
Chapter 5

Regular Languages and Regular
Expressions

5.1 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled
directed graphs.

Definition 5.1. A directed graph is a quadruple
G = (V,E, s, t), where V is a set of vertices, or nodes ,
E is a set of edges, or arcs , and s, t : E → V are two
functions, s being called the source function, and t the
target function. Given an edge e ∈ E, we also call s(e)
the origin (or source) of e, and t(e) the endpoint (or
target) of e.

Remark : the functions s, t need not be injective or sur-
jective. Thus, we allow “isolated vertices.”
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Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

Such a graph can be represented by the following diagram:
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Figure 5.1: A directed graph.

In drawing directed graphs, we will usually omit edge
names (the ei), and sometimes even the node names (the
vj).

We now define paths in a directed graph.
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Definition 5.2. Given a directed graph
G = (V,E, s, t), for any two nodes u, v ∈ V , a path from
u to v is a triple π = (u, e1 . . . en, v), where e1 . . . en is
a string (sequence) of edges in E such that, s(e1) = u,
t(en) = v, and t(ei) = s(ei+1), for all i such that 1 ≤ i ≤
n − 1. When n = 0, we must have u = v, and the path
(u, ϵ, u) is called the null path from u to u. The number
n is the length of the path. We also call u the source
(or origin) of the path, and v the target (or endpoint)
of the path. When there is a nonnull path π from u to v,
we say that u and v are connected .

Remark : In a path π = (u, e1 . . . en, v), the expression
e1 . . . en is a sequence, and thus, the ei are not neces-
sarily distinct.
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For example, the following are paths:

π1 = (v1, e1e5e7, v6),

π2 = (v2, e2e3e4e2e3e4e2e3e4, v2),

and

π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6).

Clearly, π2 and π3 are of a different nature from π1. In-
deed, they contain cycles. This is formalized as follows.



178 CHAPTER 5. REGULAR LANGUAGES AND REGULAR EXPRESSIONS

Definition 5.3. Given a directed graph
G = (V,E, s, t), for any node u ∈ V a cycle (or loop)
through u is a nonnull path of the form π = (u, e1 . . . en, u)
(equivalently, t(en) = s(e1)). More generally, a nonnull
path π = (u, e1 . . . en, v) contains a cycle iff for some
i, j, with 1 ≤ i ≤ j ≤ n, t(ej) = s(ei). In this case, let-
ting w = t(ej) = s(ei), the path (w, ei . . . ej, w) is a cycle
through w. A path π is acyclic iff it does not contain any
cycle. Note that each null path (u, ϵ, u) is acyclic.

Obviously, a cycle π = (u, e1 . . . en, u) through u is also
a cycle through every node t(ei). Also, a path π may
contain several different cycles.

Paths can be concatenated as follows.
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Definition 5.4. Given a directed graph
G = (V, E, s, t), two paths π1 = (u, e1 . . . em, v) and
π2 = (u′, e′1 . . . e

′
n, v
′) can be concatenated provided that

v = u′, in which case their concatenation is the path

π1π2 = (u, e1 . . . eme
′
1 . . . e

′
n, v
′).

It is immediately verified that the concatenation of paths
is associative, and that the concatenation of the path
π = (u, e1 . . . em, v) with the null path (u, ϵ, u) or with
the null path (v, ϵ, v) is the path π itself.

The following fact, although almost trivial, is used all the
time, and is worth stating in detail.

Lemma 5.1. Given a directed graph G = (V,E, s, t),
if the set of nodes V contains m ≥ 1 nodes, then every
path π of length at least m contains some cycle.



180 CHAPTER 5. REGULAR LANGUAGES AND REGULAR EXPRESSIONS

A consequence of lemma 5.1 is that in a finite graph with
m nodes, given any two nodes u, v ∈ V , in order to find
out whether there is a path from u to v, it is enough to
consider paths of length ≤ m− 1.

Indeed, if there is path between u and v, then there is
some path π of minimal length (not necessarily unique,
but this doesn’t matter).

If this minimal path has length at least m, then by the
lemma, it contains a cycle.

However, by deleting this cycle from the path π, we get
an even shorter path from u to v, contradicting the min-
imality of π.

We now turn to labeled graphs.
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5.2 Labeled Graphs and Automata

In fact, we only need edge-labeled graphs.

Definition 5.5. A labeled directed graph is a tuple
G = (V,E, L, s, t,λ), where V is a set of vertices, or
nodes , E is a set of edges, or arcs , L is a set of labels ,
s, t : E → V are two functions, s being called the source
function, and t the target function, and λ : E → L is
the labeling function . Given an edge e ∈ E, we also call
s(e) the origin (or source) of e, t(e) the endpoint (or
target) of e, and λ(e) the label of e.

Note that the function λ need not be injective or surjec-
tive. Thus, distinct edges may have the same label.
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Example: Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8},

V = {v1, v2, v3, v4, v5, v6}, L = {a, b},

and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4,

s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2,

t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

λ(e1) = a, λ(e2) = b, λ(e3) = a, λ(e4) = a,

λ(e5) = b, λ(e6) = a, λ(e7) = a, λ(e8) = b.

Such a labeled graph can be represented by the following
diagram:
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Figure 5.2: A labeled directed graph.

In drawing labeled graphs, we will usually omit edge
names (the ei), and sometimes even the node names (the
vj).

Paths, cycles, and concatenation of paths are defined just
as before (that is, we ignore the labels). However, we can
now define the spelling of a path.
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Definition 5.6. Given a labeled directed graph
G = (V,E, L, s, t,λ) for any two nodes u, v ∈ V , for any
path π = (u, e1 . . . en, v), the spelling of the path π is
the string of labels

λ(e1) . . .λ(en).

When n = 0, the spelling of the null path (u, ϵ, u) is the
null string ϵ.

For example, the spelling of the path

π3 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6)

is

abaabaabaab.

Every DFA and every NFA can be viewed as a labeled
graph, in such a way that the set of spellings of paths
from the start state to some final state is the language
accepted by the automaton in question.
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Given a DFA D = (Q,Σ, δ, q0, F ), where
δ : Q × Σ → Q, we associate the labeled directed graph
GD = (V,E, L, s, t,λ) defined as follows:

V = Q, E = {(p, a, q) | q = δ(p, a), p, q ∈ Q, a ∈ Σ},

L = Σ, s((p, a, q)) = p, t((p, a, q)) = q,

and λ((p, a, q)) = a.

Such labeled graphs have a special structure that can
easily be characterized.

It is easily shown that a string w ∈ Σ∗ is in the language
L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F} iff w is the spelling of
some path in GD from q0 to some final state.
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Similarly, given an NFA N = (Q,Σ, δ, q0, F ), where
δ : Q× (Σ∪{ϵ})→ 2Q, we associate the labeled directed
graph GN = (V,E, L, s, t,λ) defined as follows:
V = Q

E = {(p, a, q) | q ∈ δ(p, a), p, q ∈ Q, a ∈ Σ ∪ {ϵ}},

L = Σ ∪ {ϵ}, s((p, a, q)) = p, t((p, a, q)) = q,

λ((p, a, q)) = a.

Remark : WhenN has no ϵ-transitions, we can let L = Σ.

Such labeled graphs have also a special structure that can
easily be characterized.

Again, a string w ∈ Σ∗ is in the language
L(N) = {w ∈ Σ∗ | δ∗(q0, w)∩F ̸= ∅} iff w is the spelling
of some path in GN from q0 to some final state.
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5.3 The Closure Definition of the Regular Languages

Let Σ = {a1, . . . , am} be an alphabet.

Informally, we define the family of languages R(Σ) using
the following rules:

(1) The languages {a1}, . . . , {am}, the empty language,
and the trivial language {ϵ}, called base languages ,
belong to R(Σ).

(2a) If L1 and L2 belong toR(Σ), then L1∪L2 also belongs
to R(Σ).

(2b) If L1 and L2 belong to R(Σ), then L1L2 also belongs
to R(Σ).

(2c) If L belongs to R(Σ), then L∗ also belongs to R(Σ).

The issue is to show that the above rules define a family
of languages which is the smallest family containing the
base languages and closed under union, concaternation,
and Kleene ∗.
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We define the family (R(Σ)n) of sets of languages as fol-
lows:

R(Σ)0 = {{a1}, . . . , {am}, ∅, {ϵ}},
R(Σ)n+1 = R(Σ)n ∪ {L1 ∪ L2, L1L2, L

∗ |
L1, L2, L ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.

For example, if Σ = {a, b}, we have

R(Σ)1 = {{a}, {b}, ∅, {ϵ},
{a, b}, {a, ϵ}, {b, ϵ},
{aa}, {ab}, {ba}, {bb}, {a}∗, {b}∗}.

Some of the languages that will appear in R(Σ)2 are:

{a, bb}, {ab, ba}, {abb}, {aabb}, {a}{a}∗, {aa}{b}∗, {bb}∗.
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Observe that each familyR(Σ)n contains a finite number
of languages.

Definition 5.7.Regular languages, Version 2 = R(Σ).

Consider the following properties of a family of languages,
L ⊆ 2Σ

∗
:

(1) {a1}, . . . , {am}, ∅, {ϵ} ∈ L

2(a) If L1 ∈ L and L2 ∈ L, then L1 ∪ L2 ∈ L

2(b) If L1 ∈ L and L2 ∈ L, then L1L2 ∈ L

2(c) If L ∈ L, then L∗ ∈ L.

If properties 2(a), 2(b) and 2(c) hold, we say that the
family, L, is closed under union, concatenation and
Kleene ∗.
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Proposition 5.2. The family R(Σ) is the smallest
family of languages which contains the (atomic) lan-
guages {a1}, . . . , {am}, ∅, {ϵ}, and is closed under
union, concatenation, and Kleene ∗.

Proof sketch. To prove that R(Σ) satisfies properties (1),
2(a), 2(b) and 2(c), use the fact that R(Σ)n ⊆ R(Σ)n+1

for all n ≥ 0.

To prove that for any family, L, if L satisfies properties
(1), 2(a), 2(b) and 2(c), then R(Σ) ⊆ L, prove that
R(Σ)n ⊆ L by induction on n.

Note: a given language L may be built up in different
ways. For example,

{a, b}∗ = ({a}∗{b}∗)∗.

The definition of the regular languages that we just gave
in not very convenient to manipulate them in a practical
way.

A better formalism is to represent regular languages in
terms of certain strings called regular expressions.
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5.4 Regular Expressions

Given an alphabet Σ = {a1, . . . , am}, consider the new
alphabet

∆ = Σ ∪ {+, ·, ∗, (, ), ∅, ϵ}.

Informally, we define the family of regular expressions
R(Σ) using the following rules:

(1) The strings a1, . . . , am, the empty string ϵ, and the
empty set ∅, called base regular expressions , belong
to R(Σ).

(2a) If R1 and R2 are regular expressions (i.e., belong to
R(Σ)), then (R1 + R2) is a regular expression (i.e.,
belongs to R(Σ)).

(2b) If R1 and R2 are regular expressions (i.e., belong to
R(Σ)), then (R1 · R2) is a regular expression (i.e.,
belongs to R(Σ)).

(2c) If R is a regular expression (i.e., belongs to R(Σ)),
thenR∗ is a regular expression (i.e., belongs toR(Σ)).
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More precisely, we define the family (R(Σ)n) of languages
over ∆ as follows:

R(Σ)0 = {a1, . . . , am, ∅, ϵ},
R(Σ)n+1 = R(Σ)n ∪ {(R1 +R2), (R1 ·R2), R

∗ |
R1, R2, R ∈ R(Σ)n}.

Then, we define R(Σ) as

R(Σ) =
⋃

n≥0

R(Σ)n.

Note that every language R(Σ)n is finite.
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For example, if Σ = {a, b}, we have

R(Σ)1 = {a, b, ∅, ϵ,
(a + b), (b + a), (a + a), (b + b), (a + ϵ), (ϵ + a),

(b + ϵ), (ϵ + b), (a + ∅), (∅ + a), (b + ∅), (∅ + b),

(ϵ + ϵ), (ϵ + ∅), (∅ + ϵ), (∅ + ∅),
(a · b), (b · a), (a · a), (b · b), (a · ϵ), (ϵ · a),
(b · ϵ), (ϵ · b), (ϵ · ϵ), (a · ∅), (∅ · a),
(b · ∅), (∅ · b), (ϵ · ∅), (∅ · ϵ), (∅ · ∅),
a∗, b∗, ϵ∗, ∅∗}.

Some of the regular expressions appearing in R(Σ)2 are:

(a + (b · b)), ((a · b) + (b · a)), ((a · b) · b),
((a · a) · (b · b)), (a · a∗), ((a · a) · b∗), (b · b)∗.

Definition 5.8.R(Σ) is the set of regular expressions
(over Σ).
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Proposition 5.3. The language R(Σ) is the smallest
language which contains the symbols a1, . . . , am, ∅, ϵ,
from ∆, and such that (R1 + R2), (R1 · R2), and R∗,
also belong to R(Σ), when R1, R2, R ∈ R(Σ).

For simplicity of notation, write

(R1R2)

instead of

(R1 ·R2).

Examples : R = (a + b)∗, S = (a∗b∗)∗.

T = (((a + b)∗a)((a + b) · · · (a + b)︸ ︷︷ ︸
n

)).
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5.5 Regular Expressions and Regular Languages

Every regular expression R ∈ R(Σ) can be viewed as
the name, or denotation , of some language L ∈ R(Σ).
Similarly, every language L ∈ R(Σ) is the interpretation
(or meaning) of some regular expression R ∈ R(Σ).

Think of a regular expression R as a program , and of
L(R) as the result of the execution or evaluation , of R
by L.

This can be made rigorous by defining a function

L : R(Σ)→ R(Σ).
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This function is defined recursively:

L[ai] = {ai},
L[∅] = ∅,
L[ϵ] = {ϵ},

L[(R1 +R2)] = L[R1] ∪ L[R2],

L[(R1R2)] = L[R1]L[R2],

L[R∗] = L[R]∗.

Proposition 5.4. For every regular expression R ∈
R(Σ), the language L[R] is regular (version 2), i.e.
L[R] ∈ R(Σ). Conversely, for every regular (version
2) language L ∈ R(Σ), there is some regular expres-
sion R ∈ R(Σ) such that L = L[R].

Note: the function L is not injective.

Example: If R = (a + b)∗, S = (a∗b∗)∗, then

L[R] = L[S] = {a, b}∗.
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For simplicity, we often denote L[R] as LR. As examples,
we have

L[(((ab)b) + a)] = {a, abb}
L[((((a∗b)a∗)b)a∗)] = {w ∈ {a, b}∗ | w has

two b’s}
L[(((((a∗b)a∗)b)a∗)∗a∗)] = {w ∈ {a, b}∗ | w has an

even # of b’s}
L[(((((((a∗b)a∗)b)a∗)∗a∗)b)a∗)] = {w ∈ {a, b}∗ | w has an

odd # of b’s}

Remark. If

R = (((a + b)∗a)((a + b) · · · (a + b)︸ ︷︷ ︸
n

)),

it can be shown that any minimal DFA accepting LR has
2n+1 states.

Yet, both ((a+b)∗a) and ((a + b) · · · (a + b)︸ ︷︷ ︸
n

) denote lan-

guages that can be accepted by “small” DFA’s (of size 2
and n + 2).
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Definition 5.9. Two regular expressions R, S ∈ R(Σ)
are equivalent , denoted as R ∼= S, iff L[R] = L[S].

It is immediate that ∼= is an equivalence relation.

The relation ∼= satisfies some (nice) identities. For exam-
ple:

(((aa) + b) + c) ∼= ((aa) + (b + c))

((aa)(b(cc))) ∼= (((aa)b)(cc))

(a∗a∗) ∼= a∗,

and more generally

((R1 +R2) +R3) ∼= (R1 + (R2 +R3)),

((R1R2)R3) ∼= (R1(R2R3)),

(R1 +R2) ∼= (R2 +R1),

(R∗R∗) ∼= R∗,

R∗∗ ∼= R∗.

There are algorithms to test equivalence of regular ex-
pressions, but their complexity is exponential.

It is an open problem to prove that the problem cannot
be decided in polynomial time.
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5.6 Regular Expressions and NFA’s

Proposition 5.5.There is an algorithm, which, given
any regular expression R ∈ R(Σ), constructs an NFA
NR accepting LR, i.e., such that LR = L(NR).

In order to ensure the correctness of the construction as
well as to simplify the description of the algorithm it is
convenient to assume that our NFA’s satisfy the following
conditions:

1. Each NFA has a single final state, t, distinct from the
start state, s.

2. There are no incoming transitions into the the start
state, s, and no outgoing transitions from the final
state, t.

3. Every state has at most two incoming and two outgo-
ing transitions.

Here is the algorithm, sometimes called the sombrero
construction .
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For the base case, either

(a) R = ai, in which case, NR is the following NFA:

s t
ai

Figure 5.3: NFA for ai.

(b) R = ϵ, in which case, NR is the following NFA:
s t

ϵ

Figure 5.4: NFA for ϵ.

(c) R = ∅, in which case, NR is the following NFA:
s t

Figure 5.5: NFA for ∅.

The recursive clauses are as follows:
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(i) If our expression is (R + S), the algorithm is applied
recursively to R and S, generating NFA’s NR and NS,
and then these two NFA’s are combined in parallel as
shown in Figure 5.6:

s

s2

s1

t2

t1

t

ϵ

ϵ

ϵ

ϵ

NS

NR

Figure 5.6: NFA for (R + S).

(ii) If our expression is (R · S), the algorithm is applied
recursively to R and S, generating NFA’s NR and NS,
and then these NFA’s are combined sequentially as shown
in Figure 5.7 by merging the “old” final state, t1, of NR,
with the “old” start state, s2, of NS:

s1 t1 t2NR NS

Figure 5.7: NFA for (R · S).
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Note that since there are no incoming transitions into s2
in NS, once we enter NS, there is no way of reentering
NR, and so the construction is correct (it yields the con-
catenation LRLS).

(iii) If our expression isR∗, the algorithm is applied recur-
sively to R, generating the NFA NR. Then we construct
the NFA shown in Figure 5.8 by adding an ϵ-transition
from the “old” final state, t1, of NR to the “old” start
state, s1, of NR and, as ϵ is not necessarily accepted by
NR, we add an ϵ-transition from s to t:

s s1 t1 t
ϵ ϵ

ϵ

ϵ

NR

Figure 5.8: NFA for R∗.

Since there are no outgoing transitions from t1 in NR, we
can only loop back to s1 from t1 using the new ϵ-transition
from t1 to s1 and so the NFA of Figure 5.8 does accept
L∗R.
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As a corollary of this construction, we get

Reg. languages version 2 ⊆ Reg. languages, version 1.

The reader should check that if one constructs the NFA
corresponding to the regular expression (a + b)∗abb we
obtain the NFA shown in Figure 5.9.

0 1
2 3

4 5
6 7 8 9

ϵ

10
ϵ

ϵ
a

ϵ
b

ϵ

ϵ

ϵ a b b

ϵ

Figure 5.9: An NFA for R = (a+ b)∗abb.

If we apply the subset construction to the above NFA, we
get the following DFA:

A

B

C

D E

a

b

a

b

a b

b

a

b

a

Figure 5.10: A non-minimal DFA for {a, b}∗{abb}.
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Proposition 5.6.There is an algorithm, which, given
any NFA N , constructs a regular expression R ∈ R(Σ),
denoting L(N), i.e., such that LR = L(N).

As a corollary,

Reg. languages version 1 ⊆ Reg. languages, version 2.

This is the node elimination algorithm .

The general idea is to allow more general labels on the
edges of an NFA, namely, regular expressions. Then, such
generalized NFA’s are simplified by eliminating nodes one
at a time, and readjusting labels.
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Preprocessing, phase 1:

If necessary, we need to add a new start state with an
ϵ-transition to the old start state, if there are incoming
edges into the old start state.

If necessary, we need to add a new (unique) final state
with ϵ-transitions from each of the old final states to the
new final state, if there is more than one final state or
some outgoing edge from any of the old final states.

At the end of this phase, the start state, say s, is a source
(no incoming edges), and the final state, say t, is a sink
(no outgoing edges).
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Preprocessing, phase 2:

We need to “flatten” parallel edges. For any pair of states
(p, q) (p = q is possible), if there are k edges from p to q
labeled u1, . . ., uk, then create a single edge labeled with
the regular expression

u1 + · · · + uk.

For any pair of states (p, q) (p = q is possible) such that
there is no edge from p to q, we put an edge labeled ∅.

At the end of this phase, the resulting “generalized NFA”
is such that for any pair of states (p, q) (where p = q is
possible), there is a unique edge labeled with some regular
expression denoted as Rp,q. When Rp,q = ∅, this really
means that there is no edge from p to q in the original
NFA N .
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By interpreting each Rp,q as a function call (really, a
macro) to the NFA Np,q accepting L[Rp,q] (constructed
using the previous algorithm), we can verify that the orig-
inal language L(N) is accepted by this new generalized
NFA.

Node elimination only applies if the generalized NFA
has at least one node distinct from s and t.

Pick any node r distinct from s and t. For every pair
(p, q) where p ̸= r and q ̸= r, replace the label of the
edge from p to q as indicated below:
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Rr,r

Rp,q

Rp,r Rr,q

p q

r

Figure 5.11: Before Eliminating node r.

Rp,q +Rp,rR∗

r,rRr,q
p q

Figure 5.12: After Eliminating node r.

At the end of this step, delete the node r and all edges
adjacent to r.



5.6. REGULAR EXPRESSIONS AND NFA’S 209

Note that p = q is possible, in which case the triangle is
“flat”. It is also possible that p = s or q = t. Also, this
step is performed for all pairs (p, q), which means that
both (p, q) and (q, p) are considered (when p ̸= q)).

Note that this step only has an effect if there are edges
from p to r and from r to q in the original NFA N .
Otherwise, r can simply be deleted, as well as the edges
adjacent to r.

Other simplifications can be made. For example, when
Rr,r = ∅, we can simplify Rp,rR∗r,rRr,q to Rp,rRr,q. When
Rp,q = ∅, we have Rp,rR∗r,rRr,q.

The order in which the nodes are eliminated is irrelevant,
although it affects the size of the final expression.

The algorithm stops when the only remaining nodes are
s and t. Then, the label R of the edge from s to t is a
regular expression denoting L(N).
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For example, let

L = {w ∈ Σ∗ | w contains an odd number of a’s

or an odd number of b’s}.

An NFA for L after the preprocessing phase is:

0

1 2

3 4

5

ϵ

a

a

bb

a

a

bb ϵ

ϵ

ϵ

Figure 5.13: NFA for L (after preprocessing phase).
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After eliminating node 2:

0 1

3 4

5

ϵ

ab

ba
bb

a

a

a

ϵ+ b

ϵ

aa

bb

Figure 5.14: NFA for L (after eliminating node 2).

After eliminating node 3:

0 1

4

5

ϵ

ab+ ba

ab+ ba

a + b

ϵ+ a + b

aa + bb

aa + bb

Figure 5.15: NFA for L (after eliminating node 3).
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After eliminating node 4:

0 1 5
ϵ T

S

Figure 5.16: NFA for L (after eliminating node 4).

where

T = a + b + (ab + ba)(aa+ bb)∗(ϵ + a + b)

and

S = aa + bb + (ab + ba)(aa + bb)∗(ab + ba).

Finally, after eliminating node 1, we get:

R = (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

(a + b + (ab + ba)(aa + bb)∗(ϵ + a + b)).
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5.7 Applications of Regular Expressions:
Lexical analysis, Finding patterns in text

Regular expressions have several practical applications.
The first important application is to lexical analysis .

A lexical analyzer is the first component of a compiler .

The purpose of a lexical analyzer is to scan the source
program and break it into atomic components, known
as tokens , i.e., substrings of consecutive characters that
belong together logically.

Examples of tokens are: identifiers, keywords, numbers
(in fixed point notation or floating point notation, etc.),
arithmetic operators (+, ·,−, ^), comparison operators
(<,>,=, <>), assignment operator (:=), etc.

Tokens can be described by regular expressions. For this
purpose, it is useful to enrich the syntax of regular ex-
pressions, as in UNIX.
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For example, the 26 upper case letters of the (roman)
alphabet, A, . . . , Z, can be specified by the expression

[A-Z]

Similarly, the ten digits, 0, 1, . . . , 9, can be specified by
the expression

[0-9]

The regular expression

R1 + R2 + · · · +Rk

is denoted
[R1R2 · · ·Rk]

So, the expression
[A-Za-z0-9]

denotes any letter (upper case or lower case) or digit. This
is called an alphanumeric.
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If we define an identifier as a string beginning with a
letter (upper case or lower case) followed by any number
of alphanumerics (including none), then we can use the
following expression to specify identifiers:

[A-Za-z][A-Za-z0-9]∗

There are systems, such as lex or flex that accept as
input a list of regular expressions describing the tokens of
a programming language and construct a lexical analyzer
for these tokens.

Such systems are called lexical analyzer generators . Ba-
sically, they build a DFA from the set of regular expres-
sions using the algorithms that have been described ear-
lier.

Usually, it is possible associate with every expression some
action to be taken when the corresponding token is rec-
ognized
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Another application of regular expressions is finding pat-
terns in text.

Using a regular expression, we can specify a “vaguely de-
fined” class of patterns.

Take the example of a street address. Most street ad-
dresses end with “Street”, or “Avenue”, or “Road” or
“St.”, or “Ave.”, or “Rd.”.

We can design a regular expression that captures the
shape of most street addresses and then convert it to a
DFA that can be used to search for street addresses in
text.

For more on this, see Hopcroft-Motwani and Ullman.
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5.8 Summary of Closure Properties of the Regular Lan-
guages

The family of regular languages is closed under many op-
erations. In particular, it is closed under the following
operations listed below. Some of the closure properties
are left as a homework problem.

(1) Union, intersection, relative complement.

(2) Concatenation, Kleene ∗, Kleene +.

(3) Homomorphisms and inverse homomorphisms.

(4) gsm and inverse gsm mappings, a-transductions and
inverse a-transductions.

Another useful operation is substitution.

Given any two alphabets Σ,∆, a substitution is a func-
tion, τ : Σ → 2∆

∗
, assigning some language, τ (a) ⊆ ∆∗,

to every symbol a ∈ Σ.
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A substitution τ : Σ→ 2∆
∗
is extended to a map

τ : 2Σ
∗
→ 2∆

∗
by first extending τ to strings using the

following definition

τ (ϵ) = {ϵ},
τ (ua) = τ (u)τ (a),

where u ∈ Σ∗ and a ∈ Σ, and then to languages by
letting

τ (L) =
⋃

w∈L

τ (w),

for every language L ⊆ Σ∗.
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Observe that a homomorphism is a special kind of sub-
stitution.

A substitution is a regular substitution iff τ (a) is a reg-
ular language for every a ∈ Σ. The proof of the next
proposition is left as a homework problem.

Proposition 5.7. If L is a regular language and τ is
a regular substitution, then τ (L) is also regular. Thus,
the family of regular languages is closed under regular
substitutions.
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