi and it seems to have
been almost universally adopted.

Given a substitution ' = [x1 := N1, . . . , xn := Nn], for
any variable xi, we denote by '�xi the new substitution
where the pair (xi, Ni) is replaced by the pair (xi, xi)
(that is, the new substitution leaves xi unchanged).

3.8. THE SIMPLY-TYPED �-CALCULUS 303

Definition 3.33. Given any raw �-term M and any
substitution ' = [x1 := N1, . . . , xn := Nn], we define the
raw �-term M ['], the result of applying the substitution
' to M , as follows:

(1) If M = y, with y 6= xi for i = 1, . . . , n, then M ['] =
y = M .

(2) If M = xi for some i 2 {1, . . . , n}, then M ['] = Ni.

(3) If M = (PQ), then M ['] = (P [']Q[']).

(4) If M = �x : �. N and x 6= xi for i = 1, . . . , n, then
M ['] = �x : �. N ['].

(5) If M = �x : �. N and x = xi for some i 2 {1, . . . , n},
then
M ['] = �x : �. N [']�xi.

304 CHAPTER 3. THE LAMBDA-CALCULUS

There is a problem with the present definition of a sub-
stitution in Cases (4) and (5), which is that the result
of substituting a term Ni containing the free variable x
causes this variable to become bound after the substitu-
tion.

We say that x is captured .

To remedy this problem, Church defined ↵-conversion .

Definition 3.34. The idea of ↵-conversion is that in
a raw term M , any subterm of the form �x : �. P can
be replaced by the subterm �z : �. P [x := z] where z is
a new variable not occurring at all (free or bound) in
M to obtain a new term M 0. We write M ⌘↵ M 0 and
we view M and M 0 as equivalent.

3.8. THE SIMPLY-TYPED �-CALCULUS 305

Example 3.16. For example, �x : �. yx ⌘↵ �z : �. yz
and

�y : � ! �. (�x : �. yx) ⌘↵ �w : � ! �. (�z : �. wz).

The variables x and y are just place-holders.

Then given a raw �-term M and a substitution ' =
[x1 := N1 . . ., xn := Nn], before applying ' to M we first
apply some ↵-conversion to rename all bound variables
in M obtaining M 0 ⌘↵ M so that they do not occur in
any of the Ni, and then safely apply the substitution '
to M 0 without any capture of variables.

We say that the term M 0 is safe for the substitution '.

The details are a bit tedious and we omit them. We refer
the interested reader to Gallier [?] for a comprehensive
discussion.

306 CHAPTER 3. THE LAMBDA-CALCULUS

The following result shows that substitutions behave well
with respect to type-checking.

Given a context � = {x1 : �1, . . . , xn : �n}, we let
�(xi) = �i.

Proposition 3.16. For any raw �-term M and any
substitution ' = [x1 := N1, . . ., xn := Nn], whose do-
main contains the set of free variables of M , if the
judgement � . M : ⌧ is provable for some context �
and some simple type ⌧ , and if there is some con-
text � such that for every free variable xj in M the
judgement � . Nj : �(xj) is provable, then there some
M 0 ⌘↵ M such that the judgment � . M 0['] : ⌧ is
provable.

Finally we define �-reduction and �-conversion as follows.

3.8. THE SIMPLY-TYPED �-CALCULUS 307

Definition 3.35. The relation �!�, called immediate
�-reduction , is the smallest relation satisfying the follow-
ing properties for all raw �-terms M, N, P, Q:

(�x : �. M)N �!� M [x := N]

provided that M is safe for [x := N];

M �!� N

MQ �!� NQ

M �!� N

PM �!� PN
, for all P, Q

(congruence)
M �!� N

�x : �. M �!� �x : �. N
, for all �. (⇠)

The transitive closure of�!� is denoted by
+�!�, the re-

flexive and transitive closure of �!� is denoted by
⇤�!�,

and we define �-conversion , denoted by
⇤ !�, as the

smallest equivalence relation
⇤ !� = (�!� [�!�1

�)⇤

containing �!�.

308 CHAPTER 3. THE LAMBDA-CALCULUS

Example 3.17. For example, we have

(�u : �. (vu))
�
(�x : � ! �. (xy))(�z : �. z)

�
�!�

(�u : �. (vu))(�x : � ! �. (xy))[x := (�z : �. z)]

= (�u : �. (vu))
�
(�z : �. z)y

�

�!� (�u : �. (vu))z[z := y] = (�u : �. (vu))y

�!� (vu)[u := y] = vy.

In the above, �-reduction steps are applied to the blue
subterms.

The following result shows that �-reduction
(and �-conversion) behave well with respect to type-checking.

Proposition 3.17. For any two raw �-terms M and
N , if there is a proof of the judgement � . M : �
for some context � and some simple type �, and if
M

+�!�N (or M
⇤ !� N), then the judgement � .

N : � is provable. Thus �-reduction and �-conversion
preserve type-checking.

3.8. THE SIMPLY-TYPED �-CALCULUS 309

Definition 3.36.We say that a �-termM is �-irreducible
or a �-normal form if there is no term N such that
M �!� N .

The fundamental result about the simply-typed �-calculus
is this.

Theorem 3.18. For every raw �-term M , if M type-
checks, which means that there a provable judgement
� . M : � for some context � and some simple type �,
then the following results hold.

(1) If M
⇤�!� M1 and M

⇤�!� M2, then there is some
M3 such that M1

⇤�!� M3 and M2
⇤�!� M3. We

say that
⇤�!� is confluent.

(2) Every reduction sequence M
+�!� N is finite. We

that that the simply-typed �-calculus is strongly
normalizing (for short, SN).

As a consequence of (1) and (2), there is a unique
�-irreducible term N (called a �-normal form) such
that M

⇤�!� N .

310 CHAPTER 3. THE LAMBDA-CALCULUS

A proof of Theorem 3.18 can be found in Gallier [?]. See
also Gallier [?] which contains a thorough discussion of
the techniques involved in proving these results.

In Theorem 3.18, the fact that the term M type-checks
is crucial. Indeed the term

(�x. (xx))(�x. (xx)),

which does not type-check (we omitted the type tags �
of the variable x since they do not play any role), gives
rise to an infinite �-reduction sequence!

In summary, the correspondence between proofs in intu-
itionistic logic and typed �-terms on one hand and be-
tween proof normalization and �-reduction, can be used
to translate results about typed �-terms into results about
proofs in intuitionistic logic.

3.8. THE SIMPLY-TYPED �-CALCULUS 311

These results can be generalized to typed �-calculi with
product types and union types; see Gallier [?].

Using some suitable intuitionistic sequent calculi and
Gentzen’s cut elimination theorem or some suitable typed
�-calculi and (strong) normalization results about them,
it is possible to prove that there is a decision procedure
for propositional intuitionistic logic.

However, it can also be shown that the time-complexity
of any such procedure is very high.

As a matter of fact, it was shown by Statman (1979)
that deciding whether a proposition is intuitionisticaly
provable is P-space complete; see [?] and Section ??.

Here, we are alluding to complexity theory , another ac-
tive area of computer science, Hopcroft, Motwani, and
Ullman [?] and Lewis and Papadimitriou [?].

312 CHAPTER 3. THE LAMBDA-CALCULUS

Readers who wish to learn more about these topics can
read the two survey papers Gallier [?] (On the Corre-
spondence Between Proofs and �-Terms) and Gallier [?]
(A Tutorial on Proof Systems and Typed �-Calculi), both
available on the website
http://www.cis.upenn.edu/̃ jean/gbooks/logic.html and the
excellent introduction to proof theory by Troelstra and
Schwichtenberg [?].

Anybody who really wants to understand logic should of
course take a look at Kleene [?] (the famous “I.M.”), but
this is not recommended to beginners.

Figure 3.8: Stephen C. Kleene, 1909–1994

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 313

3.9 Definability of Functions in Typed Lambda-Calculi

This is a supplementary optional section that requires
knowledge of the simply-typed lambda calculus.

In the pure �-calculus, some �-terms have no �-normal
form, and worse, it is undecidable whether a �-term has
a �-normal form.

In contrast, by Theorem 3.18, every raw �-term that
type-checks in the simply-typed �-calculus has a �-normal
form.

Thus it is natural to ask whether the natural numbers are
definable in the simply-typed �-calculus because if the
answer is positive, then the numerical functions definable
in the simply-typed �-calculus are guaranteed to be total.

314 CHAPTER 3. THE LAMBDA-CALCULUS

This indeed possible. If we pick any base type �, then
we can define typed Church numerals cn as terms of type
Nat� = (� ! �)! (� ! �), by

cn = �f : (� ! �).�x : �. fn(x).

The notion of �-definable function is defined just as be-
fore.

Then we can define Add and Mult as terms of type
Nat� ! (Nat� ! Nat�) essentially as before, but sur-
prise, not much more is definable.

Among other things, strong typing of terms restricts the
iterator combinator too much.

It was shown by Schwichtenberg and Statman that the
numerical functions definable in the simply-typed �-calculus
are the extended polynomials; see Statman [?] and Troel-
stra and Schwichtenberg [?].

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 315

Definition 3.37.The extended polynomials are the small-
est class of numerical functions closed under composition
containing

1. The constant functions 0 and 1.

2. The projections.

3. Addition and multiplication.

4. The function IsZeroc.

Is there a way to get a larger class of total functions?

There are indeed various ways of doing this.

One method is to add the natural numbers and the booleans
as data types to the simply-typed �-calculus, and to also
add product types, an iterator combinator, and some new
reduction rules.

316 CHAPTER 3. THE LAMBDA-CALCULUS

This way we obtain a system equivalent to Gödel’s sys-
tem T . A large class of numerical total functions contain-
ing the primitive recursive functions is definable in this
system; see Girard–Lafond–Taylor [?].

Although theoretically interesting, this is not a practical
system.

Another wilder method is to add more general types to
the simply-typed �-calculus, the so-called second-order
types or polymorphic types .

In addition to base types, we allow type variables (of-
ten denoted X, Y, . . .) ranging over simple types and new
types of the form 8X. �.3

3
Barendregt and others used Greek letters to denote type variables but we find this confusing.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 317

Definition 3.38. The second-order types (or polymor-
phic types) � are defined inductively as follows.

(1) If Ti is a base type, then Ti is a polymorphic type,
and if X is a type variable, then X is a polymorphic
type.

(2) If � and ⌧ are polymorphic types, then (� ! ⌧) is a
polymorphic type.

(3) If � is a polymorphic type and X is a type variable,
then 8X. � is a polymorphic type.

Example 3.18. For example, 8X. (X ! X) is such a
new type, and so is

8X. (X ! ((X ! X)! X)).

Actually, the second-order types that we just defined are
special cases of the QBF (quantified boolean formulae)
arising in complexity theory restricted to implication and
universal quantifiers; see Section ??.

318 CHAPTER 3. THE LAMBDA-CALCULUS

Remarkably, the other connectives ^,_, ¬ and 9 are de-
finable in terms of! (as a logical connective,)) and 8;
see Proposition 3.19 and Troelstra and Schwichtenberg
[?] (Chapter 11).

The type

Nat = 8X. (X ! ((X ! X)! X)).

can be chosen to represent the type of the natural num-
bers.

The type of the natural numbers can also be chosen to be

8X. ((X ! X)! (X ! X)).

This makes essentially no di↵erence but the first choice
has some technical advantages.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 319

Definition 3.39. The polymorphic raw �-terms (or
second-order raw �-terms) are defined inductively as
follows.

(1) If xi is a term variable, then xi is a raw term.

(2) If M and N are raw terms, then (MN) is a raw term
called an application .

(3) If M is a raw term, � is a polymorphic type, and x
is a variable, then the expression (�x : �. M) is a raw
term called a �-abstraction .

(4) If M is a raw term and X is a type variable, then
⇤X. M is a raw term called a ⇤-abstraction .

(5) If M is a raw term and ⌧ is a polymorphic type, them
(M⌧) is a raw term called a type application .

As usual, to simplify notation, we may omit parentheses.

320 CHAPTER 3. THE LAMBDA-CALCULUS

Besides the type-checking rules of Definition 3.31, we need
two new type-checking rules having to do with terms of
the form ⇤X. M and M⌧ .

Definition 3.40. We have the following type-checking
rules (typing rules).

� . M : �

� . (⇤X. M) : 8X. �
(type abstraction)

provided that X does not occur free in any of the types
in �, and

� . M : 8X. �

� . (M⌧) : �[X := ⌧]
(type application)

where ⌧ is any type (and no capture of variable takes
place).

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 321

We also have a new reduction rule

(⇤X. M)� �!�8 M [X := �]

that corresponds to a new form of redundancy in proofs
having to do with a 8-elimination immediately following
a 8-introduction.

Here in the substitution M [X := ⌧], all free occur-
rences of X in M and the types in M are replaced by
⌧ .

From the point of view where types are viewed as propo-
sitions and �-terms are viewed as proofs, type abstraction
is an introduction rule and type application is an elimi-
nation rule, both for the second-order quantifier 8.

322 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.41. Besides the inference rules of Defini-
tion ?? for intuitionistic propositional logic, the inference
rules dealing with second-order quantified propositions
are listed below.

�! �

�! 8X. �
(8X-intro)

provided that X does not occur free in any of the types
in �, and

�! 8X. �

�! �[X := ⌧]
(8X-elim)

where ⌧ is any type (and no capture of variable takes
place).

In order to avoid a clash with the separator symbol !
used in a sequent, we replace the type constructor !
by) in all the types. Namely, we view a type as a
proposition.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 323

The inference rules of Definition ?? together with the
rules of Definition 3.41 define the proof system of intu-
itionistic second-order propositional logic.

The intuition behind terms of type 8X. � is that a term
M of type 8X. � is a sort of generic function such that
for any type ⌧ , the function M⌧ is a specialized version
of type �[X := ⌧] of M .

For example, M could be the function that appends an
element to a list, and for specific types such as the nat-
ural numbers Nat, strings String, trees Tree, etc., the
functions MNat, MString, MTree, are the specialized
versions of M to lists of elements having the specific data
types Nat, String,Tree.

324 CHAPTER 3. THE LAMBDA-CALCULUS

Observe that self-application terms of the form (MM)
do not type-check in system F. The type-checking rules
prevent this to happen. In particular, the fixed-point
combinators Y and ⇥ do not type-check in system F.
However any term M that type-checks can be applied to
any type ⌧ .

Example 3.19.We have

(�f : (X ! X).�x : X.�g : 8Y. (Y ! Y). gX (fx))

[X := ⌧]

= �f : (⌧ ! ⌧).�x : ⌧.�g : 8Y. (Y ! Y). g⌧ (fx).

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 325

Definition 3.42. The typed �-calculus specified by Def-
initions 3.38, 3.39 and 3.40 is called the second-order
polymorphic lambda calculus . It was invented by Gi-
rard (1972) who named it system F ; see Girard [?, ?],

and it is denoted �2 by Barendregt. We define
+�!�2

and
⇤�!�2 as the relations

+�!�2 = (�!� [�!�8)
+

⇤�!�2 = (�!� [�!�8)
⇤.

A variant of system F was also introduced independently
by John Reynolds (1974) but for very di↵erent reasons.

From the point of view of logic, Girard’s system is a proof
system for intuitionistic second-order propositional logic.

The Curry–Howard isomorphism extends to system F,
in the sense that second-order propositions built up us-
ing implication and universal quantification over proposi-
tional variables correspond to second-order types built up
using the arrow constructor and universal quantification
over type variables.

326 CHAPTER 3. THE LAMBDA-CALCULUS

More importantly, a deduction tree of �! P using the
proof rules corresponds to a type-checking derivation of
� . M : � using the type-checking rules, where the type
� is obtained from P by replacing) by !, and the
polymorphic �-term M is a term representation of the
proof tree of �! P .

Also, given a type-checking derivation of � . M : � using
the type-checking rules, a proof of �! P is immediately
obtained by erasing the lambda-terms and converting �
to P .

By abuse of language, a type-checking derivation is often
referred to as a proof.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 327

Example 3.20. If � is any base type, we have the closed
term

A� = �x : �.�f : (� ! �). fx.

We determine its type by applying the typing rules. We
have the type-checking derivation

f : � ! � . f : � ! � x : � . x : �
x : �, f : � ! � . fx : �

x : � . �f : (� ! �). fx : (� ! �)! �

. �x : �.�f : (� ! �). fx : � ! ((� ! �)! �)

which shows that A� has type � ! ((� ! �)! �).

The corresponding proof of the proposition
�) ((�) �)) �) is given below.

f : �) � ! �) � x : � ! �
x : �, f : �) � ! �

x : � ! (�) �)) �

! �) ((�) �)) �)

328 CHAPTER 3. THE LAMBDA-CALCULUS

The �-term �x : �.�f : (� ! �). fx is a term represen-
tation of the above proof of the proposition
�) ((�) �)) �).

For every term F of type � ! � and every term a of
type �,

A�aF
+�!�2 Fa.

Since A� has the same behavior for all types �, it is
natural to define the generic function A given by

A = ⇤X.�x : X.�f : (X ! X). fx,

which has type 8X. (X ! ((X ! X)! X)), and then
A� has the same behavior as A�.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 329

We will see shortly that A is the Church numeral c1 in
�2.

Remarkably, system F is strongly normalizing , which
means that every �-term typable in system F has a
�-normal form .

The proof of this theorem is hard and was one of Girard’s
accomplishments in his dissertation, Girard [?].

The Church–Rosser property also holds for system F. The
proof technique used to prove that system F is strongly
normalizing is thoroughly analyzed in Gallier [?].

We stated earlier that deciding whether a simple type �
is provable, that is, whether there is a closed �-term M
that type-checks in the simply-typed �-calculus such that
the judgement .M : � is provable is a hard problem.

330 CHAPTER 3. THE LAMBDA-CALCULUS

Indeed Statman proved that this problem is P-space com-
plete; see Statman [?] and Section ??.

It is natural so ask whether it is decidable whether given
any second-order type �, there is a closed �-term M that
type-checks in system F such that the judgement .M : �
is provable (if � is viewed as a second-order logical for-
mula, the problem is to decide whether � is provable).

Surprisingly the answer is no; this problem (called in-
habitation) is undecidable.

This result was proven by Löb around 1976, see Baren-
dregt [?].

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 331

This undecidability result is troubling and at first glance
seems paradoxical.

Indeed, viewed as a logical formula, a second-order type
� is a QBF (a quantified boolean formula), and if we
assign the truth values F and T to the boolean variables
in it, we can decide whether such a proposition is valid in
exponential time and polynomial space (in fact, we will
see that later QBF validity is P-space complete).

This seems in contradiction with the fact that provability
is undecidable.

But the proof system corresponding to system F is an
intuitionistic proof system , so there are (non-quantifed)
propositions that are valid in the truth-value semantics
but not provable in intuitionistic propositional logic.

332 CHAPTER 3. THE LAMBDA-CALCULUS

The set of second-order propositions provable in intuition-
istic second-order logic is a proper subset of the set of
valid QBF (under the truth-value semantics), and it is
not computable . So there is no paradox after all.

Going back to the issue of computability of numerical
functions, a version of the Church numerals can be de-
fined as

cn = ⇤X.�x : X.�f : (X ! X). fn(x). (⇤c1)

Observe that cn has type

Nat = 8X. (X ! ((X ! X)! X)).

Also note that variables x and f now appear in the order
x, f in the �-binder, as opposed to f, x as in Definition
3.14.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 333

Inspired by the definition of Succ given in Section 3.4, we
can define the successor function on the natural numbers
as

Succ = �n : Nat.⇤X.�x : X.�f : (X ! X). f (nX xf).

Note how n, which is of type
Nat = 8X. (X ! ((X ! X) ! X)), is applied to the
type variable X in order to become a term nX of type
X ! ((X ! X) ! X), so that nX xf has type X ,
thus f (nX xf) also has type X .

334 CHAPTER 3. THE LAMBDA-CALCULUS

For every type �, every term F of type � ! � and every
term a of type �, we have

cn� aF =
�
⇤X.�x : X.�f : (X ! X). fn(x)

�
� aF

+�!�2

�
�x : �.�f : (� ! �). fn(x)

�
aF

+�!�2 Fn(a);

that is,

cn� aF
+�!�2 Fn(a). (⇤c2)

So cn� iterates F n times starting with a. As a conse-
quence,

Succ cn
+�!�2 cn+1.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 335

We can also define addition of natural numbers as

Add = �m : Nat.�n : Nat.⇤X.�x : X.�f : (X ! X).

(mX (nX xf))f.

Note how m and n, which are of type
Nat = 8X. (X ! ((X ! X)! X)), are applied to the
type variable X in order to become terms mX and nX
of type X ! ((X ! X)! X), so that nX xf has type
X , thus mX (nX xf) has type (X ! X) ! X , and
finally (mX (nX xf))f has type X .

We can show that multiplication is defined by the follow-
ing term:

Mult = �m : Nat.�n : Nat.⇤X.�x : X.�f : (X ! X).

mXx
�
�y : X. (nXyf)

�
.

336 CHAPTER 3. THE LAMBDA-CALCULUS

Many of the constructions that can be performed in the
pure �-calculus can be mimicked in system F, which ex-
plains its expressive power.

For example, for any two second-order types � and ⌧ , we
can define a pairing function h�,�i (to be very precise,
h�,�i�,⌧) given by

h�,�i = �u : �.�v : ⌧.⇤X.�f : � ! (⌧ ! X). fuv,

of type � !
�
⌧ !

�
8X. ((� ! (⌧ ! X))! X)

��
.

Given any term M of type � and any term N of type ⌧ ,
we have

h�,�i�,⌧MN
⇤�!�2 ⇤X.�f : � ! (⌧ ! X). fMN.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 337

Thus we define hM, Ni as

hM, Ni = ⇤X.�f : � ! (⌧ ! X). fMN,

and the type

8X. ((� ! (⌧ ! X))! X)

of hM, Ni is denoted by � ⇥ ⌧ .

As a logical formula it is equivalent to �^⌧ , which means
that if we view � and ⌧ as (second-order) propositions,
then

� ^ ⌧ ⌘ 8X. ((� ! (⌧ ! X))! X)

is provable intuitionistically.

This is a special case of the result that we mentioned
earlier: the connectives ^,_, ¬ and 9 are definable in
terms of ! (as a logical connective,)) and 8.

338 CHAPTER 3. THE LAMBDA-CALCULUS

Proposition 3.19. The connectives ^,_, ¬,? and 9
are definable in terms of) and 8, which means that
the following equivalences are provable intuitionisti-
cally, where X is not free in � or ⌧ :

� ^ ⌧ ⌘ 8X.
�
(�) (⌧) X))) X

�

� _ ⌧ ⌘ 8X.
�
(�) X)) ((⌧) X)) X)

�

? ⌘ 8X. X

¬� ⌘ �) 8X. X

9Y. � ⌘ 8X.
�
(8Y. (�) X))) X

�
.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 339

We also have two projections ⇡1 and ⇡2 (to be very pre-
cise ⇡�⇥⌧1 and ⇡�⇥⌧2) given by

⇡1 = �g : � ⇥ ⌧. g�(�x : �.�y : ⌧. x)
⇡2 = �g : � ⇥ ⌧. g⌧ (�x : �.�y : ⌧. y).

It is easy to check that ⇡1 has type (�⇥⌧)! � and that
⇡2 has type (� ⇥ ⌧)! ⌧ .

The reader should check that for any M of type � and
any N of type ⌧ we have

⇡1hM, Ni +�!�2 M and ⇡2hM, Ni +�!�2 N.

340 CHAPTER 3. THE LAMBDA-CALCULUS

The booleans can be defined as

T = ⇤X.�x : X.�y : X. x

F = ⇤X.�x : X.�y : X. y,

both of type Bool = 8X. (X ! (X ! X)).

We also define if then else as

if then else = ⇤X.�z : Bool. zX

of type 8X.Bool! (X ! (X ! X)).

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 341

It is easy that for any type � and any two terms M and
N of type � we have

(if T then M else N)�
+�!�2 M

(if F then M else N)�
+�!�2 N,

where we write (if T then M else N)� instead of
(if then else) �TMN (and similarly for the other term).

Lists, trees, and other inductively data stuctures are also
representable in system F; see Girard–Lafond–Taylor [?].

342 CHAPTER 3. THE LAMBDA-CALCULUS

We can also define an iterator Iter given by

Iter = ⇤X.�u : X.�f : (X ! X).�z : Nat. zX uf

of type 8X. (X ! ((X ! X)! (Nat! X))).

The idea is that given f of type � ! � and u of type �,
the term Iter � ufcn iterates f n times over the input u.

It is easy to show that for any term t of type Nat we have

Iter � ufc0
+�!�2 u

Iter � uf (Succc t)
⇤ !�2 f (Iter � uft),

and that

Iter � ufcn
+�!�2 fn(u).

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 343

Then mimicking what we did in the pure �-calculus, we
can show that the primitive recursive functions are �-
definable in system F .

Actually, higher-order primitive recursion is definable. So,
for example, Ackermann’s function is definable.

Remarkably, the class of numerical functions definable in
system F is a class of (total) computable functions much
bigger than the class of primitive recursive functions.

This class of functions was characterized by Girard as
the functions that are provably-recursive in a formal-
ization of arithmetic known as intuitionistic second-
order arithmetic; see Girard [?], Troelstra and Schwicht-
enberg [?] and Girard–Lafond–Taylor [?].

344 CHAPTER 3. THE LAMBDA-CALCULUS

It can also be shown (using a diagonal argument) that
there are (total) computable functions not definable in
system F.

From a theoretical point of view, every (total) function
that we will ever want to compute is definable in system
F.

However, from a practical point of view, programming
in system F is very tedious and usually leads to very
ine�cient programs.

Nevertheless polymorphism is an interesting paradigm
which had made its way in certain programming lan-
guages.

3.9. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 345

Type systems even more powerful than system F have
been designed, the ultimate system being the calculus
of constructions due to Huet and Coquand, but these
topics are beyond the scope of these notes.

One last comment has to do with the use of the simply-
typed �-calculus as a the core of a programming language.

In the early 1970’s Dana Scott defined a system named
LCF based on the the simply-typed �-calculus and ob-
tained by adding the natural numbers and the booleans
as data types, product types, and a fixed-point operator.

346 CHAPTER 3. THE LAMBDA-CALCULUS

Robin Milner then extended LCF, and as a by-product,
defined a programming language known as ML, which is
the ancestor of most functional programming languages.

A masterful and thorough exposition of type theory and
its use in programming language design is given in Pierce
[?].

We now revisit the problem of defining the partial com-
putable functions.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS347

3.10 Head Normal-Forms and the Partial Computable

Functions

One defect of the proof of Theorem 3.12 in the case where
a computable function is partial is the use of the Kleene
normal form.

The di�culty has to do with composition.

Given a partial computable function g �-defined by a
closed term G and a partial computable function h �-
defined by a closed term H (for simplicity we assume that
both g and h have a single argument), it would be nice if
the composition h � g was represented by �x. H(Gx).

This is true if both g and h are total, but false if either
g or h is partial as shown by the following example from
Barendregt [?] (Chapter 2, §2).

348 CHAPTER 3. THE LAMBDA-CALCULUS

If g is the function undefined everywhere and h is the con-
stant function 0, then g is �-defined by G = K⌦ and h is
�-defined by H = Kc0, with ⌦ = (�x. (xx))(�x. (xx)).

We have

�x. H(Gx) = �x.Kc0(K⌦x)
+�!� �x.Kc0⌦

+�!� �x. c0,

but h � g = g is the function undefined everywhere, and
�x. c0 represents the total function h, so �x. H(Gx) does
not �-define h � g.

It turns out that the �-definability of the partial com-
putable functions can be obtained in a more elegant fash-
ion without having recourse to the Kleene normal form by
capturing the fact that a function is undefined for some
input is a more subtle way.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS349

The key notion is the notion of head normal form , which
is more general than the notion of �-normal form.

As a consequence, there are fewer �-terms having no
head normal form than �-terms having no �-normal form,
and we capture a stronger form of divergence.

Recall that a �-term is either a variable x, or an applica-
tion (MN), or a �-abstraction (�x. M).

We can sharpen this characterization as follows.

350 CHAPTER 3. THE LAMBDA-CALCULUS

Proposition 3.20. The following properties hold.

(1) Every application term M is of the form

M = (N1N2 · · · Nn�1)Nn, n � 2,

where N1 is not an application term.

(2) Every abstraction term M is of the form

M = �x1 · · · xn. N, n � 1,

where N is not an abstraction term.

(3) Every �-term M is of one of the following two
forms:

M = �x1 · · · xn. xM1 · · · Mm, m, n � 0 (a)

M = �x1 · · · xn. (�x. M0)M1 · · · Mm,

m � 1, n � 0, (b)

where x is a variable.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS351

The terms, I,K,K⇤,S, the Church numerals cn,
if thenelse, hM, Ni, ⇡1, ⇡2, Iter, Succc,Add andMult

as in Proposition 3.6, are �-terms of type (a).

However, PredK, ⌦ = (�x. (xx))(�x. (xx)), Y (the
Curry Y-combinator), ⇥ (the Turing⇥-combinator) are
of type (b).

Proposition 3.20 motivates the following definition.

352 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.43. A �-term M is a head normal form
(for short hnf) if it is of the form (a), namely

M = �x1 · · · xn. xM1 · · · Mm, m, n � 0,

where x is a variable called the head variable .

A �-term M has a head normal form if there is some
head normal form N such that M

⇤�!� N .

In a term M of the form (b),

M = �x1 · · · xn. (�x. M0)M1 · · · Mm, m � 1, n � 0,

the subterm (�x. M0)M1 is called the head redex of M .

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS353

In addition to the terms of type (a) that we listed after
Proposition 3.20, the term �x. x⌦ is a head normal form.

It is the head normal form of the term �x. (Ix)⌦, which
has no �-normal form.

Not every term has a head normal form. For example,
the term

⌦ = (�x. (xx))(�x. (xx))

has no head normal form.

Every �-normal form must be a head normal form, but
the converse is false as we saw with

M = �x. x⌦,

which is a head normal form but has no �-normal form.

354 CHAPTER 3. THE LAMBDA-CALCULUS

Note that a head redex of a term is a leftmost redex, but
not conversely, as shown by the term �x. x((�y. y)x).

A term may have more than one head normal form but
here is a way of obtaining a head normal form (if there is
one) in a systematic fashion.

Definition 3.44. The relation �!h, called one-step
head reduction, is defined as follows. For any two terms
M and N , if M contains a head redex (�x. M0)M1, which
means that M is of the form

M = �x1 · · · xn. (�x. M0)M1 · · · Mm, m � 1, n � 0,

then M �!h N with

N = �x1 · · · xn. (M0[x := M1])M2 · · · Mm.

We denote by
+�!h the transitive closure of �!h and

by
⇤�!h the reflexive and transitive closure of �!h.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS355

Given a term M containing a head redex, the head reduc-
tion sequence of M is the uniquely determined sequence
of one-step head reductions

M = M0 �!h M1 �!h · · · �!h Mn �!h · · · .

If the head reduction sequence reaches a term Mn which
is a head normal form we say that the sequence termi-
nates , and otherwise we say that M has an infinite head
reduction.

The following result is shown in Barendregt [?] (Chapter
8, §3).

Theorem 3.21. (Wadsworth) A �-term M has a head
normal form if and only if the head reduction sequence
terminates.

356 CHAPTER 3. THE LAMBDA-CALCULUS

In some intuitive sense, a �-term M that does not have
any head normal form has a strong divergence behavior
with respect to �-reduction.

Remark: There is a notion more general than the no-
tion of head normal form which comes up in functional
languages (for example, Haskell). A �-term M is a weak
head normal form if it is of one of the two forms

�x. N or yN1 · · · Nm

where y is a variable

These are exactly the terms that do not have a redex of
the form (�x. M0)M1N1 · · · Nm.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS357

Every head normal form is a weak head normal form,
but there are many more weak head normal forms than
there are head normal forms since a term of the form
�x. N where N is arbitrary is a weak head normal form,
but not a head normal form unless N is of the form
�x1 · · · xn. xM1 · · · Mm, with m, n � 0.

Reducing to a weak head normal form is a lazy evaluation
strategy .

There is also another useful notion which turns out to be
equivalent to having a head normal form.

358 CHAPTER 3. THE LAMBDA-CALCULUS

Definition 3.45. A closed �-term M is solvable if there
are closed terms N1, . . . , Nn such that

MN1 · · · Nn
⇤�!� I.

A �-term M with free variables x1, . . . , xm is solvable
if the closed term �x1 · · · xm. M is solvable. A term is
unsolvable if it is not solvable.

The following result is shown in Barendregt [?] (Chapter
8, §3).

Theorem 3.22. (Wadsworth) A �-term M has a head
normal form if and only if is it solvable.

Actually, the proof that having a head normal form im-
plies solvable is not hard.

We are now ready to revise the notion of �-definability of
numerical functions.

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS359

Note that Barendregt represents the natural numbers us-
ing the Barendregt numerals instead of the Church nu-
merals. This makes the proof technically simpler.

Definition 3.46. A function (partial or total)
f : Nn ! N is strongly �-definable if for all m1, . . .,
mn 2 N, there is a combinator (a closed �-term) F with
the following properties:

(1) If the value f (m1, . . . , mn) is defined, then Fbm1 · · ·bmn

reduces to the �-normal form bf(m1,...,mn).

(2) If f (m1, . . . , mn) is undefined, then Fbm1 · · ·bmn has
no head normal form, or equivalently, is unsolvable.

Observe that in Case (2), when the value f (m1, . . . , mn)
is undefined, the divergence behavior of Fbm1 · · ·bmn is
stronger than in Definition 3.22.

Not only Fbm1 · · ·bmn has no �-normal form, but actu-
ally it has no head normal form .

360 CHAPTER 3. THE LAMBDA-CALCULUS

The following result is proven in Barendregt [?] (Chapter
8, §4).

The proof does not use the Kleene normal form. Instead,
it makes clever use of the term KII. Another proof is
given in Krivine [?] (Chapter II).

Theorem 3.23.Every partial or total computable func-
tion is strongly �-definable. Conversely, every strongly
�-definable function is partial computable.

Making sure that a composition g � (h1, . . . , hm) is de-
fined for some input x1, . . . , xn i↵ all the hi(x1, . . . , xn)
and g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) are defined is
tricky.

The term KII comes to the rescue!

3.10. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS361

The Barendregt numerals have the property that

bnKII
+�!� I,

so they are “uniformly solvable;” see Barendregt [?] (Chap-
ter 8, Lemma 8.4.5).

If g is strongly �-definable by G and the hi are strongly �-
definable by Hi, then it can be shown that the combinator
F given by

F = �x1 · · · xn. (H1x1 · · · xnKII) · · · (Hmx1 · · · xnKII)

(G(H1x1 · · · xn) · · · (G(Hmx1 · · · xn))

strongly �-defines F ; see Barendregt [?] (Chapter 8, Lemma
8.4.6).

362 CHAPTER 3. THE LAMBDA-CALCULUS

To prove closure under minimization, the Turing fixed-
point combinator and the combinators

J = �fxx1 · · · xn. if IsZerob Gx x1 · · · xn then x

else f (Succb x)x1 · · · xn

H = ⇥J

F = �x1 . . . xn. Hb0 x1 . . . xn,

can be used, because when f (m1, . . . , mn) is undefined,
there is an infinite quasi-leftmost reduction from
Fbm1 · · ·bmn, and this implies that Fbm1 · · ·bmn has
no �-normal form, which in turn implies that it has no
head normal form; see Barendregt [?] (Chapter 8, Lemma
8.4.10 and 8.4.11).

