Proots, Computability, Undecidability,
Complexity, And the Lambda Calculus
An Introduction

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@seas.upenn.edu

©) Jean Gallier

Please, do not reproduce without permission of the author

May 16, 2025

Preface

The main goal of this book is to present a mix of material dealing with
1. Proof systems.
2. Computability and undecidability.
3. The Lambda Calculus.
4. Some aspects of complexity theory.

Historically, the theory of computability and undecidability arose from Hilbert’s efforts
to completely formalize mathematics and from Godel’s first incompleteness theorem that
showed that such a program was doomed to fail. People realized that to carry out both
Hilbert’s program and Godel’s work it was necessary to define precisely what is the notion of
a computable function and the notion of a mechanically checkable proof. The first definition
given around 1934 was that of the class of computable function in the sense of Herbrand—
Godel-Kleene. The second definition given by Church in 1935-1936 was the notion of a
function definable in the A-calculus. The equivalence of these two definitions was shown by
Kleene in 1936. Shortly after in 1936, Turing introduced a third definition, that of a Turing-
computable function. Turing proved the equivalence of his definition with the Herbrand—
Godel-Kleene definition in 1937 (his proofs are rather sketchy compared to Kleene’s proofs).
All these historical papers can be found in a fascinating book edited by Martin Davis [27].

Negative results pointing out limitations of the notion of computability started to appear:
Godel’s first (and second) incompleteness result, but also Church’s theorem on the undecid-
ability of validity in first-order logic, and Turing’s result on the undecidability of the halting
problem for Turing machines. Although originally the main focus was on the notion of func-
tion, these undecidability results triggered the study of computable and noncomputable sets
of natural numbers.

Other definitions of the computable functions were given later. From our point of view,
the most important ones are

1. RAM programs and RAM-computable functions by Shepherdson and Sturgis (1963),
and anticipated by Post (1944); see Machtey and Young [43].

3

2. Diophantine-definable sets (Davis—Putnam-Robinson-Matiyasevich); see Davis [10,
11].

We find the RAM-progam model quite attractive because it is a very simplified realistic
model of the true architecture of a modern computer. Technically, we also find it more
convenient to assign Godel numbers to RAM programs than assigning Goédel numbers to
Turing machines. Every RAM program can be converted to a Turing machine and vice-
versa in polynomial time (going from a Turing machine to a RAM is quite horrific), so the
two models are equivalent in a strong sense. So from our perspective Turing machines could
be dispensed with, but there is a problem. The problem is that the Turing machine model
seems more convenient to cope with time or space restrictions, that is, to define complexity
classes.

There is actually no difficulty in defining nondeterministic RAM programs and to impose
a time restriction on the program counter or a space restriction on the size of registers,
but nobody seems to follow this path. This seems unfortunate to us because it appears
that it would be easier to justify the fact that certain reductions can be carried out in
polynomial time (or space) by writing a RAM program rather than by constructing a Turing
machine. Regarding this issue, we are not aware than anyone actually provides Turing
machines computing these reductions, even for SAT.

In any case, we will stick to the tradition of using Turing machines when discussing
complexity classes.

In addition to presenting the RAM-program model, the Turing machine model, the
Herbrand-Gdédel-Kleene definition of the computable functions, and showing their equiv-
alence, we provide an introduction to recursion theory (see Chapter 9). In particular, we
discuss creative and productive sets (see Rogers [53]). This allows us to cover most of the
main undecidability results. These include

1. The undecidability of the halting problem for RAM programs (and Turing machines).
2. Rice’s theorem for the computable functions.
3. Rice’s extended theorem for the listable sets.

4. A strong form of Godel’ first incompleteness theorem (in terms of creative sets) follow-
ing Rogers [53].

5. The fact that the true first-order sentences of arithmetic are not even listable (a pro-
ductive set) following Rogers [53].

6. The undecidability of the Post correspondence problem (PCP) using a proof due to
Dana Scott.

7. The undecidability of the validity in first-order logic (Church’s theorem), using a proof
due to Robert Floyd.

8. The undecidability of Hilbert’s tenth problem (the DPRM theorem) following Davis
[10].

9. Another strong form of Godel’ first incompleteness theorem, as a consequence of dio-
phantine definability following Davis [10].

The following two topics are rarely covered in books on the theory of computation and
undecidability.

In Chapter 5 we introduce Church’s A-calculus and show how the computable functions
and the partial computable functions are definable in the A-calculus, using a method due to
Barendregt [4]. We also give a glimpse of the second-order polymorphic A-calculus of Girard.

In Chapter 10 we discuss the definability of the listable sets in terms of Diophantine
equations (zeros of polynomials with integer coefficients) and state the famous result about
the undecidability of Hilbert’s tenth problem (the DPRM theorem). We follow the masterly
exposition of Davis [10, 11].

A possibly unsusual aspect of our book is that we begin with two chapters on mathemat-
ical reasoning and logic. Given the origins of the theory of computation and undecidability,
we feel that this is very appropriate. We present proof systems in natural deduction style
(a la Prawitz), which makes it easy to discuss the special role of the proof-by—contradiction
principle, and to introduce intuitionistic logic, which is the result of removing this rule from
the set of inference rules. It is also quite natural to explain how proofs in intuitionistic
propositional logic are represented by simply-typed A-terms. Then it is easy to introduce
the “Curry-Howard isomorphism.” This is a prelude to the introduction of the “pure”
(untyped) A-calculus.

Our treatment of complexity theory is limited to P, NP, co-NP, EXP, NEXP, PS
(PSPACE) and N'PS (NPSPACE) and is fairly standard. However, we prove that SAT
is N'P-complete by first proving (following Lewis and Papadimitriou [42]) that a bounded
tiling problem is N/P-complete.

In Chapter 14 we treat the result that primality testing is in AP in more details than
most other sources, relying on an improved version of a theorem of Lucas as discussed in
Crandall and Pomerance [6]. The only result that we omit is the existence of primitive roots
in (Z/pZ)* when p is prime.

In Chapter 15 we prove Savitch’s theorem (PS = N'PS). We state the fact that the
validity of quantified boolean formulae is PS-complete and provide parts of the proof. We
conclude with the beautiful proof of Statman [57] that provability in intuitionistic logic is
PS-complete. We do not give all the details but we prove the correctness of Statman’s
amazing translation of a valid QBF into an intuitionistically provable proposition.

We feel strongly that one does not learn mathematics without reading (and struggling
through) proofs, so we tried to provide as many proofs as possible. Among some of the
omissions, we do not show how to construct a Godel sentence in the proof of the first

incompleteness theorem; Rogers [53] leaves this as an exercise! We also do not give a complete
proof of Statman’s result. Giving a complete proof of the DPRM would require the inclusion
of some very technical number theory material. This would probably turn off most readers
and be of very little value so we decided to omit the most arduous material. However, we
present an almost complete proof. We have omitted the hardest step: showing that the
exponential function is Diophantine definable. Whenever a proof is omitted, we provide a
pointer to a source that contains such a proof.

Acknowledgement: We would like to thank Joao Sedoc and Marcelo Siqueira for reporting
typos and for helpful comments. I was initiated to the theory of computation and undecid-
ability by my advisor Sheila Greibach who taught me how to do research. My most sincere
thanks to Sheila for her teachings and the inspiration she provided. In writing this book we
were inspired and sometimes borrowed heavily from the beautiful papers and books written
by the following people who have our deepest gratitude: Henk Barendregt, Richard Crandall,
Martin Davis, Herbert Enderton, Harvey Friedman, Jean-Yves Girard, John Hopcroft, Bill
Howard, Harry Lewis, Zohar Manna, Christos Papadimitriou, Carl Pomerance, Dag Prawitz,
Helmut Schwichtenberg, Dana Scott, Rick Statman, Jeff Ullman, Hartley Rogers, and Paul
Young. Of course, we must acknowledge Alonzo Church, Gerhard Gentzen, Kurt Godel,
Stephen Kleene and Alan Turing for their extraordinary seminal work.

Contents

Contents

1 Mathematical Reasoning And Basic Logic
1.1 Introduction
1.2 Logical Connectives, Definitions
1.3 Meaning of Implication and Proof Templates for Implication
1.4 Proof Trees and Deduction Trees
1.5 Proof Templates for =
1.6 Proof Templates for A,V,=
1.7 De Morgan Laws and Other Useful Rules of Logic
1.8 Formal Versus Informal Proofs; Some Examples
1.9 Truth Tables and Truth-Value Semantics
1.10 Proof Templates for the Quantifiers
1.11 Sets and Set Operations
1.12 Induction and the Well-Ordering Principle
1.13 Summary e
1.14 Problems

2 Mathematical Reasoning And Logic, A Deeper View
2.1 Introduction
2.2 Logical Connectives and Propositions
2.3 Proof Rules, Deductions and Proof Trees for Implication
2.4 Examples of Proof Trees,
2.5 A Gentzen-Style System for Natural Deduction
2.6 Adding A, V, L; The Proof Systems N7k and NG00,
2.7 Constructivism Versus Classical Logic
2.8 Clearing Up Differences; —-Introduction, 1 -Elimination, RAA
2.9 De Morgan Laws and Other Rules of Classical Logic
2.10 Formal Versus Informal Proofs
2.11 Truth Value Semantics for Classical Logic
2.12 Kripke Models for Intuitionistic Logic
2.13 Decision Procedures, Proof Normalization

7

11
11
12
16
20
22
27
34
35
40
43
20
o8
61
62

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

The Simply-Typed A-Calculus
Completeness and Counter-Examples
Adding Quantifiers; First-Order Languages
The Proof Systems N7/V¥3+ and NGMY34 000000
Examples of First-Order Proof Trees
First-Order Theories; Peano Arithmetic
Basics Concepts of Set Theory
SUMMATY . . . o o oo o
Problems.

RAM Programs, Turing Machines, Computability

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Partial Functions and RAM Programs
Definition of a Turing Machine
Computations of Turing Machines
Equivalence of RAM programs And Turing Machines
Listable Languages and Computable Languages
A Simple Function Not Known to be Computable
The Primitive Recursive Functions
Primitive Recursive Functions are RAM Computable
Primitive Recursive Predicates
The Partial Computable Functions

Equivalence of the Models of Computation

4.1
4.2
4.3

Simulation of a RAM Program by a Turing Machine.
Simulation of Turing Machine by a RAM Program
Every Turing Computable Function is Partial Computable

The Lambda-Calculus

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Syntax of the Lambda-Calculus
B-Reduction and -Conversion; the Church—Rosser Theorem . . .
Some Useful Combinators
Representing the Natural Numbers
Fixed-Point Combinators and Recursively Defined Functions . . .
A-Definability of the Total Computable Functions
A-Definability of the Partial Computable Functions
Head Normal-Forms and the Partial Computable Functions

Definability of Computable Functions in System F

6.1
6.2
6.3
6.4
6.5

Definability of Functions in the Simply-Typed Lambda-Calculus

Polymorphic Types and System F
Church Numerals and Computability in System F
Intuitionistic Second-Order Logic
Intuitionistic Second-Order Arithmetic; HA? and HA*

CONTENTS

CONTENTS

6.6

Provably-Total Computable Functions in HA? and HA**

7 Universal RAM Programs and the Halting Problem

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Pairing Functions
Equivalence of Alphabets
Coding of RAM Programs; The Halting Problem
Universal RAM Programs
Indexing of RAM Programs
Kleene’s T-Predicate
A Non-Computable Function; Busy Beavers

8 Elementary Recursive Function Theory

8.1
8.2
8.3
8.4
8.5

Acceptable Indexings
Undecidable Problems
Reducibility and Rice’s Theorem
Listable (Recursively Enumerable) Sets
Reducibility and Complete Sets

9 Recursion Theory; More Advanced Topics

9.1
9.2
9.3

The Recursion Theorem
Extended Rice Theorem
Creative and Productive Sets; Incompleteness

10 Listable and Diophantine Sets; Hilbert’s Tenth

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11 The
11.1
11.2
11.3
11.4

Diophantine Equations; Hilbert’s Tenth Problem
Diophantine Sets and Listable Sets
Diophantine Funtions
GCD’s, Bezout Identity, Chinese Remainder Theorem . .
Proof of the DPRM: Main Steps
The DPRM For Relations
Some Applications of the DPRM Theorem
Godel’s Incompleteness Theorem

Post Correspondence Problem; Applications

The Post Correspondence Problem
Some Undecidability Results for CFG’s
More Undecidable Properties of Languages
Undecidability of Validity in First-Order Logic

12 Computational Complexity; P and NP

12.1
12.2
12.3

The Class P oo o
Directed Graphs, Paths
Eulerian Cycles

312

315
315
324
326
330
335
336
338

343
343
346
349
352
358

363
363
369
372

379
379
382
386
387
391
406
408
415

423
423
429
432
433

10 CONTENTS

12.4 Hamiltonian Cycles 441
12.5 Propositional Logic and Satisfiability 442
12.6 The Class NP, NP-Completeness 447
12.7 The Bounded Tiling Problem is N’P-Complete 456
12.8 The Cook-Levin Theorem 463
12.9 Satisfiability of Arbitrary Propositions and CNF 467
13 Some NP-Complete Problems 473
13.1 Statements of the Problems 473
13.2 Proofs of N'P-Completeness 484
13.3 Succinct Certificates, coNP,and EXP 501
14 Primality Testing is in NP 507
14.1 Prime Numbers and Composite Numbers 507
14.2 Methods for Primality Testing 508
14.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)* 511
14.4 The Lucas Theorem, 519
14.5 Lucas Trees e 522
14.6 Algorithms for Computing Powers Modulom 525
14.7 PRIMES is in NP 528
15 Polynomial-Space Complexity; PS and N'PS 531
15.1 The Classes PS (or PSPACE) and NPS (NPSPACE) 531
15.2 Savitch’s Theorem: PS = NPS 533
15.3 A Complete Problem for PS: QBF 534
15.4 Provability in Intuitionistic Propositional Logic 042
A Well-Ordered Sets, Ordinals, Cardinals, Alephs 549
A1 Well-Ordered Sets 549
A2 Ordinals 553
A.3 Cardinals, Alephs (R,) and Beths (3,) 556
A.4 Ordinal Arithmetic 560
A.5 Multisets, Nested Multisets and the Ordinal ¢g o972
A.6 Cantor Normal Form Y
Bibliography 579
Symbol Index 583

Index 587

Chapter 1

Mathematical Reasoning And Basic
Logic

1.1 Introduction

One of the main goals of this book is to show how to

construct and read mathematical proofs.
Why?
1. Computer scientists and engineers write programs and build systems.

2. It is very important to have rigorous methods to check that these programs and systems
behave as expected (are correct, have no bugs).

3. It is also important to have methods to analyze the complezity of programs (time/space
complexity).

More generally, it is crucial to have a firm grasp of the basic reasoning principles and
rules of logic. This leads to the question:

What is a proof?

There is no short answer to this question. However, it seems fair to say that a proof is
some kind of deduction (derivation) that proceeds from a set of hypotheses (premises, axioms)
in order to derive a conclusion, using some proof templates (also called logical rules).

A first important observation is that there are different degrees of formality of proofs.

1. Proofs can be very informal, using a set of loosely defined logical rules, possibly omit-
ting steps and premises.

11

12 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

2. Proofs can be completely formal, using a very clearly defined set of rules and premises.
Such proofs are usually processed or produced by programs called proof checkers and
theorem provers.

Thus, a human prover evolves in a spectrum of formality.

It should be said that it is practically impossible to write formal proofs. This is because
it would be extremely tedious and time-consuming to write such proofs and these proofs
would be huge and thus, very hard to read.

In principle, it is possible to write formalized proofs and sometimes it is desirable to do
so if we want to have absolute confidence in a proof. For example, we would like to be sure
that a flight-control system is not buggy so that a plane does not accidentally crash, that a
program running a nuclear reactor will not malfunction, or that nuclear missiles will not be
fired as a result of a buggy “alarm system.”

Thus, it is very important to develop tools to assist us in constructing formal proofs or
checking that formal proofs are correct. Such systems do exist, for example I[sabelle, COQ),
TPS, NUPRL, PVS, Twelf. However, 99.99% of us will not have the time or energy to write
formal proofs.

Even if we never write formal proofs, it is important to understand clearly what are the
rules of reasoning (proof templates) that we use when we construct informal proofs.

The goal of this chapter is to explain what is a proof and how we construct proofs using
various proof templates (also known as proof rules).

This chapter is an abbreviated and informal version of Chapter 2. It is meant for readers
who have never been exposed to a presentation of the rules of mathematical reasoning (the
rules for constructing mathematical proofs) and basic logic. Readers with a good background
in these topics may decide to skip this chapter and proceed directly to Chapter 12.3. This
will not cause any problem, and there will be no gap, since the other chapters are written
so that they do not rely on the material of Chapter 1 (except for a few remarks).

1.2 Logical Connectives, Definitions

In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely, and we would have to set up a proof system in
terms of axioms and proof rules (also called inference rules). We do not go into this in this
chapter as this would take too much time. Instead, we content ourselves with an intuitive
idea of what a statement is and focus on stating as precisely as possible the rules of logic
(proof templates) that are used in constructing proofs.

In mathematics and computer science, we prove statements. Statements may be atomic
or compound, that is, built up from simpler statements using logical connectives, such as
implication (if-then), conjunction (and), disjunction (or), negation (not), and (existential or
universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”

1.2. LOGICAL CONNECTIVES, DEFINITIONS 13

2. “A student wants an A.”
3. “An odd integer is never 0.”

4. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example,

1. human(z): “zr is a human.”

2. needs-to-drink(z): “z needs to drink.”
An example of a compound statement is
human(z) = needs-to-drink(z).

In the above statement, = is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

Va(human(z) = needs-to-drink(x));

this is read “For every z, if z is a human, then = needs to drink.”
If we want to assert that some human needs to drink we write

Jdz(human(x) = needs-to-drink(x));

this is read “There is some x such that, if z is a human, then x needs to drink.”

We often denote statements (also called propositions or (logical) formulae) using letters,
such as A, B, P,(, and so on, typically uppercase letters (but sometimes Greek letters, ¢,
Y, ete.).

Compound statements are defined as follows: if P and () are statements, then
(1) the conjunction of P and @ is denoted P A @ (pronounced, P and @),
(2) the disjunction of P and @ is denoted P V @ (pronounced, P or @),

(3) the implication of P and @ is denoted by P = @ (pronounced, if P then @, or P
implies Q).

We also have the atomic statements L (falsity) (think of it as the statement that is false
no matter what); and the atomic statement T (¢ruth) (think of it as the statement that is
always true).

The constant L is also called falsum or absurdum. 1t is a formalization of the notion of
absurdity or inconsistency (a state in which contradictory facts hold).

Given any proposition P, it is convenient to define

14 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

(4) the negation =P of P (pronounced, not P) as P =_1. Thus, =P (sometimes denoted
~ P) is just a shorthand for P = 1.

The intuitive idea is that =P (an abbreviation for P =) is true if and only if P is false.
Actually, because we don’t know what truth is, it is “safer” to say that —P is provable if
and only if for every proof of P we can derive a contradiction (namely, L is provable). By
provable, we mean that a proof can be constructed using some rules that will be described
shortly (see Section 1.3).

Whenever necessary to avoid ambiguities, we add matching parentheses: (PAQ), (PVQ),
(P = Q). For example, PVQAR is ambiguous; it means either (PV(QAR)) or (PVQ)AR).

Another important logical operator is equivalence.

If P and () are statements, then

(5) the equivalence of P and @) is denoted P = @ (or P <= (); it is an abbreviation for
(P = Q)N (Q = P). We often say “P if and only if)" or even “P iff Q" for P = Q.

As a consequence, to prove a logical equivalence P = (), we have to prove both implica-
tions P = @ and Q = P.

The meaning of the logical connectives (A, V, =, =, =) is intuitively clear. This is certainly
the case for and (), since a conjunction P A @ is true if and only if both P and @ are true
(if we are not sure what “true” means, replace it by the word “provable”). However, for or
(V), do we mean inclusive or or exclusive or? In the first case, P V @ is true if either P or
Q is true, but in the second case, PV @ is true if either P or () is true but not both at the
same time (again, in doubt change “true” to “provable”). We always mean inclusive or.

The situation is worse for implication (=). When do we consider that P = @) is true
(provable)? The answer is that it depends on the rules! The “classical” answer is that
P = @ is false (not provable) if and only if P is true and @ is false. For an alternative view
(that of intuitionistic logic), see Chapter 2. In this chapter (and all others except Chapter
2), we adopt the classical view of logic. Since negation (=) is defined in terms of implication,
in the classical view, =P is true if and only if P is false.

The purpose of the proof rules, or proof templates, is to spell out rules for constructing
proofs which reflect, and in fact specify, the meaning of the logical connectives.

Before we present the proof templates, it should be said that nothing of much interest can
be proven in mathematics if we do not have at our disposal various objects such as numbers,
functions, graphs, etc. This brings up the issue of where we begin, what may we assume. In
set theory, everything, even the natural numbers, can be built up from the empty set! This
is a remarkable construction, but it takes a tremendous amount of work. For us, we assume
that we know what the set

N=1{0,1,2,3,...}

of natural numbers is, as well as the set

Z={.,6-3-2,-1,0123,...}

1.2. LOGICAL CONNECTIVES, DEFINITIONS 15

of integers (which allows negative natural numbers). We also assume that we know how
to add, subtract, and multiply (perhaps even divide) integers (as well as some of the basic
properties of these operations), and we know what the ordering of the integers is.

The way to introduce new objects in mathematics is to make definitions. Basically, a
definition characterizes an object by some property. Technically, we define a “gizmo” z by
introducing a so-called predicate (or property) gizmo(z), which is an abbreviation for some
possibly complicated logical proposition P(z). The idea is that x is a “gizmo” if and only if
gizmo(x) holds if and only if P(z) holds. We may write

gizmo(x) = P(z),
gizmo(z) o P(z).

Note that gizmo is just a name, but P(x) is a (possibly complex) proposition.

It is also convenient to define properties (also called predicates) of one or more ob-
jects as abbreviations for possibly complicated logical propositions. In this case, a prop-
erty p(zy,...,x,) of some objects xy,...,z, holds if and only if some logical proposition
P(xy,...,x,) holds. We may write

p(x1, .. xn) = P(xy, ..., 1)

or

o
-

(a1, ... x) = Play, ... x).
Here too, p is just a name, but P(xy,...,z,) is a (possibly complex) proposition.
Let us give a few examples of definitions.

Definition 1.1. Given two integers a,b € Z, we say that a is a multiple of b if there is some
¢ € 7, such that a = be. In this case, we say that a is divisible by b, that b is a divisor of a
(or b is a factor of a), and that b divides a. We use the notation b | a.

In Definition 1.1, we define the predicate divisible(a, b) in terms of the proposition P(a, b)
given by
there is some ¢ € N, such that a = bc.

For example, 15 is divisible by 3 since 15 = 3-5. On the other hand, 14 is not divisible by 3.

Definition 1.2. A integer a € Z is even if it is of the form a = 2b for some b € Z, odd if it
is of the form a = 20 + 1 for some b € Z.

In Definition 1.2, the property even(a) of a being even is defined in terms of the predicate

P(a) given by
there is some b € N, such that a = 20.

The property odd(a) is obtained by changing a = 2b to a = 2b+ 1 in P(a). The integer 14
is even, and the integer 15 is odd. Beware that we can’t assert yet that if an integer is not
even, then it is odd. Although this is true, this needs to be proven and requires induction,
which we haven’t discussed yet.

Prime numbers play a fundamental role in mathematics. Let us review their definition.

16 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Definition 1.3. A natural number p € N is prime if p > 2 and if the only divisors of p are
1 and p.

In the above definition, the property prime(p) is defined by the predicate P(p) given by
p > 2, and for all ¢ € N, if divisible(p, ¢), then ¢ =1 or ¢ = p.

If we expand the definition of a prime number by replacing the predicate divisible by
its defining formula, we get a rather complicated formula. Definitions allow us to be more
concise.

According to Definition 1.3, the number 1 is not prime even though it is only divisible by
1 and itself (again 1). The reason for not accepting 1 as a prime is not capricious. It has to
do with the fact that if we allowed 1 to be a prime, then certain important theorems (such
as the unique prime factorization theorem would no longer hold.

Nonprime natural numbers (besides 1) have a special name too.

Definition 1.4. A natural number a € N is composite if a = bc for some natural numbers
b, c with b,c > 2.

For example, 4, 15, 36 are composite. Note that 1 is neither prime nor composite.
We are now ready to introduce the proof templates for implication.

1.3 Meaning of Implication and Proof Templates for
Implication

First, it is important to say that there are two types of proofs:
1. Direct proofs.
2. Indirect proofs.

Indirect proofs use the proof-by-contradiction principle, which will be discussed soon.

Because propositions do not arise from the vacuum but instead are built up from a set
of atomic propositions using logical connectives (here, =), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols, PS = {Pq, Py, P3,...}.
So, for example, P; = Py and P; = (P, = P;) are propositions. Typically, we use
uppercase letters such as P,Q, R, S, A, B,C, and so on, to denote arbitrary propositions
formed using atoms from PS.

We begin by presenting proof templates to construct direct proofs of implications. An
implication P = () can be understood as an if-then statement; that is, if P is true, then @) is
also true. A better interpretation is that any proof of P = Q) can be used to construct a proof
of Q, given any proof of P. As a consequence of this interpretation, we show later that if =P
is provable, then P = @ is also provable (instantly) whether or not @ is provable. In such

1.3. MEANING OF IMPLICATION AND PROOF TEMPLATES FOR IMPLICATION17

a situation, we often say that P = @ is vacuously provable. For example, (P A —P) = @ is
provable for any arbitrary Q).

It might help to view the action of proving an implication P = @) as the construction of
a program that converts a proof of P into a proof of (). Then if we supply a proof of P as
input to this program (the proof of P = @), it will output a proof of (). If we don’t give
the right kind of input to this program, for example, a “wrong proof” of P, we should not
expect the program to return a proof of (). However, this does not say that the program is
incorrect; the program was designed to do the right thing only if it is given the right kind
of input. From this functional point of view (also called constructive), we should not be
shocked that the provability of an implication P = () generally yields no information about
the provability of Q).

Example 1.1. For a concrete example, say P stands for the statement,

“Our candidate for president wins in Pennsylvania,”
and () stands for

“Our candidate is elected president.”

Then P = (@ asserts that if our candidate for president wins in Pennsylvania, then our
candidate is elected president.

If P = @ holds, then if indeed our candidate for president wins in Pennsylvania then
for sure our candidate will win the presidential election. However, if our candidate does not
win in Pennsylvania, we can’t predict what will happen. Our candidate may still win the
presidential election but he/she may not.

If our candidate president does not win in Pennsylvania, then the statement P = ()
should be regarded as holding, though perhaps uninteresting.

Example 1.2. For one more example, let odd(n) assert that n is an odd natural number
and let Q(n,a,b) assert that a™ + 0™ is divisible by a + b, where a,b are any given natural
numbers. By divisible, we mean that we can find some natural number ¢, so that

a4+ 0" = (a+b)e.

Then we claim that the implication odd(n) = Q(n, a,b) is provable.
As usual, let us assume odd(n), so that n = 2k + 1, where k£ = 0,1,2,3,... But then, we
can easily check that

2k
a2k+1 4 b2k+1 — (CL + b) <Z(_1)za2k—zbz> 7

1=0

2k+1 + b2k‘+1

which shows that a is divisible by a + b. Therefore, we proved the implication

odd(n) = Q(n,a,b).

If n is not odd, then the implication odd(n) = Q(n, a, b) yields no information about the
provability of the statement Q)(n,a,b), and that is fine. Indeed, if n is even and n > 2, then
in general, a™ + b" is not divisible by a + b, but this may happen for some special values of
n, a, and b, for example: n =2, a =2, b = 2.

18 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

During the process of constructing a proof, it may be necessary to introduce a list of
hypotheses, also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises.

The process of managing the list of premises during a proof is a bit technical. In Chapter
2, we study carefully two methods for managing the list of premises that may appear during
a proof. In this chapter we are much more casual about it, which is the usual attitude when
we write informal proofs. It suffices to be aware that at certain steps, some premises must
be added, and at other special steps, premises must be discarded. We may view this as a
process of making certain propositions active or inactive. To make matters clearer, we call
the process of constructing a proof using a set of premises a deduction, and we reserve the
word proof for a deduction whose set of premises is empty. Every deduction has a possibly
empty list of premises and a single conclusion. The list of premises is usually denoted by
I', and if the conclusion of the deduction is P, we say that we have a deduction of P from
the premises T'.

The first proof template allows us to make obvious deductions.

Proof Template 1.1. (Trivial Deductions)

If Pi,..., P, ..., P, is a list of propositions assumed as premises (where each P; may occur
more than once), then for each P;, we have a deduction with conclusion P;.

All other proof templates are of two kinds: introduction rules or elimination rules. The
meaning of these words will be explained after stating the next two proof templates.

The second proof template allows the construction of a deduction whose conclusion is an
implication P = Q.
Proof Template 1.2. (Implication-Intro)

Given a list T' of premises (possibly empty), to obtain a deduction with conclusion P = @
proceed as follows:

1. Add one or more occurrences of P as additional premises to the list .
2. Make a deduction of the conclusion Q) from P and the premises in T'.
3. Delete P from the list of premises.

The third proof template allows the constructions of a deduction from two other deduc-
tions.

Proof Template 1.3. (Implication-Elim or Modus Ponens)

Given a deduction with conclusion P = Q) from a list of premises I' and a deduction with
conclusion P from a list of premises A, we obtain a deduction with conclusion Q. The list
of premises of this new deduction is the list ", A.

1.3. MEANING OF IMPLICATION AND PROOF TEMPLATES FOR IMPLICATION19

The modus-ponens proof template formalizes the use of auziliary lemmas, a mechanism
that we use all the time in making mathematical proofs. Think of P = () as a lemma that
has already been established and belongs to some database of (useful) lemmas. This lemma
says if I can prove P, then I can prove (). Now suppose that we manage to give a proof of
P. 1t follows from modus ponens that () is also provable.

Mathematicians are very fond of modus ponens because it gives a potential method for
proving important results. If ¢) is an important result and if we manage to build a large
catalog of implications P = (), there may be some hope that, some day, P will be proven, in
which case @) will also be proven. So they build large catalogs of implications! This has been
going on for the famous problem known as P versus NP. So far, no proof of any premise of
such an implication involving P versus NP has been found (and it may never be found).

g% Beware, when we deduce that an implication P = (@) is provable, we do not prove that
P and @ are provable; we only prove that if P is provable, then @ is provable.

In case you wonder why the words “Intro” and “Elim” occur in the names assigned to
the proof templates, the reason is the following:

1. If the proof template is tagged with X-Intro, the connective X appears in the conclusion
of the proof template; it is introduced. For example, in Proof Template 1.2, the
conclusion is P = @), and = is indeed introduced.

2. If the proof template is tagged with X-Elim, the connective X appears in one of the
premises of the proof template but it does not appear in the conclusion; it is eliminated.
For example, in Proof Template 1.3 (modus ponens), P = () occurs as a premise but
the conclusion is (); the symbol = has been eliminated.

The introduction/elimination pattern is a characteristic of the kind of proof system that we
are describing, which is called a natural deduction proof system.

Example 1.3. Let us give a simple example of the use of Proof Template 1.2. Recall that
a natural number n is odd iff it is of the form 2k 4 1, where k& € N. Let us denote the fact
that a number n is odd by odd(n). We would like to prove the implication

odd(n) = odd(n + 2).

Following Proof Template 1.2, we add odd(n) as a premise (which means that we take
as proven the fact that n is odd) and we try to conclude that n 4+ 2 must be odd. However,
to say that n is odd is to say that n = 2k 4+ 1 for some natural number k. Now,

n+2=2k+1+2=2k+1)+1,

which means that n + 2 is odd. (Here, n = 2h + 1, with A = k+ 1, and k + 1 is a natural
number because k is.)

20 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Thus, we prove that if we assume odd(n), then we can conclude odd(n+2), and according
to Proof Template 1.2, by Step (3) we delete the premise odd(n), and we obtain a proof of
the proposition

odd(n) = odd(n + 2).

It should be noted that the above proof of the proposition odd(n) = odd(n +2) does not
depend on any premises (other than the implicit fact that we are assuming n is a natural
number). In particular, this proof does not depend on the premise odd(n), which was
assumed (became “active”) during our subproof step. Thus, after having applied the Proof
Template 1.2, we made sure that the premise odd(n) is deactivated.

Example 1.4. For a second example, we wish to prove the proposition P = P.

According to Proof Template 1.2, we assume P. But then by Proof Template 1.1, we
obtain a deduction with premise P and conclusion P; by executing Step (3) of Proof Template
1.2, the premise P is deleted, and we obtain a deduction of P = P from the empty list of
premises. Thank God, P = P is provable!

Proofs described in words as above are usually better understood when represented as
trees. We will reformulate our proof templates in tree form and explain very precisely how
to build proofs as trees in Chapter 2. For now, we use tree representations of proofs in an
informal way:.

1.4 Proof Trees and Deduction Trees

A proof tree is drawn with its leaves at the top, corresponding to assumptions, and its root at
the bottom, corresponding to the conclusion. In computer science, trees are usually drawn
with their root at the top and their leaves at the bottom, but proof trees are drawn as
the trees that we see in nature. Instead of linking nodes by edges, it is customary to use
horizontal bars corresponding to the proof templates. One or more nodes appear as premises
above a vertical bar, and the conclusion of the proof template appears immediately below
the lowest horizontal bar. Proof trees are usually constructed from the bottom up (but not
always), and once completed, they are read from the top down.

According to the first step of proof of P = P (presented in words), we move the premise
P to the list of premises, building a deduction of the conclusion P from the premise P
corresponding to the following unfinished tree in which some leaf is labeled with the premise
P, but with a missing subtree establishing P as the conclusion

P{L’

Implication-Intro =

P=P

The premise P is tagged with the label x, which corresponds to the proof rule which
causes its deletion from the list of premises.

In order to obtain a proof, we need to apply a proof template which allows us to deduce
P from P, and of course, this is the Trivial Deduction proof template.

1.4. PROOF TREES AND DEDUCTION TREES 21

The finished proof is represented by the tree shown below. Observe that the premise P
is tagged with the symbol 1/, which means that it has been deleted from the list of premises.
The tree representation of proofs also has the advantage that we can tag the premises in such
a way that each tag indicates which rule causes the corresponding premise to be deleted. In
the tree below, the premise P is tagged with x, and it is deleted when the proof template
indicated by x is applied.

p=v
_ Trivial Deduction

Implication-Intro =

P=P

Example 1.5. For a third example, we prove the proposition P = (Q = P).

According to Proof Template 1.2, we assume P as a premise and we try to prove QQ = P
assuming P. In order to prove) = P, by Proof Template 1.2, we assume () as a new
premise, so the set of premises becomes { P, @}, and then we try to prove P from P and Q.

At this stage, we have the following unfinished tree with two leaves labeled P and @ but
with a missing subtree establishing P as the conclusion.

P QY
Implication-Intro y
Q=P .
Implication-Intro =
P=(Q=P)

We need to find a deduction of P from the premises P and). By Proof Template 1.1
(trivial deductions), we have a deduction with the list of premises { P, Q} and conclusion P.
Then, executing Step (3) of Proof Template 1.2 twice, we delete the premise) and then
the premise P (in this order), and we obtain a proof of P = (@ = P). The above proof of
P = (Q = P) (presented in words) is represented by the following tree:

PV Qv
= Trivial Deduction

Implication-Intro y

Q=P
P=(Q=P)

Observe that both premises P and @) are tagged with the symbol 4/, which means that
they have been deleted from the list of premises.

We tagged the premises in such a way that each tag indicates which rule causes the
corresponding premise to be deleted. In the above tree, () is tagged with y, and it is deleted
when the proof template indicated by y is applied, and P is tagged with z, and it is deleted

when the proof template indicated by x is applied. In a proof, all leaves must be tagged
with the symbol /.

Implication-Intro =

22 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.6. Let us now give a proof of P = ((P = Q) = Q).

Using Proof Template 1.2, we assume both P and P = () and we try to prove (). At
this stage, we have the following unfinished tree with two leaves labeled P = () and P but
with a missing subtree establishing () as the conclusion.

P> P
Q
(P=Q) =0

P=(P=Q)=Q)

We can use Proof Template 1.3 to derive a deduction of () from P = () and P. Finally,
we execute Step (3) of Proof Template 1.2 to delete P = @) and P (in this order), and we
obtain a proof of P = ((P = @) =). A tree representation of the above proof is shown
below.

Implication-Intro =

Implication-Intro y

(P=QF W
Q
(P=Q)=Q
P=((P=Q)=0)

Implication-Elim

Implication-Intro =

Implication-Intro y

Remark: We have not yet examined how we can represent precisely arbitrary deductions.
This can be done using certain types of trees where the nodes are tagged with lists of
premises. Two methods for doing this are carefully defined in Chapter 2. It turns out that
the same premise may be used in more than one location in the tree, but in our informal
presentation, we ignore such fine details.

We now describe the proof templates dealing with the connectives =, A, V, =.

1.5 Proof Templates for —

Recall that =P is an abbreviation for P = 1. We begin with the proof templates for negation,
involving direct proofs.

Proof Template 1.4. (Negation-Intro)

Given a list T of premises (possibly empty), to obtain a deduction with conclusion =P proceed
as follows:

1. Add one or more occurrences of P as additional premises to the list T'.

2. Derive a contradiction. More precisely, make a deduction of the conclusion L from P
and the premises in I.

3. Delete P from the list of premises.

1.5. PROOF TEMPLATES FOR — 23

Proof Template 1.4 is a special case of Proof Template 1.2, since =P is an abbreviation
for P=1.

Proof Template 1.5. (Negation-FElim)

Given a deduction with conclusion =P from a list of premises I' and a deduction with con-
clusion P from a list of premises A, we obtain a contradiction; that is, a deduction with
conclusion 1. The list of premises of this new deduction is ', A.

Proof Template 1.5 is a special case of Proof Template 1.3, since =P is an abbreviation
for P =1.

Proof Template 1.6. (Perp-Elim)

Given a deduction with conclusion L (a contradiction), for every proposition @), we obtain a
deduction with conclusion (). The list of premises of this new deduction is the same as the
original list of premises.

The next proof template for negation constructs an indirect proof; it is the proof-by-
contradiction principle.

Proof Template 1.7. (Proof-By-Contradiction Principle)

Given a list I' of premises (possibly empty), to obtain a deduction with conclusion P proceed
as follows:

1. Add one or more occurrences of =P as additional premises to T'.

2. Derive a contradiction. More precisely, make a deduction of the conclusion L from —P
and the premises in I.

3. Delete =P from the list of premises.

Proof Template 1.7 (the proof-by-contradiction principle) also has the fancy name of
reductio ad absurdum rule, RAA for short.

Proof Template 1.6 may seem silly and one might wonder why we stated it. It turns
out that it is subsumed by Proof Template 1.7, but it is still useful to state it as a proof
template.

Example 1.7. Let us prove that for every natural number n, if n? is odd, then n itself must
be odd.

We use the proof-by-contradiction principle (Proof Template 1.7), so we assume that n
is not odd, which means that n is even. (Actually, in this step, we are using a property of
the natural numbers that is proven by induction, but let’s not worry about that right now;
a proof can be found in Section 1.12). But to say that n is even means that n = 2k for some
k and then n? = 4k* = 2(2k?), so n? is even, contradicting the assumption that n? is odd.
By the proof-by-contradiction principle (Proof Template 1.7), we conclude that n must be
odd.

24 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.8. Let us prove that -——P = P.

It turns out that this requires using the proof-by-contradiction principle (Proof Template
1.7). First, by Proof Template 1.2, assume ——P as a premise. Then by the proof-by-
contradiction principle (Proof Template 1.7), in order to prove P, assume —P. By Proof
Template 1.5, we obtain a contradiction (L). Thus, by Step (3) of the proof-by-contradiction
principle (Proof Template 1.7), we delete the premise =P, and we obtain a deduction of P
from ——P. Finally, by Step (3) of Proof Template 1.2, we delete the premise =—P and
obtain a proof of =——P = P. This proof has the following tree representation.

—— PV o %
1

Negation-Elim

RAA 2

Implication-Intro y

-—P =P

Example 1.9. Now we prove that P = ——P.

First, by Proof Template 1.2, assume P as a premise. In order to prove =—P using Proof
Template 1.4, assume —P. We now have the two premises =P and P, so by Proof Template
1.5, we obtain a contradiction (_L). By Step (3) of Proof Template 1.4, we delete the premise
—P, and we obtain a deduction of ==P from P. Finally, by Step (3) of Proof Template
1.2, delete the premise P to obtain a proof of P = ——P. This proof has the following tree
representation.

—prV YV
P P Negation-Elim

- Negation-Intro =
||P

P = =P

Implication-Intro y

Observe that the previous two examples show that the equivalence P = —— P is provable.
As a consequence of this equivalence, if we prove a negated proposition =P using the proof-
by-contradiction principle, we assume —— P, and we deduce a contradiction. But since == P
and P are equivalent (as far as provability), this amounts to deriving a contradiction from
P, which is just the Proof Template 1.4.

In summary, to prove a negated proposition =P, always use Proof Template 1.4.

On the other hand, to prove a nonnegated proposition, it is generally not possible to
tell if a direct proof exists or if the proof-by-contradiction principle is required. There are
propositions for which it is required, for example =—P = P and (—(P = Q)) = P.

Example 1.10. Let us now prove that (—=(P = Q)) = —Q.

First, by Proof Template 1.2, we add =(P = @) as a premise. Then in order to prove
=@ from —(P = @), we use Proof Template 1.4, and we add @) as a premise. We obtain the
following deduction tree with a piece missing.

1.5. PROOF TEMPLATES FOR — 25

Qy
2

(P = z P =
(9 ? Negation-Elim

L .
_— Negation-Intro y

-Q

(=(P=Q)) = ~C

Now, recall that we showed in Example 1.5 that P = (@ is provable assuming @) (with P
and @ switched). Then, since =(P = @) is a premise, by Proof Template 1.5, we obtain a
deduction of L; see below.

Implication-Intro =

QY PV
_ Trivial Deduction

Implication-Intro «

(P = Q)* P=
(Q) ¢ Negation-Elim

i Negation-Intro y

—Q

(P = Q) =Q
We now execute Step (3) of Proof Template 1.4, delete the premise) to obtain a deduc-
tion of =@ from —(P = @), and we execute Step (3) of Proof Template 1.2 to delete the
premise =(P = () and obtain a proof of (=(P = @)) = —Q. The above proof corresponds
to the following tree.

Implication-Intro =

Qy\/ PV

Trivial Deduction

Implication-Intro =

-(P = Q)*Y P=Q
() Negation-Elim

i Negation-Intro y

—Q
(=(P=Q)) = Q
Here is an example using Proof Templates 1.6 (Perp-Elim) and 1.7 (RAA).

Implication-Intro -

Example 1.11. Let us prove that (-(P = Q)) = P.

First, we use Proof Template 1.2, and we assume —(P = (@) as a premise. Next, we
use the proof-by-contradiction principle (Proof Template 1.7). So in order to prove P, we
assume —P as another premise. The next step is to deduce P = (). By Proof Template
1.2, we assume P as an additional premise. By Proof Template 1.5, from =P and P we

26 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

obtain a deduction of 1, and then by Proof Template 1.6, a deduction of @) from =P and
P. By Proof Template 1.2, executing Step (3), we delete the premise P and we obtain a
deduction of P =). At this stage, we have the premises =P, =(P =) and a deduction of
P = (@, so by Proof Template 1.5, we obtain a deduction of L. This is a contradiction, so
by Step (3) of the proof-by-contradiction principle (Proof Template 1.7), we can delete the
premise =P, and we have a deduction of P from —(P = (). Finally, we execute Step (3)
of Proof Template 1.2 and delete the premise =(P = @), which yields the desired proof of
(=(P = Q)) = P. The above proof has the following tree representation.

— P zy/
r P Negation-Elim
i_ Perp-Elim
Q L
Implication-Intro «
-(P = Q)*Y P=Q
() Negation-Elim
< Rraa,
P

Implication-Intro -

(P =Q) =P

The reader may be surprised by how many steps are needed in the above proof and may
wonder whether the proof-by-contradiction principle is actually needed. It can be shown
that the proof-by-contradiction principle must be used, and unfortunately there is no shorter
proof.

Even though Proof Template 1.4 qualifies as a direct proof template, it proceeds by deriv-
ing a contradiction, so we suggest to call it the proof-by-contradiction for negated propositions
principle.

Remark: The fact that the implication ——P = P is provable has the interesting conse-
quence that if we take =—P = P as an aziom (which means that -=—P = P is assumed to
be provable without requiring any proof), then the proof-by-contradiction principle (Proof
Template 1.7) becomes redundant. Indeed, Proof Template 1.7 is subsumed by Proof Tem-
plate 1.4, because if we have a deduction of L from —P, then by Proof Template 1.4 we
delete the premise —P to obtain a deduction of == P. Since =—P = P is assumed to be
provable, by Proof Template 1.3, we get a proof of P. The tree shown below illustrates what
is going on. In this tree, a proof of L from the premise =P is denoted by D.

- p*v
D

Negation-Intro =

—P=F P Implication-Elim

1.6. PROOF TEMPLATES FOR A, V,= 27

Proof Templates 1.5 and 1.6 together imply that if a contradiction is obtained during a de-
duction because two inconsistent propositions P and =P are obtained, then all propositions
are provable (anything goes). This explains why mathematicians are leary of inconsistencies.

1.6 Proof Templates for A, V, =
The proof templates for conjunction are the simplest.

Proof Template 1.8. (And-Intro)

Given a deduction with conclusion P from a list of premises I' and a deduction with conclusion
Q from a list of premises A, we obtain a deduction with conclusion PAQ. The list of premises
of this new deduction is T', A.

Proof Template 1.9. (And-Elim)

Given a deduction with conclusion P A\ @), we obtain a deduction with conclusion P, and a
deduction with conclusion Q). The list of premises of these new deductions is the same as the
list of premises of the original deduction.

Let us consider a few examples of proofs using the proof templates for conjunction as
well as Proof Templates 1.4 and 1.7.

Example 1.12. Let us prove that for any natural number n, if n is divisible by 2 and n is
divisible by 3, then n is divisible by 6. This is expressed by the proposition

(2]n)A@B][n)=(6]n).

We start by using Proof Templates 1.2, and we add the premise (2 | n) A (3 | n). Using
Proof Template 1.9 twice, we obtain deductions of (2 | n) and (3 | n) from (2 | n) A (3 | n).
But (2 | n) means that

n = 2a

for some a € N, and 3 | n means that
n = 3b

for some b € N. This implies that
n = 2a = 3b.

Because 2 and 3 are relatively prime (their only common divisor is 1), the number 2 must
divide b (and 3 must divide a), so b = 2¢ for some ¢ € N. Here we are using Euclid’s lemma.
So we have shown that

n=3b=3-2c=6c,

which says that n is divisible by 6. We conclude with Step (3) of Proof Template 1.2 by
deleting the premise (2 | n) A (3 | n), and we obtain our proof.

28 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.13. Let us prove that for any natural number n, if n is divisible by 6, then n is
divisible by 2 and n is divisible by 3. This is expressed by the proposition

(6]n)=((2]n)A@3]|n).
We start by using Proof Template 1.2, and we add the premise 6 | n. This means that
n=06a=2-3a

for some a € N. This implies that 2 | n and 3 | n, so we have a deduction of 2 | n from the
premise 6 | n, and a deduction of 3 | n from the premise 6 | n. By Proof Template 1.8, we
obtain a deduction of (2 | n) A (3 | n) from 6 | n, and we apply Step (3) of Proof Template
1.2 to delete the premise 6 | n and obtain our proof.

Example 1.14. Let us prove that a natural number n cannot be even and odd simultane-
ously. This is expressed as the proposition

—(odd(n) A even(n)).

We begin with Proof Template 1.4, and we assume odd(n) Aeven(n) as a premise. Using
Proof Template 1.9 twice, we obtain deductions of odd(n) and even(n) from odd(n)Aeven(n).
Now, odd(n) says that n = 2a + 1 for some a € N, and even(n) says that n = 2b for some
b € N. But then,

n=2a+1=20b,

so we obtain 2(b —a) = 1. Since b — a is an integer, either 2(b —a) = 0 (if a = b) or
12(b — a)| > 2, so we obtain a contradiction. Applying Step (3) of Proof Template 1.4, we
delete the premise odd(n) A even(n), and we have a proof of =(odd(n) A even(n)).

Example 1.15. Let us prove that (=(P = Q)) = (P A Q).

We start by using Proof Templates 1.2, and we add —~(P = @) as a premise. Now in
Example 1.11, we showed that (=(P = @)) = P is provable, and this proof contains a
deduction of P from —(P =). Similarly, in Example 1.10, we showed that (—(P = Q)) =
(@) is provable, and this proof contains a deduction of =@ from —(P =). By Proof
Template 1.8, we obtain a deduction of P A =@ from —(P = @), and executing Step (3)
of Proof Templates 1.2, we obtain a proof of (=(P = Q)) = (P A =Q). The following tree
represents the above proof. Observe that two copies of the premise =(P = Q) are needed.

—pvv PV
1 Qw\/ Pt\/
Q Q t
~(P=Q* P=Q ~(P=Q~ P=Q
i_ RAA 4 i Negation-Intro v
P -Q
PA-Q

(=(P=Q) = (PA-Q)

1.6. PROOF TEMPLATES FOR A, V,= 29

Observe that the left subtree comes from the proof tree Example 1.11 and the right
subtree comes from the proof tree in Example 1.10.
Next, we present the proof templates for disjunction.

Proof Template 1.10. (Or-Intro)
Given a list T' of premises (possibly empty),

1. If we have a deduction with conclusion P, then we obtain a deduction with conclusion
PVva@Q.

2. If we have a deduction with conclusion @), then we obtain a deduction with conclusion
PVvQ.

In both cases, the new deduction has I' as premises.

Proof Template 1.11. (Or-Elim or Proof-By-Cases)

Given three lists of premises I', A, A, to obtain a deduction of some proposition R as con-
clusion, proceed as follows:

1. Construct a deduction of some disjunction PV @Q from the list of premises T'.

2. Add one or more occurrences of P as additional premises to the list A and find a

deduction of R from P and A.

3. Add one or more occurrences of (Q as additional premises to the list A and find a

deduction of R from @ and A.
The list of premises after applying this rule is I', A, A.
Note that in making the two deductions of R, the premise PV @) is not assumed.

Example 1.16. Let us show that for any natural number n, if 4 divides n or 6 divides n,
then 2 divides n. This can be expressed as

((4]n)v(6]n)=(2]n).

First, by Proof Template 1.2, we assume (4 | n) V (6 | n) as a premise. Next, we use
Proof Template 1.11, the proof-by-cases principle. First, assume (4 | n). This means that

n=4a=2-2a
for some a € N. Therefore, we conclude that 2 | n. Next, assume (6 | n). This means that
n=6b=2-3b

for some b € N. Again, we conclude that 2 | n. Since (4 | n) V (6 | n) is a premise, by Proof
Template 1.11, we can obtain a deduction of 2 | n from (4 | n) V (6 | n). Finally, by Proof
Template 1.2, we delete the premise (4 | n) V (6 | n) to obtain our proof.

30 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Proof Template 1.10 (Or-Intro) may seem trivial, so let us show an example illustrating
its use.

Example 1.17. Let us prove that =(P V Q) = (=P A =Q).

First by Proof Template 1.2, we assume =(P V @) (two copies). In order to derive =P,
by Proof Template 1.4, we also assume P. Then by Proof Template 1.10, we deduce PV @,
and since we have the premise =(P V @), by Proof Template 1.5, we obtain a contradiction.
By Proof Template 1.4, we can delete the premise P and obtain a deduction of =P from
-(PVQ).

In a similar way, we can construct a deduction of =@ from —=(P V Q). By Proof Template
1.8, we get a deduction of =P A=) from —(PV(Q), and we finish by applying Proof Template
1.2. A tree representing the above proof is shown below.

z+/ wy/
r Or-Intro © Or-Intro
S(PVQ)Y PVQ S(PVQ)»Y PVQ
Negation-Intro = i Negation-Intro w

(PVQ)= (=PA=Q)

The proposition (=PA—=Q) = —=(PVQ) is also provable using the proof-by-cases principle.
Here is a proof tree; we leave it as an exercise to the reader to check that the proof templates
have been applied correctly.

(~P A=Q) (=P A=Q)Y
-P P -Q QW
(PVQ)* 1 1

T,y

Lt
-(PVQ)
(=P AQ) = ~(PVQ)

As a consequence, the equivalence
is provable. This is one of three identities known as de Morgan laws.

Example 1.18. Next, let us prove that =(=P V =@Q) = P. A tree representing the proof is
shown below.

1.6. PROOF TEMPLATES FOR A, V,= 31

-p=v
=(=P Vv -Q)" -PV -Q
+ RAA.
P

~(=PV-Q) = P

First by Proof Template 1.2, we assume —(—P V —(@)) as a premise. In order to prove
P from —=(=P V —=Q), we use the proof-by-contradiction principle (Proof Template 1.7). So
we add —P as a premise. Now by Proof Template 1.10, we can deduce =P V =@ from —P,
and since (=P V (@) is a premise, by Proof Template 1.5, we obtain a contradiction. By
the proof-by-contradiction principle (Proof Template 1.7), we delete the premise =P, and
we obtain a deduction of P from =(=P V —=@Q)). We conclude by using Proof Template 1.2 to
delete the premise —(—=P V —=(@Q)) and to obtain our proof.

A similar proof shows that =(=P V =@Q) = @ is provable. Putting together the proofs of
P and @ from —(=P V =Q) using Proof Template 1.8, we obtain a proof of

~(=PV-Q) = (PAQ).
A tree representing this proof is shown below.

ﬁP:Jc\/ _|Qw\/
—|(—|P\/—\Q)y\/ ﬁP\/ﬁQ —|(—|P\/—|Q)y\/ ﬁP\/ﬁQ

RAA » RAA w

-
Ol

PAQ
(=P V@)= (PAQ)

Example 1.19. The proposition =(P A Q) = (=P V =(Q) is provable. A tree represented
the proof is shown below.

ﬁP:zt\/ _|Qw\/
L RAA. L RAA
P Q
(P AQ)Y PAQ
_ Raa,

t

32 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

First by Proof Template 1.2, we assume —(P A Q) as a premise. Next, we use the proof-
by-contradiction principle (Proof Template 1.7) to deduce =P V =@, so we also assume
—(=P V =Q). Now, we just showed that P A @ is provable from the premise =(—=P V =Q).
Using the premise —(P A @), by Proof Principle 1.5, we derive a contradiction, and by the
proof-by-contradiction principle, we delete the premise (=P V =(@)) to obtain a deduction
of =PV =@ from —(P A Q). We finish the proof by applying Proof Template 1.2.

The next example is particularly interesting because the proof-by-contradiction principle
must be used.

Example 1.20. We prove the proposition
PV =P

We use the proof-by-contradiction principle (Proof Template 1.7), so we assume —(P V —P)
as a premise. The first tricky part of the proof is that we actually assume that we have two
copies of the premise =(P V = P).

Next, the second tricky part of the proof is that using one of the two copies of =(PV—P),
we are going to deduce PV —P. For this, we first derive =P using Proof Template 1.4, so we
assume P. By Proof Template 1.10, we deduce PV —P, but we have the premise =(PV —P),
so by Proof Template 1.5, we obtain a contradiction. Next, by Proof Template 1.4, we delete
the premise P, deduce =P, and then by Proof Template 1.10, we deduce PV —P.

Since we still have a second copy of the premise =(P V —=P), by Proof Template 1.5, we
get a contradiction! The only premise left is =(P V = P) (two copies of it), so by the proof-
by-contradiction principle (Proof Template 1.7), we delete the premise (P V —P), and we
obtain the desired proof of PV =P.

PV
-(PVv-P)*™ PV-P

Negation-Elim

Negation-Intro y

-P
=(P Vv —P)*v PV =P
Negation-Elim
L RAA.
Pv-P

If the above proof made you dizzy, this is normal. The sneaky part of this proof is that
when we proceed by contradiction and assume —(PV—P), this proposition is an inconsistency,
so it allows us to derive PV =P, which then clashes with =(PV —=P) to yield a contradiction.
Observe that during the proof we actually showed that =—(P V —=P) is provable. The proof-
by-contradiction principle is needed to get rid of the double negation.

The fact is that even though the proposition PV —P seems obviously “true,” its truth is
viewed as controversial by certain mathematicians and logicians. To some extent, this is why

1.6. PROOF TEMPLATES FOR A, V,= 33

its proof has to be a bit tricky and has to involve the proof-by-contradiction principle. This
matter is discussed quite extensively in Chapter 2. In this chapter, which is more informal,
let us simply say that the proposition PV —P is known as the law of excluded middle. Indeed,
intuitively, it says that for every proposition P, either P is true or —P is true; there is no
middle alternative.

It can be shown that if we take all formulae of the form P V —P as axioms, then the
proof-by-contradiction principle is derivable from the other proof templates; see Section 2.8.
Furthermore, the propositions ==P = P and PV —P are equivalent (that is, (-——P = P) =
(P Vv =P) is provable).

Typically, to prove a disjunction P V @), it is rare that we can use Proof Template 1.10
(Or-Intro), because this requires constructing of a proof of P or a proof of) in the first place.
But the fact that PV () is provable does not imply in general that either a proof of P or a proof
of @ can be produced, as the example of the proposition PV =P shows (other examples can
be given). Thus, usually to prove a disjunction we use the proof-by-contradiction principle.
Here is an example.

Example 1.21. Given some natural numbers p, q, we wish to prove that if 2 divides pq,
then either 2 divides p or 2 divides ¢. This can be expressed by

2]pg) = (2]p)V(2]q).

We use the proof-by-contradiction principle (Proof Template 1.7), so we assume —((2 |
p) V(2| q)) as a premise. This is a proposition of the form —(P V @), and in Example 1.17
we showed that =(PV Q) = (=P A—Q) is provable. Thus, by Proof Template 1.3, we deduce
that =(2 | p) A=(2 | ¢). By Proof Template 1.9, we deduce both =(2 | p) and —=(2 | ¢). Using
some basic arithmetic, this means that p = 2a + 1 and ¢ = 2b + 1 for some a,b € N. But
then,

pq =2(2ab+a+b)+1

and pq is not divisible by 2, a contradiction. By the proof-by-contradiction principle (Proof
Template 1.7), we can delete the premise —((2 | p) V (2 | ¢)) and obtain the desired proof.

Another proof template which is convenient to use is the proof-by-contrapositive principle.

Proof Template 1.12. (Proof-By-Contrapositive)

Given a list of premises I, to prove an implication P = @, proceed as follows:
1. Add —Q to the list of premises I
2. Construct a deduction of =P from the premises =) and T'.
3. Delete Q) from the list of premises.

It is not hard to see that the proof-by-contrapositive principle (Proof Template 1.12) can
be derived from the proof-by-contradiction principle. We leave this as an exercise.

34 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.22. We prove that for any two natural numbers m,n € N, if m 4+ n is even,
then m and n have the same parity. This can be expressed as

even(m + n) = ((even(m) A even(n)) V (odd(m) A odd(n))).

According to Proof Template 1.12 (proof-by-contrapositive principle), let us assume
=((even(m) Aeven(n)) V (odd(m) Aodd(n))). Using the implication proven in Example 1.17
(=(PVQ)) = =PA-Q)) and Proof Template 1.3, we deduce that —(even(m)Aeven(n)) and
—(odd(m) A odd(n)). Using the result of Example 1.19 and modus ponens (Proof Template
1.3), we deduce that —even(m) V —even(n) and —odd(m) V —odd(n). At this point, we can
use the proof-by-cases principle (twice) to deduce that —even(m + n) holds. We leave some
of the tedious details as an exercise. In particular, we use the fact proven in Chapter 2 that
even(p) iff =odd(p) (see Section 2.19).

We treat logical equivalence as a derived connective: that is, we view P = () as an
abbreviation for (P = Q) A (Q = P). In view of the proof templates for A, we see that
to prove a logical equivalence P = (), we just have to prove both implications P =) and
() = P. For the sake of completeness, we state the following proof template.

Proof Template 1.13. (Equivalence-Intro)

Given a list of premises I', to obtain a deduction of an equivalence P = @, proceed as follows:
1. Construct a deduction of the implication P = () from the list of premises I.
2. Construct a deduction of the implication QQ = P from the list of premises I'.

The proof templates described in this section and the previous one allow proving propo-
sitions which are known as the propositions of classical propositional logic. We also say that
this set of proof templates is a natural deduction proof system for propositional logic; see
Prawitz [50] and Gallier [16].

1.7 De Morgan Laws and Other Useful Rules of Logic

In Section 1.5, we proved certain implications that are special cases of the so-called de Morgan
laws.

Proposition 1.1. The following equivalences (de Morgan laws) are provable:

-—P =P
ﬁ(P/\Q)EﬁP\/—'Q

The following equivalence expressing = in terms of V and — is also provable:

P=Q=-PVQ.

1.8. FORMAL VERSUS INFORMAL PROOFS; SOME EXAMPLES 35

The following proposition (the law of the excluded middle) is provable:
PV =P

The proofs that we have not shown are left as exercises (sometimes tedious).

Proposition 1.1 shows a property that is very specific to classical logic, namely, that the
logical connectives =, A, V, = are not independent. For example, we have P A Q = —(—-P V
—(@)), which shows that A can be expressed in terms of V and —. Similarly, P = Q = -PVQ
shows that = can be expressed in terms of V and —.

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Constructing proofs using the proof templates is not hard but
tedious.

Proposition 1.2. The following propositions are provable:

PvP=P
PANP=P
PvQ=QVP
PANQ=QANP.

The last two assert the commutativity of V and A. We have distributivity of A over V and
of V over A:

PA(QVR)=(PANQ)V(PAR)
PV(QAR)=(PVQ)A(PVR).

We have associativity of A\ and V:

PA(QRANR) =(PAQ)AR
PV(QVR)=(PVQ)VR.

1.8 Formal Versus Informal Proofs; Some Examples

In this section, we give some explicit examples of proofs illustrating the proof templates
that we just discussed. But first, it should be said that it is practically impossible to write
formal proofs (i.e., proofs written using the proof templates of the system presented earlier)
of “real” statements that are not “toy propositions.” This is because it would be extremely
tedious and time-consuming to write such proofs, and these proofs would be huge and thus
very hard to read.

As we said before, it is possible in principle to write formalized proofs; however, most of
us will never do so. So, what do we do?

Well, we construct “informal” proofs in which we still make use of the proof templates
that we have presented but we take shortcuts and sometimes we even omit proof steps (some

36 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

proof templates such as 1.9 (And-Elim) and 1.10 (Or-Intro)), and we use a natural language
(here, presumably, English) rather than formal symbols (we say “and” for A, “or” for Vv,
etc.). As an example of a shortcut, when using the Proof Template 1.11 (Or-Elim), in most
cases, the disjunction P V @) has an “obvious proof” because P and () “exhaust all the
cases,” in the sense that () subsumes =P (or P subsumes —()) and classically, PV =P is an
axiom. Also, we implicitly keep track of the open premises of a proof in our head rather than
explicitly delete premises when required. This may be the biggest source of mistakes, and
we should make sure that when we have finished a proof, there are no “dangling premises,”
that is, premises that were never used in constructing the proof. If we are “lucky,” some of
these premises are in fact unnecessary and we should discard them. Otherwise, this indicates
that there is something wrong with our proof, and we should make sure that every premise
is indeed used somewhere in the proof or else look for a counterexample.

We urge our readers to read Chapter 3 of Gowers [28], which contains very illuminating
remarks about the notion of proof in mathematics.

The next question is then, “How does one write good informal proofs?”

It is very hard to answer such a question because the notion of a “good” proof is quite
subjective and partly a social concept. Nevertheless, people have been writing informal
proofs for centuries so there are at least many examples of what to do (and what not to do).
As with everything else, practicing a sport, playing a music instrument, knowing “good”
wines, and so on, the more you practice, the better you become. Knowing the theory of
swimming is fine, but you have to get wet and do some actual swimming. Similarly, knowing
the proof rules is important, but you have to put them to use.

Write proofs as much as you can. Find good proof writers (like good swimmers, good
tennis players, etc.), try to figure out why they write clear and easily readable proofs, and
try to emulate what they do. Don’t follow bad examples (it will take you a little while to
“smell” a bad proof style).

Another important point is that nonformalized proofs make heavy use of modus ponens.
This is because, when we search for a proof, we rarely (if ever) go back to first principles. This
would result in extremely long proofs that would be basically incomprehensible. Instead, we
search in our “database” of facts for a proposition of the form P = @ (an auxiliary lemma)
that is already known to be proven, and if we are smart enough (lucky enough), we find
that we can prove P and thus we deduce @), the proposition that we really want to prove.
Generally, we have to go through several steps involving auxiliary lemmas. This is why it is
important to build up a database of proven facts as large as possible about a mathematical
field: numbers, trees, graphs, surfaces, and so on. This way, we increase the chance that we
will be able to prove some fact about some field of mathematics (by practicing constructing
proofs).

And now we return to some explicit examples of informal proofs.
Recall that the set of integers is the set

Z={.,-2-1,012,..},

1.8. FORMAL VERSUS INFORMAL PROOFS; SOME EXAMPLES 37

and that the set of natural numbers is the set
N=1{0,1,2,...}.

(Some authors exclude 0 from N. We don’t like this discrimination against zero.) The
following facts are essentially obvious from the definition of even and odd.

(a) The sum of even integers is even.

(b) The sum of an even integer and of an odd integer is odd.

)

)

(¢) The sum of two odd integers is even.

(d) The product of odd integers is odd.
)

(e) The product of an even integer with any integer is even.

We will construct deductions using sets of premises consisting of the above propositions.
Now we prove the following fact using the proof-by-cases method.

Proposition 1.3. Let a,b,c be odd integers. For any integers p and q, if p and q are not
both even, then
ap?® + bpq + cq?

15 odd.
Proof. We consider the three cases:

1. p and q are odd. In this case, as a, b, and ¢ are odd, by (d), all the products ap?, bpq,
and cq? are odd. By (c), ap? + bpq is even and by (b), ap® + bpg + cq¢® is odd.

2. pis even and ¢ is odd. In this case, by (e), both ap® and bpq are even and by (d), cg?

is odd. But then, by (a), ap* + bpq is even and by (b), ap? + bpq + c¢* is odd.

3. pis odd and q is even. This case is analogous to the previous case, except that p and
q are interchanged. The reader should have no trouble filling in the details.

All three cases exhaust all possibilities for p and ¢ not to be both even, thus the proof
is complete by Proof Template 1.11 applied twice, because there are three cases instead of
two. O

The set of rational numbers Q consists of all fractions p/q, where p,q € Z, with ¢ # 0.
The set of real numbers is denoted by R. A real number, a € R, is said to be irrational if it
cannot be expressed as a number in Q (a fraction).

We now use Proposition 1.3 and the proof by contradiction method to prove the following.

38 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Proposition 1.4. Let a,b, c be odd integers. Then the equation
aX?+bX +c=0
has no rational solution X. Equivalently, every zero of the above equation is irrational.

Proof. We proceed by contradiction (by this, we mean that we use the proof-by-contradiction
principle). So assume that there is a rational solution X = p/q. We may assume that p
and ¢ have no common divisor, which implies that p and ¢ are not both even. As g # 0, if
aX?+bX + ¢ =0, then by multiplying by ¢*, we get

ap® + bpq + cq® = 0.

However, as p and ¢ are not both even and a, b, ¢ are odd, we know from Proposition 1.3 that
ap® + bpg + cq® is odd. This contradicts the fact that p? + bpg + c¢®> = 0 and thus finishes
the proof. n

As an example of the proof-by-contrapositive method, we prove that if an integer n? is

even, then n must be even.

Proof. Observe that if an integer is not even, then it is odd (and vice versa). This fact
may seem quite obvious, but to prove it actually requires using induction (which we haven’t
officially met yet). A rigorous proof is given in Section 1.12.

Now the contrapositive of our statement is: if n is odd, then n? is odd. But to say that
n is odd is to say that n = 2k + 1, and then n? = (2k+1)? = 4k* + 4k +1 = 2(2k* + 2k) + 1,
which shows that n? is odd. O

As another illustration of the proof methods that we have just presented, let us prove
that /2 is irrational, which means that V2 is not rational. The reader may also want to
look at the proof given by Gowers in Chapter 3 of his book [28]. Obviously, our proof is
similar but we emphasize Step (2) a little more.

Because we are trying to prove that /2 is not rational, we use Proof Template 1.4. Thus,
let us assume that v/2 is rational and derive a contradiction. Here are the steps of the proof.

(1) If /2 is rational, then there exist some integers p, ¢ € Z, with ¢ # 0, so that /2 = p/q.
(2) Any fraction p/q is equal to some fraction r/s, where r and s are not both even.

(3) By (2), we may assume that

va-2,
q

where p,q € Z are not both even and with g # 0.
(4) By (3), because g # 0, by multiplying both sides by ¢, we get

qvV2 = p.

1.8. FORMAL VERSUS INFORMAL PROOFS; SOME EXAMPLES 39

(5) By (4), by squaring both sides, we get

(6) Inasmuch as p* = 2¢°, the number p* must be even. By a fact previously established,
p itself is even; that is, p = 2s, for some s € Z.

(7) By (6), if we substitute 2s for p in the equation in (5), we get 2¢* = 4s*. By dividing
both sides by 2, we get
¢? = 25>

(8) By (7), we see that ¢? is even, from which we deduce (as above) that ¢ itself is even.

(9) Now, assuming that /2 = p/q where p and ¢ are not both even (and g # 0), we
concluded that both p and q are even (as shown in (6) and (8)), reaching a contradiction.
Therefore, by negation introduction, we proved that v/2 is not rational.

A closer examination of the steps of the above proof reveals that the only step that may
require further justification is Step (2): that any fraction p/q is equal to some fraction r/s,
where r and s are not both even.

This fact does require a proof, and the proof uses the division algorithm, which itself
requires induction. Besides this point, all the other steps only require simple arithmetic
properties of the integers and are constructive.

Remark: Actually, every fraction p/q is equal to some fraction r/s, where r and s have
no common divisor, except 1. This follows from the fact that every pair of integers has a
greatest common divisor (a ged; and r and s are obtained by dividing p and ¢ by their ged.
Using this fact and Euclid’s lemma, we can obtain a shorter proof of the irrationality of v/2.
First, we may assume that p and ¢ have no common divisor besides 1 (we say that p and ¢
are relatively prime). From (5), we have

so q divides p?. However, g and p are relatively prime and as ¢ divides p? = p x p, by Euclid’s
lemma, ¢ divides p. But because 1 is the only common divisor of p and ¢, we must have
g = 1. Now, we get p? = 2, which is impossible inasmuch as 2 is not a perfect square.

The above argument can be easily adapted to prove that if the positive integer n is not
a perfect square, then /n is not rational.

We conclude this section by showing that the proof-by-contradiction principle allows for
proofs of propositions that may lack a constructive nature. In particular, it is possible to
prove disjunctions PV Q) which states some alternative that cannot be settled.

For example, consider the question: are there two irrational real numbers a and b, such
that a® is rational? Here is a way to prove that this is indeed the case. Consider the number

40 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

\/5\/5. If this number is rational, then a = V2 and b = /2 is an answer to our question
(because we already know that /2 is irrational). Now, observe that

(\/5\/5)‘/5 = \/5\/§X\/5 — V2 =2 s rational.

Thus, if \/5\/§ is not rational, then a = \/5\/5 and b = /2 is an answer to our question.

Because PV —P is provable using the proof-by-contradiction principle (\/5\[is rational or
it is not rational), we proved that

(V/2 is irrational and \/5\/5 is rational) or
(\/5\/§ and /2 are irrational and (\/5\@)*/5 is rational).

However, the above proof does not tell us whether \/5\/5 is rational!

We see one of the shortcomings of classical reasoning: certain statements (in particular,
disjunctive or existential) are provable but their proof does not provide an explicit answer.
For this reason, classical logic is considered to be nonconstructive.

. o b
Remark: Actually, it turns out that another irrational number b can be found so that /2
is rational, and the proof that b is not rational is fairly simple. It also turns out that the

2 : o .
exact nature of \/5\[(rational or irrational) is known. The answers to these puzzles can be
found in Section 1.10.

1.9 Truth Tables and Truth-Value Semantics

So far we have deliberately focused on the construction of proofs using proof templates,
but have ignored the notion of truth. We can’t postpone any longer a discussion of the
truth-value semantics for classical propositional logic.

We all learned early on that the logical connectives =, A, V, = and = can be interpreted
as Boolean functions, that is, functions whose arguments and whose values range over the
set of truth values,

BOOL = {true, false}.

These functions are given by the following truth table.

P Q P=Q PANQ|PVQ| =P |P=Q
true | true true true true | false | true
true | false | false false | true | false | false
false | true | true false | true | true | false
false | false | true false | false | true | true

Note that the implication P = @ is false (has the value false) exactly when P = true
and () = false.

1.9. TRUTH TABLES AND TRUTH-VALUE SEMANTICS 41

Now any proposition P built up over the set of atomic propositions PS = {Py, P, P35, ...}
(our propositional symbols) contains a finite set of propositional letters, say

(P,,..., P}

If we assign some truth value (from BOOL) to each symbol P;, then we can “compute”
the truth value of P under this assignment by using recursively the truth table above. For
example, the proposition P; = (P; = P5), under the truth assignment v given by

P, = true, P, = false,
evaluates to false. Indeed, the truth value, v(P; = (P; = P3)), is computed recursively as
v(P; = (P = Py)) =0v(Py) = v(P; = Py).
Now, v(P;) = true and v(P; = P5) is computed recursively as
v(Py = Py) =0(Py) = v(Py).
Because v(P) = true and v(P;) = false, using our truth table, we get
v(P; = P3) = true = false = false.
Plugging this into the right-hand side of v(P; = (P; = P3)), we finally get
v(P; = (P; = Py)) = true = false = false.
However, under the truth assignment v given by
P, = true, Py, = true,

we find that our proposition evaluates to true.

The values of a proposition can be determined by creating a truth table, in which a
proposition is evaluated by computing recursively the truth values of its subexpressions. For
example, the truth table corresponding to the proposition Py = (P = P») is

Pl PQ Pl = PQ Pl = (Pl = PQ)

true | true true true
true | false false false
false | true true true
false | false true true

If we now consider the proposition P = (P; = (P2 = Py)), its truth table is

P1 PQ Pg = P1 P1 = (P2 = P1)

true | true true true
true | false true true
false | true false true

false | false true true

42 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

which shows that P evaluates to true for all possible truth assignments.

The truth table of a proposition containing m variables has 2™ rows. When m is large,
2™ is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true
is hard. This is actually a very famous problem in computer science.

A proposition P is said to be wvalid or a tautology if in the truth table for P all the entries
in the column corresponding to P have the value true. This means that P evaluates to true
for all 2™ truth assignments.

What’s the relationship between validity and provability? Remarkably, validity and prov-
ability are equivalent.

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable using the proof templates that we described
earlier, then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof using the proof templates.
This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1) but proving (2) can be quite complicated. In
this book, we content ourselves with soundness.

Proposition 1.5. (Soundness of the proof templates) If a proposition P is provable using
the proof templates described earlier, then it is valid (according to the truth-value semantics).

Sketch of Proof. 1t is enough to prove that if there is a deduction of a proposition P from a
set of premises I, then for every truth assignment for which all the propositions in I' evaluate
to true, then P evaluates to true. However, this is clear for the axioms, and every proof
template preserves that property.

Now, if P is provable, a proof of P has an empty set of premises, and so P evaluates to
true for all truth assignments, which means that P is valid. O]

Theorem 1.6. (Completeness) If a proposition P is valid (according to the truth-value
semantics), then P is provable using the proof templates.

Proofs of completeness for classical logic can be found in van Dalen [62] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 1.5) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterezample for P (or that P can be
falsified).

For example, no propositional symbol P; is provable because it is falsified by the truth
assignment P,; = false.

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 43

The soundness of our proof system also has the extremely important consequence that
L cannot be proven in this system, which means that contradictory statements cannot be
derived. This is by no means obvious at first sight, but reassuring.

Note that completeness amounts to the fact that every unprovable proposition has a coun-
terexample. Also, in order to show that a proposition is provable, it suffices to compute its
truth table and check that the proposition is valid. This may still be a lot of work, but it is
a more “mechanical” process than attempting to find a proof. For example, here is a truth
table showing that (P = Py) = (-P; V Py) is valid.

P, P, [Pi=Py| -P,VP,y | (P, =Py =(-P;VPy)
true | true true true true
true | false false false true
false | true true true true
false | false true true true

1.10 Proof Templates for the Quantifiers

As we mentioned in Section 1.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(z) = needs-to-drink(z).

In mathematics, we usually prove universal statements, that is statements that hold for all
possible “objects,” or existential statements, that is, statements asserting the existence of
some object satisfying a given property. As we saw earlier, we assert that every human needs
to drink by writing the proposition

Vz(human(z) = needs-to-drink(z)).

The symbol V is called a universal quantifier. Observe that once the quantifier V (pronounced
“for all” or “for every”) is applied to the variable z, the variable = becomes a placeholder,
and replacing x by y or any other variable does not change anything. We say that z is a
bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink, we write

Jz(human(z) = needs-to-drink(x)).

The symbol 3 is called an existential quantifier. Again, once the quantifier 3 (pronounced
“there exists”) is applied to the variable x, the variable x becomes a placeholder. However,
the intended meaning of the second proposition is very different and weaker than the first.
It only asserts the existence of some object satisfying the statement

human(z) = needs-to-drink(z).

44 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Statements may contain variables that are not bound by quantifiers. For example, in
Jdz parent(z, y),

the variable z is bound but the variable y is not. Here, the intended meaning of parent(x, y)
is that z is a parent of y, and the intended meaning of 3z parent(z,y) is that any given y
has some parent z. Variables that are not bound are called free. The proposition

Vy3x parent(z, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

Now, in addition to propositions of the form PAQ,PV Q,P = Q,—~P,P = (), we add
two new kinds of propositions (also called formulae):

1. Universal formulae, which are formulae of the form Va P, where P is any formula and
x is any variable.

2. FEmistential formulae, which are formulae of the form dz P, where P is any formula and
x is any variable.

The intuitive meaning of the statement Va P is that P holds for all possible objects z,
and the intuitive meaning of the statement Jx P is that P holds for some object x. Thus,
we see that it would be useful to use symbols to denote various objects. For example, if
we want to assert some facts about the “parent” predicate, we may want to introduce some
constant symbols (for short, constants) such as “Jean,” “Mia,” and so on and write

parent(Jean, Mia)

to assert that Jean is a parent of Mia. Often, we also have to use function symbols (or
operators, constructors), for instance, to write a statement about numbers: +, %, and so on.
Using constant symbols, function symbols, and variables, we can form terms, such as

(xxx4+1)*(3xy+2).

In addition to function symbols, we also use predicate symbols, which are names for atomic
properties. We have already seen several examples of predicate symbols: “odd,” “even,”
“prime,” “human,” “parent.” So in general, when we try to prove properties of certain
classes of objects (people, numbers, strings, graphs, and so on), we assume that we have a
certain alphabet consisting of constant symbols, function symbols, and predicate symbols.
By using these symbols and an infinite supply of variables, we can form terms and predicate
terms. We say that we have a (logical) language. Using this language, we can write compound
statements. A detailed presentation of this approach is given in Chapter 2. Here, we follow
a more informal and more intuitive approach. We use the notion of term as a synonym for

PR A4

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 45

some specific object. Terms are often denoted by the Greek letter 7, sometimes subscripted.
A variable qualifies as a term.

When working with propositions possibly containing quantifiers, it is customary to use the
term formula instead of proposition. The term proposition is typically reserved to formulae
without quantifiers.

Unlike the proof templates for =,V , A, and L, which are rather straightforward, the
proof templates for quantifiers are more subtle due to the presence of variables (occurring in
terms and predicates), and the fact that it is sometimes necessary to make substitutions.

Given a formula P containing some free variable z and given a term 7, the result of
replacing all occurrences of x by 7 in P is called a substitution and is denoted P[r/z] (and
pronounced “the result of substituting 7 for x in P”). Substitutions can be defined rigorously
by recursion. Let us simply give an example. Consider the predicate P(z) = odd(2z + 1).
If we substitute the term 7 = (y + 1) for x in P(z), we obtain

Plr/x] = odd(2(y + 1)* + 1).

We have to be careful to forbid inferences that would yield “wrong” results, and for
this, we have to be very precise about the way we use free variables. More specifically, we
have to exercise care when we make substitutions of terms for variables in propositions. If
P(ty,ts,...,t,) is a statement containing the free variables t¢q,...,t, and if 74,...,7, are
terms, we can form the new statement

P[Tl/tl,...,’Tn/tn]

obtained by substituting the term 7; for all free occurrences of the variable t;, fori =1,..., n.
By the way, we denote terms by the Greek letter 7 because we use the letter ¢ for a variable,
and using ¢t for both variables and terms would be confusing; sorry.

However, if P(tq,ts,...,t,) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term 7; may become quantified when 7; is substituted
for t;. For example, consider

Vedy P(x,y, 2)

which contains the free variable z, and substitute the term x + y for z; we get
VaIy Pz, y,x +y).

We see that the variables x and y occurring in the term x + y become bound variables after
substitution. We say that there is a “capture” of variables.

This is not what we intended to happen. To fix this problem, we recall that bound
variables are really placeholders so they can be renamed without changing anything. There-
fore, we can rename the bound variables x and y in Vz3y P(x,y, z) to u and v, getting the
statement Yu3v P(u, v, z) and now, the result of the substitution is

Vudv P(u,v,x + y),

46 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

where and y are free. Again, all this needs to be explained very carefully, but in this
chapter, we will content ourselves with an informal treatment.
We begin with the proof templates for the universal quantifier.

Proof Template 1.14. (Forall-Intro)

Let T be a list of premises and y be a variable that does not occur free in any premise in I’
or in Yz P. If we have a deduction of the formula Ply/x] from ', then we obtain a deduction
of VP from T

Proof Template 1.15. (Forall-Elim)

Let T" be a list of premises and T be a term representing some specific object. If we have a
deduction of VxP from T, then we obtain a deduction of P[r /x| from T.

The Proof Template 1.14 may look a little strange, but the idea behind it is actually very
simple: because y is totally unconstrained, if P[y/x] (the result of replacing all occurrences
of by y in P) is provable (from I'), then intuitively, P[y/x] holds for any arbitrary object,
and so, the statement Vz P should also be provable (from I").

Note that we can’t deduce Va P from Ply/z| because the deduction has the single premise
Ply/z], and y occurs in Ply/z] (unless x does not occur in P).

The meaning of Proof Template 1.15 is that if V2P is provable (from I'), then P holds
for all objects and so, in particular for the object denoted by the term 7; that is, P[r/z]
should be provable (from T).

Here are the proof templates for the existential quantifier.

Proof Template 1.16. (Exist-Intro)

Let T" be a list of premises and T be a term representing some specific object. If we have a
deduction of P|t/x] from T, then we obtain a deduction of IxP(x) from T.

Proof Template 1.17. (Exist-Elim)

Let T and A be a two lists of premises. Let C' and dx P be formulae, and y be a variable that
does not occur free in any premise in A, in Ix P, or in C'. To obtain a deduction of C' from
' A, proceed as follows:

1. Make a deduction of AxP from T.

2. Add one or more occurrences of Ply/x] as premises to A and find a deduction of C

from Ply/x| and A.
3. Delete the premise Ply/z].

If P[r/x] is provable (from I'), this means that the object denoted by 7 satisfies P, so
Jz P should be provable (this latter formula asserts the existence of some object satisfying
P, and 7 is such an object).

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 47

Proof Template 1.17 is reminiscent of the proof-by-cases principle (Proof template 1.11)
and is a little more tricky. It goes as follows. Suppose that we proved JzP (from T).
Moreover, suppose that for every possible case Ply/z| we were able to prove C' (from A).
Then, as we have “exhausted” all possible cases and as we know from the provability of dz P
that some case must hold, we can conclude that C' is provable (from I', A) without using
Ply/x] as a premise.

Like the proof-by-cases principle, Proof Template 1.17 is not very constructive. It allows
making a conclusion C' by considering alternatives without knowing which one actually
occurs.

Constructing proofs using the proof templates for the quantifiers can be quite tricky due
to the restrictions on variables. In practice, we always use “fresh” (brand new) variables
to avoid problems. Also, when we use Proof Template 1.14, we begin by saying “let y be
arbitrary,” then we prove Ply/z] (mentally substituting y for x), and we conclude with:
“since y is arbitrary, this proves VxP.” We proceed in a similar way when using Proof
Template 1.17, but this time we say “let y be arbitrary” in Step (2). When we use Proof
Template 1.15, we usually say: “since Vax P holds, it holds for all x, so in particular it holds
for 7, and thus P[r/z] holds.” Similarly, when using Proof Template 1.16, we say “Since
P[r/x] holds for a specific object 7, we can deduce that 3z P holds.”

Here is an example of a “wrong proof” in which the V-introduction rule is applied illegally,
and thus, yields a statement that is actually false (not provable). In the incorrect “proof”
below, P is an atomic predicate symbol taking two arguments (e.g., “parent”), and 0 is a
constant denoting zero:

P(u,0)”
= illegal step!
VtP(t,0)

Implication-Intro =

P(u,0) = VtP(t,0)
Forall-Intro

Vs(P(s,0) = VtP(t,0
(P(s,0) (t,0) Forall-Elim

P(0,0) = VtP(t,0)

The problem is that the variable u occurs free in the premise Plu/t,0] = P(u,0) and
therefore, the application of the V-introduction rule in the first step is illegal. However,
note that this premise is discharged in the second step, and so the application of the V-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
P(0,0) = VtP(t,0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P(0,0) holds does not imply that P(¢,0) holds for all .

Let us now give two examples of a proof using the proof templates for V and 4.

Example 1.23. For any natural number n, let odd(n) be the predicate that asserts that n
is odd, namely

odd(n) = 3Im((m € N) A (n =2m + 1)).

48 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

First, let us prove that
Va((a € N) = odd(2a + 1)).

By Proof Template 1.14, let « be a fresh variable; we need to prove
(x € N) = odd(2z + 1).
By Proof Template 1.2, assume z € N. If we consider the formula
(meN)A(2r+1=2m+1),
by substituting x for m, we get
(xeN)A(2x+1=22+1),
which is provable since x € N. By Proof Template 1.16, we obtain
Im(m € N) A (22 4+ 1 =2m + 1);

that is, odd(2z + 1) is provable. Using Proof Template 1.2, we delete the premise x € N,
and we have proven
(x € N) = odd(2z + 1).

This proof no longer has any premises, so we can safely conclude that
Va((a € N) = odd(2a + 1)).
Next, consider the term 7 = 7. By Proof Template 1.15, we obtain
(7€ N) = odd(15).

Since 7 € N, by modus ponens we deduce that 15 is odd.
Let us now consider the term 7 = (b+1)? with b € N. By Proof Template 1.15, we obtain

(b+1)? € N) = odd(2(b+1)* + 1).

But b € N implies that (b+1)? € N, so by modus ponens and Proof Template 1.2, we deduce
that
(b€ N) = odd(2(b+ 1)* + 1).

Example 1.24. Let us prove the formula Va(P A Q) = VP A VzQ.

First using Proof Template 1.2, we assume Vz(P A @) (two copies). The next step uses
a trick. Since variables are terms, if u is a fresh variable, then by Proof Template 1.15, we
deduce (P A Q)[u/x]. Now we use a property of substitutions which says that

(P AQ)u/x] = Plu/z] A Qu/x].

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 49

We can now use Proof Template 1.9 (twice) to deduce Plu/x] and Q[u/x]. But remember
that the premise is Yz (P A Q) (two copies), and since u is a fresh variable, it does not occur
in this premise, so we can safely apply Proof Template 1.14 and conclude Vx P, and similarly
Vx@Q. By Proof Template 1.8, we deduce VP A Vz(@Q from Vz(P A Q). Finally, by Proof
Template 1.2, we delete the premise V(P A @) and obtain our proof. The above proof has
the following tree representation.

Va(P A Q)™ Va(P A Q)™
Plu/z] ANQu/z] Plu/z] A Qu/x]
Plu/x] Qu/x]

Ve P V@)

VP AVzQ

V(P A Q) = YaP AVzQ

The reader should show that VaP A VzQ = V(P A @) is also provable.

However, in general, one can’t just replace V by 3 (or A by V) and still obtain provable
statements. For example, 3z P A 3xQ = Jx(P A Q) is not provable at all.

Here are some useful equivalences involving quantifiers. The first two are analogous to
the de Morgan laws for A and V.

Proposition 1.7. The following formulae are provable:

—VaxP = Jda—P
—JdxP =Vx-P
Ve(PAQ)=VzP AVzQ
dx(PV Q) =3zPVIzQ
Jx(P A Q)= 3xP A 3JzQ
Ve P VVzQ = V(P V Q).

The proof system that uses all the proof templates that we have defined proves formulae
of classical first-order logic.
One should also be careful that the order of the quantifiers is important. For example, a

formula of the form
VedyP

is generally not equivalent to the formula
JyVa P.

The second formula asserts the existence of some object y, such that P holds for all x. But
in the first formula, for every x, there is some y, such that P holds, but each y depends on
x and there may not be a single y that works for all x.

20 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Another amusing mistake involves negating a universal quantifier. The formula Vz—P is
not equivalent to =VaxP. Once, traveling from Philadelphia to New York, I heard a train
conductor say, “All doors will not open.” Actually, he meant “not all doors will open,” which
would give us a chance to get out!

Remark: We can illustrate, again, the fact that classical logic allows for nonconstructive

proofs by re-examining the example at the end of Section 1.8. There, we proved that if \/5\/5
is rational, then @ = v/2 and b = v/2 are both irrational numbers, such that a® is rational,

and if \/5\/5 is irrational, then a = \/5\/5 and b = v/2 are both irrational numbers, such that
a’ is rational. By Proof Template 1.16, we deduce that if \/5\/§ is rational, then there exist

some irrational numbers a, b so that a’ is rational, and if \/5\/5 is irrational, then there exist
some irrational numbers a, b so that a® is rational. In classical logic, as PV =P is provable,
by the proof-by-cases principle, we just proved that there exist some irrational numbers a
and b so that a® is rational.

However, this argument does not give us explicitly numbers a and b with the required
properties. It only tells us that such numbers must exist.

Now, it turns out that \/5\/5 is indeed irrational (this follows from the Gelfond-Schneider
theorem, a hard theorem in number theory). Furthermore, there are also simpler explicit
solutions, such as @ = /2 and b = log, 9, as the reader should check.

1.11 Sets and Set Operations

In this section, we review the definition of a set and basic set operations. This section takes
the “naive” point of view that a set is an unordered collection of objects, without duplicates,
the collection being regarded as a single object.

Given a set A, we write that some object a is an element of (belongs to) the set A as

a € A,
and that a is not an element of A (does not belong to A) as
a¢ A.

The symbol € is the set membership symbol.

A set can either be defined explicitly by listing its elements within curly braces (the
symbols { and }) or as a collection of objects satisfying a certain property. For example, the
set C consisting of the colors red, blue, green is given by

C' = {red, blue, green}.
Because the order of elements in a set is irrelevant, the set C'is also given by

C = {green, red, blue}.

1.11. SETS AND SET OPERATIONS 51

In fact, a moment of reflexion reveals that there are six ways of writing the set C.
If we denote by N the set of natural numbers

N =1{0,1,2,3,...},

then the set E of even integers can be defined in terms of the property even of being even
by
E ={n e N|even(n)}.

More generally, given some property P and some set X, we denote the set of all elements of
X that satisfy the property P by

{re X |P(x)} or {z|xeXAP(x)}

When are two sets A and B equal? The answer is given by the first proof template of
set theory, called the Extensionality Axiom.

Proof Template 1.18. (Extensionality Aziom)

Two sets A and B are equal iff they have exactly the same elements; that is, every element
of A is an element of B and conversely. This can be written more formally as

Ve(r € A=z € B)AVa(z € B= 1z € A).

There is a special set having no elements at all, the empty set, denoted . The empty
set is characterized by the property
Va(x ¢ 0).

Next, we define the notion of inclusion between sets.

Definition 1.5. Given any two sets, A and B, we say that A is a subset of B (or that A is
included in B), denoted A C B, iff every element of A is also an element of B, that is,

Vr(xr € A=z € B).

We say that A is a proper subset of B iff A C B and A # B. This implies that there is some
b€ B with b ¢ A. We usually write A C B.

For example, if A = {green, blue} and C' = {green, red, blue}, then
ACC.

Note that the empty set is a subset of every set.
Observe the important fact that equality of two sets can be expressed by

A=B iff ACB and B CA.

Proving that two sets are equal may be quite complicated if the definitions of these sets
are complex, and the above method is the safe one.

52 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

If a set A has a finite number of elements, then this number (a natural number) is called
the cardinality of the set and is denoted by |A| (sometimes by card(A)). Otherwise, the set
is said to be infinite. The cardinality of the empty set is 0.

Sets can be combined in various ways, just as numbers can be added, multiplied, etc.
However, operations on sets tend to mimic logical operations such as disjunction, conjunction,
and negation, rather than the arithmetical operations on numbers. The most basic operations
are union, intersection, and relative complement.

Definition 1.6. For any two sets A and B, the union of A and B is the set AU B defined
such that
re AUB iff (x € A)V (x € B).

This reads = is a member of AU B if either x belongs to A or x belongs to B (or both). We
also write
AUuB={z|x€ A or xe€ B}

The intersection of A and B is the set A N B defined such that
re ANB iff (x € A)A(x € B).

This reads x is a member of AN B if x belongs to A and x belongs to B. We also write
ANB={z|x€ A and =z € B}.

The relative complement (or set difference) of A and B is the set A — B defined such that
reA—-—B iff (xe€ A)A-(xeB).

This reads z is a member of A — B if x belongs to A and = does not belong to B. We also
write

A—-B={z|x€A and =z ¢ B}.
Example 1.25. For example, if A ={0,2,4,6} and B = {0, 1, 3,5}, then

AUB=1{0,1,2,3,4,5,6}
AN B ={0}
A— B =1{2,4,6}.

Two sets A, B are said to be disjoint if AN B = (). It is easy to see that if A and B are
two finite sets and if A and B are disjoint, then

|AU B| = |A| + |B].
In general, by writing

AUB=(ANB)U(A-B)U(B - A),

1.11. SETS AND SET OPERATIONS 93

if A and B are finite, it can be shown that
|JAUB| = |A|+ |B| - |AN B].

The situation in which we manipulate subsets of some fixed set X often arises, and it is
useful to introduce a special type of relative complement with respect to X. For any subset
A of X, the complement A of A in X is defined by

A=X - A,
which can also be expressed as
A={zc X |z ¢ A}

Venn diagrams provide a convenient way to illustrate set relationships and set operations.
Venn diagrams use circles and their areas, i.e. disks, to denote individual sets. Overlaps
between different disks to illustrate set relationships. Individual elements of the set, if
depicted, are represented by words, numbers, or symbols inside the circle. For example, the
sets C' = {green,red, blue} and A = {green, blue} are depicted as two disks, and the fact
that A C C'is depicted by the disk representing A nested inside the disk representing C'; see
Figure 1.1.

red

Figure 1.1: The set C' = {green, red, blue} is the larger disk, while the set A = {green, blue}
is the smaller disk. The fact that A C C' is illustrated by nesting A inside of C.

Venn diagrams can also be used to illustrate union, intersection, and relative complement.
Since sets A and B are represented by disks, if A and B have any elements in common, the
two disks must overlap to form a“figure eight.” The union AU B is the area of entire figure
eight, while the intersection A N B is “crescent” shaped area determined by the overlap of
the two disks. The relative complement A — B is the area given by removing the crescent-
shaped A N B from the disk which depicts A, while the relative complement B — A is the

o4 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

AUB

Figure 1.2: Let A ={0,2,4,6} and B = {0,1,3,5}. The union A U B is the entire colored
area, the intersection A N B is the light purple crescent, the relative complement A — B is
the bright blue area, while the relative complement B — A is the pink area.

area given by removing the crescent-shaped AN B from the disk which depicts B. All of this
is illustrated in Figure 1.2 for the sets A = {0,2,4,6} and B ={0,1,3,5}.

Note that if the sets A and B are disjoint, the union A U B is represented by the area
of two distinct disks. Technically, such a diagram is called an Euler diagram since a Venn
diagram of AU B must always contain a region or area (in this case empty) which represents
AN B. But for ease of exposition, we will refer to all disk diagram representations of sets
and set operations as Venn diagrams. Regardless of whether A and B are distinct, we can
readily depict the fact that

AUB=(ANB)U(A—B)U(B—A)

via a Venn diagram as seen in Figure 1.3.

AUB

y

ANB

Figure 1.3: The Venn diagram representation of the identity AUB = (AN B)U(A— B)U
(B —A).

We also can use Venn diagrams to depict A, where A C X. Since the disk for A is nested

1.11. SETS AND SET OPERATIONS 95

inside the disk for X, we represent A as the area inside the disk for X, which is outside of
the disk representing A; see Figure 1.4.

&) ®

Figure 1.4: Let X be the blue disk and A be the rgd disk. Note that A € X. Then A4 is
blue area outside of the red disk. Clearly, X = AU A.

Venn diagrams can also be used to represent three or more sets, where each set is rep-
resented by its own disk. In Figure 1.5, we show a Venn diagram for three sets A, B, and
C. However, for n sets such a diagram must contain 2" — 1 regions representing all possible
set intersections. Hence, when n > 5, Venn diagrams become unwieldy. We leave it as an
exercise for the reader to use Venn diagrams to illustrate the identities of Proposition 1.8.

o

ANBNC

Figure 1.5: A Venn diagram representation for sets A, B, and C, where A is a blue disk, B
is a pink disk, and C is a peach disk. The middle “triangular” region formed by the overlap
of all three disks represents AN BN C.

Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form

{a,b,c} = {a,b} U{c}.

Remark: We can systematically construct bigger and bigger sets by the following method:
given any set A, let
At =AU {A}.

26 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

If we start from the empty set, we obtain the sets

0, {0}, {0,{0}}, {0,{0},{0,{0}}}, etc.

These sets can be used to define the natural numbers, and the + operation corresponds to
the successor function on the natural numbers (i.e., n+— n + 1).

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists
some of the most important properties of union, intersection, and complementation. Some
of these properties are versions of Proposition 1.2 for subsets.

Proposition 1.8. The following equations hold for all sets A, B,C':

Aud=A
ANP=10
AUA=A
ANA=A
AUB=BUA
ANB=BnNA.

The last two assert the commutativity of U and N. We have distributivity of N over U and
of U over N:

We have associativity of N and U:

An(BNnC)=AnNB)NC
AUu(BUuC)=(AuB)UC.

Proof. We use Proposition 1.2. Let us prove that AN (BUC) = (ANB)U(ANC), leaving
the proof of the other equations as an exercise. We prove the two inclusions AN (BUC) C
(ANB)U(ANC)and (ANB)U(ANC)C AN(BUCQO).
Assume that x € AN (BUC). This means that x € A and x € B U (] that is
(xe A)AN((x € B)V (z € O)).
Using the distributivity of A over V, we obtain
(reAN(xeB)V((xeAAN(xel)).

But the above says that x € (AN B) U (AN C), which proves our first inclusion.

1.11. SETS AND SET OPERATIONS 57

Conversely, assume that © € (AN B) U (AN C). This means that x € (AN B) or
x € (AN C); that is

(xe A)N(xeB))V(xe A A (xel)).
Using the distributivity of A over V (in the other direction), we obtain
(x e A)A((x € B)V (z € C)),

which says that x € AN (B U (), and proves our second inclusion.
Note that we could have avoided two arguments by proving that z € AN (B U C) iff
(ANB)U(ANC), using the fact that the distributivity of A over V is a logical equivalence. [

We also have the following version of Proposition 1.1 for subsets.

Proposition 1.9. For every set X and any two subsets A, B of X, the following identities
hold:

The last two are de Morgan laws.

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets.

Definition 1.7. Given any set A, there is a set P(A), also denoted 24, called the power set
of A, whose members are exactly the subsets of A; that is

X eP(A) iff X C A
For example, if A = {a,b,c}, then

P(A) ={0,{a}, {0}, {c},{a, 0}, {a, c}, {b, ¢} {a, b, c}},

a set containing eight elements. Note that the empty set and A itself are always members

of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2" elements. For this
reason, many people, including us, prefer the notation 24 for the power set of A.

It is possible to define the union of possibly infinitely many sets. Given any set X (think
of X as a set of sets), there is a set | J X defined so that

rel|JX iff IB(BeXAz€eB)

o8 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

This says that | J X consists of all elements that belong to some member of X.
If we take X = {A, B}, where A and B are two sets, we see that

Observe that
Uty =4, (AL A} = A4 U--UA,,

and in particular, (J0 = 0.
We can also define infinite intersections. For every nonempty set X there is a set [X
defined by

re()X iff VB(BEX=uxz¢€B).

Observe that
(WA, B}=ANB, [{Ai...,A}=AN-NA,

However, (|0 is undefined. Indeed, (|® would have to be the set of all sets, since the
condition
VB(B € =z € B)

holds trivially for all B (as the empty set has no members). However, there is no such set
because its existence would lead to a paradox! This point is discussed is Chapter 2. Let us
simply say that dealing with big infinite sets is tricky.

Thorough and yet accessible presentations of set theory can be found in Halmos [30] and
Enderton [13].

We close this chapter with a quick discussion of induction on the natural numbers.

1.12 Induction and the Well-Ordering Principle on the
Natural Numbers

Recall that the set of natural numbers is the set N given by
N=1{0,1,2,3,...}.

In this chapter, we do not attempt to define the natural numbers from other concepts, such
as sets. We assume that they are “God given.” One of our main goals is to prove properties
of the natural numbers. For this, certain subsets called inductive play a crucial role.

Definition 1.8. We say that a subset S of N is inductive iff
(1) 0e S

(2) For every n € S, we have n +1 € S.

1.12. INDUCTION AND THE WELL-ORDERING PRINCIPLE 99

One of the most important proof principles for the natural numbers is the following:

Proof Template 1.19. (Induction Principle for N)
Every inductive subset S of N is equal to N itself; that is S = N.

Let us give one example illustrating Proof Template 1.19. Many more examples are given
in Chapter 12.3.

Example 1.26. We prove that for every real number a # 1 and every natural number n,
we have

a"tt —1
1+a+...+an:—
a—1
This can also be written as
N AR |
3entrol 2
1=0

with the convention that a® = 1, even if a = 0.

Proof. Let S be the set of natural numbers n for which the identity (%) holds, and let us
prove that S is inductive.

First, we need to prove that 0 € S. The left-hand side becomes a” = 1, and the right-
hand side is (a — 1)/(a — 1), which is equal to 1 since we assume that a # 1. Therefore, (%)
holds for n = 0; that is, 0 € S.

Next, assume that n € S (this is called the induction hypothesis). We need to prove that

n+ 1€ 5S. Observe that
n+1 n

E a' = E a' +a".
i=0 i=0

Now, since we assumed that n € S, we have

an—l—l -1

n

7

a' = ———
Z a—1 "
1=0

and we deduce that

n+1 n
E az — § az =+ an+1
i=0 i=0
n+1
= a—l + an+1
a—1
an+1 -1+ CLn+2 _ anJrl
a—1
an+2 -1
a—1

This proves that n + 1 € S. Therefore, S is inductive, and so S = N. O]

60 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

We show how to rephrase this induction principle a little more conveniently using the
notion of function in Chapter 12.3.

Another important property of N is the so-called well-ordering principle. This principle
turns out to be equivalent to the induction principle for N. In this chapter, we accept the
well-ordering principle without proof.

Proof Template 1.20. (Well-Ordering Principle for N)
FEvery nonempty subset of N has a smallest element.

Proof Template 1.20 can be used to prove properties of N by contradiction. For example,
consider the property that every natural number n is either even or odd.

Proof. For the sake of contradiction (here, we use the proof-by-contradiction principle),
assume that our statement does not hold. If so, the subset S of natural numbers n for
which n is neither even nor odd is nonempty. By the well-ordering principle, the set S has
a smallest element, say m.

If m = 0, then 0 would be neither even nor odd, a contradiction since 0 is even. Therefore,
m > 0. But then, m — 1 ¢ S, since m is the smallest element of S. This means that m — 1
is either even or odd. But if m — 1 is even, then m — 1 = 2k for some k, so m = 2k + 1 is
odd, and if m — 1 is odd, then m — 1 = 2k + 1 for some k, so m = 2(k + 1) is even. We just
proved that m is either even or odd, contradicting the fact that m € S. Therefore, S must
be empty and we proved the desired result. O

We conclude this section with one more example showing the usefulness of the well-
ordering principle.

Example 1.27. Suppose we have a property P(n) of the natural numbers such that P(n)
holds for at least some n, and that for every n such that P(n) holds and n > 100, then there
is some m < n such that P(m) holds. We claim that there is some m < 100 such that P(m)
holds.

Proof. Let S be the set of natural numbers n such that P(n) holds. By hypothesis, there
is some n such that P(n) holds, so S is nonempty. By the well-ordering principle, the set
S has a smallest element, say m. For the sake of contradiction, assume that m > 100.
Then since P(m) holds and m > 100, by the hypothesis there is some m’ < m such that
P(m') holds, contradicting the fact that m is the smallest element of S. Therefore, by the
proof-by-contradiction principle, we conclude that m < 100, as claimed. O

@ Beware that the well-ordering principle is false for Z because Z does not have a smallest
element.

1.13.

SUMMARY 61

1.13 Summary

The main goal of this chapter is to describe how to construct proofs in terms of proof
templates. A brief and informal introduction to sets and set operations is also provided.

We describe the syntax of propositions.
We define the proof templates for implication.

We show that deductions proceed from assumptions (or premises) according to proof
templates.

We introduce falsity | and negation =P as an abbreviation for P = 1. We describe
the proof templates for conjunction, disjunction, and negation.

We show that one of the rules for negation is the proof-by-contradiction rule (also
known as RAA). It plays a special role, in the sense that it allows for the construction
of indirect proofs.

We present the proof-by-contrapositive rule.
We present the de Morgan laws as well as some basic properties of V and A.
We give some examples of proofs of “real” statements.

We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, such that a’ is rational.

We explain the truth-value semantics of propositional logic.

We define the truth tables for the boolean functions associated with the logical con-
nectives (and, or, not, implication, equivalence).

We define the notion of validity and tautology.
We discuss soundness (or consistency) and completeness.
We state the soundness and completeness theorems for propositional classical logic.

We explain how to use counterexamples to prove that certain propositions are not
provable.

We add first-order quantifiers (“for all” V and “there exists” 3) to the language of
propositional logic and define first-order logic.

We describe free and bound variables.

We describe proof templates for the quantifiers.

62

CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

We prove some “de Morgan”-type rules for the quantified formulae.
We introduce sets and explain when two sets are equal.
We define the notion of subset.

We define some basic operations on sets: the union AU B, intersection AN B, and
relative complement A — B.

We define the complement of a subset of a given set.

We prove some basic properties of union, intersection and complementation, including
the de Morgan laws.

We define the power set of a set.
We define inductive subsets of N and state the induction principle for N.

We state the well-ordering principle for N.

1.14 Problems

Problem 1.1. Give a proof of the proposition (P = Q) = ((P = (@ = R)) = (P = R)).

Problem 1.2. (a) Prove the “de Morgan” laws:

ﬁ(P/\Q)EﬁP\/—'Q

(b) Prove the propositions (P A =Q) = —~(P = @) and (P = Q) = (P A Q).

Problem 1.3. (a) Prove the equivalences

PVP=P
PAP=P
PvQ=QVvVP
PANQ=QANP.

(b) Prove the equivalences

1.14. PROBLEMS 63

Problem 1.4. Prove the propositions

P=(Q=(PAQ))
(P=Q)= ((P=-Q)=—P)
(P=R) = (Q=R) = ((PVQ)=R)).

Problem 1.5. Prove the following equivalences:

PA(P=Q) = PAQ

QN (P=Q) = @
(P=(QAR) = ((P=Q)A(P=R)).

Problem 1.6. Prove the propositions

(P=Q)=—(PVQ)
(=P = P).

Problem 1.7. Prove the proposition =—(P V = P).
Problem 1.8. Prove the propositions
(PV-P)=(-—-P=P) and (-—P= P)= (PV-P).
Problem 1.9. Prove the propositions
(P=Q)=—-—(-PVQ) and (-P=Q)=——(PVQ).
Problem 1.10. (a) Prove the distributivity of A over V and of V over A:
PAQVR)=(PANQ)V(PAR)
PV(QAR)=(PVQ)AN(PVR).
(b) Prove the associativity of A and V:
PAQAR)=(PAQ)AR
PVv(QVR)=(PVQ)VR.

Problem 1.11. (a) Let X = {X; | 1 < i < n} be a finite family of sets. Prove that if
X1 C X, for all 4, with 1 <47 <n —1, then

ﬂX:Xn.

Prove that if X; C X;,; for all 7, with 1 <7 <mn — 1, then

UX:Xn.

(b) Recall that N, = N—{0} = {1,2,3,...,n,...}. Give an example of an infinite family
of sets, X = {X; | i € N} }, such that

64 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

1. X1 C X, foralli>1.

2. X, is infinite for every ¢ > 1.

3. ()X has a single element.

(c) Give an example of an infinite family of sets, X = {X, | i € N}, such that
1. X;11 C X, foralli>1.

2. X; is infinite for every ¢ > 1.

3. VX =0.

Problem 1.12. An integer, n € Z, is divisible by 3 iff n = 3k, for some k € Z. Thus (by
the division theorem), an integer, n € Z, is not divisible by 3 iff it is of the form n = 3k + 1
or n = 3k + 2, for some k € Z (you don’t have to prove this).

Prove that for any integer, n € Z, if n? is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k + 1 or n = 3k + 2, then so is n? (for
a different k).

Problem 1.13. Use Problem 1.12 to prove that v/3 is irrational, that is, v/3 can’t be written
as V3 = p/q, with p,q € Z and q # 0.

Problem 1.14. Prove that b = log, 9 is irrational. Then prove that a = /2 and b = log, 9
are two irrational numbers such that a® is rational.

Chapter 2

Mathematical Reasoning And Logic,
A Deeper View

2.1 Introduction

This chapter is a more advanced and more formal version of Chapter 1. The reader should
review Chapter 1 before reading this chapter which relies rather heavily on it.

As in Chapter 1 , the goal of this chapter is to provide an answer to the question, “What
is a proof?” We do so by formalizing the basic rules of reasoning that we use, most of the
time subconsciously, in a certain kind of formalism known as a natural deduction system. We
give a (very) quick introduction to mathematical logic, with a very deliberate proof-theoretic
bent, that is, neglecting almost completely all semantic notions, except at a very intuitive
level. We still feel that this approach is fruitful because the mechanical and rules-of-the-
game flavor of proof systems is much more easily grasped than semantic concepts. In this
approach, we follow Peter Andrews’ motto [1]:

“To truth through proof.”

We present various natural deduction systems due to Prawitz and Gentzen (in more
modern notation), both in their intuitionistic and classical version. The adoption of natural
deduction systems as proof systems makes it easy to question the validity of some of the
inference rules, such as the principle of proof by contradiction. In brief, we try to explain to
our readers the difference between constructive and classical (i.e., not necessarily construc-
tive) proofs. In this respect, we plant the seed that there is a deep relationship between
constructive proofs and the notion of computation (the “Curry—Howard isomorphism” or
“formulae-as-types principle,” see Section 2.13 and Howard [34]).

2.2 Logical Connectives and Propositions

In this section we review some basic proof principles and attempt to clarify, at least infor-
mally, what constitutes a mathematical proof.

65

66 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely and we would have to set up a proof system
in terms of axioms and proof rules (also called inference rules). We do not go into this
as this would take too much time. Instead, we content ourselves with an intuitive idea of
what a statement is and focus on stating as precisely as possible the rules of logic that
are used in constructing proofs. Readers who really want to see a thorough (and rigorous)
introduction to logic are referred to Gallier [21], van Dalen [62], or Huth and Ryan [35], a nice
text with a computer science flavor. A beautiful exposition of logic (from a proof-theoretic
point of view) is also given in Troelstra and Schwichtenberg [61], but at a more advanced
level. Frank Pfenning has also written an excellent and more extensive introduction to
constructive logic. This is available on the web at http://www.andrew.cmu.edu/course/15-
317/handouts/logic.pdf.

We also highly recommend the beautifully written little book by Timothy Gowers (Fields
Medalist, 1998) [28] which, among other things, discusses the notion of proof in mathematics
(as well as the necessity of formalizing proofs without going overboard).

In mathematics and computer science, we prove statements. Recall that statements
may be atomic or compound, that is, built up from simpler statements using logical connec-
tives, such as implication (if-then), conjunction (and), disjunction (or), negation (not), and
(existential or universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”
2. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example

1. human(x): “x is a human.”
2. needs-to-drink(z): “x needs to drink.”
An example of a compound statement is
human(z) = needs-to-drink(z).

In the above statement, = is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

Vz(human(z) = needs-to-drink(z));

this is read: “For every x, if x is a human, then z needs to drink.”
If we want to assert that some human needs to drink we write

Jz(human(z) = needs-to-drink(z));

2.2. LOGICAL CONNECTIVES AND PROPOSITIONS 67

this is read: “There is some x such that if x is a human, then x needs to drink.”

We often denote statements (also called propositions or (logical) formulae) using letters
such as A, B, P,@Q, and so on, typically upper-case letters (but sometimes Greek letters ¢,
¥, ete.).

Recall from Section 1.2 that compound statements are defined as follows. If P and () are
statements, then

1. the conjunction of P and @ is denoted P A @) (pronounced P and @),
2. the disjunction of P and @ is denoted PV @ (pronounced P or ()),

3. the implication of P and @ is denoted by P = @ (pronounced if P then @, or P
implies Q).

Instead of using the symbol =, some authors use the symbol — and write an implication
as P —). We do not like to use this notation because the symbol — is already used in
the notation for functions (f: A — B). The symbol D is sometimes used instead of =. We
mostly use the symbol =.

We also have the atomic statement L (falsity), think of it as the statement that is false
no matter what; and the atomic statement T (¢ruth), think of it as the statement that is
always true.

The constant L is also called falsum or absurdum. It is a formalization of the notion of
absurdity inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation =P of P (pronounced not P) as P = 1. Thus, =P (sometimes denoted
~ P) is just a shorthand for P =_1. We write =P = (P =1).

The intuitive idea is that =P = (P = 1) is true if and only if P is false. Actually, because
we don’t know what truth is, it is “safer” (and more constructive) to say that =P is provable
if and only if for every proof of P we can derive a contradiction (namely, L is provable). In
particular, P should not be provable. For example, =(Q A —=Q) is provable (as we show later,
because any proof of @ A =) yields a proof of 1). However, the fact that a proposition P
is not provable does not imply that =P is provable. There are plenty of propositions such
that both P and =P are not provable, such as () = R, where () and R are two unrelated
propositions (with no common symbols).

Whenever necessary to avoid ambiguities, we add matching parentheses: (PAQ), (PVQ),
(P = Q). For example, PVQAR is ambiguous; it means either (PV(QAR)) or ((PVQ)AR).

Another important logical operator is equivalence.

If P and @) are statements, then

5. the equivalence of P and @ is denoted P = @ (or P <= (Q); it is an abbreviation for
(P = Q)N (Q = P). We often say “P if and only if Q),” or even “P iff Q" for P = Q.

68 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

To prove a logical equivalence P = (), we have to prove both implications P =) and
Q= P.

As discussed in Sections 1.2 and 1.3, the meaning of the logical connectives (A, V, =, =, =)
is intuitively clear. This is certainly the case for and (A), since a conjunction P A @ is true
if and only if both P and @) are true (if we are not sure what “true” means, replace it by
the word “provable”). However, for or (V), do we mean inclusive or or exclusive or? In the
first case, P V @ is true if both P and () are true, but in the second case, P V @ is false
if both P and @ are true (again, in doubt change “true” to “provable”). We always mean
inclusive or. The situation is worse for implication (=). When do we consider that P = @
is true (provable)? The answer is that it depends on the rules! The “classical” answer is
that P = @ is false (not provable) if and only if P is true and @ is false.

Of course, there are problems with the above paragraph. What does truth have to do
with all this? What do we mean when we say, “P is true”? What is the relationship between
truth and provability?

These are actually deep (and tricky) questions whose answers are not so obvious. One
of the major roles of logic is to clarify the notion of truth and its relationship to provability.
We avoid these fundamental issues by dealing exclusively with the notion of proof. So, the
big question is: what is a proof?

An alternative view (that of intuitionistic logic) of the meaning of implication is that
any proof of P = () can be used to construct a proof of) given any proof of P. As a
consequence of this interpretation, we show later that if =P is provable, then P = @ is also
provable (instantly) whether or not) is provable. In such a situation, we often say that
P = Q is vacuously provable.

2.3 Proof Rules, Deductions and Proof Trees for Im-
plication

During the process of constructing a proof, it may be necessary to introduce a list of hy-
potheses, also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises. As we show shortly, this
amounts to proving implications of the form

(Pl/\Pz/\"'/\Pn):>Q.

However, there are certain advantages in defining the notion of proof (or deduction) of a
proposition from a set of premises. Sets of premises are usually denoted using upper-case
Greek letters such as I" or A.

Roughly speaking, a deduction of a proposition) from a multiset of premises I' is a
finite labeled tree whose root is labeled with @ (the conclusion), whose leaves are labeled
with premises from I' (possibly with multiple occurrences), and such that every interior node
corresponds to a given set of proof rules (or inference rules). In Chapter 1, proof rules were
called proof templates. Certain simple deduction trees are declared as obvious proofs, also

2.3. PROOF RULES, DEDUCTIONS AND PROOF TREES FOR IMPLICATION 69

B |
-

Figure 2.1: David Hilbert, 1862-1943 (left and middle), Gerhard Gentzen, 1909-1945 (middle
right), and Dag Prawitz, 1936— (right)

called azioms. The process of managing the list of premises during a proof is a bit technical
and can be achieved in various ways. We will present a method due to Prawitz and another
method due to Gentzen.

There are many kinds of proof systems: Hilbert-style systems, natural-deduction systems,
Gentzen sequents systems, and so on. We describe a so-called natural deduction system
invented by G. Gentzen in the early 1930s (and thoroughly investigated by D. Prawitz in
the mid 1960s).

The major advantage of this system is that it captures quite nicely the “natural” rules of
reasoning that one uses when proving mathematical statements. This does not mean that it
is easy to find proofs in such a system or that this system is indeed very intuitive. We begin
with the inference rules for implication and first consider the following question.

How do we proceed to prove an implication, A = B? The proof rule corresponds to
Proof Template 1.2 (Implication—Intro) and the reader may want to first review the examples
discussed in Section 1.3. The rule, called =-intro, is: assume that A has already been proven
and then prove B, making as many uses of A as needed.

An important point is that a proof should not depend on any “open” assumptions
(premises), and to address this problem we introduce a mechanism of “discharging” or “clos-
ing” premises, as we discussed in Section 1.3.

What this means is that certain rules of our logic are required to discard (the usual
terminology is “discharge”) certain occurrences of premises so that the resulting proof does
not depend on these premises.

Technically, there are various ways of implementing the discharging mechanism but they
all involve some form of tagging (with a “new” variable). For example, the rule formalizing
the process that we have just described to prove an implication, A = B, known as =--
introduction, uses a tagging mechanism described precisely in Definition 2.1.

Now the rule that we have just described is not sufficient to prove certain propositions
that should be considered provable under the “standard” intuitive meaning of implication.
For example, after a moment of thought, I think most people would want the proposition
P = ((P = Q) = Q) to be provable. If we follow the procedure that we have advocated,
we assume both P and P = @ and we try to prove (). For this, we need a new rule, namely:

If P and P = @ are both provable, then @ is provable.

70 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

The above rule is known as the =-elimination rule (or modus ponens) and it is formalized
in tree-form in Definition 2.1. It corresponds to Proof Template 1.3.

We now make the above rules precise and for this, we represent proofs and deductions
as certain kinds of trees and view the logical rules (inference rules) as tree-building rules.
In the definition below, the expression I', P stands for the multiset obtained by adding one

more occurrence of P to I'. More precisely, the expression I', P is an abbreviation for the
k

multiset I, P,..., P, with k > 1. So P may already belong to I'. Similarly, if I' and A are
two multisets of propositions, then I', A denotes the union of I' and A as a multiset, which
means that if P occurs k; times in I' and P occurs ky times in A, then P occurs ky + ks
times in I'; A (ky, ko € N).
A picture such as

A

D

P

represents a deduction tree D whose root is labeled with P and whose leaves are labeled with
propositions from the multiset A (a set possibly with multiple occurrences of its members).
Some of the propositions in A may be tagged by variables. The list of untagged propositions
in A is the list of premises of the deduction tree. We often use an abbreviated version of the
above notation where we omit the deduction D, and simply write

A
P.

For example, in the deduction tree below (where all rules that implication eliminations
rules),

P=qQ P
P= (R=Y9) P Q=R Q

R=S5 R
S

no leaf is tagged, so the premises form the multiset
A={P=(R=15),P,Q= R,P=Q,P},

with two occurrences of P, and the conclusion is S.

As we saw in our earlier example, certain inferences rules have the effect that some of
the original premises may be discarded; the traditional jargon is that some premises may
be discharged (or closed). This is the case for the inference rule whose conclusion is an
implication. When one or several occurrences of some proposition P are discharged by an
inference rule, these occurrences (which label some leaves) are tagged with some new variable
not already appearing in the deduction tree. If x is a new tag, the tagged occurrences of P

2.3. PROOF RULES, DEDUCTIONS AND PROOF TREES FOR IMPLICATION 71

are denoted P* and we indicate the fact that premises were discharged by that inference by
writing immediately to the right of the inference bar. For example,

Pr.Q
Q@
P=qQ

is a deduction tree in which the premise P is discharged by the inference rule. This deduction
tree only has) as a premise, inasmuch as P is discharged.

What is the meaning of the horizontal bars? Actually, nothing really. Here, we are victims
of an old habit in logic. Observe that there is always a single proposition immediately under
a bar but there may be several propositions immediately above a bar. The intended meaning
of the bar is that the proposition below it is obtained as the result of applying an inference
rule to the propositions above it. For example, in

Q=R @
R

the proposition R is the result of applying the =-elimination rule (see Definition 2.1 below)
to the two premises () = R and (). Thus, the use of the bar is just a convention used by
logicians going back at least to the 1900s. Removing the bar everywhere would not change
anything in our trees, except perhaps reduce their readability. Most logic books draw proof
trees using bars to indicate inferences. Therefore, we also use bars in depicting our proof
trees.

Because propositions do not arise from the vacuum but instead are built up from a set
of atomic propositions using logical connectives (here, =), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols, PS = {P, Py, P3,...}.
So for example, P; = P, and P; = (P, = P;) are propositions. Typically, we use upper-
case letters such as P,Q, R, S, A, B,C, and so on, to denote arbitrary propositions formed
using atoms from PS.

Definition 2.1. The axioms, inference rules, and deduction trees for implicational logic are
defined as follows.

Axioms.
(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with
set of premises { P}.

(ii) The tree
P

Y

P

is a deduction tree for the proposition P, with multiset set of premises I'; P.

The above is a concise way of denoting a two-node tree with its leaf labeled with the
multiset consisting of the proposition P and the propositions in I', each of these propositions

72 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

(including P) having possibly multiple occurrences but at least one, and whose root is labeled
with P. A more explicit form is

k‘l ki kn
'\ o\

7 N
Plu"'7P17”'7PZ'7”'7PZ'7“'7PTL7”'7P7L

where ki,...,k, > 1 and n > 1. This axiom says that we always have a deduction of P,
from any set of premises including P;. They correspond to the Proof Template 1.1 (Trivial
Deduction).

The =-introduction rule.
If D is a deduction tree for () from the premises in I' and one or more occurrences of the
proposition P, then
r,pP*
D
Q

P=qQ

is a deduction tree for P = @ from T
This proof rule is a formalization of Proof Template 1.2 (Implication—Intro). This rule is
described more accurately as

P=qQ

Note that this inference rule has the additional effect of discharging a nonempty multiset of
k > 1 occurrences of the premise P, which label distinct leaves of the deduction D. These
occurrences are tagged with a new variable x, and the tag x is also placed immediately to
the right of the inference bar. This is a reminder that the deduction tree whose conclusion is
P = @ no longer has the k occurrences of P labeled with x as premises. The new multiset
of premises of this deduction tree for P = @) is I', which may contain occurrences of P.

The =-elimination rule.
If D, is a deduction tree for P =) from the premises I' and D, is a deduction for P
from the premises A, then

r A
D, D,
P=qQ P

2.3. PROOF RULES, DEDUCTIONS AND PROOF TREES FOR IMPLICATION 73

is a deduction tree for) from the premises in the multiset I', A. This rule is also known as
modus ponens. This proof rule is a formalization of Proof Template 1.3 (Implication—Elim).

In the above axioms and rules, I or A may be empty; P, Q) denote arbitrary propositions
built up from the atoms in PS; and D, D;, and D, denote deductions, possibly a one-node
tree.

Definition 2.2. A deduction tree is either a one-node tree labeled with a single proposition
or a tree constructed using the above axioms and rules. A proof tree is a deduction tree
such that all its premises are discharged. The above proof system is denoted N7 (here, the
subscript m stands for minimal, referring to the fact that this a bare-bones logical system).

Observe that a proof tree has at least two nodes. A proof tree II for a proposition P may
be denoted

IT
P

with an empty set of premises (we don’t display () on top of IT). We tend to denote deductions
by the letter D and proof trees by the letter II, possibly subscripted.

We emphasize that the =-introduction rule says that in order to prove an implication
P = @ from a set of premises I', we assume that P has already been proven, add P to the
premises in I', and then prove () from I" and P. Once this is done, the premise P is deleted.

This rule formalizes the kind of reasoning that we all perform whenever we prove an
implication statement. In that sense, it is a natural and familiar rule, except that we per-
haps never stopped to think about what we are really doing. However, the business about
discharging the premise P when we are through with our argument is a bit puzzling. Most
people probably never carry out this “discharge step” consciously, but such a process does
take place implicitly.

Remarks:

1. Only the leaves of a deduction tree may be discharged. Interior nodes, including the
root, are never discharged.

2. Once a set of leaves labeled with some premise P marked with the label z has been
discharged, none of these leaves can be discharged again. So each label (say x) can

only be used once. This corresponds to the fact that some leaves of our deduction trees
get “killed off” (discharged).

3. A proof is a deduction tree whose leaves are all discharged (I" is empty). This corre-
sponds to the philosophy that if a proposition has been proven, then the validity of
the proof should not depend on any assumptions that are still active. We may think
of a deduction tree as an unfinished proof tree.

4. When constructing a proof tree, we have to be careful not to include (accidentally)
extra premises that end up not being discharged. If this happens, we probably made a

74 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

mistake and the redundant premises should be deleted. On the other hand, if we have
a proof tree, we can always add extra premises to the leaves and create a new proof
tree from the previous one by discharging all the new premises.

5. Beware, when we deduce that an implication P = () is provable, we do not prove
that P and () are provable; we only prove that if P is provable, then (@ is provable.

The =--elimination rule formalizes the use of auziliary lemmas, a mechanism that we use
all the time in making mathematical proofs. Think of P = @) as a lemma that has already
been established and belongs to some database of (useful) lemmas. This lemma says if T can
prove P, then I can prove). Now, suppose that we manage to give a proof of P. It follows
from the =--elimination rule that @) is also provable.

Observe that in an introduction rule, the conclusion contains the logical connective as-
sociated with the rule, in this case, =; this justifies the terminology “introduction”. On the
other hand, in an elimination rule, the logical connective associated with the rule is gone
(although it may still appear in Q). The other inference rules for A, Vv, and the like, follow
this pattern of introduction and elimination.

2.4 Examples of Proof Trees

(a) Here is a proof tree for P = P.
PCC

P
P=P

So, P = P is provable; this is the least we should expect from our proof system! Note
that

Paf
P=P

is also a valid proof tree for P = P, because the one-node tree labeled with P is a deduction
tree.
(b) Here is a proof tree for (P = Q) = ((Q = R) = (P = R)).

(P = Q)? P
(@ = R)Y Q
R
P=R
(@= R)= (P=R)

(P=0Q)=(Q=R)=(P=R)

2.4. EXAMPLES OF PROOF TREES 75

In order to better appreciate the difference between a deduction tree and a proof tree,
consider the following two examples.

Example 2.1. The tree below is a deduction tree because two of its leaves are labeled with
the premises P = () and) = R, that have not been discharged yet. So this tree represents
a deduction of P = R from the set of premises I' = {P = Q,Q = R} but it is not a
proof tree because I' # (). However, observe that the original premise P, labeled z, has been
discharged.

P=Q pe

P=R

Example 2.2. The next tree was obtained from the previous one by applying the =--
introduction rule which triggered the discharge of the premise) = R labeled y, which is
no longer active. However, the premise P = @) is still active (has not been discharged yet),
so the tree below is a deduction tree of () = R) = (P = R) from the set of premises
['={P = Q}. It is not yet a proof tree inasmuch as I" # ().

P=qQ P
(@ = R)Y Q
R T
P=R

(@ = R)= (P=R)

Finally, one more application of the =-introduction rule discharged the premise P = (),
at last, yielding the proof tree in (b).

(c) This example illustrates the fact that different proof trees may arise from the same set
of premises { P, Q}. For example, here are proof trees for Q = (P = P) and P = (Q = P).

Pr,QY
P
P=P

Q= (P=P)

and
P QY
P
Q=r

P=(Q=P)

76 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Similarly, there are six proof trees with a conclusion of the form
A= (B= (C=P))

begining with the deduction
PQV R
P

where A, B, C' correspond to the six permutations of the premises P, (Q, R.
Note that we would not have been able to construct the above proofs if Axiom (ii),

T, P
P

were not available. We need a mechanism to “stuff” more premises into the leaves of our
deduction trees in order to be able to discharge them later on. We may also view Axiom (ii)
as a weakening rule whose purpose is to weaken a set of assumptions. Even though we are
assuming all of the propositions in I' and P, we only use the assumption P. The necessity
of allowing multisets of premises is illustrated by the following proof of the proposition
P=(P=(Q=(Q=(P=P)).

P“ P, PY.Q", Q"
P
P=P
Q= (P=P)

)

Q= (Q=(P=P))

P=(Q=(Q=(P=P)

P=(P=(@Q=(@Q=(P=P))
(d) In the next example which shows a proof of
(A= B=C0C)= (A= B)= (A=(C)),
the two occurrences of A labeled = are discharged simultaneously.
(A= (B= () A* (A= B)Y A*

B=C B
C

A=C
(A= B)= (A=0C)

(A= (B=0))= ((A=B)= (A= 0))

2.4. EXAMPLES OF PROOF TREES 7

(e) In contrast to Example (d), in the proof tree below with conclusion
A= ((A:>(B:>C)) = ((A:>B):>(A:>C))>,

the two occurrences of A are discharged separately. To this effect, they are labeled differently.

(A= (B=Q0)) A* (A= B) Al
B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0))= (A= B)= (A= 0))

A= (A= (B=0) = (4= B) > (4=)

How do we find these proof trees? Well, we could try to enumerate all possible proof
trees systematically and see if a proof of the desired conclusion turns up. Obviously, this is
a very inefficient procedure and moreover, how do we know that all possible proof trees will
be generated and how do we know that such a method will terminate after a finite number
of steps (what if the proposition proposed as a conclusion of a proof is not provable)?

Finding an algorithm to decide whether a proposition is provable is a very difficult prob-
lem and for sets of propositions with enough “expressive power” (such as propositions in-
volving first-order quantifiers), it can be shown that there is no procedure that will give an
answer in all cases and terminate in a finite number of steps for all possible input propo-
sitions. We come back to this point in Section 2.13. However, for the system N such a
procedure exists but it is not easy to prove that it terminates in all cases and in fact, it can
take a very long time.

What we did, and we strongly advise our readers to try it when they attempt to construct
proof trees, is to construct the proof tree from the bottom up, starting from the proposition
labeling the root, rather than top-down, that is, starting from the leaves. During this
process, whenever we are trying to prove a proposition P = (), we use the =-introduction
rule backward, that is, we add P to the set of active premises and we try to prove) from
this new set of premises. At some point, we get stuck with an atomic proposition, say R.
Call the resulting deduction Dy,; note that R is the only active (undischarged) premise of
Dy, and the node labeled R immediately below it plays a special role; we call it the special
node of Dy,.

Here is an illustration of this method for Example (d). At the end of the bottom-up
process, we get the deduction tree Dy,.

78 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

(A= (B=0)) (A= B)Y A® C
C
A=C
(A= B)= (A= C)

T

(A= (B=0C))= (A= B)= (A=)

In the above deduction tree the proposition R = C'is the only active (undischarged)
premise. To turn the above deduction tree into a proof tree we need to construct a deduction
of C' from the premises other than C. This is a more creative step which can be quite difficult.
The trick is now to switch strategies and start building a proof tree top-down, starting from
the leaves, using the =--elimination rule. If everything works out well, we get a deduction
with root R, say D4, and then we glue this deduction D,; to the deduction Dy, in such a
way that the root of D,y is identified with the special node of Dy, labeled R.

We also have to make sure that all the discharged premises are linked to the correct
instance of the =-introduction rule that caused them to be discharged. One of the difficulties
is that during the bottom-up process, we don’t know how many copies of a premise need to
be discharged in a single step. We only find out how many copies of a premise need to be
discharged during the top-down process.

Going back to our example, at the end of the top-down process, we get the deduction
tree Dyy.

A= (B=C) A A=pB A

B=C B
C

Finally, after gluing D;; on top of Dy, (which has the correct number of premises to be
discharged), we get our proof tree:

(A= (B=(0)) A* (A= B)Y A*

B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0)= (A= B)= (A= ()

(f) The following example shows that proofs may be redundant. The proposition P =
(P = @) = Q) has the following proof.

2.4. EXAMPLES OF PROOF TREES 79

(P=QF P
Q
(P=Q)=Q
P> ((P>Q) =0

Now say P is the proposition R = R, which has the proof
i
R
R=R

Using =--elimination, we obtain a proof of ((R = R) = @) = @ from the proof of
(R=R)= (((R= R) = Q) = Q) and the proof of R = R shown above.

(R=R)=Q)" (R= R)Y

Q
z R?
(R=R)=Q)=0C R
(R=R)= ((R=R)=Q)=0Q) R=R

(R=R)=Q)=Q

Note that the above proof is redundant. The deduction tree shown in blue has the
proposition ((R = R) = Q) = @ as conclusion but the proposition R = R is introduced
in the step labeled y and immediately eliminated in the next step. A more direct proof can
be obtained as follows. Undo the last =-introduction (involving the the proposition R = R
and the tag y) in the proof of (R = R) = (((R = R) = Q) =) obtaining the deduction
tree shown in blue above

(R=R)= Q)" R=R
Q
(B=R)=Q)=0Q

and then glue the proof of R = R on top of the leaf R = R, obtaining the desired proof of
(R=R)=0Q)=Q.

80 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

In general, one has to exercise care with the label variables. It may be necessary to re-
name some of these variables to avoid clashes. What we have above is an example of proof
substitution also called proof normalization. We come back to this topic in Section 2.13.

2.5 A Gentzen-Style System for Natural Deduction

The process of discharging premises when constructing a deduction is admittedly a bit con-
fusing. Part of the problem is that a deduction tree really represents the last of a sequence
of stages (corresponding to the application of inference rules) during which the current set
of “active” premises, that is, those premises that have not yet been discharged (closed, can-
celled) evolves (in fact, shrinks). Some mechanism is needed to keep track of which premises
are no longer active and this is what this business of labeling premises with variables achieves.
Historically, this is the first mechanism that was invented. However, Gentzen (in the 1930s)
came up with an alternative solution that is mathematically easier to handle. Moreover, it
turns out that this notation is also better suited to computer implementations, if one wishes
to implement an automated theorem prover.

The point is to keep a record of all undischarged assumptions at every stage of the
deduction. Thus, a deduction is now a tree whose nodes are labeled with pairs of the form
(I', P), where P is a proposition, and I" is a record of all undischarged assumptions at the
stage of the deduction associated with this node.

Instead of using the notation (I', P), which is a bit cumbersome, Gentzen used expressions
of the form I' — P, called sequents

It should be noted that the symbol — is used as a separator between the left-hand side
I, called the antecedent, and the right-hand side P, called the conclusion (or succedent) and
any other symbol could be used. Of course — is reminiscent of implication but we should
not identify — and =-. Still, it turns out that a sequent I' — P is provable if and only if
(PLA---AP,)= P is provable, where I = (P, ..., P,,).

During the construction of a deduction tree, it is necessary to discharge packets of as-
sumptions consisting of one or more occurrences of the same proposition. To this effect, it is
convenient to tag packets of assumptions with labels, in order to discharge the propositions
in these packets in a single step. We use variables for the labels, and a packet labeled with
x consisting of occurrences of the proposition P is written as z: P.

Definition 2.3. A sequent is an expression I' — P, where I' is any finite set of the form
{z1: P1,...,xm: Py} called a context, where the x; are pairwise distinct (but the P; need
not be distinct). Given I' = {z1: Py, ..., 2, Py}, the notation I'; z: P is only well defined
when z # x; for all i, 1 < i < m, in which case it denotes the set {x1: Py, ...,z Py, z: P}.
Given two contexts I" and A, the context I' U A is the union of the sets of pairs (z;: P;) in
I' and the set of pairs (yx: @;) in A, provided that if z: P € I' and z:) € A for the same
variable x, then P = (). In this case we say that ' and A are consistent. So if z: P occurs
both in I' and A, then z: P also occurs in I' U A (once).

2.5. A GENTZEN-STYLE SYSTEM FOR NATURAL DEDUCTION 81

One can think of a context I' = {z1: Py, ..., 2, Py} as a set of type declarations for the
variables x1,...,z, (x; has type P;). It should be noted that in the Prawitz-style formal-
ism for proof trees, premises are treated as multisets, but in the Gentzen-style formalism,
premises are sets of tagged pairs.

Using sequents, the axioms and rules of Definition 2.4 are now expressed as follows.

Definition 2.4. The axioms and inference rules of the system NG (implicational logic,
Gentzen-sequent style (the G in NG stands for Gentzen)) are listed below.

[z: P— P (Axioms)

z: P—Q _

TSpog (Tir)
- P=Q A—P .

TUA SO (=-elim)

In an axiom or the rule (=-intro), it is assumed that x: P ¢ I'. In an application of the
rule (=-intro), in the lower sequent, the proposition P labeled z is deleted from the list of
premises occurring on the left-hand side of the arrow in the upper sequent. We say that the
proposition P that appears as a hypothesis of the deduction is discharged (or closed). In
the rule (=-elim), it is assumed that I" and A are consistent contexts. A deduction tree is
either a one-node tree labeled with an axiom or a tree constructed using the above inference
rules. A proof tree is a deduction tree whose conclusion is a sequent with an empty set of
premises (a sequent of the form — P).

It is important to note that the ability to label packets consisting of occurrences of the
same proposition with different labels is essential in order to be able to have control over
which groups of packets of assumptions are discharged simultaneously. Equivalently, we
could avoid tagging packets of assumptions with variables if we assume that in a sequent
I' — C, the expression I is a multiset of propositions.

Let us display the proof tree for the second proof tree in Example (¢) in our new Gentzen-
sequent system. The orginal proof tree is

pPr,QY
P
Q=P

P=(Q=P)
and the corresponding proof tree in our new system is
x: Py:Q— P
r:P—>Q=P
— P=(Q=P)

82 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Below we show a proof of the first proposition of Example (d) given above in our new
system. Since the tree is too wide to fit in the page we set Q = B = C.

2 A=Q—->A=Q z: A=A y: A=B—>A=B 2: A= A
22:A=(B=0C),2:A=-B=C y: A= B,x: A— B
2: A= (B=0),y: A= B,z: A= C
2:A= (B=0),y:A=B—-A=C
22 A= (B=C)— (A= B)=(A=0C)
—+ (A= B=0C)=((A=B)=(A=0))

It is not hard to design an algorithm that converts a deduction tree (or a proof tree) in
the system N into a deduction tree (or a proof tree) in the system NG, and vice-versa.
In both cases the underlying tree is exactly the same and there is a bijection between the
sets of undischarged premises in both representations.

After experimenting with the construction of proofs, one gets the feeling that every proof
can be simplified to a “unique minimal” proof, if we define “minimal” in a suitable sense,
namely, that a minimal proof never contains an elimination rule immediately following an
introduction rule (for more on this, see Section 2.13). Then it turns out that to define the
notion of uniqueness of proofs, the second version is preferable. However, it is important to
realize that in general, a proposition may possess distinct minimal proofs.

In principle, it does not matter which of the two systems N> or NG, we use to con-
struct deductions; it is basically a matter of taste. The Prawitz-style system N7 produces
proofs that are closer to the informal proofs that humans construct. One the other hand,
the Gentzen-style system NG~ is better suited for implementing theorem provers. My ex-
perience is that I make fewer mistakes with the Gentzen-sequent style system NG, .

We now describe the inference rules dealing with the connectives A, V and L.

2.6 Adding A, V, 1; The Proof Systems N>+ and
Ng:>,/\,\/,J_

In this section we describe the proof rules for all the connectives of propositional logic both in
Prawitz-style and in Gentzen-style. As we said earlier, the rules of the Prawitz-style system
are closer to the rules that human use informally, and the rules of the Gentzen-style system
are more convenient for computer implementations of theorem provers.

The rules involving L are not as intuitively justifed as the other rules. In fact, in the early
1900s, some mathematicians especially L. Brouwer (1881-1966), questioned the validity of
the proof-by-contradiction rule, among other principles. This led to the idea that it may
be useful to consider proof systems of different strength. The weakest (and considered the
safest) system is called minimal logic. This system rules out the _L-elimination rule (the
ability to deduce any proposition once a contradiction has been established) and the proof-

2.6. ADDING A, V, L; THE PROOF SYSTEMS Ng ™" AND NGZ"™* 83

by—contradiction rule. Intuitionistic logic rules out the proof-by—contradiction rule, and
classical logic allows all the rules. Most people use classical logic, but intuitionistic logic is
an interesting alternative because it is more constructive. We will elaborate on this point
later. Minimal logic is just too weak.

Recall that =P is an abbreviation for P = 1.

Definition 2.5. The axioms, inference rules, and deduction trees for (propositional) classical
logic are defined as follows. In the axioms and rules below, I, A, or A may be empty; P,Q, R
denote arbitrary propositions built up from the atoms in PS; D, D;, D, denote deductions,
possibly a one-node tree; and all the premises labeled z or y are discharged.

Axioms:

(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with
set of premises {P}.

(ii) The tree

TP
P

is a deduction tree for P with multiset of premises I, P.

The =-introduction rule:

If D is a deduction of () from the premises in I' and one or more occurrences of the
proposition P, then

T, pe
D
Q

P=qQ

is a deduction tree for P = () from I'. As in Definition 2.1, recall that I', P is an abbreviation
. /_/L . . . o .

for the multiset I', P,..., P, with k& > 1. This inference rule has the additional effect of
discharging a nonempty multiset of occurrences of the premise P (which label distinct leaves
of the deduction D). These occurrences are tagged with a new variable x, and the tag z
is also placed immediately to the right of the inference bar. This proof rule corresponds to
Proof Template 1.2 (Implication—Intro).

The =-elimination rule (or modus ponens):

If Dy is a deduction tree for P = () from the premises I', and D, is a deduction for P
from the premises A, then

r A
Dy D,
P=qQ P

84 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

is a deduction tree for () from the premises in the multiset I, A. This proof rule corresponds
to Proof Template 1.3 (Implication-Elim).

The A-introduction rule:

If D, is a deduction tree for P from the premises I', and D, is a deduction for () from
the premises A, then

r A

D, D,

P Q
PAQ

is a deduction tree for P A) from the premises in the multiset I', A. This proof rule
corresponds to Proof Template 1.8 (And-Intro).

The A-elimination rule:

If D is a deduction tree for P A () from the premises I', then

r T
D D
PAQ PAQ
P Q

are deduction trees for P and () from the premises I'. This proof rule corresponds to Proof
Template 1.9 (And—elim).

The V-introduction rule:

If D is a deduction tree for P or for () from the premises I, then

r r
D D
P Q
PVvQ PVvQ

are deduction trees for PV @) from the premises in I'. This proof rule corresponds to Proof
Template 1.10 (Or-Intro).

The V-elimination rule:

If D, is a deduction tree for PV @) from the premises I', Dy is a deduction for R from
the premises in the multiset A and one or more occurrences of P, and D3 is a deduction for
R from the premises in the multiset A and one or more occurrences of (), then

I A PT A QY

D, D, D,
PVQ R R
x’y
R

is a deduction tree for R from the premises in the multiset I') A;A. A nonempty set of
premises P in Dy labeled x and a nonempty set of premises () in D3 labeled y are discharged.
This proof rule corresponds to Proof Template 1.11 (Or—Elim).

2.6. ADDING A, V, L; THE PROOF SYSTEMS Ng ™" AND NGZ"™* 85

The 1-elimination rule:
If D is a deduction tree for L from the premises I', then

is a deduction tree for P from the premises I', for any proposition P. This proof rule
corresponds to Proof Template 1.6 (Perp—Elim).

The proof-by—contradiction rule (also known as reductio ad absurdum rule, for
short RAA):

If D is a deduction tree for L from the premises in the multiset I' and one or more
occurrences of =P, then

I, -P°
D
1

J— x

P

is a deduction tree for P from the premises I'. A nonempty set of premises =P labeled x
are discharged. This proof rule corresponds to Proof Template 1.7 (Proof-By—Contradiction
Principle).

Because =P is an abbreviation for P = 1, the —-introduction rule is a special case of the
=--introduction rule (with Q =1). However, it is worth stating it explicitly.

The —-introduction rule:

If D is a deduction tree for L from the premises in the multiset I' and one or more
occurrences of P, then

T, pe
D

4
=P
is a deduction tree for =P from the premises I'. A nonempty set of premises P labeled x are
discharged. This proof rule corresponds to Proof Template 1.4 (Negation—Intro).
The above rule can be viewed as a proof-by—contradiction principle applied to negated
propositions.

Similarly, the —-elimination rule is a special case of =--elimination applied to =P (=
P=1)and P.

The —-elimination rule:

If D is a deduction tree for =P from the premises I', and D, is a deduction for P from
the premises A, then

86 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

r A
D, D,
-P P

€

is a deduction tree for L from the premises in the multiset I, A. This proof rule corresponds
to Proof Template 1.5 (Negation-Elim).

A deduction tree is either a one-node tree labeled with a single proposition or a tree
constructed using the above axioms and inference rules. A proof tree is a deduction tree
such that all its premises are discharged. The above proof system is denoted N7V:+ (here,
the subscript ¢ stands for classical).

Definition 2.6. The system obtained by removing the proof-by—contradiction (RAA) rule
is called (propositional) intuitionistic logic and is denoted /\/?’A’V’L. The system obtained
by deleting both the L-elimination rule and the proof-by—contradiction rule is called (propo-
sitional) minimal logic and is denoted N7/\V+t

The version of N>V+ in terms of Gentzen sequents is the following.

Definition 2.7. The axioms and inference rules of the system NG+ (of propositional
classical logic, Gentzen-sequent style) are listed below.

[z: P— P (Axioms)
Mz: P—Q

m (:>-mt7“0)
- P=Q A—P .
TUA SO (=-elim)
r—-P A—=Q .
N-1nt
TUA S PAg i)
I'=PAQ , ' -PAQ _
TP (A-elim) TS0 (A-elim)
r—-~pr , ' =@ ,
T (V-int 2 (Veint
IS PVO (V-intro) IS PvO (V-intro)
'r-PVvQ Az:P—>R ANy:Q—R (V-elim)
T'UAUA—=R
I'—1
L el
TP (L-elim)
F,l‘:—\P—H_

TP (by-contra)

2.6. ADDING A, V, L; THE PROOF SYSTEMS N5+ AND NGg "™+ 87

INx: P—1 . :
ﬁ (ﬁ—lntrOductlon)
r-+-P A—P (—-elimination)

——-elimination
FrUA —1

The following restrictions apply. In the axioms and the rule (=-intro), x: P ¢ I'; in the
rule (V-elim), z: P ¢ A and y: Q ¢ A; in the rule (by-contra), x: =P ¢ T"; and in the rule
(—-introduction), z: P ¢ T.

A deduction tree is either a one-node tree labeled with an axiom or a tree constructed
using the above inference rules. A proof tree is a deduction tree whose conclusion is a sequent
with an empty set of premises (a sequent of the form () — P).

The rule (L-elim) is trivial (does nothing) when P =1. Therefore, from now, on we
assume that P #.1. Propositional minimal logic, denoted N QZ’/\’V’L, is obtained by dropping
the (L-elim) and (by-contra) rules. Propositional intuitionistic logic, denoted N'GZ"Y" is
obtained by dropping the (by-contra) rule.

Definition 2.8. When we say that a proposition P is provable from I', we mean that we can
construct a proof tree whose conclusion is P and whose set of premises is I', in one of the
systems N7Vt or NGZV+ . Therefore, when we use the word “provable” unqualified, we
mean provable in classical logic. If P is provable from I' in one of the intuitionistic systems
./\ff’/\’v’L or Ng?’A’V’L, then we say intuitionistically provable (and similarly, if P is provable
from I" in one of the systems N+ or NGV then we say provable in minimal logic).

When P is provable from I', most people write I' = P, or - I' — P, sometimes with the
name of the corresponding proof system tagged as a subscript on the sign F if necessary to
avoid ambiguities. When I' is empty, we just say P is provable (provable in intuitionistic
logic, and so on) and write - P.

We treat logical equivalence as a derived connective; that is, we view P = () as an
abbreviation for (P = Q) A (Q = P). In view of the inference rules for A, we see that to
prove a logical equivalence P = (), we just have to prove both implications P = () and
Q= P.

Since the only difference between the proof systems A7Vt and N is the way
in which they perform the bookkeeping of premises, it is intuitively clear that they are equiv-
alent. However, they produce different kinds of proof so to be rigorous we must check that
the proof systems N>"VL and NGV as well as the systems N7 and NG+
and the systems N>Vt and NG+, are equivalent. This is not hard to show but is a
bit tedious; see Problem 2.14.

In view of the —-elimination rule, we may be tempted to interpret the provability of a
negation =P as “P is not provable.” Indeed, if =P and P were both provable, then 1 would
be provable. So, P should not be provable if =P is. However, if P is not provable, then
=P is not provable in general. There are plenty of propositions such that neither P nor
—P is provable (for instance P, with P an atomic proposition). Thus, the fact that P is not

g:\/\,V,L
m

38

CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

provable is not equivalent to the provability of =P and we should not interpret =P as “P is
not provable.”

Let us now make some (much-needed) comments about the above inference rules. There
is no need to repeat our comments regarding the =-rules.

(1)

(2)

The V-introduction rule says that if P (or ()) has been proved from I', then PV @ is
also provable from I'. Again, this makes sense intuitively as PV @ is “weaker” than P
and Q.

The V-elimination rule formalizes the proof-by—cases method. It is a more subtle rule.
The idea is that if we know that in the case where P is already assumed to be provable
and similarly in the case where () is already assumed to be provable that we can prove
R (also using premises in I'), then if PV @ is also provable from I', as we have “covered
both cases,” it should be possible to prove R from I' only (i.e., the premises P and
@ are discarded). For example, if remainl(n) is the proposition that asserts n is a
natural number of the form 4k + 1 and remain3(n) is the proposition that asserts n is
a natural number of the form 4k + 3 (for some natural number k), then we can prove
the implication
(remainl(n) V remain3(n)) = odd(n),

where odd(n) asserts that n is odd, namely, that n is of the form 2h + 1 for some h.

To prove the above implication we first assume the premise, remainl(n) V remain3(n).
Next we assume each of the alternatives in this proposition.

When we assume remainl(n), we have n = 4k + 1 = 2(2k) + 1 for some k, so n
is odd. When we assume remain3(n), we have n = 4k +3 = 2(2k + 1) + 1, so
again, n is odd. By V-elimination, we conclude that odd(n) follows from the premise
remainl(n)Vremain3(n), and by =-introduction, we obtain a proof of our implication.

The _L-elimination rule formalizes the principle that once a false statement has been
established, then anything should be provable.

The —-introduction rule is a proof-by—contradiction principle applied to negated propo-
sitions. In order to prove =P, we assume P and we derive a contradiction (L). It is a
more restrictive principle than the classical proof-by—contradiction rule (RAA). Indeed,
if the proposition P to be proven is not a negation (P is not of the form —@Q), then
the —-introduction rule cannot be applied. On the other hand, the classical proof-
by-contradiction rule can be applied but we have to assume —P as a premise. For
further comments on the difference between the —-introduction rule and the classical
proof-by—contradiction rule, see Section 2.8.

The proof—by—contradiction rule formalizes the method of proof by contradiction. That
is, in order to prove that P can be deduced from some premises I', one may assume the
negation =P of P (intuitively, assume that P is false) and then derive a contradiction
from I' and =P (i.e., derive falsity). Then P actually follows from I' without using =P

2.7. CONSTRUCTIVISM VERSUS CLASSICAL LOGIC 89

as a premise, that is, =P is discharged. For example, let us prove by contradiction
that if n? is odd, then n itself must be odd, where n is a natural number.

According to the proof-by—contradiction rule, let us assume that n is not odd, which
means that n is even. (Actually, in this step we are using a property of the natural
numbers that is proven by induction but let’s not worry about that right now. A proof
is given in Section 2.19.) But to say that n is even means that n = 2k for some k and
then n? = 4k* = 2(2k?), so n? is even, contradicting the assumption that n? is odd.
By the proof-by—contradiction rule, we conclude that n must be odd.

Remark: If the proposition P to be proven is of the form —(), then if we use the proof-
by-contradiction rule, we have to assume the premise ——() and then derive a contradiction.
Because we are using classical logic, we often make implicit use of the fact that ——(Q is
equivalent to @) (see Proposition 2.2) and instead of assuming ——(@) as a premise, we assume
() as a premise. But then, observe that we are really using —-introduction.

In summary, when trying to prove a proposition P by contradiction, proceed as follows.

(1) If P is a negated formula (P is of the form —@Q), then use the —-introduction rule; that
is, assume () as a premise and derive a contradiction.

(2) If P is not a negated formula, then use the the proof-by-contradiction rule; that is,
assume —P as a premise and derive a contradiction.

2.7 Constructivism Versus Classical Logic

Most people, I believe, will be comfortable with the rules of minimal logic and will agree that
they constitute a “reasonable” formalization of the rules of reasoning involving =, A, and
V. Indeed, these rules seem to express the intuitive meaning of the connectives =, A, and V.
However, some may question the two rules | -elimination and proof-by-contradiction. Indeed,
their meaning is not as clear and, certainly, the proof-by-contradiction rule introduces a form
of indirect reasoning that is somewhat worrisome.

The problem has to do with the meaning of disjunction and negation and more gener-
ally, with the notion of constructivity in mathematics. In fact, in the early 1900s, some
mathematicians, especially L. Brouwer (1881-1966), questioned the validity of the proof-by-
contradiction rule, among other principles.

Two specific cases illustrate the problem, namely, the propositions

Pv—-P and —-—P= P

As we show shortly, the above propositions are both provable in classical logic; see Proposi-
tion 2.1 and Proposition 2.2.

Now Brouwer and some mathematicians belonging to his school of thought (the so-called
“Intuitionists” or “constructivists”) advocate that in order to prove a disjunction PV @
(from some premises I') one has to either exhibit a proof of P or a proof or @ (from I).

90 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

B0 Ad
vy o
= = |
, :

=

¥

=

= =

= 4

3 2
y— =

i

mmamdmnm

Figure 2.2: L. E. J. Brouwer, 1881-1966

However, it can be shown that this fails for PV =P. The fact that P V =P is provable (in
classical logic) does not imply (in general) that either P is provable or that =P is provable.
That PV —P is provable is sometimes called the principle (or law) of the excluded middle.
In intuitionistic logic, P V =P is not provable (in general). Of course, if one gives up the
proof-by-contradiction rule, then fewer propositions become provable. On the other hand,
one may claim that the propositions that remain provable have more constructive proofs and
thus feel on safer grounds.

A similar controversy arises with the proposition =—P = P (double-negation rule) If we
give up the proof-by-contradiction rule, then this formula is no longer provable (i.e., =—P is
no longer equivalent to P). Perhaps this relates to the fact that if one says “I don’t have no
money,” then this does not mean that this person has money. (Similarly with “I can’t get
no satisfaction.”) However, note that one can still prove P = —=—P in minimal logic (try
doing it). Even stranger, =——P = =P is provable in intuitionistic (and minimal) logic, so
——=P and —P are equivalent intuitionistically.

Remark: Suppose we have a deduction
r,-P

D
4

as in the proof-by-contradiction rule. Then by —-introduction, we get a deduction of =—P
from I':

I, —Pp*
D
L

||P

T

So, if we knew that ——P was equivalent to P (actually, if we knew that =——P = P is
provable), then the proof-by-contradiction rule would be justified as a valid rule (it follows
from modus ponens). We can view the proof-by-contradiction rule as a sort of act of faith
that consists in saying that if we can derive an inconsistency (i.e., chaos) by assuming the

2.7. CONSTRUCTIVISM VERSUS CLASSICAL LOGIC 91

falsity of a statement P, then P has to hold in the first place. It not so clear that such an
act of faith is justified and the intuitionists refuse to take it.

Constructivity in mathematics is a fascinating subject but it is a topic that is really
outside the scope in this book. What we hope is that our brief and very incomplete discussion
of constructivity issues made the reader aware that the rules of logic are not cast in stone
and that, in particular, there isn’t only one logic.

We feel safe in saying that most mathematicians work with classical logic and only a
few of them have reservations about using the proof-by-contradiction rule. Nevertheless,
intuitionistic logic has its advantages, especially when it comes to proving the correctess of
programs (a branch of computer science). We come back to this point several times in this
book.

In the rest of this section we make further useful remarks about (classical) logic and give
some explicit examples of proofs illustrating the inference rules of classical logic. We begin
by proving that PV —P is provable in classical logic.

Proposition 2.1. The proposition PNV —P 1is provable in classical logic.

Proof. We prove that PV (P =-_1) is provable by using the proof-by-contradiction rule as
shown below.

pe
(PV(P=1))=1)}Y PV (P=1)
1
P=1
(PV(P=1))=1) PV (P=1)
1
Pv(P=1)

V-intro

z (—-intro)

V-1ntro

y (by-contra)

Next, we consider the equivalence of P and ——P.

Proposition 2.2. The proposition P = ——P 1is provable in minimal logic. The proposition
== P = P is provable in classical logic. Therefore, in classical logic, P is equivalent to =—P.

Proof. We leave that P = ——P is provable in minimal logic as an exercise. Below is a proof
of == P = P using the proof-by-contradiction rule.

(P=1)=1) (P=1)"
1

— 2 (by-contra)
P

(P=L)=1)=P

Yy

92 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

The next proposition shows why L can be viewed as the “ultimate” contradiction.

Proposition 2.3. In intuitionistic logic, the propositions 1. and P N =P are equivalent for
all P. Thus, L and P A =P are also equivalent in classical propositional logic

Proof. We need to show that both L= (PA=P) and (PA—P) =1 are provable in intuition-
istic logic. The provability of 1= (P A =P) is an immediate consequence or |-elimination,
with I' = (). For (P A =P) =1, we have the following proof.
(PN-P)* (PN-P)*
-P P
1

(P/\—|P) =1

]

So, in intuitionistic logic (and also in classical logic), L is equivalent to P A =P for all P.
This means that L is the “ultimate” contradiction; it corresponds to total inconsistency. By
the way, we could have the bad luck that the system NV (or N7V or even NZ/Vot)
is inconsistent, that is, that L is provable. Fortunately, this is not the case, although this
is hard to prove. (It is also the case that PV =P and =——P = P are not provable in
intuitionistic logic, but this too is hard to prove.)

2.8 Clearing Up Differences Among —-Introduction,
1 -Elimination, and RAA

The differences between the rules, —-introduction, |-elimination, and (RAA), the proof-

by-contradiction rule, are often unclear to the uninitiated reader and this tends to cause

confusion. In this section we try to clear up some common misconceptions about these rules.
Confusion 1. Why is RAA not a special case of —-introduction?

T, pe T, —p"
D D

L (~intro) L L (RAA)
-P P

The only apparent difference between —-introduction (on the left) and RAA (on the right) is
that in RAA, the premise P is negated but the conclusion is not, whereas in —-introduction
the premise P is not negated but the conclusion is.

The important difference is that the conclusion of RAA is not negated. If we had applied
—-introduction instead of RAA on the right, we would have obtained

2.8. CLEARING UP DIFFERENCES; —--INTRODUCTION, L-ELIMINATION, RAA 93

r,-P°
D
1

_ " z(—-intro)

||P
where the conclusion would have been =—P as opposed to P. However, as we already said
earlier, == P = P is not provable intuitionistically. Consequently, RAA is not a special
case of =-introduction. On the other hand, one may view —-introduction as a “constructive”
version of RAA applying to negated propositions (propositions of the form —P).

Confusion 2. Is there any difference between L-elimination and RAA?

r L —pP*

D D

L (L-elim) L L (RAA)
P P

The difference is that | -elimination does not discharge any of its premises. In fact, RAA is
a stronger rule that implies | -elimination as we now demonstate.

RAA implies |-Elimination
Suppose we have a deduction

r
D
4

Then for any proposition P, we can add the premise =P to every leaf of the above deduction
tree and we get the deduction tree

r,-P
DI
1

We can now apply RAA to get the following deduction tree of P from I' (because =P is
discharged) which simulates | -elimination.

T, -P?
D/

L L (RAA)

P

The above considerations also show that RAA is obtained from —-introduction by adding
the new rule of ~—-elimination (also called double-negation elimination):

94 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

r
D
~F (——-elimination)

P
Indeed we now have the following deduction which is equivalen to RAA.

T, —P*
D

i « (—-intro)

P (——-elimination)

P

Some authors prefer adding the ——-elimination rule to intuitionistic logic instead of RAA
in order to obtain classical logic. As we just demonstrated, the two additions are equivalent:
by adding either RAA or ——-elimination to intuitionistic logic, we get classical logic.

There is another way to obtain RAA from the rules of intuitionistic logic, this time using
the propositions of the form PV —P. We saw in Proposition 2.1 that all formulae of the
form P Vv =P are provable in classical logic (using RAA).

Confusion 3. Are propositions of the form PV =P provable in intuitionistic logic?
The answer is no, which may be disturbing to some readers. In fact, it is quite difficult
to prove that propositions of the form PV —P are not provable in intuitionistic logic. One
method consists in using the fact that intuitionistic proofs can be normalized (see Section
2.13 for more on normalization of proofs). Another method uses Kripke models (see Section
2.12 and van Dalen [62]).

Part of the difficulty in understanding at some intuitive level why propositions of the
form PV =P are not provable in intuitionistic logic is that the notion of truth based on the
truth values true and false is deeply rooted in all of us. In this frame of mind, it seems
ridiculous to question the provability of PV =P, because its truth value is true whether P
is assigned the value true or false. Classical two-valued truth value semantics is too crude
for intuitionistic logic.

Another difficulty is that it is tempting to equate the notion of truth and the notion
of provability. Unfortunately, because classical truth values semantics is too crude for intu-
itionistic logic, there are propositions that are universally true (i.e., they evaluate to true for
all possible truth assignments of the atomic letters in them) and yet they are not provable
intuitionistically. The propositions PV =P and -—P = P are such examples.

One of the major motivations for advocating intuitionistic logic is that it yields proofs
that are more constructive than classical proofs. For example, in classical logic, when we
prove a disjunction PV @), we generally can’t conclude that either P or () is provable, as
exemplified by PV =P. A more interesting example involving a nonconstructive proof of
a disjunction is given in Section 2.9. But in intuitionistic logic, from a proof of P V Q,
it is possible to extract either a proof of P or a proof of) (and similarly for existential

2.8. CLEARING UP DIFFERENCES; —--INTRODUCTION, 1-ELIMINATION, RAA 95

statements; see Section 2.16). This property is not easy to prove. It is a consequence of the
normal form for intuitionistic proofs (see Section 2.13).

In brief, besides being a fun intellectual game, intuitionistic logic is only an interesting
alternative to classical logic if we care about the constructive nature of our proofs. But then
we are forced to abandon the classical two-valued truth values semantics and adopt other
semantics such as Kripke semantics. If we do not care about the constructive nature of our
proofs and if we want to stick to two-valued truth values semantics, then we should stick
to classical logic. Most people do that, so don’t feel bad if you are not comfortable with
intuitionistic logic.

One way to gauge how intuitionisic logic differs from classical logic is to ask what kind
of propositions need to be added to intuitionisic logic in order to get classical logic. It turns
out that if all the propositions of the form P V =P are considered to be axioms, then RAA
follows from some of the rules of intuitionistic logic.

RAA Holds in Intuitionistic Logic + All Axioms PV —P.

The proof involves a subtle use of the |-elimination and V-elimination rules which may be
a bit puzzling. Assume, as we do when we use the proof-by-contradiction rule (RAA) that
we have a deduction

r,-P
D
1

Here is the deduction tree demonstrating that RAA is a derived rule.

r,—-pPY
D
P i_ (L-elim)
pvor il P zy (V-elim)
P
At first glance, the rightmost subtree
r,—PY

D

i‘ (L-elim)

P

appears to use RAA and our argument looks circular. But this is not so because the premise
=P labeled y is not discharged in the step that yields P as conclusion; the step that yields P
is a L -elimination step. The premise =P labeled y is actually discharged by the V-elimination
rule (and so is the premise P labeled x). So our argument establishing RAA is not circular
after all.

In conclusion, intuitionistic logic is obtained from classical logic by taking away the proof-
by-contradiction rule (RAA). In this more restrictive proof system, we obtain more construc-

96 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

tive proofs. In that sense, the situation is better than in classical logic. The major drawback
is that we can’t think in terms of classical truth values semantics anymore.
Conversely, classical logic is obtained from intuitionistic logic in at least three ways:

1. Add the proof-by-contradiction rule (RAA).
2. Add the ——-elimination rule.

3. Add all propositions of the form PV =P as axioms.

2.9 De Morgan Laws and Other Rules of
Classical Logic

In Section 1.7 we discussed the de Morgan laws. Now that we also know about intuitionistic
logic we revisit these laws.

Proposition 2.4. The following equivalences (de Morgan laws) are provable in classical
logic.

ﬁ(P/\Q)E—!P\/_'Q
-(PVQ)=-PA-Q.

In fact, ~(PVQ) = -PA—Q and (-PV—Q) = =(PAQ) are provable in intuitionistic logic.
The proposition (P A —=Q) = —(P = Q) is provable in intuitionistic logic and (P = Q) =
(P A —Q) is provable in classical logic. Therefore, =(P = Q) and P N —Q are equivalent
i classical logic. Furthermore, P =) and =P V Q) are equivalent in classical logic and
(=PV Q)= (P= Q) is provable in intuitionistic logic.

Proof. We only prove the very last part of Proposition 2.4 leaving the other parts as a series
of exercises. Here is an intuitionistic proof of (=P V Q) = (P = Q).

_‘PZ Px
L LA
Q Q
(=P V Q)" P=qQ P=qQ
P=qQ 7

(=PVQ) = (P =Q)

Here is a classical proof of (P = Q) = (=P V Q).

2.9. DE MORGAN LAWS AND OTHER RULES OF CLASSICAL LOGIC 97

~Pp°
(-(=PVvQ)y ~PVQ

L . RAA
(P=Qy P

Q

(~(=PVQ)) ~PVQ

L, Raa

-PVQ
(P=Q)=(-PVQ)
The other proofs are left as exercises. n

Propositions 2.2 and 2.4 show a property that is very specific to classical logic, namely,
that the logical connectives =, A, V, = are not independent. For example, we have P A Q) =
—(=P V =@Q), which shows that A can be expressed in terms of V and —. In intuitionistic
logic, A and V cannot be expressed in terms of each other via negation.

The fact that the logical connectives =, A, V,— are not independent in classical logic
suggests the following question. Are there propositions, written in terms of = only, that are
provable classically but not provable intuitionistically?

The answer is yes. For instance, the proposition ((P = @) = P) = P (known as
Peirce’s law) is provable classically (do it), but it can be shown that it is not provable
intuitionistically.

On the other hand, if we add all instances ((P = @) = P) = P of Peirce’s law as
axioms to intuitionictic logic, then (RAA) is derivable. In fact, it suffices to add the special
case of Peirce’s law with () =1, namely

(P=1l)=P)=P=(-P=P)=P.

Assume, as we do when we use the proof-by-contradiction rule (RAA) that we have a
deduction

r,-P
D
1

Here is the deduction tree demonstrating that RAA is a derived rule, where the leftmost leaf
is the axiom

(-P=P)=P.

98 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

T, ~PY
D
i_ (L-elim)
P (=-intro)
(~P=P)=P -P=P
(=-elim)

P

In addition to the proof-by-cases method and the proof-by-contradiction method, we also
have the proof-by-contrapositive method valid in classical logic:
Proof-by-contrapositive rule:

[, =Q*
D
-P

P=qQ

This rule says that in order to prove an implication P = @ (from I'), one may assume
=() as proven, and then deduce that —P is provable from I' and —(). This inference rule is
valid in classical logic because we can construct the following deduction.

[, —Q"
D
P Py
L . (RAA)
Q
)
P=qQ

As as example of the proof-by-contrapositive method, we prove that if an integer n? is
even, then n must be even.

Observe that if an integer is not even, then it is odd (and vice versa). This fact may seem
quite obvious but to prove it actually requires using induction (which we haven’t officially
met yet). A rigorous proof is given in Section 2.19.

Now the contrapositive of our statement is: if n is odd, then n? is odd. Here P is “n?
si even” and @) is n is even. But to say that n is odd is to say that n = 2k + 1 and then
n? = (2k + 1) = 4k* + 4k + 1 = 2(2k? + 2k) + 1, which shows that n? is odd.

As it is, because the above proof uses the proof-by-contrapositive method, it is not
constructive. Thus, the question arises, is there a constructive proof of the above fact?

Indeed there is a constructive proof if we observe that every integer n is either even or
odd but not both. Now one might object that we just relied on the law of the excluded
middle but there is a way to circumvent this problem by using induction; see Section 2.19
for a rigorous proof.

2.10. FORMAL VERSUS INFORMAL PROOFS 99

Now because an integer is odd iff it is not even, we may proceed to prove that if n?
1s even, then n is not odd, by using our constructive version of the proof-by-contradiction
principle, namely, —-introduction.

Proof. Therefore, assume that n? is even and that n is odd. Then n = 2k 4+ 1, which implies
that n? = 4k? + 4k + 1 = 2(2k* + 2k) + 1, an odd number, contradicting the fact that n? is
assumed to be even. O

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Proofs of these propositions are left as exercises (see the problems).

Proposition 2.5. All the propositions below are provable intuitionistically:

PVP=P
PAP=P
PvQ=QVP
PANQ=QANP.

The last two assert the commutativity of V and A. We have distributivity of A over V and
of V over A:

PAQVR)=(PAQ)V(PAR)
PV(QANR)=(PVQ)AN(PVR).

We have associativity of A\ and V:

PAQQAR)=(PAQ)AR
PV(QVR)=(PVQ)VR.

~—

2.10 Formal Versus Informal Proofs

As we said before, it is practically impossible to write formal proofs (i.e., proofs written
as proof trees using the rules of one of the systems presented earlier) of “real” statements
that are not “toy propositions.” This is because it would be extremely tedious and time-
consuming to write such proofs and these proofs would be huge and thus very hard to read.

What we do instead is to construct “informal” proofs in which we still make use of the
logical rules that we have presented but we take shortcuts and sometimes we even omit
proof steps (some elimination rules, such as A-elimination and some introduction rules,; such
as V-introduction) and we use a natural language (here, presumably, English) rather than
formal symbols (we say “and” for A, “or” for V, etc.). We refer the readetr to Section 1.8
for a discussion of these issues. We also urge our reader to read Chapter 3 of Gowers [2§]
which contains very illuminating remarks about the notion of proof in mathematics.

100 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Here is a concrete example illustrating the usefulnes of auxiliary lemmas in constructing
informal proofs.
Say we wish to prove the implication

S(PAQ) = ((-PA=Q)V (=P AQ)V (P A=Q)). (%)

It can be shown that the above proposition is not provable intuitionistically, so we have to
use the proof-by-contradiction method in our proof. One quickly realizes that any proof ends
up re-proving basic properties of A and V, such as associativity, commutativity, idempotence,
distributivity, and so on, some of the de Morgan laws, and that the complete proof is very
large. However, if we allow ourselves to use the de Morgan laws as well as various basic
properties of A and V, such as distributivity,

(ANB)VC=(ANC)V (BAC),

commutativity of A and V (AANB = BA A, AV B = BV A), associativity of A and V
(AN(BANC)=(AANB)ANC, AV (BVC(C)=(AV B)VC(C), and the idempotence of A and V
(ANA=A, AV A= A), then we get

(~P A=Q)V (<P AQ)V (P A Q)
= (P A-Q)V (=P A-Q)V (=P AQ)V (P A Q)
= (=P A-Q)V (~PAQ)V (<P A-Q)V (P A Q)
=(PA(-QVQ))V(mPA=Q)V (PA=Q)
=-PV(-PA-Q)V(PAN-Q)=-PV((-PVP)A-Q)=-PV-Q,
where we make implicit uses of commutativity and associativity, and the fact that R A (P V
—P) = R, and by de Morgan,
—|(P/\Q> =-PV-Q,

using auxiliary lemmas, we end up proving (*) without too much pain.

2.11 Truth Value Semantics for Classical Logic
Soundness and Completeness

In Section 1.9 we introduced the truth value semantics for classical propositional logic. The

logical connectives =, A, V, = and = can be interpreted as Boolean functions, that is,

functions whose arguments and whose values range over the set of truth values,

BOOL = {true, false}.

These functions are given by the following truth tables.

2.11. TRUTH VALUE SEMANTICS FOR CLASSICAL LOGIC 101

P Q P=Q PANQ|PVQ| =P | P=Q
true | true | true true | true | false | true
true | false | false false | true | false | false
false | true | true false | true | true | false
false | false | true false | false | true | true

Now any proposition P built up over the set of atomic propositions PS (our propositional
symbols) contains a finite set of propositional letters, say

{Py,...,P,}.

If we assign some truth value (from BOOL) to each symbol P; then we can “compute” the
truth value of P under this assignment by using recursively using the truth tables above.
For example, the proposition P; = (P; = P5), under the truth assignment v given by

P, = true, P, = false,

evaluates to false; see Section 1.9.

The values of a proposition can be determined by creating a truth table, in which a
proposition is evaluated by computing recursively the truth values of its subexpressions. See
Section 1.9.

The truth table of a proposition containing m variables has 2™ rows. When m is large,
2™ is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true

is hard.

Definition 2.9. We say that a proposition P is satisfiable iff it evaluates to true for some
truth assignment (taking values in BOOL) of the propositional symbols occurring in P,
and otherwise we say that it is unsatisfiable. A proposition P is valid (or a tautology) iff it
evaluates to true for all truth assignments of the propositional symbols occurring in P.

Observe that a proposition P is valid if in the truth table for P all the entries in the
column corresponding to P have the value true. The proposition P is satisfiable if some
entry in the column corresponding to P has the value true.

The problem of deciding whether a proposition is satisfiable is called the satisfiability
problem and is sometimes denoted by SAT. The problem of deciding whether a proposition
is valid is called the validity problem.

Example 2.3. For example, the proposition
P - (Pl V _|P2 V _|P3) N (_|P1 V _|P3) A (Pl V P2 V P4) N (_|P3 V P4) N <_‘P1 V P4)

is satisfiable because it evaluates to true under the truth assignment P; = true, P, = false,
P; = false, and P, = true.

102 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Example 2.4. On the other hand, the proposition
Q = (Pl V P2 V P3> N <_|P1 V P2) N <_|P2 V Pg) A (Pl V _|P3) A (_|P1 V _|P2 V _|P3)
is unsatisfiable as one can verify by trying all eight truth assignments for Py, P, Ps.

The reader should also verify that the proposition
R - (_|P1 N _|P2 A _|P3> V (Pl A\ _|P2> V (PQ A\ _|P3) V (_‘Pl A\ Pg) V (Pl N P2 A\ Pg)

is valid (observe that the proposition R is the negation of the proposition Q).

The satisfiability problem is a famous problem in computer science because of its com-
plexity. Try it; solving it is not as easy as you think. The difficulty is that if a proposition
P contains n distinct propositional letters, then there are 2™ possible truth assignments and
checking all of them is practically impossible when n is large.

In fact, the satisfiability problem turns out to be an NP-complete problem, a very im-
portant concept that you will learn about in a course on the theory of computation and
complexity. Very good expositions of this kind of material are found in Hopcroft, Motwani,
and Ullman [33] and Lewis and Papadimitriou [42]. The validity problem is also important
and it is related to SAT. Indeed, it is easy to see that a proposition P is valid iff =P is
unsatisfiable.

What’s the relationship between validity and provability in the system N>Vt (or
Ngc:s,/\,v,L)?

Remarkably, in classical logic, validity and provability are equivalent.

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable in the system N>Vt (or the system
NGZ"V4) then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof in the system N>Vt (or
/\/g?““). This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1). but proving (2) can be quite complicated. In
fact, some proof systems are not complete with respect to certain semantics. For instance,
the proof system for intuitionistic logic N7V (or NGV is not complete with respect
to truth value semantics. As an example, ((P = Q)) = P) = P (known as Peirce’s law), is
valid but it can be shown that it cannot be proven in intuitionistic logic.

In this book we content ourselves with soundness.

Proposition 2.6. (Soundness of N7""V'* and NG"V*) If a proposition P is provable in
the system N.7""V4 (or NGZ"VL) then it is valid (according to the truth value semantics).

Sketch of Proof. 1t is enough to prove that if there is a deduction of a proposition P from a
set of premises I' then for every truth assignment for which all the propositions in I' evaluate

2.11. TRUTH VALUE SEMANTICS FOR CLASSICAL LOGIC 103

to true, then P evaluates to true. However, this is clear for the axioms and every inference
rule preserves that property.

Now if P is provable, a proof of P has an empty set of premises and so P evaluates to
true for all truth assignments, which means that P is valid. O]

Theorem 2.7. (Completeness of N>Vt and NGZ"V+) If a proposition P is valid
(according to the truth value semantics), then P is provable in the system N>Vt (or

NQC:}’A’V’L).

Proofs of completeness for classical logic can be found in van Dalen [62] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 2.6) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterezample for P (or that P can be
falsified). For example, no propositional symbol P; is provable because it is falsified by the
truth assignment P; = false.

The soundness of the proof system N>V (or NGZV) also has the extremely im-
portant consequence that L cannot be proven in this system, which means that contradictory
statements cannot be derived.

This is by no means obvious at first sight, but reassuring. It is also possible to prove that
the proof system N>"V:1 is consistent (i.e., L cannot be proven) by purely proof-theoretic
means involving proof normalization (See Section 2.13), but this requires a lot more work.

Note that completeness amounts to the fact that every unprovable formula has a coun-
terezample. Also, in order to show that a proposition is classically provable, it suffices to
compute its truth table and check that the proposition is valid. This may still be a lot of
work, but it is a more “mechanical” process than attempting to find a proof.

Example 2.5. For example, here is a truth table showing that
(Pl = PQ) = (_|P1 \ PQ) is valid.

P, P, P,=Py| " P,VPy (Pl = PQ) = (_|P1 V PQ)
true | true true true true
true | false false false true
false | true true true true
false | false true true true

Remark: Truth value semantics is not the right kind of semantics for intuitionistic logic; it
is too coarse. A more subtle kind of semantics is required. Among the various semantics for
intuitionistic logic, one of the most natural is the notion of the Kripke model. Then again,

soundness and completeness hold for intuitionistic proof systems (see Section 2.12 and van
Dalen [62]).

104 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

2.12 Kripke Models for Intuitionistic Logic; Soundness
and Completeness

In this section, we briefly describe the semantics of intuitionistic propositional logic in terms
of Kripke models.

This section has been included to quench the thirst of those readers who can’t wait to
see what kind of decent semantics can be given for intuitionistic propositional logic and it
can be safely omitted.

In classical truth value semantics based on BOOL = {true, false}, we might say that
truth is absolute. The idea of Kripke semantics is that there is a set of worlds (or states)
W together with a partial ordering < on W, and that truth depends on which world we are
in. Furthermore, as we “go up” from a world u to a world v with v < v, truth “can only
increase,” that is, whatever is true in world u remains true in world v. Also, the truth of
some propositions, such as P = @) or =P, depends on “future worlds.” With this type of
semantics, which is no longer absolute, we can capture exactly the essence of intuitionistic
logic. We now make these ideas precise.

Figure 2.3: Saul Kripke, 1940-

Definition 2.10. A Kripke model for intuitionistic propositional logic is a pair K = (W, ¢),
where W is a partially ordered (nonempty) set called a set of worlds and ¢ is a function
@: W — BOOLF? such that for every u € W, the function ¢(u): PS — BOOL is an as-
signment of truth values to the propositional symbols in PS satisfying the following property.
For all u,v € W, for all P; € PS,

ifu <wvand ¢(u)(P;) = true, then p(v)(P;) = true.

As we said in our informal comments, truth can’t decrease when we move from a world
u to a world v with u < v but truth can increase; it is possible that ¢(u)(P;) = false and
vet o(v)(P;) = true.

Example 2.6. If W = {0, 1} ordered so that 0 < 1 and if ¢ is given by
©(0)(P;) = false
o(1)(P;) = true,

then Kpag = (W,) is a Kripke structure.

2.12. KRIPKE MODELS FOR INTUITIONISTIC LOGIC 105

We use Kripke models to define the semantics of propositions as follows.

Definition 2.11. Given a Kripke model K = (W,), for every u € W and for every
proposition P we say that P is satisfied by K at v and we write ¢(u)(P) = true iff

(a) If P =P; € PS, then ¢(u)(P;) = true.

(b) If P = Q A R, then ¢(u)(Q) = true and p(u)(R) = true.
(c) If P=@QV R, then ¢(u)(Q) = true or ¢(u)(R) = true.
)

(d) If P =Q = R, then for all v such that u < v, if p(v)(Q) = true,
then ¢(v)(R) = true.

(e) If P = =@, then for all v such that u < v, p(v)(Q) = false,
(f) p(u)(L) = false; that is, L is not satisfied by K at u (for any K and any).

In the above definition, “and” and “or” have their standard classical meaning as specified
in the truth table given in Section 2.11. We say that P is valid in IC (or that K is a model of
P) iff P is satisfied by IC = (W, ¢) at u for all w € W and we say that P is intuitionistically
valid iff P is valid in every Kripke model IC. When P is satisfied by IC at u € W we also say
that P s true at u in K.

Note that the truth at w € W of a proposition of the form () = R or = depends on
the truth of) and R at all “future worlds” v € W, with u < v. In the special case of
(d) where R =1, namely P = Q =1, we see that for any u € W, p(u)(Q =L1) = true
iff p(u)(—Q) = true, so Q) and) =1 are indeed semantically equivalent. In particular,
for any u € W, we have p(u)(—=Q) = false iff there is some v € W such that v < v and
#(0)(Q) = true.

Also observe that classical truth value semantics corresponds to the special case where
W consists of a single element (a single world).

Example 2.7. Given the Kripke structure K.q defined earlier, the reader should check
that the proposition P = (P; V =P;) has the value false at 0 because ¢(0)(P;) = false, but
©(1)(P;) = true, so Clause (e) fails for =P; at u = 0. Therefore, P = (P; V =P;) is not
valid in Ky,.q and thus, it is not intuitionistically valid. We escaped the classical truth value
semantics by using a universe with two worlds.

The reader should also check that
o(u)(=—=P) =true iff for all v such that u <wv

there is some w with v < w so that p(w)(P) = true.

This shows that in Kripke semantics, == P is weaker than P, in the sense that p(u)(——P) =
true does not necessarily imply that ¢(u)(P) = true. The reader should also check that
the proposition =—P; = P; is not valid in the Kripke structure Kp.q.

As we said in the previous section, Kripke semantics is a perfect fit to intuitionistic
provability in the sense that soundness and completeness hold.

106 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Proposition 2.8. (Soundness of /\/?’/\’v’L and /\/’Q?’A’V’L) If a proposition P is provable
i the system ./\ff’/\’v’l (or NQ?’A’v’l), then 1t is valid in every Kripke model, that s, it 1s
intuitionistically valid.

Proposition 2.8 is not hard to prove. We consider any deduction of a proposition P from
a set of premises I and we prove that for every Kripke model IC = (W, ¢), for every u € W,
if every premise in I' is satisfied by K at u, then P is also satisfied by IC at . This is obvious
for the axioms and it is easy to see that the inference rules preserve this property.
Completeness also holds, but it is harder to prove (see van Dalen [62]).

Theorem 2.9. (Completeness of N7V and NGV) If a proposition P is intuition-
istically valid, then P is provable in the system N>V (or NGt).

Another proof of completeness for a different proof system for propositional intuitionistic
logic (a Gentzen-sequent calculus equivalent to N'G:""") is given in Takeuti [60]. We
find this proof more instructive than van Dalen’s proof. This proof also shows that if a
proposition P is not intuitionistically provable, then there is a Kripke model K where W is
a finite tree in which P is not valid. Such a Kripke model is called a counterexample for P.

Several times in this chapter we have claimed that certain formulae are not provable in
some logical system. What kind of reasoning do we use to validate such claims? In the next
section we briefly address this question as well as related ones.

2.13 Decision Procedures, Proof Normalization

In the previous sections we saw how the rules of mathematical reasoning can be formalized
in various natural deduction systems and we defined a precise notion of proof. We observed
that finding a proof for a given proposition was not a simple matter, nor was it to acertain
that a proposition is unprovable. Thus, it is natural to ask the following question.

The Decision Problem: Is there a general procedure that takes any arbitrary proposition
P as input, always terminates in a finite number of steps, and tells us whether P is provable?

Clearly, it would be very nice if such a procedure existed, especially if it also produced a
proof of P when P is provable.

Unfortunately, for rich enough languages, such as first-order logic (discussed in Section
2.16) it is impossible to find such a procedure. This deep result known as the undecidability of
the decision problem or Church’s theorem was proven by A. Church in 1936 (actually, Church
proved the undecidability of the validity problem but, by Godel’s completeness theorem,
validity and provability are equivalent).

Proving Church’s theorem is hard and a lot of work. One needs to develop a good deal of
what is called the theory of computation. This involves defining models of computation such
as Turing machines and proving other deep results such as the undecidability of the halting
problem and the undecidability of the Post correspondence problem, among other things; see
Hopcroft, Motwani, and Ullman [33] and Lewis and Papadimitriou [42].

2.13. DECISION PROCEDURES, PROOF NORMALIZATION 107

.
& ‘
‘e —
P o
W=

Jy

£

A
i _

Figure 2.4: Alonzo Church, 1903-1995 (left) and Alan Turing, 1912-1954 (right)

So our hopes to find a “universal theorem prover” are crushed. However, if we restrict
ourselves to propositional logic, classical or intuitionistic, it turns out that procedures solving
the decision problem do exist and they even produce a proof of the input proposition when
that proposition is provable.

Unfortunately, proving that such procedures exist, and are correct in the propositional
case is rather difficult, especially for intuitionistic logic. The difficulties have a lot to do
with our choice of a natural deduction system. Indeed, even for the system N~ (or NG,),
provable propositions may have infinitely many proofs. This makes the search process impos-
sible; when do we know how to stop, especially if a proposition is not provable. The problem
is that proofs may contain redundancies (Gentzen said “detours”). A typical example of
redundancy is when an elimination immediately follows an introduction, as in the following
example in which we abbreviate (R = R) as P.

y:(P=Q) —(P=Q) a:P—=P

z: (R=R),y: (R=R)=Q)—Q

z:(R=R) - (R=R)=0Q)=Q 2 R— R

—-(R=R=((R>=R=Q)=Q) —R=R
- (R=R)=0Q)=Q

The blue deduction already has ((R = R) = @) = @ as conclusion but it is not a proof
because the assumption x: (R = R) is present. However we have a proof of R = R, namely

z: R— R
—R=R

We can obtain a proof of ((R = R) = () = @ from the blue deduction tree by replacing
the leaf labeled z: (R = R) — (R = R) by the proof tree for R = R, obtaining

z2:R— R
y: ((R=R)=Q)— (R=R)= Q) — R=R

z: (R=R),y: (R=R)=Q)—Q
z:(R=R) - (R=R)=Q)=Q

108 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

The above is not quite a proof tree, but it becomes one if we delete the premise z: (R =
R) which is now redundant.

z: R— R

y: ((R=R)= Q) — (R=R)= Q) — R=R
y: (R=R)=Q)—Q
- ((R=R)=Q)=Q

The procedure that we just described for eliminating a redundancy can be general-
ized. Consider the deduction tree below in which D; denotes a deduction with conclusion
I'yx: A— B and D, denotes a deduction with conclusion A — A.

D,
INz: A— B D,
I'—-A=2H A—= A

T'uUA—=B

It should be possible to construct a deduction for I' = B from the two deductions D;
and D, without using at all the hypothesis x: A. This is indeed the case. If we look closely
at the deduction D;, from the shape of the inference rules, assumptions are never created,
and the leaves must be labeled with expressions of the form either

(1) T)Ajxz: A— A, or
(2) " Ajx: Ajy: C - CifI'=1"y: C and y # x, or
(3) IAjz: Ay: C - Cify: C ¢ T and y # x.

We can form a new deduction for I' — B as follows. In D;, wherever a leaf of the form
I'A,x: A — A occurs, replace it by the deduction obtained from D, by adding A to the
premise of each sequent in Dj.

In our previous example, we have A= (R= R), B=((R=R)=Q)=Q,C=(R=
R)=Q,T=A=A=0.

Actually, one should be careful to first make a fresh copy of Dy by renaming all the
variables so that clashes with variables in D; are avoided. Finally, delete the assumption
x: A from the premise of every sequent in the resulting proof. The resulting deduction is
obtained by a kind of substitution and may be denoted as D;[Ds/x], with some minor abuse
of notation. Note that the assumptions x: A occurring in the leaves of type (2) or (3) were
never used anyway. The step that consists in transforming the above redundant proof figure
into the deduction D;[Dy/x] is called a reduction step or normalization step.

The idea of proof normalization goes back to Gentzen ([22], 1935). Gentzen noted that
(formal) proofs can contain redundancies, or “detours,” and that most complications in the
analysis of proofs are due to these redundancies. Thus, Gentzen had the idea that the analysis
of proofs would be simplified if it were possible to show that every proof can be converted to

2.13. DECISION PROCEDURES, PROOF NORMALIZATION 109

Figure 2.5: Haskell B. Curry, 1900-1982

an equivalent irredundant proof, a proof in normal form. Gentzen proved a technical result
to that effect, the “cut-elimination theorem,” for a sequent-calculus formulation of first-order
logic [22]. Cut-free proofs are direct, in the sense that they never use auxiliary lemmas via
the cut rule.

Remark: It is important to note that Gentzen’s result gives a particular algorithm to pro-
duce a proof in normal form. Thus we know that every proof can be reduced to some normal
form using a specific strategy, but there may be more than one normal form, and certain
normalization strategies may not terminate.

About 30 years later, Prawitz ([50], 1965) reconsidered the issue of proof normalization,
but in the framework of natural deduction rather than the framework of sequent calculi.!
Prawitz explained very clearly what redundancies are in systems of natural deduction, and
he proved that every proof can be reduced to a normal form. Furthermore, this normal
form is unique. A few years later, Prawitz ([51], 1971) showed that in fact, every reduction
sequence terminates, a property also called strong normalization.

A remarkable connection between proof normalization and the notion of computation
must also be mentioned. Curry (1958) made the remarkably insightful observation that
certain typed combinators can be viewed as representations of proofs (in a Hilbert system)
of certain propositions. (See in Curry and Feys [7] (1958), Chapter 9E, Pages 312-315.)

Building up on this observation, Howard ([34], 1969) described a general correspon-
dence among propositions and types, proofs in natural deduction and certain typed A-terms,
and proof normalization and S-reduction (The simply typed A-calculus was invented by
Church, 1940). This correspondence, usually referred to as the Curry—Howard isomorphism
or formulae-as-types principle, is fundamental and very fruitful.

Let us elaborate on this correspondence.

IThis is somewhat ironical, inasmuch as Gentzen began his investigations using a natural deduction
system, but decided to switch to sequent calculi (known as Gentzen systems) for technical reasons.

110 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

2.14 The Simply-Typed M-Calculus

First we need to define the simply-typed A-calculus and the first step is to define simple types.
We assume that we have a countable set {To, T1,..., Ty, ...} of base types (or atomic types).

For example, the base types may include types such as Nat for the natural numbers, Bool
for the booleans, String for strings, Tree for trees, etc. In the Curry—Howard isomorphism
they correspond to the propositional symbols {Pg,Py,... . P,,...}.

Definition 2.12. The simple types o are defined inductively as follows.
(1) If T; is a base type, then T; is a simple type.
(2) If o and 7 are simple types, then (¢ — 7) is a simple type.

Thus (Ty — T4), (T; — (T2 — Ty)), ((T; — Ty) — T4), are simple types.

The standard abbreviation for (o7 — (02 = (+-- = 0,))) is 01 = 09 — -+ — 0Op.

There is obviously a bijection between propositions and simple types. Every propositional
symbol P; can be viewed as a base type, and the proposition (P = @) corresponds to the
simple type (P — Q). The only difference is that the custom is to use = to denote logical
implication and — for simple types. The reason is that intuitively a simple type (¢ — 7)
corresponds to a set of functions from a domain of type o to a range of type 7.

The next crucial step is to define simply-typed A-terms. This is done in two stages. First
we define raw simply-typed A\-terms. They have a simple inductive definition but they do not
necessarily type-check so we define some type-checking rules that turn out to be the Gentzen-
style deduction proof rules annotated with simply-typed A-terms. These simply-typed A-terms
are representations of natural deductions.

We have a countable set of variables {xg,z1,...,x, ...} that correspond to the atomic
raw A-terms. These are also the variables that are used for tagging assumptions when
constructing deductions.

Definition 2.13. The raw simply-typed \-terms (for short raw terms or A-terms) M are
defined inductively as follows.

(1) If x; is a variable, then z; is a raw term.
(2) If M and N are raw terms, then (M N) is a raw term called an application.

(3) If M is a raw term, o is a simple type, and x is a variable, then the expression
(Ax: 0. M) is a raw term called a \-abstraction.

Matching parentheses may be dropped or added for convenience.

Definition 2.14. In a raw A-term M, a variable x appearing in an expression Ax: o is said
to be bound in M. The other variables in M (if any) are said to be free in M. A A-term M
is closed if it has no free variables.

2.14. THE SIMPLY-TYPED A\-CALCULUS 111

Example 2.8. For example, in the term Az : o. (yz), the variable z is bound and the variable
y is free. This term is not closed.
The term \y: 0 — 0. (A\x: 0. (yz)) is closed.

The intuition is that a term of the form Az: 0. M represents a function. How such a
function operates will be defined in terms of S-reduction.

Definition 2.15. The depth d(M) of a raw A-term M is defined inductively as follows.
1. If M is a variable z, then d(z) = 0.
2. If M is an application (M;Ms), then d(M) = max{d(M,),d(Ms)} + 1.
3. If M is a A-abstraction (Ax: 0. My), then d(M) = d(M;) + 1.
It is pretty clear that raw A-terms have representations as (ordered) labeled trees.

Definition 2.16. Given a raw A-term M, the tree tree(M) representing M is defined induc-
tively as follows.

1. If M is a variable x, then tree(M) is the one-node tree labeled z.

2. If M is an application (M;Ms), then tree(M) is the tree with a binary root node labeled
. and with a left subtree tree(M;) and a right subtree tree(M,).

3. If M is a A-abstraction (Az: 0. M), then tree(M) is the tree with a unary root node
labeled A\x: o and with one subtree tree(M).

Definition 2.16 is illustrated in Figure 2.6.

Obviously, the depth d(M) of raw A-term is the depth of its tree representation tree(M).

Definition 2.16 could be used to deal with bound variables. For every leaf labeled with a
bound variable z, we draw a backpointer to an ancestor of x determined as follows. Given
a leaf labeled with a bound variable z, climb up to the closest ancestor labeled Ax: o, and
draw a backpointer to this node. Then all bound variables can be erased. See Figure 2.7 for
an example.

Definition 2.13 allows the construction of undesirable terms such as (zx) or
(Ax: 0. (xx))(Ax: 0. (zx)) because no type-checking is done. Part of the problem is that the
variables occurring in a raw term have not been assigned types. This can be done using a
context (or type assignment).

Definition 2.17. A context (or type assignment) is a set of pairs I' = {x1: 01, ..., 2,: 0},
where the o; are simple types and the variables x; are pairwise distinct. The domain of T',
denoted dom(T"), is the set of variables {x1,...,z,}.

Once a type assignment has been provided, the type-checking rules are basically the proof
rules of natural deduction in Gentzen-style.

112 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

M=x .X M=(M1M2)
tree (M)
M =Ax:o « M4 o
tree(M)

tree(Vy)

tree(My)

Figure 2.6: The tree tree(M) associated with a raw A-term M.

Definition 2.18. The fact that a raw term M has type o given a type assignment I' that
assigns types to all the free variables in M is written as

I'>s M: o.

Such an expression is called a judgement. The symbol > is used instead of the symbol —
because — occurs in simple types.

Here are the typing-checking rules.
Definition 2.19. The type-checking rules of the simply-typed A-calculus A~ are listed below:
Cx:o>z:0 (axioms)

Le:o> M: 1

bstracti
> Ae:0.M):o—T (abstraction)

I's M:o—=17 Ap> N:o

leats
TUA> (MN): 7 (application)

In the axioms and in the (abstraction) rule, it is assumed that z: o ¢ I". In the (appli-
cation) rule, it is assumed that I" and A are consistent, which means that if z: 0y € I and
x: 09 € A, then 0y = 9. We write - I'> M : o to express that the judgement I'> M : o is
provable. Given a raw simply-typed A-term M, if there is a type-assigment I" and a simple
type o such that the judgement I'> M : o is provable, we say that M type-checks with type
.

2.14. THE SIMPLY-TYPED A\-CALCULUS 113

Figure 2.7: Using backpointers to deal with bound variables.

It can be shown by induction on the depth of raw terms that for a fixed type-assigment
I, if a raw simply-typed A-term M type-checks with some simple type o, then ¢ is unique.
The correspondence between proofs in natural deduction and simply-typed A-terms (the
Curry /Howard isomorphism) is now clear: the abstraction rule corresponds to implication-
introduction, the application rule corresponds to implication elimination, and the blue term
is a representation of the deduction of the sequents I';z: 0 - 0, ' >0 = r,andTUA — 7,

with the types 0,0 — 7 and 7 viewed as propositions. Note that proofs correspond to closed
A-terms.

Example 2.9. For example, we have the type-checking proof
z: R> 2: R
y: ((R—R)—=Q)>y: (R— R) = Q) pAz: R.z: R— R
y: (R—R) = Q)> y(Az: R.2): Q
>Ay: (R—R) = Q) yAz: Rz2):(R—-R)— Q) —>Q
which shows that the simply-typed A-term

M=MXy: ((R—R)—Q).y(\z: R.2)
represents the proof
z2: R— R
y: (R=R)=Q)— (R=R)=Q) —R=R
y: (R=R)=Q) = Q
- (R=R)=Q)=Q

114 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

The proposition ((R = R) = Q) = @ being proven corresponds to the type (R —
R) = Q) — Q of the A\-term M.

The tree representing the Ad-term M = Ay: (R = R) = Q).y(\z: R.z) is shown in
Figure 2.8.

7T @ Ay: (R=R)=Q)

Tree(M) |

Figure 2.8: The tree representation of the A-term M.

Furthermore, and this is the deepest aspect of the Curry/Howard isomorphism, proof
normalization corresponds to S-reduction in the simply-typed A-calculus.
The notion of S-reduction is defined in terms of substitutions.

Definition 2.20. A substitution ¢ is a finite set of pairs ¢ = {(z1, N1), ..., (zn, N,)}, where
the z; are distinct variables and the N; are raw A-terms. We write

o =[N1/x1,...,Np/x,] or =[xy :=Nyi,...,z, := N,

The second notation indicates more clearly that each term N; is substituted for the variable
x; and it seems to have been almost universally adopted.

Given a substitution ¢ = [z; := Ny,...,x, := N,], for any variable z;, we denote by
¢_,, the new substitution where the pair (x;, IV;) is replaced by the pair (x;, x;) (that is, the
new substitution leaves z; unchanged).

Definition 2.21. Given any raw A-term M and any substitution ¢ = [x; := Ny,...,z, :=
N,], we define the raw A-term M][p], the result of applying the substitution ¢ to M, as
follows:

(1) If M =y, with y # x; for i = 1,...,n, then M[p] =y = M.

(2) If M = z; for some i € {1,...,n}, then M[p| = N;.

2.14. THE SIMPLY-TYPED A\-CALCULUS 115

(3) If M = (PQ), then M[p] = (P[¢]Q[¢])-
(4) UM =Xz:0.Nand x # x; for i =1,...,n, then M[p] = Ax: 0. N[yp)].

(5) If M = Az: 0. N and x = z; for some 7 € {1,...,n}, then
Mlp] = Az: 0. N[p|_s,.

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term N; containing the free variable x causes this
variable to become bound after the substitution. We say that = is captured.

To remedy this problem, Church defined «-conversion.

Definition 2.22. The idea of a-conversion is that in a raw term M, any subterm of the
form Az: 0. P can be replaced by the subterm Az: 0. Plx := z] where z is a new variable not
occurring at all (free or bound) in M to obtain a new term M’. We write M =, M’ and we
view M and M’ as equivalent.

Example 2.10. For example, \z: 0.yx =, A\z: 0.yz and
Ay: o — 0. (A\x: 0.yz) =4 Aw: 0 — 0. (A\z: 0. wz).
The variables z and y are just place-holders.

Then given a raw A-term M and a substitution ¢ = [x; := Ny..., x, := N,|, before
applying ¢ to M we first apply some a-conversion to rename all bound variables in M
obtaining M’ =, M so that they do not occur in any of the Nj;, and then safely apply the
substitution ¢ to M’ without any capture of variables. We say that the term M’ is safe for
the substitution ¢.

The details are a bit tedious and we omit them. We refer the interested reader to Section
5.1 and to Gallier [19] for a comprehensive discussion.

The following result shows that substitutions behave well with respect to type-checking.
Given a context I' = {x1: 01,...,2,: 0,}, we let ['(x;) = o;.

Proposition 2.10. For any raw A-term M and any substitution ¢ = [xq := Ny,..., T, :=
N,|, whose domain contains the set of free variables of M, if the judgement I'> M: T is
provable for some context I' and some simple type T, and if there is some context A such that
for every free variable x; in M the judgement A> N;: I'(z;) is provable, then there some
M' =, M such that the judgment A M'[p]: T is provable.

Finally we define S-reduction and S-conversion as follows.

Definition 2.23. The relation —g, called immediate B-reduction, is the smallest relation
satisfying the following properties for all raw A-terms M, N, P, Q):

(Ax: 0. M)N — 43 M|z := N]

116 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

provided that M is safe for [z := NJ;

M —s N M —3 N
: for all P,Q (congruence)
MQ —;NQ PM —,; PN
M —pg N
2 for all o. (&)

Ao M —g A\x: o.N’

The transitive closure of —4 is denoted by im, the reflexive and transitive closure of
—p is denoted by L)g, and we define (-conversion, denoted by <L>5, as the smallest
equivalence relation <3 = (—3 U —5')* containing —s.

Example 2.11. For example, we have

(Au: 0. (vu)) (Az: 0 = 0. (zy))(Az: 0.2)) —5
(Au: 0. (vu))(Az: 0 = 0. (zy))[z == (A\z: 0.2)] = (Au: 0. (vu)) ((Az: 0. 2)y)
—p (Au: 0. (vu))zlz =y = (\u: 0. (vu))y —5 (vu)[u = y] = vy.

In the above, S-reduction steps are applied to the blue subterms.

The following result shows that S-reduction (and §-conversion) behave well with respect
to type-checking.

Proposition 2.11. For any two raw A-terms M and N, if there is a proof of the judgement

I'> M: o for some context I' and some simple type o, and if M L)/g N (or M <L>5 N),
then the judgement I'> N : o is provable. Thus [-reduction and [-conversion preserve type-
checking.

Definition 2.24. We say that a A\-term M is S-irreducible or a B-normal form if there is
no term N such that M —5 N.

The fundamental result about the simply-typed A-calculus is this.

Theorem 2.12. For every raw A-term M, if M type-checks, which means that there a
provable judgement I'> M : o for some context I' and some simple type o, then the following
results hold.

(1) If M L)g M, and M L)g M,, then there is some Ms such that M, L>5 Ms and
My 55 M3. We say that —4 is confluent.

2) Every reduction sequence M 55 N is finite. We that that the simply-typed A-calculus
B
is strongly normalizing (for short, SN).

As a consequence of (1) and (2), there is a unique [-irreducible term N (called a B-normal
form) such that M —=43 N.

2.14. THE SIMPLY-TYPED A\-CALCULUS 117

A proof of Theorem 2.12 can be found in Gallier [17]. See also Gallier [19] which contains
a thorough discussion of the techniques involved in proving these results.
In Theorem 2.12, the fact that the term M type-checks is crucial. Indeed the term

(Az. (zx))(Az. (zx)),

which does not type-check (we omitted the type tags o of the variable x since they do not
play any role), gives rise to an infinite S-reduction sequence!

In summary, the correspondence between proofs in intuitionistic logic and typed A-terms
on one hand and between proof normalization and S-reduction, can be used to translate
results about typed A-terms into results about proofs in intuitionistic logic. These results
can be generalized to typed A-calculi with product types and union types; see Gallier [17].

Since certain raw terms type check but others do not, three natural questions arise.

(1) Given a raw term M and a simple type o, is there a type assigment I' = {x;: o1, ...,
Ty 0} of the set {x1,...,2,} of free variables in M such that I'> M: o is provable,
that is, M type checks with type o. This is the type checking problem.

(2) Given a raw term M, is there a type assigment I' = {x;: 01,...,x,: 0,} of the set
{z1,...,2,} of free variables in M and some type o such that I'> M: o is provable.
This is the typability problem (or type inferencing problem).

(3) Given a type o, is there a closed term M such that > M : o is provable. This is the
inhabitation problem.

Observe that the inhabitation problem is equivalent to deciding whether a proposition
is provable in propositional intuitionistic logic. Using some suitable intuitionistic sequent
calculi and Gentzen’s cut elimination theorem or some suitable typed A-calculi and (strong)
normalization results about them, it is possible to prove that there is a decision procedure
for propositional intuitionistic logic. However, it can also be shown that the time-complexity
of any such procedure is very high. As a matter of fact, it was shown by Statman (1979) that
deciding whether a proposition is intuitionisticaly provable is P-space complete; see [57] and
Section 15.4. Here, we are alluding to complezity theory, another active area of computer
science; see Hopcroft, Motwani, and Ullman [33] and Lewis and Papadimitriou [42].

There is an algorithm to solve the typability problem that makes use of well-known
concepts of theorem-proving, namely unification and most general unifiers; see Selinger [55]
and Gallier [21]. To understand where this comes from, consider typing the raw term

AT 01.\Y: 09.Yx,
where o1 and 09 are unknown types. To deduce a proof of Ax: 1. A\y: 05.yx: 7 where oy, 09, 7

are unknown types, in order to respect the type checking rules, the derivation constructed
from the bottom-up must be of the following form:

118 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

y: o> y: X =»Y r:o>x: X

x: o,y 09> yxr:Y

xio1> Ay og.yx: Z = (09 —>Y)

DAL 01.\Y: og.yx: T = (07 = Z)

for some unknown types X,Y, Z. For the leaf nodes to be axioms, we must have o; = X,
o9 = (X —Y), which implies that Z = (X - Y) = Y) and

T=X—=(X=>Y)=Y)).
So we have an infinite number of solutions, among which we have

o1 — (<0'1 — 0'1) — 0'1)
(o1 = 02) = (((01 = 02) = 02) — 02)
o1 — (<0'1 — (0'1 — 0'2)) — (0'1 — 0'2)).

The most general solution is X — ((X — Y) — Y), where X and Y are variables
ranging over all types.

To make all this precise, we allow type variables in the construction of simple types and we
introduce type substitutions of the form ¢ = {X; := 01,..., X}, := 0, }, where X;, ..., X,, are
type variables and o4, . . . , 0,, are simple types possibly containing type variables. Technically,
a type substitution is a map ¢ from the countable set of all type variables to the set of simple
types built up from base types and type variables using —, such that ¢(X;) # X; for only
finitely many variables. With this convention, when defining a substitution ¢ as a set of
pairs ¢ = [X; = 01,..., X, 1= 0,], we assume that o; # X; for i = 1,...,n, so we do not
include pairs for all the other variables X; for which p(X;) = Xj.

Definition 2.25. Given any simple type o (possibly containing type variables) and any
type substitution ¢ = [X; := 0y,..., X,, := 0, where Xi,..., X, are type variables and
o1, ...,0, are simple types, we define the type olp], the result of applying the substitution ¢
to o, as follows.

(1) If o =Y (where Y is a type variable) with Y # X, fori =1,...,n, then op] =Y = 0.
(2) If 0 = X, for some ¢ € {1,...,n}, then olp] = o;.

(3) If o = T; (a base type), then olp] =T; = 0.

(4) If 0 = (01 — 03), then olp] = (o1[p] = 02[p]).

A type substitution ¢ has a unique extension @ to all simple types defined by

2.14. THE SIMPLY-TYPED A\-CALCULUS 119

for all simple types 0. Given two substitutions ¢ and), the substitution @Z o ¢ is denoted

P, S0 R
(p)(Xs) = P(p(X3)) = (0(Xi)[¥] = ai[v] = (Xile)) [¥].

It is easy to prove by induction on the size of ¢ that

~ -~

olpy] = (ole)] = ¢(ole]) = (0 §)(0),

namely g;z\/; = 2//; o®. Note when the substitution ¢ is applied to a term o, the substitution ¢
is applied first, and then the substitition 1) is applied. Beware that @i is not the composition
1 o p, which does not make any sense.

Example 2.12. Consider the substitutions ¢ and v given by

o =1X1:= (01 = Xu), X3:= (01 = X1), X4 := X
¢ = [XQ = 03, X4 = (02 — XQ), X5 =)(4]7

where X7, Xo, X3, X4, X5 are type variables and oy, 05, 03 are base types. Then we have
o = [X = (01 = (02 = X3)), Xo =03, X3 := (01 = X1), X5 := Xy
Since ¢(X4) = X5 and ¢¥(X5) = X4, we have
U (Xy) = (0(Xa))[X5 := Xo] = Xs[X5 1= Xy] = Xy,

which is why we did not include a pair with left-hand side X4 in ¢.

If
o = (X2 — X3) — ((Xl — Xl) — (X4 — X5)),
then
O'[QO] = (X2 — (0'1 — Xl)) — (((0'1 — X4) — (0'1 — X4)) — (X5 — X5)),
and

(ole))[] = (05 = (01 = X1)) = (((01 = (02 = X2)) = (01 = (02 = X3)))
— (X4 — X4>)

We verify immediateley that (o[p])[1] is indeed equal to olpv)].

Given two types o1 and 0y, a unifier of o, and o4 is a substitution ¢ defined on the type
variables in o; and o9 such that

o1le] = o2le].
For example, if o1 = ((X4 — X4) — X5) and Oy = (Xl — <X2 — Xg)), then

o =[X1 = (X4 = Xy), X5 :=(Xy — X3)]

120 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

is a unifier since
o1lp] = oafp] = (Xy = Xy) = (X2 = X3)).

It turns out that if two types oy and o, are unifiable, then there is some most general
unifier (or mgu) ¢, which means that for every other unifier v of o; and oy there is some
other substitution # such that ¢ = pf. Note that mgu’s are not unique, but they are up to
a bijective substitution that renames variables.

Using an algorithm mgu(oy,03) to find a most general unifiers of oy and oy if it exists
(and return failure otherwise), we can design an algorithm typesub deciding whether a raw
term M is typable. We biefly describe the method presented in Selinger [55] (Section 9.5).
Other methods can be foumd in Hindley [32] and Milner [45]. This algorithm takes as input
a judgement I'> M: 7 where I' = {x1: 01,...,2,: 0,} is a type assignment of the free
variables in M. The types o;, 7 and the types of the bound variables in M, may contain
type variables. Given a type substitution ¢, we denote by I'[¢] the type assignment

Clg] = {1t 01lel, - 20t 0ul]}.

Given I'> M : 7, the algorithm either returns failure if M is not typable, or typesub returns
a type substitution ¢ of the type variables occurring in the types o;, 7, and the types of the
bound variables in M, denoted typesub(I'> M : 7), such that I'[¢] > M|yp]: 7[¢] is provable
and ¢ is a most general substitution, which means that for any other type substitution v
with the above property, we have 1 = ¢ for some substitution #. The algorithm typesub
has three cases.

(1) If M = z;, then

typesub(zy: 01, ..., &, 0, > ;0 T) = mgu(oy, 7).

(2) If M = M; Ny, then in order to compute typesub(I'> (M;Ny): 7), for any splitting of
['as I' =T'; U, for two consistent contexts I'y and I'y such that FV(M;) C dom(I'y)
and FV(N;) C dom(I'y), first we find ¢ = typesub(I'; > M;: X — 7) for some new
type variable X, then we find the substitution ps = typesub(I's[p1] > Ni[p1]: X[e1]),
and then typesub(I'> (M1Ny): 7) = p1p9.

(3) If M = (Ax: 0. M), then in order to compute typesub(I' > (Az: 0. My): 7), first
we find ;3 = mgu(r,0 — X), where X is a new type variable, then we find ps =
typesub(I'[¢1], z: ofp1]> Mi[p1]: Xp1]), and then typesub(I'> (Az: 0. My): 7) = p1¢2.

Peter Selinger explained to the first author that in the case of an application M; Ny,
all we know is that M; must have an arrow type of the form X — 7 for some new type
variable X, and no other candidate for the type of M; is provided. However, in the case of
a A-abstraction Az: o. My, the term Ax: 0. M; must have an arrow type of the form ¢ — X
for some new type variable X, and since it already has the type 7, it is natural to unify 7
and 0 — X.

2.14. THE SIMPLY-TYPED A\-CALCULUS 121

If the algorithm succeeds, it returns a type substitution ¢ = typesub(I'> M: 7) such
that 7[p] is a type of M[p] with respect to the type assignment I'[¢] of the free variables in
M that we call a principal type (also known as principal type scheme).

Example 2.13. Let us apply the algorithm to the judgement
>Ar: X1 \y: (Xy = Xo).yz: (U—-U) —=V),

where X, X, U,V are type variables.
We are in Case 3, so we have to find mgu(((U — U) — V), X; — X), for a new variable
X. We obtain the substitution

(X1 =U—=U), X:=V].
The next step is to apply the algorithm to the result of applying the above substitution to
Az Xqp Ay: (Xy — Xo).yz: X,

namely

Ae: (U—=U)e Ay: (U—U) = Xg).yz: V,

so we are again in Case 3. We need to find mgu((((U — U) — X3) — Z),V), for a new
variable Z. We obtain the substitution

V:i=(((U—=U)— X)) = 2)].
The next step is to apply the algorithm to the result of applying the above substitution to
Ax: (U—=U)y: (U—=U)— Xy)> yx: Z,
which yields the same judgement
Ae: (U—=U),y: (U—=U) = Xo)> yx: Z.
This time we are in Case 2, so we need to consider
y: (U—=U) = Xo)>y: Y = Z,

where Y is a new variable. We need to find mgu(((U — U) — X5),Y — Z), which yield the
substitution
Y :=(U—=VU), Z:=X,|.

Then we consider the result of applying the above substitution to
z: (U—=U)p z:Y,

namely

z:(U—=U)p> x: (U—U),

122 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

which is OK. So by back-substitution,

Y:=U=U),Z:=Xy,V:=(U—=U) = X5) = Xo,
X1 =U—-U), X =((U—=U) = X;3) = X5,

and the most general type is obtained by applying the above substitution to (X; — X),
namely

(U—=U)—= ((U—=U) = Xz) = X5).

The type-checking problem reduces to the typability problem. First we use the algorithm
to decide whether M is typable. If so, we find a principal type 7, and then we check that 7
and o (which has no type variables) are unifiable.

Readers who wish to learn more about these topics can read Selinger [55], Pierce [48], and
the two survey papers Gallier [17] (On the Correspondence Between Proofs and A-Terms)
and Gallier [16] (A Tutorial on Proof Systems and Typed A-Calculi), both available on the
website http: //www.seas.upenn.edu/jean/gbooks/logic.html, and the excellent introduction
to proof theory by Troelstra and Schwichtenberg [61].

Anybody who really wants to understand logic should of course take a look at Kleene
[36] (the famous “I.M.”), but this is not recommended to beginners.

Figure 2.9: Stephen C. Kleene, 1909-1994

2.15 Completeness and Counter-Examples

Let us return to the question of deciding whether a proposition is not provable. To simplify
the discussion, let us restrict our attention to propositional classical logic. So far, we have
presented a very proof-theoretic view of logic, that is, a view based on the notion of prov-
ability as opposed to a more semantic view of based on the notions of truth and models. A
possible excuse for our bias is that, as Peter Andrews (from CMU) puts it, “truth is elusive.”
Therefore, it is simpler to understand what truth is in terms of the more “mechanical” notion
of provability. (Peter Andrews even gave the subtitle To Truth Through Proof to his logic
book Andrews [1].)

2.15. COMPLETENESS AND COUNTER-EXAMPLES 123

Figure 2.10: Peter Andrews, 1937—

However, mathematicians are not mechanical theorem provers (even if they prove lots of
stuff). Indeed, mathematicians almost always think of the objects they deal with (functions,
curves, surfaces, groups, rings, etc.) as rather concrete objects (even if they may not seem
concrete to the uninitiated) and not as abstract entities solely characterized by arcane axioms.

It is indeed natural and fruitful to try to interpret formal statements semantically. For
propositional classical logic, this can be done quite easily if we interpret atomic propositional
letters using the truth values true and false, as explained in Section 2.11. Then, the crucial
point is that every provable proposition (say in ./\/'QC:}’V’/\’L) has the value true no matter
how we assign truth values to the letters in our proposition. In this case, we say that P is
valid.

The fact that provability implies validity is called soundness or consistency of the proof
system. The soundness of the proof system N'GZ¥"" is easy to prove, as sketched in Section
2.11.

We now have a method to show that a proposition P is not provable: find some truth
assignment that makes P false.

Such an assignment falsifying P is called a counterezample. If P has a counterexample,
then it can’t be provable because if it were, then by soundness it would be true for all
possible truth assignments.

But now, another question comes up. If a proposition is not provable, can we always find
a counterexample for it? Equivalently, is every valid proposition provable? If every valid
proposition is provable, we say that our proof system is complete (this is the completeness
of our system).

The system N Q?’V’A’L is indeed complete. In fact, all the classical systems that we
have discussed are sound and complete. Completeness is usually a lot harder to prove than
soundness. For first-order classical logic, this is known as Gddel’s completeness theorem
(1929). Again, we refer our readers to Gallier [21], van Dalen [62], or Huth and Ryan [35] for
a thorough discussion of these matters. In the first-order case, one has to define first-order
structures (or first-order models).

What about intuitionistic logic?

Well, one has to come up with a richer notion of semantics because it is no longer true
that if a proposition is valid (in the sense of our two-valued semantics using true, false),
then it is provable. Several semantics have been given for intuitionistic logic. In our opinion,
the most natural is the notion of the Kripke model, presented in Section 2.12. Then, again,

124 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

soundness and completeness hold for intuitionistic proof systems, even in the first-order case
(see Section 2.12 and van Dalen [62]).

In summary, semantic models can be used to provide counterexamples of unprovable
propositions. This is a quick method to establish that a proposition is not provable.

We close this section by repeating something we said earlier: there isn’t just one logic but
instead, many logics. In addition to classical and intuitionistic logic (propositional and first-
order), there are modal logics, higher-order logics, and linear logic, a logic due to Jean-Yves
Girard, attempting to unify classical and intuitionistic logic (among other goals).

Figure 2.11: Jean-Yves Girard, 1947—

An excellent introduction to these logics can be found in Troelstra and Schwichtenberg
[61]. We warn our readers that most presentations of linear logic are (very) difficult to follow.
This is definitely true of Girard’s seminal paper [26]. A more approachable version can be
found in Girard, Lafont, and Taylor [23], but most readers will still wonder what hit them
when they attempt to read it.

In computer science, there is also dynamic logic, used to prove properties of programs
and temporal logic and its variants (originally invented by A. Pnueli), to prove properties of
real-time systems. So logic is alive and well.

We now add quantifiers to our language and give the corresponding inference rules.

2.16 Adding Quantifiers; First-Order Languages

As we mentioned in Section 2.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(z) = needs-to-drink(z).

Now in mathematics, we usually prove universal statements, that is statements that hold for
all possible “objects,” or existential statements, that is, statements asserting the existence
of some object satisfying a given property. As we saw earlier, we assert that every human
needs to drink by writing the proposition

Vz(human(z) = needs-to-drink(z)).

2.16. ADDING QUANTIFIERS; FIRST-ORDER LANGUAGES 125

Observe that once the quantifier V (pronounced “for all” or “for every”) is applied to the
variable z, the variable x becomes a placeholder and replacing x by y or any other variable
does not change anything. What matters is the locations to which the outer x points in the
inner proposition. We say that x is a bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we write

Jz(human(z) = needs-to-drink(x));

again, once the quantifier 3 (pronounced “there exists”) is applied to the variable x, the
variable z becomes a placeholder. However, the intended meaning of the second proposition
is very different and weaker than the first. It only asserts the existence of some object
satisfying the statement

human(z) = needs-to-drink(z).

Statements may contain variables that are not bound by quantifiers.

Example 2.14. For example, in
Jdx parent(z, y)

the variable x is bound but the variable y is not. Here the intended meaning of parent(z,y)
is that x is a parent of y, and the intended meaning of 3z parent(zx,y) is that any given y
has some parent x.

Variables that are not bound are called free. The proposition
Vy3dx parent(x, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

The intuitive meaning of the statement Va P is that P holds for all possible objects z,
and the intuitive meaning of the statement 3x P is that P holds for some object x. Thus,
we see that it would be useful to use symbols to denote various objects.

Example 2.15. For example, if we want to assert some facts about the “parent” predicate,
we may want to introduce some constant symbols (for short, constants) such as “Jean,”
“Mia,” and so on and write

parent(Jean, Mia)

to assert that Jean is a parent of Mia.

Often we also have to use function symbols (or operators, constructors), for instance,
to write a statement about numbers: +, %, and so on. Using constant symbols, function
symbols, and variables, we can form terms, such as

(xxx+1)*(3*xy+2).

126 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

In addition to function symbols, we also use predicate symbols, which are names for atomic
properties. We have already seen several examples of predicate symbols: “human,” “parent.”
So, in general, when we try to prove properties of certain classes of objects (people, numbers,
strings, graphs, and so on), we assume that we have a certain alphabet consisting of constant
symbols, function symbols, and predicate symbols. Using these symbols and an infinite
supply of variables (assumed distinct from the variables we use to label premises) we can
form terms and predicate terms. We say that we have a (logical) language. Using this
language, we can write compound statements.
Let us be a little more precise.

Definition 2.26. In a first-order language L in addition to the logical connectives =,
A, V,—, L, ¥V, and 3, we have a set L of nonlogical symbols consisting of

(i) A set CS of constant symbols, c1,ca, ... ,.

(ii) A set F'S of function symbols, fi, f2,...,. Each function symbol f has a rank ny > 1,
which is the number of arguments of f.

(iii) A set PS of predicate symbols, Py, Py, . . .,. Each predicate symbol P has a rank np > 0,
which is the number of arguments of P. Predicate symbols of rank 0 are propositional
symbols as in earlier sections.

(iv) The equality predicate = is added to our language when we want to deal with equations.
(v) First-order variables ¢y, ts, ... used to form quantified formulae.

The difference between function symbols and predicate symbols is that function symbols
are interpreted as functions defined on a structure (e.g., addition, +, on N), whereas predicate
symbols are interpreted as properties of objects, that is, they take the value true or false.

Example 2.16. An example is the language of Peano arithmetic, L = {0, S, +, x, =}, where
0 is a constant symbol, S is a function symbol with one argument, and +,* are function
symbols with two arguments. Here, the intended structure is N, 0 is of course zero, S is
interpreted as the function S(n) = n + 1, the symbol + is addition, * is multiplication, and
= is equality.

Using a first-order language L, we can form terms, predicate terms, and formulae.
Definition 2.27. The terms over L are the following expressions.
(i) Every variable ¢ is a term.
(ii) Every constant symbol ¢ € CS, is a term.

(iii) If f € FS is a function symbol taking n arguments and 71,...,7, are terms already
constructed, then f(m,...,7,) is a term.

2.16. ADDING QUANTIFIERS; FIRST-ORDER LANGUAGES 127

Definition 2.28. The predicate terms over L are the following expressions.

(i) If P € PS is a predicate symbol taking n arguments and 7y, ..., 7, are terms already
constructed, then P(7,...,7,) is a predicate term. When n = 0, the predicate symbol
P is a predicate term called a propositional symbol.

(i) When we allow the equality predicate, for any two terms 7; and 7o, the expression
T1 = Ty is a predicate term. It is usually called an equation.

Definition 2.29. The (first-order) formulae over L are the following expressions.

(i) Every predicate term P(7y,...,7,) is an atomic formula. This includes all propositional
letters. We also view L (and sometimes T) as an atomic formula.

(ii) When we allow the equality predicate, every equation 73 = 7 is an atomic formula.

(iii) If P and @ are formulae already constructed, then P = @, P A Q, PV Q, P are
compound formulae. We treat P = @) as an abbreviation for (P = Q) A (Q = P), as
before.

(iv) If P is a formula already constructed and ¢ is any variable, then V¢P and 3tP are
quantified compound formulae.

All this can be made very precise but this is quite tedious. Our primary goal is to explain
the basic rules of logic and not to teach a full-fledged logic course. We hope that our intuitive
explanations will suffice, and we now come to the heart of the matter, the inference rules for
the quantifiers. Once again, for a complete treatment, readers are referred to Gallier [21],
van Dalen [62], or Huth and Ryan [35].

Unlike the rules for =, V, A and |, which are rather straightforward, the rules for quan-
tifiers are more subtle due to the presence of variables (occurring in terms and predicates).
We have to be careful to forbid inferences that would yield “wrong” results and for this we
have to be very precise about the way we use free variables. More specifically, we have to
exercise care when we make substitutions of terms for variables in propositions.

Example 2.17. For example, say we have the predicate “odd,” intended to express that a
number is odd. Now we can substitute the term (2y + 1) for z in odd(z) and obtain

odd((2y + 1)?).

Definition 2.30. More generally, if P(tq,ts,...,t,) is a statement containing the free vari-
ables t1,...,t, and if 7,..., 7, are terms, we can form the new statement

Plm/ty,...,Ta/ts]

obtained by substituting the term 7; for all free occurrences of the variable ¢;, fori =1,...,n.

128 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

By the way, we denote terms by the Greek letter 7 because we use the letter ¢ for a
variable and using ¢ for both variables and terms would be confusing.

However, if P(ty,ts,...,t,) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term 7; may become quantified when 7; is substituted
for t;.

Example 2.18. For example, consider
Vedy P(x,y, 2)
which contains the free variable z and substitute the term x + y for z; we get
Vedy P(x,y,x + y).

We see that the variables x and y occurring in the term x + y become bound variables after
substitution. We say that there is a “capture of variables.”

This is not what we intended to happen. To fix this problem, we recall that bound vari-
ables are really place holders, so they can be renamed without changing anything. Therefore,
we can rename the bound variables x and y in Vz3y P(x,y, z) to u and v, getting the state-
ment Yu3v P(u,v, z) and now, the result of the substitution is

Vudv P(u, v,z 4+ y).

Again, all this needs to be explained very carefuly but this can be done.
Finally, here are the inference rules for the quantifiers, first stated in a natural deduction
style and then in sequent style.

2.17 The Proof Systems N 7"V¥31 and /\/'(JC:>7A’\/7V’3’L

It is assumed that we use two disjoint sets of variables for labeling premises (z,y,...) and
free variables (t,u,v,...). As we show, the V-introduction rule and the J-elimination rule
involve a crucial restriction on the occurrences of certain variables. Remember, variables
are terms.

Definition 2.31. The inference rules for the quantifiers are

V-introduction:
If D is a deduction tree for P[u/t] from the premises I', then

r
D

Plu/t]
VtP

2.17. THE PROOF SYSTEMS N """+ AND NG5 """+ 129

is a deduction tree for VtP from the premises I". Here, u must be a variable that does not
occur free in any of the propositions in I' or in VtP. The notation Plu/t] stands for the
result of substituting u for all free occurrences of ¢ in P.

Recall that I" denotes the multiset of premises of the deduction tree D, so if D only has
one node, then I' = { P[u/t]} and ¢ should not occur in P. See Example 2.20 which illustrates
why this restriction is necessary.

V-elimination:
If D is a deduction tree for VP from the premises I', then

r

D
VtP

Plr/i]

is a deduction tree for P[r/t] from the premises I. Here 7 is an arbitrary term and it is
assumed that bound variables in P have been renamed so that none of the variables in 7 are
captured after substitution.

J-introduction:
If D is a deduction tree for P[7/t] from the premises I', then

r
D

Plr/i]
3tP

is a deduction tree for 3t P from the premises I'. As in V-elimination, 7 is an arbitrary term
and the same proviso on bound variables in P applies (no capture of variables when 7 is
substituted).

J-elimination:

If D, is a deduction tree for It P from the premises I', and if D, is a deduction tree for
C from the premises in the multiset A and one or more occurrences of Plu/t], then

r A, Plu/t]?
D, D;
3tP C

C

is a deduction tree of C from the set of premises in the multiset I', A. Here, © must be a
variable that does not occur free in any of the propositions in A, 3tP, or C, and all premises
P[u/t] labeled z are discharged.

In the V-introduction and the 3-elimination rules, the variable u is called the eigenvariable
of the inference.

130 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

In the above rules, I' or A may be empty; P, C denote arbitrary propositions constructed
from a first-order language L; D, D, Dy are deductions, possibly a one-node tree; and ¢ is
any variable.

Definition 2.32. The system of first-order classical logic N7>V>+77 is obtained by adding

the above rules to the system of propositional classical logic N7V"+. The system of first-

order intuitionistic logic ./\/;-:>’v’/\’L’v’3 is obtained by adding the above rules to the system of

propositional intuitionistic logic ./\ff’v’/\’L. Deduction trees and proof trees are defined as in
the propositional case except that the quantifier rules are also allowed.

Using sequents, the quantifier rules in first-order logic are expressed as follows:

Definition 2.33. The inference rules for the quantifiers in Gentzen-sequent style are

' = Plu/t] ' = vtP

T = VP (V—mtro) TP[T/H (V—elzm),

where in (V-intro), u does not occur free in I' or V¢ P;

I' —» P[r/t] I' - 3tP z: Plu/t],A - C
I' = 3tP ruA—=cC

where in (3-elim), z: Plu/t] ¢ A, and u does not occur free in A, ItP, or C. Again, ¢ is
any variable.
The variable u is called the eigenvariable of the inference.

(3-intro) (3-elim),

Definition 2.34. The systems N'G;V"%3 and NG7Y""7 are defined from the systems
NGV and ./\/’Q?’V’A’L7 respectively, by adding the above rules. As usual, a deduction
tree is a either a one-node tree or a tree constructed using the above rules and a proof tree

is a deduction tree whose conclusion is a sequent with an empty set of premises (a sequent
of the form () — P).

When we say that a proposition P is provable from I' we mean that we can construct
a proof tree whose conclusion is P and whose set of premises is I' in one of the systems
NZAVALYI op NGZMYEY3 - Therefore, as in propositional logic, when we use the word
“provable” unqualified, we mean provable in classical logic. Otherwise, we say intuitionisti-
cally provable.

It is not hard to show that the proof systems N.>*V>5%3 and NGZV-" are equivalent
(and similarly for N;7"*Y"5" and NG7"Y""7). We leave the details as Problem 2.16.

A first look at the above rules shows that universal formulae V¢P behave somewhat
like infinite conjunctions and that existential formulae 3tP behave somewhat like infinite
disjunctions.

The V-introduction rule looks a little strange but the idea behind it is actually very
simple: because u is totally unconstrained, if P[u/t] is provable (from T'), then intuitively
Plu/t] holds of any arbitrary object, and so, the statement V¢P should also be provable
(from I'). Note that the tree

2.17. THE PROOF SYSTEMS N """+ AND NG5 """+ 131

Plu/1]
VtP

is generally not a deduction, because the deduction tree above VtP is a one-node tree con-
sisting of the single premise P[u/t], and u occurs in Plu/t] unless ¢ does not occur in P.

The meaning of the V-elimination is that if V¢P is provable (from I'), then P holds for
all objects and so, in particular for the object denoted by the term 7; that is, P[r/t] should
be provable (from T').

The 3-introduction rule is dual to the V-elimination rule. If P[r/t] is provable (from I'),
this means that the object denoted by 7 satisfies P, so 3tP should be provable (this latter
formula asserts the existence of some object satisfying P, and 7 is such an object).

The J-elimination rule is reminiscent of the V-elimination rule and is a little more tricky.
It goes as follows. Suppose that we proved 3tP (from I'). Moreover, suppose that for every
possible case P[u/t] we were able to prove C' (from I'). Then as we have “exhausted” all
possible cases and as we know from the provability of 3¢ P that some case must hold, we can
conclude that C' is provable (from I') without using P[u/t] as a premise.

Like the V-elimination rule, the J-elimination rule is not very constructive. It allows
making a conclusion (C) by considering alternatives without knowing which one actually
occurs.

Remark: Analogously to disjunction, in (first-order) intuitionistic logic, if an existential
statement 3tP is provable, then from any proof of 3tP, some term 7 can be extracted so
that P[7/t] is provable. Such a term 7 is called a witness. The witness property is not easy
to prove. It follows from the fact that intuitionistic proofs have a normal form (see Section
2.13). However, no such property holds in classical logic.

We can illustrate, again, the fact that classical logic allows for nonconstructive proofs by
re-examining the example at the end of Section 2.6.

There we proved that if \/5\/5 is rational, then a = V2 and b = /2 are both irrational
numbers such that a® is rational, and if \/5\/§ is irrational, then a = \/5\/§ and b = /2 are
both irrational numbers such that a? is rational. By d-introduction, we deduce that if \/§\/5

is rational, then there exist some irrational numbers a, b so that a® is rational, and if \/5\/§
is irrational, then there exist some irrational numbers a, b so that a’ is rational. In classical
logic, as PV —P is provable, by V-elimination, we just proved that there exist some irrational
numbers a and b so that a® is rational.

However, this argument does not give us explicitly numbers a and b with the required

properties. It only tells us that such numbers must exist. Now it turns out that \/5\/5
is indeed irrational (this follows from the Gel’fond—Schneider theorem, a hard theorem in
number theory). Furthermore, there are also simpler explicit solutions such as a = V2 and
b = log, 9, as the reader should check.

The following proposition lists some basic properties of substitutions. The easy proof is
left as an exercise.

132 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Proposition 2.13. The following properties of substitution in a first-order formula hold.

(PAQ)T/t] = Plr/t] AQ[7/1]
(PVQ)r/t] = Plr/t]V Q[r/1]
(P = Q)[r/t] = Plr/t] = Q[/1]
(=P)[r/t] = =P[r/i]
(VsP)[r/t] = VsP[r/t]
(BsP)[r/t] = 3sPl7/t],

for any term T such that no variable in T is captured during the substitution (in particular,
in the last two cases, the variable s does not occur in 7).

Example 2.19. Here is an example of a proof in the system N7V"-%3 (actually, in the
system N.7V""3) of the formula VE(P A Q) = VtP A VtQ.

V(P A Q) VH(P A Q)?
Plu/t]AQu/t] Plu/t] A Q[u/t]
Plu/t] Qlu/t]
VtP VtQ
VtP AVQ

VE(P A Q) = VEP AVEQ

In the above proof, u is a new variable, that is, a variable that does not occur free in P or
Q.

The reader should show that VtP A VtQ = Vt(P A Q) is also provable in the system
/\/?’V’A’L’V’E. However, in general, one can’t just replace ¥V by 3 (or A by V) and still obtain
provable statements. For example, 3tP A JtQ) = Ft(P A Q) is not provable at all. We leave
it as an exercise to find an interpretation of the predicate symbols P and () that yields a
counter-example.

Example 2.20. Here is an example in which the V-introduction rule is applied illegally, and
thus, yields a statement that is actually false (not provable). In the incorrect “proof” below,
P is an atomic predicate symbol taking two arguments (e.g., “parent”) and 0 is a constant
denoting zero.

P(u,0)*
_ illegal step!
VtP(t,0)

Implication-Intro «

P(u,0) = VtP(t,0)
Forall-Intro

Vs(P(s,0) = VtP(t,0
(=0 (t,0) Forall-Elim

P(0,0) = VtP(t,0)

2.18. EXAMPLES OF FIRST-ORDER PROOF TREES 133

The problem is that the variable u occurs free in the premise Plu/t,0] = P(u,0) and
therefore, the application of the V-introduction rule in the first step is illegal. However,
note that this premise is discharged in the second step and so, the application of the V-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
P(0,0) = VtP(t,0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P(0,0) holds does not imply that P(t,0) holds for all t.

Remark: The above example shows why it is desirable to have premises that are universally
quantified. A premise of the form V¢P can be instantiated to Plu/t], using V-elimination,
where u is a brand new variable. Later on, it may be possible to use V-introduction without
running into trouble with free occurrences of u in the premises. But we still have to be very
careful when we use V-introduction or 3-elimination.

Here are some useful equivalences involving quantifiers. The first two are analogous to
the de Morgan laws for A and V.

Proposition 2.14. The following equivalences are provable in classical first-order logic.

=VtP = dt—-P

—3tP = Vt—-P
Vt(P A Q) = VtP AVLQ
Jt(PV Q) =3tPV Q.

In fact, the last three and t—P = —VtP are provable intuitionistically. Moreover, the
formulae
H(PAQ)= FHPAIIQ and VtPVVtQ = V(P V Q)

are provable in intuitionistic first-order logic (and thus, also in classical first-order logic).

Proof. Left as an exercise to the reader. O

Before concluding this section, let us give a few more examples of proofs using the rules
for the quantifiers.

2.18 Examples of First-Order Proof Trees
Example 2.21. First let us prove that
VtP = YuPlu/t],

where u is any variable not free in V¢ P and such that u is not captured during the substitution.
This rule allows us to rename bound variables (under very mild conditions). We have the
proofs

134 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(VtP)>
Plu/t]
VuPlu/t]

VtP = YuP[u/t]
and
(VuPlu/t])*
Plu/t]
VtP
VuPlu/t] = VtP
Example 2.22. Next, we give intuitionistic proofs of

(3tPAQ) = (P AQ)

and
JH(PAQ)= (TP ANQ),

where ¢ does not occur (free or bound) in Q.
Here is an intuitionistic proof of the first implication.

(EltP A Q)x
Plu/t]? Q
(3tP A Q)* Plu/t] A Q
3tP (P AQ) el

(P AQ)

(ItP A Q) = FH(P AQ)

In the above proof, u is a new variable that does not occur in 3tP or (). Because t does
not occur in (Q, we have

(P AQ)u/t] = Plu/t] A Q.

Here is an intuitionistic proof of the converse in which (P A Q) is abbreviated as A.

Plu/t] (Plu/t A Q)"
(FtA)” P . (3_ehrn§3tf4}” ¢ > (3-elim)
3P Q
FHPAQ

(P AQ) = (3P AQ)

2.18. EXAMPLES OF FIRST-ORDER PROOF TREES 135

Example 2.23. Here is now a proof (intuitionistic) of
(P = Q)= (VtP = Q),

where ¢ does not occur (free or bound) in Q.

(veP)
(Plu/t] = Q)" Plu/t]
(3P = Q) @ » (F-elim)
762 Y
ViP = (@)

(P = Q)= (VtP = Q)

In the above proof, u is a new variable that does not occur in @, VtP, or 3t(P = Q).
Because t does not occur in @), we have

(P = Q)[u/t] = Plu/t] = Q.
The converse requires (RAA) and is a bit more complicated.

Example 2.24. Here is a classical proof in which (P = @) is abbreviated as A.

~Plu/tf Plu/t]

L
Q
Plu/t, Q" Pl =Q
@ (~3tA)Y 3P = Q)
P/t =@ L 5 (RAA)
(=3tA)Y 3P = Q) Plu/t]
L (VP = Q) ViP
Q) Q
L raAA)
(P = Q)

T

(VtP = Q) = 3t(P = Q)

Example 2.25. Finally, we give a proof (intuitionistic) of

(VtPV Q) = Vt(P V Q),

136 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

where ¢ does not occur (free or bound) in Q.

(VtP)*
(VEPV Q)? V(P V Q) VPV Q) e (V-elim)
Vi(PV Q)

(VP V Q) = Yt(P V Q)

In the above proof, u is a new variable that does not occur in VP or (). Because t does
not occur in (), we have

(PVQ)u/t] = Plu/t]V Q.
The converse requires (RAA).

The useful above equivalences (and more) are summarized in the following propositions.

Proposition 2.15. (1) The following equivalences are provable in classical first-order logic,
provided that t does not occur (free or bound) in Q.

VIPAQ = VP AQ)
HPVQ = 3(PVQ)
HPAQ = FPAQ)
VIPVQ = VPV Q).

Furthermore, the first three are provable intuitionistically and so is (VtPV Q) = Vt(PV Q).

(2) The following equivalences are provable in classical logic, provided that t does not
occur (free or bound) in P.

Vi(P= Q) = (P=VtQ)
H(P=Q) = (P=3tQ).

Furthermore, the first one is provable intuitionistically and so is (P = Q) = (P = Q).

(8) The following equivalences are provable in classical logic, provided that t does not
occur (free or bound) in Q.

Vi (P = Q) = (3tP = Q)
JHP=Q) = (WP = Q).

Furthermore, the first one is provable intuitionistically and so is (P = Q) = (VtP = Q).

2.19. FIRST-ORDER THEORIES; PEANO ARITHMETIC 137

Proofs that have not been supplied are left as exercises.

Obviously, every first-order formula that is provable intuitionistically is also provable
classically and we know that there are formulae that are provable classically but not provable
intuitionistically. Therefore, it appears that classical logic is more general than intuitionistic
logic. However, this is not quite so because there is a way of translating classical logic
into intuitionistic logic. To be more precise, every classical formula A can be translated
into a formula A*, where A* is classically equivalent to A and A is provable classically
iff A* is provable intuitionistically. Various translations are known, all based on a “trick”
involving double-negation (This is because =——A and —A are intuitionistically equivalent).
Translations were given by Kolmogorov (1925), Gédel (1933), and Gentzen (1933).

For example, Godel used the following translation.

A" =--A, if Ais atomic

(mA)"=-4
(ANB)" = (A" ANB")
(A= B)" = (A" A—B")
(AV B)" = =(=A" A=BY)
(VzA)* =Vz A”
(JzA)" = =Vz-A".

Figure 2.12: Andrey N. Kolmogorov, 1903-1987 (left) and Kurt Godel, 1906-1978 (right)

Actually, if we restrict our attention to propositions (i.e., formulae without quantifiers),
a theorem of V. Glivenko (1929) states that if a proposition A is provable classically, then
——A is provable intuitionistically. In view of these results, the proponents of intuitionistic
logic claim that classical logic is really a special case of intuitionistic logic. However, the
above translations have some undesirable properties, as noticed by Girard. For more details
on all this; see Gallier [16].

2.19 First-Order Theories; Peano Arithmetic

The way we presented deduction trees and proof trees may have given our readers the
impression that the set of premises I' was just an auxiliary notion. Indeed, in all of our

138 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

examples, I' ends up being empty. However, nonempty I's are crucially needed if we want to
develop theories about various kinds of structures and objects, such as the natural numbers,
groups, rings, fields, trees, graphs, sets, and the like. Indeed, we need to make definitions
about the objects we want to study and we need to state some axioms asserting the main
properties of these objects. We do this by putting these definitions and axioms in I'.

Actually, we have to allow I' to be infinite but we still require that our deduction trees
be finite; they can only use finitely many of the formulae in T'.

Definition 2.35. Given a (possibly infinite) set of premises I, the set of all formulae P such
that A — P is provable, where A is any finite subset of T, is called a theory (or first-order
theory).

Of course we have the usual problem of consistency: if we are not careful, our theory
may be inconsistent, that is, it may consist of all formulae.

Let us give two examples of theories.

Example 2.26. Our first example is the theory of equality. Indeed, our readers may have
noticed that we have avoided dealing with the equality relation. In practice, we can’t do
that.

Given a language L with a given supply of constant, function, and predicate symbols,
the theory of equality consists of the following formulae taken as axioms.

Va(r = x)
Vay Ve Yy Vsl =y A Axp = yn)

éf(xla"'axn):f(y1>"'7yn>]
\V/xl...vl'NVyl...Vyn[(ajl:yl/\~~-/_’L'n:yn)/\P(.Tl,...,xn>

= P(y17-~-7yn)]7

for all function symbols (of n arguments) and all predicate symbols (of n arguments), in-
cluding the equality predicate, =, itself.

It is not immediately clear from the above axioms that = is symmetric and transitive
but this can be shown easily.

Example 2.27. Our second example is the first-order theory of the natural numbers known
as Peano arithmetic (for short, PA). In this case the language L consists of the nonlogical
symbols {0, S, +,*,=}. Here, we have the constant 0 (zero), the unary function symbol
S (for successor function; the intended meaning is S(n) = n + 1) and the binary function
symbols + (for addition) and * (for multiplication). In addition to the axioms for the theory
of equality we have the following axioms:

2.19. FIRST-ORDER THEORIES; PEANO ARITHMETIC 139

Vz=(S(z) = 0)

Vavy(S(z) = S(y) = z = y)
Ve(z+0=ux)

VaVy(x + S(y) = S(z + y))
Va(x x 0 =0)

VaVy(x « S(y) =x *xy + x)
[A(0) AVz(A(z) = A(S(x)))] = VnA(n),

where A is any first-order formula with one free variable.

Figure 2.13: Giuseppe Peano, 1858-1932

This last axiom is the induction axiom. Observe how + and * are defined recursively in
terms of 0 and S and that there are infinitely many induction axioms (countably many).

Many properties that hold for the natural numbers (i.e., are true when the symbols
0, S, 4+, * have their usual interpretation and all variables range over the natural numbers)
can be proven in this theory (Peano arithmetic), but not all. This is another very famous
result of Godel known as Gddel’s incompleteness theorem (1931). However, the topic of
incompleteness is definitely outside the scope in this book, so we do not say any more about
it.

However, we feel that it should be intructive for the reader to see how simple properties
of the natural numbers can be derived (in principle) in Peano arithmetic.

First it is convenient to introduce abbreviations for the terms of the form S"(0) (where
S™ denotes the n-fold composition of S with itself) which represent the natural numbers.
Thus, we add a countable supply of constants, 0,1,2,3,..., to denote the natural numbers
and add the axioms

n = S5"(0),

for all natural numbers n. We also write n + 1 for S(n).

Let us illustrate the use of the quantifier rules involving terms (V-introduction, V-elimination
and F-introduction) by proving some simple properties of the natural numbers, namely, be-
ing even or odd. We also prove a property of the natural number that we used before (in

140 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Figure 2.14: Kurt Godel with Albert Einstein

the proof that v/2 is irrational), namely, that every natural number is either even or odd.
For this, we add the predicate symbols “even” and “odd” to our language, and assume the
following axioms defining these predicates:

k(n=2xk))
k(n=2xk+1)).

Vn(even(n) =

3
Vn(odd(n) = 3

Consider the term, 2 % (m + 1) * (m + 2) + 1, where m is any given natural number. We
need a few preliminary results.

Proposition 2.16. The statement odd(2 * (m + 1) x (m + 2) + 1) is provable in Peano
arithmetic.

As an auxiliary lemma, we first prove

Proposition 2.17. The formula
Vrodd(2*x + 1)

1s provable in Peano arithmetic.

Proof. Let p be a variable not occurring in any of the axioms of Peano arithmetic (the
variable p stands for an arbitrary natural number). From the axiom,

Vn(odd(n) = Jk(n =2+ k+ 1)),
by V-elimination where the term 2 % p + 1 is substituted for the variable n we get
odd(2xp+1)=3k2xp+1=2xk+1). (%)
Now we can think of the provable equation 2xp+1=2x%xp+ 1 as
2xp+1=2xk+1)[p/k],
so by J-introduction, we can conclude that

J2xp+1=2xk+1),

2.19. FIRST-ORDER THEORIES; PEANO ARITHMETIC 141

which, by (x), implies that

odd(2xp+1).
But now, because p is a variable not occurring free in the axioms of Peano arithmetic, by
V-introduction, we conclude that

Vrodd(2+z + 1),
as claimed. n

Proof of Proposition 2.16. If we use V-elimination in the formula of Proposition 2.17 where
we substitute the term 7 = (m + 1) x (m + 2) for z, we get

odd(2* (m+1)x (m+2)+ 1),
as claimed O]
Now we wish to prove

Proposition 2.18. The formula
Vn(even(n) V odd(n))
18 provable in Peano arithmetic.

Proof. We use the induction principle of Peano arithmetic with
A(n) = even(n) V odd(n).

For the base case, n = 0, because 0 = 20 (which can be proven from the Peano axioms),
we see that even(0) holds and so even(0) V odd(0) is proven.

For n = 1, because 1 = 2% 0+ 1 (which can be proven from the Peano axioms), we see
that odd(1) holds and so even(1) V odd(1) is proven.

For the induction step, we may assume that A(n) has been proven and we need to prove
that A(n + 1) holds.

So, assume that even(n) V odd(n) holds. We do a proof by cases.

(a) If even(n) holds, by definition this means that n = 2k for some k and then, n + 1 =
2k+1, which again, by definition means that odd(n+1) holds and thus, even(n+1)Vodd(n+1)
holds.

(b) If odd(n) holds, by definition this means that n = 2k + 1 for some k and then,
n+1=2k+2 = 2(k+1), which again, by definition means that even(n + 1) holds and thus,
even(n + 1) V odd(n + 1) holds.

By V-elimination, we conclude that even(n + 1) V odd(n + 1) holds, establishing the
induction step.

Therefore, using induction, we have proven that

Vn(even(n) V odd(n)),

as claimed. n

142 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Actually, we can show that even(n) and odd(n) are mutually exclusive as we now prove.

Proposition 2.19. The formula
Vn—(even(n) A odd(n))
18 provable in Peano arithmetic.

Proof. We prove this by induction. For n = 0, the statement odd(0) means that 0 = 2k+1 =
S(2k), for some k. However, the first axiom of Peano arithmetic states that S(z) # 0 for all
x, so we get a contradiction.

For the induction step, assume that —(even(n) A odd(n)) holds. We need to prove that
—(even(n 4+ 1) A odd(n + 1)) holds, and we can do this by using our constructive proof-by-
contradiction rule. So, assume that even(n + 1) A odd(n + 1) holds. At this stage, we realize
that if we could prove that

Vn(even(n + 1) = odd(n)) (%)

and
Vn(odd(n + 1) = even(n)), (%)

then even(n + 1) A odd(n + 1) would imply even(n) A odd(n), contradicting the assumption
—(even(n) A odd(n)). Therefore, the proof is complete if we can prove (%) and (k).

Let’s consider the implication (%) leaving the proof of (xx) as an exercise.

Assume that even(n + 1) holds. Then n + 1 = 2k, for some natural number k. We can’t
have k = 0 because otherwise we would have n + 1 = 0, contradicting one of the Peano
axioms. But then k£ is of the form k = h + 1 for some natural number h, so

n+1=2k=2h+1)=2h+2=(2h+1)+1
By the second Peano axiom, we must have
n=2h-+1,

which proves that n is odd, as desired.
In that last proof, we made implicit use of the fact that every natural number n different
from zero is of the form n = m + 1, for some natural number m which is formalized as

Vn((n # 0) = Im(n =m+1)).

This is easily proven by induction.
Having done all this work, we have finally proven (x) and after proving (*x), we will have
proven that

Vn—=(even(n) A odd(n)),

as claimed. n

2.19. FIRST-ORDER THEORIES; PEANO ARITHMETIC 143

It is also easy to prove that
Vn(even(n) V odd(n))

and
Vn—(even(n) A odd(n))

together imply that
Vn(even(n) = —odd(n)) and Vn(odd(n) = —even(n))
are provable, facts that we used several times in Section 2.10. This is because, if
Ve(PV Q) and VYaz—(PAQ)
can be deduced intuitionistically from a set of premises I', then
V(P =-Q) and Vz(Q =-P)

can also be deduced intuitionistically from I'. In this case it also follows that Va(——P = P)
and Vz(——Q = @) can be deduced intuitionistically from I

Remark: Even though we proved that every nonzero natural number n is of the form
n = m + 1, for some natural number m, the expression n — 1 does not make sense because
the predecessor function n — n — 1 has not been defined yet in our logical system. We need
to define a function symbol “pred” satisfying the axioms

pred(0) =0
Vn(pred(n + 1) = n).

For simplicity of notation, we write n — 1 instead of pred(n). Then we can prove that if
k # 0, then 2k—1 = 2(k—1)+1 (which really should be written as pred(2k) = 2pred(k)+1).
This can indeed be done by induction; we leave the details as an exercise. We can also define
substraction, —, as a function sastisfying the axioms

Vn(n —0=n)
VnVm(n — (m + 1) = pred(n —m)).

It is then possible to prove the usual properties of subtraction (by induction).

These examples of proofs in the theory of Peano arithmetic illustrate the fact that con-
structing proofs in an axiomatized theory is a very laborious and tedious process. Many
small technical lemmas need to be established from the axioms, which renders these proofs
very lengthy and often unintuitive. It is therefore important to build up a database of useful
basic facts if we wish to prove, with a certain amount of comfort, properties of objects whose
properties are defined by an axiomatic theory (such as the natural numbers). However, when

144 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

in doubt, we can always go back to the formal theory and try to prove rigorously the facts
that we are not sure about, even though this is usually a tedious and painful process. Human
provers navigate in a “spectrum of formality,” most of the time constructing informal proofs
containing quite a few (harmless) shortcuts, sometimes making extra efforts to construct
more formalized and rigorous arguments if the need arises.

Now what if the theory of Peano arithmetic were inconsistent! How do know that Peano
arithmetic does not imply any contradiction? This is an important and hard question that
motivated a lot of the work of Gentzen. An easy answer is that the standard model N of
the natural numbers under addition and multiplication validates all the axioms of Peano
arithmetic. Therefore, if both P and —P could be proven from the Peano axioms, then both
P and =P would be true in N, which is absurd. To make all this rigorous, we need to define
the notion of truth in a structure, a notion explained in every logic book. It should be noted
that the constructivists will object to the above method for showing the consistency of Peano
arithmetic, because it assumes that the infinite set N exists as a completed entity. Until
further notice, we have faith in the consistency of Peano arithmetic (so far, no inconsistency
has been found).

Another very interesting theory is set theory. There are a number of axiomatizations of
set theory and we discuss one of them (ZFC) briefly in Section 2.20.

2.20 Basics Concepts of Set Theory

This section takes the very “naive” point of view that a set is an unordered collection of
objects, without duplicates, the collection being regarded as a single object. Having first-
order logic at our disposal, we could formalize set theory very rigorously in terms of axioms.
This was done by Zermelo first (1908) and in a more satisfactory form by Zermelo and
Fraenkel in 1921, in a theory known as the “Zermelo-Fraenkel” (ZF) axioms. Another
axiomatization was given by John von Neumann in 1925 and later improved by Bernays in
1937. A modification of Bernay’s axioms was used by Kurt Godel in 1940. This approach
is now known as “von Neumann—Bernays” (VNB) or “Gddel-Bernays” (GB) set theory.
There are many books that give an axiomatic presentation of set theory. Among them we
recommend Enderton [13], which we find remarkably clear and elegant, Suppes [59] (a little
more advanced), and Halmos [29], a classic (at a more elementary level).

However, it must be said that set theory was first created by Georg Cantor (1845-1918)
between 1871 and 1879. However, Cantor’s work was not unanimously well received by all
mathematicians.

Cantor regarded infinite objects as objects to be treated in much the same way as finite
sets, a point of view that was shocking to a number of very prominent mathematicians who
bitterly attacked him (among them, the powerful Kronecker). Also, it turns out that some
paradoxes in set theory popped up in the early 1900s, in particular, Russell’s paradox.

Russell’s paradox (found by Russell in 1902) has to to with the

“set of all sets that are not members of themselves,”

2.20. BASICS CONCEPTS OF SET THEORY 145

Figure 2.15: Ernst F. Zermelo, 1871-1953 (left), Adolf A. Fraenkel, 1891-1965 (middle left),
John von Neumann, 1903-1957 (middle right) and Paul I. Bernays, 1888-1977 (right)

Figure 2.16: Georg F. L. P. Cantor, 1845-1918

Figure 2.17: Bertrand A. W. Russell, 1872-1970

146 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

which we denote by
R={x|z ¢ x}.
(In general, the notation {z | P} stand for the set of all objects satisfying the property P.)

Now classically, either R € R or R ¢ R. However, if R € R, then the definition of R says
that R ¢ R; if R ¢ R, then again, the definition of R says that R € R.

So we have a contradiction and the existence of such a set is a paradox. The problem
is that we are allowing a property (here, P(x) = = ¢ x), which is “too wild” and circular
in nature. As we show, the way out, as found by Zermelo, is to place a restriction on the
property P and to also make sure that P picks out elements from some already given set
(see the subset axioms below).

The apparition of these paradoxes prompted mathematicians, with Hilbert among its
leaders, to put set theory on firmer ground. This was achieved by Zermelo, Fraenkel, von
Neumann, Bernays, and Godel, to name only the major players.

In what follows, we are assuming that we are working in classical logic. The language L
of set theory consists of the symbols {0}, €, =}, where) is a constant symbol (corresponding
to the empty set) and € is binary predicate symbol (denoting set membership).

In set theory formalized in first-order logic, every object is a set. Instead of writing the
membership relation as € (X,Y), we write X € Y, which expresses that the set X belongs
to the set Y. To reduce the level of formality, we often denote sets using capital letters and
members of sets using lower-case letters, and so we wite a € A for a belongs to the set A
(even though a is also a set). Instead of —(a € A), we write

ad¢ A

We introduce various operations on sets using definitions involving the logical connectives
A, V, —, V, and 3.

In order to ensure the existence of some of these sets requires some of the axioms of set
theory, but we are rather casual about that.

When are two sets A and B equal? This corresponds to the first axiom of set theory,
called the

Extensionality Axiom
Two sets A and B are equal iff they have exactly the same elements; that is,

Ve(re A=ax € B)AVz(x € B=z € A).

The above says: every element of A is an element of B and conversely.
There is a special set having no elements at all, the empty set, denoted (). This is the
following.

Empty Set Axiom
There is a set having no members. This set is denoted () and it is characterized by the
property

Va(z ¢ 0).

2.20. BASICS CONCEPTS OF SET THEORY 147

Remark: Beginners often wonder whether there is more than one empty set. For example,
is the empty set of professors distinct from the empty set of potatoes?

The answer is, by the extensionality axiom, there is only one empty set.
Given any two objects a and b, we can form the set {a,b} containing exactly these two
objects. Amazingly enough, this must also be an axiom.

Pairing Axiom
Given any two objects a and b (think sets), there is a set {a, b} having as members just a
and b.

Observe that if a and b are identical, then we have the set {a,a}, which is denoted by
{a} and is called a singleton set (this set has a as its only element).

To form bigger sets, we use the union operation. This too requires an axiom.

Union Axiom (Version 1)
For any two sets A and B, there is a set AU B called the union of A and B defined by

re AUB iff (x € A)V (x € B).

This reads = is a member of AU B if either z belongs to A or x belongs to B (or both). We
also write
AUuB={z|z€A or xze€ B}

Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form

{a,b,c} = {a,b} U{c}.

Remark: We can systematically construct bigger and bigger sets by the following method.
Given any set A let
At = AU {A}.

If we start from the empty set, we obtain sets that can be used to define the natural numbers
and the + operation corresponds to the successor function on the natural numbers (i.e.,
n—n+1).

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets. For this, it is helpful to define the notion of
inclusion between sets.

Definition 2.36. Given any two sets A and B, we say that A is a subset of B (or that A
is included in B), denoted A C B, iff every element of A is also an element of B, that is,

Vr(r € A=z € B).

We say that A is a proper subset of B iff A C B and A # B. This implies that that there is
some b € B with b ¢ A. We usually write A C B.

148 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Observe that the equality of two sets can be expressed by
A=B iff ACB and B CA.

Power Set Axiom
Given any set A, there is a set P(A) (also denoted 24), called the power set of A whose
members are exactly the subsets of A; that is,

X eP(4) iff XCA.
For example, if A = {a,b,c}, then

P(A) = {0, {a}, {b},{c}, {a, 0}, {a, c}, {b,c} {a, b, c}},

a set containing eight elements. Note that the empty set and A itself are always members

of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2" elements. For this
reason, many people, including us, prefer the notation 24 for the power set of A.

At this stage, we define intersection and complementation. For this, given any set A and
given a property P (specified by a first-order formula) we need to be able to define the subset
of A consisting of those elements satisfying P. This subset is denoted by

{veA|P).

Unfortunately, there are problems with this construction. If the formula P is somehow a
circular definition and refers to the subset that we are trying to define, then some paradoxes
may arise.

The way out is to place a restriction on the formula used to define our subsets, and
this leads to the subset axioms, first formulated by Zermelo. These axioms are also called
comprehension axioms or axioms of separation.

Subset Axioms
For every first-order formula P we have the axiom

VAIXVz(z € X iff (v € A)AP),

where P does not contain X as a free variable. (However, P may contain x free.)
The subset axioms says that for every set A, there is a set X consisting exactly of those
elements of A so that P holds. For short, we usually write

X ={zxeA|P}

As an example, consider the formula

P(B,z) =z € B.

2.20. BASICS CONCEPTS OF SET THEORY 149

Then the subset axiom says
VAIXVz(x € ANz € B),

which means that X is the set of elements that belong both to A and B.
This is called the intersection of A and B, denoted by AN B. Note that

ANB={z|x€ A and z € B}.

We can also define the relative complement of B in A, denoted A — B, given by the
formula P(B,z) = = ¢ B, so that

A—B={x|z€A and z ¢ B}.

In particular, if A is any given set and B is any subset of A, the set A — B is also denoted
B and is called the complement of B.

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists some
of the most important properties of union, intersection, and complementation.

Proposition 2.20. The following equations hold for all sets A, B, C.

AUupd=A
AND=10
AUA=A
ANA=A
AUB=BUA
ANB=BNA.

The last two assert the commutativity of U and N. We have distributivity of N over U and
of U over N.

We have associativity of N and U.

ANn(BnC)=(AnB)NnC
AU(BUC)=(AUB)UC.

Proof. Use Proposition 2.5. [

Because A, V, and = satisfy the de Morgan laws (remember, we are dealing with classical
logic), for any set X, the operations of union, intersection, and complementation on subsets
of X satisfy the de Morgan laws.

150 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Proposition 2.21. For every set X and any two subsets A, B of X, the following identities
(de Morgan laws) hold.

So far, the union axiom only applies to two sets but later on we need to form infinite
unions. Thus, it is necessary to generalize our union axiom as follows.

Union Axiom (Final Version)
Given any set X (think of X as a set of sets), there is a set | J X defined so that
relJX iff 3B(BeXAxzeB)

This says that | J X consists of all elements that belong to some member of X.
If we take X = {A, B}, where A and B are two sets, we see that

| J{A,B} =AU B,

and so, our final version of the union axiom subsumes our previous union axiom which we
now discard in favor of the more general version.
Observe that

Ay =4, [J{4... . Ar=40---uA4,

and in particular, (J0 = 0.
Using the subset axioms, we can also define infinite intersections. For every nonempty
set X, there is a set (| X defined by

re()X iff VB(BEX=uxz¢€B).

The existence of (| X is justified as follows. Because X is nonempty, it contains some
set, A; let
P(X,z)=VB(Be X =z € B).

Then, the subset axioms asserts the existence of a set Y so that for every =,

reY iff €A and P(X, x),

which is equivalent to
reY iff P(X,x).

Therefore, the set Y is our desired set, [X.
Observe that

(WA, B}=ANB, [[Ai...,A}=A4AN-NA,

Note that (0 is not defined. Intuitively, it would have to be the set of all sets, but such a
set does not exist, as we now show. This is basically a version of Russell’s paradox.

2.20. BASICS CONCEPTS OF SET THEORY 151

Theorem 2.22. (Russell) There is no set of all sets, that is, there is no set to which every
other set belongs.

Proof. Let A be any set. We construct a set B that does not belong to A. If the set of all
sets existed, then we could produce a set that does not belong to it, a contradiction. Let

B={a€A|a¢a}.

We claim that B ¢ A. We proceed by contradiction, so assume B € A. However, by the
definition of B, we have

BeB iff BeA and B¢ B.
Because B € A, the above is equivalent to
BeB iff B¢ B,
which is a contradiction. Therefore, B ¢ A and we deduce that there is no set of all sets. [J
Remarks:

(1) We should justify why the equivalence B € B iff B ¢ B is a contradiction. What we
mean by “a contradiction” is that if the above equivalence holds, then we can derive |
(falsity) and thus, all propositions become provable. This is because we can show that
for any proposition P if P = —P is provable, then every proposition is provable. We
leave the proof of this fact as an easy exercise for the reader. By the way, this holds
classically as well as intuitionistically.

(2) We said that in the subset axioms, the variable X is not allowed to occur free in
P. A slight modification of Russell’s paradox shows that allowing X to be free in
P leads to paradoxical sets. For example, pick A to be any nonempty set and set
P(X,z) =x ¢ X. Then, look at the (alleged) set

X={reA|z¢X}.
As an exercise, the reader should show that X is empty iff X is nonempty,

This is as far as we can go with the elementary notions of set theory that we have
introduced so far. In order to proceed further, we need to define relations and functions, as
we did in Chapter 12.3.

The reader may also wonder why we have not yet discussed infinite sets. This is because
we don’t know how to show that they exist. Again, perhaps surprisingly, this takes another
axiom, the aziom of infinity. We also have to define when a set is infinite. However, we
do not go into this right now. Instead, we accept that the set of natural numbers N exists
and is infinite. Once we have the notion of a function, we are able to show that other sets

152 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

5 MATHEMATIGIAN

¢ IOt von NEUMANN

e /

Figure 2.18: John von Neumann

are infinite by comparing their “size” with that of N. (This is also the purpose of cardinal
numbers, but this would lead us too far afield).

Remark: In an axiomatic presentation of set theory, the natural numbers can be defined
from the empty set using the operation A — AT = AU {A} introduced just after the union
axiom. The idea due to von Neumann is that the natural numbers, 0,1,2,3,..., can be
viewed as concise notations for the following sets.

0} = {0}
0,{0}} = {0, 1}
®7 {®}7 {@7 {@}}} = {07 L, 2}

Il
R =

+
+
+

W N = O
I

{
{
{

n+1=nt=1{0,1,2,...,n}

However, the above subsumes induction. Thus, we have to proceed in a different way to
avoid circularities.

Definition 2.37. We say that a set X is inductive iff
(1) Ve X.

(2) For every A € X, we have A* € X.

Axiom of Infinity
There is some inductive set.

Having done this, we make the following.

Definition 2.38. A natural number is a set that belongs to every inductive set.

2.20. BASICS CONCEPTS OF SET THEORY 153

Using the subset axioms, we can show that there is a set whose members are exactly
the natural numbers. The argument is very similar to the one used to prove that arbitrary
intersections exist. By the axiom of infinity, there is some inductive set, say A. Now consider
the property P(z) which asserts that x belongs to every inductive set. By the subset axioms
applied to P, there is a set N, such that

reN iff z€ A and P(x),

and because A is inductive and P says that x belongs to every inductive set, the above is
equivalent to
reN iff P(x);

that is, z € N iff x belongs to every inductive set. Therefore, the set of all natural numbers
N does exist. The set N is also denoted w. We can now easily show the following.

Theorem 2.23. The set N is inductive and it is a subset of every inductive set.

Proof. Recall that () belongs to every inductive set; so () is a natural number (0). As N is the
set of natural numbers, () (= 0) belongs to N. Secondly, if n € N, this means that n belongs
to every inductive set (n is a natural number), which implies that n™ = n + 1 belongs to
every inductive set, which means that n+ 1 is a natural number, that is, n+1 € N. Because
N is the set of natural numbers and because every natural number belongs to every inductive
set, we conclude that N is a subset of every inductive set. O]

@ It would be tempting to view N as the intersection of the family of inductive sets, but
unfortunately this family is not a set; it is too “big” to be a set.

As a consequence of the above fact, we obtain the following.

Induction Principle for N: Any inductive subset of N is equal to N itself.
Now, in our setting, 0 = () and n™ = n + 1, so the above principle can be restated as
follows.

Induction Principle for N (Version 2): For any subset, S C N, if0 € Sandn+1¢€ S
whenever n € S, then S = N.

This induction principle can be restated a little more conveniently in terms of the notion
of function.

Remark: Zermelo-Fraenkel set theory (4 Choice) has three more axioms. The aziom of
choice, the replacement axioms, and the reqularity axiom. For our purposes, only the axiom
of choice is needed, and we introduced it in Chapter 12.3.

The replacement axioms are needed to deal with ordinals and cardinals. The intuition
behind these axioms is that the image of a set under a functional relation should be a set.

Definition 2.39. Given any set A, if ¢(z,y) is a first-order formula, we say that ¢ is
functional on A if

(Vo € AV Vs (o, 11) A (@, 92) = 11 = 1)

154 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

The following question arises: is

B={y| 3z e Ao(z,y)}

intuitively the image of A by ¢, a set?

With the axioms introduced so far, it can be proven that the answer is no; see Enderton
[13], Chapter 9.

The axioms of replacement fix this problem by declaring that B is a set. This implies
that

H={(z,y) | (x € A) Ap(z,y)}

is a subset of A x B. Without these axioms, this can’t be proven.

The replacement axioms are used to prove the validity of transfinite recursion. In turn,
transfinite recursion is used to define the ordinals; see Enderton [13], Chapter 7.

The regularity axiom (also known as foundation axiom) states that for any nonempty set
A, there is some element m € A such that m N A = 0.

The regularity axiom prevents certain undesirable properties. Among other things, no
set can be a member of itself, and there are no sets A and B such that A € B and B € A.

But this axiom goes beyond. It is possible to define a hierarchy of sets V,, indexed by the
ordinals, and the axiom of regularity is equivalent to the fact that for every set A, there is
some « such that A C V,,. We say that every set is grounded. See Enderton [13], Chapter 7.

As we said at the beginning of this section, set theory can be axiomatized in first-order
logic. To illustrate the generality and expressiveness of first-order logic, we conclude this
section by stating nine (out of ten) of the axioms of Zermelo—Fraenkel set theory (for short,
ZF(C) as first-order formulae. The language of Zermelo—Fraenkel set theory consists of the
constant () (for the empty set), the equality symbol, and of the binary predicate symbol €
for set membership. It is convenient to abbreviate —(x = y) as ¢ # y and ~(x € y) as x ¢ y.
The axioms are the equality axioms, the axiom of choice, and the following nine axioms.

VAVB(Vzx(xr € A=z € B) = A= B)

—~
—_

)
(2) V(x ¢ 0)
(3) VaVb3ZVz(x € Z = (x =aV x =)
(4) VX3IYVr(r €Y =3B(B€ X ANz € B))
(5) VAYVX(X €Y =Vz(z € X = 2z € A))
(6) VAIXVz(x € X = (x € A) A P)
(7) IX(0 e X ANVy(ly € X = yU{y} € X))
(8) Vi, VY A[(Ye € AVyiVys (e(z, 91) A (T, y2) = 11 =)

= dBVy(y € B= (3x € A)p(z,v))]
(9) (VA)((A#0) = Fm e A)(mnA=10)),

where P is any first-order formula that does not contain X free and ¢(z,y) is any first-order
formula whose free variables are x,y,tq, ..., %, and does not contain B free.

2.21. SUMMARY 155

e Axiom (1) is the extensionality axiom.
e Axiom (2) is the empty set axiom.

e Axiom (3) asserts the existence of a set Y whose only members are a and b. By
extensionality, this set is unique and it is denoted {a,b}. We also denote {a, a} by {a}.

e Axiom (4) asserts the existence of set Y which is the union of all the sets that belong
to X. By extensionality, this set is unique and it is denoted | J X. When X = {A, B},
we write (J{A,B} = AU B.

e Axiom (5) asserts the existence of set Y which is the set of all subsets of A (the power
set of A). By extensionality, this set is unique and it is denoted P(A) or 24.

e Axioms (6) are the subset axioms (or axioms of separation).
e Axiom (7) is the infinity axiom, stated using the abbreviations introduced above.
e Axioms (8) are replacement axioms.

e Axiom (9) is the regularity (or foundation) axiom.

For a comprehensive treatment of axiomatic set theory, see Enderton [13] and Suppes
[59].

2.21 Summary

The main goal of this chapter is to describe precisely the logical rules used in mathematical
reasoning and the notion of a mathematical proof. A brief introduction to set theory is
also provided. We decided to describe the rules of reasoning in a formalism known as a
natural deduction system because the logical rules of such a system mimic rather closely
the informal rules that (nearly) everybody uses when constructing a proof in everyday life.
Another advantage of natural deduction systems is that it is very easy to present various
versions of the rules involving negation and thus, to explain why the “proof-by-contradiction”
proof rule or the “law of the excluded middle” allow for the derivation of “nonconstructive”
proofs. This is a subtle point often not even touched in traditional presentations of logic.
However, inasmuch as most of our readers write computer programs and expect that their
programs will not just promise to give an answer but will actually produce results, we feel
that they will grasp rather easily the difference between constructive and nonconstructive
proofs and appreciate the former, even if they are harder to find.

e We describe the syntax of propositional logic.

e The proof rules for implication are defined in a natural deduction system
(Prawitz-style).

156

CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Deductions proceed from assumptions (or premises) using inference rules.

The process of discharging (or closing) a premise is explained. A proof is a deduction
in which all the premises have been discharged.

We explain how we can search for a proof using a combined bottom-up and top-down
process.

We propose another mechanism for decribing the process of discharging a premise and
this leads to a formulation of the rules in terms of sequents and to a Gentzen system.

We introduce falsity 1 and negation —P as an abbrevation for P =1. We describe
the inference rules for conjunction, disjunction, and negation, in both Prawitz style
and Gentzen-sequent style natural deduction systems

One of the rules for negation is the proof-by-contradiction rule (also known as RAA).
We define intuitionistic and classical logic.

We introduce the notion of a constructive (or intuitionistic) proof and discuss the two
nonconstructive culprits: PV =P (the law of the excluded middle) and ——P = P
(double-negation rule).

We show that PV =P and ——P = P are provable in classical logic

We clear up some potential confusion involving the various versions of the rules re-
garding negation.

1. RAA is not a special case of —-introduction.
2. RAA is not equivalent to |-elimination; in fact, it implies it.

3. Not all propositions of the form PV =P are provable in intuitionistic logic. How-
ever, RAA holds in intuitionistic logic plus all propositions of the form PV —P.

4. We define double-negation elimination.
We present the de Morgan laws and prove their validity in classical logic.
We present the proof-by-contrapositive rule and show that it is valid in classical logic.
We give some examples of proofs of “real” statements.

We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, so that a® is rational.

We explain the truth-value semantics of propositional logic.

We define the truth tables for the propositional connectives

2.21.

SUMMARY 157

We define the notions of satisfiability, unsatisfiability, validity, and tautology.

We define the satisfiability problem and the validity problem (for classical propositional
logic).

We mention the NP-completeness of satisfiability.
We discuss soundness (or consistency) and completeness.

We state the soundness and completeness theorems for propositional classical logic
formulated in natural deduction.

We explain how to use counterexamples to prove that certain propositions are not
provable.

We give a brief introduction to Kripke semantics for propositional intuitionistic logic.
We define Kripke models (based on a set of worlds).
We define validity in a Kripke model.

We state the the soundness and completeness theorems for propositional intuitionistic
logic formulated in natural deduction.

We add first-order quantifiers (“for all” V and “there exists” 3) to the language of
propositional logic and define first-order logic.

We describe free and bound variables.

We give inference rules for the quantifiers in Prawitz-style and Gentzen sequent-style
natural deduction systems.

We explain the eigenvariable restriction in the V-introduction and 3-elimination rules.

We prove some “de Morgan”-type rules for the quantified formulae valid in classical
logic.

We discuss the nonconstructiveness of proofs of certain existential statements.

We explain briefly how classical logic can be translated into intuitionistic logic (the
Godel translation).

We define first-order theories and give the example of Peano arithmetic.

We revisit the decision problem and mention the undecidability of the decision problem
for first-order logic (Church’s theorem).

We discuss the notion of detours in proofs and the notion of proof normalization.

158 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

e We mention strong normalization.

e We mention the correspondence between propositions and types and proofs and typed
A-terms (the Curry—Howard isomorphism).

e We mention Godel’s completeness theorem for first-order logic.

e Again, we mention the use of counterezamples.

e We mention Gadel’s incompleteness theorem.

e We present informally the axioms of Zermelo—Fraenkel set theory (ZFC).

e We present Russell’s paradox, a warning against “self-referential” definitions of sets.

e We define the empty set (), the set {a,b} whose elements are a and b, the union AU B
of two sets A and B, and the power set 24 of A.

e We state carefully Zermelo’s subset azioms for defining the subset {x € A | P} of
elements of a given set A satisfying a property P.

e Then, we define the intersection AN B and the relative complement A — B of two sets

A and B.
e We also define the union |J A and the intersection [A of a set of sets A.

e We show that one should avoid sets that are “too big”; in particular, we prove that
there is no set of all sets.

e We define the natural numbers “a la Von Neumann.”
e We define inductive sets and state the axiom of infinity.

e We show that the natural numbers form an inductive set N, and thus, obtain an
induction principle for N.

e We summarize the axioms of Zermelo—Fraenkel set theory in first-order logic.

2.22 Problems

Problem 2.1. (a) Give a proof of the proposition P = (Q = P) in the system N,.
(b) Prove that if there are deduction trees of P = @) and () = R from the set of premises
' in the system N7, then there is a deduction tree for P = R from I" in N.

Problem 2.2. Give a proof of the proposition (P = Q) = (P = (Q = R)) = (P = R))
in the system N

2.22. PROBLEMS 159

Problem 2.3. (a) Prove the “de Morgan” laws in classical logic.

—-(PVQ)=-PA-Q.

(b) Prove that =(P V Q) = =P A =(Q is also provable in intuitionistic logic.
(c) Prove that the proposition (P A =Q) = —(P = @) is provable in intuitionistic logic
and =(P = Q) = (P A —Q) is provable in classical logic.

Problem 2.4. (a) Show that P = =—P is provable in intuitionistic logic.
(b) Show that =——P and —P are equivalent in intuitionistic logic.

Problem 2.5. Recall that an integer is even if it is divisible by 2, that is, if it can be written
as 2k, where k € Z. An integer is odd if it is not divisible by 2, that is, if it can be written
as 2k + 1, where k € Z. Prove the following facts.

a

(
(b

The sum of even integers is even.
The sum of an even integer and of an odd integer is odd.

(
(d

)
)

¢) The sum of two odd integers is even.
) The product of odd integers is odd.
)

(e) The product of an even integer with any integer is even.

Problem 2.6. (a) Show that if we assume that all propositions of the form
P=(Q=R)

are axioms (where P, @, R are arbitrary propositions), then every proposition is provable.
(b) Show that if P is provable (intuitionistically or classically), then @ = P is also
provable for every proposition).

Problem 2.7. (a) Give intuitionistic proofs for the equivalences listed below.

PVvVP=P
PANP=P
PvQ=QvVvP
PANQ=QANP.

(b) Give intuitionistic proofs for the equivalences listed below.

PAN(PVQ)=P
PV (PAQ)=P.

160 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.8. Give intuitionistic proofs for the propositions listed below.

P=(Q=(PNQ))
(P=Q) = (P=-Q)=~P)
(P=R)=(Q=R)=(PVQ) = R)).

Problem 2.9. Prove that the following equivalences are provable intuitionistically.

PA(P=Q) = PAQ
QNP=Q) = @
(P=(QAR) = ((P=Q)A(P=R)).

Problem 2.10. Give intuitionistic proofs for

(P=Q)=(=PVQ)
—~(==P = P).

Problem 2.11. Give an intuitionistic proof for =—(P VvV =P).

Problem 2.12. Give intuitionistic proofs for the propositions
(PV—-P)=(-——P=P) and (—-—P= P)= (PV-P).
Hint. For the second implication, you may want to use Problem 2.11.

Problem 2.13. Give intuitionistic proofs for the propositions
(P=Q)=-(-PVQ) and (-P=Q)=(PVQ).

Problem 2.14. (1) Design an algorithm for converting a deduction of a proposition P in
the system /\/;:>’/\’\/7L into a deduction in the system NQ?’A’V’L.

(2) Design an algorithm for converting a deduction of a proposition P in the system
N="V-Linto a deduction in the system N'GZVt

(3) Design an algorithm for converting a deduction of a proposition P in the system
NG+ into a deduction in the system N7,

(4) Design an algorithm for converting a deduction of a proposition P in the system
NG+ into a deduction in the system N7V,

Hint. Use induction on deduction trees.

Problem 2.15. Prove that the following version of the V-elimination rule formulated in
Gentzen-sequent style is a consequence of the rules of intuitionistic logic.
Iz:P—-R T,y:Q — R
Iz: PVQ — R

2.22. PROBLEMS 161

Conversely, if we assume that the above rule holds, then prove that the V-elimination
rule

r-pPvQ I'Ne:P—-R Ty:Q—R
=R

follows from the rules of intuitionistic logic (of course, excluding the V-elimination rule).

(V-elim)

Problem 2.16. (1) Give algorithms for converting a deduction in N7V1%3 to a deduction
in NGZV+"3 and vice-versa.

(2) Give algorithms for converting a deduction in N;”""¥">"7 to a deduction in NG
and vice-versa.

Problem 2.17. (a) Give intuitionistic proofs for the distributivity of A over V and of V over
A:

PA(QVR)=(PANQ)V(PAR)
PV(QAR)=(PVQ)A(PVR).

(b) Give intuitionistic proofs for the associativity of A and V:

PAQQAR)=(PAQ)AR
PV(QVR)=(PVQ)VR.

Problem 2.18. Recall that in Problem 2.1 we proved that if P = @ and () = R are
provable, then P = R is provable. Deduce from this fact that if P =) and () = R hold,
then P = R holds (intuitionistically or classically).

Prove that if P = @ holds, then = P holds (intuitionistically or classically). Finally,
check that P = P holds (intuitionistically or classically).

Problem 2.19. Prove (intuitionistically or classically) that if P, = @1 and P> = @2, then
PLAPy) = (Q1 N Q2)

1
(ALY R) = (Q1V Qa).
)
(

2
(b) Prove (intuitionistically or classically) that if @Q; = P, and P, = 2, then
L (= P) = (Q1= Q)

2. 2P = Q.

(c) Prove (intuitionistically or classically) that if P = @, then

1. VtP = VtQ

2. 3P = Q.

162 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(d) Prove (intuitionistically or classically) that if P, =)1 and P, = Qs, then
PN Py) = (Q1AQ2)

PV Py) = (Q1V Qo)

Pr=Py) = (Q1= Q2)

4. =P = -Q

1.

)
(
2.
(

3.

5. VtP, = VtQ,
6. P, = 3tQ,.
Problem 2.20. Show that the following are provable in classical first-order logic:
—VtP = Jt—-P
—-dtP = Vt—-P

V(P A Q) = VP AVQ
(P Vv Q)=3tPVIHQ.

(b) Moreover, show that the propositions 3t(P A Q) = JtP A JtQ and
VtP V Vt@Q = VYt(P V Q) are provable in intuitionistic first-order logic (and thus, also in
classical first-order logic).

(c) Prove intuitionistically that

JaVyP = VydzP.

Give an informal argument to the effect that the converse, VydxP = dxVyP, is not
provable, even classically.

Problem 2.21. (a) Assume that @) is a formula that does not contain the variable ¢ (free
or bound). Give a classical proof of

VPV Q) = (VtPV Q).

(b) If P is a proposition, write P(z) for P[z/t] and P(y) for Ply/t], where z and y are
distinct variables that do not occur in the orginal proposition P. Give an intuitionistic proof

for
—Vz3y(—P(z) A P(y)).

(c) Give a classical proof for

SuVy(P(x) V ~P(y)).

Hint. Negate the above, then use some identities we’ve shown (such as de Morgan) and
reduce the problem to Part (b).

2.22. PROBLEMS 163

Problem 2.22. (a) Let X = {X; | 1 < i < n} be a finite family of sets. Prove that if
XiJrl g Xz for all i, with 1 < 1 <n-— 1, then

ﬂX:L.

Prove that if X; C X;,; for all 7, with 1 <7 <mn — 1, then

UX:&.

(b) Recall that N, = N—{0} = {1,2,3,...,n,...}. Give an example of an infinite family
of sets X = {X; | i € N, }, such that

1. X;11 C X, foralli>1.
2. X, is infinite, for every i > 1.
3. [X has a single element.
(¢) Give an example of an infinite family of sets, X = {X; | i € N}, such that
1. X;y1 C X, foralli>1.
2. X, is infinite, for every ¢ > 1.
3. X =0.
Problem 2.23. Prove that the following propositions are provable intuitionistically:
(P = —-P)=-P, (-P = P)=-—P.

Use these to conlude that if the equivalence P = —P is provable intuitionistically, then every
proposition is provable (intuitionistically).

Problem 2.24. (1) Prove that if we assume that all propositions of the form
(P=Q)=P)=P

are axioms (Peirce’s law), then =—P = P becomes provable in intuitionistic logic. Thus, an-
other way to get classical logic from intuitionistic logic is to add Peirce’s law to intuitionistic
logic.
Hint. Pick @) in a suitable way and use Problem 2.23.

(2) Prove ((P = Q) = P) = P in classical logic.
Hint. Use the de Morgan laws.

Problem 2.25. Let A be any nonempty set. Prove that the definition
X={a€A|a¢ X}

yields a “set” X, such that X is empty iff X is nonempty and therefore does not define a
set, after all.

164 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.26. Prove the following fact: if
r I''R
Di o gnd Do
PvQ Q
are deduction trees provable intuitionistically, then there is a deduction tree
IP=R
D
Q

for @ from the premises in ' U{P = S}.

Problem 2.27. Recall that the constant T stands for true. So, we add to our proof systems
(intuitionistic and classical) all axioms of the form

7 7 7
P,...P....°....P..7D,... P

where k; > 1 and n > 0; note that n = 0 is allowed, which amounts to the one-node tree T.
(a) Prove that the following equivalences hold intuitionistically.

PVvT=T
PAT=P

Prove that if P is intuitionistically (or classically) provable, then P = T is also provable
intuitionistically (or classically). In particular, in classical logic, PV =P = T. Also prove
that

Pv.1=P
PAnl=1

hold intuitionistically.
(b) In the rest of this problem, we are dealing only with classical logic. The connective
exclusive or, denoted @, is defined by

PaQ=(PA-Q)V(~PAQ).

In solving the following questions, you will find that constructing proofs using the rules of
classical logic is very tedious because these proofs are very long. Instead, use some identities
from previous problems.

Prove the equivalence

2.22. PROBLEMS 165

(c) Prove that

PoP=_1
Pa@Q=QaP
(POPQ)®R=Pa(Q®R).

(d) Prove the equivalence
PVQ=(PANQ)® (P Q).
Problem 2.28. Give a classical proof of
—(P=-Q)=(PAQ).
Problem 2.29. (a) Prove that the rule

r A
D, D,
P=qQ =@
-P

can be derived from the other rules of intuitionistic logic.
(b) Give an intuitionistic proof of =P from I' = {=(=P Vv Q), P = Q} or equivalently,
an intuitionistic proof of

<ﬂ(ﬁP VQ)A (P = Q)) ~ -P,
Problem 2.30. (a) Give intuitionistic proofs for the equivalences
JrdyP = JydxP and VaVyP = VyVxP.
(b) Give intuitionistic proofs for
(VtPAQ) = YH(PANQ) and VH(PAQ)= (VIPAQ),

where ¢ does not occur (free or bound) in Q.
(c) Give intuitionistic proofs for

(3tPVQ)=IH#(PVQ) and IHPVQ)= (3PVQ),

where ¢ does not occur (free or bound) in Q.

Problem 2.31. An integer n € Z is divisible by 3 iff n = 3k, for some k € Z. Thus (by the
division theorem), an integer n € Z is not divisible by 3 iff it is of the form n = 3k+1,3k+2,
for some k € Z (you don’t have to prove this).

Prove that for any integer n € Z, if n? is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k + 1,3k + 2, then so is n? (for a
different k).

166 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.32. Use Problem 2.31 to prove that V3 is irrational, that is, V/3 can’t be written
as V3 = p/q, with p,q € Z and q # 0.

Problem 2.33. Give an intuitionistic proof of the proposition
(P=R)A(Q@=R)=((PVQ)=R).

Problem 2.34. Give an intuitionistic proof of the proposition

(PAQ)=R)=(P=(Q=R)).

Problem 2.35. (a) Give an intuitionistic proof of the proposition
(PAQ)= (PVQ).

(b) Prove that the proposition (P V Q) = (P A Q) is not valid, where P, (), are proposi-
tional symbols.

(c) Prove that the proposition (P V Q) = (P A Q) is not provable in general and that
if we assume that all propositions of the form (P V Q) = (P A Q) are axioms, then every
proposition becomes provable intuitionistically.

Problem 2.36. Give the details of the proof of Proposition 2.6; namely, if a proposition P
is provable in the system N>V (or NGZV'4), then it is valid (according to the truth
value semantics).

Problem 2.37. Give the details of the proof of Theorem 2.8; namely, if a proposition P is
provable in the system N7V (or NG;""¥1), then it is valid in every Kripke model; that
is, it is intuitionistically valid.

Problem 2.38. Prove that b = log, 9 is irrational. Then prove that ¢ = /2 and b = log, 9
are two irrational numbers such that a’ is rational.

Problem 2.39. (1) Prove that if Va—(P A @) can be deduced intuitionistically from a set
of premises I', then Vz(P = —@Q) and Vz(() = —P) can also be deduced intuitionistically
from T
(2) Prove that if V(P V Q) can be deduced intuitionistically from a set of premises I,
then Va(—-P = @) and Vz(—=Q = P) can also be deduced intuitionistically from I
Conclude that if
Ve(PV Q) and Va—(PAQ)

can be deduced intuitionistically from a set of premises I', then
V(P =-Q) and Vz(Q =-P)

can also be deduced intuitionistically from T'.
(3) Prove that if V(P = Q) can be deduced intuitionistically from a set of premises T',
then Va (=@ = —P) can also be deduced intuitionistically from I". Use this to prove that if

V(P =-Q) and Vz(Q =-P)

can be deduced intuitionistically from a set of premises I', then the formulae Vz(——P = P)
and Vz(——Q = @) can be deduced intuitionistically from I.

2.22. PROBLEMS 167

Problem 2.40. Prove that the formula
Vreven(2 * x)
is provable in Peano arithmetic. Prove that
even(2x (n+ 1) (n+3))

is provable in Peano arithmetic for any natural number n.
Problem 2.41. A first-order formula A is said to be in prenex-form if either

(1) A is a quantifier-free formula.

(2) A=VtB or A= 3tB, where B is in prenex-form.
In other words, a formula is in prenex form iff it is of the form

Q111Qata - - - Qi P,

where P is quantifier-free and where Q1Q)s - - - Q,, is a string of quantifiers, Q; € {V, 3}.
Prove that every first-order formula A is classically equivalent to a formula B in prenex
form.

Problem 2.42. Let A and be B be any two sets of sets.

(1) Prove that
(UA) U (UB) =Jun).
(2) Assume that A and B are nonempty. Prove that
<ﬂA> N <ﬂB> =((AuB).
(3) Assume that A and B are nonempty. Prove that
Uuns c(Ua)n(Us).
and give a counterexample of the inclusion

(UA) N (UB) cJann.

Hint. Reduce the above questions to the provability of certain formulae that you have already
proved in a previous assignment (you need not re-prove these formulae).

168 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.43. A set A is said to be transitive iff for all a € A and all x € a, then z € A,
or equivalently, for all a € A,
acA=aCA.

(1) Check that a set A is transitive iff

UAgA

A C 24,

ift

(2) Recall the definition of the von Neumann successor of a set A given by
At = AU {A}.

Prove that if A is a transitive set, then

) =4

(3) Recall the von Neumann definition of the natural numbers. Check that for every
natural number m
mem™ and m C m™T.

Prove that every natural number is a transitive set.
Hint. Use induction.
(4) Prove that for any two von Neumann natural numbers m and n, if m*™ = n™, then

~—

S

m=n.
(5) Prove that the set N of natural numbers is a transitive set.
Hint. Use induction.

~—

Problem 2.44. Even though natural deduction proof systems for classical propositional logic
are complete (with respect to the truth value semantics), they are not adequate for designing
algorithms searching for proofs (because of the amount of nondeterminism involved).

Gentzen designed a different kind of proof system using sequents (later refined by Kleene,
Smullyan, and others) that is far better suited for the design of automated theorem provers.
Using such a proof system (a sequent calculus), it is relatively easy to design a procedure
that terminates for all input propositions P and either certifies that P is (classically) valid
or else returns some (or all) falsifying truth assignment(s) for P. In fact, if P is valid, the
tree returned by the algorithm can be viewed as a proof of P in this proof system.

For this miniproject, we describe a Gentzen sequent-calculus G' for propositional logic
that lends itself well to the implementation of algorithms searching for proofs or falsifying
truth assignments of propositions.

Such algorithms build trees whose nodes are labeled with pairs of sets called sequents. A
sequent is a pair of sets of propositions denoted by

pla"'apm_>Q1>"'aQna

2.22. PROBLEMS 169

with m,n > 0. Symbolically, a sequent is usally denoted I' — A, where I' and A are two
finite sets of propositions (not necessarily disjoint).
For example,

- P=(Q=P), PVvVQ —, PQ—PANQ

are sequents. The sequent —, where both I' = A = () corresponds to falsity.

The choice of the symbol — to separate the two sets of propositions I' and A is commonly
used and was introduced by Gentzen but there is nothing special about it. If you don’t like
it, you may replace it by any symbol of your choice as long as that symbol does not clash
with the logical connectives (=, A, V,). For example, you could denote a sequent

Pl)"'apm;Qh”'uQTw

using the semicolon as a separator.
Given a truth assignment v to the propositional letters in the propositions P; and @, we
say that v satisfies the sequent Py, ..., P, — Q1,...,Q, iff

v((PLA--AP,) = (Q1V -V Q,)) = true,
or equivalently, v falsifies the sequent Py, ..., P,, — Q1,...,Q, iff
V(PLA-- APy, AN=Q1 N+ N—=Q,) = true,

iff
v(P) =true, 1 <i<m, and v(Q;) =false, 1 <j<n.
A sequent is wvalid iff it is satisfied by all truth assignments iff it cannot be falsified.

Note that a sequent Py,..., P, — @Q1,...,Q, can be falsified iff some truth assignment
satisfies all of Py, ..., P, and falsifies all of Q,...,Q,. In particular, if {Py,..., P,} and
{Q1,...,Q,} have some common proposition (they have a nonempty intersection), then the
sequent Pi,..., P, = Q1,...,Qy is valid. On the other hand if all the P;s and @;s are
propositional letters and {Py, ..., P,} and {Q1,...,Q,} are disjoint (they have no symbol
in common), then the sequent Py, ..., P, — Q1,...,Q, is falsified by the truth assignment
v where v(P;) = true, for i = 1,...m, and v(Q;) = false, for j =1,...,n.

The main idea behind the design of the proof system G’ is to systematically try to falsify
a sequent. If such an attempt fails, the sequent is valid and a proof tree is found. Otherwise,
all falsifying truth assignments are returned. In some sense

failure to falsify is success (in finding a proof).

The rules of G’ are designed so that the conclusion of a rule is falsified by a truth
assignment v iff its single premise of one of its two premises is falsified by v. Thus, these
rules can be viewed as two-way rules that can either be read bottom-up or top-down.

Here are the axioms and the rules of the sequent calculus G':

170 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Axioms: I', P — P, A
Inference rules:

I''PQ,A— A

. lef
T PAQASA Vet

I'PA—-A TQ,A— A
IPVQ,A— A

Ve left

I'A—PA QI A—=A

. lef
T P=QA=A = elt

I''A— PA

o TR ef
T.—P.A— A elt

' -APA T > A QA

A: right
T A PAQ A He
I - A PQ,A
”’ V: right
T SAPVQA 18
PI=Q.AA = right

I SAP=QA

P T — A A

—— -~ righ
T A pA et

where I', A, A are any finite sets of propositions, possibly the empty set.

A deduction tree is either a one-node tree labeled with a sequent or a tree constructed
according to the rules of system G’. A proof tree (or proof) is a deduction tree whose leaves
are all axioms. A proof tree for a proposition P is a proof tree for the sequent — P (with

an empty left-hand side).
For example,

PQ— P

is a proof tree.

Here is a proof tree for (P = Q) = (-Q = —P):

P-Q — P
-@Q — PP
— P, (-Q = —-P)

Q—Q,~P
'QaQ—>'P
Q— (-Q = —P)

(P = Q) = (-Q = ~P)

— (P=Q)= (-Q = —P)

The following is a deduction tree but not a proof tree

PR— P
R ——-P P
— P,(R= —P)

R,Q,P—
R,QQ — —P
Q— (R=-P)

(P= Q) — (R= —P)

- (P=Q)= (R=—-P)

2.22. PROBLEMS 171

because its rightmost leaf, R, Q, P —, is falsified by the truth assignment v(P) = v(Q) =
v(R) = true, which also falsifies (P = Q) = (R = —P).

Let us call a sequent Py, ..., P, = Q1,...,Q, finished if either it is an axiom (P; = @),
for some i and some j) or all the propositions P; and @); are atomic and {Py,..., P,} N
{Q1,...,Q,} = 0. We also say that a deduction tree is finished if all its leaves are finished
sequents.

The beauty of the system G’ is that for every sequent

P17...,Pm—>Q1,...,Qn,

the process of building a deduction tree from this sequent always terminates with a tree where
all leaves are finished independently of the order in which the rules are applied. Therefore,
we can apply any strategy we want when we build a deduction tree and we are sure that we
will get a deduction tree with all its leaves finished. If all the leaves are axioms, then we
have a proof tree and the sequent is valid, or else all the leaves that are not axioms yield a
falsifying assignment, and all falsifying assignments for the root sequent are found this way.

If we only want to know whether a proposition (or a sequent) is valid, we can stop as soon
as we find a finished sequent that is not an axiom because in this case, the input sequent is
falsifiable.

(1) Prove that for every sequent Py,..., P, — Q1,...,Q,, any sequence of applications
of the rules of G’ terminates with a deduction tree whose leaves are all finished sequents (a
finished deduction tree).
Hint. Define the number of connectives ¢(P) in a proposition P as follows.

(1) If P is a propositional symbol, then
c(P)=0.
(2) If P =-Q, then
¢(-Q) = (@) + L.
(3) If P =@ * R, where *x € {=,V, A}, then

c(@*R)=c(Q)+c(R)+ 1.

Given a sequent,
F—>A:P1,...,Pm—>Q1,...,Qn,

define the number of connectives, ¢(I' = A), in ' = A by
cT—=A)=c(P)+ 4 c(Pn)+c(Q1)+ -+ c(Qn).

Prove that the application of every rule decreases the number of connectives in the premise(s)
of the rule.

172 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(2) Prove that for every sequent P,..., P, — Q1,...,Q,, for every finished deduction

tree T' constructed from P, ..., P, — Q1,...,Q, using the rules of G, every truth assign-
ment v satisfies Py, ..., P, — @1, ...,Q, iff v satisfies every leaf of T'. Equivalently, a truth
assignment v falsifies P, ..., P, — Q1,...,Q, iff v falsifies some leaf of T'.

Deduce from the above that a sequent is valid iff all leaves of every finished deduction tree
T are axioms. Furthermore, if a sequent is not valid, then for every finished deduction tree
T, for that sequent, every falsifying assignment for that sequent is a falsifying assignment of
some leaf of the tree T

(3) Programming Project:
Design an algorithm taking any sequent as input and constructing a finished deduction tree.
If the deduction tree is a proof tree, output this proof tree in some fashion (such a tree can
be quite big so you may have to find ways of “flattening” these trees). If the sequent is
falsifiable, stop when the algorithm encounters the first leaf that is not an axiom and output
the corresponding falsifying truth assignment.

I suggest using a depth-first expansion strategy for constructing a deduction tree. What
this means is that when building a deduction tree, the algorithm will proceed recursively as
follows. Given a nonfinished sequent

Al,...,Ap%Bl,...,Bq,

if A; is the leftmost nonatomic proposition if such proposition occurs on the left, or if B, is
the leftmost nonatomic proposition if all the A;s are atomic, then

(1) The sequent is of the form
A, A — A,

with A; the leftmost nonatomic proposition. Then either

(a) A; = C;AD; or A; = —=C;, in which case either we recursively construct a (finished)
deduction tree

D,
P, OZ', Di7 A=A

to get the deduction tree
D,
P, OZ', Di7 A— A

F,CZ/\DZ,A%A

or we recursively construct a (finished) deduction tree
D,
r, A — Ci, A

to get the deduction tree

2.22. PROBLEMS 173

D,
F,A—>CZ',A

F,_\Ci,A — A

)

or

(b) A; =C; Vv D; or A; = C; = D;, in which case either we recursively construct two
(finished) deduction trees

D, D,
F,Ci,A—)A and F,D“A—>A
to get the deduction tree
Dl DQ
F,Oi,A—>A F,D“A—>A

F,Cz\/D“A%A

or we recursively construct two (finished) deduction trees
D, D,
N'A—=C;,,A and D;TA— A
to get the deduction tree
D, D,
I[NA— C;, A D; T'A— A

ICi= D;;,A — A

(2) The nonfinished sequent is of the form
I'— A, Bj, A,
with B; the leftmost nonatomic proposition. Then either

(a) B =C;V D;or B; =C; = D;, or B; = —(}, in which case either we recursively
construct a (finished) deduction tree
D
r— A, Cj, D]’, A

to get the deduction tree

D,
I — A, C]a D],A

I = A,C; VD, A

174 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

or we recursively construct a (finished) deduction tree
D,
C;,I' = D;, AJA

to get the deduction tree

D,
C;, T = D; A A

I' - A,Cj= Dj, A
or we recursively construct a (finished) deduction tree
Dy
C;,I' = A A
to get the deduction tree

D,
C;, T — A A

bl

I'— A, ﬁCj,A
or

(b) B; = C; A Dj, in which case we recursively construct two (finished) deduction
trees

D, D,
I -AC,A and T —A DA

to get the deduction tree
Dl DQ
F-)A,Cj,/\ F-)A,Dj,A

F—)A,Cj/\Dj,A

If you prefer, you can apply a breadth-first expansion strategy for constructing a deduction
tree.

Chapter 3

RAM Programs, Turing Machines,
and the Partial Computable Functions

In this chapter we address the fundamental question
What is a computable function?

Nowadays computers are so pervasive that such a question may seem trivial. Isn’t the
answer that a function is computable if we can write a program computing it!

This is basically the answer so what more can be said that will shed more light on the
question?

The first issue is that we should be more careful about the kind of functions that we
are considering. Are we restricting ourselves to total functions or are we allowing partial
functions that may not be defined for some of their inputs? It turns out that if we consider
functions computed by programs, then partial functions must be considered. In fact, we will
see that “deciding” whether a program terminates for all inputs is impossible. But what
does deciding mean?

To be mathematically precise requires a fair amount of work. One of the key technical
points is the ability to design a program U that takes other programs P as input, and then
executes P on any input x. In particular, U should be able to take U itself as input!

Of course a compiler does exactly the above task. But fully describing a compiler for
a “real” programming language such as JAVA, PYTHON, C++, etc. is a complicated and
lengthy task. So a simpler (still quite complicated) way to proceed is to develop a toy
programming language and a toy computation model (some kind of machine) capable of
executing programs written in our toy language. Then we show how programs in this toy
language can be coded so that they can be given as input to other programs. Having done
this we need to demonstrate that our language has universal computing power. This means
that we need to show that a “real” program, say written in JAVA, could be translated into
a possibly much longer program written in our toy language. This step is typically an act

175

176 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

of faith, in the sense that the details that such a translation can be performed are usually
not provided.

A way to be precise regarding universal computing power is to define mathematically a
family of functions that should be regarded as “obviously computable,” and then to show that
the functions computed by the programs written either in our toy programming language
or in any modern progamming language are members of this mathematically defined family
of computable functions. This step is usually technically very involved, because one needs
to show that executing the instructions of a program can be mimicked by functions in our
family of computable functions. Conversely, we should prove that every computable function
in this family is indeed computable by a program written in our toy programming language
or in any modern progamming language. Then we will be have the assurance that we have
captured the notion of universal computing power.

Remarkably, Herbrand, Godel, and Kleene defined such a family of functions in 1934-
1935. This is a family of numerical functions f: N™ — N containing a subset of very simple
functions called base functions, and this family is the smallest family containing the base
functions closed under three operations:

1. Composition
2. Primitive recursion

3. Minimization.

Historically, the first two models of computation are the A-calculus of Church (1935)
and the Turing machine (1936) of Turing. Kleene proved that the A-definable functions are
exactly the (total) computable functions in the sense of Herbrand-Godel-Kleene in 1936, and
Turing proved that the functions computed by Turing machines are exactly the computable
functions in the sense of Herbrand-Godel-Kleene in 1937. Therefore, the A-calculus and
Turing machines have the same “computing power,” and both compute exactly the class of
computable functions in the sense of Herbrand-Godel-Kleene. In those days these results
were considered quite surprising because the formalism of the A-calculus has basically nothing
to do with the formalism of Turing machines.

Once again we should be more precise about the kinds of functions that we are dealing
with. Until Turing (1936), only numerical functions f: N — N were considered. In order to
compute numerical functions in the A-calculus, Church had to encode the natural numbers
as certain A-terms, which can be viewed as iterators.

Turing assumes that what he calls his a-machines (for automatic machines) make use of
the symbols 0 and 1 for the purpose of input and output, and if the machine stops, then
the output is a string of Os and 1s. Thus a Turing machine can be viewed as computing a
function f: ({0,1}*)™ — {0, 1}* on strings. By allowing a more general alphabet ¥, we see
that a Turing machine computes a function f: (¥*)™ — X* on strings over X.

177

At first glance it appears that Turing machines compute a larger class of functions, but
this is not so because there exist mutually invertible computable coding functions C': ¥* — N
and decoding functions D: N — ¥*. Using these coding and decoding functions, it suffices
to consider numerical functions.

However, Turing machines can also very naturally be viewed as devices for defining
computable languages in terms of acceptance and rejection; some kinds of generalized DFA’s
or NFA’s. In this role, it would be very awkward to limit ourselves to sets of natural numbers,
although this is possible in theory.

We should also point out that the notion of computable language can be handled in terms
of a computation model for functions by considering the characteristic functions of languages.
Indeed, a language A is computable (we say decidable) iff its characteristic function y 4 is
computable.

The above considerations motivate the definition of the computable functions in the sense
of Herbrand-Gédel-Kleene to functions f: (¥*)™ — X* operating on strings. However, it
is technically simpler to work out all the undecidability results for numerical functions or
for subsets of N. Since there is no loss of generally in doing so in view of the computable
bijections C': ¥* — N and D: N — ¥* we will do so.

Nevertherless, in order to deal with languages, it is important to develop a fair amount
of computability theory about functions computing on strings, so we will present another
computation model, the RAM program model, which computes functions defined on strings.
This model was introduced around 1963 (although it was introduced earlier by Post in a
different format). It has the advantage of being closer to actual computer architecture,
because the RAM model consists of programs operating on a fixed set of registers. This
model is equivalent to the Turing machine model, and the translations, although tedious,
are not that bad.

The RAM program model also has the technical advantage that coding up a RAM pro-
gram as a natural number is not that complicated.

The A-calculus is a very elegant model but it is more abstract than the RAM program
model and the Turing machine model so we postpone discussing it until Chapter 5.

Another very interesting computation model particularly well suited to deal with decid-
able sets of natural numbers is Diophantine definability. This model, arising from the work
involved in proving that Hilbert’s tenth problem is undecidable, will be discussed in Chapter
10.

In the following sections we will define the RAM program model, the Turing machine
model, and then argue without proofs (relegated to Chapter 4) that there are algorithms to
convert RAM programs into Turing machines, and conversely. Then we define the class of
computable functions in the sense of Herbrand-Godel-Kleene, both for numerical functions
(defined on N) and functions defined on strings. This will require explaining what is primitive
recursion, which is a restricted form of recursion which guarantees that if it is applied to total

178 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

functions, then the resulting function is total. Intuitively, primitive recursion corresponds
to writing programs that only use for loops (loops where the number of iterations is known
ahead of time and fixed).

3.1 Partial Functions and RAM Programs

In this section we define an abstract machine model for computing functions
foXx o x X =3
S ——
n
where 3 = {ay,...,ax} is some input alphabet.

Numerical functions f: N® — N can be viewed as functions defined over the one-letter
alphabet {a;}, using the bijection m — a".

Since programs are not guaranteed to terminate for all inputs, we are forced to deal with
partial functions, so we recall their definition.

Definition 3.1. A binary relation R C A x B between two sets A and B is functional iff,
forall z € Aand y,z € B,

(r,y) € R and (z,z) € R implies that y = z.

A partial function is a triple f = (A, G, B), where A and B are arbitrary sets (possibly
empty) and G is a functional relation (possibly empty) between A and B, called the graph

of f.
Hence, a partial function is a functional relation such that every argument has at most
one image under f.

The graph of a function f is denoted as graph(f). When no confusion can arise, a
function f and its graph are usually identified.

A partial function f = (A, G, B) is often denoted as f: A — B.
The domain dom(f) of a partial function f = (A, G, B) is the set

dom(f) ={x € A|3Jy € B, (z,y) € G}.

For every element = € dom(f), the unique element y € B such that (x,y) € graph(f) is
denoted as f(x). We say that f(x) is defined, also denoted as f(x) |.

If x € A and x ¢ dom(f), we say that f(x) is undefined, also denoted as f(z) 7.

Intuitively, if a function is partial, it does not return any output for any input not in its
domain. This corresponds to an infinite computation.

It is important to define precisely the notion of equality of partial functions.

3.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 179

Definition 3.2. Two partial functions f: A — B and f': A’ — B’ are equal iff A = A/,
B = B’ and graph(f) = graph(f'), which means that for all a € A, either both f(a) and
f'(a) are defined and f(a) = f'(a), or both f(a) and f'(a) are undefined.

This definition implies that when we write f(a) = f’(a) for some a € A, we mean that
either both f(a) and f’(a) are defined and f(a) = f'(a), or f and f" are both undefined at
a (equivalently, a ¢ dom(f) = dom(f’)). There is a slight abuse of notation since f(a) (and
f'(a)) may not be defined, but this is the customary notation.

Definition 3.3. A partial function f: A — B is a total function iff dom(f) = A. It is
customary to call a total function simply a function.

We now define a model of computation know as the RAM programs or Post machines.

RAM programs are written in a sort of assembly language involving simple instructions
manipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers denoted as R1, ..., Rp,
with no limitation on the size of strings held in the registers.

RAM programs can be defined either in flowchart form or in linear form. Since the linear
form is more convenient for the purpose of encoding programs as numbers (a process known
as Godel numbering), we focus primarily on RAM programs in linear form. However, the
flowchart form tends to be more intuitive and is useful to describe certain constructions (such
as primitive recursion and minimization) so we will also describe it.

A RAM program P (in linear form) consists of a finite sequence of instructions using a
finite number of registers R1, ..., Rp.

Instructions may optionally be labeled with line numbers denoted as N1,..., Ngq.

It is neither mandatory to label all instructions, nor to use distinct line numbers! Thus
the same line number can be used in more than one line. As we will see later on, this makes
it easier to concatenate two different programs without performing a renumbering of line
numbers.

Every instruction has four fields, not necessarily all used. The main field is the op-code.

Definition 3.4. RAM programs are constructed from seven types of instructions shown
below.

(1,) N add, Y
2) N tail Y
3) N clr Y
4 NY < X
(5a) N jmp Nla
(50) N jmp N1b
(6ja) N Y jmp; Nla
(6;b) N Y jmp; N1b
(7) N continue

180

CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

1. An instruction of type (1;) concatenates the letter a; to the right of the string held by

register Y (1 < j < k). The effect is the assignment

Y :=Ya,.

. An instruction of type (2) deletes the leftmost letter of the string held by the register

Y. This corresponds to the function tail, defined such that

tail(e) = e,

tail(aju) = u
for all u € ¥*. The effect is the assignment

Y = tail(Y).

. An instruction of type (3) clears register Y, i.e., sets its value to the empty string e.

The effect is the assignment
Y =e

An instruction of type (4) assigns the value of register X to register Y. The effect is
the assignment
Y = X.

. An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1 occurring above the in-
struction being executed, and the effect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.

. An instruction of type (6;a) or (6;0) is a conditional jump. Let head be the function

defined as follows:
head(e) = e,

head(a;u) = a;

for all w € ¥*. The effect of (6;a) is to jump to the closest line number N1 occur-
ring above the instruction being executed iff head(Y) = a;, else to execute the next
instruction (the one immediately following the instruction being executed).

The effect of (6;b) is to jump to the closest line number N1 occurring below the
instruction being executed iff head(Y) = a;, else to execute the next instruction.

When computing over N, instructions of type (6;a) or (6;0) jump to the closest N1
above or below iff Y is nonnull.

3.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 181

7. An instruction of type (7) is a no-op, i.e., the registers are unaffected. If there is a
next instruction, then it is executed, else the program stops.

When computing over N, which corresponds to the case where ¥ = {a; }, an instruction of
type (1) computes the successor function S (or Succ) given by S(n) = n+1, an instruction of
type (2) computes the predecessor function pred given by pred(n + 1) = n and pred(0) = 0,
and an instruction of type (3) computes the zero function Z given by Z(n) = 0.

Obviously, a program is syntactically correct only if certain conditions hold.

Definition 3.5. A RAM program P is a finite sequence of instructions as in Definition 3.4,
and satisfying the following conditions:

(1) For every jump instruction (conditional or not), the line number to be jumped to must
exist in P.

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line numbers is to make it easier to con-
catenate programs without having to perform a renaming of line numbers.

The technical choice of jumping to the closest address N1 above or below comes from
the fact that it is easy to search up or down using primitive recursion, as we will see later
on.

For the purpose of computing a function f: 3* x -+ x ¥* — ¥* using a RAM program
—_—

n
P, we assume that P has at least n registers called input registers, and that these registers
R1,..., Rn are initialized with the input values of the function f. We also assume that the
output is returned in register R1.

Example 3.1. The following RAM program concatenates two strings x; and x5 held in
registers R1 and R2. Since ¥ = {a, b}, for more clarity, we wrote jmp, instead of jmp,, jmp,
instead of jmp,, add, instead of add;, and add, instead of adds.

R3 — R1

R4 — R2
NO R4 jmp, N1b

R4 jmp, N2b

jmp N3b
N1 add, R3
tail R4

jmp NOa
N2 addb R3
tail R4

jmp NOa

N3 Rl — R3

continue

182 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

The instructions of a RAM program in flowchart form are shown in Figure 3.1.

Schematic Representations of RAM Instructions

==

2. Transfer statements y «— X
3. Add statements y < ya;
(@aj in 3)
4. Clear statements y «— &

! |

y <— tail(y)

5. Delete statements

6. Test statements

Figure 3.1: RAM instructions in flowchart form.

They are all self-explanatory except perhaps the test statements which behave as follows.
If the leftmost symbol head(y) is the letter a;, then follow the arrow labeled a; (to the
instruction to be executed next). Otherwise y = € and then follow the arrow labeled e.

Remark: The instructions of a RAM program in flowchart form are very similar to the
instructions of the Post machines discussed in Manna [44]. However, Post machines use a
single register. Nevertheless, it can be shown that the two models are equivalent.

Definition 3.6. A RAM flowchart program is a directed graph obtained by interconnecting
statements in such a way that:

(1) There is a single START.

(2) There is a single STOP.

3.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 183
(3) Every entry point of a statement is connected to an exit point of some statement and
every exit point of a statement is connected to the entry point of some statement.

As in the case of a RAM program in linear form, a RAM program in flowchart form is
assumed to have prescribed input variables. A flowchart form representation of the RAM
program of Example 3.1 is shown in Figure 3.2.

Concatenating two strings over {a,b¥*

X «— Xa X «— xb

Xp4— X
y «— tail(y) y «— tail(y)

|

Figure 3.2: A RAM program in flowchart form for computing concatenation.

Remark: The reader may have noticed that the definition of a RAM program, either in
flowchart form or linear form, does not exclude undesirable programs such as disconnected
programs consisting of several connected components. We could fix the definitions to avoid
such pathological cases, but they are exceptional and we will not go into such trouble now.
The reader is invited to think about pathological cases that should be ruled out and ways
of fixing the definitions to avoid them.

Definition 3.7. A RAM program P computes the partial function p: (X*)" — X* if the
following conditions hold: for every input (z1,...,x,) € (¥*)", having initialized the input
registers R1,..., Rn with xy, ..., x,, the program eventually halts iff p(z1,...,x,) is defined,
and if and when P halts, the value of R1 is equal to p(x1,...,x,). A partial function ¢ is
RAM-computable iff it is computed by some RAM program.

184 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Example 3.2. The following program computes the erase function E defined such that

E(u)=c¢

for all u € X*:
clr R1
continue

Example 3.3. The following program computes the jth successor function S; defined such
that

Si(u) = ua;
for all u € ¥*:

addj R1

continue

Example 3.4. The following program (with n input variables) computes the projection
function P defined such that
Pin(uh s 7un) = Uy,

wheren > 1, and 1 <1 < n:
Rl «+ Ri

continue

Note that P} is the identity function.

The equivalence of the flowchart form and the linear form of RAM programs is straight-
forward. Translating a program in linear form to the flowchart form is almost immediate
and is left as an exercise. In the other direction, first we assign distinct labels to all the
statements in the flowchart except START. The only translation which is not immediately
obvious is the case of a test statement. If the target labels of the arrows labeled aq, ..., ax, €
are N1,..., Nk, N(k+ 1), we create the following piece of code

Y jmp; Nlc

Y jmp, Nkc
Y jmp N(k+ 1),

where ¢ is a or b depending on the location of Ni¢ in the linear RAM program. Extra
unconditional jumps may also be needed to mimic the flow of control of the program in
flowchart form. The details are left as an exercise.

Having a programming language, we would like to know how powerful it is, that is, we
would like to know what kind of functions are RAM-computable. At first glance, it seems
that RAM programs don’t do much, but this is not so. Indeed, we will see shortly that the
class of RAM-computable functions is quite extensive.

3.2. DEFINITION OF A TURING MACHINE 185

One way of getting new programs from previous ones is via composition. Another one
is by primitive recursion. We will investigate these constructions after introducing another
model of computation, Turing machines.

Remarkably, the classes of (partial) functions computed by RAM programs and by Tur-
ing machines are identical. This is the class of partial computable functions in the sense of
Herbrand-Gdédel-Kleene, also called partial recursive functions, a term which is now consid-
ered old-fashion. We will present the definition of the so-called p-recursive functions (due
to Kleene).

The following proposition will be needed to simplify the encoding of RAM programs as

numbers.

Proposition 3.1. Fvery RAM program can be converted to an equivalent program only using
the following type of instructions.

(]_J) N addj Y
(2) N tail Y
(6ja) N Y jmp, Nla
(6;6) N Y jmp, N1b
(7 N continue

The proof is fairly simple. For example, instructions of the form
Ri < Ry

can be eliminated by transferring the contents of Rj into an auxiliary register Rk, and then
by transferring the contents of Rk into R: and Rj.

3.2 Definition of a Turing Machine

We define a Turing machine model for computing functions

foXx. o x ¥ =3
—_——

n

where ¥ = {ay,...,ax} is some input alphabet. In this section, since we are primarily
interested in computing functions we only consider deterministic Turing machines.

There are many variants of the Turing machine model. The main decision that needs to
be made has to do with the kind of tape used by the machine. We opt for a single finite
tape that is both an input and a storage mechanism. This tape can be viewed as a string
over tape alphabet T such that XX C T'. There is a read/write head pointing to some symbol
on the tape, symbols on the tape can be overwritten, and the read/write head can move
one symbol to the left or one symbol to the right, also causing a state transition. When the

186 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

write/read head attempts to move past the rightmost or the leftmost symbol on the tape,
the tape is allowed to grow. To accomodate such a move, the tape alphabet contains some
special symbol B ¢ ¥, the blank, and this symbol is added to the tape as the new leftmost
or rightmost symbol on the tape.

A common variant uses a tape which is infinite at both ends, but only has finitely many
symbols not equal to B, so effectively it is equivalent to a finite tape allowed to grow at
either ends. Another variant uses a semi-infinite tape infinite to the right, but with a left
end. We find this model cumbersome because it requires shifting right the entire tape when
a left move is attempted from the left end of the tape.

Another decision that needs to be made is the format of the instructions. Does an
instruction cause both a state transition and a symbol overwrite, or do we have separate
instructions for a state transition and a symbol overwrite. In the first case, an instruction
can be specified as a quintuple, and in the second case by a quadruple. We opt for quintuples.
Here is our definition.

Definition 3.8. A (deterministic) Turing machine (or TM) M is a sextuple M = (K, %, T,
{L7 R}v 57 (]0)> where

e K is a finite set of states;

e X is a finite input alphabet;

[is a finite tape alphabet, s.t. X CT') K NT = (), and with blank B ¢ ¥;

qo € K is the start state (or initial state);

J is the transition function, a (finite) set of quintuples
JC K xI'xI'x{L,R} x K,

such that for all (p,a) € K x T, there is at most one triple (b,m,q) € I' x {L, R} x K
such that (p,a,b,m,q) € 0.

A quintuple (p,a,b,m,q) € ¢ is called an instruction. It is also denoted as
p,a — b,m,q.

The effect of an instruction is to switch from state p to state g, overwrite the symbol
currently scanned a with b, and move the read/write head either left or right, according to
m.

Example 3.5. Here is an example of a Turing machine specified by

K = {QO>C]1aQ2,Q3}§ Y= {CZ, b}7 I'= {CL, baB}

3.3. COMPUTATIONS OF TURING MACHINES 187

The instructions in ¢ are

9, B — B, R, g3,
qo,a — b, R, qu,
qo, b — a, R, qq,
q,a — b, R, q,
q,b— a, R, qu,
¢, B — B, L, qa,
q2,a — a, L, qa,
q2,b — 0, L, go,
q2, B — B, R, qs.

3.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on instantaneous descriptions.
We take advantage of the fact that K NT' = () to define instantaneous descriptions.

Definition 3.9. Given a Turing machine
M = (K7 27 F7 {L7 R}7 57 q0)7

an instantaneous description (for short an ID) is a (nonempty) string in I* KT, that is, a
string of the form
upav,

where u,v € I'*, pe K, and a € T.

The intuition is that an ID wupav describes a snapshot of a TM in the current state p,
whose tape contains the string uav, and with the read/write head pointing to the symbol
a. Thus, in upav, the state p is just to the left of the symbol presently scanned by the
read /write head.

We explain how a TM works by showing how it acts on ID’s.
Definition 3.10. Given a Turing machine
M = (Ka Zv Fa {La R}v 57 QO)a

the yield relation (or compute relation) b= is a binary relation defined on the set of ID’s as
follows. For any two ID’s I Dy and ID,, we have I Dy = I D, iff either

(1) (p,a,b,R,q) € 9, and either

(a) ID; = upacv, c € ', and I Dy = ubgcv, or

188 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

(b) ID; = upa and I Dy = ubgB;
or
(2) (p,a,b,L,q) € 0, and either

(a) IDy = ucpav, ¢ € I'; and I Dy = uqcbv, or
(b) IDy = pav and I Dy = qBbv.

See Figure 3.3.

(state) v reading head

[4

PV
N 1 O
q

l« (pabRa)
1v

RN 3 K -2 N) e

A4 [4
[obl v oy —

l (pabLa) i (pabLag)
iy

v
’ U‘C‘b‘ v ‘ ID, = uqcbv ID, = qBbv

Figure 3.3: Moves of a Turing machine.

Note how the tape is extended by one blank after the rightmost symbol in Case (1)(b),
and by one blank before the leftmost symbol in Case (2)(b).

As usual, we let F1 denote the transitive closure of -, and we let F* denote the reflexive
and transitive closure of . We can now explain how a Turing machine computes a partial
function

foXx o x ¥ =¥
| ——

n

Since we allow functions taking n > 1 input strings, we assume that [contains the
special delimiter , not in X, used to separate the various input strings.

It is convenient to assume that a Turing machine “cleans up” its tape when it halts before
returning its output. What this means is that when the Turing machine halts, the output
should be clearly identifiable, so all symbols not in ¥ U { B} that may have been used during

3.3. COMPUTATIONS OF TURING MACHINES 189

the computation must be erased. Thus when the TM stops the tape must consist of a string
w € ¥* possibly surrounded by blanks (the symbol B). Actually, if the output is €, the tape
must contain a nonempty string of blanks. To achieve this technically, we define proper ID’s.

Definition 3.11. Given a Turing machine
M = (K7 27 F? {L7 R}7 57 QO)7

where I' contains some delimiter , not in X in addition to the blank B, a starting ID is of
the form
GoWi,Wa, . .., Wy

where wq, ..., w, € ¥* and n > 2, or gow with w € X%, or ¢yB.

A blocking (or halting) ID is an ID upav such that there are no instructions (p, a,b,m, q) €
d for any (b,m,q) € I' x {L, R} x K.

A proper ID is a halting ID of the form
B'puwB!,
where w € ¥* and h,l > 0 (with [> 1 when w = ¢).
Computation sequences are defined as follows.

Definition 3.12. Given a Turing machine
M= (K, %, T {L, R}, q),

a computation sequence (or computation) is a finite or infinite sequence of ID’s
IDy,IDy,....ID;;ID; 4,...,

such that ID; - ID; 4 for all i > 0.
A computation sequence halts iff it is a finite sequence of ID’s, so that

IDy " ID,,
and ID,, is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.
Definition 3.13. A Turing machine
M = (K,%,T',{L, R}, 9, q)
computes the partial function

FrYixoex Ty
—_——

iff the following conditions hold:

190 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

(1) For every wy,...,w, € ¥*, given the starting ID
IDy = qowr,we, ... ,wy,

or gqow with w € X1, or B, the computation sequence of M from IDg halts in a
proper ID iff f(wy, ..., w,) is defined.

(2) If f(ws,...,w,) is defined, then M halts in a proper ID of the form
ID, = B"pf(wy,...,w,)B,
which means that it computes the right value.

A function f (over ¥*) is Turing computable iff it is computed by some Turing machine
M.

Note that by (1), the TM M may halt in an improper ID, in which case f(wy,...,w,)
must be undefined. This corresponds to the fact that we only accept to retrieve the output of
a computation if the TM has cleaned up its tape, i.e., produced a proper ID. In particular,
intermediate calculations have to be erased before halting.

Example 3.6. Consider the Turing machine of Example 3.5 specified by K = {qo, ¢1, ¢2, g3 };
Y ={a,b}; I' ={a,b, B}.

The instructions in § are

9, B — B, R, g3,
qo,a — b, R, q1,
90,0 — a, R, q1,
q,a — b, R, q,
q1,b — a, R, q,
¢, B — B, L, qa,
Q2,0 — a, L, qa,
q2,b — b, L, qo,
G2, B — B, R, q3.

The reader can easily verify that this machine exchanges the a’s and 0’s in a string. For
example, on input w = aaababb, the output is bbbabaa. The computation is given by the
following sequence of ID’s.

qo aaababb = b gy aababb + bbq, ababb = bbb g babb + bbba ¢, abb = bbbab g bb

F bbbaba ¢, b = bbbabaa g B = bbbaba gs aB + bbbabgs aaB + bbba gs baa B

F bbb o abaaB + bbqs babaaB + bqo bbabaaB + go bbbabaaB + qo BbbbabaaB
F B g3 bbbabaaB.

The last ID B g3 bbbabaaB is a proper ID and the output is bbbabaa.

3.4. EQUIVALENCE OF RAM PROGRAMS AND TURING MACHINES 191

3.4 Equivalence of RAM Programs And Turing
Machines

Turing machines can simulate RAM programs, and as a result, we have the following theorem.

Theorem 3.2. Fvery RAM-computable function is Turing-computable. Furthermore, given
a RAM program P, we can effectively construct a Turing machine M computing the same
function.

The idea of the proof is to represent the contents of the registers R1,... Rp on the Turing
machine tape by the string

HrLHr29E - H#HpHF,

where # is a special marker and ri represents the string held by Ri. We also use Proposition
3.1 to reduce the number of instructions to be dealt with.

The Turing machine M is built of blocks, each block simulating the effect of some in-
struction of the program P. The details are a bit tedious, and can be found in Section 4.1
or in Machtey and Young [43].

RAM programs can also simulate Turing machines.

Theorem 3.3. Fvery Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M, one can effectively construct a RAM program P computing the same
function.

The idea of the proof is to design a RAM program containing an encoding of the current
ID of the Turing machine M in register R1, and to use other registers R2, R3 to simulate
the effect of executing an instruction of M by updating the ID of M in R1.

The details are tedious and can be found in Section 4.2.

Another proof can be obtained by proving that the class of Turing computable functions
coincides with the class of partial computable functions (formerly called partial recursive
functions), to be defined shortly. Indeed, it turns out that both RAM programs and Turing
machines compute precisely the class of partial recursive functions. For this, we will need to
define the primitive recursive functions.

Informally, a primitive recursive function is a total recursive function that can be com-
puted using only for loops, that is, loops in which the number of iterations is fixed (unlike
a while loop). A formal definition of the primitive functions is given in Section 3.7. For the
time being we make the following provisional definition.

Definition 3.14. Let X = {ay,. .., ar}. The class of partial computable functions, also called
partial recursive functions, is the class of partial functions (over ¥*) that can be computed
by RAM programs (or equivalently by Turing machines).

192 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

The class of computable functions, also called recursive functions, is the subset of the
class of partial computable functions consisting of functions defined for every input (i.e.,
total functions).

Turing machines can also be used as acceptors to define languages so we introduce the
basic relevant definitions. A more detailed study of these languages will be provided in
Chapter 8.

3.5 Listable Languages and Computable Languages

We define the computably enumerable languages, also called listable languages, and the
computable languages. The old-fashion terminology for listable languages is recursively
enumerable languages, and for computable languages is recursive languages.

When operating as an acceptor, a Turing machine takes a single string as input and
either goes on forever or halts with the answer “accept” or “reject.” One way to deal with
acceptance or rejection is to assume that the TM has a set of final states. Another way more
consistent with our view that machines compute functions is to assume that the TM’s under
consideration have a tape alphabet containing the special symbols 0 and 1. Then acceptance
is signaled by the output 1, and rejection is signaled by the output 0.

Note that with our convention that in order to produce an output a TM must halt in a
proper ID, the TM must erase the tape before outputing 0 or 1.

Definition 3.15. Let ¥ = {a4,...,ax}. A language L C ¥* is (Turing) listable or (Turing)
computably enumerable (for short, a c.e. set) (or recursively enumerable (for short, a r.e.
set)) iff there is some TM M such that for every w € L, M halts in a proper ID with the
output 1, and for every w ¢ L, either M halts in a proper ID with the output 0 or it runs
forever.

A language L C ¥* is (Turing) computable (or recursive) iff there is some TM M such
that for every w € L, M halts in a proper ID with the output 1, and for every w ¢ L, M
halts in a proper ID with the output 0.

Thus, given a computably enumerable language L, for some w ¢ L, it is possible that a
TM accepting L runs forever on input w. On the other hand, for a computable (recursive)
language L, a TM accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider nondeterministic Turing ma-
chines. Such machines are defined just like deterministic Turing machines, except that their
transition function 0 is just a (finite) set of quintuples

SCKxTI'xT'x{L,R} x K,

with no particular extra condition.

3.6. A SIMPLE FUNCTION NOT KNOWN TO BE COMPUTABLE 193

It can be shown that every nondeterministic Turing machine can be simulated by a
deterministic Turing machine, and thus, nondeterministic Turing machines also accept the
class of c.e. sets. This is a very tedious simulation, and very few books actually provide all
the details!

It can be shown that a computably enumerable language is the range of some computable
(recursive) function; see Section 8.4. It can also be shown that a language L is computable
(recursive) iff both L and its complement are computably enumerable; see Section 8.4. There
are computably enumerable languages that are not computable (recursive); see Section 8.4.

3.6 A Simple Function Not Known to be Computable

The “3n + 1 problem” proposed by Collatz around 1937 is the following:

Given any positive integer n > 1, construct the sequence ¢;(n) as follows starting with
1= 1:

ci(n) =n

(n) ci(n)/2, if ¢;(n) is even
C; n) =
! 3ci(n) + 1, if ¢;(n) is odd.

Observe that for n = 1, we get the infinite periodic sequence
=== 2=1= -,
so we may assume that we stop the first time that the sequence ¢;(n) reaches the value 1 (if

it actually does). Such an index i is called the stopping time of the sequence. And this is
the problem:

Conjecture (Collatz):

For any starting integer value n > 1, the sequence (¢;(n)) always reaches 1.
Starting with n = 3, we get the sequence
3= 10=5=16~=8=—4— 2= 1.
Starting with n = 5, we get the sequence
5 b— 16—=8 —=4— 2 = 1.
Starting with n = 6, we get the sequence

6—=3—=10—5—16—8—4—2—1.

194 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Starting with n = 7, we get the sequence

T=—=22=—= 11— 34 — 17 = 52 =— 26 =—> 13 =— 40
— 20— 10—5—716—8 —>4— 2 — 1.

One might be surprised to find that for n = 27, it takes 111 steps to reach 1, and for
n = 97, it takes 118 steps. We computed the stopping times for n up to 10" and found that
the largest stopping time, 686 (685 steps) is obtained for n = 8400511. The terms of this
sequence reach values over 1.5 x 10", The graph of the sequence ¢(8400511) is shown in
Figure 3.4.

10
16 x10

12F .

0 100 200 300 400 500 600 700

Figure 3.4: Graph of the sequence for n = 8400511.

We can define the partial computable function C' (with positive integer inputs) defined
by
C(n) = the smallest ¢ such that ¢;(n) = 1 if it exists.

3.6. A SIMPLE FUNCTION NOT KNOWN TO BE COMPUTABLE 195

Then the Collatz conjecture is equivalent to asserting that the function C' is (total) com-
putable. The graph of the function C for 1 < n < 107 is shown in Figure 3.5.

700 T T T

600

500

400

300 ‘

200

100

Figure 3.5: Graph of the function C for 1 < n < 107.

So far, the conjecture remains open. It has been checked by computer for all integers less
than or equal to 87 x 2.

We now return to the computability of functions. Our goal is to define the partial
computable functions in the sense of Herbrand—Godel-Kleene. This class of functions is
defined from some base functions in terms of three closure operations:

1. Composition
2. Primitive recursion

3. Minimization.

The first two operations preserve the property of a function to be total, and this sub-
class of total computable functions called primitive recursive functions plays an important
technical role.

196 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

3.7 The Primitive Recursive Functions

Historically the primitive recursive functions were defined for numerical functions (comput-
ing on the natural numbers). Since one of our goals is to show that the RAM-computable
functions are partial recursive, we define the primitive recursive functions as functions
f:(X)™ — ¥*, where ¥ = {ay,...,a;} is a finite alphabet. As usual, by assuming that
Y = {a1}, we can deal with numerical functions f: N — N.

The class of primitive recursive functions is defined in terms of base functions and two
closure operations.

Definition 3.16. Let ¥ = {ay,...,ax}. The base functions over ¥ are the following func-
tions:

(1) The erase function E, defined such that E(w) = e, for all w € ¥*;

(2) For every j, 1 < j < k, the j-successor function S;, defined such that S;(w) = wa;,
for all w € ¥*;

(3) The projection functions P, defined such that
P wy, ..., w,) = w;,

for every n > 1, every ¢, 1 <i <n, and for all wy,...,w, € 3*.

Note that P} is the identity function on X*. Projection functions can be used to permute,
duplicate, or drop the arguments of another function.

Definition 3.17. In the special case where we are only considering numerical functions
(3 = {a1}), the function E: N — N is the zero function given by E(n) = 0 for all n € N,
and it is often denoted by Z. There is a single successor function S, : N — N usually
denoted S (or Succ) given by S(n) =n+1 for all n € N.

Even though in this section we are primarily interested in total functions, later on, the
same closure operations will be applied to partial functions so we state the definition of the
closure operations in the more general case of partial functions. The first closure operation
is (extended) composition.

Definition 3.18. Let ¥ = {a4,...,ax}. For any partial or total function

g: XX e X X BT
S ——

and any m > 1 partial or total functions

hi: X x o x X =¥ n>1,
| ——

n

3.7. THE PRIMITIVE RECURSIVE FUNCTIONS 197

the composition of g and the h; is the partial function

foXrxox X =3
| —

n

denoted as g o (hq, ..., hy), such that

flwy, ... wy) = glhi(wy, ... ,wy), . hp(wy, ..o wy))

for all wy,...,w, € X*. If g and all the h; are total functions, then g o (hy,..., hy,,) is
obviously a total function. But if g or any of the h; is a partial function, then the value
(go(hi, ..., hpm))(wy, ..., wy,) is defined if and only if all the values h;(wy, ..., w,) are defined
fori=1,...,m, and g(hy(wy,...,wy),...,hp(wy,...,w,)) is defined.

Thus even if g “ignores” some of its inputs, in computing g(hy(wy, ..., wy),. .., Ay (wi,
..., wy)), all arguments h;(wy, . .., w,) must be evaluated.

As an example of a composition, f = go (PZ, P?) is such that

flwy,wa) = g(Ps (wy, wy), PY(wy, w2)) = g(wa, wy).

The second closure operation is primitive recursion. First we define primitive recursion
for numerical functions because it is simpler.

Definition 3.19. Given any two partial or total functions g: N™~! — N and h: Nt — N
(m > 2), the partial or total function f: N™ — N is defined by primitive recursion from g
and h if f is given by

fO, 20, ... zm) = g(T2y ..., Tp)

g
fn+1,z,...,20) =h(n, f(n,xe,. .., Tm),Ta, ..., Tm),

for all n, x9,...,x,, € N. When m = 1, we have

f(0)=b
f(n+1)=h(n, f(n)), foralneN,

for some fixed natural number b € N.

If g and h are total functions, it is easy to show that f is also a total function. If ¢
or h is partial, obviously f(0,xs,...,2,,) is defined iff g(xs,...,x,,) is defined, and f(n +
1,29,...,2y) is defined iff f(n,xzo,...,x,,) is defined and h(n, f(n,z2,...,2n), To, ..., Tpm)
is defined.

Definition 3.19 is quite a straightjacket in the sense that n+1 must be the first argument
of f, and the definition only applies if h has m + 1 arguments, but in practice a “natural”
definition often ignores the argument n and some of the arguments x», ..., z,,. This is where
the projection functions come into play to drop, duplicate, or permute arguments.

198 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Example 3.7. For example, a “natural” definition of the predecessor function pred is

pred(0) =0
pred(m + 1) =m,

but this is not a legal primitive recursive definition. To make it a legal primitive recursive
definition we need the function h = P2, and a legal primitive recursive definition for pred is

pred(0) =0
pred(m + 1) = P(m, pred(m)).

Example 3.8. Addition, multiplication, exponentiation, and super-exponentiation, can be
defined by primitive recursion as follows (being a bit loose, for supexp we should use some
projections ...):

add(0,n) = Pl(n) =n
add(m +1,n) = S o Pj(m,add(m,n),n)
= S(add(m,n))
mult(0,n) = E(n) =0
mult(m + 1,n) = add o (P, Py)(m, mult(m,n),n)
= add(mult(m,n),n)
rexp(0,n) = So E(n) =1
rexp(m + 1,n) = mult o (P, Py)(m, rexp(m,n),n)

)
)
exp(m,n) = rexp o (P}, P?)(m,n)
supexp(0,n) =1

)

supexp(m + 1,n) = exp(n, supexp(m,n)).

We usually write m + n for add(m,n), m * n or even mn for mult(m,n), and m" for
exp(m,n).
Example 3.9. The recursive definition of m” is m+*Y) = m™ % m, which corresponds to
exp(m,n + 1) = mult(exp(m,n), m).
Unfortunately, the recursion is on the second argument n, so we have to create the auxiliary

function rexp given by

rexp(m,n) =n",

write the primitive recusive definition of rexp in m, and then

exp(m, n) = reap(n,m) = reap o (PZ, P2)(m,).

3.7. THE PRIMITIVE RECURSIVE FUNCTIONS 199

Example 3.10. There is a minus operation on N named monus. This operation denoted

by = is defined by
) {m—n, tm>n
m-=n=

0, if m <n.

Then monus is defined by

m-=0=m

m = (n+ 1) = pred(m = n),

except that the above is not a legal primitive recursion. For one thing, recursion should be
performed on m, not n. We can define rmonus as

rmonus(n,m) =m = n,
and then m =~ n = (rmonus o (P§, P))(m,n), and

rmonus(0 = m) = P} (m)

rmonus(n + 1,m) = pred o Pj(n, rmonus(n,m)).

Example 3.11. The following functions are also primitive recursive:

1, ifn>0
sg(n)z{

0, ifn=0,
55(n) = 0, ifn>0
T =1 dtn=0,
as well as
abs(m,n) =|m —n|=m-=n+n-m,
and
1, ifm=n
eq(m,n) = .
0, ifm#n.
Indeed
sg(0) =0
sg(n+1) =S o Eo P}(n,sg(n))
59(n) = S(E(n)) = sg(n) =1 = sg(n),
and

eq(m,n) = sg(jm — nl).

200 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Example 3.12. Finally, the function

tm=n

p,
cond(m,n,p,q) =)
(m,n,p, q) {q’ -

is primitive recursive, since
cond(m, n, p,q) = eq(m,n) * p+55(eq(m, n)) * q.

Example 3.13. We can also design more general version of cond. For example, define
compare< as

1, ifm<n

compare<(m,n) = {O .

which is given by
compare<(m,n) =1 = sg(m = n).

Then we can define

p, ifm<n

cond<(m,n,p,q) = { .
- q, ifm>n,

with
cond<(m,n,n,p) = compare<(m,n) % p + sg(compare<(m,n)) * q.

The above allows to define functions by cases.

We now generalize primitive recursion to functions defined on strings (in X*). The new
twist is that instead of the argument n + 1 of f, we need to consider the k arguments ua; of
ffori=1,... k (with u € ¥*), so instead of a single function h, we need k functions h; to
define primitive recursively what f(ua;, wa, ..., wy,,) is.

Definition 3.20. Let ¥ = {a1,...,ax}. For any partial or total function
g: XX e x X=X
[——
m—1

where m > 2, and any k partial or total functions

hi: X5 x oo x X — XF,
————
m—+1

the partial function
foXx o x X3
S

3.7. THE PRIMITIVE RECURSIVE FUNCTIONS 201

is defined by primitive recursion from g and hy, ..., hy, if
f(eaw%"'awm) :g<w27"'7wm)
fluay, wa, ... wp) = hy(u, fu,wa, ..., wy), W, ..., W)
f(ua’k’a w2, . .. awm) = h’k’(ua f(u7 wa, . . . 7wm)>w27 s 7wm>7
for all u,ws, ..., w, € X*.

When m = 1, for some fixed w € ¥*, we have

fle)=w
fluar) = hy(u, f(u))

f(uay) = hi(u, f(u)),
for all u € ¥*.
Again, if g and the h; are total, it is easy to see that f is total.

Example 3.14. As an example over {a,b}*, the following function g: ¥* x X* — ¥* is
defined by primitive recursion:

gle,v) = P (v)
g(ua;,v) = S; o P (u, g(u,v),v),

where 1 < i < k. It is easily verified that g(u,v) = vu. Then,
con =g o (P;, P)

computes the concatenation function, i.e., con(u,v) = wv. The extended concatenation
cony+1 (n > 1) defined by

COnn+1(l’1> s ,iUn+1) =1 Tp4l
is primitive recursive because cony = con and

conpi1(21, ..., Tny1) = con(con, (P (2, . oo Tpgr), - PPy, .0 Tng)),

Pr?—tll($1v ces Tng))

Here are some primitive recursive functions that often appear as building blocks for other
primitive recursive functions.

202 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Example 3.15. The delete last function dell given by

dell(e) = €
dell(ua;) =u, 1<i<k, ued”

is defined primitive recursively by

dell(e) = €
dell(ua;) = P*(u,dell(u)), 1<i<k, uec¥*

Example 3.16. For every string w € ¥*, the constant function ¢, given by
co(u) =w, forall ue ¥*
is defined primitive recursively by induction on the length of w by

c.=F
Cvai:'s’iocm 1<i<k.

Example 3.17. The sign function sg given by

(2) e, ifr=c¢e
sg(x) =
g ay, ifx#e

is defined primitive recursively by

sg(e) =€
sg(ua;) = (ca, © PY)(u, s9(u)).

Example 3.18. The anti-sign function 5g given by

_() ai, ifz=c¢
sSg\r) =
g e, ifre

is primitive recursive. The proof is left an an exercise.

Example 3.19. The function end; (1 < j < k) given by

ay, if x ends with a;

end;(x) = {

€, otherwise

is primitive recursive. The proof is left an an exercise.

3.7. THE PRIMITIVE RECURSIVE FUNCTIONS 203

Example 3.20. The reverse function rev: ¥* — ¥* given by rev(u) = uf* is primitive

recursive because
rev(e) =€
rev(ua;) = (con o (cq, 0 P, Py))(u,rev(u)), 1<i<Ek.
Example 3.21. The tail function tail given by
tail(e) =€
tail(a;u) = u
is primitive recursive because
tail = rev o dell o rev.
Example 3.22. The last function last given by
last(e) =€
last(ua;) = a;
is primitive recursive because
last(e) =€
last(ua;) = c,, o PE(u,last(u)).
Example 3.23. The head function head given by
head(€) = €
head(a;u) = a;
is primitive recursive because
head = last o rev.
We are now ready to define the class of primitive recursive functions.

Definition 3.21. Let ¥ = {ay,...,ax}. The class of primitive recursive functions is the
smallest class of (total) functions (over ¥*) which contains the base functions and is closed
under composition and primitive recursion.

In the special where k = 1, we obtain the class of numerical primitive recursive functions.

|z2]
1

Example 3.24. The function f given by f(z1,x2) = 27 ' is defined by primitive recursion

as follows. First we introduce g given by g(xy,z5) = xllel, with
9(6, x2> =€
g(x1a:, 9) = con(g(x1, x2), T2).

Then f(x1,x9) = g(xe,z1). A RAM program in flowchart form computing f is shown in Fig-
ure 3.6. Observe how this program makes use of the program for computing concatenation.

204 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Computing x} %!

X<— Y1
XY, T
l Y<+—X;q

Y «—X X<—Xa X<«—xb
i 1 i
y2<—tail(y2) y «—tail(y) y <« tail(y)

L

Figure 3.6: Computing f(z1,x2) = xllml by primitive recursion.

3.8 Primitive Recursive Functions are RAM
Computable

The class of primitive recursive functions may not seem very big, but it contains all the total
functions that we would ever want to compute. Although it is rather tedious to prove, the
following theorem can be shown.

Theorem 3.4. For any alphabet ¥ = {ay,...,a,}, every primitive recursive function is
RAM computable, and thus Turing computable.

Proof. We showed just after Definition 3.7 that the base functions are RAM-computable.

Let us first show closure of the class of RAM programs under composition. Let R, P, .. .,

3.8. PRIMITIVE RECURSIVE FUNCTIONS ARE RAM COMPUTABLE 205

P,, be RAM programs computing g, hy, ..., h,,, and assume that hq,..., h,, are functions
of n variables. The idea is to use Pi,..., P, as subroutines to R. Let ¢ be least integer
greater than m and n and such that no register of index past ¢ is used in R, Py, ..., P,. The
program computing go (hy, ..., hy,) is designed as follows. First, we save the contents of the
input registers.

R(g+1) «< Rl

R(g+n) < Rn

Next we initialize the noninput registers and compute hi(xy,...,z,) by “calling” P1 as a
subroutine. The output is stored in R(q¢ +n + 1).

clr R(n+1)
clr Rq

Py
R(g+n+1) <+ RI1

We have similar pieces of RAM code to execute P, ..., P,, the mth piece of code being

R1 — R(qg+1)
Rn — R(g+n)
clr R(n+1)
clr Rgq
Py,

R(g+n+m) + Rl

At this stage, the values hy(xy,...,2,),..., hp(x1, ..., z,) have been computed and are
stored in the registers R(¢+n+1),..., R(¢g+n+m), or one of the P; diverged. We finally
call the subroutine R to compute g(hi(x1,...,Tn), ..., hp(x1, ..., 25)).

Rl + R(g+n+1)

Rn <+ R(g+n+m)
clr R(m+1)

clr Rq
R

The output is in register R1 (or the program diverged). Now the reader should understand
why we are using relative addresses in the jumps—this allows us to simply plug in the programs

206 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

acting as subroutines in the right places. The other instructions simply make sure that these
programs are correctly initialized.

Next we show closure of the class of RAM programs under primitive recursion.

Suppose g, hq, ..., h; are some total functions computable by some RAM programs, with
g: ()™ 1 — ¥* and h;: (XF)™H — X% for i =1,..., k. If we write T for (zo,...,2,,), for
any y € X*, where y = a;, - - - a;,, (with a;; € XJ), let f be defined by primitive recursion from
g and the h;’s, that is,

f(@f) = g(f)
flyar, @) = h(y, f(y,.Z),T)

f(ya;, @) = hi(y, f(y,7),T)

flyar, T) = hy(y, f(y,T),T),

for all y € ¥* and all T € (X*)™"!. Define the following sequences, u; and v;, for j =
0,...,n+1:

Ug = €

Uy = UpQi,

Up+1 = UpQy,
and

v = g(T)
U1 = hi1 (U(), Vo, f)

vj = hi; (uj-1, 021, 7)

Up = hzn (unfla Unflaf)
Un41 = hi(yvv’rnf)'

We leave it as an exercise to prove by induction that

v; = f(u;,T)

3.8. PRIMITIVE RECURSIVE FUNCTIONS ARE RAM COMPUTABLE 207

for y =0,...,n+ 1. It follows that
f(unaiaf) = hi(un7 f(umj%f)a

so f(una;, @) is defined and the function f is total. The RAM program in flowchart form
shown in Figure 3.7 implements the computation of the v;.

Primitive Recursion
3

(Y1, «--0Ym) <— (X5, ..., Xpy)

Figure 3.7: Closure under primitive recursion.

A statement such as
v g(T1, .. Tp1)

is an abbreviation for a RAM program R computing ¢, in which it is assumed that the
variables used by R, except the variables x1, ..., x,,_1, are not used elsewhere in the program
implementing primitive recursion. The same convention applies to the statement

v<—hi(x1,...,xm+1).]

208 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

In order to define new functions it is also useful to use predicates.

3.9 Primitive Recursive Predicates

Primitive recursive predicates will be used in Section 7.3.

Definition 3.22. An n-ary predicate P over N is any subset of N”. We write that a tuple
(x1,...,2,) satisfies P as (x1,...,x,) € P or as P(zy,...,x,). The characteristic function
of a predicate P is the function Cp: N — {0, 1} defined by

1, iff P(xy,...,2,) holds

Cy(x1,...,x,) =
(o) {O, iff not P(zq,...,2,).

A predicate P (over N) is primitive recursive iff its characteristic function Cp is primitive
recursive.

More generally, an n-ary predicate P (over ¥*) is any subset of (X*)". We write that a

tuple (x1,...,x,) satisfies P as (xy,...,x,) € P or as P(xy,...,x,).

Definition 3.23. The characteristic function of a predicate P is the function Cp: (¥*)" —
{a1}* defined by

iff P ..., x,) hold
R

" le, iff not P(zy,...,2,).

A predicate P (over X*) is primitive recursive iff its characteristic function C'p is primitive
recursive.

Since we will only need to use primitive recursive predicates over N in the following
chapters, for simplicity of exposition we will restrict ourselves to such predicates. The
general case in treated in Machtey and Young [43].

It is easily shown that if P and @) are primitive recursive predicates (over N"), then PV @,
P A Q and —P are also primitive recursive.

As an exercise, the reader may want to prove that the predicate,
prime(n) iff n is a prime number,
is a primitive recursive predicate.
For any fixed £ > 1, the function
ord(k,n) = exponent of the kth prime in the prime factorization of n,
is a primitive recursive function.

We can also define functions by cases.

3.9. PRIMITIVE RECURSIVE PREDICATES 209

Proposition 3.5. If Py,..., P, are pairwise disjoint primitive recursive n-ary predicates
(which means that P,NP; = 0 for alli # j) and fi, ..., fms1 are primitive recursive functions
on N" the function g: N — N defined below is also primitive recursive:

fi(@), iff P1(T)
fu@). iff Pu(®)

fm+1(T), otherwise.

9() =

Here we write T for (x1,...,%,).
Proposition 3.5 also applies to functions and predicates with string arguments.

It is also useful to have bounded quantification and bounded minimization. Recall that
we are restricting our attention to numerical predicates and functions, so all variables range
over N. Proofs of the results stated below can be found in Machtey and Young [43].

Definition 3.24. If P is an (n + 1)-ary predicate, then the bounded existential predicate
(Jy < x)P(y,Z) holds iff some y < x makes P(y,z) true.

The bounded universal predicate (Vy < z)P(y,Zz) holds iff every y < z makes P(y,Z)
true.

Both (Jy < 2)P(y,z) and (Vy < z)P(y,z) are (n + 1)-ary predicates; that is, the input
arguments are x and Z.

Proposition 3.6. If P is an (n+ 1)-ary primitive recursive predicate, then (Jy < x)P(y,Z)
and (Vy < z)P(y,Z) are also primitive recursive predicates.

As an application, we can show that the equality predicate u = v is primitive recursive.
The following slight generalization of Proposition 3.6 will be needed in Section 7.3.

Proposition 3.7. If P is an (n + 1)-ary primitive recursive predicate and f: N* — N is
a primitive recursive function, then (3y < f(Z))P(y,z) and (Vy < f(Z))P(y,Z) are also
primitive recursive predicates.

Definition 3.25. If P is an (n + 1)-ary predicate, then the bounded minimization of P,
min(y < z) P(y, %), is the function defined such that min(y < z) P(y,z) is the least natural
number y < z such that P(y,Z) if such a y exists, x 4+ 1 otherwise.

The bounded mazimization of P, max(y < z) P(y,Zz), is the function defined such that
max(y < x) P(y, Z) is the largest natural number y < z such that P(y,z) if such a y exists,
x + 1 otherwise.

Both min(y < z) P(y,z) and max(y < z) P(y,Zz) are functions from N"*! to N; that is,
the input arguments are x and z.

Proposition 3.8. If P is an (n+1)-ary primitive recursive predicate, then min(y < z) P(y, %)
and max(y < z) P(y,z) are primitive recursive functions.

210 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Bounded existential predicates and bounded universal predicates can also be defined for
predicates with string arguments.

Definition 3.26. The bounded existential predicate (Jy/x)P(y,Z) holds iff some prefix y of
x makes P(y,z) true. The bounded universal predicate (Yy/x)P(y,Z) holds iff every prefix y
of x makes P(y,Z) true. In both cases the input arguments are x and Z.

Again, if P is primitive recursive, then so are (Jy/x)P(y,Zz) and (Vy/x)P(y,Z).

Bounded universal quantification can be used to prove that the equality predicate eq(x, y)
for strings is primitive recursive. This is surprisingly tricky. One needs a version of monus
on strings, namely

e, if [z <yl
xr — =
Y=o, it|z] > |y| and & = wv with |u| = |y|.

We leave it as an exercise to show that that the above function is primitive recursive.

One also needs the predicate end(x) = end(y) which holds iff x = y = € or 2 and y end
with the same letter. It is easy to show that this predicate is primitive recursive. Then the
predicate |z| = |y| is primitive recursive since it holds iff z —y =€ and y — x = €.

Finally, the reader should verify that we have eq(x,y) iff |z| = |y| and

Vz/xz[end(z) = end(rev(rev(y) — (x — 2))].

We can also define bounded minimization and maximization for predicates with string
arguments.

Definition 3.27. The bounded minimization min(y/x) P(y,z) of P is the function defined
such that min(y/x) P(y,Z) is the shortest prefix y of x such that P(y,Z) if such a y exists,
za, otherwise.

The bounded mazimization max(y/x) P(y,z) of P is the function defined such that
max(y/x) P(y, Z) is the longest prefix y of x such that P(y, Z) if such a y exists, za, otherwise.

In both cases the input arguments are x and z. If P is primitive recursive, then so are
min(y/x) P(y,z) and max(y/x) P(y,z).

So far the primitive recursive functions do not yield all the Turing-computable func-
tions. The following proposition also shows that restricting ourselves to total functions is
too limiting.

Let F be any set of total functions (f: (X*)" — ¥*) that contains the base functions and
is closed under composition and primitive recursion (and thus, F contains all the primitive
recursive functions).

3.10. THE PARTIAL COMPUTABLE FUNCTIONS 211

Definition 3.28. We say that a function f: ¥* x X* — 3* is universal for the one-argument
functions in F iff for every function ¢g: ¥* — ¥* in F, there is some n € N such that

f(a?>u) = g(u)
for all u € X*.

Proposition 3.9. For any countable set F of total functions containing the base functions
and closed under composition and primitive recursion, if f is a universal function for the
functions g: ¥* — ¥* in F, then f ¢ F.

Proof. Assume that the universal function f is in F. Let g be the function such that
g(u) = f(ay" ua
for all u € ¥*. We claim that g € F. It is enough to prove that the function h such that
h(u) = al"

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that
g(u) = f(ai",u)
for all u € ¥*. Letting u = af*, we get
9(at") = flal",ai") = flal", ay")a,
a contradiction. O

Thus, either a universal function for F is partial, or it is not in F.

In order to get a larger class of functions, we need the closure operation known as mini-
mization.

3.10 The Partial Computable Functions

Minimization can be viewed as an abstract version of a while loop. First let us consider the
simpler case of numerical functions.

Consider a function g: N™*! — N, with m > 0. We would like to know if for any fixed
ni,...,N, € N, the equation

gn,ny,...,nym) =0 with respect ton € N

212 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

has a solution n € N, and if so, we return the smallest such solution. Thus we are defining
a (partial) function f: N™ — N such that

f(ni,...,ny) =min{n € N| g(n,nq,...,n,) =0},

with the understanding that f(ni,...,n,,) is undefined otherwise. If g is computed by a
RAM program, computing f(ni,...,n,) corresponds to the while loop

n = 0;

while g(n,nq,...,n,) # 0 do

n:=n+1;

endwhile

let f(ny,...,n,) =n.

Definition 3.29. For any function g: N™*! — N, where m > 0, the function f: N™ — N is
defined by minimization from g, if the following conditions hold for all nq,...,n,, € N:

(1) f(ny,...,ny) is defined iff there is some n € N such that g(p,ny, ..., ny,) is defined for
all p, 0 < p <n, and
gn,ny,...,ny) =0.

(2) When f(nq,...,ny) is defined,

fny, ... ny) =n,

where n is such that g(n,n,...,n,) =0 and g(p,n1,...,n,) # 0 for every p, 0 < p <
n — 1. In other words, n is the smallest natural number such that g(n,ny,...,n,) =0.

Following Kleene, we write
f(ni,...,nm) = pn[g(n,ny, ..., n,) =0].

Remark: When f(nq,...,n,,) is defined, f(n,...,n,) = n, where n is the smallest natural
number such that Condition (1) holds. It is very important to require that all the values
g(p,ni,...,ny) be defined for all p, 0 < p < n, when defining f(ny,...,n,). Failure to do
so allows non-computable functions.

Minimization can be generalized to functions defined on strings as follows. Given a
function g: (X*)™* — 3* for any fixed wy, ..., w,, € ¥*, we wish to solve the equation

g(u,wy,...,wy,) =€ with respect to u € 3*,

and return the “smallest” solution wu, if any. The only issue is what does smallest solution
mean. We resolve this issue by restricting u to be a string of a;’s, for some fixed letter
a; € ¥. Thus there are k variants of minimization corresponding to searching for a shortest
string in {a;}*, for a fixed j, 1 < j < k.

3.10. THE PARTIAL COMPUTABLE FUNCTIONS 213

Let ¥ = {a4,...,a;}. For any function
g: XX e x X 3
—_——
m—+1
where m > 0, for every 7, 1 < 7 < k, the function
foXx o x X3
S
m

looks for the shortest string u over {a;}* (for a fixed j) such that
g(u,wy, ..., wy) =€

This corresponds to the following while loop:

U= €
while g(u,wy, ..., w,) # € do
U = uay;

endwhile

let f(ws,...,wy,) =u

The operation of minimization (sometimes called minimalization) is defined as follows.
Definition 3.30. Let ¥ = {ay,...,ax}. For any function
g: XX e x X — 3
mt1
where m > 0, for every 7, 1 < 7 < k, the function
foXx o x X =3

is defined by minimization over {a;}* from g, if the following conditions hold for all wy, ...,
Wy, € 2*:

(1) f(wy, ..., wy) is defined iff there is some n > 0 such that g(a},wi, ..., w,,) is defined
for all p, 0 < p < n, and

glaj,wy,...,wy) = e
(2) When f(wy,...,wy,) is defined,
f(wh 'awm) :CL;-L,
where n is such that
glai,wy,...,wy) =€
and
glal,wy, ... wy) # €

for every p, 0 < p<n-—1.

214 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

We write
flwy, ..., wy) = minjulg(u, wy, ..., wy,) = €.

Remark: When f(wy,...,w,,) is defined,

flwy, ... wn) = aj,

where n is the smallest natural number such that Condition (1) holds. It is very important
to require that all the values g(ag-’, Wi, ..., Wy,) be defined for all p, 0 < p < n, when defining
f(wy, ..., wy). Failure to do so allows non-computable functions.

Remark: Inspired by Kleene’s notation in the case of numerical functions, we may use the
u-notation:

flwi, ... wy) = piufgu,ws, ... wy) = €.
The class of partial computable functions is defined as follows.

Definition 3.31. Let ¥ = {ay,...,a;}. The class of partial computable functions (in the
sense of Herbrand-Gdédel-Kleene), also called partial recursive functions is the smallest class
of partial functions (over ¥*) which contains the base functions and is closed under compo-
sition, primitive recursion, and minimization.

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

One of the major results of computability theory is the following theorem.

Theorem 3.10. For an alphabet ¥ = {aq, ..., ax}, every partial computable function (partial
recursive function) is RAM-computable, and thus Turing-computable. Conversely, every
RAM-computable function (or Turing-computable function) is a partial computable function
(partial recursive function). Similarly, the class of computable functions (recursive functions)
15 equal to the class of Turing-computable functions that halt in a proper ID for every input,
and to the class of RAM programs that halt for all inputs.

Sketch of proof. First we prove that every partial computable function is RAM-computable.
Since we already know from Theorem 3.4 that the RAM programs contain the base functions
and are closed under composition and primitive recursion, it suffices to show that minimiza-
tion can be implemented by a RAM program. The RAM program in flowchart form shown
in Figure 3.8 implements minimization.

By Theorem 3.2, every RAM program can be converted to a Turing machine, so every
partial computable function is Turing-computable.

For the converse, one can show that given a Turing machine, there is a primitive recursive
function describing how to go from one ID to the next. Then minimization is used to guess
whether a computation halts. The proof shows that every partial computable function needs
minimization at most once. The characterization of the computable functions in terms of
TM’s follows easily. Details are given in Section 4.3. See also Machtey and Young [43] and
Kleene I.M. [36] (Chapter XIII). O

3.10. THE PARTIAL COMPUTABLE FUNCTIONS 215

Minimization over {a;}*

3 @ not €

XY, Yi<—Y1aj

l

Figure 3.8: Closure under minimization.

We will prove directly in Section 7.3 that every RAM-computable function (over N) is
partial computable. This will be done by encoding RAM programs as natural numbers.

There are computable functions (recursive functions) that are not primitive recursive.
Such an example is given by Ackermann’s function.

Example 3.25. Ackermann’s function is the function A: N x N — N which is defined by
the following recursive clauses:

A0, y)=y+1
Alx+1,0) = A(z, 1)
Alz+1,y+1) = Az, Az + 1,1)).

It turns out that A is a computable function which is not primitive recursive. This is

216 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

not easy to prove. It can be shown that

A0, z) =z +1
A(l, z) =2 +2
A2, z)=2x+3
A(3, z) =21 — 3,

and

with A(4,0) =16 — 3 = 13.
For example

A(4,1) =29 -3, A(4,2) =2°" - 3.

Actually, it is not so obvious that A is a total function, but it is.
Proposition 3.11. Ackermann’s function A is a total function.

Proof. This is shown by induction, using the lexicographic ordering < on N x N, which is
defined as follows:

(m,n) <X (m/,n’) iff either
m=m'and n =n', or
m < m', or

m=m'and n <n.

We write (m,n) < (m/,n’) when (m,n) < (m/,n’) and (m,n) # (m/,n’).

We prove that A(m,n) is defined for all (m,n) € N x N by complete induction over the
lexicographic ordering on N x N.

In the base case, (m,n) = (0,0), and since A(0,n) = n + 1, we have A(0,0) = 1, and
A(0,0) is defined.

For (m,n) # (0,0), the induction hypothesis is that A(m’,n’) is defined for all (m’,n’) <
(m,n). We need to conclude that A(m,n) is defined.

If m =0, since A(0,n) =n+1, A(0,n) is defined.

If m # 0 and n = 0, since

(m - 17 1) = (ma 0)7

by the induction hypothesis, A(m — 1,1) is defined, but A(m,0) = A(m — 1,1), and thus
A(m,0) is defined.

If m # 0 and n # 0, since
(man - 1) = (man)a

3.10. THE PARTIAL COMPUTABLE FUNCTIONS 217

by the induction hypothesis, A(m,n — 1) is defined. Since
(m - 1a A(ma n— 1)) = (m7n>7
by the induction hypothesis, A(m — 1, A(m,n — 1)) is defined. But A(m,n) = A(m —
1, A(m,n — 1)), and thus A(m,n) is defined.
Thus, A(m,n) is defined for all (m,n) € N x N. O

It is possible to show that A is a computable (recursive) function, although the quickest
way to prove it requires some fancy machinery (the recursion theorem; see Section 9.1).
Proving that A is not primitive recursive is even harder.

A further study of the partial recursive functions requires the notions of pairing functions
and of universal functions (or universal Turing machines).

218 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Chapter 4

Equivalence of the Models of
Computation

4.1 Simulation of a RAM Program by a
Turing Machine

It is convenient to describe Turing machines using diagrams. We can use a labeled graph
representation where each transition (p,a, b, m,q) is represented by the diagrams shown in
Figure 4.1.

(a,b,m) a/b, m
or

A 4

A 4

Figure 4.1: Representation of a Turing machine instruction.

There is another convenient notation which can be used, if for each state, all transitions
entering that state cause the head to move in the same direction. If this condition is not
satisfied, by splitting states, an equivalent Turing machine can be effectively constructed
and we leave the construction as an exercise. The situation is now the following. Given an
instruction (p, a,b, m,q) € §, we have the diagram shown in Figure 4.2.

There is a sight problem if p is not entered by any transition. But then, either p is the
start state, in which case we use the notation shown in Figure 4.3, or else p is inaccessible
and we can get rid of quintuples starting with p. Otherwise, all transitions entering p cause
the tape to move in the same direction m’, and we draw the diagram shown in Figure 4.4.

219

220 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

P a/b 9

O (™)

Figure 4.2: Representation of a Turing machine instruction.

a/b 9

16

Figure 4.3: Transition from the start state.

P a/b 9

@) ()

Figure 4.4: A typical transition.

Further simplifications are possible. When no confusion arises, we can omit state names.
Transitions (p,a,a, m,q) are represented by the diagram of Figure 4.5, and transitions

P a q

O 40

Figure 4.5: A simplified transition.
(p,a,a,m,p) are simply omitted. In other words, loops from a state to itself that do not
change the current symbol being scanned are omitted.

For all blocking pairs (p, a), that is, pairs such that no quintuple in ¢ begins with (p, a),
we draw an outgoing arrow from state p labeled a as shown in Figure 4.6.

4.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE

™

A 4

Figure 4.6: A blocking transition.

Example 4.1. Consider the Turing machine M with K = {qo, ¢1, ¢, g3}, [=

0 consisting of the following quintuples:

9, B — B, R, g3,
qo,a — b, R, q1,
q0,b — a, R, qu,
qi,a — b, R, qq,
q1,b — a, R, qu,
¢, B — B, L, g,
q2,a = a, L, qa,

q2,b — 0, L, qo,

g2, B — B, R, qs.

221

{a,b, B}, and

The diagram (using the above conventions) corresponding to the Turing machine M is

shown in Figure 4.7.

Oa/b
sTART —22 @ B . @ B , @

A;a
START Q BT

b/a START

Figure 4.7: Diagram of the Turing machine M.

For any input u € {a, b}*, the output of the computation is the string v obtained from u

by changing each “a” into a “b” and each “b” into an “a”.

We now describe a construction which takes a RAM program as input and produces as
output a Turing machine computing the same function as the function computed by the

222 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

RAM program. This construction provides a proof for Theorem 3.2 that we repeat for the
convenience of the reader.

Theorem 4.1. FEvery RAM-computable function is Turing-computable. Furthermore, given
a RAM program P, we can effectively construct a Turing machine M computing the same
function.

Proof. Let P be a RAM program using m registers R1,... Rm and having n instructions.
The contents rq,...,7,, of the registers are represented on the Turing machine tape by the
string

Hr1Hr24 - - - Hrm4,

where # is a special marker and ri represents the string held by Ri. We also use Proposition
3.1, which allows us to restrict ourselves to RAM programs that use only instructions of the
form

(2) N tail Y
(6ja) N Y jmp, Nla
(6;6) N Y jmp, N1b
(7 N continue

The simulating Turing machine M is built of n blocks connected for the same flow of
control as the n instructions in P. The jth block of the Turing machine simulates the jth
instruction in P.

The machine M begins with some initialization whose purpose is to make sure that the
simulation starts with a tape of the form

Hr1Hr2# - - Hrm#

representing m registers, with m+1 symbols #. Since the RAM program could have a number
of input variables ¢ < m, and it is necessary to add m + 2 — ¢ symbols #. If the input is
X1, To, -+ , Ty, the t — 1 commas are changed to #, and weadd m+1—(t—1)=m+2—t
symbols #. For example, if m = 5 and t = 3, the Turing input tape ab, bb, a becomes
#Hab#bb#a##4. See Figure 4.8 for the Turing machine achieving this step.

To simplify our diagrams, let us assume that the RAM alphabet is ¥ = {0, 1}. Then the
alphabet of the Turing machine is I' = {0, 1, #, B}. Each RAM statement is translated as a
Turing machine block as follows. We have four blocks, one for each instruction.

(a) add; Rq. See Figure 4.9.
(b) tail Rgq. See Figure 4.10.

4.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE 223

m

START. C S

\OA
B/# B/# B/#

1 B/# e —" e B/#

START———> — ce —
@ = oL)® = @
V
START oy . .
Initialization

Figure 4.8: Initialization.

#/a;
ECROSEOROS
(®)

- to(j+1)-stblock

find Rq add 3 shift right

Figure 4.9: Simulation of an instruction add; Rgq.

B

» to (j+1)-st block

find Rq delete shift left

Figure 4.10: Simulation of an instruction tail Rgq.

224 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

(c) jmp; Z

There are two variants of this case, since Z is either a jump above or a jump below.
These two cases are handled similarly, the only difference being the address of the block to
jump to. See Figure 4.11.

/%—} to block Z
_>® _13_}@__#_) __#_>®__#_>® ’#_)to (j+1)-st block

N g
L to (j+1)-st block

find Rq test

Figure 4.11: Simulation of an instruction jmp, Z.

Finally, we clean up the tape by erasing all but the contents of R1 from the tape. This
block corresponds to the last continue statement.

(d) Clean up phase. See Figure 4.12.
0/B

(=)= (r) QL@ ()
O

#/B

| IL |

erase #r24#..4rmit move back erase first #

Figure 4.12: Clean up phase.

Also note that a continue statement which is not the last continue statement in the
RAM program is translated as an arrow from the exit of the jth block to the entry of the
(7 + 1)th block.

4.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE 225

Notice that the Turing machine produced by the construction has the nice property that
it never moves left of the blank square immediately to the left of its leftmost #. In other
words, the tape need only be unbounded to the right. We leave as an exercise to prove that
every Turing-computable function is computable by a Turing machine which never moves
more than one square to the left of its starting position. O

Example 4.2. Here is an example of the simulation for a RAM program with two input
registers and a total of four registers. The input values are 101 in R1 and 00 in R2. The
initialization phase is shown in Figure 4.13.

o
R2 Instruction Block
] of RAM Program
e[]
Initial input: 101, 00
Place input string onto Turing Machine Tape
0/0
__1»(1 .00
START ’ i
o O O ONONONG
START contents of R1 s of 2 contents of R3 comtents of R moves cursor back to leftmost #
[#[1]o[1 J#JoJol#[#[#] [T [T [T T [T T[] TuringMachineTape

Figure 4.13: Initialization phase.

The simulation of the instruction addy R1 is shown in Figure 4.14.

The simulation of the instruction tail R2 is shown in Figure 4.15.

Next we show that every Turing computable function is RAM-computable.

226 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

Turing Machine Tape

[#NJolnf#Jofof#[#[#] [T TT [T T TTTT] /’C
3

Execute add,R1 @ﬁ»@)\\A 1/0
®

move to next block

Move cursorto # B/#

v
#fofrf#ofof#[#[#e[s] [[[[[[T]]]

Change # to 0 and move cursor right @%
v

(#aof1]ofofof#[#[#[s[s] | [[[[[T][]

Change 0 to # and move right @
Q
v S
(#TATo[T[ol#[o[##[#[e[s] [[[[[[[1] ®
Keep 0 and move right ®
v K
[(#[1]o[1[o[#Jof#[#[#[B[8] [[[[[[[[T[] ®<
/0
Change # to 0 and move right
®-,

v
(#1fof[r]of#[o[of#[#[efe] [[[[[[T [1]]

P
Keep # and move right (do this twice) L

v ® %
FIO O FOPFFEE T T T T T T T T] \E}

Change B to # and move to next block

v
(#l1fo[1[of#[o[of#[#[#]e[| [[[[[[[B/’i)

Figure 4.14: Simulation of the instruction add, R1.

4.2 Simulation of Turing Machine by a
RAM Program

In this section we provide a proof of Theorem 3.3 which we repeat for the reader’s conve-
nience.

Theorem 4.2. Fvery Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M, one can effectively construct a RAM program P computing the same
function.

Proof. Recall that we showed that the concatenation function con and the extended concate-
nation function con, defined such that con,(xi,...,z,) = x1---x, are primitive recursive

4.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 227

B

/,.\
8 / \\]
) 1 B
Move cursor to first entry in R2 T 8, @ LN . o
' 2 A
\\\ //
Bl G 4
N &

(#[1]o[1]of#[ofof# #[#[e] [T [T T TTTT]

Turing Machine Tape ‘

Execute tail R2 J’

\

(#[1]of1]of#[ofof#[#[#[e] [T [T T TTTT] 4
Change 0 to B and move right ®%® # @ ‘

v BJ'
(#[1fo[T[of#[elof# #[#[e[[T TTTTTTT]

Change 0 to B and move left
\ 4
[FTTo[T[o[#[e[E[#F[#[#[e] [T [T 111 1] ®

Change B to 0 and move right

\ 4
(#[aTof1[of#ofs[#T#[#e] T[T TT T TTTT]

Move Right J
v
(#[1Jofv[of#[ofel# #[#[e] TT [T T [T TT] ®
Change # to Band move le
g #th d left ®
(#[1To[1Jof#[ofee#[#[e] [T T T T TTTT] ®
Change B to # and move right B
\ 4 Repeat two more times
(#[1[of 1 oT#[ol*Te[#[#[e] TT [T T T TTT]

Move Right

®<—

’

/
0%
/

@
v
(#r o[o #[ol#[## elel TTTTTTTTT] C?

Move cursor left to rightmost # and exit to next block @

|

v
(#TolT[oT#of#e[##Tel TT [T T TTTT]

®

©

Figure 4.15: Simulation of the instruction tail R2.

and consequently RAM-computable. Also, RAM programs are closed under composition.
This allows to write a RAM program as a composition of blocks, avoiding the tedious task
of writing the program in full.

Let M = (K, T, A,d,qo) be a Turing machine with K = {qo,...,¢n} and T' = {ay, ..., a,
B, “), and let ¢ be the partial function of n arguments computed by M.

The idea of the proof is to design a RAM program P containing an encoding of the
current ID of the Turing machine M in register R1, and to use other registers R2, R3 to
simulate the effect of executing an instruction of M by updating the ID of M in R1. After
some initialization, the program P contains the current ID of M in register R1. For each
move of M, the program P updates the current ID to the next ID.

228 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

Initially, P takes the n input strings x1,...,z, and creates

#IDO# = #QOSI?l,iEQa e 7xn#

in register R1 and then simulates M. If and when M halts in a halting ID of the form
BfquwB?, the program P places w in R1 and stops. If the ID is improper, then P loops
forever.

The alphabet for P is ¥ = T'U K U {#}, and it is assumed that I' N K = () and that #
is neither in I" nor K. We let a1 = B and ag 0 = #.

When P simulates a move of M by updating the ID, register R1 contains the current ID,
which is of the form ua;pa;v and satisfies the following properties: if u = €, then a; = #,
and if v consists of single symbol, then v = #.

During the first phase in which P updates the ID, P transfers u into register 2, a; into
register R3, and pa;v is left in R1. Then it reads a; and, depending on (p, a;), it simulates
the action of M. In order to remember p and a;, the program P has labels of the form jp
and jpi. Right moves are accomplished at the addresses jpiR and jpiR#. Left moves are
accomplished at the addresses jpiL and jpiL#. The updated ID is placed back into R1.
When a halting ID is found, P checks that this ID is proper. If the halting ID is proper,
then the output is returned in R1, otherwise P loops forever. For simplicity we adopt a
subroutine notation. We also omit the suffix a or b in the target labels of jumps, which is
not a problem since all jumps in P are uniquely defined.

We initialize P with the following commands:

(A W

R1260n2n+2(#,qO,$1, L T R 7'17717#)

BEGIN clr R2

clr R3
jmp TEST
NU tail R1

TEST Rl jmp, Al

Rl jmp,., A(k+2)
R1 jmp,, QO

R1 jmp, ~@m

4.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 229

The subroutine Ai is the following program:

Ai R3 jmp, wuil

R3 jmpy o ui(k +2)

jmp NU
url add; R2

jmp upr3

wi(k+2) addgi2 R2

jmp upr3
upr3 tail R3
jmp NU

To remember a;p, for each p,0 < p < m, we have

Qp R3 jmp, 1p

R3 jmp,., (k+2)p
To remember a;pa;, for each p,0 < p < m, we have

jp tail R1
Rl jmp, Jpl

Rl jmp, jp(k+1)
Next we have three cases.

(1) (Right move) To simulate the instruction (p, a, b, R, q) corresponding to the transition
on ID’s given by
ua;pa;v — uajbqu, v # #

we have the program

Jpi tail R1

Rl jmp, JpiR
Rl jmp,., JpiR
R1 Jmpy o JpiRH#

JpiR Rl = cons(R2,a,bq, R1)
jmp BEGIN

230 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

To simulate the transition
ua;pa; — ua;bgB

corresponding to the case where v = #, in which case a blank needs to be inserted as the
rightmost symbol on the tape, we have the program

JpiR# R1 = cony(R2, a;bgBH#)
jmp BEGIN

(2) (Left move) To simulate the instruction (p,a, b, L, q), corresponding to the transition
on ID’s given by
ua;pa;v — uqa;bv, u # €

we have the program

jpt tail R1
Rl jmp, JpiL
R1 jmpy JpiL
Rl jmp,, JpiLH#f
jpil Rl = cons(R2,qa;b, R1)

jmp BEGIN

To simulate the transition
pa;v — qBbv

corresponding to the case where u = ¢, in which case a blank needs to be inserted as the
lefmost symbol on the tape, we have the program

JjpiL# R1 = cong(#qBb, R1)
jmp BEGIN

(3) If no quintuple begins with (p, a;), then upa;v is a halting ID. We test if it is proper.
For each such jpi, we have the program shown below.

Jpi tail R1
jmp PROPER

The program PROPER checks that an ID is proper. It should be noted that this is
unnecessary if the Turing machine has the property that if it halts, then the ID is proper.
This can be achieved by modifying the Turing machine so that if it halts in an improper 1D,
then it loops.

First, the program PROPER checks that the ID starts with a string of the form #B*q.
Next it places the output in R1, and finally it checks that the ID ends with B‘#.

4.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 231

PROPER RI1 = cons(R2,a;pa;, R1)

R2 +~ R1

R2 jmpy, B

Jjmp LOOP
HEAD R2 jmpy B

R2 jmp,, @

R2 jmp,, . Q

Jjmp LOOP
B tail R2

jmp HEAD
Q clr R1

MORE tail R2
R2 jmp, RES1

R2 jmp, RESEk
R2 jmpy BTAIL
R2 jmp, STOP
jmp LOOP

For each i,1 <1 < k, we have the program

RES7 addg; R1
jmp MORE
BTAIL tail R2
R2 jmpy BTAIL
R2 jmpy, STOP
jmp LOOP
LOOP jmp LOOP

STOP continue

Example 4.3. Here is an example of the simulation of the Turing machine of Example
3.5 that exchanges a’s and b’s by a RAM program. The input is ab. The simulation of the
transition gpab — bg, b is shown in Figure 4.16. The simulation of the transition bq;b — baq, B
is shown in Figure 4.17.

We leave the following proposition as an exercise.

Proposition 4.3. Given a Turing machine M computing a function ¢, we can effectively
construct a Turing machine M’ also computing @ with the following additional properties.

(1) M’ halts in a proper ID iff M halts in a proper ID.

(2) M’ loops iff either M loops or M halts in an improper ID.

232 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

qV q1V
becomes
IDy doab ID, basb

RAM program counterpart

Run TEST which tells us to jump to A4
R1 #qy a,b# (recall # is associated with a,)

Subroutine A4 removes the leftmost pound sign and places it into R3

] s

R3

o)
w
I

R1 Run TEST again; jump to routine Q0
o

Create Line 4q0

Q\‘e/ Delete qpfrom R1 and jump to Line 4q01

Change ID;into ID4
Use Line 4q01R to form the correct concatenation
The empty string of R2
The transition #bqy R1 #bqq, b#

The tail of R1 F"*Sfr
Place result into R1 ,5’7:/,,-0
Step 3 &
Clear R3 and repeat process

R2

I

R3

Figure 4.16: Simulation of the transition gyab — bgq,b.

The construction is possible because a Turing machine is capable of checking whether or
not a halting ID of M is proper, and if impoper, it loops forever. The construction is very
similar to the program PROPER, as a Turing machine. [

4.3 Every Turing Computable Function is Partial Com-
putable a la Herbrand—Godel-Kleene

The key to the proof that every Turing-computable function is a partial computable function
in the sense of Herbrand—Godel-Kleene is that we can define a primitive recursive function
which simulates the transitions of a Turing machine in terms of instantaneous descriptions

(ID’s).

Instantaneous descriptions are represented as strings #upav#, where p is a state, a € I,
and u,v € I'.

Given a Turing machine M = (K,I',A,d,q) (with ¥ = {ay,...,a;}) we define the

4.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE

q,V qVv
[Tb[bT T] becomes
ID; bab ID, bag;s

RAM program counterpart

Run TEST which tells us to jump to A4
R1 #bay, bt (recall # is associated with a,)

Subroutine A4 removes the leftmost pound sign and places it into R3

Ao
5
u/,0f4 R1 bq1,b# Run TEST which tells us to jump to A2
7 (recall #is associated with a))
STEP 1 Subroutine transfers the # in R3 to R2 and places bin R3

A
&
R1 9

R2

R3

L

R2
:
R3
R2 # lResu\t of Q1
o[]

i

A Run TEST again; jump to routine Q1
STEP 3 Create Line 2q1
Delete g from R1 and jump to Line 2q12

;-

Change ID4into ID,

Use Line 2q12R# to form the correct concatenation R1 #b,3, qBH
The string in R2 Second Transition N il
The transition b, a, g, B# —7
Place result in R1 Step 4

R2
R3

Clear R3 and repeat process

Figure 4.17: Simulation of the transition bg;b — baq, B.

following pairs of ID’s describing the transitions of M.
(1) For every (move right) instruction (p,a, b, R, q) € d, we have the pairs
(paay, bgay)
(paag, bqay,)
(pad#t, bg B##).
(2) For every (move left) instruction (p,a,b, L,q) € §, we have the pairs

(alp% qalb)

(akpa; qakb)
(#pa, #qBb).

233

234 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

The above set of pairs is denoted TRANS, and it is assumed to be ordered in some
fashion. As an abbreviation each pair is denoted ¢; — r;, for example, paa; — bga; and
a;pa — qaib. We assume that there are N such pairs (this is the number of quintuples in §).

We also have a list BLOCKED of strings pa such that no quintuple in ¢ starts with (p, a),
say
PiyQiys - - s Pigy Qi -

An illustration of the rules ¢; — r; is shown in Figure 4.18.

Right instruction (p,a,b,R,q)

PV (paax, bga,) qv

| u ‘a l akl v ‘ becomes ‘ u ‘ b ‘ ak| v, |
bV (pa#, bqB#) qVv

[ufalel] seomes [ufbfe]e |

Left instruction (p,a,b,L,q)

4 (apa, ga,b) qv
| Uw‘ak‘ a ‘ \Y becomes | u1‘ak‘ b ‘ v
' 4 (#pa, #qBb) qVv
| # ‘ a ‘ v becomes | # ‘ B ‘ b l v

Figure 4.18: Illustration of the rules associated to transitions.

We will use a number of primitive recursive functions.
Proposition 4.4. The following functions are primitive recursive.
(1) Occ(z,y), where Oce(x,y) holds iff x is a substring of y.
(2) u(x,z) = the prefiz of z the left of the leftmost occurrence of x in z if Occ(x, z).
(3) v(z, z) = the suffix of z the right of the leftmost occurrence of x in z if Occ(z, 2).
(4) rep(x,y, z) = the result of replacing the leftmost occurrence of x by y in z if Occ(x, z).

Proof. Recall that concatenation and extended concatenation are primitive recursive.

(1) Oce(z, y) iff (3z/y)(Fw/y)[z = wa].

4.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE 235

(2) u(x, z) = min y/z(Jw/2)[yx = w].

(3) v(x,z) = z — u(x, z)x (here — is the version of monus on strings defined just after
Definition 3.26).

(4) rep(z,y, z) = u(z, 2)yv(z, 2).

Note that for every ID, there is at most one occurrence of ¢; or r; for some ¢; — r; in
TRANS. This is why it doesn’t hurt to pick the leftmost occurrence. m

The predicate Occ is illustrated in Figure 4.19.

e
w X Schematic representation of Occ(x,y)
w could containx
| - — —
y
=X = ba
MP—mt’—
ba b Occ(ba, abbabbab)
| - _g >
y =abbabbab

Figure 4.19: Tllustration of the predicate Occ.

The functions v and v are illustrated in Figure 4.20. The function rep is illustrated in
Figure 4.21.

Proposition 4.5. For any Turing machine M, the following functions are primitive recur-
sive.

(1) The function T such that T(IDo,y) = 1D iff IDy &, ID in |y| steps.
(2) HALT(ID) iff ID is a halting ID.
(8) STOP(y, ID) iff M halts in a halting ID after |y| steps.

Proof. Note that we do not actually care what T, HALT,STOP do if 1Dy and ID are not
proper representations of ID’s.

236 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

w
y ‘ X | Schematic representation of u(x,z)
y does NOT contain x
Z
w=yx=abba
— e,
L y=ab ’ IOa| bbab u(ba, abbabba) = ab
z=abbabbab
’ ufx,2) ‘ X \ Z-u(x2)x W Schematic representation of v(xz)
u(x,z) does NOT contain x
- _—

ab ‘ ba | z—u(x,z)xj v(ba, abbabbab) = bbab

- -

z=abbabbab

Figure 4.20: Illustration of the functions v and v.

(1) The function T is defined as follows, which shows that it is primitive recursive.

T(x,e)=x
(

rep(ﬂl,rl,T(x,y)) iff OCC(€17T(5E7y))
rep(€27 T2, T(.T, y)) iff OCC(€27 T(Z’, y)) A _'OCC<€1a T(.T, y))
T T, ya;) = '
() rep(Un, N, T(z,y)) iff Occ(n, T(x,y)) A =Occ(ly, T (z,y))
A+ AN=O0cc(ly_1,T(z,y))
T(x,y) otherwise.

\

The function T is illustrated in Figure 4.22.

If T'(z,y) represents the ID #upav# obtained after performing |y| steps starting from
the ID x, then T'(x, ya;) represents the ID obtained by applying an instruction starting

4.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE 237

(2)

(3)

uxz) | x<=y | o vix2) Schematic representation of rep(x,2)
u(x,z) does NOT contain x
| - — —
z
ulxz)=ab [ba<-aal v(xz)=bhbhab rep(ba, aa, abbabbab) = abaabbab
-— _ D
z=abbabbab

Figure 4.21: Illustration of the function rep.

with (p,a), if any. To see if such an instruction applies we test sequentially starting
from k = 1 whether the left-hand side ¢; of a transition ¢, — 7 occurs in T'(x,y),
which is performed by Occ(¢x, T'(z,y)), the tests Occ(ly,, T (x,y)) for all ky < k being
negative. If so, ¢y is replaced by ry in the ID T'(x,y) to mimic the TM transition
corresponding to ¢, — ry, which is achieved by rep(¢x, ri, T'(x,y)). Since the purpose
of y is to count the number of steps, only |y| matters, so we may assume that y is a
string of a;s.

The function HALT is defined as follows.
HALT(x) iff [Occ(ps, aiy,) V - -+ V Oce(p;,, ai,,,)]

STOP(y, ID) iff HALT(T(x,y)). 0

If M is a Turing machine computing a function of n arguments x1,...,x,, the starting
ID is defined as

IDy = #qox1, 22, , Tptt

Let INIT be the function given by

INIT (21, ..., 2T,) = #x1,. .., To#

Obviously INIT is primitive recursive. Then for all zy,...,z, € ¥*, we have

iff

IDyFj, ID and ID is a halting ID

T(INIT (21, ..., 2,), min;y[STOP(y, INIT (x4, ..., 2,))]) = ID.

238 CHAPTER 4. EQUIVALENCE OF THE MODELS OF COMPUTATION

av v ay
2fofo]] [ofb[o]] [ofalo]]
IDy= q,abb D1 =bq bb ID2=baq1b

Rq,) @,baRgq

(Gqr 2, T

(q5ab, b, b) (0, bb; g, b)

T(Dy, €)=1Dg=q,abb

T(ID,, a) =rep(q ,ab, bg, b, T(ID, €)) = ID1=bq; bb

T(IDy, aa) = rep(q , bb, aq, b, T(ID, ,a)) = 1D, =baq (b

Figure 4.22: Tllustration of the function 7.

Let RES be the function that cleans up a halting ID to produce the output. The function
RES is defined by primitive recursion as follows (recall that rev is the reverse function and
con is the concatenation function).

RES(e) = ¢
RES(z#) = RES(x)
RES(zB) = RES(z)
RES(za;) = con(RES(x),a;), 1<i<k

RES(zq) = RES(rev(z)), q¢€ K.

We leave it as an exercise to prove that for any halting ID of the form #B*quB‘# with
u € ¥, we have
RES(#B"quB'#) = u.
Combining all the facts we established we obtain the following result.

Theorem 4.6. Every Turing computable function ¢ of n arguments is partial computable
in the sense of Herbrand-Godel-Kleene. Moreover, given a Turing machine M, we can
effectively find a definition of ¢ of the form

o(xq, ..., x,) = RES(T(INIT (21, ..., 2z,), min;y[STOP(y, INIT(x1, ..., x,))]))-
As a corollary we have the following nontrivial result.

Corollary 4.7. Every partial computable function ¢ can be effectively obtained in the form
@ = fominy g, where f and g are primitive recursive functions.

Consequently, every partial computable function has a definition in which minimization
is applied at most once.

Chapter 5

The Lambda-Calculus

The original motivation of Alonzo Church for inventing the A-calculus was to provide a
type-free foundation for mathematics (alternate to set theory) based on higher-order logic
and the notion of function in the early 1930’s (1932, 1933). This attempt to provide such
a foundation for mathematics failed due to a form of Russell’s paradox. Church was clever
enough to turn the technical reason for this failure, the existence of fixed-point combinators,
into a success, namely to view the A-calculus as a formalism for defining the notion of
computability (1932,1933,1935). The A-calculus is indeed one of the first computation models,
slightly preceding the Turing machine.

Kleene proved in 1936 that all the computable functions (recursive functions) in the
sense of Herbrand and Goédel are definable in the A-calculus, showing that the A-calculus
has universal computing power. In 1937, Turing proved that Turing machines compute the
same class of computable functions. (This paper is very hard to ead, in part, because the
definition of a Turing machine is not included in this paper). In short, the A-calculus and
Turing machines have the same computing power. Here we have to be careful. To be precise
we should have said that all the total computable functions (total recursive functions) are
definable in the A-calculus. In fact, it is also true that all the partial computable functions
(partial recursive functions) are definable in the A-calculus but this requires more care.

Since the A-calculus does not have any notion of tape, register, or any other means of
storing data, it quite amazing that the A-calculus has so much computing power.

The A-calculus is based on three concepts:

(1) Application.
(2) Abstraction (also called A-abstraction).
(3) B-reduction (and S-conversion).

If f is a function, say the exponential function f: N — N given by f(n) = 2", and if n a
natural number, then the result of applying f to a natural number, say 5, is written as

(f5)

239

240 CHAPTER 5. THE LAMBDA-CALCULUS

instead of f(5), and is called an application. Here we can agree that f and 5 do not have
the same type, in the sense that f is a function and 5 is a number, so applications such as
(f f) or (55) do not make sense, but the A-calculus is type-free so expressions such as (f f)
as allowed. This may seem silly, and even possibly undesirable, but allowing self application
turns out to a major reason for the computing power of the A-calculus.

Given an expression M containing a variable x, say

M(z) =2* +x+ 1,

as x ranges over N, we obtain the function represented in standard mathematical notation
by x + 2% + 2 + 1. If we supply the input value 5 for x, then the value of the function is
52 + 5+ 1 = 31. Church introduced the notation

v, (22 + 2+ 1)

for the function x +— 2% + 2 + 1. Here, we have an abstraction, in the sense that the static
expression M (x) for x fixed becomes an “abstract” function denoted A\z. M, where x can be
instantiated to any input value.

It would be pointless to only have the two concepts of application and abstraction. The
glue between these two notions is a form of evaluation called B-reduction.! Given a -
abstraction Az. M and some other term N (thought of as an argument), we have the “eval-
uation” rule, we say [-reduction,

(Az. M)N =45 M[z := N],

where M|z := N] denotes the result of substituting N for all occurrences of x in M. For
example, if M = 2?2 + x4+ 1 and N = 2y + 1, we have

Oz (2 +2+1)2y+1) =5 2y +1)2+ 2y +1+1.

Observe that f-reduction is a purely formal operation (plugging N wherever x occurs in
M), and that the expression (2y+1)?+2y+1+1 is not instantly simplified to 4y*+6y+3. In
the A-calculus, the natural numbers as well as the arithmetic operations 4+ and x need to be
represented as A-terms in such a way that they “evaluate” correctly using only [-conversion.
In this sense, the A-calculus is an incredibly low-level programming language. Nevertheless,
the A-calculus is the core of various functional programming languages such as OCaml, ML,
Miranda and Haskell, among others.

We now proceed with precise definitions and results. But first we ask the reader not
to think of functions as the functions we encounter in analysis or algebra. Instead think
of functions as rules for computing (by moving and plugging arguments around), a more
combinatory (which does not mean combinatorial) viewpoint.

This chapter relies heavily on the masterly expositions by Barendregt [4, 5]. We also
found inspiration from very informative online material by Henk Barendregt, Peter Selinger,
and J.R.B. Cockett, whom we thank. Hindley and Seldin [31] and Krivine [39] are also
excellent sources (and not as advanced as Barendregt [4]).

! Apparently, Church was fond of Greek letters.

5.1. SYNTAX OF THE LAMBDA-CALCULUS 241

5.1 Syntax of the Lambda-Calculus

We begin by defining the lambda-calculus, also called untyped lambda-calculus or pure lambda-
calculus, to emphasize that the terms of this calculus are not typed. This formal system
consists of

1. A set of terms, called A-terms.

2. A notion of reduction, called S-reduction, which allows a term M to be transformed
into another term N in a way that mimics a kind of evaluation.

First we define (pure) A-terms. We have a countable set of variables {xq, 1, ...,z ...}
that correspond to the atomic A-terms.

Definition 5.1. The A-terms M are defined inductively as follows.
(1) If z; is a variable, then z; is a A-term.
(2) If M and N are A-terms, then (MN) is a A\-term called an application.

(3) If M is a A-term, and x is a variable, then the expression (Az. M) is a A-term called a
A-abstraction.

Note that the only difference between the A-terms of Definition 5.1 and the raw simply-
typed A-terms of Definition 2.13 is that in Clause (3), in a A-abstraction term (Ax. M), the
variable x occurs without any type information, whereas in a simply-typed A-abstraction
term (Ax: 0. M), the variable x is assigned the type o. At this stage this is only a cosmetic
difference because raw simply-typed A-terms are not yet assigned types. But there are type-
checking rules for assigning types to raw simply-typed A-terms that restrict application, so
the set of simply-typed A-terms that type-check is much more restricted than the set of
(untyped) A-terms. In particular, no simply-typed A-term that type-checks can be a self-
application (M M). The fact that self-application is allowed in the untyped A-calculus is
what gives it its computational power (through fixed-point combinators, see Section 5.5).

Definition 5.2. The depth d(M) of a A-term M is defined inductively as follows.
1. If M is a variable z, then d(z) = 0.
2. If M is an application (M;M,), then d(M) = max{d(M;),d(Ms)} + 1.
3. If M is a A-abstraction (Ax. M), then d(M) = d(M;) + 1.
It is pretty clear that A-terms have representations as (ordered) labeled trees.

Definition 5.3. Given a A\-term M, the tree tree(M) representing M is defined inductively
as follows:

1. If M is a variable z, then tree(M) is the one-node tree labeled z.

242 CHAPTER 5. THE LAMBDA-CALCULUS
2. If M is an application (M;M,), then tree(M) is the tree with a binary root node labeled
., and with a left subtree tree(M;) and a right subtree tree(M;).

3. If M is a A-abstraction (Az. M), then tree(M) is the tree with a unary root node
labeled Az, and with one subtree tree(My).

Definition 5.3 is illustrated in Figure 5.1.

M=x) «
tree (M)

M=2Ax+M, Ax

tree(M)

tree(My)

Figure 5.1: The tree tree(M) associated with a pure A-term M.

Obviously, the depth d(M) of A-term is the depth of its tree representation tree(M).
Unfortunately A-terms contain a profusion of parentheses so some conventions are com-
monly used.

(1) A term of the form
(- (FMy)My) - - M)

is abbreviated (association to the left) as
FM---M,.
(2) A term of the form
(Ax1. (Azg. (- - (Axyy. M) -+ +)))
is abbreviated (association to the right) as
ATy Ty M.
It is also assumed that application binds more strongly that A-abstraction. So
AT AT9. My MoyMs

is an abbreviation for

()\xl. (Az». ((M1M2)M3))).

5.1. SYNTAX OF THE LAMBDA-CALCULUS 243

Matching parentheses may be dropped or added for convenience.

Example 5.1. Here are some examples of A-terms (and their abbreviation):

Y)

(yx) YT

(A\x. (yz)) AT yx

(- (y2))7) (A yz)
(((Az. (Ay. (yz)))z)w) (Azy. yz)zw.

Note that Az.yz is an abbreviation for (Az. (yx)), not ((Az.y)x) (which is abbreviated
as (Az.y)x).

The variables occurring in a A-term are free or bound.

Definition 5.4. For any A-term M, the set FV (M) of free variables of M and the set
BV (M) of bound variables in M are defined inductively as follows.

(1) If M =z (a variable), then
FV(z)={z}, BV(z)=0.
(2) If M = (M;Ms), then
FV(M)=FV(M;)UFV(Msy), BV(M)= BV(M;)UBV(M,).
(3) if M = (Az. M), then
FV(M)=FV (M) —{z}, BV(M)= BV (M;)U{z}.
If z € FV (M), we say that the occurrences of the variable & occur in the scope of .

A Mterm M is closed or a combinator if FV (M) = (), that is, if it has no free variables.
Example 5.2. We have

FV(()\:c.y:U)z) ={y, z}, BV(()\:U.ym)z) = {z},

and
FV(()\:Uy. ya:)zw) ={z,w}, BV(()\xy. yw)zw) = {z,y}.

Before proceeding with the notion of substitution we must address an issue with bound
variables. The point is that bound variables are really place-holders so they can be renamed
freely without changing the reduction behavior of the term as long as they do not clash
with free variables. For example, the terms Az. (x(Ay. z(yz)) and Ax. (x(Az.z(zx)) should

244 CHAPTER 5. THE LAMBDA-CALCULUS

be considered as equivalent. Similarly, the terms Az. (z(Ay. z(yx)) and Aw. (w(Az. w(zw))
should be considered as equivalent.

One way to deal with this issue is to use the tree representation of A-terms given in
Definition 5.3. For every leaf labeled with a bound variable z, we draw a backpointer to
an ancestor of x determined as follows. Given a leaf labeled with a bound variable x,
climb up to the closest ancestor labeled Az, and draw a backpointer to this node. Then
all bound variables can be erased. An example is shown in Figure 5.2 for the term M =

tree(Ax « x(Ay « x(yx)))

Figure 5.2: The tree representation of a A-term with backpointers.

A clever implementation of the idea of backpointers is the formalism of de Bruijn indices;
see Pierce [48] (Chapter 6) or Barendregt [4] (Appendix C).

Church introduced the notion of a-conversion to deal with this issue. First we need to
define substitutions.

Definition 5.5. A substitution ¢ is a finite set of pairs ¢ = {(x1, V1), ..., (n, Ny)}, where
the x; are distinct variables and the N; are A-terms. We write

o =[Ni/x1,...,Np/x,] or =[xy :=Ny,...,z, = N,

The second notation indicates more clearly that each term N; is substituted for the
variable z;, and it seems to have been almost universally adopted.

Definition 5.6. Given a substitution ¢ = [z := Ny,...,x, := N,], for any variable z;, we
denote by ¢_,, the new substitution where the pair (x;, N;) is replaced by the pair (z;, z;)
(that is, the new substitution leaves z; unchanged).

5.1. SYNTAX OF THE LAMBDA-CALCULUS 245

9 n

we define the A\-term M|, the result of applying the substitution ¢ to M, as follows.

Definition 5.7. Given any A-term M and any substitution ¢ = [z1 := Ny,..., 2, = N,

1) If M =y, with y # x; for i =1,...,n, then M[p] =y = M.

2) If M = x; for some i € {1,...,n}, then M[p] = N;.

(1)
(2)
(3) If M = (PQ), then M[p] = (P[¢]Q[¢]).
(4)
)

4) If M = Xx. N and = # x; for i = 1,...,n, then M[p] = Az. N[p].

(5) If M = Xz. N and x = x; for some i € {1,...,n}, then M[p] = Az. N[p]_,,.

The term M is safe for the substitution ¢ = [z1 := Ny,...,z, := N,] it BV(M)N(FV(N;)U
-~UFV(N,)) =0, that is, if the free variables in the substitution terms N; do not become
bound.

Note that Clause (5) ensures that a substitution only substitutes the terms N; for the
variables x; free in M. Thus if M is a closed term, then for every substitution ¢, we have
M]p] = M. More generally, if none of the variables x; occurs free in M, then M|[p] = M.

Example 5.3. Here are some examples of substitution.

Y
= (z(Au.v))((vo)(Au. v))
Az (z(Au.v))((vv)(Au. v))
Az (z((Au. (uw))z)).

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term NN; containing the variable = free causes this
variable to become bound after the substitution. We say that z is captured.

Example 5.4. If we make the substitution

Az (22)(y2)[y == (xx); 2 := (Au.v)] = Az, (x(Au. v)) ((xz) (Au. v)),

the variable x occurring free in the term (xz) now has three bound occurrences in the term
Az, (z(Au.v))((zx)(Au.v)). We should only apply a substitution ¢ to a term M if M is
safe for ¢. We should rename the bound variable x in the term Az.(zz)(yz), say as w,
obtaining the term Aw. (wz)(yz), and then there is no capture of variable when we make the
substitution

M. (wz)(yz)|y == (zx); 2z := (M. v)] = Aw. (w(Au. v))((xz) (Au. v)).

To remedy this problem, Church defined a-conversion.

246 CHAPTER 5. THE LAMBDA-CALCULUS

Definition 5.8. The binary relation —,, on A-terms called immediate a-conversion? is the
smallest relation satisfying the following properties: for all A-terms M, N, P, ().

e, M — o Ay Mz :=y|, forall y¢ FV(M)U BV (M)

if I —, N, then MQQ —, NQ and PM —, PN
if M —, N, then Ax.M —, \z.N.

The least equivalence relation =,= (—, U —_!)* containing —>, (the reflexive and
transitive closure of —, U —_ 1) is called a-conversion. Here —_ ! denotes the converse
of the relation —»,, that is, M —_ ! N iff N —, M.

Example 5.5. We have

Ma. f(f(x)) = A Ax. f(f(2) —a M2y f(f(y) —a Ag- Ay 9(9(y)) = Agy. 9(9(y)).

Now given a A-term M and a substitution ¢ = [z1 := Ny, ..., z, := N,|, before applying
© to M, we first perform some a-conversion to obtain a term M’ =, M whose set of bound
variables BV (M) is disjoint from FV(N;)U---U FV(N,) so that M’ is safe for ¢, and the
result of the substitution is M’[y].

Example 5.6. We have

(Ayz. (zy)2) [z := yz] =o (Awv. (zu)v) [z == yz] = Auv. ((y2)u)v.

From now on, we consider two A-terms M and M’ such that M =, M’ as identical (to
be rigorous, we deal with equivalence classes of terms with respect to a-conversion). Even
the experts are lax about a-conversion so we happily go along with them. The convention
is that bound variables are always renamed to avoid clashes (with free or bound variables).

Note that the representation of A-terms as trees with back-pointers also ensures that
substitutions are safe. However, this requires some extra effort. No matter what, it takes
some effort to deal properly with bound variables.

5.2 [(-Reduction and 5-Conversion; the Church—Rosser
Theorem
The computational engine of the A-calculus is S-reduction.

Definition 5.9. The relation —4, called immediate B-reduction, is the smallest relation
satisfying the following properties for all A-terms M, N, P, Q:

(Ax. M)N — 5 M[z := N|, where M is safe for [z := N]|

2We told you that Church was fond of Greek letters.

5.2. B-REDUCTION AND [-CONVERSION; THE CHURCH-ROSSER THEOREM 247

it M —3 N, then MQ —3 NQ and PM —3 PN
it M —p3 N, then Mv.M —p3 Az. N.

The transitive closure of —3 is denoted by i>5, the reflexive and transitive closure of

—+g is denoted by Lm, and we define (-conversion, denoted by <L>5, as the smallest
equivalence relation <3 = (—5 U —5')* containing —s .

To study properties of S-reduction sequences it is important to define precisely where
a subterm occurs inside of a term. This notion is quite clear if we view a term M as the
corresponding tree tree(M). Then a subterm N corresponds to a subtree tree(N) of tree(M).
Since the same subtree can occur in several places, we need to exercise some care. We use
the fact that the root of the subtree tree(/N) is reached from the root of the tree tree(M)
along a unique path described by a string over the alphabet {1,2}.

We have the usual lezicographic ordering < on the set of strings {1,2}*, where for any two
strings u,v € {1,2}*, u < v if either u is a prefix of v, namely v = uzx for some z € {1,2}*,
or u = xly,v = a2z, for some x,y,z € {1,2}*.

Definition 5.10. Let M be a A-term. The set of occurrences of subterms in M, Occ(M),
is the set of pairs (u, N), with u € {1,2}* and N a A-term, defined as follows.

(1) If M is the variable z, then Occ(M) = {(e, z)}.
(2) If M is an application M = (M, M,), then
Oce(M) = {(e, M)}U{(1u, Ny) | (u, Ny) € Oce(M;)} U{(2v, No) | (v, No) € Occ(M,)}.
(3) If M is an abstraction M = A\zx. M, then
Oce(M) = {(e, M)} U {(1u, Nv) | (u, N1) € Occ(M)}.

If (u, N) € Occ(M), we say that the subterm N occurs at u in M. Note that M itself occurs
at e in M. If N occurs at u in M and N’ occurs at v in M, we say that u is a proper ancestor
of v if v = ux for some x # €. In this case, we say that N’ is a proper subterm of N.

Example 5.7. The term
M = ()\z. (()\y. ((zy)y))z))w

has the following set of occurrences of subterms:

(111111, 2), (111112,), (11111,(zy)>, (11112,), (1111,((zy)y)), (111, (Ay.((zy)y))),

(112, 2), (11,<(Ay.((zy)y))z>), (1, ()\z. ((Ay.((zy)y))z))), (2,w),
<e, <)\z. (()\y. ((zy)y))z))w).

248 CHAPTER 5. THE LAMBDA-CALCULUS

The subterm z occurs at 111111 and 112 and the subterm y occurs at 111112 and 1112. The
subterm (zy) (which occurs at 11111) is a proper subterm of the subterm ((/\y ((zy)y))z>

(which occurs at 11).

Definition 5.11. Given a A-term M, a subterm R of M of the form R = (Ax. M;)N; is
called a redex. If M p-reduces to M’, because the redex R occurring at u in M [-reduces,

namely
R = ()\iCMl)Nl —8 Ml[l‘ = Nl],

we write
M 5, rs M.

A A-term M is a B-normal form if there is no A-term N such that M — 3 N, equivalently
if M contains no [-redex.

Example 5.8. The term
M = ()\z. <()\y. ((zy)y))z))w

has two [-redexes.

(1) The term M itself.

(2) The subterm ((/\y ((zy)y))z) at 11.

Example 5.9. The term

M= <)\z. <((/\x. (22))u) (. (yz))v)))w

has three S-redexes.

(1) The term M itself.

(2) The subterm ((/\T (rz))u) at 111.

(3) The subterm ((/\y. (yz))v) at 112.

The following characterization of terms in S-normal form is easily shown by induction on
the depth of terms.

Proposition 5.1. A A-term M is a B-normal form if and only if one of the following
conditions hold:

(1) M is a variable x.
(2) M =axM---M,, where x is variable and My, ..., M, are $-normal forms.

5.2. B-REDUCTION AND [-CONVERSION; THE CHURCH-ROSSER THEOREM 249

(8) M = \x. My, where My is a S-normal form.

Definition 5.12. We say that a redex R occurring at u in M is mazimal if there is no redex
R’ occurring at v in M such that v is a proper ancestor of u, equivalently R is not a proper
subterm of R'. A redex R occurring at u in M is the leftmost maximal redex in M if R is
maximal and if for any other redex R’ at v which is also maximal, then v < v. This means
that in the tree tree(M), the root of tree tree(R) occurs on a path of the form zly, and the
root of tree tree(R’) occurs on a path of the form z2z.

Definition 5.13. A reduction sequence such that the leftmost maximal redex is S-reduced
at every step is called a normal reduction (or leftmost reduction).

Normal reductions are important because according to a theorem of Curry, if a term M
has a [-normal form M*, then there is a normal reduction from M to M*; see Barendregt
[4] (Chapter 13, Theorem 13.2.2). The weaker notion of quasi-leftmost reduction will be
considered later in Section 5.6.

In Example 5.8, there is a unique maximal redex, namely M itself, so it is the leftmost
maximal redex, and similarly in Example 5.9.

Example 5.10. The term

M=w ((<)\z. ((/\y. ((Zy)y))z>)u> <<)\z ((Ay. (zy))z)) v>)

has two maximal (-redexes

()\z. (()\y. ((zy)y))z))u, <)\z. (()\y. (zy))z))v,

and the blue redex is the leftmost maximal redex.

Example 5.11. The subterm ((Az. (Ay.z))u) is the maximal leftmost S-redex in the term
(A\z. (A\y. z))u)v. We have

(Azy.)uv = ((Az. Ay 2))u)v —5 (A\y. z)[z == u])v = (A\y. u)v —5 uly = v] = u.

The subterm ((Az. (Ay.y))u) is the maximal leftmost S-redex in the term ((Az. (Ay.y))u)v.
We have

(Azy. y)uv = ((Az. Ay y)u)v —5 (M. y)lz = u)v = Ny y)v —p yly == v] = v.

This shows that Azy. x behaves like the projection onto the first argument and Azy. y behaves
like the projection onto the second.

250 CHAPTER 5. THE LAMBDA-CALCULUS

Example 5.12. The normal reduction from the term

M = ()\z. <(()\x. (22))u) (M. (yz))v)))w

is shown below:

(Az- (- twn)a) (00 <yz>>v)))w s (O (zw))u) (0w (o))
5 (ww) (A (yw))v) <5 (ww)(vw).
Example 5.13. More interestingly, if we let w = Az. (zz), then
Q =ww = (\. (z2))(Az. (21)) —5 (22)[1 = Iz. (27)] = Www = Q.

The above example shows that S-reduction sequences may be infinite. This is a curse and a
miracle of the A-calculus! The term €2 has no S-normal form.

Example 5.14. There are even f-reductions where the evolving term grows in size.
L g
There is only one maximal (leftmost) redex shown in blue. This term has no S-normal form.

Example 5.15. The term
L=z (zx)y)(Az. (z2)y)

also does not have a S-normal form. Indeed,
L= (. (zz)y)(A\z. (zx)y) —=4 (Az. (z2)y)(Az. (z2)y)y
5 (M. (ze)y) e (z2)y)yy =5

namely
@ A term M may have a [-normal form, but also some infinite [-reduction sequence.
Consider the term

P = (Au.v)L = (Au.v) ((/\x xxy)(Az. xmy)),

5.2. B-REDUCTION AND [-CONVERSION; THE CHURCH-ROSSER THEOREM 251

which is the unique maximal redex (and thus the leftmost maximal redex). We have the
[-reduction

P = (Au.v)L im v[u:= L] =,
where v is a f-normal form, but also the infinite S-reduction sequence
P = (Au.v)L =5 (M v)(Ly) —=5 O v)(Lyy) —=5 - .
As we will see later, in general, there is no algorithm to decide whether a term has a S-normal

form, or whether all S-reduction sequences terminate.

In general, a A-term contains many different -redexes. One then might wonder if there is
any sort of relationship between any two terms M; and M, arising through two S-reduction
sequences M Lm M; and M —» s My starting with the same term M. The answer is given
by the following famous theorem.

Theorem 5.2. (Church—Rosser Theorem) The following two properties hold.

1) The A-calculus is confluent: for any three \-terms M, My, My, if M —»5 M, and
(8

M %5 Ms, then there is some A-term Ms such that M, L)g Mz and M, L)g Ms.
See Figure 5.3.

Given M
M] MZ
% M
* *
M Confluence le

A4

M,

Figure 5.3: The confluence property.

(2) The A-calculus has the Church—Rosser property: for any two \-terms My, M, if

My <L>5 My, then there is some A-term Ms such that M, L>5 M3 and M 45 Ms;.
See Figure 5.4.

Furthermore (1) and (2) are equivalent, and if a A\-term M B-reduces to a B-normal form
N, then N is unique (up to a-conversion).

252 CHAPTER 5. THE LAMBDA-CALCULUS

Given

*
M1<—>M2 M<—>M

\/

Church Rosser

Figure 5.4: The Church—Rosser property.

Proof. We are not aware of any easy proof of Part (1) or Part (2) of Theorem 5.2, but the
equivalence of (1) and (2) is easily shown by induction.

Assume that (2) holds. Since — g is contained in g, if M —5 M; and M —4 M,
then M, <L>/3M2, and since (2) holds, then there is some A-term M3 such that M; L>/3 M5
and My —5 Ms, which is (1).

To prove that (1) implies (2) we need the following observation.

Since 5 = (—g Uimreduces~1)*, we see immediately that M; <5 M, iff either

(a) M; = My, or
b) there is some Ms such that M; —s5 M3 and M3 <45 M, or
B B

¢) there is some Ms such that M — 5 M; and Mz <— 5 M.
B B

Assume (1). We proceed by induction on the number of steps in M; «+—zM,. If
M, <L>BM2, as discussed before, there are three cases.

Case a. Base case, M; = M,. Then (2) holds with M3 = M; = M.

Case b. There is some Mjs such that M; —3 Mz and M3 @5 Ms. Since Ms @ﬁ My
contains one less step than M; +— 3 My, by the induction hypothesis there is some My such
that Ms; L>5 M, and M> L)/g My, and then M; — 5 Ms; L>5 M, and M, %5 My, proving
(2). See Figure 5.5.

Case c. There is some Mj such that Ms — 5 M; and M; <L>5 Ms. Since Ms <L>5 M
contains one less step than M, <L>5 M, by the induction hypothesis there is some M, such
that Ms; L)/g M, and M, i)g M,. Now Ms — 5 M; and Ms; i)g My, so by (1) there
is some M; such that M, 45 My and My %5 Ms. Putting derivations together we get
M, —5 My and My —3 My —5 My, which proves (2). See Figure 5.6.

Suppose M L>5 N; and M 45 Ny where Ny and Ny are both S-normal forms. Then

by confluence there is some N such that N; i)g N and Ny Lm N. Since N; and N, are
both f-normal forms, we must have Ny = N = N, (up to a-conversion).
Barendregt gives an elegant proof of the confluence property in [4] (Chapter 11).]

5.2. B-REDUCTION AND [-CONVERSION; THE CHURCH-ROSSER THEOREM 253

Given
*
M— M3<——> M,

Y

M——— Mg——— M,

*
Induction Hypmhek /
M

4

4

M—— Me——— M,
N /

*\\\‘\
aM,

Figure 5.5: Case b.

Another immediate corollary of the Church-Rosser theorem is that if M <5 N and if
N is a S-normal form, then in fact M L>5 N. We leave this fact as an exerise

This fact will be useful in showing that the recursive functions are computable in the
A-calculus.

Example 5.16. Consider the term

M= ()\z. (()\y. (zyy))z))w.
We have the reductions
M- ()\z. (Ow. (zyy))z))w —s (Az. (222) Jw = M
and
M = (X (O Gam)=) Jw =5 (O Com)w) = M
We have confluence because
My = (N2 (222))w —5 www = My

and

My = <()\y (wyy))w) — 5 www = M.

254 CHAPTER 5. THE LAMBDA-CALCULUS

M ——— Me——— M,

N

M(——M4——'M

Induction Hypothesns\, /

M«———M4——>M M4——M4——?M

ccccccccc \

Figure 5.6: Case ¢
Examplo 5.17. Consider the term
_ (Az. (0) (0 <yz>>v))>w.
We have the reduction sequences
M= <AZ. ((0-) (0 W))U)))w . (Az. (6 (0 <yz>>v)>)w
. (/\z. ((u) (vz)))w ~

M= (Az. ((()\x)\y y2)))

B ((()‘x (z)))(()\y (yw —

Confluence holds because

M, = ()\z. ((u2) (vz)))w oy () (o)) = M

and

and

M, = (((Am (ww)u) (. (yw))v)) —p <<uw> (Ow. (yu’))v>>

—3 ((uw)(vw)) = M;.

5.3. SOME USEFUL COMBINATORS 255

5.3 Some Useful Combinators

In this section we provide some evidence for the expressive power of the A-calculus.

First we make a remark about the representation of functions of several variables in
the A-calculus. The A-calculus makes the implicit assumption that a function has a single
argument. This is the idea behind application: given a term M viewed as a function and
an argument N, the term (M N) represents the result of applying M to the argument N,
except that the actual evaluation is suspended. Evaluation is performed by [-conversion. To
deal with functions of several arguments we use a method known as Currying (after Haskell
Curry). In this method, a function of n arguments is viewed as a function of one argument
taking a function of n — 1 arguments as argument. Consider the case of two arguments, the
general case being similar. Consider a function f: N x N — N. For any fixed x, we define
the function F,: N — N given by

F.(y)=f(v,y) yeN

Using the A\-notation we can write

and then the function x — F,, which is a function from N to the set of functions [N — N]
(also denoted NV), is denoted by the A-term

F=Xe. F, = x.(\y. f(z,y)).
And indeed,
(FM)N =55 Fyy N —55 f(M,N).

Remark: Currying is a way to realizing the isomorphism between the sets of functions
[Nx N — N] and [N — [N — N]] (or in the standard set-theoretic notation, between NNXN
and (NM)N. Does this remind you of the identity

(m™P = m"P?

It should.
The function space [N — N] is called an exponential. There is a very abstract way to
view all this which is to say that we have an instance of a Cartesian closed category (CCC).

Proposition 5.3. If I, K, K., and S are the combinators defined by

I=)z.z
K=y x
K, = \ry.y

S = Azyz. (x2)(yz),

256 CHAPTER 5. THE LAMBDA-CALCULUS

then for all \-terms M, N, P, we have

IM 5, M
KMN -5, M
K. MN —54 N
SMNP —4 (MP)(NP)
KI =, K,
SKK —54 1.
Proof. The first equation is trivial and the second and third equations are shown as in

Example 5.11, except that the bound variable y in Azy. x needs to be renamed if it occurs
free in M. The fourth equation is shown as follows. We have

SMNP = (Azyz. (zz)(y2)) MNP —5 ((\yz. (zz)(yz))[x :== M])NP
= ()\yz 2)(yz)) NP
—p (A2 (M2)(y2))ly = N) P

P

:(Nz)
)|z :=P] = (MP)(NP).

- (Mz)(Nz)
—5 ((M2)(N2)
The last equation is shown as follows.

SKK = (Azyz. (z2)(yz)) KK
—p ((Ayz (x2)(y z))[K])K
= (()\yz (Kz)(yz)
—p (()\z. (Kz)(y))[y =K]
= Az. (K2)(Kz2)

im Moz =1,

where we used the fact that (Kz)(Kz) lm z, since KM N = (KM)N imM, with M = z
and N = Kz. The fitfth equation is left as an exercise. O

The need for a conditional construct if then else such that if T then P else () yields P and
if F then P else () yields () is indispensable to write nontrivial programs. There is a trick
to encode the boolean values T and F in the A-calculus to mimick the above behavior of
if B then P else), provided that B is a truth value. Since everything in the A-calculus is a
function, the booleans values T and F are encoded as A-terms. At first, this seems quite
odd, but what counts is the behavior of if B then P else (), and it works!

The truth values T, F and the conditional construct if B then P else () can be encoded in
the A-calculus as follows.

5.3. SOME USEFUL COMBINATORS 257

Proposition 5.4. Consider the combinators given by T = K, F = K,, and
if then else = Ab. (A\z. (A\y. (bx)y)) = Abxy. bry.
Then for all A\-terms M, P, Q) we have
if M then P else Q) = (((if then else) M) P)Q i>5 (MP)Q = MPQ.
In particular,

if T then P else) ing P
if F then P else () im Q.

Proof. We have

if M then P else Q = (((if then else)M)P)Q

= (M. (M2 <Ay <bw>y>>)))Q

s (A 2)y))[b:= M])P)Q = ((Az. (\y. (M)y)) P)Q
—s (. (M:zc))[x = P])Q_ (A\y. (MP)y))Q
—rs (MP)y)ly = Q] = (MP)Q.

The other two reductions follow by Proposition 5.3. O

The boolean operations A, V,— can be defined in terms of if then else. For example,

Not b = if bthen F else T
And b1by = if by then (if by then T else F) else F
Or by1by = if by then T else (if by then T else F).

Remark: If B is a term different from T or F, then if B then P else () may not reduce
at all, or reduce to something different from P or (). The problem is that the conditional
statement that we designed only works properly if the input B is of the correct type, namely
a boolean. If we give garbage as input, then we can’t expect a correct result. The A-calculus
being type-free, it is unable to check for the validity of the input. In this sense this is a
defect, but it also accounts for its power.

The ability to construct ordered pairs is also crucial.

Proposition 5.5. For any two A-terms M and N consider the combinator (M, N) and the
combinators m and w given by

(M,N) = Az.zMN = \z.if z then M else N
m = Mz zK
= Mz zK,.

258 CHAPTER 5. THE LAMBDA-CALCULUS

Then
m(M,N) =55 M
mo(M,N) =55 N
(M,N)T -5 M
(M,N)F 54 N.

The proof of the first equation is given in Example 5.18 and the proof of the other three
is left as an exercise.

Example 5.18. We have
(M, N) = (Az.2K) (Az. 2MN)
—5 (2K)[z := A\z. 2MN] = (Az.2MN)K
—5 (zMN)[z :=K] =KMN —5 M,

by Proposition 5.3.

Observe that if we define the combinator
pair = \z. (\y. (A\z. (z2)y)) = Azyz. zxy,
then
pair MN — 5 \z. z2MN = (M, N).

The combinator pair is very closely related to the combinator if thenelse = \zxy. zxy. Both
combinators contain the term zxy, but in pair, the variables are abstracted in the order
xyz, and in if then else, they are abstracted in the order zxy. So

pair PQM — 5 MPQ
(if then else)M PQ ——; M PQ.

In the next section we show how to encode the natural numbers in the A-calculus and
how to compute various arithmetical functions.

5.4 Representing the Natural Numbers

Historically the natural numbers were first represented in the A-calculus by Church in the
1930’s. Later in 1976 Barendregt came up with another representation which is more con-
venient to show that the recursive functions are A-definable. We start with Church’s repre-
sentation.

5.4. REPRESENTING THE NATURAL NUMBERS 259

First, given any two A-terms F' and M, for any natural number n € N, we define F"(M)
inductively as follows.

Observe that

Definition 5.14. (Church Numerals) The Church numerals cg,cy,Co, ... are defined by
c, = Az f"(z).
So ¢y = Mz.x = K., ¢ = AMfx. fx, co = M. f(fx), c3 = Afx. f(f(fx)), etc. The

Church numerals are S-normal forms.
Observe that

coFz=(coF)z=((\fzx.2)F)z im z (1)
coFz = (c,F)z = (Afz. fM(x))F)z =5 F*(2), n>1. (t2)

This shows that c,, iterates n times the function represented by the term F on initial input z.
This is the trick behind the definition of the Church numerals. This suggests the following
definition.

Definition 5.15. The iteration combinator Iter is given by
Iter = A\nfrx.nfx.

Observe that
Iterc, F X = (Iterc, F)X —; (¢, F)X —; F"X, (t3)

that is, the result of iterating F' for n steps starting with the initial term X.

Remark: The combinator Iter is actually equal to the combinator
if then else = A\bxy. bry

of Definition 5.4. Remarkably, if n (or b) is a boolean, then this combinator behaves like a
conditional, but if n (or b) is a Church numeral, then it behaves like an iterator. A closely
related combinator is Fold, defined by

Fold = Az fn.nxf.

260 CHAPTER 5. THE LAMBDA-CALCULUS

The only difference is that the abstracted variables are listed in the order x, f, n, instead of
n, f,x. In fact,
Fold = pair,

as defined just after Example 5.18. This version of an iterator is used when the Church
numerals are defined as Az f. f"(x) instead of A\fz. f*(z), where x and f are permuted in
the A-binder.

Let us show how some basic functions on the natural numbers can be defined.

Example 5.19. We begin with the constant function Z given by Z(n) = 0 for all n € N.
We claim that Z. = Az. cg works. Indeed, we have

Z.c, = (A\r.co)c, —pg Colx := ¢,] = co,
since cg is a closed term.

Example 5.20. The successor function Succ is given by
Succ(n) =n+ 1.

We claim that
Succ. = Anfz. f(nfx)

computes Succ. Indeed we have
Succ. ¢, = (Anfz. f(nfz))c,
—g (Mfz. f(nfz))[n = c,] = Mz f(c, fr)

—p M. f(f"(x))
= Mz [(2) = cppr.

Example 5.21. The function IsZero which tests whether a natural number is equal to 0 is
defined by the combinator
IsZero. = \z. (K F)T.

We have
IsZero, ¢, = (Az. 2(KF)T)c, —»45 (\z.2(KF)T)[z := c,] = ¢,(KF)T —4 (KF)"T,
and the rest of the proof is left as an exercise.

Addition and multiplication are a little more tricky to define.

Proposition 5.6. (J.B. Rosser) Define Add and Mult as the combinators given by

Add = dmnfz.mf(nfx)

Mult = Amnz.m(nz).

5.4. REPRESENTING THE NATURAL NUMBERS

261
We have
Addc,,c, i)g Cin
Mult c,,,c,, i)g Cinsn
for all m,n € N.
Proof. We have
Add c,,c, = (Amnfx.mf(nfz))c,c,
55 (A2 Cnf(cafr))
—op M [(=)
= Afz. f"(2) = Coyn.
For multiplication we need to prove by induction on m that
(Cn)™(y) =5 ™" (y). (%)

If m = 0, then both sides are equal to y.
For the induction step, we have
(Cnx)m+l(y) = cz((cnz)™(y))
5 cnx(™ (y)) by induction
n+m*n(y) m(m+1)>m(y)

=T

We now have

Mult c,,c,, = (Amnz.m(nz))cp,c,
s Az (C(cnz))
= Az (Mfy. f"(y))(€n2))
g Azy. (€a2)" (y),

and since we proved in (x) that

(cn2)™(y) —5 2" (y),
we get

Mult c¢,,c,, l)g Azy. (cp2)™(y) l)g Azy. 2" (Y) = Cosen,
which completes the proof.

262 CHAPTER 5. THE LAMBDA-CALCULUS

As an exercise the reader should prove that addition and multiplication can also be
defined in terms of Iter (see Definition 5.15) by

Add = dmn. Iter m Succ.n
Mult = Amn. Iter m (Add n) co.

The above expressions are close matches to the primitive recursive definitions of addition
and multiplication. To check that they work, prove that

Addc,,c, im (Succe)™(cp) lm Crin

and
Multc,, c, i)g (Addc,)™(co) i>5 Cren-

Example 5.22. Rosser defined the exponential function
exp(m,n) =m", m>0,n>1,

using the combinator
exp = A\zy - (yx).
Observe that
eXP Cpy € = (AzY. (42)) € € ——=4 CoCm = (Af2. f(2))Cm
s hx. (C)(2).

To finish the proof there is a tricky point, which is that we need to use conversion instead
of reduction. We prove that for n > 1,

(€)™ (2) 5 Coun ().
This is done by induction on n, starting from n = 1. For the induction step
(cn)" (@) = cnl(en)" () = (Afy- f" () ((em)"(2))

55 M. ()™ (2)™ ()
=5 Ay (Cn () (y).

(
)

By (x), we have
(ep2)™(y) —5 2™ (y),

so with p = m", we get

AY. (Con (2))™(y) =5 Ay 2™ ™ (y) = Ay 2™ (y) 5 Mfy. f™ ()2 = cpmi (2),

so finally
(C)"TH (@) <= Cppnt1 (7).

5.4. REPRESENTING THE NATURAL NUMBERS 263

Putting everything together, we have
eXP Cn € ——=5 AL (Cop)" () =55 A2 Con ().

This is not exactly what we want! The term on the right-hand should be c,,». To finish
the proof, we use the following property which is easily shown. If M is a A-term of the form

M = \y. M’ and z ¢ FV (M), then Az. (Mz) —=4 M. In summary, we have
€XP Cp, Cpp 3 Cpn.

Since the term on the right-hand side is a S-normal form, by the Church-Rosser theorem,
actually
expc,Ccy, i>/3 Cpyn.

Example 5.23. A function that plays an important technical role is the predecessor function
Pred defined such that

Pred(0) =0
Pred(n + 1) = n.

It turns out that it is quite tricky to define this function in terms of the Church numerals.
Church and his students struggled for a while until Kleene found a solution in his famous
1936 paper. The story goes that Kleene found his solution when he was sittting in the
dentist’s chair! The trick is to make use of pairs. Kleene’s solution is

Predk = An. me(Iter n (Az. (Succe(m12), m12)) (co, Co)).

In the above expression, Iter is applied to the three arguments n, (Az. (Succe(m 2),m2)),
and (cg, cp). Thus we have

Predg ¢, —5 m((Az. (Suce(m 2), m2))"(co, Co)).
The reason this works is that we see immediately that
(Az. (Succe(m2), m2))°(co, €o) ——5 (Co, Co),
and we can prove by induction that
(Az. (Sucee(m 2), m2))" 1 (co, €o) —=5 (Cny1, Cn).

Then we have
Predxk cy i)g ma((co, €o)) = o

and
Jr
Predk ¢, 11 —3 m2({Cnt1,Cn)) = Cp.

264 CHAPTER 5. THE LAMBDA-CALCULUS

For the base case n = 0 we get
(Az. (Succe(m2), m12))(co, co) —>5 (Succe(m(co, o)), m1(Co, Co))
54 (Succee(cy), o)
i>,3 (c1, o).
For the induction step, we have
(Az. (Succe(m12), m12))" 2 (co, o)
= (Az. (Succe(m2), m12)) (Az2. (Sucee(m 2), m2)) " {co, €o))
55 (A2 (Succe(m12), m12)) (Cog1, €n)
LB (Succe(Cni1), 1) iw (Cnt2, Cnt1)-
Here is another tricky solution due to J. Velmans (according to H. Barendregt):
Pred. = Azyz. 2(A\pq. q(py))(Kz)L
We leave it to the reader to verify that it works.

The ability to construct pairs together with the Iter combinator allows the definition of
a large class of functions, because Iter is “type-free” in its second and third arguments so
it really allows higher-order primitive recursion.

Example 5.24. The factorial function defined such that

0l=1
(n+1)!'=(n+ 1)n!

can be defined. First we define h by
h = Amn. Mult Succ.nm

and then
fact = \n. m (Iter n (Az. (h(m 2) (m22), Succe(m22))) {c1, ¢o)).

The above expression, Iter is applied to the arguments n, (Az. (h(m z) (m22), Succe(m22))),
and (cq,cg). We have

hc, c, Lﬁ Mult Succ, c,, ¢,y i>5 Multc,, 1 ¢, im Clnt1)!,

and
fact c, i>5 m1((Az. (h(m2) (m22), Succe(ma2)))" (c1, €o)).

This works because

(Az. (h(m12) (ma2), Sucee(m22)))° (c1, co) i>5 (c1,co) = {cor, €),

5.4. REPRESENTING THE NATURAL NUMBERS 265

and by induction,
(Az. (h(m12) (ma2), Sucee(m22))) "™ {c1, co) i>5<c(n+1)!, Crnit)-
Then we have
fact c, —5 m((Az. (h(m12) (m22), Succe(m2)))" (c1, ¢o))
555 mi({Cat, €a)) — 5 Ca.
For the induction step, we have
(Az. (h(m12) (m22), Succe(m22)))" 2 (e, co)

= (Az. (h(m2) (m22), Succe(m22))) <)\z. (h(m 2) (m22), Succe(ms2))) " (c1, c0>>

s (A2 (W(mi2) (m22), Succe(m2)))(Cnt1)t, Cnt1)
55 (M i1y Cns1, SUCC(Cni1)) =5 (C(ns2y, Cra)-

Barendregt came up with another way of representing the natural numbers that makes
things easier.

Definition 5.16. (Barendregt Numerals) The Barendregt numerals b, are defined as follows:
bo=1=)z.z
bn+1 = <F,bn>

The Barendregt numerals are S-normal forms. Barendregt uses the notation "n' instead
of b, but this notation is also used for the Church numerals by other authors so we prefer
using b,, (which is consistent with the use of c,, for the Church numerals). The Barendregt
numerals are tuples, which makes operating on them simpler than the Church numerals
which encode n as the composition f™.

Proposition 5.7. The functions Succ, Pred and IsZero are defined in terms of the Baren-
dregt numerals by the combinators

Succy, = \z. (F, z)
Pred;, = \z. («F)
IsZeroy, = \z. (zT),

and we have
Succy, b, i>5 b,
Predp, by —4 by
Predp b1 —5 b,
IsZeroy by im T

IsZeroy, b, 1 im F.

266 CHAPTER 5. THE LAMBDA-CALCULUS

The proof is left as an exercise.

Since there is an obvious bijection between the Church combinators and the Barendregt
combinators there should be combinators effecting the translations. Indeed we have the
following result.

Proposition 5.8. The combinator T given by
T = Az. (xSuccy)bg

has the property that
Tc, —=3b, forallneN.

Proof. We proceed by induction on n. For the base case
T ¢y = (Az. (zSuccy)bg)co
im (coSuccy)by by (1)
s by
For the induction step,
T ¢, = (Az. (zSuccp)by)c,
i)/g (c,Succy)by by (t2)
L)g Succy"(by).
Thus we need to prove that
Succy," (by) im b,. (%)

For the base case n = 0, the left-hand side reduces to by.
For the induction step, we have

Succy," ™ (bg) = Succey, (Suce,™ (b))
i>/g Succy(by,) by induction
5 b1,
which concludes the proof. O]

There is also a combinator defining the inverse map but it is defined recursively and we
don’t know how to express recursive definitions in the A-calculus. This is achieved by using
fixed-point combinators.

Remark: With some work, it is possible to show that lists and trees can be represented in
the A-calculus.

5.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS267

5.5 Fixed-Point Combinators and Recursively Defined
Functions

Fixed-point combinators are the key to the definability of recursive functions in the A-
calculus. We begin with the Y-combinator due to Curry.

Proposition 5.9. (Curry Y -combinator) If we define the combinator Y as
Y = Af. (A\z. f(zzx))(Az. f(zx)),

then for any A\-term F we have
F(YF) «+ =3 YF.

We say that YF' is a fized-point of F.
Proof. Write W = Az. F'(zx). We have

FYF) = F((/\ . O f(zz)) (. f(xx)))F) 5 F((\r. F(azz)) Az, F(zz))) = F(WW),

and

YF = (M. (Az. f(zz))(Az. f(22)))F —5 (\z. F(zz))(Az. F(zz)) = (\z. F(zz))W

Therefore F(YF) <3 YF, as claimed. O

Observe that neither F(YF) ==Y F nor YF —;F(YF). This is a slight disadvantage
of the Curry Y-combinator. Turing came up with another fixed-point combinator that does
not have this problem.

Proposition 5.10. (Turing ©-combinator) If we define the combinator © as

O = (A\zy. y(zzy))(Azy. y(zzy)),

then for any A-term F we have
OF 5, F(OF).
We say that OF is a fized-point of F.

Proof. 1f we write A = (Azy.y(zzy)), then @ = AA. We have
OF = (AA)F = (A\zy. y(zxy))A)F
— 5 (Ay-y(AAy))F
- F(eF),

as claimed. n

268 CHAPTER 5. THE LAMBDA-CALCULUS

Both Y and © have no S-normal form.

Now we show how to use the fixed-point combinators to represent recursively-defined
functions in the A-calculus.

Example 5.25. There is a combinator G such that
GX 55 X(XG) forall X,

Informally, the idea is to consider the “functional” F' = Agz. z(zg) and to find a fixed-point
of this functional. Pick
G = ONgz.z(xg) = OF.

Since by Proposition 5.10 we have G = OF im F(®F) = FG, and we also have
FG = (A\gz.2(29))G —p Av. 2(2G),
so G —55 FG —55 4 Az, 2(2G), which implies
GX 55 Oz 2(2G) X —5 X(XQ).
Example 5.26. In general, if we want to define a function G recursively such that
GX 55 M(X,G)

where M (X, G) is A-term containing recursive calls to G applied to various functions of X,
we let F' = Agx. M(x, g) and
G=0F.

Then we have
G i)/g FG = (Agz. M(z,9))G — 5 \x. M(z,g)[g := G] = A\x. M(x, G),

SO

GX 55 (M. M(x,G)X —s5 M(z,()[z = X] = M(X,Q),
as desired.

Example 5.27. Here is how the factorial function can be defined (using the Church numer-
als). Let
F = Agn.if IsZero, n then c; else Mult n g(Pred. n).

Then the term G = OF defines the factorial function.
Since G is a fixed-point of F' we have G i)/g FG. If n =0, we have
G ¢y im FGcg
im if IsZero, c(then c; else Mult ¢y G(Pred. cy)
im if T then c; else Mult ¢ (G ¢y)

Jr
—>ﬁ Cp.

5.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS269

So, G ¢y i>5 ¢y, which corresponds to 0! = 1.

Otherwise, if n > 1, we have

Gc, im (FG)c,
im if IsZero,. c,, then c; else Mult c,, G(Pred. c,)
im if F then ¢, else Multc,, (Gc,_1)
im Multc, (Gc,—1) im Multc, (FG)c, im e
s Mult ¢, (Mult ¢, (G cp_s)) —=4 -
— 5 Mult ¢, (Mult ¢,,_; (Mult ¢,_(- - - (Mult ¢, (Mult ¢; (G c))) - - -)))
im Mult ¢, (Multc,,_; (Multc,,_s(: - - (Mult ¢y (Mult cicy)))--+))) im Cpl-

As usual with recursive definitions there is no guarantee that the function that we obtain
terminates for all input.

Example 5.28. For example, if we consider
F = \gn.if IsZero, n then ¢, else Mult n g(Succ. n),
then for n > 1, the reduction behavior is
Gc, im Multc, Gcpiq,
which does not terminate.

We leave it as an exercise to show that the inverse of the function T" mapping the Church
numerals to the Barendregt numerals is given by the combinator

T! = ©(\fx.if IsZeroy, x then c; else Succ,(f(Predy, 7)).

It is remarkable that the A-calculus allows the implementation of arbitrary recursion with-
out a stack, just using \-terms as the data-structure and g-reduction. This does not mean
that this evaluation mechanism is efficient but this is another story (as well as evaluation
strategies, which have to do with parameter-passing strategies, call-by-name, call-by-value).

Now we have all the ingredients to show that all the total computable functions are
definable in the A-calculus. It is also true that all the partial computable functions are
definable in the A-calculus, but this is significantly harder to prove. The difficulty is that if F’
is the A-term computing f(n4,...,n,,) when it is defined, then if f(ny,...,n,,) is undefined,
we need to prove that F'c,, ... c,, does not have a S-normal form. This involves a trick
and the use of a deep theorem about quasi-leftmost reductions.

270 CHAPTER 5. THE LAMBDA-CALCULUS

5.6 A-Definability of the Total Computable Functions

Let us begin by reviewing the definition of the computable functions (recursive functions)
(a la Herbrand—Goédel-Kleene). For our purposes it suffices to consider functions (partial or
total) f: N® — N as opposed to the more general case of functions f: (X*)" — X* defined
on strings.

Definition 5.17. The base functions are the functions Z, S, P" defined as follows.

(1) The constant zero function Z such that

Z(n) =0, for all n € N.

(2) The successor function S such that

S(n)=n+1, for all n € N.

(3) For every n > 1 and every i with 1 < ¢ < n, the projection function P! such that

n
Pz, ..., x,) = x;, Zi,..., o, €N,

Next comes (extended) composition.

Definition 5.18. Given any partial or total function g: N — N (m > 1) and any m
partial or total functions h;: N* — N (n > 1), the composition of g and hy, ..., h,,, denoted
go (hi,...,hy), is the partial or total function function f: N* — N given by

flz, . xn) =glhi(xy, . 20), oo h (2,), T1,...,T, € N.

If g or any of the h; are partial functions, then f(xy,...,z,) is defined if and only if all
hi(z1,...,z,) are defined and g(hi(x1,...,2n), ..., hy(x1, ..., 2,)) is defined.

@ Note that even if g “ignores” one of its arguments, say the ith one,
glhi(x1, ..., 20), .oy A (21, ..., 2,)) is undefined if h;(xq, ..., z,) is undefined.

Definition 5.19. Given any partial or total functions g: N® — N and h: N™*2 — N
(m > 1), the partial or total function function f: N™™! — N is defined by primitive recursion
from g and h if f is given by

FO, 21, ... zn) = g(x1, ..., T0)

fn+ 1z, ,xy) =h(f(n, 21, ...), Ny T1, oo Ty

for all n,x1,..., 2, € N. If m =0, then ¢ is some fixed natural number and we have

f0)=g
f(n+1) =h(f(n),n).

5.6. A\-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 271

It can be shown that if g and h are total functions, then so is f.
Note that the second clause of the definition of primitive recursion is

fn+ 1z,) =h(f(n, 21, ...,), Ny T1, ooy Ty (%1)
but in an earlier definition it was
fn+1z,...,20) =hn, f(n,z1, ..., Zm),T1, ..., Tm), (%2)

with the first two arguments of A permuted. Since

ho (P§”+2,P{”+2,P§”+2, .. .,ngﬁ)(n,f(n,xl, e Tm)y Ty ey)
=h(f(n,z1,...,Tm), Ny T1, ..., Tpy)
and
ho(P?H,P?H,Pg”“,...,ng;)(f(n,xl,...,xm),n,xl,...,xm)
=h(n, f(n,x1,...,Tm),T1,. .., Tm),

the two definitions are equivalent. In this section we chose version (1) because it matches
the treatment in Barendregt [4] and will make it easier for the reader to follow Barendregt
[4] if they wish.

The last operation is minimization (sometimes called minimalization).

Definition 5.20. Given any partial or total function g: N™** — N (m > 0), the partial or
total function function f: N — N is defined as follow;: for all x,...,z,, € N,

f(z1,...,2,) = the least n € N such that g(n,x1,...,2,) =0,

and undefined if there is no n such that g(n,z,...,x,) = 0. We say that f is defined by
minimaization from g, and we write

flzy, .. xm) = pxlg(x,xq, ..., xy) = 0].
For short, we write f = ug.
Even if g is a total function, f may be undefined for some (or all) of its inputs.

Definition 5.21. (Herbrand—-Gdédel-Kleene) The set of partial computable (or partial recur-
sive) functions is the smallest set of partial functions (defined on N for some n > 1) which
contains the base functions and is closed under

(1) Composition.

(2) Primitive recursion.

272 CHAPTER 5. THE LAMBDA-CALCULUS

(3) Minimization.

The set of computable (or recursive) functions is the subset of partial computable functions
that are total functions (that is, defined for all input).

We proved earlier the Kleene normal form, which says that every partial computable
function f: N — N is computable as

f=gopuh,

for some primitive recursive functions g: N — N and h: N™*! — N. The significance of this
result is that f is built up from total functions using composition and primitive recursion,
and only a single minimization is needed at the end.

Before stating our main theorem, we need to define what it means for a (numerical)
function to be definable in the A-calculus. This requires some care to handle partial functions.

Since there are combinators for translating Church numerals to Barendregt numerals and
vice-versa, it does not matter which numerals we pick. We pick the Church numerals because
primitive recursion is definable without using a fixed-point combinator.

Definition 5.22. A function (partial or total) f: N — N is A-definable if for all my,.. .,
m, € N, there is a combinator (a closed A-term) F' with the following properties.

(1) The value f(my,...,m,) is defined if and only if Fc,,, - -- ¢, reduces to a S-normal
form (necessarily unique by the Church—Rosser theorem).

(2) If f(mq,...,m,) is defined, then

*
Fep,y -+ Cm, <6 Cfimy,..mn)-

In view of the Church-Rosser theorem (Theorem 5.2) and the fact that cyim, .. m,) is a
f-normal form, we can replace

*
Fep, -+ Cm, <8 Crimy,...mn)

by

*
Femy Cny —8 Cfima,..mn)-

n

Note that the termination behavior of f on inputs my,...,m, has to match the reduction
behavior of F'c,,, - - ¢,. An equivalent way to state (1) is to assert that if f(mq,...,m,)
is defined, then F'c,,, - - - ¢, reduces to a S-normal form, and if f(m,...,m,) is undefined,
then no reduction sequence from Fc,,, - - -, reaches a [-normal form. Condition (2)
ensures that if f(my,...,m,) is defined, then the correct value Cy(m,, m,) is computed
by some reduction sequence from F'c,,, - - - c;,,. If we only care about total functions, then
(1) requires that F'c,,, - - - ¢, reduces to a S-normal for all mq,...,m,.

It is important to note that if f(my,...,m,) is defined, then there must be some reduction
from Fcy, --- ¢y, to a f-normal form equal to Cf(m,....n,,), but this does not mean that all
reductions from F'c,,, - - - ¢, are finite. Some reductions from F'c,,, - - - c,,, could be infinite.

n

5.6. A\-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 273

This leads to the question: are there reduction strategies that are guaranteed to terminate
with a normal form if it exists?

There are indeed such strategies, for example normal reductions as defined in Definition
5.11. The study of reduction strategies is a beautiful but technically difficult subject. Some
key contributors besides Curry are Barendregt, Klop and Levy.

A stronger and more elegant version of A-definabilty that better captures when a function
is undefined for some input is considered in Section 5.8.

We have the following remarkable theorems.

Theorem 5.11. If a total function f: N" — N is A-definable, then it is (total) computable.
If a partial function f: N® — N is A-definable, then it is partial computable.

Although Theorem 5.11 is intuitively obvious since computation by S-reduction sequences
are “clearly” computable, a detailed proof is long and very tedious. One has to define
primitive recursive functions to mimick [S-conversion, etc. Most books sweep this issue
under the rug. Barendregt observes that the “A-calculus is recursively axiomatized,” which
implies that the graph of the function being defined is recursively enumerable, but no details
are provided; see Barendregt [4] (Chapter 6, Theorem 6.3.13). Kleene (1936) provides a
detailed and very tedious proof. This is an amazing paper, but very hard to read. If the
reader is not content she/he should work out the details over many long lonely evenings.

Theorem 5.12. (Kleene, 1936) If a total function f: N" — N is computable, then it is
A-definable.

Proof. There are several steps.
Step 1. The base functions are A\-definable.
We already showed that Z. computes Z and that Succ, computes S. Observe that U7}
given by
U=y 2.2

computes P.

Step 2. Closure under composition.

If g is A-defined by the combinator G and hy, ..., h,, are A-defined by the combinators
Hy,...,H,, then go (hy,..., hy) is A-defined by

F=Aty 2. GUH 1 20) . (Hpy - - 20).

Since the functions are total, there is no problem.

Step 3. Closure under primitive recursion.

We could use a fixed-point combinator but the combinator Iter and pairing do the job.
If f is defined by primitive recursion from ¢ and h, and if G A-defines g and H A-defines h,
then f is A-defined by

F=Xnz,---x,,.m (Iter nAz. (Hmzmzxy - Ty, Succe(mz)) (Gry -+ - Ty, co)).

274 CHAPTER 5. THE LAMBDA-CALCULUS

We have

Fcuocpy -..Cp im T ((Az. (H mzmazCny ... Cp,, Succe(mez))) (Gey, .. €y, €0)).

m

The reason F' works is that we can prove by induction that
Jr
()\z. (HmzmozCpy*Cp,,, Succc(7rgz)>)n<Gcn1 " Cpps €0) —8 {Cf(nni,m)s Cn)-

For the base case n = 0,

()\z. (HmzmzCp, -+ Cy,,, SUCCC(’]TQZ)>)O<GCn1 “+Cp,sCo)
+
—>B <Gcn1 Cppys C0> = <Cg(n1,...,nm)a c0> = <cf(0,n1,‘..,nm)7 CO)‘

For the induction step,

(Az. (Hmy 2Tz Coy - - s SUCCe(122))) " (G, - - Gy o)

= (Az. (H M2 T2 Cpy + + * Cpyp, SUCC,(T22)))

Az.(HmzmazcCpy -+ Cp, s Succc(7r2z)))n<Gcn1 e Cpy s c0>>

im ()\z. (HmzmazCpy v Cpps Succc(mz))) (Cfmn1,..nm)> Cn)

+
>,B <Hcf(n,n1,..,,nm) CnCny " Cnpys SUCCC Cn>
+ JR—
H,B <Ch(f(n,n1,...,nm),n,nl,“.,nm)7 Cn+1> - <Cf(n+1,n1,...,nm)7 Cn+1>-

Since the functions are total, there is no problem.
We can also show that primitive recursion can be achieved using a fixed-point combinator.
Define the combinators J and F' by

J=ANfzxy---x,,.if IsZero. x then Gz -- - x,,
else H(f(Pred. x) zy - xy,)(Predc z) x1 - - - 2y,
and
F=0J
We proceed by induction on n to prove that F' A-defines f.

. . +
We leave the base case n = 0 as an exercise. For n > 1, since ' —3 JF', we have

Jr
Fcycn ... cp, — 5 (JEF)cycpy ... €y

im if IsZero, c,, then Gc,,, ... c,,
else H(F(Pred. c,) ¢y, ... ¢,)(Predec,)cy, ... Cp,

i>5 if T thenGc,, ... cp,,
else H(F(Pred. c,) ¢y, ... cp,)(Predec,)cy, ... cp

m

Jr
—s H(Fcy_1Cpy ... Cp,) Cu1Cpy .. Cy

m*

5.6. A\-DEFINABILITY OF THE TOTAL COMPUTABLE FUNCTIONS 275

By the induction hypothesis,
+
FCn,1 Cny -+ Cpy, —>B Crin—1,n1,....nm)>

so by definition of H,

+
H(Fcy1€Cyy - Cpp)CuoiCyy - .. Cyy, 78 Ch(f(n—1,m1,0im),n—1,11 .0t
= cf(n7n17"'7nm)‘

Then F' A-defines f, and since the functions are total, there is no problem. This method
must be used if we use the Barendregt numerals.

Step 4. Closure under minimization.

Suppose f is total and defined by minimization from ¢ and that ¢ is A-defined by G.

Define the combinators J and H by

J = Afxxy - xp,.if IsZero. Gx 1 - - - T, then z else f(Succe z) xy -+ -z,

and
H=0.J

Since H LB JH, we have

+
Hce,cp ... cp, —p(JH)ChCpy ... Cp

m

+ .
—p if IsZero. G ¢, ¢y, ... C,,, thenc, else H(Succcc,)cy, ... ¢,

m

m *

=+ .
— g if IsZero. G c, c,, ... c,, thenc,else Hc,1¢yy ... Cy

Since the combinator G computes g, we deduce that

i Cn, if g(n,ny,...,nm) =0
Hcycp, ...Cp,, —5]
Hcpi1€yy -0 Cy,,, otherwise.

Let F' be the combinator defined by

F=MXey...x,,. Hcoxqy ... 2y,
so that
Fcy ...cy, im Hcpceyy ... Cp,, -
Since we assumed that f is total, there is a least n such that g(n,ny,...,n,) = 0, and

so the definition of H ¢, ¢y, ... ¢y, given in (H) shows by induction on p < n that since
g(q,n1,....nm) # 0 for g < p,

+
Hcycy, ...c,, —pHc,c,, ...c,, ,
and thus

Hcocy, .. .cp, Lﬁ c,, if n >0 is the smallest integer such that g(n,ny,...,n,) =0.

Since Fcp, ...Cp,, im Hcycy, ... c,, , we conclude that F' A-defines f. We leave the details
as an exercise.

This finishes the proof that every total computable function is A-definable. n

276 CHAPTER 5. THE LAMBDA-CALCULUS

5.7 A-Definability of the Partial Computable Functions

To prove Theorem 5.12 for the partial computable functions we appeal to the Kleene normal
form: every partial computable function f: N™ — N is computable as

J =1voug,

for some primitive recursive functions ¥: N — N and g: N™*! — N. Thus we are back to
the previous case where we are trying to find the least n such that g(n,ny,...,n,) = 0,
if any. Our previous proof yields combinators H and F and it appears that F' defines
o(ny, ..., ny) = px[g(z,ny,...,ny,) = 0. The minimization of g may fail, but since ¢ is
a total function, one might think that it should be clear that F' computes ¢. However
this is not obvious because we need to prove that Hcgc,, ...c,, has no normal form if
g(n,ny,...,ny) # 0 for all n € N. But H is defined in terms of a fixed-point combinator, so
in fact the proof is tricky. We sketch how to proceed, adapting Hindley and Seldin [31] who
give a detailed proof (see Chapter 4, Theorems 4.15 and 4.18).

The adaptation has to do with the fact that Hindley and Seldin minimize g with respect
to the last argument instead of the first.

Theorem 5.13. If a partial function f: N* — N is partial computable, then it is A-definable.

Proof. The first step is to define H without using the fixed-point combinator ®. First we
define a variant D of the pairing function by

D = \zyz. 2(Ky)x.

Since
DXYc, —4c,(KY)X -4 (KY)"X,

we can easily check that

X, if Z=cy

e, (D)
Y, ifZ=c,, n>1.

DXYZ = {

Assume that the combinator ¥ defines ¢ and G defines g. Next we define R and P by
R =DU}"! ()\uxyl o Ym-u (G (Suceer) Yy - .. Ym) u (Succer) yy - . . ym>
P=Xey; ... Ym- R(Gzy; .. .ym)R2y1 ... Y.

We have

+
Pc,c,, ...c,, —sR(Gc,cy, ...,)Repcyy ..oy

=D Uyt ()\uxyl o Ym-u (G (Succer) vy - . . Ym) u (Succen) y; . . .ym>

((CX N Y D) 2 7 Y R o

m *

5.7. A\-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS

Since the above term is of the form DXY ZW with
X =ugtt

Y = ()\uxyl o Ym-u (G (Suceer) Yy ... Ym) u (Succez) yy - . . ym>

Z =(Gcpcpy-.-Cp,)
W =Rc,c,, ...Cp,,,

we have two cases depending on the result of reducing G, c,, ...c,
IfGeycp,-..Cp,, L)g co, by (D),

m *

Pcncn1 - Cnyp, LB DXYCOW Lﬁ XW:U?+1RCnCn1 ...Cp,, i}ﬁ Cyp,.-

If GepyCpy ... Cny, —5 €y with p > 1, by (D),

Pc,Cp, ...Cn, —3DXYc, W

i)g YW = ()\uasyl o Ym-u (G (Succe) Yy - . - Ym) u (Succez) y - .

Rc,c,, ...cp,

l)/g R (G (Succcc,)cy, -..c,,,) R(Succcc,)cy, ... c,,

@5 P (Succcc,)cy, -..c,

m
m’

In summary, we proved that

(1) f Gepepy .. Cpy, i)g Co, then

+
Pc,c,, ...c,, —scy.

(2) If Gepcp, ... Cny —5¢, (p> 1), then

Pc,c,, ...c,, +—3P(Succ.c,)c,, ...c,

m *

In fact, we proved that

+
Pc,c,, ...c,, —3sR(Gc,c,, ...c,,)Rc,cC,, ...Cp

m m

+
—sR(Gcpy1Cpy---Cny) Repgicpy ooy

m*

Now if we define F' by

F=Xe;...2. W(Pcoxy...2),

277

)

we see immediately that F' computes f if f(ni,...,n,,) is defined. Furthermore, it can be
shown that F' has a [-normal form, which is not the case of the previous F obtained with

the Turing fixed-point combinator.

278 CHAPTER 5. THE LAMBDA-CALCULUS
But if f(ni,...,n,) is undefined, we have to make sure that I has no S-normal form.
A trick to achieve this is to define F' by
F=M\r,...7,. (Pcoay ... xp) I(Fay ...).

If f(ny,...,ny) is defined, then there is a least n > 0 such that g(n,ny,...,n,) =0, so
Case (1) above arises and we have

Fcy, ...Cn, s (Pcocn, ... Cp,) I(F ey, ... Cp,) im ¢, I(Fe, ...cy,)
i>,3 I"(Fcp, ...cpn,) im Fc, ...cp, i>5 Cflnr,mim)>
SO ﬁcm ... Cy,, computes f(ni,...,ny). The reduction
¢, I(Fey ...cp,) %5 I"(Fcp, ...cu,)
follows from (f3) just after Definition 5.14 and the reduction

I"(Fcy ... cp,) im Fc, ... c,

m

holds by Proposition 5.3(1).

If f(ni,...,ny) is undefined, since g(n,ny,...,ny,) # 0 for all n > 0, Ge, ¢y, ... Cy
never reduces to cg, so we have the infinite reduction sequence

m

Fc,, ...c — 5 (Pcocy, ... ¢y)I(F ey, ... cp,)
im (R(Gcoep, ...cpn,,) Repcy, ... ey,) I(Fey, ... cp,)
i)g (R(Geicy, ...cp,,)Reicyy ooy,) I(Fey, ... cpy)
im (R(Gcecgcy, ...cp,,) Reocy, ...y,) I(F ey, ... cpy) in; cee

m

This turns out to be what is known as an infinite quasi-leftmost reduction, and this
implies that F'c,, ... c,,, has no S-normal form.

The reader should review Definition 5.11 in order to understand the next definition.
Definition 5.23. Given a A-term M, a reduction sequence
My =5 ko My —=y myg My —55 -+ =5 My g — g My —5g -
is a quasi-leftmost reduction if the following condition holds:
for all « > 0, if M, i)g M; and M; is not a S-normal form, then there is
some j > ¢ such that M; i>uj7 Rr;,5 Mjy1 1s a leftmost maximal reduction. (qlr)

If the reduction is finite and ends with M, then M, is a S-normal form, since otherwise
Condition (glr) would require that M, [-reduces in order for a leftmost maximal reduction
to occur later.

5.7. A\-DEFINABILITY OF THE PARTIAL COMPUTABLE FUNCTIONS 279

Observe that an infinite reduction is a quasi-leftmost reduction iff it contains infinitely
many letfmost maximal steps M; i>uj, Ry Miji1.

Example 5.29. Let
L= (A\z. (zx)y)(A\z. (xx)y)

be the term from Example 5.15. Recall that
L i>5Ly i>5Lyy i>5
and that L has no S-normal form. Consider the term
M = (()\u (Av.w))L)L.
The redex L occurs at 12 and 2 and neither occurrence is maximal; see Figure 5.7.

Au L
\Y

Figure 5.7: The tree associated with the term M.

The redex (Au. (Av.w))L is leftmost maximal. The term M has the S-normal form w,
but there are infinite reductions from M obtained by reducing either occurrence of L. There
are also finite quasi-leftmost reductions such as the following.

M = ((/\u (Av.w))L)L s <()\u. (M. w))(Ly”))L s (. w)L
i>5 (Av.w)(Ly?) i)g w,

where the leftmost maximal redexes are shown in red.

It is easily verified that the reduction above from F Cpn, --- Cpn,, is a quasi-leftmost reduc-
tion.

The importance of quasi-leftmost reductions is captured by the following theorem.

Theorem 5.14. Let M be a A-term. If M has a S-normal form M*, then every quasi-
leftmost reduction is finite and terminates with M*.

280 CHAPTER 5. THE LAMBDA-CALCULUS

As a corollary, since a finite quasi-leftmost reduction terminates with a S-normal form,
a \-term M has no S-normal form iff some quasi-leftmost reduction is infinite.

See Hindley and Seldin [31] (Chapters 3, Theorem 3.19, and Corollary 3.19.1). The fact
that the existence of an infinite quasi-leftmost reduction implies that there is no S-normal
is a consequence of a deep theorem whose proof is hard, the standardization theorem. Full
details can be found in Barendregt [4] (Chapter 11, Theorem 11.4.7, Chapter 13, Theorem
13.2.2 and Theorem 13.2.6). O

Combining Theorem 5.11, Theorem 5.12 and Theorem 5.13, we have established the
remarkable result that the set of A-definable total functions is exactly the set of (total)
computable functions, and similarly for partial functions. So the A-calculus has universal
computing power.

The proof actually shows that every total or partial computable function is computed by
a A-term that has a S-normal form.

Remark: With some work, it is possible to show that lists and trees can be represented in
the A-calculus. Since a Turing machine tape can be viewed as a list, it should be possible
(but very tedious) to simulate a Turing machine in the A-calculus. This simulation should

be somewhat analogous to the proof that a Turing machine computes a computable function
(defined & la Herbrand-Godel-Kleene).

Since the A-calculus has the same power as Turing machines we should expect some
undecidabity results analogous to the undecidability of the halting problem or Rice’s theorem
(see Theorem 8.6). We state the following analog of Rice’s theorem without proof. It is a
corollary of a theorem known as the Scott—Curry theorem.

Theorem 5.15. (D. Scott) Let A be any nonempty set of A-terms not equal to the set of all
A-terms. If A is closed under -reduction, then it is not computable (not recursive).

Theorem 5.15 is proven in Barendregt [4] (Chapter 6, Theorem 6.6.2) and Barendregt
[5].
As a corollary of Theorem 5.15 it is undecidable whether a A-term has a S-normal form,
a result originally proved by Church. This is an analog of the undecidability of the halting
problem, but it seems more spectacular because the syntax of A-terms is really very simple.
The problem is that g-reduction is very powerful and elusive.

In the next section we revisit the problem of defining the partial computable functions.

5.8 Head Normal-Forms and the Partial Computable
Functions

One defect of the proof of Theorem 5.12 in the case where a computable function is partial
is the use of the Kleene normal form. The difficulty has to do with composition. Given

5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 281

a partial computable function g A-defined by a closed term G and a partial computable
function h A-defined by a closed term H (for simplicity we assume that both g and h have
a single argument), it would be nice if the composition h o g was represented by Az. H(Gx).
This is true if both g and h are total, but false if either g or h is partial as shown by the
following example from Barendregt [4] (Chapter 2, §2).

Recall from Definition 5.22 that if a partial function f: N — N is represented by a A-term
F | if f(n) is undefined, then no reduction from F ¢, ends in a S-normal form.

Example 5.30. If g is the function undefined everywhere and h is the constant func-
tion 0, then ¢ is A-defined by G = KQ and h is A-defined by H = K¢y, with Q =
(Az. (zz))(Az. (zx)). We have

M. H(Gz) = M. K co(KQz) —5 Az KeoQ —=5 Az ¢,

but h o g = ¢ is the function undefined everywhere, and Ax. ¢y represents the total function
h. Consequenly, Az. H(Gz) does not A-define the function undefined everywhere g = h o g,

since there is a reduction (Az. H(Gx))c, i)g (Ax.co)c, im Co.

It turns out that the A-definability of the partial computable functions can be obtained
in a more elegant fashion without having recourse to the Kleene normal form by capturing
the fact that a function is undefined for some input is a more subtle way. The key notion
is the notion of head normal form, which is more general than the notion of S-normal form.
As a consequence, there are fewer A-terms having no head normal form than A-terms having
no [S-normal form, and we capture a stronger form of divergence.

Recall that a A-term is either a variable z, or an application (M N), or a A-abstraction
(Ax. M). We can sharpen this characterization as follows.

Proposition 5.16. The following properties hold.
(1) Every application term M is of the form

M = (N\Ny---No)N, 1> 2,
where Ny is not an application term.
(2) Every abstraction term M is of the form
M=Mx;---x,.N, n>1,
where N is not an abstraction term.
(8) Every A-term M is of one of the following two forms:

M=Me, - -xp.aMy---M,, m,n>0 (a)
M =Xy -z, (Ne. M) My -+~ My, m>1,n2>0, (b)

where x 1s a variable.

282 CHAPTER 5. THE LAMBDA-CALCULUS

Proof. (1) Suppose that M is an application M = M;M,. We proceed by induction on the
depth of M;. For the base case M; must be variables and we are done. For the induction
step, if M; is a A-abstraction, we are done. If M; is an application, then by the induction
hypothesis it is of the form

M, = (NlNQ"'Nn—l)Nna 77,22,
where N is not an application term, and then
M = M1M2 = ((NlNQ cee Nn_l)Nn)MQ, n Z 2,

where V; is not an application term.

The proof of (2) is similar.

(3) We proceed by induction on the depth of M. If M is a variable, then we are in Case
(a) with m =n = 0.

If M is an application, then by (1) it is of the form M = NyN,--- N, with N; not an
application term. This means that either N; is a variable, in which case we are in Case (a)
with n =0, or N; is an abstraction, in which case we are in Case (b) also with n = 0.

If M is an abstraction Az. N, then by the induction hypothesis N is of the form (a) or
(b), and by adding one more binder Az in front of these expressions we preserve the shape
of (a) and (b) by increasing n by 1. O

Example 5.31. The terms, I, K, K,, S, the Church numerals c,, if then else, (M, N), my, 7o,
Iter, Succ., Add and Mult as in Proposition 5.6, are A-terms of type (a). However, Predk,
Q = (A\z. (zz))(Az. (zz)), Y (the Curry Y-combinator), © (the Turing ®-combinator) are
of type (b). Regarding

Predkg = An. my(Iter n (A\z. (Succ.(m2), 1 2)) {Co, Co)),
recall that my = Az. zK,.
Proposition 5.16 motivates the following definition.

Definition 5.24. A A-term M is a head normal form (for short hnf) if it is of the form (a),
namely
M= Xxy---xp.xMy--- M, m,n>0,

where x is a variable called the head variable.

A Mterm M has a head normal form if there is some head normal form N such that
M 54 N.

In a term M of the form (b),

M =Xzy - xy. (Ax. M) My -+ M,,, m>1,n2>0,

the subterm (Az. My)M; is called the head redex of M.

5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 283

Example 5.32. In addition to the terms of type (a) that we listed after Proposition 5.16,
the term Az. 2 is a head normal form. It is the head normal form of the term Az. (Ix)2,
which has no S-normal form.

Not every term has a head normal form. For example, the term
Q = (A\z. (z2))(Az. (2x))

has no head normal form. Every [-normal form must be a head normal form, but the
converse is false as we saw with

M = \x. 22,

which is a head normal form but has no S-normal form.

Note that a head redex of a term is a leftmost redex, but not conversely, as shown by the
term Az. x((Ay.y)x), in which the leftmost redex is (Ay.y)z, which is not a head redex.

A term may have more than one head normal form but here is a way of obtaining a head
normal form (if there is one) in a systematic fashion.

Definition 5.25. The relation —, called one-step head reduction, is defined as follows.
For any two terms M and N, if M contains a head redex (Az. My)M;, which means that M
is of the form

M =X xy- -2, (Ne. Mo)My -+ M,,,, m>1,n>0,
then M —,, N with

N = Az -2y (Mylz := My)My - - - M,,.

We denote by i>h the transitive closure of —, and by s, the reflexive and transitive
closure of —y,.

Given a term M containing a head redex, the head reduction sequence of M is the uniquely
determined sequence of one-step head reductions

M:MO—>h M1 —h T —h Mn—>h

If the head reduction sequence reaches a term M, which is a head normal form we say that
the sequence terminates, and otherwise we say that M has an infinite head reduction.

The following result is shown in Barendregt [4] (Chapter 8, §3).

Theorem 5.17. (Wadsworth) A A-term M has a head normal form if and only if the head
reduction sequence terminates.

In some intuitive sense, a A-term M that does not have any head normal form has a
strong divergence behavior with respect to S-reduction.

284 CHAPTER 5. THE LAMBDA-CALCULUS

Remark: There is a notion more general than the notion of head normal form which comes
up in functional languages (for example, Haskell). A A-term M is a weak head normal form
if it is of one of the two forms

Ax.N or yNj---Np

where y is a variable These are exactly the terms that do not have a redex of the form
(Ax. Mo) My Ny - - - N,,. Every head normal form is a weak head normal form, but there are
many more weak head normal forms than there are head normal forms since a term of the
form Ax. N where N is arbitrary is a weak head normal form, but not a head normal form
unless N is of the form \zq---x,. M --- M,,, with m,n > 0.

Reducing to a weak head normal form is a lazy evaluation strategy.

There is also another useful notion which turns out to be equivalent to having a head
normal form.

Definition 5.26. A closed A-term M is solvable if there are closed terms Ny, ..., N, such
that
MN; -+ N, =31

A A-term M with free variables x1,...,x,, is solvable if the closed term Az ---x,,. M is
solvable. A term is unsolvable if it is not solvable.

The following result is shown in Barendregt [4] (Chapter 8, §3).

Theorem 5.18. (Wadsworth) A A-term M has a head normal form if and only if is it
solvable.

Actually, the proof that having a head normal form implies solvable is not hard.

We are now ready to revise the notion of A-definability of numerical functions. Note that
Barendregt represents the natural numbers using the Barendregt numerals instead of the
Church numerals. This makes the proof technically simpler.

Definition 5.27. A function (partial or total) f: N* — N is strongly A-definable if for all
my, ..., m, €N, there is a combinator (a closed A-term) F' with the following properties:

(1) If the value f(myq,...,m,) is defined, then Fb,, - --b,,, reduces to the S-normal form

(2) If f(mq,...,m,) is undefined, then F'b,,, ---b,, has no head normal form, or equiv-
alently, is unsolvable.

Observe that in Case (2), when the value f(ms,...,m,) is undefined, the divergence
behavior of F'b,,, - --b,,, is stronger than in Definition 5.22. Not only F'b,,, - --b,,, has no
[-normal form, but actually it has no head normal form.

The following result is proven in Barendregt [4] (Chapter 8, §4). The proof does not use
the Kleene normal form. Instead, it makes clever use of the term KII. Another proof is
given in Krivine [39] (Chapter II).

5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 285

Theorem 5.19. Fvery partial or total computable function is strongly \-definable. Con-
versely, every strongly A-definable function is partial computable.

Making sure that a composition go (hq, ..., h,,) is defined for some input zy, ..., z, iff all
the hi(z1,...,x,) and g(hy(x1, ..., %), ..., (21, ..., 2,)) are defined is tricky. The term
KII comes to the rescue! The Barendregt numerals have the property that

b, KIT -5 51,

so they are “uniformly solvable;” see Barendregt [4] (Chapter 8, Lemma 8.4.5). If g is
strongly A-definable by G and the h; are strongly A-definable by H;, then it can be shown
that the combinator F' given by

F=X\uy-an (Hiay - 2, KIL) - (Hpy - 2, KID (G (Hywy - 2) - - (G(Hyry - -)

strongly A-defines F'; see Barendregt [4] (Chapter 8, Lemma 8.4.6).
To prove closure under minimization, the Turing fixed-point combinator and the combi-
nators

J = Afxxy - x,.if IsZeroy, Gx 1 - - - x,, then z else f(Succp)z -z
H=0J
F=MXey...x,. Hbgxq ... 2y,

can be used, because when f(my,...,m,) is undefined, there is an infinite quasi-leftmost
reduction from Fb,,, ---b,,, , and this implies that F'b,,, ---b,, has no S-normal form,
which in turn implies that it has no head normal form; see Barendregt [4] (Chapter 8,
Lemma 8.4.10 and 8.4.11).

286 CHAPTER 5. THE LAMBDA-CALCULUS

Chapter 6

Definability of Computable Functions
in System F

6.1 Definability of Functions in the Simply-Typed
Lambda-Calculus

This section relies on material from Section 2.14 that the reader may want to review.

In the pure A-calculus, some A-terms have no S-normal form, and worse, it is undecidable
whether a A-term has a [-normal form. In contrast, by Theorem 2.12, every raw A-term
that type-checks in the simply-typed A-calculus has a S-normal form. Thus it is natural to
ask whether the natural numbers are definable in the simply-typed A-calculus because if the
answer is positive, then the numerical functions definable in the simply-typed A-calculus are
guaranteed to be total.

This indeed possible. If we pick any base type o, then we can define typed Church
numerals ¢, as terms of type Nat, = (¢ — o) — (0 — o), by

¢, =Af:(0c— o) X\x: o fM(x).

The notion of A-definable function is defined just as before. Then we can define Add and
Mult as terms of type Nat, — (Nat, — Nat,) essentially as before, but surprise, not
much more is definable. Among other things, strong typing of terms restricts the iterator
combinator too much. It was shown by Schwichtenberg and Statman that the numerical
functions definable in the simply-typed A-calculus are the extended polynomials; see Statman
[58] and Troelstra and Schwichtenberg [61].

Definition 6.1. The extended polynomials are the smallest class of numerical functions
closed under composition containing

1. The constant functions 0 and 1.

2. The projections.

287

288 CHAPTER 6. DEFINABILITY OF COMPUTABLE FUNCTIONS IN SYSTEM F

3. Addition and multiplication.
4. The function IsZero,.

Is there a way to get a larger class of total functions?

There are indeed various ways of doing this. One method is to add the natural numbers
and the booleans as data types to the simply-typed A-calculus, and to also add product
types, an iterator combinator, and some new reduction rules. This way we obtain a system
equivalent to Godel’s system T. A large class of numerical total functions containing the
primitive recursive functions is definable in this system; see Girard-Lafond-Taylor [23].
Although theoretically interesting, this is not a practical system.

Another wilder method is to add more general types to the simply-typed A-calculus,
the so-called second-order types or polymorphic types. In addition to base types, we allow
type variables (often denoted X,V ...) ranging over simple types and new types of the form
VX.o!

6.2 Polymorphic Types and System F

Definition 6.2. The second-order types (or polymorphic types) o are defined inductively as
follows.

(1) If T, is a base type, then T; is a polymorphic type, and if X is a type variable, then
X is a polymorphic type.

(2) If o and 7 are polymorphic types, then (¢ — 7) is a polymorphic type.
(3) If o is a polymorphic type and X is a type variable, then V.X. o is a polymorphic type.

Since second-order types may contain type variables bound by the quantfier V, we have
a notion of free and bound type variable. Formally, the definition is similar to Definition 5.4

Definition 6.3. For any second-order type o, the set F'V (o) of free variables of o and the
set BV (o) of bound variables in o are defined inductively as follows.

(1) If 0 = X (a type variable), then
FV(X)={X}, BV(X)=0.
(2) If ¢ = T, (a base type), then
FV(T;) =0, BV(T;)=0.
(3) If 0 = (017 — 02), then

FV(o)=FV(o1)UFV(0oy), BV(c)= BV(oy)UBV(03).

!Barendregt and others used Greek letters to denote type variables but we find this confusing.

6.2