Linear Algebra for Computer Vision, Robotics, and Machine Learning

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

© Jean Gallier

January 29, 2019
ÉLÉMENTS
DE MATHEMATIQUE

PREMIÈRE PARTIE

LIVRE II

ALGÈBRE

CHAPITRE 2

ALGÈBRE LINÉAIRE

TROISIÈME ÉDITION, ENTIEREMENT REFONDUE

HERMANN

115, BOULEVARD SAINT-GERMAIN, PARIS VI
5. Dual d'un espace vectoriel.

Théorème 4. — La dimension du dual E^* d'un espace vectoriel E est au moins égale à la dimension de E. Pour que E^* soit de dimension finie, il faut et il suffit que E le soit, et on a alors $\dim E^* = \dim E$.

Si K est le corps des scalaires de E, E est isomorphe à un espace K^0 et par suite E^* est isomorphe à K^1_0 (§ 2, n° 6, prop. 10). Comme K^0 est un sous-espace de K^1, on a $\dim E = \text{Card}(I) \leq \dim E^*$ (n° 2, cor. 4 du th. 3); en outre, si I est fini, on a $K^1 = K^0$ (cf. exerc. 3 d)).

Corollaire. — Pour un espace vectoriel E, les relations $E = \{0\}$ et $E^* = \{0\}$ sont équivalentes.

Théorème 5. — Étant données deux suites exactes d'espaces vectoriels (sur un même corps K) et d'applications linéaires

\[
\begin{align*}
0 & \to E' \to E \to E'' \to 0 \\
0 & \to F' \to F \to F'' \to 0
\end{align*}
\]
Contents

1 Introduction .. 9

2 Vector Spaces, Bases, Linear Maps 13
 2.1 Motivations: Linear Combinations, Linear Independence, Rank 13
 2.2 Vector Spaces ... 19
 2.3 Indexed Families; the Sum Notation \(\sum_{i \in I} a_i \) 24
 2.4 Linear Independence, Subspaces 29
 2.5 Bases of a Vector Space 33
 2.6 Matrices .. 41
 2.7 Linear Maps .. 45
 2.8 Linear Forms and the Dual Space 52
 2.9 Summary .. 55

3 Matrices and Linear Maps 57
 3.1 Representation of Linear Maps by Matrices 57
 3.2 Change of Basis Matrix 67
 3.3 Haar Basis Vectors and a Glimpse at Wavelets 70
 3.4 The Effect of a Change of Bases on Matrices 87
 3.5 Summary .. 91

4 Direct Sums, Affine Maps 93
 4.1 Direct Products ... 93
 4.2 Sums and Direct Sums 94
 4.3 The Rank-Nullity Theorem; Grassmann’s Relation 99
 4.4 Affine Maps .. 104
 4.5 Summary .. 111

5 Determinants ... 113
 5.1 Permutations, Signature of a Permutation 113
 5.2 Alternating Multilinear Maps 117
 5.3 Definition of a Determinant 121
 5.4 Inverse Matrices and Determinants 128
 5.5 Systems of Linear Equations and Determinants 131
 5.6 Determinant of a Linear Map 132
5.7 The Cayley–Hamilton Theorem .. 133
5.8 Permanents ... 138
5.9 Summary ... 140
5.10 Further Readings .. 142

6 Gaussian Elimination, LU, Cholesky, Echelon Form 143
 6.1 Motivating Example: Curve Interpolation .. 143
 6.2 Gaussian Elimination ... 147
 6.3 Elementary Matrices and Row Operations .. 151
 6.4 \(LU \)-Factorization .. 154
 6.5 \(PA = LU \) Factorization .. 159
 6.6 Dealing with Roundoff Errors; Pivoting Strategies 172
 6.7 Gaussian Elimination of Tridiagonal Matrices ... 174
 6.8 SPD Matrices and the Cholesky Decomposition .. 176
 6.9 Reduced Row Echelon Form .. 182
 6.10 Solving Linear Systems Using RREF ... 192
 6.11 Elementary Matrices and Columns Operations .. 198
 6.12 Transvections and Dilatations ... 199
 6.13 Summary ... 205

7 Vector Norms and Matrix Norms ... 207
 7.1 Normed Vector Spaces ... 207
 7.2 Matrix Norms ... 214
 7.3 Condition Numbers of Matrices ... 228
 7.4 An Application of Norms: Inconsistent Linear Systems 236
 7.5 Summary ... 238

8 Iterative Methods for Solving Linear Systems ... 241
 8.1 Convergence of Sequences of Vectors and Matrices 241
 8.2 Convergence of Iterative Methods ... 244
 8.3 Methods of Jacobi, Gauss-Seidel, and Relaxation .. 246
 8.4 Convergence of the Methods ... 251
 8.5 Summary ... 258

9 The Dual Space and Duality .. 259
 9.1 The Dual Space \(E^* \) and Linear Forms ... 259
 9.2 Pairing and Duality Between \(E \) and \(E^* \) .. 264
 9.3 The Duality Theorem ... 269
 9.4 Hyperplanes and Linear Forms ... 275
 9.5 Transpose of a Linear Map and of a Matrix ... 276
 9.6 The Four Fundamental Subspaces ... 283
 9.7 Summary ... 285
10 Euclidean Spaces

10.1 Inner Products, Euclidean Spaces 287
10.2 Orthogonality, Duality, Adjoint of a Linear Map 295
10.3 Linear Isometries (Orthogonal Transformations) 308
10.4 The Orthogonal Group, Orthogonal Matrices 311
10.5 QR-Decomposition for Invertible Matrices 313
10.6 Some Applications of Euclidean Geometry 317
10.7 Summary ... 318

11 QR-Decomposition for Arbitrary Matrices

11.1 Orthogonal Reflections 321
11.2 QR-Decomposition Using Householder Matrices 325
11.3 Summary ... 329

12 Hermitian Spaces

12.1 Hermitian Spaces, Pre-Hilbert Spaces 331
12.2 Orthogonality, Duality, Adjoint of a Linear Map 340
12.3 Linear Isometries (Also Called Unitary Transformations) 345
12.4 The Unitary Group, Unitary Matrices 347
12.5 Orthogonal Projections and Involutions 350
12.6 Dual Norms .. 353
12.7 Summary ... 359

13 Eigenvectors and Eigenvalues

13.1 Eigenvectors and Eigenvalues of a Linear Map 361
13.2 Reduction to Upper Triangular Form 368
13.3 Location of Eigenvalues 373
13.4 Summary ... 375

14 Spectral Theorems

14.1 Introduction ... 377
14.2 Normal Linear Maps 377
14.3 Self-Adjoint and Other Special Linear Maps 386
14.4 Normal and Other Special Matrices 393
14.5 Conditioning of Eigenvalue Problems 396
14.6 Rayleigh Ratios and the Courant-Fischer Theorem 399
14.7 Summary ... 407

15 Introduction to The Finite Elements Method

15.1 A One-Dimensional Problem: Bending of a Beam 409
15.2 A Two-Dimensional Problem: An Elastic Membrane 420
15.3 Time-Dependent Boundary Problems 423
16 Singular Value Decomposition and Polar Form 431
 16.1 Singular Value Decomposition for Square Matrices 431
 16.2 Singular Value Decomposition for Rectangular Matrices 439
 16.3 Ky Fan Norms and Schatten Norms .. 442
 16.4 Summary ... 443

17 Applications of SVD and Pseudo-Inverses 445
 17.1 Least Squares Problems and the Pseudo-Inverse 445
 17.2 Properties of the Pseudo-Inverse ... 450
 17.3 Data Compression and SVD ... 455
 17.4 Principal Components Analysis (PCA) ... 456
 17.5 Best Affine Approximation .. 463
 17.6 Summary ... 466

18 Annihilating Polynomials; Primary Decomposition 469
 18.1 Annihilating Polynomials and the Minimal Polynomial 469
 18.2 Minimal Polynomials of Diagonalizable Linear Maps 475
 18.3 The Primary Decomposition Theorem .. 481
 18.4 Nilpotent Linear Maps and Jordan Form ... 487

Bibliography 491
Chapter 1

Introduction

In recent years, computer vision, robotics, machine learning, and data science have been some of the key areas that have contributed to major advances in technology. Anyone who looks at papers or books in the above areas will be baffled by a strange jargon involving exotic terms such as kernel PCA, ridge regression, lasso regression, support vector machines (SVM), Lagrange multipliers, KKT conditions, etc. Do support vector machines chase cattle to catch them with some kind of super lasso? No! But one will quickly discover that behind the jargon which always comes with a new field (perhaps to keep the outsiders out of the club), lies a lot of “classical” linear algebra and techniques from optimization theory. And there comes the main challenge: in order to understand and use tools from machine learning, computer vision, and so on, one needs to have a firm background in linear algebra and optimization theory. To be honest, some probability theory and statistics should also be included, but we already have enough to contend with.

Many books on machine learning struggle with the above problem. How can one understand what are the dual variables of a ridge regression problem if one doesn’t know about the Lagrangian duality framework? Similarly, how is it possible to discuss the dual formulation of SVM without a firm understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one is just a consumer of the techniques we mentioned above, the cookbook recipe approach is probably adequate. But this approach doesn’t work for someone who really wants to do serious research and make significant contributions. To do so, we believe that one must have a solid background in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and energy studying these fields, but we believe that perseverance will be amply rewarded.

Our main goal is to present fundamentals of linear algebra and optimization theory, keeping in mind applications to machine learning, robotics, and computer vision. This work consists of two volumes, the first one being linear algebra, the second one optimization theory and applications, especially to machine learning.
CHAPTER 1. INTRODUCTION

This first volume covers “classical” linear algebra, up to and including the primary decomposition and the Jordan form. Besides covering the standard topics, we discuss a few topics that are important for applications. These include:

1. Affine maps (see Section 4.4). These are usually ignored or treated in a somewhat obscure fashion. Yet they play an important role in computer vision and robotics. There is a clean and elegant way to define affine maps. One simply has to define affine combinations. Linear maps preserve linear combinations, and similarly affine maps preserve affine combinations.

2. Norms and matrix norms (Chapter 7). These are used extensively in optimization theory.

3. An introduction to the finite elements method (Chapter 15).

4. Applications of SVD and pseudo-inverses, in particular, principal component analysis, for short PCA (Chapter 17).

Three topics are covered in more detail than usual. These are

1. Duality (Chapter 9).

2. Dual norms (Section 12.6).

3. The spectral theorems (Chapter 14).

At the most basic level, duality corresponds to transposition. But duality is really the bijection between subspaces of a vector space E (say finite-dimensional) and subspaces of linear forms (subspaces of the dual space E^*) established by two maps: the first map assigns to a subspace V of E the subspace V^0 of linear forms that vanish on V; the second map assigns to a subspace U of linear forms the subspace U^0 consisting of the vectors in E on which all linear forms in U vanish. The above maps define a bijection such that $\dim(V) + \dim(V^0) = \dim(E)$, $\dim(U) + \dim(U^0) = \dim(E)$, $V^0 = V$, and $U^0 = U$.

Another important fact is that if E is a finite-dimensional space with an inner product $u, v \mapsto \langle u, v \rangle$ (or a Hermitian inner product if E is a complex vector space), then there is a canonical isomorphism between E and its dual E^*. This means that every linear form $f \in E^*$ is uniquely represented by some vector $u \in E$, in the sense that $f(v) = \langle v, u \rangle$ for all $v \in E$. As a consequence, every linear map f has an adjoint f^* such that $\langle f(u), v \rangle = \langle u, f^*(v) \rangle$ for all $u, v \in E$.

Dual norms show up in convex optimization; see Boyd and Vandenberghe [11].

Because of their importance in robotics and computer vision, we discuss in some detail the groups of isometries $\text{O}(E)$ and $\text{SO}(E)$ of a vector space with an inner product. The isometries in $\text{O}(E)$ are the linear maps such that $f \circ f^* = f^* \circ f = \text{id}$, and the direct
isometries in $\text{SO}(E)$, also called rotations, are the isometries in $\text{O}(E)$ whose determinant is equal to $+1$. We also discuss the hermitian counterparts $\text{U}(E)$ and $\text{SU}(E)$.

We prove the spectral theorems not only for real symmetric matrices, but also for real and complex normal matrices.

We stress the importance of linear maps. Matrices are of course invaluable for computing and one needs to develop skills for manipulating them. But matrices are used to represent a linear map over a basis (or two bases), and the same linear map has different matrix representations. In fact, we can view the various normal forms of a matrix (Schur, SVD, Jordan) as a suitably convenient choice of bases.

Except for a few exceptions we provide complete proofs. We did so to make this book self-contained, but also because we believe that no deep knowledge of this material can be acquired without working out some proofs. However, our advice is to skip some of the proofs upon first reading, especially if they are long and intricate.
2.1 Motivations: Linear Combinations, Linear Independence and Rank

In linear optimization problems, we encounter systems of linear equations. For example, consider the problem of solving the following system of three linear equations in the three variables $x_1, x_2, x_3 \in \mathbb{R}$:

\[
\begin{align*}
x_1 + 2x_2 - x_3 &= 1 \\
2x_1 + x_2 + x_3 &= 2 \\
x_1 - 2x_2 - 2x_3 &= 3.
\end{align*}
\]

One way to approach this problem is introduce the “vectors” $u, v, w, \text{ and } b$, given by

\[
u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
\]

and to write our linear system as

\[x_1u + x_2v + x_3w = b.
\]

In the above equation, we used implicitly the fact that a vector z can be multiplied by a scalar $\lambda \in \mathbb{R}$, where

\[
\lambda z = \lambda \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} \lambda z_1 \\ \lambda z_2 \\ \lambda z_3 \end{pmatrix},
\]

and two vectors y and z can be added, where

\[
y + z = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} y_1 + z_1 \\ y_2 + z_2 \\ y_3 + z_3 \end{pmatrix}.
\]
The set of all vectors with three components is denoted by $\mathbb{R}^3 \times 1$. The reason for using the notation $\mathbb{R}^3 \times 1$ rather than the more conventional notation \mathbb{R}^3 is that the elements of $\mathbb{R}^3 \times 1$ are column vectors; they consist of three rows and a single column, which explains the superscript 3×1. On the other hand, $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ consists of all triples of the form (x_1, x_2, x_3), with $x_1, x_2, x_3 \in \mathbb{R}$, and these are row vectors. However, there is an obvious bijection between $\mathbb{R}^3 \times 1$ and \mathbb{R}^3 and they are usually identified. For the sake of clarity, in this introduction, we will denote the set of column vectors with n components by $\mathbb{R}^{n \times 1}$.

An expression such as

$$x_1 u + x_2 v + x_3 w$$

where u, v, w are vectors and the x_is are scalars (in \mathbb{R}) is called a linear combination. Using this notion, the problem of solving our linear system

$$x_1 u + x_2 v + x_3 w = b.$$

is equivalent to determining whether b can be expressed as a linear combination of u, v, w.

Now, if the vectors u, v, w are linearly independent, which means that there is no triple $(x_1, x_2, x_3) \neq (0, 0, 0)$ such that

$$x_1 u + x_2 v + x_3 w = 0_3,$$

it can be shown that every vector in $\mathbb{R}^{3 \times 1}$ can be written as a linear combination of u, v, w. Here, 0_3 is the zero vector

$$0_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

It is customary to abuse notation and to write 0 instead of 0$_3$. This rarely causes a problem because in most cases, whether 0 denotes the scalar zero or the zero vector can be inferred from the context.

In fact, every vector $z \in \mathbb{R}^{3 \times 1}$ can be written in a unique way as a linear combination

$$z = x_1 u + x_2 v + x_3 w.$$

This is because if

$$z = x_1 u + x_2 v + x_3 w = y_1 u + y_2 v + y_3 w,$$

then by using our (linear!) operations on vectors, we get

$$(y_1 - x_1)u + (y_2 - x_2)v + (y_3 - x_3)w = 0,$$

which implies that

$$y_1 - x_1 = y_2 - x_2 = y_3 - x_3 = 0,$$

by linear independence. Thus,

$$y_1 = x_1, \quad y_2 = x_2, \quad y_3 = x_3.$$
which shows that z has a unique expression as a linear combination, as claimed. Then, our equation

$$x_1u + x_2v + x_3w = b$$

has a unique solution, and indeed, we can check that

$$x_1 = 1.4$$
$$x_2 = -0.4$$
$$x_3 = -0.4$$

is the solution.

But then, how do we determine that some vectors are linearly independent?

One answer is to compute the determinant $\det(u, v, w)$, and to check that it is nonzero. In our case,

$$\det(u, v, w) = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{vmatrix} = 15,$$

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition or a QR-decomposition, or an SVD of the matrix consisting of the three columns u, v, w,

$$A = \begin{pmatrix} u & v & w \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}.$$

If we form the vector of unknowns

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

then our linear combination $x_1u + x_2v + x_3w$ can be written in matrix form as

$$x_1u + x_2v + x_3w = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

so our linear system is expressed by

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

or more concisely as

$$Ax = b.$$
Now, what if the vectors u, v, w are linearly dependent? For example, if we consider the vectors

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix},$$

we see that

$$u - v = w,$$

a nontrivial linear dependence. It can be verified that u and v are still linearly independent. Now, for our problem

$$x_1 u + x_2 v + x_3 w = b$$

to have a solution, it must be the case that b can be expressed as linear combination of u and v. However, it turns out that u, v, b are linearly independent (because $\det(u, v, b) = -6$), so b cannot be expressed as a linear combination of u and v and thus, our system has no solution.

If we change the vector b to

$$b = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix},$$

then

$$b = u + v,$$

and so the system

$$x_1 u + x_2 v + x_3 w = b$$

has the solution

$$x_1 = 1, \quad x_2 = 1, \quad x_3 = 0.$$

Actually, since $w = u - v$, the above system is equivalent to

$$(x_1 + x_3) u + (x_2 - x_3) v = b,$$

and because u and v are linearly independent, the unique solution in $x_1 + x_3$ and $x_2 - x_3$ is

$$x_1 + x_3 = 1$$
$$x_2 - x_3 = 1,$$

which yields an infinite number of solutions parameterized by x_3, namely

$$x_1 = 1 - x_3$$
$$x_2 = 1 + x_3.$$

In summary, a 3×3 linear system may have a unique solution, no solution, or an infinite number of solutions, depending on the linear independence (and dependence) or the vectors
2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK

This situation can be generalized to any $n \times n$ system, and even to any $n \times m$ system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as $Ax = b$ stresses the fact that the map $x \mapsto Ax$ is a linear transformation. This means that

$$A(\lambda x) = \lambda(Ax)$$

for all $x \in \mathbb{R}^{3\times1}$ and all $\lambda \in \mathbb{R}$ and that

$$A(u + v) = Au + Av,$$

for all $u, v \in \mathbb{R}^{3\times1}$. We can view the matrix A as a way of expressing a linear map from $\mathbb{R}^{3\times1}$ to $\mathbb{R}^{3\times1}$ and solving the system $Ax = b$ amounts to determining whether b belongs to the image of this linear map.

Yet another fruitful way of interpreting the resolution of the system $Ax = b$ is to view this problem as an intersection problem. Indeed, each of the equations

$$x_1 + 2x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 2$$
$$x_1 - 2x_2 - 2x_3 = 3$$

defines a subset of \mathbb{R}^3 which is actually a plane. The first equation

$$x_1 + 2x_2 - x_3 = 1$$

defines the plane H_1 passing through the three points $(1, 0, 0), (0, 1/2, 0), (0, 0, -1)$, on the coordinate axes, the second equation

$$2x_1 + x_2 + x_3 = 2$$

defines the plane H_2 passing through the three points $(1, 0, 0), (0, 2, 0), (0, 0, 2)$, on the coordinate axes, and the third equation

$$x_1 - 2x_2 - 2x_3 = 3$$

defines the plane H_3 passing through the three points $(3, 0, 0), (0, -3/2, 0), (0, 0, -3/2)$, on the coordinate axes. The intersection $H_i \cap H_j$ of any two distinct planes H_i and H_j is a line, and the intersection $H_1 \cap H_2 \cap H_3$ of the three planes consists of the single point $(1.4, -0.4, -0.4)$. Under this interpretation, observe that we are focusing on the rows of the matrix A, rather than on its columns, as in the previous interpretations.

Another great example of a real-world problem where linear algebra proves to be very effective is the problem of data compression, that is, of representing a very large data set using a much smaller amount of storage.
Typically the data set is represented as an $m \times n$ matrix A where each row corresponds to an n-dimensional data point and typically, $m \geq n$. In most applications, the data are not independent so the rank of A is a lot smaller than $\min\{m, n\}$, and the the goal of low-rank decomposition is to factor A as the product of two matrices B and C, where B is a $m \times k$ matrix and C is a $k \times n$ matrix, with $k \ll \min\{m, n\}$ (here, \ll means “much smaller than”):

$$
\begin{pmatrix}
A \\
m \times n
\end{pmatrix} =
\begin{pmatrix}
B \\
m \times k
\end{pmatrix} \begin{pmatrix}
C \\
k \times n
\end{pmatrix}
$$

Now, it is generally too costly to find an exact factorization as above, so we look for a low-rank matrix A' which is a “good” approximation of A. In order to make this statement precise, we need to define a mechanism to determine how close two matrices are. This can be done using matrix norms, a notion discussed in Chapter 7. The norm of a matrix A is a nonnegative real number $\|A\|$ which behaves a lot like the absolute value $|x|$ of a real number x. Then, our goal is to find some low-rank matrix A' that minimizes the norm $\|A - A'|^2$, over all matrices A' of rank at most k, for some given $k \ll \min\{m, n\}$.

Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely, $k(m + n)$ instead of mn. Thus less storage and fewer operations are needed to reconstruct A.

2. Often, the process for obtaining the decomposition exposes the underlying structure of the data. Thus, it may turn out that “most” of the significant data are concentrated along some directions called principal directions.

Low-rank decompositions of a set of data have a multitude of applications in engineering, including computer science (especially computer vision), statistics, and machine learning. As we will see later in Chapter 17, the singular value decomposition (SVD) provides a very satisfactory solution to the low-rank approximation problem. Still, in many cases, the data sets are so large that another ingredient is needed: randomization. However, as a first step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed on vectors. In the early 1900s, the notion of a vector space emerged as a convenient and unifying framework for working with “linear” objects and we will discuss this notion in the next few sections.
2.2 Vector Spaces

A (real) vector space is a set E together with two operations, $+: E \times E \rightarrow E$ and $\cdot: \mathbb{R} \times E \rightarrow E$, called \textit{addition} and \textit{scalar multiplication}, that satisfy some simple properties. First of all, E under addition has to be a commutative (or abelian) group, a notion that we review next.

\textit{However, keep in mind that vector spaces are not just algebraic objects; they are also geometric objects.}

Definition 2.1. A \textit{group} is a set G equipped with a binary operation $\cdot : G \times G \rightarrow G$ that associates an element $a \cdot b \in G$ to every pair of elements $a, b \in G$, and having the following properties: \cdot is associative, has an identity element $e \in G$, and every element in G is invertible (w.r.t. \cdot). More explicitly, this means that the following equations hold for all $a, b, c \in G$:

\begin{align*}
(G1) \quad & a \cdot (b \cdot c) = (a \cdot b) \cdot c. \quad \text{(associativity)}; \\
(G2) \quad & a \cdot e = e \cdot a = a. \quad \text{(identity)}; \\
(G3) \quad & \text{For every } a \in G, \text{ there is some } a^{-1} \in G \text{ such that } a \cdot a^{-1} = a^{-1} \cdot a = e. \quad \text{(inverse)}.
\end{align*}

A group G is \textit{abelian} (or \textit{commutative}) if

$$a \cdot b = b \cdot a \quad \text{for all } a, b \in G.$$

A set M together with an operation $\cdot : M \times M \rightarrow M$ and an element e satisfying only conditions (G1) and (G2) is called a \textit{monoid}. For example, the set $\mathbb{N} = \{0, 1, \ldots, n, \ldots\}$ of natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

1. The set $\mathbb{Z} = \{\ldots, -n, \ldots, -1, 0, 1, \ldots, n, \ldots\}$ of integers is a group under addition, with identity element 0. However, $\mathbb{Z}^* = \mathbb{Z} - \{0\}$ is not a group under multiplication.

2. The set \mathbb{Q} of rational numbers (fractions p/q with $p, q \in \mathbb{Z}$ and $q \neq 0$) is a group under addition, with identity element 0. The set $\mathbb{Q}^* = \mathbb{Q} - \{0\}$ is also a group under multiplication, with identity element 1.

3. Similarly, the sets \mathbb{R} of real numbers and \mathbb{C} of complex numbers are groups under addition (with identity element 0), and $\mathbb{R}^* = \mathbb{R} - \{0\}$ and $\mathbb{C}^* = \mathbb{C} - \{0\}$ are groups under multiplication (with identity element 1).

4. The sets \mathbb{R}^n and \mathbb{C}^n of n-tuples of real or complex numbers are groups under componentwise addition:

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n),$$

with identity element $(0, \ldots, 0)$. All these groups are abelian.
5. Given any nonempty set S, the set of bijections $f: S \to S$, also called permutations of S, is a group under function composition (i.e., the multiplication of f and g is the composition $g \circ f$), with identity element the identity function id_S. This group is not abelian as soon as S has more than two elements.

6. The set of $n \times n$ matrices with real (or complex) coefficients is a group under addition of matrices, with identity element the null matrix. It is denoted by $M_n(\mathbb{R})$ (or $M_n(\mathbb{C})$).

7. The set $\mathbb{R}[X]$ of all polynomials in one variable X with real coefficients,

$$P(X) = a_nX^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0,$$

(with $a_i \in \mathbb{R}$), is a group under addition of polynomials.

8. The set of $n \times n$ invertible matrices with real (or complex) coefficients is a group under matrix multiplication, with identity element the identity matrix I_n. This group is called the general linear group and is usually denoted by $\text{GL}(n, \mathbb{R})$ (or $\text{GL}(n, \mathbb{C})$).

9. The set of $n \times n$ invertible matrices with real (or complex) coefficients and determinant $+1$ is a group under matrix multiplication, with identity element the identity matrix I_n. This group is called the special linear group and is usually denoted by $\text{SL}(n, \mathbb{R})$ (or $\text{SL}(n, \mathbb{C})$).

10. The set of $n \times n$ invertible matrices with real coefficients such that $RR^\top = R^\top R = I_n$ and of determinant $+1$ is a group called the special orthogonal group and is usually denoted by $\text{SO}(n)$ (where R^\top is the transpose of the matrix R, i.e., the rows of R^\top are the columns of R). It corresponds to the rotations in \mathbb{R}^n.

11. Given an open interval (a, b), the set $\mathcal{C}(a, b)$ of continuous functions $f: (a, b) \to \mathbb{R}$ is a group under the operation $f + g$ defined such that

$$(f + g)(x) = f(x) + g(x)$$

for all $x \in (a, b)$.

It is customary to denote the operation of an abelian group G by $+$, in which case the inverse a^{-1} of an element $a \in G$ is denoted by $-a$.

The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation $\cdot : M \times M \to M$ is associative and if $e' \in M$ is a left identity and $e'' \in M$ is a right identity, which means that

$$e' \cdot a = a \quad \text{for all } a \in M \quad \text{(G2l)}$$

and

$$a \cdot e'' = a \quad \text{for all } a \in M, \quad \text{(G2r)}$$

then $e' = e''$.
Proof. If we let $a = e''$ in equation (G2l), we get
\[e' \cdot e'' = e'', \]
and if we let $a = e'$ in equation (G2r), we get
\[e' \cdot e'' = e', \]
and thus
\[e' = e' \cdot e'' = e'', \]
as claimed.

Fact 1 implies that the identity element of a monoid is unique, and since every group is a monoid, the identity element of a group is unique. Furthermore, every element in a group has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element $a \in M$ has some left inverse $a' \in M$ and some right inverse $a'' \in M$, which means that
\[a' \cdot a = e \quad \text{(G3l)} \]
and
\[a \cdot a'' = e, \quad \text{(G3r)} \]
then $a' = a''$.

Proof. Using (G3l) and the fact that e is an identity element, we have
\[(a' \cdot a) \cdot a'' = e \cdot a'' = a''. \]
Similarly, Using (G3r) and the fact that e is an identity element, we have
\[a' \cdot (a \cdot a'') = a' \cdot e = a'. \]
However, since M is monoid, the operation \cdot is associative, so
\[a' = a' \cdot (a \cdot a'') = (a' \cdot a) \cdot a'' = a'', \]
as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the existence of a right identity) and (G3r) (the existence of a right inverse for every element) (or (G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow from (G2r) and (G3r).

Vector spaces are defined as follows.
Definition 2.2. A real vector space is a set E (of vectors) together with two operations $+: E \times E \to E$ (called vector addition)\footnote{The symbol $+$ is overloaded, since it denotes both addition in the field \mathbb{R} and addition of vectors in E. It is usually clear from the context which $+$ is intended.} and $\cdot: \mathbb{R} \times E \to E$ (called scalar multiplication) satisfying the following conditions for all $\alpha, \beta \in \mathbb{R}$ and all $u, v \in E$;

(V0) E is an abelian group w.r.t. $+$, with identity element 0;\footnote{The symbol 0 is also overloaded, since it represents both the zero in \mathbb{R} (a scalar) and the identity element of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.}

(V1) $\alpha \cdot (u + v) = (\alpha \cdot u) + (\alpha \cdot v)$;

(V2) $(\alpha + \beta) \cdot u = (\alpha \cdot u) + (\beta \cdot u)$;

(V3) $(\alpha \cdot \beta) \cdot u = \alpha \cdot (\beta \cdot u)$;

(V4) $1 \cdot u = u$.

In (V3), \cdot denotes multiplication in \mathbb{R}.

Given $\alpha \in \mathbb{R}$ and $v \in E$, the element $\alpha \cdot v$ is also denoted by αv. The field \mathbb{R} is often called the field of scalars.

In Definition 2.2, the field \mathbb{R} may be replaced by the field of complex numbers \mathbb{C}, in which case we have a complex vector space. It is even possible to replace \mathbb{R} by the field of rational numbers \mathbb{Q} or by any other field K (for example $\mathbb{Z}/p\mathbb{Z}$, where p is a prime number), in which case we have a K-vector space (in (V3), \cdot denotes multiplication in the field K). In most cases, the field K will be the field \mathbb{R} of reals.

From (V0), a vector space always contains the null vector 0, and thus is nonempty. From (V1), we get $\alpha \cdot 0 = 0$, and $\alpha \cdot (−v) = −(\alpha \cdot v)$. From (V2), we get $0 \cdot v = 0$, and $−\alpha \cdot v = −(\alpha \cdot v)$.

Another important consequence of the axioms is the following fact: For any $u \in E$ and any $\lambda \in \mathbb{R}$, if $\lambda \neq 0$ and $\lambda \cdot u = 0$, then $u = 0$.

Indeed, since $\lambda \neq 0$, it has a multiplicative inverse λ^{-1}, so from $\lambda \cdot u = 0$, we get

$$\lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0.$$

However, we just observed that $\lambda^{-1} \cdot 0 = 0$, and from (V3) and (V4), we have

$$\lambda^{-1} \cdot (\lambda \cdot u) = (\lambda^{-1} \lambda) \cdot u = 1 \cdot u = u,$$

and we deduce that $u = 0$.

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from the other axioms? The answer is no. For example, one can take $E = \mathbb{R}^n$ and define $\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$\lambda \cdot (x_1, \ldots, x_n) = (0, \ldots, 0)$$

where $\lambda \neq 0$. Then $\lambda \cdot (x_1, \ldots, x_n) = (0, \ldots, 0)$, which violates axiom (V4).

1\footnotetext{}The symbol $+$ is overloaded, since it denotes both addition in the field \mathbb{R} and addition of vectors in E. It is usually clear from the context which $+$ is intended.

2\footnotetext{}The symbol 0 is also overloaded, since it represents both the zero in \mathbb{R} (a scalar) and the identity element of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
for all \((x_1, \ldots, x_n) \in \mathbb{R}^n\) and all \(\lambda \in \mathbb{R}\). Axioms (V0)–(V3) are all satisfied, but (V4) fails. Less trivial examples can be given using the notion of a basis, which has not been defined yet.

The field \(\mathbb{R}\) itself can be viewed as a vector space over itself, addition of vectors being addition in the field, and multiplication by a scalar being multiplication in the field.

Example 2.2.

1. The fields \(\mathbb{R}\) and \(\mathbb{C}\) are vector spaces over \(\mathbb{R}\).

2. The groups \(\mathbb{R}^n\) and \(\mathbb{C}^n\) are vector spaces over \(\mathbb{R}\), with scalar multiplication given by

\[
\lambda(x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n),
\]

for any \(\lambda \in \mathbb{R}\) and with \((x_1, \ldots, x_n) \in \mathbb{R}^n\) or \((x_1, \ldots, x_n) \in \mathbb{C}^n\), and \(\mathbb{C}^n\) is a vector space over \(\mathbb{C}\) with scalar multiplication as above, but with \(\lambda \in \mathbb{C}\).

3. The ring \(\mathbb{R}[X]_n\) of polynomials of degree at most \(n\) with real coefficients is a vector space over \(\mathbb{R}\), and the ring \(\mathbb{C}[X]_n\) of polynomials of degree at most \(n\) with complex coefficients is a vector space over \(\mathbb{C}\), with scalar multiplication \(\lambda \cdot P(X)\) of a polynomial

\[
P(X) = a_mX^m + a_{m-1}X^{m-1} + \cdots + a_1X + a_0
\]

(with \(a_i \in \mathbb{R}\) or \(a_i \in \mathbb{C}\)) by the scalar \(\lambda\) (in \(\mathbb{R}\) or \(\mathbb{C}\)), with \(m \leq n\), given by

\[
\lambda \cdot P(X) = \lambda a_mX^m + \lambda a_{m-1}X^{m-1} + \cdots + \lambda a_1X + \lambda a_0.
\]

4. The ring \(\mathbb{R}[X]\) of all polynomials with real coefficients is a vector space over \(\mathbb{R}\), and the ring \(\mathbb{C}[X]\) of all polynomials with complex coefficients is a vector space over \(\mathbb{C}\), with the same scalar multiplication as above.

5. The ring of \(n \times n\) matrices \(M_n(\mathbb{R})\) is a vector space over \(\mathbb{R}\).

6. The ring of \(m \times n\) matrices \(M_{m,n}(\mathbb{R})\) is a vector space over \(\mathbb{R}\).

7. The ring \(\mathcal{C}(a, b)\) of continuous functions \(f: (a, b) \to \mathbb{R}\) is a vector space over \(\mathbb{R}\), with the scalar multiplication \(\lambda f\) of a function \(f: (a, b) \to \mathbb{R}\) by a scalar \(\lambda \in \mathbb{R}\) given by

\[
(\lambda f)(x) = \lambda f(x), \quad \text{for all } x \in (a, b).
\]

Let \(E\) be a vector space. We would like to define the important notions of linear combination and linear independence.

Before defining these notions, we need to discuss a strategic choice which, depending how it is settled, may reduce or increase headaches in dealing with notions such as linear combinations and linear dependence (or independence). The issue has to do with using sets of vectors versus sequences of vectors.
2.3 Indexed Families; the Sum Notation $\sum_{i \in I} a_i$

Our experience tells us that it is preferable to use sequences of vectors; even better, indexed families of vectors. (We are not alone in having opted for sequences over sets, and we are in good company; for example, Artin [3], Axler [4], and Lang [32] use sequences. Nevertheless, some prominent authors such as Lax [35] use sets. We leave it to the reader to conduct a survey on this issue.)

Given a set A, recall that a \textit{sequence} is an ordered n-tuple $(a_1, \ldots, a_n) \in A^n$ of elements from A, for some natural number n. The elements of a sequence need not be distinct and the order is important. For example, (a_1, a_2, a_1) and (a_2, a_1, a_1) are two distinct sequences in A^3. Their underlying set is $\{a_1, a_2\}$.

What we just defined are \textit{finite} sequences, which can also be viewed as functions from $\{1, 2, \ldots, n\}$ to the set A; the ith element of the sequence (a_1, \ldots, a_n) is the image of i under the function. This viewpoint is fruitful, because it allows us to define (countably) infinite sequences as functions $s: \mathbb{N} \rightarrow A$. But then, why limit ourselves to ordered sets such as $\{1, \ldots, n\}$ or \mathbb{N} as index sets?

The main role of the index set is to tag each element uniquely, and the order of the tags is not crucial, although convenient. Thus, it is natural to define an I-\textit{indexed family} of elements of A, for short a \textit{family}, as a function $a: I \rightarrow A$ where I is any set viewed as an index set. Since the function a is determined by its graph

$$\{(i, a(i)) \mid i \in I\},$$

the family a can be viewed as the set of pairs $a = \{(i, a(i)) \mid i \in I\}$. For notational simplicity, we write a_i instead of $a(i)$, and denote the family $a = \{(i, a(i)) \mid i \in I\}$ by $(a_i)_{i \in I}$. For example, if $I = \{r, g, b, y\}$ and $A = \mathbb{N}$, the set of pairs

$$a = \{(r, 2), (g, 3), (b, 2), (y, 11)\}$$

is an indexed family. The element 2 appears twice in the family with the two distinct tags r and b.

When the indexed set I is totally ordered, a family $(a_i)_{i \in I}$ often called an I-sequence. Interestingly, sets can be viewed as special cases of families. Indeed, a set A can be viewed as the A-indexed family $\{(a, a) \mid a \in I\}$ corresponding to the identity function.

\textbf{Remark:} An indexed family should not be confused with a multiset. Given any set A, a \textit{multiset} is a similar to a set, except that elements of A may occur more than once. For example, if $A = \{a, b, c, d\}$, then $\{a, a, a, b, c, c, d, d\}$ is a multiset. Each element appears with a certain multiplicity, but the order of the elements does not matter. For example, a has multiplicity 3. Formally, a multiset is a function $s: A \rightarrow \mathbb{N}$, or equivalently a set of pairs $\{(a, i) \mid a \in A\}$. Thus, a multiset is an A-indexed family of elements from \mathbb{N}, but not a \mathbb{N}-indexed family, since distinct elements may have the same multiplicity (such as c an d in
the example above). An indexed family is a generalization of a sequence, but a multiset is a generalization of a set.

We also need to take care of an annoying technicality, which is to define sums of the form \(\sum_{i \in I} a_i \), where \(I \) is any finite index set and \((a_i)_{i \in I}\) is a family of elements in some set \(A \) equipped with a binary operation \(+: A \times A \to A\) which is associative (axiom (G1)) and commutative. This will come up when we define linear combinations.

The issue is that the binary operation \(+\) only tells us how to compute \(a_1 + a_2 \) for two elements of \(A \), but it does not tell us what is the sum of three of more elements. For example, how should \(a_1 + a_2 + a_3 \) be defined?

What we have to do is to define \(a_1 + a_2 + a_3 \) by using a sequence of steps each involving two elements, and there are two possible ways to do this: \(a_1 + (a_2 + a_3) \) and \((a_1 + a_2) + a_3 \). If our operation \(+\) is not associative, these are different values. If it associative, then \(a_1 + (a_2 + a_3) = (a_1 + a_2) + a_3 \), but then there are still six possible permutations of the indices 1, 2, 3, and if \(+\) is not commutative, these values are generally different. If our operation is commutative, then all six permutations have the same value. Thus, if \(+\) is associative and commutative, it seems intuitively clear that a sum of the form \(\sum_{i \in I} a_i \) does not depend on the order of the operations used to compute it.

This is indeed the case, but a rigorous proof requires induction, and such a proof is surprisingly involved. Readers may accept without proof the fact that sums of the form \(\sum_{i \in I} a_i \) are indeed well defined, and jump directly to Definition 2.3. For those who want to see the gory details, here we go.

First, we define sums \(\sum_{i \in I} a_i \), where \(I \) is a finite sequence of distinct natural numbers, say \(I = (i_1, \ldots, i_m) \). If \(I = (i_1, \ldots, i_m) \) with \(m \geq 2 \), we denote the sequence \((i_2, \ldots, i_m)\) by \(I - \{i_1\} \). We proceed by induction on the size \(m \) of \(I \). Let

\[
\sum_{i \in I} a_i = a_{i_1}, \quad \text{if } m = 1,
\]

\[
\sum_{i \in I} a_i = a_{i_1} + \left(\sum_{i \in I - \{i_1\}} a_i \right), \quad \text{if } m > 1.
\]

For example, if \(I = (1, 2, 3, 4) \), we have

\[
\sum_{i \in I} a_i = a_1 + (a_2 + (a_3 + a_4)).
\]

If the operation \(+\) is not associative, the grouping of the terms matters. For instance, in general

\[
a_1 + (a_2 + (a_3 + a_4)) \neq (a_1 + a_2) + (a_3 + a_4).
\]

However, if the operation \(+\) is associative, the sum \(\sum_{i \in I} a_i \) should not depend on the grouping of the elements in \(I \), as long as their order is preserved. For example, if \(I = (1, 2, 3, 4, 5) \),
CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

\[J_1 = (1, 2), \text{ and } J_2 = (3, 4, 5), \text{ we expect that} \]
\[\sum_{i \in I} a_i = \left(\sum_{j \in J_1} a_j \right) + \left(\sum_{j \in J_2} a_j \right). \]

This indeed the case, as we have the following proposition.

Proposition 2.1. Given any nonempty set \(A \) equipped with an associative binary operation \(+ : A \times A \to A \), for any nonempty finite sequence \(I \) of distinct natural numbers and for any partition of \(I \) into \(p \) nonempty sequences \(I_{k_1}, \ldots, I_{k_p} \), for some nonempty sequence \(K = (k_1, \ldots, k_p) \) of distinct natural numbers such that \(k_i < k_j \) implies that \(\alpha < \beta \) for all \(\alpha \in I_{k_i} \) and all \(\beta \in I_{k_j} \), for every sequence \((a_i)_{i \in I}\) of elements in \(A \), we have
\[\sum_{\alpha \in I} a_\alpha = \sum_{k \in K} \left(\sum_{\alpha \in I_k} a_\alpha \right). \]

Proof. We proceed by induction on the size \(n \) of \(I \).

If \(n = 1 \), then we must have \(p = 1 \) and \(I_{k_1} = I \), so the proposition holds trivially.

Next, assume \(n > 1 \). If \(p = 1 \), then \(I_{k_1} = I \) and the formula is trivial, so assume that \(p \geq 2 \) and write \(J = (k_2, \ldots, k_p) \). There are two cases.

Case 1. The sequence \(I_{k_1} \) has a single element, say \(\beta \), which is the first element of \(I \). In this case, write \(C \) for the sequence obtained from \(I \) by deleting its first element \(\beta \). By definition,
\[\sum_{\alpha \in I} a_\alpha = a_\beta + \left(\sum_{\alpha \in C} a_\alpha \right), \]
and
\[\sum_{k \in K} \left(\sum_{\alpha \in I_k} a_\alpha \right) = a_\beta + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_\alpha \right) \right). \]

Since \(|C| = n - 1 \), by the induction hypothesis, we have
\[\left(\sum_{\alpha \in C} a_\alpha \right) = \sum_{j \in J} \left(\sum_{\alpha \in I_j} a_\alpha \right), \]
which yields our identity.

Case 2. The sequence \(I_{k_1} \) has at least two elements. In this case, let \(\beta \) be the first element of \(I \) (and thus of \(I_{k_1} \)), let \(I' \) be the sequence obtained from \(I \) by deleting its first element \(\beta \), let \(I'_{k_1} \) be the sequence obtained from \(I_{k_1} \) by deleting its first element \(\beta \), and let \(I'_{k_i} = I_{k_i} \) for \(i = 2, \ldots, p \). Recall that \(J = (k_2, \ldots, k_p) \) and \(K = (k_1, \ldots, k_p) \). The sequence \(I' \) has \(n - 1 \) elements, so by the induction hypothesis applied to \(I' \) and the \(I'_{k_1} \), we get
\[\sum_{\alpha \in I'} a_\alpha = \sum_{k \in K} \left(\sum_{\alpha \in I'_k} a_\alpha \right) = \left(\sum_{\alpha \in I'_{k_1}} a_\alpha \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_\alpha \right) \right). \]
2.3. INDEXED FAMILIES; THE SUM NOTATION $\sum_{i \in I} a_i$

If we add the lefthand side to a_β, by definition we get

$$\sum_{\alpha \in I} a_\alpha.$$

If we add the righthand side to a_β, using associativity and the definition of an indexed sum, we get

$$a_\beta + \left(\left(\sum_{\alpha \in I_1'} a_\alpha \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_\alpha \right) \right) \right) = \left(\sum_{\alpha \in I_1} a_\alpha \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_\alpha \right) \right) = \sum_{k \in K} \left(\sum_{\alpha \in I_k} a_\alpha \right),$$

as claimed. \qed

If $I = (1, \ldots, n)$, we also write $\sum_{i=1}^n a_i$ instead of $\sum_{i \in I} a_i$. Since $+$ is associative, Proposition 2.1 shows that the sum $\sum_{i=1}^n a_i$ is independent of the grouping of its elements, which justifies the use the notation $a_1 + \cdots + a_n$ (without any parentheses).

If we also assume that our associative binary operation on A is commutative, then we can show that the sum $\sum_{i \in I} a_i$ does not depend on the ordering of the index set I.

Proposition 2.2. Given any nonempty set A equipped with an associative and commutative binary operation $+: A \times A \to A$, for any two nonempty finite sequences I and J of distinct natural numbers such that J is a permutation of I (in other words, the underlying sets of I and J are identical), for every sequence $(a_i)_{i \in I}$ of elements in A, we have

$$\sum_{\alpha \in I} a_\alpha = \sum_{\alpha \in J} a_\alpha.$$

Proof. We proceed by induction on the number p of elements in I. If $p = 1$, we have $I = J$ and the proposition holds trivially.

If $p > 1$, to simplify notation, assume that $I = (1, \ldots, p)$ and that J is a permutation (i_1, \ldots, i_p) of I. First, assume that $2 \le i_1 \le p - 1$, let J' be the sequence obtained from J by deleting i_1, I' be the sequence obtained from I by deleting i_1, and let $P = (1, 2, \ldots, i_1 - 1)$ and $Q = (i_1 + 1, \ldots, p - 1, p)$. Observe that the sequence I' is the concatenation of the sequences P and Q. By the induction hypothesis applied to J' and I', and then by Proposition 2.1 applied to I' and its partition (P, Q), we have

$$\sum_{\alpha \in J'} a_\alpha = \sum_{\alpha \in I'} a_\alpha = \left(\sum_{i=1}^{i_1 - 1} a_i \right) + \left(\sum_{i=i_1 + 1}^p a_i \right).$$
If we add the lefthand side to a_{i_1}, by definition we get
\[\sum_{\alpha \in J} a_\alpha. \]
If we add the righthand side to a_{i_1}, we get
\[a_{i_1} + \left(\sum_{i=1}^{i_1-1} a_i + \left(\sum_{i=i_1+1}^{p} a_i \right) \right). \]
Using associativity, we get
\[a_{i_1} + \left(\left(\sum_{i=1}^{i_1-1} a_i \right) + \left(\sum_{i=i_1+1}^{p} a_i \right) \right) = \left(a_{i_1} + \sum_{i=1}^{i_1-1} a_i \right) + \left(\sum_{i=i_1+1}^{p} a_i \right), \]
then using associativity and commutativity several times (more rigorously, using induction on $i_1 - 1$), we get
\[\left(a_{i_1} + \sum_{i=1}^{i_1-1} a_i \right) + \left(\sum_{i=i_1+1}^{p} a_i \right) = \sum_{i=1}^{p} a_i, \]
as claimed.

The cases where $i_1 = 1$ or $i_1 = p$ are treated similarly, but in a simpler manner since either $P = ()$ or $Q = ()$ (where () denotes the empty sequence).

Having done all this, we can now make sense of sums of the form $\sum_{i \in I} a_i$, for any finite indexed set I and any family $a = (a_i)_{i \in I}$ of elements in A, where A is a set equipped with a binary operation $+$ which is associative and commutative.

Indeed, since I is finite, it is in bijection with the set $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, and any total ordering \preceq on I corresponds to a permutation I_{\preceq} of $\{1, \ldots, n\}$ (where we identify a permutation with its image). For any total ordering \preceq on I, we define $\sum_{i \in I, \preceq} a_i$ as
\[\sum_{i \in I, \preceq} a_i = \sum_{j \in I_{\preceq}} a_j. \]
Then, for any other total ordering \preceq' on I, we have
\[\sum_{i \in I, \preceq'} a_i = \sum_{j \in I_{\preceq'}} a_j. \]
and since $I \preceq$ and $I \preceq'$ are different permutations of $\{1, \ldots, n\}$, by Proposition 2.2, we have
\[
\sum_{j \in I \preceq} a_j = \sum_{j \in I \preceq'} a_j.
\]
Therefore, the sum $\sum_{i \in I \preceq} a_i$ does not depend on the total ordering on I. We define the sum $\sum_{i \in I} a_i$ as the common value $\sum_{i \in I \preceq} a_i$ for all total orderings \preceq of I.

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that there possess bases. What this means is that in every vector space, E, there is some set of vectors, $\{e_1, \ldots, e_n\}$, such that every vector $v \in E$ can be written as a linear combination,
\[
v = \lambda_1 e_1 + \cdots + \lambda_n e_n,
\]
of the e_i, for some scalars, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Furthermore, the n-tuple, $(\lambda_1, \ldots, \lambda_n)$, as above is unique.

This description is fine when E has a finite basis, $\{e_1, \ldots, e_n\}$, but this is not always the case! For example, the vector space of real polynomials, $\mathbb{R}[X]$, does not have a finite basis but instead it has an infinite basis, namely
\[
1, X, X^2, \ldots, X^n, \ldots
\]
For simplicity, in this chapter, we will restrict our attention to vector spaces that have a finite basis (we say that they are finite-dimensional).

Given a set A, recall that an I-indexed family $(a_i)_{i \in I}$ of elements of A (for short, a family) is a function $a : I \to A$, or equivalently a set of pairs $\{(i, a_i) \mid i \in I\}$. We agree that when $I = \emptyset$, $(a_i)_{i \in I} = \emptyset$. A family $(a_i)_{i \in I}$ is finite if I is finite.

Remark: When considering a family $(a_i)_{i \in I}$, there is no reason to assume that I is ordered. The crucial point is that every element of the family is uniquely indexed by an element of I. Thus, unless specified otherwise, we do not assume that the elements of an index set are ordered.

Given two disjoint sets I and J, the union of two families $(u_i)_{i \in I}$ and $(v_j)_{j \in J}$, denoted as $(u_i)_{i \in I} \cup (v_j)_{j \in J}$, is the family $(w_k)_{k \in (I \cup J)}$ defined such that $w_k = u_k$ if $k \in I$, and $w_k = v_k$ if $k \in J$. Given a family $(u_i)_{i \in I}$ and any element v, we denote by $(u_i)_{i \in I} \cup_k (v)$ the family $(w_i)_{i \in I \cup \{k\}}$ defined such that, $w_i = u_i$ if $i \in I$, and $w_k = v$, where k is any index such that $k \notin I$. Given a family $(u_i)_{i \in I}$, a subfamily of $(u_i)_{i \in I}$ is a family $(u_j)_{j \in J}$ where J is any subset of I.

In this chapter, unless specified otherwise, it is assumed that all families of scalars are finite (i.e., their index set is finite).
Definition 2.3. Let E be a vector space. A vector $v \in E$ is a linear combination of a family $(u_i)_{i \in I}$ of elements of E iff there is a family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} such that

$$v = \sum_{i \in I} \lambda_i u_i.$$

When $I = \emptyset$, we stipulate that $v = 0$. (By Proposition 2.2, sums of the form $\sum_{i \in I} \lambda_i u_i$ are well defined.) We say that a family $(u_i)_{i \in I}$ is linearly independent iff for every family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R},

$$\sum_{i \in I} \lambda_i u_i = 0$$

implies that $\lambda_i = 0$ for all $i \in I$.

Equivalently, a family $(u_i)_{i \in I}$ is linearly dependent iff there is some family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} such that

$$\sum_{i \in I} \lambda_i u_i = 0$$

and $\lambda_j \neq 0$ for some $j \in I$.

We agree that when $I = \emptyset$, the family \emptyset is linearly independent.

Observe that defining linear combinations for families of vectors rather than for sets of vectors has the advantage that the vectors being combined need not be distinct. For example, for $I = \{1, 2, 3\}$ and the families (u, v, u) and $(\lambda_1, \lambda_2, \lambda_1)$, the linear combination

$$\sum_{i \in I} \lambda_i u_i = \lambda_1 u + \lambda_2 v + \lambda_1 u$$

makes sense. Using sets of vectors in the definition of a linear combination does not allow such linear combinations; this is too restrictive.

Unravelling Definition 2.3, a family $(u_i)_{i \in I}$ is linearly dependent iff either I consists of a single element, say i, and $u_i = 0$, or $|I| \geq 2$ and some u_j in the family can be expressed as a linear combination of the other vectors in the family. Indeed, in the second case, there is some family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} such that

$$\sum_{i \in I} \lambda_i u_i = 0$$

and $\lambda_j \neq 0$ for some $j \in I$,

and since $|I| \geq 2$, the set $I - \{j\}$ is nonempty and we get

$$u_j = \sum_{i \in (I-\{j\})} -\lambda_j^{-1} \lambda_i u_i.$$

Observe that one of the reasons for defining linear dependence for families of vectors rather than for sets of vectors is that our definition allows multiple occurrences of a vector. This is important because a matrix may contain identical columns, and we would like to say
that these columns are linearly dependent. The definition of linear dependence for sets does not allow us to do that.

The above also shows that a family \((u_i)_{i \in I}\) is linearly independent iff either \(I = \emptyset\), or \(I\) consists of a single element \(i\) and \(u_i \neq 0\), or \(|I| \geq 2\) and no vector \(u_j\) in the family can be expressed as a linear combination of the other vectors in the family.

When \(I\) is nonempty, if the family \((u_i)_{i \in I}\) is linearly independent, note that \(u_i \neq 0\) for all \(i \in I\). Otherwise, if \(u_i = 0\) for some \(i \in I\), then we get a nontrivial linear dependence \(\sum_{i \in I} \lambda_i u_i = 0\) by picking any nonzero \(\lambda_i\) and letting \(\lambda_k = 0\) for all \(k \in I\) with \(k \neq i\), since \(\lambda_i 0 = 0\). If \(|I| \geq 2\), we must also have \(u_i \neq u_j\) for all \(i, j \in I\) with \(i \neq j\), since otherwise we get a nontrivial linear dependence by picking \(\lambda_i = \lambda\) and \(\lambda_j = -\lambda\) for any nonzero \(\lambda\), and letting \(\lambda_k = 0\) for all \(k \in I\) with \(k \neq i, j\).

Thus, the definition of linear independence implies that a nontrivial linearly independent family is actually a set. This explains why certain authors choose to define linear independence for sets of vectors. The problem with this approach is that linear dependence, which is the logical negation of linear independence, is then only defined for sets of vectors. However, as we pointed out earlier, it is really desirable to define linear dependence for families allowing multiple occurrences of the same vector.

Example 2.3.

1. Any two distinct scalars \(\lambda, \mu \neq 0\) in \(\mathbb{R}\) are linearly dependent.

2. In \(\mathbb{R}^3\), the vectors \((1, 0, 0)\), \((0, 1, 0)\), and \((0, 0, 1)\) are linearly independent.

3. In \(\mathbb{R}^4\), the vectors \((1, 1, 1, 1)\), \((0, 1, 1, 1)\), \((0, 0, 1, 1)\), and \((0, 0, 0, 1)\) are linearly independent.

4. In \(\mathbb{R}^2\), the vectors \(u = (1, 1)\), \(v = (0, 1)\) and \(w = (2, 3)\) are linearly dependent, since

\[w = 2u + v. \]

When \(I\) is finite, we often assume that it is the set \(I = \{1, 2, \ldots, n\}\). In this case, we denote the family \((u_i)_{i \in I}\) as \((u_1, \ldots, u_n)\).

The notion of a subspace of a vector space is defined as follows.

Definition 2.4. Given a vector space \(E\), a subset \(F\) of \(E\) is a linear subspace (or subspace) of \(E\) iff \(F\) is nonempty and \(\lambda u + \mu v \in F\) for all \(u, v \in F\), and all \(\lambda, \mu \in \mathbb{R}\).

It is easy to see that a subspace \(F\) of \(E\) is indeed a vector space, since the restriction of \(+ : E \times E \to E\) to \(F \times F\) is indeed a function \(+ : F \times F \to F\), and the restriction of \(\cdot : \mathbb{R} \times E \to E\) to \(\mathbb{R} \times F\) is indeed a function \(\cdot : \mathbb{R} \times F \to F\).

It is also easy to see that any intersection of subspaces is a subspace.
Since F is nonempty, if we pick any vector $u \in F$ and if we let $\lambda = \mu = 0$, then $\lambda u + \mu u = 0u + 0u = 0$, so every subspace contains the vector 0. For any nonempty finite index set I, one can show by induction on the cardinality of I that if $(u_i)_{i \in I}$ is any family of vectors $u_i \in F$ and $(\lambda_i)_{i \in I}$ is any family of scalars, then $\sum_{i \in I} \lambda_i u_i \in F$.

The subspace $\{0\}$ will be denoted by (0), or even 0 (with a mild abuse of notation).

Example 2.4.

1. In \mathbb{R}^2, the set of vectors $u = (x, y)$ such that

 $$x + y = 0$$

 is a subspace.

2. In \mathbb{R}^3, the set of vectors $u = (x, y, z)$ such that

 $$x + y + z = 0$$

 is a subspace.

3. For any $n \geq 0$, the set of polynomials $f(X) \in \mathbb{R}[X]$ of degree at most n is a subspace of $\mathbb{R}[X]$.

4. The set of upper triangular $n \times n$ matrices is a subspace of the space of $n \times n$ matrices.

Proposition 2.3. Given any vector space E, if S is any nonempty subset of E, then the smallest subspace $\langle S \rangle$ (or $\text{Span}(S)$) of E containing S is the set of all (finite) linear combinations of elements from S.

Proof. We prove that the set $\text{Span}(S)$ of all linear combinations of elements of S is a subspace of E, leaving as an exercise the verification that every subspace containing S also contains $\text{Span}(S)$.

First, $\text{Span}(S)$ is nonempty since it contains S (which is nonempty). If $u = \sum_{i \in I} \lambda_i u_i$ and $v = \sum_{j \in J} \mu_j v_j$ are any two linear combinations in $\text{Span}(S)$, for any two scalars $\lambda, \mu \in \mathbb{R}$,

$$\lambda u + \mu v = \lambda \sum_{i \in I} \lambda_i u_i + \mu \sum_{j \in J} \mu_j v_j = \sum_{i \in I} \lambda \lambda_i u_i + \sum_{j \in J} \mu \mu_j v_j = \sum_{i \in I \cup J} \lambda \lambda_i u_i + \sum_{i \in I \cap J} (\lambda \lambda_i + \mu \mu_i) u_i + \sum_{j \in J \setminus I} \mu \mu_j v_j,$$

which is a linear combination with index set $I \cup J$, and thus $\lambda u + \mu v \in \text{Span}(S)$, which proves that $\text{Span}(S)$ is a subspace. \qed
2.5 BASES OF A VECTOR SPACE

One might wonder what happens if we add extra conditions to the coefficients involved in forming linear combinations. Here are three natural restrictions which turn out to be important (as usual, we assume that our index sets are finite):

1. Consider combinations \(\sum_{i \in I} \lambda_i u_i \) for which
 \[
 \sum_{i \in I} \lambda_i = 1.
 \]
 These are called **affine combinations**. One should realize that every linear combination \(\sum_{i \in I} \lambda_i u_i \) can be viewed as an affine combination. For example, if \(k \) is an index not in \(I \), if we let \(J = I \cup \{k\} \), \(u_k = 0 \), and \(\lambda_k = 1 - \sum_{i \in I} \lambda_i \), then \(\sum_{j \in J} \lambda_j u_j \) is an affine combination and
 \[
 \sum_{i \in I} \lambda_i u_i = \sum_{j \in J} \lambda_j u_j.
 \]
 However, we get new spaces. For example, in \(\mathbb{R}^3 \), the set of all affine combinations of the three vectors \(e_1 = (1,0,0), e_2 = (0,1,0), \) and \(e_3 = (0,0,1) \), is the plane passing through these three points. Since it does not contain \(0 = (0,0,0) \), it is not a linear subspace.

2. Consider combinations \(\sum_{i \in I} \lambda_i u_i \) for which
 \[
 \lambda_i \geq 0, \quad \text{for all } i \in I.
 \]
 These are called **positive** (or **conic**) **combinations**. It turns out that positive combinations of families of vectors are **cones**. They show up naturally in convex optimization.

3. Consider combinations \(\sum_{i \in I} \lambda_i u_i \) for which we require (1) and (2), that is
 \[
 \sum_{i \in I} \lambda_i = 1, \quad \text{and} \quad \lambda_i \geq 0 \quad \text{for all } i \in I.
 \]
 These are called **convex combinations**. Given any finite family of vectors, the set of all convex combinations of these vectors is a **convex polyhedron**. Convex polyhedra play a very important role in convex optimization.

2.5 Bases of a Vector Space

Given a vector space \(E \), given a family \((v_i)_{i \in I} \), the subset \(V \) of \(E \) consisting of the null vector \(0 \) and of all linear combinations of \((v_i)_{i \in I} \) is easily seen to be a subspace of \(E \). The family \((v_i)_{i \in I} \) is an economical way of representing the entire subspace \(V \), but such a family would be even nicer if it was not redundant. Subspaces having such an “efficient” generating family (called a basis) play an important role, and motivate the following definition.
Definition 2.5. Given a vector space E and a subspace V of E, a family $(v_i)_{i \in I}$ of vectors $v_i \in V$ spans V or generates V iff for every $v \in V$, there is some family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} such that

$$v = \sum_{i \in I} \lambda_i v_i.$$

We also say that the elements of $(v_i)_{i \in I}$ are generators of V and that V is spanned by $(v_i)_{i \in I}$, or generated by $(v_i)_{i \in I}$. If a subspace V of E is generated by a finite family $(v_i)_{i \in I}$, we say that V is finitely generated. A family $(u_i)_{i \in I}$ that spans V and is linearly independent is called a basis of V.

Example 2.5.

1. In \mathbb{R}^3, the vectors $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$ form a basis.

2. The vectors $(1, 1, 1, 1), (1, 1, -1, -1), (1, -1, 0, 0), (0, 0, 1, -1)$ form a basis of \mathbb{R}^4 known as the Haar basis. This basis and its generalization to dimension 2^n are crucial in wavelet theory.

3. In the subspace of polynomials in $\mathbb{R}[X]$ of degree at most n, the polynomials $1, X, X^2, \ldots, X^n$ form a basis.

4. The Bernstein polynomials $\binom{n}{k} (1 - X)^{n-k} X^k$ for $k = 0, \ldots, n$, also form a basis of that space. These polynomials play a major role in the theory of spline curves.

The first key result of linear algebra that every vector space E has a basis. We begin with a crucial lemma which formalizes the mechanism for building a basis incrementally.

Lemma 2.4. Given a linearly independent family $(u_i)_{i \in I}$ of elements of a vector space E, if $v \in E$ is not a linear combination of $(u_i)_{i \in I}$, then the family $(u_i)_{i \in I} \cup_k \{v\}$ obtained by adding v to the family $(u_i)_{i \in I}$ is linearly independent (where $k \notin I$).

Proof. Assume that $\mu v + \sum_{i \in I} \lambda_i u_i = 0$, for any family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R}. If $\mu \neq 0$, then μ has an inverse (because \mathbb{R} is a field), and thus we have $v = -\sum_{i \in I} (\mu^{-1} \lambda_i) u_i$, showing that v is a linear combination of $(u_i)_{i \in I}$ and contradicting the hypothesis. Thus, $\mu = 0$. But then, we have $\sum_{i \in I} \lambda_i u_i = 0$, and since the family $(u_i)_{i \in I}$ is linearly independent, we have $\lambda_i = 0$ for all $i \in I$. \qed

The next theorem holds in general, but the proof is more sophisticated for vector spaces that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem for finitely generated vector spaces.

Theorem 2.5. Given any finite family $S = (u_i)_{i \in I}$ generating a vector space E and any linearly independent subfamily $L = (u_j)_{j \in J}$ of S (where $J \subseteq I$), there is a basis B of E such that $L \subseteq B \subseteq S$.

2.5. BASES OF A VECTOR SPACE

Proof. Consider the set of linearly independent families \(B \) such that \(L \subseteq B \subseteq S \). Since this set is nonempty and finite, it has some maximal element (that is, a subfamily \(B = (u_h)_{h \in H} \) of \(S \) with \(H \subseteq I \) of maximum cardinality), say \(B = (u_h)_{h \in H} \). We claim that \(B \) generates \(E \). Indeed, if \(B \) does not generate \(E \), then there is some \(u_p \in S \) that is not a linear combination of vectors in \(B \) (since \(S \) generates \(E \)), with \(p \notin H \). Then, by Lemma 2.4, the family \(B' = (u_h)_{h \in H \cup \{p\}} \) is linearly independent, and since \(L \subseteq B \subseteq B' \subseteq S \), this contradicts the maximality of \(B \). Thus, \(B \) is a basis of \(E \) such that \(L \subseteq B \subseteq S \).

Remark: Theorem 2.5 also holds for vector spaces that are not finitely generated. In this case, the problem is to guarantee the existence of a maximal linearly independent family \(B \) such that \(L \subseteq B \subseteq S \). The existence of such a maximal family can be shown using Zorn’s lemma. A situation where the full generality of Theorem 2.5 is needed is the case of the vector space \(\mathbb{R} \) over the field of coefficients \(\mathbb{Q} \). The numbers 1 and \(\sqrt{2} \) are linearly independent over \(\mathbb{Q} \), so according to Theorem 2.5, the linearly independent family \(L = (1, \sqrt{2}) \) can be extended to a basis \(B \) of \(\mathbb{R} \). Since \(\mathbb{R} \) is uncountable and \(\mathbb{Q} \) is countable, such a basis must be uncountable!

The notion of a basis can also be defined in terms of the notion of maximal linearly independent family, and minimal generating family.

Definition 2.6. Let \((v_i)_{i \in I}\) be a family of vectors in a vector space \(E \). We say that \((v_i)_{i \in I}\) a \textbf{maximal linearly independent family of} \(E \) if it is linearly independent, and if for any vector \(w \in E \), the family \((v_i)_{i \in I} \cup \{w\}\) obtained by adding \(w \) to the family \((v_i)_{i \in I}\) is linearly dependent. We say that \((v_i)_{i \in I}\) a \textbf{minimal generating family of} \(E \) if it spans \(E \), and if for any index \(p \in I \), the family \((v_i)_{i \in I \setminus \{p\}}\) obtained by removing \(v_p \) from the family \((v_i)_{i \in I}\) does not span \(E \).

The following proposition giving useful properties characterizing a basis is an immediate consequence of Lemma 2.4.

Proposition 2.6. Given a vector space \(E \), for any family \(B = (v_i)_{i \in I} \) of vectors of \(E \), the following properties are equivalent:

1. \(B \) is a basis of \(E \).
2. \(B \) is a maximal linearly independent family of \(E \).
3. \(B \) is a minimal generating family of \(E \).

Proof. Assume (1). Since \(B \) is a basis, it is a linearly independent family. We claim that \(B \) is a maximal linearly independent family. If \(B \) is not a maximal linearly independent family, then there is some vector \(w \in E \) such that the family \(B' \) obtained by adding \(w \) to \(B \) is linearly independent. However, since \(B \) is a basis of \(E \), the vector \(w \) can be expressed as a linear combination of vectors in \(B \), contradicting the fact that \(B' \) is linearly independent.
Conversely, assume (2). We claim that B spans E. If B does not span E, then there is some vector $w \in E$ which is not a linear combination of vectors in B. By Lemma 2.4, the family B' obtained by adding w to B is linearly independent. Since B is a proper subfamily of B', this contradicts the assumption that B is a maximal linearly independent family. Therefore, B must span E, and since B is also linearly independent, it is a basis of E.

Again, assume (1). Since B is a basis, it is a generating family of E. We claim that B is a minimal generating family. If B is not a minimal generating family, then there is a proper subfamily B' of B that spans E. Then, every $w \in B - B'$ can be expressed as a linear combination of vectors from B', contradicting the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B is not linearly independent, then some vector $w \in B$ can be expressed as a linear combination of vectors in $B' = B - \{w\}$. Since B generates E, the family B' also generates E, but B' is a proper subfamily of B, contradicting the minimality of B. Since B spans E and is linearly independent, it is a basis of E.

The second key result of linear algebra that for any two bases $(u_i)_{i \in I}$ and $(v_j)_{j \in J}$ of a vector space E, the index sets I and J have the same cardinality. In particular, if E has a finite basis of n elements, every basis of E has n elements, and the integer n is called the dimension of the vector space E.

To prove the second key result, we can use the following replacement lemma due to Steinitz. This result shows the relationship between finite linearly independent families and finite families of generators of a vector space. We begin with a version of the lemma which is a bit informal, but easier to understand than the precise and more formal formulation given in Proposition 2.8. The technical difficulty has to do with the fact that some of the indices need to be renamed.

Proposition 2.7. (Replacement lemma, version 1) Given a vector space E, let (u_1, \ldots, u_m) be any finite linearly independent family in E, and let (v_1, \ldots, v_n) be any finite family such that every u_i is a linear combination of (v_1, \ldots, v_n). Then, we must have $m \leq n$, and there is a replacement of m of the vectors v_j by (u_1, \ldots, u_m), such that after renaming some of the indices of the v_js, the families $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and (v_1, \ldots, v_n) generate the same subspace of E.

Proof. We proceed by induction on m. When $m = 0$, the family (u_1, \ldots, u_m) is empty, and the proposition holds trivially. For the induction step, we have a linearly independent family $(u_1, \ldots, u_m, u_{m+1})$. Consider the linearly independent family (u_1, \ldots, u_m). By the induction hypothesis, $m \leq n$, and there is a replacement of m of the vectors v_j by (u_1, \ldots, u_m), such that after renaming some of the indices of the vs, the families $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and (v_1, \ldots, v_n) generate the same subspace of E. The vector u_{m+1} can also be expressed as a linear combination of (v_1, \ldots, v_n), and since $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and (v_1, \ldots, v_n) generate the same subspace, u_{m+1} can be expressed as a linear combination of $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$. Since u_{m+1} is a linear combination of the other vectors, we can rename the indices of the vs to match the indices of the us, obtaining the desired result.
2.5. BASES OF A VECTOR SPACE

\[u_{m+1} = \sum_{i=1}^{m} \lambda_i u_i + \sum_{j=m+1}^{n} \lambda_j v_j. \]

We claim that \(\lambda_j \neq 0 \) for some \(j \) with \(m + 1 \leq j \leq n \), which implies that \(m + 1 \leq n \).
Otherwise, we would have
\[u_{m+1} = \sum_{i=1}^{m} \lambda_i u_i, \]
a nontrivial linear dependence of the \(u_i \), which is impossible since \((u_1, \ldots, u_{m+1}) \) are linearly independent.
Therefore \(m + 1 \leq n \), and after renaming indices if necessary, we may assume that \(\lambda_{m+1} \neq 0 \), so we get
\[v_{m+1} = -\sum_{i=1}^{m} (\lambda_{m+1}^{-1} \lambda_i) u_i - \lambda_{m+1}^{-1} u_{m+1} - \sum_{j=m+2}^{n} (\lambda_{m+1}^{-1} \lambda_j) v_j. \]
Observing that the families \((u_1, \ldots, u_m, v_{m+1}, \ldots, v_n) \) and \((u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n) \) generate the same subspace, since \(u_{m+1} \) is a linear combination of \((u_1, \ldots, u_m, v_{m+1}, \ldots, v_n) \) and \(v_{m+1} \) is a linear combination of \((u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n) \). Since \((u_1, \ldots, u_m, v_{m+1}, \ldots, v_n) \) and \((v_1, \ldots, v_n) \) generate the same subspace, we conclude that \((u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n) \) and \((v_1, \ldots, v_n) \) generate the same subspace, which concludes the induction hypothesis. \(\square \)

Here is an example illustrating the replacement lemma. Consider the sequences \((u_1, u_2, u_3) \) and \((v_1, v_2, v_3, v_4, v_5) \) where \((u_1, u_2, u_3) \) is a linearly independent family and with the \(u_i \)s expressed in terms of the \(v_j \)s as follows:
\[
\begin{align*}
 u_1 &= v_4 + v_5 \\
 u_2 &= v_3 + v_4 - v_5 \\
 u_3 &= v_1 + v_2 + v_3.
\end{align*}
\]

From the first equation we get
\[v_4 = u_1 - v_5, \]
and by substituting in the second equation we have
\[u_2 = v_3 + v_4 - v_5 = v_3 + u_1 - v_5 - v_5 = u_1 + v_3 - 2v_5. \]
From the above equation we get
\[v_3 = -u_1 + u_2 + 2v_5, \]
and so
\[u_3 = v_1 + v_2 + v_3 = v_1 + v_2 - u_1 + u_2 + 2v_5. \]
Finally, we get
\[v_1 = u_1 - u_2 + u_3 - v_2 - 2v_5 \]

Therefore we have
\[
\begin{align*}
 v_1 &= u_1 - u_2 + u_3 - v_2 - 2v_5 \\
 v_3 &= -u_1 + u_2 + 2v_5 \\
 v_4 &= u_1 - v_5,
\end{align*}
\]

which shows that \((u_1, u_2, u_3, v_2, v_5)\) spans the same subspace as \((v_1, v_2, v_3, v_4, v_5)\). The vectors \((v_1, v_3, v_4)\) have been replaced by \((u_1, u_2, u_3)\), and the vectors left over are \((v_2, v_5)\). We can rename them \((v_4, v_5)\).

For the sake of completeness, here is a more formal statement of the replacement lemma (and its proof).

Proposition 2.8. (Replacement lemma, version 2) Given a vector space \(E\), let \((u_i)_{i \in I}\) be any finite linearly independent family in \(E\), where \(|I| = m\), and let \((v_j)_{j \in J}\) be any finite family such that every \(u_i\) is a linear combination of \((v_j)_{j \in J}\), where \(|J| = n\). Then, there exists a set \(L\) and an injection \(\rho: L \to J\) (a relabeling function) such that \(L \cap I = \emptyset\), \(|L| = n - m\), and the families \((u_i)_{i \in I} \cup (v_{\rho(l)})_{l \in L}\) and \((v_j)_{j \in J}\) generate the same subspace of \(E\). In particular, \(m \leq n\).

Proof. We proceed by induction on \(|I| = m\). When \(m = 0\), the family \((u_i)_{i \in I}\) is empty, and the proposition holds trivially with \(L = J\) (\(\rho\) is the identity). Assume \(|I| = m + 1\). Consider the linearly independent family \((u_i)_{i \in (I - \{p\})}\), where \(p\) is any member of \(I\). By the induction hypothesis, there exists a set \(L\) and an injection \(\rho: L \to J\) such that \(L \cap I = \emptyset\), \(|L| = n - m\), and the families \((u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}\) and \((v_j)_{j \in J}\) generate the same subspace of \(E\). If \(p \in L\), we can replace \(L\) by \((L - \{p\}) \cup \{p'\}\) where \(p'\) does not belong to \(I \cup L\), and replace \(\rho\) by the injection \(\rho'\) which agrees with \(\rho\) on \(L - \{p\}\) and such that \(\rho'(p') = \rho(p)\). Thus, we can always assume that \(L \cap I = \emptyset\). Since \(u_p\) is a linear combination of \((v_j)_{j \in J}\) and the families \((u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}\) and \((v_j)_{j \in J}\) generate the same subspace of \(E\), \(u_p\) is a linear combination of \((u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}\). Let
\[
 u_p = \sum_{i \in (I - \{p\})} \lambda_i u_i + \sum_{l \in L} \lambda_l v_{\rho(l)}.
\]

If \(\lambda_l = 0\) for all \(l \in L\), we have
\[
 \sum_{i \in (I - \{p\})} \lambda_i u_i - u_p = 0,
\]
contradicting the fact that \((u_i)_{i \in I}\) is linearly independent. Thus, \(\lambda_l \neq 0\) for some \(l \in L\), say \(l = q\). Since \(\lambda_q \neq 0\), we have
\[
 v_{\rho(q)} = \sum_{i \in (I - \{p\})} (-\lambda_q^{-1}\lambda_i) u_i + \lambda_q^{-1} u_p + \sum_{l \in (L - \{q\})} (-\lambda_q^{-1}\lambda_l) v_{\rho(l)}.
\]
We claim that the families \((u_i)_{i \in (I-\{p\})} \cup (v_{\rho(l)})_{l \in L}\) and \((u_i)_{i \in I} \cup (v_{\rho(l)})_{l \in (L-\{q\})}\) generate the same subset of \(E\). Indeed, the second family is obtained from the first by replacing \(v_{\rho(q)}\) by \(u_p\), and vice-versa, and \(u_p\) is a linear combination of \((u_i)_{i \in (I-\{p\})} \cup (v_{\rho(l)})_{l \in L}\), by (1), and \(v_{\rho(q)}\) is a linear combination of \((u_i)_{i \in I} \cup (v_{\rho(l)})_{l \in (L-\{q\})}\), by (2). Thus, the families \((u_i)_{i \in I} \cup (v_{\rho(l)})_{l \in (L-\{q\})}\) and \((v_j)_{j \in J}\) generate the same subspace of \(E\), and the proposition holds for \(L-\{q\}\) and the restriction of the injection \(\rho: L \to J\) to \(L-\{q\}\), since \(L \cap I = \emptyset\) and \(|L - \{q\}| = n - m\) imply that \((L - \{q\}) \cap I = \emptyset\) and \(|L - \{q\}| = n - (m + 1)\). \(\square\)

The idea is that \(m\) of the vectors \(v_j\) can be replaced by the linearly independent \(u_i\)'s in such a way that the same subspace is still generated. The purpose of the function \(\rho: L \to J\) is to pick \(n - m\) elements \(j_1, \ldots, j_{n-m}\) of \(J\) and to relabel them \(l_1, \ldots, l_{n-m}\) in such a way that these new indices do not clash with the indices in \(I\); this way, the vectors \(v_{j_1}, \ldots, v_{j_{n-m}}\) who “survive” (i.e., are not replaced) are relabeled \(v_{l_1}, \ldots, v_{l_{n-m}}\), and the other \(m\) vectors \(v_j\) with \(j \in J - \{j_1, \ldots, j_{n-m}\}\) are replaced by the \(u_i\). The index set of this new family is \(I \cup L\).

Actually, one can prove that Proposition 2.8 implies Theorem 2.5 when the vector space is finitely generated. Putting Theorem 2.5 and Proposition 2.8 together, we obtain the following fundamental theorem.

Theorem 2.9. Let \(E\) be a finitely generated vector space. Any family \((u_i)_{i \in I}\) generating \(E\) contains a subfamily \((u_j)_{j \in J}\) which is a basis of \(E\). Any linearly independent family \((u_i)_{i \in I}\) can be extended to a family \((u_j)_{j \in J}\) which is a basis of \(E\) (with \(I \subseteq J\)). Furthermore, for every two bases \((u_i)_{i \in I}\) and \((v_j)_{j \in J}\) of \(E\), we have \(|I| = |J| = n\) for some fixed integer \(n \geq 0\).

Proof. The first part follows immediately by applying Theorem 2.5 with \(L = \emptyset\) and \(S = (u_i)_{i \in I}\). For the second part, consider the family \(S' = (u_i)_{i \in I} \cup (v_h)_{h \in H}\), where \((v_h)_{h \in H}\) is any finitely generated family generating \(E\), and with \(I \cap H = \emptyset\). Then, apply Theorem 2.5 to \(L = (u_i)_{i \in I}\) and to \(S'\). For the last statement, assume that \((u_i)_{i \in I}\) and \((v_j)_{j \in J}\) are bases of \(E\). Since \((u_i)_{i \in I}\) is linearly independent and \((v_j)_{j \in J}\) spans \(E\), Proposition 2.8 implies that \(|I| \leq |J|\). A symmetric argument yields \(|J| \leq |I|\). \(\square\)

Remark: Theorem 2.9 also holds for vector spaces that are not finitely generated.

Definition 2.7. When a vector space \(E\) is not finitely generated, we say that \(E\) is of infinite dimension. The **dimension** of a finitely generated vector space \(E\) is the common dimension \(n\) of all of its bases and is denoted by \(\text{dim}(E)\).

Clearly, if the field \(\mathbb{R}\) itself is viewed as a vector space, then every family \((a)\) where \(a \in \mathbb{R}\) and \(a \neq 0\) is a basis. Thus \(\text{dim}(\mathbb{R}) = 1\). Note that \(\text{dim}(\{0\}) = 0\).

Definition 2.8. If \(E\) is a vector space of dimension \(n \geq 1\), for any subspace \(U\) of \(E\), if \(\text{dim}(U) = 1\), then \(U\) is called a **line**; if \(\text{dim}(U) = 2\), then \(U\) is called a **plane**; if \(\text{dim}(U) = n-1\), then \(U\) is called a **hyperplane**. If \(\text{dim}(U) = k\), then \(U\) is sometimes called a **k-plane**.
Let \((u_i)_{i \in I}\) be a basis of a vector space \(E\). For any vector \(v \in E\), since the family \((u_i)_{i \in I}\) generates \(E\), there is a family \((\lambda_i)_{i \in I}\) of scalars in \(\mathbb{R}\), such that
\[
v = \sum_{i \in I} \lambda_i u_i.
\]
A very important fact is that the family \((\lambda_i)_{i \in I}\) is unique.

Proposition 2.10. Given a vector space \(E\), let \((u_i)_{i \in I}\) be a family of vectors in \(E\). Let \(v \in E\), and assume that \(v = \sum_{i \in I} \lambda_i u_i\). Then, the family \((\lambda_i)_{i \in I}\) of scalars such that \(v = \sum_{i \in I} \lambda_i u_i\) is unique iff \((u_i)_{i \in I}\) is linearly independent.

Proof. First, assume that \((u_i)_{i \in I}\) is linearly independent. If \((\mu_i)_{i \in I}\) is another family of scalars in \(\mathbb{R}\) such that \(v = \sum_{i \in I} \mu_i u_i\), then we have
\[
\sum_{i \in I} (\lambda_i - \mu_i) u_i = 0,
\]
and since \((u_i)_{i \in I}\) is linearly independent, we must have \(\lambda_i - \mu_i = 0\) for all \(i \in I\), that is, \(\lambda_i = \mu_i\) for all \(i \in I\). The converse is shown by contradiction. If \((u_i)_{i \in I}\) was linearly dependent, there would be a family \((\mu_i)_{i \in I}\) of scalars not all null such that
\[
\sum_{i \in I} \mu_i u_i = 0
\]
and \(\mu_j \neq 0\) for some \(j \in I\). But then,
\[
v = \sum_{i \in I} \lambda_i u_i + 0 = \sum_{i \in I} \lambda_i u_i + \sum_{i \in I} \mu_i u_i = \sum_{i \in I} (\lambda_i + \mu_i) u_i,
\]
with \(\lambda_j \neq \lambda_j + \mu_j\) since \(\mu_j \neq 0\), contradicting the assumption that \((\lambda_i)_{i \in I}\) is the unique family such that \(v = \sum_{i \in I} \lambda_i u_i\).

Definition 2.9. If \((u_i)_{i \in I}\) is a basis of a vector space \(E\), for any vector \(v \in E\), if \((x_i)_{i \in I}\) is the unique family of scalars in \(\mathbb{R}\) such that
\[
v = \sum_{i \in I} x_i u_i,
\]
each \(x_i\) is called the component (or coordinate) of index \(i\) of \(v\) with respect to the basis \((u_i)_{i \in I}\).

Many interesting mathematical structures are vector spaces. A very important example is the set of linear maps between two vector spaces to be defined in the next section. Here is an example that will prepare us for the vector space of linear maps.
Example 2.6. Let X be any nonempty set and let E be a vector space. The set of all functions $f: X \to E$ can be made into a vector space as follows: Given any two functions $f: X \to E$ and $g: X \to E$, let $(f + g): X \to E$ be defined such that
\[(f + g)(x) = f(x) + g(x)\]
for all $x \in X$, and for every $\lambda \in \mathbb{R}$, let $\lambda f: X \to E$ be defined such that
\[(\lambda f)(x) = \lambda f(x)\]
for all $x \in X$. The axioms of a vector space are easily verified. Now, let $E = \mathbb{R}$, and let I be the set of all nonempty subsets of X. For every $S \in I$, let $f_S: X \to E$ be the function such that $f_S(x) = 1$ iff $x \in S$, and $f_S(x) = 0$ iff $x \notin S$. We leave as an exercise to show that $(f_S)_{S \in I}$ is linearly independent.

2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this section we define matrices precisely, and also introduce some operations on matrices. It turns out that matrices form a vector space equipped with a multiplication operation which is associative, but noncommutative. We will explain in Section 3.1 how matrices can be used to represent linear maps, defined in the next section.

Definition 2.10. If $K = \mathbb{R}$ or $K = \mathbb{C}$, an $m \times n$-matrix over K is a family $(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ of scalars in K, represented by an array
\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

In the special case where $m = 1$, we have a row vector, represented by
\[(a_{11} \cdots a_{1n})\]
and in the special case where $n = 1$, we have a column vector, represented by
\[
\begin{bmatrix}
a_{11} \\
\vdots \\
a_{m1}
\end{bmatrix}
\]

In these last two cases, we usually omit the constant index 1 (first index in case of a row, second index in case of a column). The set of all $m \times n$-matrices is denoted by $M_{m,n}(K)$ or $M_{m,n}$. An $n \times n$-matrix is called a square matrix of dimension n. The set of all square matrices of dimension n is denoted by $M_n(K)$, or M_n.
Remark: As defined, a matrix \(A = (a_{ij})_{1\leq i \leq m, 1 \leq j \leq n}\) is a family, that is, a function from \(\{1,2,\ldots,m\} \times \{1,2,\ldots,n\}\) to \(K\). As such, there is no reason to assume an ordering on the indices. Thus, the matrix \(A\) can be represented in many different ways as an array, by adopting different orders for the rows or the columns. However, it is customary (and usually convenient) to assume the natural ordering on the sets \(\{1,2,\ldots,m\}\) and \(\{1,2,\ldots,n\}\), and to represent \(A\) as an array according to this ordering of the rows and columns.

We define some operations on matrices as follows.

Definition 2.11. Given two \(m \times n\) matrices \(A = (a_{ij})\) and \(B = (b_{ij})\), we define their sum \(A + B\) as the matrix \(C = (c_{ij})\) such that \(c_{ij} = a_{ij} + b_{ij}\); that is,

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} + \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m1} & b_{m2} & \cdots & b_{mn}
\end{pmatrix} = \begin{pmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
\end{pmatrix}.
\]

For any matrix \(A = (a_{ij})\), we let \(-A\) be the matrix \((-a_{ij})\). Given a scalar \(\lambda \in K\), we define the matrix \(\lambda A\) as the matrix \(C = (c_{ij})\) such that \(c_{ij} = \lambda a_{ij}\); that is,

\[
\lambda \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} = \begin{pmatrix}
\lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn}
\end{pmatrix}.
\]

Given an \(m \times n\) matrices \(A = (a_{ik})\) and an \(n \times p\) matrices \(B = (b_{kj})\), we define their product \(AB\) as the \(m \times p\) matrix \(C = (c_{ij})\) such that

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},
\]

for \(1 \leq i \leq m\), and \(1 \leq j \leq p\). In the product \(AB = C\) shown below

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1p} \\
b_{21} & b_{22} & \cdots & b_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{np}
\end{pmatrix} = \begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1p} \\
c_{21} & c_{22} & \cdots & c_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{mp}
\end{pmatrix},
\]
2.6. MATRICES

note that the entry of index i and j of the matrix AB obtained by multiplying the matrices A and B can be identified with the product of the row matrix corresponding to the i-th row of A with the column matrix corresponding to the j-column of B:

$$(a_{i1} \cdots a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Definition 2.12. The square matrix I_n of dimension n containing 1 on the diagonal and 0 everywhere else is called the **identity matrix**. It is denoted by

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Definition 2.13. Given an $m \times n$ matrix $A = (a_{ij})$, its **transpose** $A^\top = (a_{ji}^\top)$, is the $n \times m$-matrix such that $a_{ji}^\top = a_{ij}$, for all i, $1 \leq i \leq m$, and all j, $1 \leq j \leq n$.

The transpose of a matrix A is sometimes denoted by A^t, or even by tA. Note that the transpose A^\top of a matrix A has the property that the j-th row of A^\top is the j-th column of A. In other words, transposition exchanges the rows and the columns of a matrix.

The following observation will be useful later on when we discuss the SVD. Given any $m \times n$ matrix A and any $n \times p$ matrix B, if we denote the columns of A by A^1, \ldots, A^n and the rows of B by B_1, \ldots, B_n, then we have

$$AB = A^1 B_1 + \cdots + A^n B_n.$$

For every square matrix A of dimension n, it is immediately verified that $AI_n = I_n A = A$.

Definition 2.14. For any square matrix A of dimension n, if a matrix B such that $AB = BA = I_n$ exists, then it is unique, and it is called the **inverse** of A. The matrix B is also denoted by A^{-1}. An invertible matrix is also called a **nonsingular** matrix, and a matrix that is not invertible is called a **singular** matrix.

Using Proposition 2.15 and the fact that matrices represent linear maps, it can be shown that if a square matrix A has a left inverse, that is a matrix B such that $BA = I$, or a right inverse, that is a matrix C such that $AC = I$, then A is actually invertible; so $B = A^{-1}$ and $C = A^{-1}$. These facts also follow from Proposition 4.9.

It is immediately verified that the set $M_{m,n}(K)$ of $m \times n$ matrices is a **vector space** under addition of matrices and multiplication of a matrix by a scalar. Consider the $m \times n$-matrices
$E_{i,j} = (e_{h,k})$, defined such that $e_{i,j} = 1$, and $e_{h,k} = 0$, if $h \neq i$ or $k \neq j$. It is clear that every matrix $A = (a_{i,j}) \in M_{m,n}(K)$ can be written in a unique way as

$$A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j} E_{i,j}.$$

Thus, the family $(E_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n}$ is a basis of the vector space $M_{m,n}(K)$, which has dimension mn.

Remark: Definition 2.10 and Definition 2.11 also make perfect sense when K is a (commutative) ring rather than a field. In this more general setting, the framework of vector spaces is too narrow, but we can consider structures over a commutative ring A satisfying all the axioms of Definition 2.2. Such structures are called *modules*. The theory of modules is (much) more complicated than that of vector spaces. For example, modules do not always have a basis, and other properties holding for vector spaces usually fail for modules. When a module has a basis, it is called a *free module*. For example, when A is a commutative ring, the structure A^n is a module such that the vectors e_i, with $(e_i)_i = 1$ and $(e_i)_j = 0$ for $j \neq i$, form a basis of A^n. Many properties of vector spaces still hold for A^n. Thus, A^n is a free module. As another example, when A is a commutative ring, $M_{m,n}(A)$ is a free module with basis $(E_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n}$. Polynomials over a commutative ring also form a free module of infinite dimension.

The properties listed in Proposition 2.11 are easily verified, although some of the computations are a bit tedious. A more conceptual proof is given in Proposition 3.1.

Proposition 2.11. (1) Given any matrices $A \in M_{m,n}(K)$, $B \in M_{n,p}(K)$, and $C \in M_{p,q}(K)$, we have

$$(AB)C = A(BC);$$

that is, matrix multiplication is associative.

(2) Given any matrices $A, B \in M_{m,n}(K)$, and $C, D \in M_{n,p}(K)$, for all $\lambda \in K$, we have

$$(A + B)C = AC + BC$$

$$(\lambda A)C = \lambda (AC)$$

$$(\lambda A)(\lambda B) = \lambda (AB)$$

so that matrix multiplication $\cdot : M_{m,n}(K) \times M_{n,p}(K) \to M_{m,p}(K)$ is bilinear.
Example 2.7. For example, letting A, B be the 2×2-matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

and

$$BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Thus $AB \neq BA$, and $AB = 0$, even though both $A, B \neq 0$.

2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would like to be able to transform one vector space E into another vector space F. A function between two vector spaces that preserves the vector space structure is called a homomorphism of vector spaces, or linear map. Linear maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are transformations of space, are usually far more important than the spaces themselves.

In the rest of this section, we assume that all vector spaces are real vector spaces.

Definition 2.15. Given two vector spaces E and F, a linear map between E and F is a function $f: E \rightarrow F$ satisfying the following two conditions:

$$f(x + y) = f(x) + f(y) \quad \text{for all } x, y \in E;$$

$$f(\lambda x) = \lambda f(x) \quad \text{for all } \lambda \in \mathbb{R}, x \in E.$$

Setting $x = y = 0$ in the first identity, we get $f(0) = 0$. The basic property of linear maps is that they transform linear combinations into linear combinations. Given any finite family $(u_i)_{i \in I}$ of vectors in E, given any family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R}, we have

$$f\left(\sum_{i \in I} \lambda_i u_i\right) = \sum_{i \in I} \lambda_i f(u_i).$$

The above identity is shown by induction on $|I|$ using the properties of Definition 2.15.

Example 2.8.
1. The map \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined such that
\[
x' = x - y \\
y' = x + y
\]
is a linear map. The reader should check that it is the composition of a rotation by \(\pi/4 \) with a magnification of ratio \(\sqrt{2} \).

2. For any vector space \(E \), the identity map \(\text{id} : E \rightarrow E \) given by
\[
\text{id}(u) = u \quad \text{for all } u \in E
\]
is a linear map. When we want to be more precise, we write \(\text{id}_E \) instead of \(\text{id} \).

3. The map \(D : \mathbb{R}[X] \rightarrow \mathbb{R}[X] \) defined such that
\[
D(f(X)) = f'(X),
\]
where \(f'(X) \) is the derivative of the polynomial \(f(X) \), is a linear map.

4. The map \(\Phi : C([a,b]) \rightarrow \mathbb{R} \) given by
\[
\Phi(f) = \int_a^b f(t)dt,
\]
where \(C([a,b]) \) is the set of continuous functions defined on the interval \([a,b]\), is a linear map.

5. The function \(\langle - , - \rangle : C([a,b]) \times C([a,b]) \rightarrow \mathbb{R} \) given by
\[
\langle f, g \rangle = \int_a^b f(t)g(t)dt,
\]
is linear in each of the variable \(f, g \). It also satisfies the properties \(\langle f, g \rangle = \langle g, f \rangle \) and \(\langle f, f \rangle = 0 \) iff \(f = 0 \). It is an example of an inner product.

Definition 2.16. Given a linear map \(f : E \rightarrow F \), we define its image (or range) \(\text{Im} f = f(E) \), as the set
\[
\text{Im} f = \{ y \in F \mid (\exists x \in E)(y = f(x)) \},
\]
and its kernel (or nullspace) \(\text{Ker} f = f^{-1}(0) \), as the set
\[
\text{Ker} f = \{ x \in E \mid f(x) = 0 \}.
\]
2.7. LINEAR MAPS

The derivative map \(D: \mathbb{R}[X] \to \mathbb{R}[X] \) from Example 2.8(3) has kernel the constant polynomials, so \(\text{Ker} D = \mathbb{R} \). If we consider the second derivative \(D \circ D: \mathbb{R}[X] \to \mathbb{R}[X] \), then the kernel of \(D \circ D \) consists of all polynomials of degree \(\leq 1 \). The image of \(D: \mathbb{R}[X] \to \mathbb{R}[X] \) is actually \(\mathbb{R}[X] \) itself, because every polynomial \(P(X) = a_0X^n + \cdots + a_{n-1}X + a_n \) of degree \(n \) is the derivative of the polynomial \(Q(X) \) of degree \(n+1 \) given by

\[
Q(X) = a_0 \frac{X^{n+1}}{n+1} + \cdots + a_{n-1} \frac{X^2}{2} + a_n X.
\]

On the other hand, if we consider the restriction of \(D \) to the vector space \(\mathbb{R}[X]_n \) of polynomials of degree \(\leq n \), then the kernel of \(D \) is still \(\mathbb{R} \), but the image of \(D \) is the \(\mathbb{R}[X]_{n-1} \), the vector space of polynomials of degree \(\leq n-1 \).

Proposition 2.12. Given a linear map \(f: E \to F \), the set \(\text{Im } f \) is a subspace of \(F \) and the set \(\text{Ker } f \) is a subspace of \(E \). The linear map \(f: E \to F \) is injective iff \(\text{Ker } f = (0) \) (where \((0) \) is the trivial subspace \(\{0\} \)).

Proof. Given any \(x, y \in \text{Im } f \), there are some \(u, v \in E \) such that \(x = f(u) \) and \(y = f(v) \), and for all \(\lambda, \mu \in \mathbb{R} \), we have

\[
f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) = \lambda x + \mu y,
\]

and thus, \(\lambda x + \mu y \in \text{Im } f \), showing that \(\text{Im } f \) is a subspace of \(F \).

Given any \(x, y \in \text{Ker } f \), we have \(f(x) = 0 \) and \(f(y) = 0 \), and thus,

\[
f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = 0,
\]

that is, \(\lambda x + \mu y \in \text{Ker } f \), showing that \(\text{Ker } f \) is a subspace of \(E \).

First, assume that \(\text{Ker } f = (0) \). We need to prove that \(f(x) = f(y) \) implies that \(x = y \). However, if \(f(x) = f(y) \), then \(f(x) - f(y) = 0 \), and by linearity of \(f \) we get \(f(x - y) = 0 \). Because \(\text{Ker } f = (0) \), we must have \(x - y = 0 \), that is \(x = y \), so \(f \) is injective. Conversely, assume that \(f \) is injective. If \(x \in \text{Ker } f \), that is \(f(x) = 0 \), since \(f(0) = 0 \) we have \(f(x) = f(0) \), and by injectivity, \(x = 0 \), which proves that \(\text{Ker } f = (0) \). Therefore, \(f \) is injective iff \(\text{Ker } f = (0) \).

Since by Proposition 2.12, the image \(\text{Im } f \) of a linear map \(f \) is a subspace of \(F \), we can define the rank \(\text{rk}(f) \) of \(f \) as the dimension of \(\text{Im } f \).

Definition 2.17. Given a linear map \(f: E \to F \), the rank \(\text{rk}(f) \) of \(f \) is the dimension of the image \(\text{Im } f \) of \(f \).

A fundamental property of bases in a vector space is that they allow the definition of linear maps as unique homomorphic extensions, as shown in the following proposition.
Proposition 2.13. Given any two vector spaces E and F, given any basis $(u_i)_{i \in I}$ of E, given any other family of vectors $(v_i)_{i \in I}$ in F, there is a unique linear map $f : E \to F$ such that $f(u_i) = v_i$ for all $i \in I$. Furthermore, f is injective iff $(v_i)_{i \in I}$ is linearly independent, and f is surjective iff $(v_i)_{i \in I}$ generates F.

Proof. If such a linear map $f : E \to F$ exists, since $(u_i)_{i \in I}$ is a basis of E, every vector $x \in E$ can written uniquely as a linear combination

$$x = \sum_{i \in I} x_i u_i,$$

and by linearity, we must have

$$f(x) = \sum_{i \in I} x_i f(u_i) = \sum_{i \in I} x_i v_i,$$

Define the function $f : E \to F$, by letting

$$f(x) = \sum_{i \in I} x_i v_i$$

for every $x = \sum_{i \in I} x_i u_i$. It is easy to verify that f is indeed linear, it is unique by the previous reasoning, and obviously, $f(u_i) = v_i$.

Now, assume that f is injective. Let $(\lambda_i)_{i \in I}$ be any family of scalars, and assume that

$$\sum_{i \in I} \lambda_i v_i = 0.$$

Since $v_i = f(u_i)$ for every $i \in I$, we have

$$f(\sum_{i \in I} \lambda_i u_i) = \sum_{i \in I} \lambda_i f(u_i) = \sum_{i \in I} \lambda_i v_i = 0.$$

Since f is injective iff $\text{Ker } f = (0)$, we have

$$\sum_{i \in I} \lambda_i u_i = 0,$$

and since $(u_i)_{i \in I}$ is a basis, we have $\lambda_i = 0$ for all $i \in I$, which shows that $(v_i)_{i \in I}$ is linearly independent. Conversely, assume that $(v_i)_{i \in I}$ is linearly independent. Since $(u_i)_{i \in I}$ is a basis of E, every vector $x \in E$ is a linear combination $x = \sum_{i \in I} \lambda_i u_i$ of $(u_i)_{i \in I}$. If

$$f(x) = f(\sum_{i \in I} \lambda_i u_i) = 0,$$

then

$$\sum_{i \in I} \lambda_i v_i = \sum_{i \in I} \lambda_i f(u_i) = f(\sum_{i \in I} \lambda_i u_i) = 0,$$

and $\lambda_i = 0$ for all $i \in I$ because $(v_i)_{i \in I}$ is linearly independent, which means that $x = 0$. Therefore, $\text{Ker } f = (0)$, which implies that f is injective. The part where f is surjective is left as a simple exercise. \square
2.7. LINEAR MAPS

By the second part of Proposition 2.13, an injective linear map \(f : E \rightarrow F \) sends a basis \((u_i)_{i \in I}\) to a linearly independent family \((f(u_i))_{i \in I}\) of \(F\), which is also a basis when \(f\) is bijective. Also, when \(E\) and \(F\) have the same finite dimension \(n\), \((u_i)_{i \in I}\) is a basis of \(E\), and \(f : E \rightarrow F\) is injective, then \((f(u_i))_{i \in I}\) is a basis of \(F\) (by Proposition 2.6).

The following simple proposition is also useful.

Proposition 2.14. Given any two vector spaces \(E\) and \(F\), with \(F\) nontrivial, given any family \((u_i)_{i \in I}\) of vectors in \(E\), the following properties hold:

1. The family \((u_i)_{i \in I}\) generates \(E\) iff for every family of vectors \((v_i)_{i \in I}\) in \(F\), there is at most one linear map \(f : E \rightarrow F\) such that \(f(u_i) = v_i\) for all \(i \in I\).

2. The family \((u_i)_{i \in I}\) is linearly independent iff for every family of vectors \((v_i)_{i \in I}\) in \(F\), there is some linear map \(f : E \rightarrow F\) such that \(f(u_i) = v_i\) for all \(i \in I\).

Proof. (1) If there is any linear map \(f : E \rightarrow F\) such that \(f(u_i) = v_i\) for all \(i \in I\), since \((u_i)_{i \in I}\) generates \(E\), every vector \(x \in E\) can be written as some linear combination

\[
x = \sum_{i \in I} x_i u_i,
\]

and by linearity, we must have

\[
f(x) = \sum_{i \in I} x_i f(u_i) = \sum_{i \in I} x_i v_i.
\]

This shows that \(f\) is unique if it exists. Conversely, assume that \((u_i)_{i \in I}\) does not generate \(E\). Since \(F\) is nontrivial, there is some some vector \(y \in F\) such that \(y \neq 0\). Since \((u_i)_{i \in I}\) does not generate \(E\), there is some vector \(w \in E\) that is not in the subspace generated by \((u_i)_{i \in I}\). By Theorem 2.9, there is a linearly independent subfamily \((u_i)_{i \in I_0}\) of \((u_i)_{i \in I}\) generating the same subspace. Since by hypothesis, \(w \in E\) is not in the subspace generated by \((u_i)_{i \in I_0}\), by Lemma 2.4 and by Theorem 2.9 again, there is a basis \((e_j)_{j \in I_0 \cup J}\) of \(E\), such that \(e_i = u_i\) for all \(i \in I_0\), and \(w = e_{j_0}\) for some \(j_0 \in J\). Letting \((v_i)_{i \in I}\) be the family in \(F\) such that \(v_i = 0\) for all \(i \in I\), defining \(f : E \rightarrow F\) to be the constant linear map with value 0, we have a linear map such that \(f(u_i) = 0\) for all \(i \in I\). By Proposition 2.13, there is a unique linear map \(g : E \rightarrow F\) such that \(g(w) = y\), and \(g(e_j) = 0\) for all \(j \in (I_0 \cup J) - \{j_0\}\). By definition of the basis \((e_j)_{j \in I_0 \cup J}\) of \(E\), we have \(g(u_i) = 0\) for all \(i \in I\), and since \(f \neq g\), this contradicts the fact that there is at most one such map.

(2) If the family \((u_i)_{i \in I}\) is linearly independent, then by Theorem 2.9, \((u_i)_{i \in I}\) can be extended to a basis of \(E\), and the conclusion follows by Proposition 2.13. Conversely, assume that \((u_i)_{i \in I}\) is linearly dependent. Then, there is some family \((\lambda_i)_{i \in I}\) of scalars (not all zero) such that

\[
\sum_{i \in I} \lambda_i u_i = 0.
\]
By the assumption, for any nonzero vector $y \in F$, for every $i \in I$, there is some linear map $f_i : E \to F$, such that $f_i(u_i) = y$, and $f_i(u_j) = 0$, for $j \in I - \{i\}$. Then, we would get

$$0 = f_i(\sum_{i \in I} \lambda_i u_i) = \sum_{i \in I} \lambda_i f_i(u_i) = \lambda_i y,$$

and since $y \neq 0$, this implies $\lambda_i = 0$ for every $i \in I$. Thus, $(u_i)_{i \in I}$ is linearly independent. \qed

Given vector spaces E, F, and G, and linear maps $f : E \to F$ and $g : F \to G$, it is easily verified that the composition $g \circ f : E \to G$ of f and g is a linear map.

Definition 2.18. A linear map $f : E \to F$ is an isomorphism iff there is a linear map $g : F \to E$, such that

$$g \circ f = \text{id}_E \quad \text{and} \quad f \circ g = \text{id}_F. \quad (*)$$

The map g in Definition 2.18 is unique. This is because if g and h both satisfy $g \circ f = \text{id}_E$, $f \circ g = \text{id}_F$, $h \circ f = \text{id}_E$, and $f \circ h = \text{id}_F$, then

$$g = g \circ \text{id}_F = g \circ (f \circ h) = (g \circ f) \circ h = \text{id}_E \circ h = h.$$

The map g satisfying $(*)$ above is called the inverse of f and it is also denoted by f^{-1}.

Observe that Proposition 2.13 shows that if $F = \mathbb{R}^n$, then we get an isomorphism between any vector space E of dimension $|J| = n$ and \mathbb{R}^n. Proposition 2.13 also implies that if E and F are two vector spaces, $(u_i)_{i \in I}$ is a basis of E, and $f : E \to F$ is a linear map which is an isomorphism, then the family $(f(u_i))_{i \in I}$ is a basis of F.

One can verify that if $f : E \to F$ is a bijective linear map, then its inverse $f^{-1} : F \to E$, as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 2.13 is this:

Proposition 2.15. Let E be a vector space of finite dimension $n \geq 1$ and let $f : E \to E$ be any linear map. The following properties hold:

1. If f has a left inverse g, that is, if g is a linear map such that $g \circ f = \text{id}$, then f is an isomorphism and $f^{-1} = g$.

2. If f has a right inverse h, that is, if h is a linear map such that $f \circ h = \text{id}$, then f is an isomorphism and $f^{-1} = h$.

Proof. (1) The equation $g \circ f = \text{id}$ implies that f is injective; this is a standard result about functions (if $f(x) = f(y)$, then $g(f(x)) = g(f(y))$, which implies that $x = y$ since $g \circ f = \text{id}$). Let (u_1, \ldots, u_n) be any basis of E. By Proposition 2.13, since f is injective, $(f(u_1), \ldots, f(u_n))$ is linearly independent, and since E has dimension n, it is a basis of E (if $(f(u_1), \ldots, f(u_n))$ doesn’t span E, then it can be extended to a basis of dimension
strictly greater than \(n \), contradicting Theorem 2.9). Then, \(f \) is bijective, and by a previous observation its inverse is a linear map. We also have

\[
g = g \circ \text{id} = g \circ (f \circ f^{-1}) = (g \circ f) \circ f^{-1} = \text{id} \circ f^{-1} = f^{-1}.
\]

(2) The equation \(f \circ h = \text{id} \) implies that \(f \) is surjective; this is a standard result about functions (for any \(y \in E \), we have \(f(h(y)) = y \)). Let \((u_1, \ldots, u_n)\) be any basis of \(E \). By Proposition 2.13, since \(f \) is surjective, \((f(u_1), \ldots, f(u_n))\) spans \(E \), and since \(E \) has dimension \(n \), it is a basis of \(E \) (if \((f(u_1), \ldots, f(u_n))\) is not linearly independent, then because it spans \(E \), it contains a basis of dimension strictly smaller than \(n \), contradicting Theorem 2.9). Then, \(f \) is bijective, and by a previous observation its inverse is a linear map. We also have

\[
h = \text{id} \circ h = (f^{-1} \circ f) \circ h = f^{-1} \circ (f \circ h) = f^{-1} \circ \text{id} = f^{-1}.
\]

This completes the proof.

Definition 2.19. The set of all linear maps between two vector spaces \(E \) and \(F \) is denoted by \(\text{Hom}(E, F) \) or by \(\mathcal{L}(E; F) \) (the notation \(\mathcal{L}(E; F) \) is usually reserved to the set of continuous linear maps, where \(E \) and \(F \) are normed vector spaces). When we wish to be more precise and specify the field \(K \) over which the vector spaces \(E \) and \(F \) are defined we write \(\text{Hom}_K(E, F) \).

The set \(\text{Hom}(E, F) \) is a vector space under the operations defined in Example 2.6, namely

\[
(f + g)(x) = f(x) + g(x)
\]

for all \(x \in E \), and

\[
(\lambda f)(x) = \lambda f(x)
\]

for all \(x \in E \). The point worth checking carefully is that \(\lambda f \) is indeed a linear map, which uses the commutativity of \(* \) in the field \(K \) (typically, \(K = \mathbb{R} \) or \(K = \mathbb{C} \)). Indeed, we have

\[
(\lambda f)(\mu x) = \lambda f(\mu x) = \lambda \mu f(x) = \mu \lambda f(x) = \mu(\lambda f)(x).
\]

When \(E \) and \(F \) have finite dimensions, the vector space \(\text{Hom}(E, F) \) also has finite dimension, as we shall see shortly.

Definition 2.20. When \(E = F \), a linear map \(f : E \to E \) is also called an *endomorphism*. The space \(\text{Hom}(E, E) \) is also denoted by \(\text{End}(E) \).

It is also important to note that composition confers to \(\text{Hom}(E, E) \) a ring structure. Indeed, composition is an operation \(\circ : \text{Hom}(E, E) \times \text{Hom}(E, E) \to \text{Hom}(E, E) \), which is associative and has an identity \(\text{id}_E \), and the distributivity properties hold:

\[
(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f;
\]

\[
g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2.
\]

The ring \(\text{Hom}(E, E) \) is an example of a noncommutative ring.

It is easily seen that the set of bijective linear maps \(f : E \to E \) is a group under composition.
Definition 2.21. Bijective linear maps $f : E \to E$ are also called *automorphisms*. The group of automorphisms of E is called the *general linear group (of E)*, and it is denoted by $\text{GL}(E)$, or by $\text{Aut}(E)$, or when $E = \mathbb{R}^n$, by $\text{GL}(n, \mathbb{R})$, or even by $\text{GL}(n)$.

2.8 Linear Forms and the Dual Space

We already observed that the field K itself ($K = \mathbb{R}$ or $K = \mathbb{C}$) is a vector space (over itself). The vector space $\text{Hom}(E, K)$ of linear maps from E to the field K, the linear forms, plays a particular role. In this section, we only define linear forms and show that every finite-dimensional vector space has a dual basis. A more advanced presentation of dual spaces and duality is given in Chapter 9.

Definition 2.22. Given a vector space E, the vector space $\text{Hom}(E, K)$ of linear maps from E to the field K is called the *dual space (or dual)* of E. The space $\text{Hom}(E, K)$ is also denoted by E^*, and the linear maps in E^* are called the *linear forms*, or *covectors*. The dual space E^{**} of the space E^* is called the *bidual of E*.

As a matter of notation, linear forms $f : E \to K$ will also be denoted by starred symbol, such as u^*, x^*, etc.

If E is a vector space of finite dimension n and (u_1, \ldots, u_n) is a basis of E, for any linear form $f^* \in E^*$, for every $x = x_1u_1 + \cdots + x_nu_n \in E$, by linearity we have

$$f^*(x) = f^*(u_1)x_1 + \cdots + f^*(u_n)x_n = \lambda_1x_1 + \cdots + \lambda_nx_n,$$

with $\lambda_i = f^*(u_i) \in K$ for every $i, 1 \leq i \leq n$. Thus, with respect to the basis (u_1, \ldots, u_n), the linear form f^* is represented by the row vector

$$(\lambda_1 \cdots \lambda_n),$$

we have

$$f^*(x) = (\lambda_1 \cdots \lambda_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

a linear combination of the coordinates of x, and we can view the linear form f^* as a *linear equation*. If we decide to use a column vector of coefficients

$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

instead of a row vector, then the linear form f^* is defined by

$$f^*(x) = c^\top x.$$

The above notation is often used in machine learning.
Example 2.9. Given any differentiable function \(f: \mathbb{R}^n \to \mathbb{R} \), by definition, for any \(x \in \mathbb{R}^n \), the total derivative \(df_x \) of \(f \) at \(x \) is the linear form \(df_x: \mathbb{R}^n \to \mathbb{R} \) defined so that for all \(u = (u_1, \ldots, u_n) \in \mathbb{R}^n \),

\[
 df_x(u) = \left(\frac{\partial f}{\partial x_1}(x) \cdots \frac{\partial f}{\partial x_n}(x) \right) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) u_i.
\]

Example 2.10. Let \(\mathcal{C}([0,1]) \) be the vector space of continuous functions \(f: [0,1] \to \mathbb{R} \). The map \(\mathcal{I}: \mathcal{C}([0,1]) \to \mathbb{R} \) given by

\[
 \mathcal{I}(f) = \int_0^1 f(x) \, dx \quad \text{for any } f \in \mathcal{C}([0,1])
\]

is a linear form (integration).

Example 2.11. Consider the vector space \(M_n(\mathbb{R}) \) of real \(n \times n \) matrices. Let \(\text{tr}: M_n(\mathbb{R}) \to \mathbb{R} \) be the function given by

\[
 \text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn},
\]

called the trace of \(A \). It is a linear form. Let \(s: M_n(\mathbb{R}) \to \mathbb{R} \) be the function given by

\[
 s(A) = \sum_{i,j=1}^n a_{ij},
\]

where \(A = (a_{ij}) \). It is immediately verified that \(s \) is a linear form.

Given a vector space \(E \) and any basis \((u_i)_{i \in I} \) for \(E \), we can associate to each \(u_i \) a linear form \(u_i^* \in E^\ast \), and the \(u_i^* \) have some remarkable properties.

Definition 2.23. Given a vector space \(E \) and any basis \((u_i)_{i \in I} \) for \(E \), by Proposition 2.13, for every \(i \in I \), there is a unique linear form \(u_i^* \) such that

\[
 u_i^*(u_j) = \begin{cases}
 1 & \text{if } i = j \\
 0 & \text{if } i \neq j
 \end{cases}
\]

for every \(j \in I \). The linear form \(u_i^* \) is called the coordinate form of index \(i \) w.r.t. the basis \((u_i)_{i \in I} \).

Remark: Given an index set \(I \), authors often define the so called “Kronecker symbol” \(\delta_{i,j} \) such that

\[
 \delta_{i,j} = \begin{cases}
 1 & \text{if } i = j \\
 0 & \text{if } i \neq j
 \end{cases}
\]

for all \(i, j \in I \). Then, \(u_i^*(u_j) = \delta_{i,j} \).
The reason for the terminology *coordinate form* is as follows: If \(E \) has finite dimension and if \((u_1, \ldots, u_n)\) is a basis of \(E \), for any vector
\[
v = \lambda_1 u_1 + \cdots + \lambda_n u_n,
\]
we have
\[
u^*_i(v) = u^*_i(\lambda_1 u_1 + \cdots + \lambda_n u_n) = \lambda_1 u^*_i(u_1) + \cdots + \lambda_i u^*_i(u_i) + \cdots + \lambda_n u^*_i(u_n) = \lambda_i,
\]
since \(u^*_i(u_j) = \delta_{ij} \). Therefore, \(u^*_i \) is the linear function that returns the \(i \)th coordinate of a vector expressed over the basis \((u_1, \ldots, u_n)\).

The following theorem shows that in finite-dimension, every basis \((u_1, \ldots, u_n)\) of a vector space \(E \) yields a basis \((u^*_1, \ldots, u^*_n)\) of the dual space \(E^* \), called a *dual basis*.

Theorem 2.16. (Existence of dual bases) Let \(E \) be a vector space of dimension \(n \). The following properties hold: For every basis \((u_1, \ldots, u_n)\) of \(E \), the family of coordinate forms \((u^*_1, \ldots, u^*_n)\) is a basis of \(E^* \) (called the dual basis of \((u_1, \ldots, u_n)\)).

Proof. (a) If \(v^* \in E^* \) is any linear form, consider the linear form
\[
f^* = v^*(u_1)u^*_1 + \cdots + v^*(u_n)u^*_n.
\]
Observe that because \(u^*_i(u_j) = \delta_{ij} \),
\[
f^*(u_i) = (v^*(u_1)u^*_1 + \cdots + v^*(u_n)u^*_n)(u_i) = v^*(u_1)u^*_i(u_i) + \cdots + v^*(u_i)u^*_i(u_i) + \cdots + v^*(u_n)u^*_n(u_i) = v^*(u_i),
\]
and so \(f^* \) and \(v^* \) agree on the basis \((u_1, \ldots, u_n)\), which implies that
\[
v^* = f^* = v^*(u_1)u^*_1 + \cdots + v^*(u_n)u^*_n.
\]
Therefore, \((u^*_1, \ldots, u^*_n)\) spans \(E^* \). We claim that the covectors \(u^*_1, \ldots, u^*_n \) are linearly independent. If not, we have a nontrivial linear dependence
\[
\lambda_1 u^*_1 + \cdots + \lambda_n u^*_n = 0,
\]
and if we apply the above linear form to each \(u_i \), using a familiar computation, we get
\[
0 = \lambda_i u^*_i(u_i) = \lambda_i,
\]
proving that \(u^*_1, \ldots, u^*_n \) are indeed linearly independent. Therefore, \((u^*_1, \ldots, u^*_n)\) is a basis of \(E^* \). \(\square \)

In particular, Theorem 2.16 shows a finite-dimensional vector space and its dual \(E^* \) have the same dimension.
2.9 Summary

The main concepts and results of this chapter are listed below:

- The notion of a *vector space*.

- *Families* of vectors.

- *Linear combinations* of vectors; *linear dependence* and *linear independence* of a family of vectors.

- Linear *subspaces*.

- *Spanning* (or *generating*) family; *generators*, *finitely generated subspace*; *basis of a subspace*.

- Every *linearly independent family can be extended to a basis* (Theorem 2.5).

- A family B of vectors is a basis iff it is a maximal linearly independent family iff it is a minimal generating family (Proposition 2.6).

- The replacement lemma (Proposition 2.8).

- Any two bases in a finitely generated vector space E have the *same number of elements*; this is the *dimension* of E (Theorem 2.9).

- *Hyperplanes*.

- Every vector has a *unique representation* over a basis (in terms of its coordinates).

- *matrices*

- *Column vectors, row vectors*.

- *Matrix operations*: addition, scalar multiplication, multiplication.

- The vector space $M_{m,n}(K)$ of $m \times n$ matrices over the field K; The ring $M_n(K)$ of $n \times n$ matrices over the field K.

- The notion of a *linear map*.

- The image $\text{Im} f$ (or *range*) of a linear map f.

- The kernel $\text{Ker} f$ (or *nullspace*) of a linear map f.

- The rank $\text{rk}(f)$ of a linear map f.

- The image and the kernel of a linear map are subspaces. A linear map is injective iff its kernel is the trivial space (0) (Proposition 2.12).
• The unique homomorphic extension property of linear maps with respect to bases (Proposition 2.13).

• Linear forms (covectors) and the dual space E^\ast.

• Coordinate forms.

• The existence of dual bases (in finite dimension).
Chapter 3

Matrices and Linear Maps

3.1 Representation of Linear Maps by Matrices

Proposition 2.13 shows that given two vector spaces E and F and a basis $(u_j)_{j \in J}$ of E, every linear map $f : E \to F$ is uniquely determined by the family $(f(u_j))_{j \in J}$ of the images under f of the vectors in the basis $(u_j)_{j \in J}$.

If we also have a basis $(v_i)_{i \in I}$ of F, then every vector $f(u_j)$ can be written in a unique way as

$$f(u_j) = \sum_{i \in I} a_{ij} v_i,$$

where $j \in J$, for a family of scalars $(a_{ij})_{i \in I}$. Thus, with respect to the two bases $(u_j)_{j \in J}$ of E and $(v_i)_{i \in I}$ of F, the linear map f is completely determined by a \(I \times J \)-matrix $M(f) = (a_{ij})_{i \in I, j \in J}$.

Remark: Note that we intentionally assigned the index set J to the basis $(u_j)_{j \in J}$ of E, and the index set I to the basis $(v_i)_{i \in I}$ of F, so that the rows of the matrix $M(f)$ associated with $f : E \to F$ are indexed by I, and the columns of the matrix $M(f)$ are indexed by J. Obviously, this causes a mildly unpleasant reversal. If we had considered the bases $(u_i)_{i \in I}$ of E and $(v_j)_{j \in J}$ of F, we would obtain a $J \times I$-matrix $M(f) = (a_{ji})_{j \in J, i \in I}$. No matter what we do, there will be a reversal! We decided to stick to the bases $(u_j)_{j \in J}$ of E and $(v_i)_{i \in I}$ of F, so that we get an $I \times J$-matrix $M(f)$, knowing that we may occasionally suffer from this decision!

When I and J are finite, and say, when $|I| = m$ and $|J| = n$, the linear map f is determined by the matrix $M(f)$ whose entries in the j-th column are the components of the vector $f(u_j)$ over the basis (v_1, \ldots, v_m), that is, the matrix

$$M(f) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
whose entry on row i and column j is a_{ij} ($1 \leq i \leq m$, $1 \leq j \leq n$).

We will now show that when E and F have finite dimension, linear maps can be very conveniently represented by matrices, and that composition of linear maps corresponds to matrix multiplication. We will follow rather closely an elegant presentation method due to Emil Artin.

Let E and F be two vector spaces, and assume that E has a finite basis (u_1, \ldots, u_n) and that F has a finite basis (v_1, \ldots, v_m). Recall that we have shown that every vector $x \in E$ can be written in a unique way as

$$x = x_1u_1 + \cdots + x_nu_n,$$

and similarly every vector $y \in F$ can be written in a unique way as

$$y = y_1v_1 + \cdots + y_mv_m.$$

Let $f : E \to F$ be a linear map between E and F. Then, for every $x = x_1u_1 + \cdots + x_nu_n$ in E, by linearity, we have

$$f(x) = x_1f(u_1) + \cdots + x_nf(u_n).$$

Let

$$f(u_j) = a_{1j}v_1 + \cdots + a_{mj}v_m,$$

or more concisely,

$$f(u_j) = \sum_{i=1}^{m} a_{ij}v_i,$$

for every j, $1 \leq j \leq n$. This can be expressed by writing the coefficients $a_{1j}, a_{2j}, \ldots, a_{mj}$ of $f(u_j)$ over the basis (v_1, \ldots, v_m), as the jth column of a matrix, as shown below:

$$
\begin{pmatrix}
 f(u_1) & f(u_2) & \cdots & f(u_n) \\
 v_1 & a_{11} & a_{12} & \cdots & a_{1n} \\
 v_2 & a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 v_m & a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
$$

Then, substituting the right-hand side of each $f(u_j)$ into the expression for $f(x)$, we get

$$f(x) = x_1(\sum_{i=1}^{m} a_{i1}v_i) + \cdots + x_n(\sum_{i=1}^{m} a_{in}v_i),$$

which, by regrouping terms to obtain a linear combination of the v_i, yields

$$f(x) = (\sum_{j=1}^{n} a_{1j}x_j)v_1 + \cdots + (\sum_{j=1}^{n} a_{mj}x_j)v_m.$$
Thus, letting \(f(x) = y = y_1v_1 + \cdots + y_mv_m \), we have

\[
y_i = \sum_{j=1}^{n} a_{ij}x_j
\]

for all \(i, 1 \leq i \leq m \).

To make things more concrete, let us treat the case where \(n = 3 \) and \(m = 2 \). In this case,

\[
\begin{align*}
 f(u_1) &= a_{11}v_1 + a_{21}v_2 \\
 f(u_2) &= a_{12}v_1 + a_{22}v_2 \\
 f(u_3) &= a_{13}v_1 + a_{23}v_2,
\end{align*}
\]

which in matrix form is expressed by

\[
\begin{pmatrix}
 f(u_1) & f(u_2) & f(u_3)
\end{pmatrix}
\begin{pmatrix}
 v_1 \\
 v_2
\end{pmatrix}
=
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix},
\]

and for any \(x = x_1u_1 + x_2u_2 + x_3u_3 \), we have

\[
\begin{align*}
 f(x) &= f(x_1u_1 + x_2u_2 + x_3u_3) \\
 &= x_1f(u_1) + x_2f(u_2) + x_3f(u_3) \\
 &= x_1(a_{11}v_1 + a_{21}v_2) + x_2(a_{12}v_1 + a_{22}v_2) + x_3(a_{13}v_1 + a_{23}v_2) \\
 &= (a_{11}x_1 + a_{12}x_2 + a_{13}x_3)v_1 + (a_{21}x_1 + a_{22}x_2 + a_{23}x_3)v_2.
\end{align*}
\]

Consequently, since

\[
y = y_1v_1 + y_2v_2,
\]

we have

\[
\begin{align*}
 y_1 &= a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\
 y_2 &= a_{21}x_1 + a_{22}x_2 + a_{23}x_3.
\end{align*}
\]

This agrees with the matrix equation

\[
\begin{pmatrix}
 y_1 \\
 y_2
\end{pmatrix}
=
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}.
\]

We now formalize the representation of linear maps by matrices.
Definition 3.1. Let E and F be two vector spaces, and let (u_1, \ldots, u_n) be a basis for E, and (v_1, \ldots, v_m) be a basis for F. Each vector $x \in E$ expressed in the basis (u_1, \ldots, u_n) as $x = x_1 u_1 + \cdots + x_n u_n$ is represented by the column matrix

$$M(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

and similarly for each vector $y \in F$ expressed in the basis (v_1, \ldots, v_m).

Every linear map $f : E \to F$ is represented by the matrix $M(f) = (a_{ij})$, where a_{ij} is the i-th component of the vector $f(u_j)$ over the basis (v_1, \ldots, v_m), i.e., where

$$f(u_j) = \sum_{i=1}^{m} a_{ij} v_i, \quad \text{for every } j, 1 \leq j \leq n.$$

The coefficients $a_{1j}, a_{2j}, \ldots, a_{mj}$ of $f(u_j)$ over the basis (v_1, \ldots, v_m) form the jth column of the matrix $M(f)$ shown below:

$$f(u_1) \quad f(u_2) \quad \ldots \quad f(u_n)$$

$$\begin{pmatrix}
 v_1 & \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix}
\end{pmatrix}$$

The matrix $M(f)$ associated with the linear map $f : E \to F$ is called the matrix of f with respect to the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m). When $E = F$ and the basis (v_1, \ldots, v_m) is identical to the basis (u_1, \ldots, u_n) of E, the matrix $M(f)$ associated with $f : E \to E$ (as above) is called the matrix of f with respect to the basis (u_1, \ldots, u_n).

Remark: As in the remark after Definition 2.10, there is no reason to assume that the vectors in the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) are ordered in any particular way. However, it is often convenient to assume the natural ordering. When this is so, authors sometimes refer to the matrix $M(f)$ as the matrix of f with respect to the ordered bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m).

Let us now consider how the composition of linear maps is expressed in terms of bases.

Let E, F, and G, be three vector spaces with respective bases (u_1, \ldots, u_p) for E, (v_1, \ldots, v_n) for F, and (w_1, \ldots, w_m) for G. Let $g : E \to F$ and $f : F \to G$ be linear maps. As explained earlier, $g : E \to F$ is determined by the images of the basis vectors u_j, and $f : F \to G$ is determined by the images of the basis vectors v_k. We would like to understand how $f \circ g : E \to G$ is determined by the images of the basis vectors u_j.
3.1. REPRESENTATION OF LINEAR MAPS BY MATRICES

Remark: Note that we are considering linear maps \(g: E \rightarrow F \) and \(f: F \rightarrow G \), instead of \(f: E \rightarrow F \) and \(g: F \rightarrow G \), which yields the composition \(f \circ g: E \rightarrow G \) instead of \(g \circ f: E \rightarrow G \). Our perhaps unusual choice is motivated by the fact that if \(f \) is represented by a matrix \(M(f) = (a_{ik}) \) and \(g \) is represented by a matrix \(M(g) = (b_{kj}) \), then \(f \circ g: E \rightarrow G \) is represented by the product \(AB \) of the matrices \(A \) and \(B \). If we had adopted the other choice where \(f: E \rightarrow F \) and \(g: F \rightarrow G \), then \(g \circ f: E \rightarrow G \) would be represented by the product \(BA \). Personally, we find it easier to remember the formula for the entry in row \(i \) and column of \(j \) of the product of two matrices when this product is written by \(AB \), rather than \(BA \). Obviously, this is a matter of taste! We will have to live with our perhaps unorthodox choice.

Thus, let
\[
f(v_k) = \sum_{i=1}^{m} a_{ik} w_i,
\]
for every \(k, 1 \leq k \leq n \), and let
\[
g(u_j) = \sum_{k=1}^{n} b_{kj} v_k,
\]
for every \(j, 1 \leq j \leq p \); in matrix form, we have
\[
\begin{pmatrix}
w_1 \vspace{1em} w_2 \vspace{1em} \vdots \vspace{1em} w_m
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
f(v_1) \\
f(v_2) \\
\vdots \\
f(v_n)
\end{pmatrix}
\]
and
\[
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_n
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1p} \\
b_{21} & b_{22} & \cdots & b_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{np}
\end{pmatrix}
\begin{pmatrix}
g(u_1) \\
g(u_2) \\
\vdots \\
g(u_p)
\end{pmatrix}
\]

By previous considerations, for every
\[
x = x_1 u_1 + \cdots + x_p u_p,
\]
letting \(g(x) = y = y_1 v_1 + \cdots + y_n v_n \), we have
\[
y_k = \sum_{j=1}^{p} b_{kj} x_j \tag{2}
\]
for all \(k, 1 \leq k \leq n \), and for every
\[
y = y_1v_1 + \cdots + y_nv_n,
\]
letting \(f(y) = z = z_1w_1 + \cdots + z_mw_m \), we have
\[
z_i = \sum_{k=1}^{n} a_{ik}y_k
\]
for all \(i, 1 \leq i \leq m \). Then, if \(y = g(x) \) and \(z = f(y) \), we have \(z = f(g(x)) \), and in view of (2) and (3), we have
\[
z_i = \sum_{k=1}^{n} a_{ik}(\sum_{j=1}^{p} b_{kj}x_j)
= \sum_{k=1}^{n} \sum_{j=1}^{p} a_{ik}b_{kj}x_j
= \sum_{j=1}^{p} \sum_{k=1}^{n} a_{ik}b_{kj}x_j
= \sum_{j=1}^{p} (\sum_{k=1}^{n} a_{ik}b_{kj})x_j.
\]
Thus, defining \(c_{ij} \) such that
\[
c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj},
\]
for \(1 \leq i \leq m \), and \(1 \leq j \leq p \), we have
\[
z_i = \sum_{j=1}^{p} c_{ij}x_j
\]
Identity (4) shows that the composition of linear maps corresponds to the product of matrices.

Then, given a linear map \(f : E \to F \) represented by the matrix \(M(f) = (a_{ij}) \) w.r.t. the bases \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_m)\), by equations (1), namely
\[
y_i = \sum_{j=1}^{n} a_{ij}x_j \quad 1 \leq i \leq m,
\]
3.1. REPRESENTATION OF LINEAR MAPS BY MATRICES

and the definition of matrix multiplication, the equation \(y = f(x) \) corresponds to the matrix equation \(M(y) = M(f)M(x) \), that is,

\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}.
\]

Recall that

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix} =
\begin{pmatrix}
 a_{11} \\
 a_{21} \\
 \vdots \\
 a_{m1}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} +
\begin{pmatrix}
 a_{12} \\
 a_{22} \\
 \vdots \\
 a_{m2}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} + \cdots +
\begin{pmatrix}
 a_{1n} \\
 a_{2n} \\
 \vdots \\
 a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}.
\]

Sometimes, it is necessary to incorporate the bases \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_m)\) in the notation for the matrix \(M(f)\) expressing \(f\) with respect to these bases. This turns out to be a messy enterprise!

We propose the following course of action:

Definition 3.2. Write \(\mathcal{U} = (u_1, \ldots, u_n)\) and \(\mathcal{V} = (v_1, \ldots, v_m)\) for the bases of \(E\) and \(F\), and denote by \(M_{\mathcal{U},\mathcal{V}}(f)\) the matrix of \(f\) with respect to the bases \(\mathcal{U}\) and \(\mathcal{V}\). Furthermore, write \(x_\mathcal{U}\) for the coordinates \(M(x) = (x_1, \ldots, x_n)\) of \(x \in E\) w.r.t. the basis \(\mathcal{U}\) and write \(y_\mathcal{V}\) for the coordinates \(M(y) = (y_1, \ldots, y_m)\) of \(y \in F\) w.r.t. the basis \(\mathcal{V}\). Then,

\[
y = f(x)
\]

is expressed in matrix form by

\[
y_\mathcal{V} = M_{\mathcal{U},\mathcal{V}}(f) x_\mathcal{U}.
\]

When \(\mathcal{U} = \mathcal{V}\), we abbreviate \(M_{\mathcal{U},\mathcal{V}}(f)\) as \(M_\mathcal{U}(f)\).

The above notation seems reasonable, but it has the slight disadvantage that in the expression \(M_{\mathcal{U},\mathcal{V}}(f) x_\mathcal{U}\), the input argument \(x_\mathcal{U}\) which is fed to the matrix \(M_{\mathcal{U},\mathcal{V}}(f)\) does not appear next to the subscript \(\mathcal{U}\) in \(M_{\mathcal{U},\mathcal{V}}(f)\). We could have used the notation \(M_{\mathcal{V},\mathcal{U}}(f)\), and some people do that. But then, we find a bit confusing that \(\mathcal{V}\) comes before \(\mathcal{U}\) when \(f\) maps from the space \(E\) with the basis \(\mathcal{U}\) to the space \(F\) with the basis \(\mathcal{V}\). So, we prefer to use the notation \(M_{\mathcal{U},\mathcal{V}}(f)\).

Be aware that other authors such as Meyer [39] use the notation \([f]_{\mathcal{U},\mathcal{V}}\), and others such as Dummit and Foote [18] use the notation \(M_{\mathcal{V}}(f)\), instead of \(M_{\mathcal{U},\mathcal{V}}(f)\). This gets worse! You may find the notation \(M_\mathcal{U}(f)\) (as in Lang [32]), or \([f]_{\mathcal{V}}\), or other strange notations.

Let us illustrate the representation of a linear map by a matrix in a concrete situation. Let \(E\) be the vector space \(\mathbb{R}[X]_4\) of polynomials of degree at most 4, let \(F\) be the vector
space \(\mathbb{R}[X]_3 \) of polynomials of degree at most 3, and let the linear map be the derivative map \(d \): that is,

\[
d(P + Q) = dP + dQ \\
d(\lambda P) = \lambda dP,
\]

with \(\lambda \in \mathbb{R} \). We choose \((1, x, x^2, x^3, x^4)\) as a basis of \(E \) and \((1, x, x^2, x^3)\) as a basis of \(F \). Then, the \(4 \times 5 \) matrix \(D \) associated with \(d \) is obtained by expressing the derivative \(dx^i \) of each basis vector \(x^i \) for \(i = 0, 1, 2, 3, 4 \) over the basis \((1, x, x^2, x^3)\). We find

\[
D = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{pmatrix}.
\]

Then, if \(P \) denotes the polynomial

\[
P = 3x^4 - 5x^3 + x^2 - 7x + 5,
\]

we have

\[
dP = 12x^3 - 15x^2 + 2x - 7,
\]

the polynomial \(P \) is represented by the vector \((5, -7, 1, -5, 3)\) and \(dP \) is represented by the vector \((-7, 2, -15, 12)\), and we have

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{pmatrix} \begin{pmatrix}
5 \\
-7 \\
1 \\
-5 \\
3
\end{pmatrix} = \begin{pmatrix}
-7 \\
2 \\
-15 \\
12
\end{pmatrix},
\]

as expected! The kernel (nullspace) of \(d \) consists of the polynomials of degree 0, that is, the constant polynomials. Therefore \(\dim(\text{Ker } d) = 1 \), and from

\[
\dim(E) = \dim(\text{Ker } d) + \dim(\text{Im } d)
\]

(see Theorem 4.6), we get \(\dim(\text{Im } d) = 4 \) (since \(\dim(E) = 5 \)).

For fun, let us figure out the linear map from the vector space \(\mathbb{R}[X]_3 \) to the vector space \(\mathbb{R}[X]_4 \) given by integration (finding the primitive, or anti-derivative) of \(x^i \), for \(i = 0, 1, 2, 3 \). The \(5 \times 4 \) matrix \(S \) representing \(\int \) with respect to the same bases as before is

\[
S = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1/2 & 0 & 0 \\
0 & 0 & 1/3 & 0 \\
0 & 0 & 0 & 1/4
\end{pmatrix}.
\]
3.1. REPRESENTATION OF LINEAR MAPS BY MATRICES

We verify that $DS = I_4$,

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1/2 & 0 & 0 \\
0 & 0 & 1/3 & 0 \\
0 & 0 & 0 & 1/4 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix},
$$

as it should! The equation $DS = I_4$ show that S is injective and has D as a left inverse. However, $SD \neq I_5$, and instead

$$
\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1/2 & 0 & 0 \\
0 & 0 & 1/3 & 0 \\
0 & 0 & 0 & 1/4 \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix},
$$

because constant polynomials (polynomials of degree 0) belong to the kernel of D.

The function that associates to a linear map $f : E \to F$ the matrix $M(f)$ w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) has the property that matrix multiplication corresponds to composition of linear maps. This allows us to transfer properties of linear maps to matrices. Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices $A \in M_{m,n}(K)$, $B \in M_{n,p}(K)$, and $C \in M_{p,q}(K)$, we have

$$(AB)C = A(BC);$$

that is, matrix multiplication is associative.

(2) Given any matrices $A, B \in M_{m,n}(K)$, and $C, D \in M_{n,p}(K)$, for all $\lambda \in K$, we have

$$(A + B)C = AC + BC$$

$$(A + D) = AC + AD$$

$$(\lambda A)C = \lambda(AC)$$

$$(A\lambda C) = \lambda(AC),$$

so that matrix multiplication $\cdot : M_{m,n}(K) \times M_{n,p}(K) \to M_{m,p}(K)$ is bilinear.

Proof. (1) Every $m \times n$ matrix $A = (a_{ij})$ defines the function $f_A : K^n \to K^m$ given by

$$f_A(x) = Ax,$$

for all $x \in K^n$. It is immediately verified that f_A is linear and that the matrix $M(f_A)$ representing f_A over the canonical bases in K^n and K^m is equal to A. Then, formula (4) proves that

$$M(f_A \circ f_B) = M(f_A)M(f_B) = AB,$$
so we get
\[M((f_A \circ f_B) \circ f_C) = M(f_A \circ f_B)M(f_C) = (AB)C \]

and
\[M(f_A \circ (f_B \circ f_C)) = M(f_A)M(f_B \circ f_C) = A(BC), \]

and since composition of functions is associative, we have \((f_A \circ f_B) \circ f_C = f_A \circ (f_B \circ f_C)\), which implies that
\[(AB)C = A(BC). \]

(2) It is immediately verified that if \(f_1, f_2 \in \text{Hom}_K(E, F)\), \(A, B \in M_{m,n}(K)\), \((u_1, \ldots, u_n)\) is any basis of \(E\), and \((v_1, \ldots, v_m)\) is any basis of \(F\), then
\[M(f_1 + f_2) = M(f_1) + M(f_2) \]
\[f_{A+B} = f_A + f_B. \]

Then we have
\[(A + B)C = M(f_{A+B})M(f_C) \]
\[= M(f_{A+B} \circ f_C) \]
\[= M((f_A + f_B) \circ f_C)) \]
\[= M((f_A \circ f_C) + (f_B \circ f_C)) \]
\[= M(f_A \circ f_C) + M(f_B \circ f_C) \]
\[= M(f_A)M(f_C) + M(f_B)M(f_C) \]
\[= AC + BC. \]

The equation \(A(C + D) = AC + AD\) is proved in a similar fashion, and the last two equations are easily verified. We could also have verified all the identities by making matrix computations.

Note that Proposition 3.1 implies that the vector space \(M_n(K)\) of square matrices is a (noncommutative) ring with unit \(I_n\). (It even shows that \(M_n(K)\) is an associative algebra.)

The following proposition states the main properties of the mapping \(f \mapsto M(f)\) between \(\text{Hom}(E, F)\) and \(M_{m,n}\). In short, it is an isomorphism of vector spaces.

Proposition 3.2. Given three vector spaces \(E, F, G\), with respective bases \((u_1, \ldots, u_p)\), \((v_1, \ldots, v_n)\), and \((w_1, \ldots, w_m)\), the mapping \(M : \text{Hom}(E, F) \rightarrow M_{n,p}\) that associates the matrix \(M(g)\) to a linear map \(g : E \rightarrow F\) satisfies the following properties for all \(x \in E\), all \(g, h : E \rightarrow F\), and all \(f : F \rightarrow G\):

\[M(g(x)) = M(g)M(x) \]
\[M(g + h) = M(g) + M(h) \]
\[M(\lambda g) = \lambda M(g) \]
\[M(f \circ g) = M(f)M(g), \]
where \(M(x) \) is the column vector associated with the vector \(x \) and \(M(g(x)) \) is the column vector associated with \(g(x) \), as explained in Definition 3.1.

Thus, \(M: \text{Hom}(E,F) \to M_{n,p} \) is an isomorphism of vector spaces, and when \(p = n \) and the basis \((v_1,\ldots,v_n)\) is identical to the basis \((u_1,\ldots,u_p)\), \(M: \text{Hom}(E,E) \to M_n \) is an isomorphism of rings.

Proof. That \(M(g(x)) = M(g)M(x) \) was shown just before stating the proposition, using identity (1). The identities \(M(g+h) = M(g) + M(h) \) and \(M(\lambda g) = \lambda M(g) \) are straightforward, and \(M(f \circ g) = M(f)M(g) \) follows from (4) and the definition of matrix multiplication. The mapping \(M: \text{Hom}(E,F) \to M_{n,p} \) is clearly injective, and since every matrix defines a linear map (see Proposition 3.1), it is also surjective, and thus bijective. In view of the above identities, it is an isomorphism (and similarly for \(M: \text{Hom}(E,E) \to M_n \), where Proposition 3.1 is used to show that \(M_n \) is a ring). \(\square \)

In view of Proposition 3.2, it seems preferable to represent vectors from a vector space of finite dimension as column vectors rather than row vectors. Thus, from now on, we will denote vectors of \(\mathbb{R}^n \) (or more generally, of \(K^n \)) as column vectors.

3.2 Change of Basis Matrix

It is important to observe that the isomorphism \(M: \text{Hom}(E,F) \to M_{n,p} \) given by Proposition 3.2 depends on the choice of the bases \((u_1,\ldots,u_p)\) and \((v_1,\ldots,v_n)\), and similarly for the isomorphism \(M: \text{Hom}(E,E) \to M_n \), which depends on the choice of the basis \((u_1,\ldots,u_n)\). Thus, it would be useful to know how a change of basis affects the representation of a linear map \(f: E \to F \) as a matrix. The following simple proposition is needed.

Proposition 3.3. Let \(E \) be a vector space, and let \((u_1,\ldots,u_n)\) be a basis of \(E \). For every family \((v_1,\ldots,v_n)\), let \(P = (a_{ij}) \) be the matrix defined such that \(v_j = \sum_{i=1}^n a_{ij}u_i \). The matrix \(P \) is invertible iff \((v_1,\ldots,v_n)\) is a basis of \(E \).

Proof. Note that we have \(P = M(f) \), the matrix associated with the unique linear map \(f: E \to E \) such that \(f(u_i) = v_i \). By Proposition 2.13, \(f \) is bijective iff \((v_1,\ldots,v_n)\) is a basis of \(E \). Furthermore, it is obvious that the identity matrix \(I_n \) is the matrix associated with the identity \(\text{id}: E \to E \) w.r.t. any basis. If \(f \) is an isomorphism, then \(f \circ f^{-1} = f^{-1} \circ f = \text{id} \), and by Proposition 3.2, we get \(M(f)M(f^{-1}) = M(f^{-1})M(f) = I_n \), showing that \(P \) is invertible and that \(M(f^{-1}) = P^{-1} \). \(\square \)

Proposition 3.3 suggests the following definition.

Definition 3.3. Given a vector space \(E \) of dimension \(n \), for any two bases \((u_1,\ldots,u_n)\) and \((v_1,\ldots,v_n)\) of \(E \), let \(P = (a_{ij}) \) be the invertible matrix defined such that

\[
v_j = \sum_{i=1}^n a_{ij}u_i,
\]
which is also the matrix of the identity id: $E \to E$ with respect to the bases (v_1, \ldots, v_n) and (u_1, \ldots, u_n), in that order. Indeed, we express each id(v_j) = v_j over the basis (u_1, \ldots, u_n). The coefficients $a_{ij}, a_{2j}, \ldots, a_{nj}$ of v_j over the basis (u_1, \ldots, u_n) form the jth column of the matrix P shown below:

$$
\begin{pmatrix}
 v_1 & v_2 & \cdots & v_n \\
 u_1 & a_{11} & a_{12} & \cdots & a_{1n} \\
 u_2 & a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 u_n & a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
$$

The matrix P is called the change of basis matrix from (u_1, \ldots, u_n) to (v_1, \ldots, v_n).

Clearly, the change of basis matrix from (v_1, \ldots, v_n) to (u_1, \ldots, u_n) is P^{-1}. Since $P = (a_{ij})$ is the matrix of the identity id: $E \to E$ with respect to the bases (v_1, \ldots, v_n) and (u_1, \ldots, u_n), given any vector $x \in E$, if $x = x_1u_1 + \cdots + x_nu_n$ over the basis (u_1, \ldots, u_n) and $x = x'_1v_1 + \cdots + x'_nv_n$ over the basis (v_1, \ldots, v_n), from Proposition 3.2, we have

$$
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{pmatrix} \begin{pmatrix}
 x'_1 \\
 \vdots \\
 x'_n
\end{pmatrix},
$$

showing that the old coordinates (x_i) of x (over (u_1, \ldots, u_n)) are expressed in terms of the new coordinates (x'_i) of x (over (v_1, \ldots, v_n)).

Now we face the painful task of assigning a “good” notation incorporating the bases $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ into the notation for the change of basis matrix from U to V. Because the change of basis matrix from U to V is the matrix of the identity map id$_E$ with respect to the bases V and U in that order, we could denote it by $M_{V,U}(\text{id})$ (Meyer [39] uses the notation $[I]_{V,U}$). We prefer to use an abbreviation for $M_{V,U}(\text{id})$.

Definition 3.4. The change of basis matrix from U to V is denoted

$$
P_{V,U}.
$$

Note that

$$
P_{U,V} = P_{V,U}^{-1}.
$$

Then, if we write $x_U = (x_1, \ldots, x_n)$ for the old coordinates of x with respect to the basis U and $x_V = (x'_1, \ldots, x'_n)$ for the new coordinates of x with respect to the basis V, we have

$$
x_U = P_{V,U}x_V, \quad x_V = P_{V,U}^{-1}x_U.
$$

The above may look backward, but remember that the matrix $M_{U,V}(f)$ takes input expressed over the basis U to output expressed over the basis V. Consequently, $P_{V,U}$ takes input expressed over the basis V to output expressed over the basis U, and $x_U = P_{V,U}x_V$ matches this point of view!
Beware that some authors (such as Artin [3]) define the change of basis matrix from \(U \) to \(V \) as \(P_{U,V} = P_{V,U}^{-1} \). Under this point of view, the old basis \(U \) is expressed in terms of the new basis \(V \). We find this a bit unnatural. Also, in practice, it seems that the new basis is often expressed in terms of the old basis, rather than the other way around.

Since the matrix \(P = P_{V,U} \) expresses the new basis \((v_1, \ldots, v_n)\) in terms of the old basis \((u_1, \ldots, u_n)\), we observe that the coordinates \((x_i)\) of a vector \(x \) vary in the opposite direction of the change of basis. For this reason, vectors are sometimes said to be contravariant. However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that does not depend on a specific basis. What makes sense is that the coordinates of a vector vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 3.1. Let \(E = F = \mathbb{R}^2 \), with \(u_1 = (1, 0), u_2 = (0, 1), v_1 = (1, 1) \) and \(v_2 = (-1, 1) \). The change of basis matrix \(P \) from the basis \(U = (u_1, u_2) \) to the basis \(V = (v_1, v_2) \) is

\[
P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
\]

and its inverse is

\[
P^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}.
\]

The old coordinates \((x_1, x_2)\) with respect to \((u_1, u_2)\) are expressed in terms of the new coordinates \((x'_1, x'_2)\) with respect to \((v_1, v_2)\) by

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix},
\]

and the new coordinates \((x'_1, x'_2)\) with respect to \((v_1, v_2)\) are expressed in terms of the old coordinates \((x_1, x_2)\) with respect to \((u_1, u_2)\) by

\[
\begin{pmatrix} x'_1 \\ x'_2 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.
\]

Example 3.2. Let \(E = F = \mathbb{R}[X]_3 \) be the set of polynomials of degree at most 3, and consider the bases \(U = (1, x, x^2, x^3) \) and \(V = (B^3_0(x), B^3_1(x), B^3_2(x), B^3_3(x)), \) where \(B^3_0(x), B^3_1(x), B^3_2(x), B^3_3(x) \) are the Bernstein polynomials of degree 3, given by

\[
B^3_0(x) = (1 - x)^3 \quad B^3_1(x) = 3(1 - x)^2x \quad B^3_2(x) = 3(1 - x)x^2 \quad B^3_3(x) = x^3.
\]

By expanding the Bernstein polynomials, we find that the change of basis matrix \(P_{V,U} \) is given by

\[
P_{V,U} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix}.
\]
We also find that the inverse of $P_{V,U}$ is

$$P_{V,U}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1/3 & 0 & 0 \\ 1 & 2/3 & 1/3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Therefore, the coordinates of the polynomial $2x^3 - x + 1$ over the basis V are

$$\begin{pmatrix} 1 \\ 2/3 \\ 1/3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1/3 & 0 & 0 \\ 1 & 2/3 & 1/3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix},$$

and so

$$2x^3 - x + 1 = B_0^3(x) + 2B_1^3(x) + \frac{1}{3}B_2^3(x) + 2B_3^3(x).$$

Our next example is the Haar wavelets, a fundamental tool in signal processing.

3.3 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in \mathbb{R}^4. Wavelets play an important role in audio and video signal processing, especially for compressing long signals into much smaller ones than still retain enough information so that when they are played, we can’t see or hear any difference.

Consider the four vectors w_1, w_2, w_3, w_4 given by

$$\begin{align*} w_1 &= \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} & w_2 &= \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} & w_3 &= \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} & w_4 &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}. \end{align*}$$

Note that these vectors are pairwise orthogonal, so they are indeed linearly independent (we will see this in a later chapter). Let $W = \{w_1, w_2, w_3, w_4\}$ be the Haar basis, and let $U = \{e_1, e_2, e_3, e_4\}$ be the canonical basis of \mathbb{R}^4. The change of basis matrix $W = P_{W,U}$ from U to W is given by

$$W = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix},$$

and we easily find that the inverse of W is given by

$$W^{-1} = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}.$$
So, the vector \(v = (6, 4, 5, 1) \) over the basis \(\mathcal{U} \) becomes \(c = (c_1, c_2, c_3, c_4) \) over the Haar basis \(\mathcal{W} \), with
\[
\begin{pmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 c_4
\end{pmatrix} =
\begin{pmatrix}
 1/4 & 0 & 0 & 0 \\
 0 & 1/4 & 0 & 0 \\
 0 & 0 & 1/2 & 0 \\
 0 & 0 & 0 & 1/2
\end{pmatrix} \begin{pmatrix}
 1 & 1 & 1 & 1 \\
 1 & -1 & 0 & 0 \\
 0 & 0 & 1 & -1
\end{pmatrix} \begin{pmatrix}
 6 \\
 4 \\
 5 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 4 \\
 1
\end{pmatrix}.
\]

Given a signal \(v = (v_1, v_2, v_3, v_4) \), we first transform \(v \) into its coefficients \(c = (c_1, c_2, c_3, c_4) \) over the Haar basis by computing \(c = W^{-1}v \). Observe that
\[
c_1 = \frac{v_1 + v_2 + v_3 + v_4}{4}
\]
is the overall average value of the signal \(v \). The coefficient \(c_1 \) corresponds to the background of the image (or of the sound). Then, \(c_2 \) gives the coarse details of \(v \), whereas, \(c_3 \) gives the details in the first part of \(v \), and \(c_4 \) gives the details in the second half of \(v \).

Reconstruction of the signal consists in computing \(v = Wc \). The trick for good compression is to throw away some of the coefficients of \(c \) (set them to zero), obtaining a compressed signal \(\hat{c} \), and still retain enough crucial information so that the reconstructed signal \(\hat{v} = W\hat{c} \) looks almost as good as the original signal \(v \). Thus, the steps are:

\[
\text{input } v \quad \rightarrow \quad \text{coefficients } c = W^{-1}v \quad \rightarrow \quad \text{compressed } \hat{c} \quad \rightarrow \quad \text{compressed } \hat{v} = W\hat{c}.
\]

This kind of compression scheme makes modern video conferencing possible.

It turns out that there is a faster way to find \(c = W^{-1}v \), without actually using \(W^{-1} \). This has to do with the multiscale nature of Haar wavelets.

Given the original signal \(v = (6, 4, 5, 1) \) shown in Figure 3.1, we compute averages and half differences obtaining Figure 3.2. We get the coefficients \(c_3 = 1 \) and \(c_4 = 2 \). Then,

\[
\begin{array}{cccc}
6 & 4 & 5 & 1
\end{array}
\]

Figure 3.1: The original signal \(v \)

again we compute averages and half differences obtaining Figure 3.3. We get the coefficients \(c_1 = 4 \) and \(c_2 = 1 \). Note that the original signal \(v \) can be reconstructed from the two signals in Figure 3.2, and the signal on the left of Figure 3.2 can be reconstructed from the two signals in Figure 3.3.
CHAPTER 3. MATRICES AND LINEAR MAPS

This method can be generalized to signals of any length 2^n. The previous case corresponds to $n = 2$. Let us consider the case $n = 3$. The Haar basis $(w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8)$ is given by the matrix

$$W = \begin{pmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & -1 & 0 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 \\
1 & -1 & 0 & -1 & 0 & 0 & 0 & 1 \\
1 & -1 & 0 & -1 & 0 & 0 & 0 & -1
\end{pmatrix}.$$

The columns of this matrix are orthogonal, and it is easy to see that

$$W^{-1} = \text{diag}(1/8,1/8,1/4,1/4,1/2,1/2,1/2,1/2)W^T.$$

A pattern is beginning to emerge. It looks like the second Haar basis vector w_2 is the “mother” of all the other basis vectors, except the first, whose purpose is to perform averaging. Indeed, in general, given

$$w_2 = \underbrace{(1, \ldots, 1, -1, \ldots, -1)}_{2^n},$$

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from w_2, the scaling process generates the vectors

$$w_3, w_5, w_9, \ldots, w_{2j+1}, \ldots, w_{2^n-1+1},$$
3.3. HAAR BASIS VECTORS AND A GLIMPSE AT WAVELETS

such that \(w_{2^j+1} \) is obtained from \(w_{2^j+1} \) by forming two consecutive blocks of 1 and \(-1\) of half the size of the blocks in \(w_{2^j+1} \), and setting all other entries to zero. Observe that \(w_{2^j+1} \) has \(2^j \) blocks of \(2^{n-j} \) elements. The shifting process consists in shifting the blocks of 1 and \(-1\) in \(w_{2^j+1} \) to the right by inserting a block of \((k - 1)2^{n-j}\) zeros from the left, with \(0 \leq j \leq n - 1 \) and \(1 \leq k \leq 2^j \). Thus, we obtain the following formula for \(w_{2^j+k} \):

\[
w_{2^j+k}(i) = \begin{cases}
0 & 1 \leq i \leq (k - 1)2^{n-j} \\
1 & (k - 1)2^{n-j} + 1 \leq i \leq (k - 1)2^{n-j} + 2^{n-j-1} \\
-1 & (k - 1)2^{n-j} + 2^{n-j-1} + 1 \leq i \leq k2^{n-j} \\
0 & k2^{n-j} + 1 \leq i \leq 2^n,
\end{cases}
\]

with \(0 \leq j \leq n - 1 \) and \(1 \leq k \leq 2^j \). Of course

\[
w_1 = \left\{\frac{1}{2^n}\right\}.
\]

The above formulae look a little better if we change our indexing slightly by letting \(k \) vary from 0 to \(2^j - 1 \), and using the index \(j \) instead of \(2^j \).

Definition 3.5. The vectors of the Haar basis of dimension \(2^n \) are denoted by

\[
w_1, h_0^0, h_0^1, h_0^2, h_0^3, \ldots, h_k^j, \ldots, h_{2^{n-1}-1}^{n-1},
\]

where

\[
h_k^j(i) = \begin{cases}
0 & 1 \leq i \leq k2^{n-j} \\
1 & k2^{n-j} + 1 \leq i \leq k2^{n-j} + 2^{n-j-1} \\
-1 & k2^{n-j} + 2^{n-j-1} + 1 \leq i \leq (k + 1)2^{n-j} \\
0 & (k + 1)2^{n-j} + 1 \leq i \leq 2^n,
\end{cases}
\]

with \(0 \leq j \leq n - 1 \) and \(0 \leq k \leq 2^j - 1 \). The \(2^n \times 2^n \) matrix whose columns are the vectors

\[
w_1, h_0^0, h_0^1, h_0^2, h_0^3, \ldots, h_k^j, \ldots, h_{2^{n-1}-1}^{n-1},
\]

(in that order), is called the Haar matrix of dimension \(2^n \), and is denoted by \(W_n \).

It turns out that there is a way to understand these formulae better if we interpret a vector \(u = (u_1, \ldots, u_m) \) as a piecewise linear function over the interval \([0, 1)\).

Definition 3.6. Given a vector \(u = (u_1, \ldots, u_m) \), the piecewise linear function \(\text{plf}(u) \) is defined such that

\[
\text{plf}(u)(x) = u_i, \quad \frac{i - 1}{m} \leq x < \frac{i}{m}, \quad 1 \leq i \leq m.
\]

In words, the function \(\text{plf}(u) \) has the value \(u_i \) on the interval \([0, 1/m)\), the value \(u_2 \) on \([1/m, 2/m)\), etc., and the value \(u_m \) on the interval \([(m - 1)/m, 1)\).
For example, the piecewise linear function associated with the vector
\[u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, -1.1, -1.3) \]
is shown in Figure 3.4.

Then, each basis vector \(h^j_k \) corresponds to the function
\[\psi^j_k = \text{plf}(h^j_k). \]
In particular, for all \(n \), the Haar basis vectors
\[h^0_0 = w_2 = (1, \ldots, 1, -1, \ldots, -1) \]
yield the same piecewise linear function \(\psi \) given by
\[\psi(x) = \begin{cases}
1 & \text{if } 0 \leq x < 1/2 \\
-1 & \text{if } 1/2 \leq x < 1 \\
0 & \text{otherwise,}
\end{cases} \]
whose graph is shown in Figure 3.5. Then, it is easy to see that \(\psi^j_k \) is given by the simple expression
\[\psi^j_k(x) = \psi(2^j x - k), \quad 0 \leq j \leq n - 1, \ 0 \leq k \leq 2^j - 1. \]
The above formula makes it clear that \(\psi^j_k \) is obtained from \(\psi \) by scaling and shifting.

Definition 3.7. The function \(\phi^0_0 = \text{plf}(w_1) \) is the piecewise linear function with the constant value 1 on \([0, 1)\), and the functions \(\psi^j_k = \text{plf}(h^j_k) \) together with \(\phi^0_0 \) are known as the **Haar wavelets**.

Rather than using \(W^{-1} \) to convert a vector \(u \) to a vector \(c \) of coefficients over the Haar basis, and the matrix \(W \) to reconstruct the vector \(u \) from its Haar coefficients \(c \), we can use faster algorithms that use averaging and differencing.
3.3. HAAR BASIS VECTORS AND A GLIMPSE AT WAVELETS

Figure 3.5: The Haar wavelet ψ

If c is a vector of Haar coefficients of dimension 2^n, we compute the sequence of vectors u^0, u^1, \ldots, u^n as follows:

$$
\begin{align*}
u^0 &= c \\
u^{i+1} &= u^i \\
u^{i+1}(2i - 1) &= u^i(i) + u^i(2^i + i) \\
u^{i+1}(2i) &= u^i(i) - u^i(2^i + i),
\end{align*}
$$

for $j = 0, \ldots, n - 1$ and $i = 1, \ldots, 2^j$. The reconstructed vector (signal) is $u = u^n$.

If u is a vector of dimension 2^n, we compute the sequence of vectors $c^n, c^{n-1}, \ldots, c^0$ as follows:

$$
\begin{align*}
c^n &= u \\
c^j &= c^{j+1} \\
c^j(i) &= (c^{j+1}(2i - 1) + c^{j+1}(2i))/2 \\
c^j(2^j + i) &= (c^{j+1}(2^j - 1) - c^{j+1}(2i))/2,
\end{align*}
$$

for $j = n - 1, \ldots, 0$ and $i = 1, \ldots, 2^j$. The vector over the Haar basis is $c = c^0$.

We leave it as an exercise to implement the above programs in MATLAB using two variables u and c, and by building iteratively 2^j. Here is an example of the conversion of a vector to its Haar coefficients for $n = 3$.

Given the sequence $u = (31, 29, 23, 17, -6, -8, -2, -4)$, we get the sequence

$$
\begin{align*}
c^3 &= (31, 29, 23, 17, -6, -8, -2, -4) \\
c^2 &= (30, 20, -7, -3, 1, 3, 1, 1) \\
c^1 &= (25, -5, 5, -2, 1, 3, 1, 1) \\
c^0 &= (10, 15, 5, -2, 1, 3, 1, 1),
\end{align*}
$$
so \(c = (10, 15, 5, -2, 1, 3, 1, 1) \). Conversely, given \(c = (10, 15, 5, -2, 1, 3, 1, 1) \), we get the sequence

\[
\begin{align*}
 u^0 &= (10, 15, 5, -2, 1, 3, 1, 1) \\
 u^1 &= (25, -5, 5, -2, 1, 3, 1, 1) \\
 u^2 &= (30, 20, -7, -3, 1, 3, 1, 1) \\
 u^3 &= (31, 29, 23, 17, -6, -8, -2, -4),
\end{align*}
\]

which gives back \(u = (31, 29, 23, 17, -6, -8, -2, -4) \).

There is another recursive method for constructing the Haar matrix \(W_n \) of dimension \(2^n \) that makes it clearer why the columns of \(W_n \) are pairwise orthogonal, and why the above algorithms are indeed correct (which nobody seems to prove!). If we split \(W_n \) into two \(2^n \times 2^n - 1 \) matrices, then the second matrix containing the last \(2^n - 1 \) columns of \(W_n \) has a very simple structure: it consists of the vector

\[
\begin{pmatrix}
1 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1
\end{pmatrix}
\]

and \(2^n - 1 \) shifted copies of it, as illustrated below for \(n = 3 \):

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1
\end{pmatrix}
\]

Observe that this matrix can be obtained from the identity matrix \(I_{2^n - 1} \), in our example

\[
I_4 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

by forming the \(2^n \times 2^n - 1 \) matrix obtained by replacing each 1 by the column vector

\[
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
\]

and each zero by the column vector

\[
\begin{pmatrix}
0 \\
0
\end{pmatrix}.
\]
Now, the first half of W_n, that is the matrix consisting of the first 2^{n-1} columns of W_n, can be obtained from W_{n-1} by forming the $2^n \times 2^{n-1}$ matrix obtained by replacing each 1 by the column vector

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

each -1 by the column vector

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix},$$

and each zero by the column vector

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For $n = 3$, the first half of W_3 is the matrix

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$

which is indeed obtained from

$$W_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$

using the process that we just described.

These matrix manipulations can be described conveniently using a product operation on matrices known as the Kronecker product.

Definition 3.8. Given a $m \times n$ matrix $A = (a_{ij})$ and a $p \times q$ matrix $B = (b_{ij})$, the Kronecker product (or tensor product) $A \otimes B$ of A and B is the $mp \times nq$ matrix

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}.$$
It can be shown that \otimes is associative and that
\[
(A \otimes B)(C \otimes D) = AC \otimes BD
\]
\[
(A \otimes B)^\top = A^\top \otimes B^\top,
\]
whenever AC and BD are well defined. Then, it is immediately verified that W_n is given by the following neat recursive equations:
\[
W_n = \left(W_{n-1} \otimes \begin{pmatrix} 1 & \end{pmatrix} I_{2^{n-1}} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right),
\]
with $W_0 = (1)$. If we let
\[
B_1 = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
\]
and for $n \geq 1$,
\[
B_{n+1} = 2 \begin{pmatrix} B_n & 0 \\ 0 & I_{2^n} \end{pmatrix},
\]
then it is not hard to obtain a rigorous proof of the equation
\[
W_n^\top W_n = B_n, \quad \text{for all } n \geq 1.
\]
The above equation offers a clean justification of the fact that the columns of W_n are pairwise orthogonal.

Observe that the right block (of size $2^n \times 2^{n-1}$) shows clearly how the detail coefficients in the second half of the vector c are added and subtracted to the entries in the first half of the partially reconstructed vector after $n - 1$ steps.

An important and attractive feature of the Haar basis is that it provides a *multiresolution analysis* of a signal. Indeed, given a signal u, if $c = (c_1, \ldots, c_{2^n})$ is the vector of its Haar coefficients, the coefficients with low index give coarse information about u, and the coefficients with high index represent fine information. For example, if u is an audio signal corresponding to a Mozart concerto played by an orchestra, c_1 corresponds to the “background noise,” c_2 to the bass, c_3 to the first cello, c_4 to the second cello, c_5, c_6, c_7, c_7 to the violas, then the violins, *etc*. This multiresolution feature of wavelets can be exploited to compress a signal, that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal
\[
u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, -1.1, -1.3),
\]
whose Haar transform is
\[
c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).
\]
The piecewise-linear curves corresponding to \(u \) and \(c \) are shown in Figure 3.6. Since some of the coefficients in \(c \) are small (smaller than or equal to 0.2) we can compress \(c \) by replacing them by 0. We get

\[
c_2 = (2, 0, 0, 3, 0, 0, 2, 0),
\]

and the reconstructed signal is

\[
u_2 = (2, 2, 2, 7, 3, -1, -1).
\]

The piecewise-linear curves corresponding to \(u_2 \) and \(c_2 \) are shown in Figure 3.7.

An interesting (and amusing) application of the Haar wavelets is to the compression of audio signals. It turns out that if you type `load handel` in `Matlab` an audio file will be loaded in a vector denoted by \(y \), and if you type `sound(y)`, the computer will play this piece of music. You can convert \(y \) to its vector of Haar coefficients \(c \). The length of \(y \) is
73113, so first truncate the tail of y to get a vector of length $65536 = 2^{16}$. A plot of the signals corresponding to y and c is shown in Figure 3.8. Then, run a program that sets all coefficients of c whose absolute value is less than 0.05 to zero. This sets 37272 coefficients to 0. The resulting vector c_2 is converted to a signal y_2. A plot of the signals corresponding to y_2 and c_2 is shown in Figure 3.9. When you type `sound(y2)`, you find that the music

doesn’t differ much from the original, although it sounds less crisp. You should play with other numbers greater than or less than 0.05. You should hear what happens when you type `sound(c)`. It plays the music corresponding to the Haar transform c of y, and it is quite funny.

Another neat property of the Haar transform is that it can be instantly generalized to matrices (even rectangular) without any extra effort! This allows for the compression of digital images. But first, we address the issue of normalization of the Haar coefficients. As
we observed earlier, the $2^n \times 2^n$ matrix W_n of Haar basis vectors has orthogonal columns, but its columns do not have unit length. As a consequence, W_n^\top is not the inverse of W_n, but rather the matrix

$$W_n^{-1} = D_n W_n^\top$$

with $D_n = \text{diag}(2^{-n}, 2^{-n}, 2^{-n+1}, 2^{-n+1}, \ldots, 2^{-n-2}, \ldots, 2^{-1}, \ldots, 2^{-1})$.

Definition 3.9. The orthogonal matrix

$$H_n = W_n D_n^{1/2}$$

whose columns are the normalized Haar basis vectors, with

$$D_n^{1/2} = \text{diag}(2^{-n}, 2^{-n}, 2^{-n+1}, 2^{-n+1}, \ldots, 2^{-n-2}, \ldots, 2^{-1}, \ldots, 2^{-1})$$

is called the normalized Haar transform matrix. Given a vector (signal) u, we call $c = H_n^\top u$ the normalized Haar coefficients of u.

Because H_n is orthogonal, $H_n^{-1} = H_n^\top$.

Then, a moment of reflection shows that we have to slightly modify the algorithms to compute $H_n^\top u$ and $H_n c$ as follows: When computing the sequence of u^is, use

$$u^{i+1}(2i - 1) = (u^i(i) + u^i(2^j + i))/\sqrt{2}$$

$$u^{i+1}(2i) = (u^i(i) - u^i(2^j + i))/\sqrt{2},$$

and when computing the sequence of c^js, use

$$c^j(i) = (c^{j+1}(2i - 1) + c^{j+1}(2i))/\sqrt{2}$$

$$c^j(2^j + i) = (c^{j+1}(2i - 1) - c^{j+1}(2i))/\sqrt{2}.$$

Note that things are now more symmetric, at the expense of a division by $\sqrt{2}$. However, for long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [49]) rescale c by $1/\sqrt{2^n}$ and u by $\sqrt{2^n}$. This is because the norm of the basis functions ψ^j_k is not equal to 1 (under the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$). The normalized basis functions are the functions $\sqrt{2^j} \psi^j_k$.

Let us now explain the 2D version of the Haar transform. We describe the version using the matrix W_n, the method using H_n being identical (except that $H_n^{-1} = H_n^\top$, but this does not hold for W_n^{-1}). Given a $2^m \times 2^n$ matrix A, we can first convert the rows of A to their
Haar coefficients using the Haar transform W_n^{-1}, obtaining a matrix B, and then convert the columns of B to their Haar coefficients, using the matrix W_m^{-1}. Because columns and rows are exchanged in the first step,
\[B = A(W_n^{-1})^\top, \]
and in the second step $C = W_m^{-1}B$, thus, we have
\[C = W_m^{-1}A(W_n^{-1})^\top = D_m W_m^\top AW_n D_n. \]

In the other direction, given a matrix C of Haar coefficients, we reconstruct the matrix A (the image) by first applying W_m to the columns of C, obtaining B, and then W_n^\top to the rows of B. Therefore
\[A = W_m CW_n^\top. \]

Of course, we don’t actually have to invert W_m and W_n and perform matrix multiplications. We just have to use our algorithms using averaging and differencing. Here is an example.

If the data matrix (the image) is the 8×8 matrix
\[
A = \begin{pmatrix}
64 & 2 & 3 & 61 & 60 & 6 & 7 & 57 \\
9 & 55 & 54 & 12 & 13 & 51 & 50 & 16 \\
17 & 47 & 46 & 20 & 21 & 43 & 42 & 24 \\
40 & 26 & 27 & 37 & 36 & 30 & 31 & 33 \\
32 & 34 & 35 & 29 & 28 & 38 & 39 & 25 \\
41 & 23 & 22 & 44 & 45 & 19 & 18 & 48 \\
49 & 15 & 14 & 52 & 53 & 11 & 10 & 56 \\
8 & 58 & 59 & 5 & 4 & 62 & 63 & 1
\end{pmatrix},
\]
then applying our algorithms, we find that
\[
C = \begin{pmatrix}
32.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & -4 & 4 & -4 \\
0 & 0 & 0 & 0 & 4 & -4 & 4 & -4 \\
0 & 0.5 & 0.5 & 27 & -25 & 23 & -21 \\
0 & 0 & -0.5 & -0.5 & -11 & 9 & -7 & 5 \\
0 & 0.5 & 0.5 & -5 & 7 & -9 & 11 \\
0 & 0 & -0.5 & -0.5 & 21 & -23 & 25 & -27
\end{pmatrix}.
\]

As we can see, C has more zero entries than A; it is a compressed version of A. We can
further compress C by setting to 0 all entries of absolute value at most 0.5. Then, we get

$$C_2 = \begin{pmatrix}
32.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & -4 & 4 & -4 \\
0 & 0 & 0 & 0 & 4 & -4 & 4 & -4 \\
0 & 0 & 0 & 0 & 27 & -25 & 23 & -21 \\
0 & 0 & 0 & 0 & -11 & 9 & -7 & 5 \\
0 & 0 & 0 & 0 & -5 & 7 & -9 & 11 \\
0 & 0 & 0 & 0 & 21 & -23 & 25 & -27
\end{pmatrix}.$$

We find that the reconstructed image is

$$A_2 = \begin{pmatrix}
63.5 & 1.5 & 3.5 & 61.5 & 59.5 & 5.5 & 7.5 & 57.5 \\
9.5 & 55.5 & 53.5 & 11.5 & 13.5 & 51.5 & 49.5 & 15.5 \\
17.5 & 47.5 & 45.5 & 19.5 & 21.5 & 43.5 & 41.5 & 23.5 \\
39.5 & 25.5 & 27.5 & 37.5 & 35.5 & 29.5 & 31.5 & 33.5 \\
31.5 & 33.5 & 35.5 & 29.5 & 27.5 & 37.5 & 39.5 & 25.5 \\
41.5 & 23.5 & 21.5 & 43.5 & 45.5 & 19.5 & 17.5 & 47.5 \\
49.5 & 15.5 & 13.5 & 51.5 & 53.5 & 11.5 & 9.5 & 55.5 \\
7.5 & 57.5 & 59.5 & 5.5 & 3.5 & 61.5 & 63.5 & 1.5
\end{pmatrix},$$

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command, `image(X)` (also `imagesc(X)`), which often does a better job, which displays the matrix X has an image in which each entry is shown as a little square whose gray level is proportional to the numerical value of that entry (lighter if the value is higher, darker if the value is closer to zero; negative values are treated as zero). The images corresponding to A and C are shown in Figure 3.10. The compressed images corresponding to A_2 and C_2 are shown in Figure 3.11. The compressed
versions appear to be indistinguishable from the originals!

If we use the normalized matrices H_m and H_n, then the equations relating the image matrix A and its normalized Haar transform C are

$$C = H_m^T A H_n$$

$$A = H_m C H_n^T.$$

The Haar transform can also be used to send large images progressively over the internet. Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest coefficients (the first column from top down, then the second column, etc.), and at the receiving end we can start reconstructing the image as soon as we have received enough data.

Observe that instead of performing all rounds of averaging and differencing on each row and each column, we can perform partial encoding (and decoding). For example, we can perform a single round of averaging and differencing for each row and each column. The result is an image consisting of four subimages, where the top left quarter is a coarser version of the original, and the rest (consisting of three pieces) contain the finest detail coefficients. We can also perform two rounds of averaging and differencing, or three rounds, etc. The second round of averaging and differencing is applied to the top left quarter of the image. Generally, the kth round is applied to the $2^{m+1-k} \times 2^{n+1-k}$ submatrix consisting of the first 2^{m+1-k} rows and the first 2^{n+1-k} columns ($1 \leq k \leq n$) of the matrix obtained at the end of the previous round. This process is illustrated on the image shown in Figure 3.12. The result of performing one round, two rounds, three rounds, and nine rounds of averaging is shown in Figure 3.13. Since our images have size 512×512, nine rounds of averaging yields the Haar transform, displayed as the image on the bottom right. The original image has completely disappeared! We leave it as a fun exercise to modify the algorithms involving averaging and differencing to perform k rounds of averaging/differencing. The reconstruction algorithm is a little tricky.
A nice and easily accessible account of wavelets and their uses in image processing and computer graphics can be found in Stollnitz, Derose and Salesin [49]. A very detailed account is given in Strang and Nguyen [52], but this book assumes a fair amount of background in signal processing.

We can find easily a basis of $2^n \times 2^n = 2^{2n}$ vectors w_{ij} ($2^n \times 2^n$ matrices) for the linear map that reconstructs an image from its Haar coefficients, in the sense that for any matrix C of Haar coefficients, the image matrix A is given by

$$A = \sum_{i=1}^{2^n} \sum_{j=1}^{2^n} c_{ij} w_{ij}.$$

Indeed, the matrix w_{ij} is given by the so-called outer product

$$w_{ij} = w_i(w_j)^\top.$$

Similarly, there is a basis of $2^n \times 2^n = 2^{2n}$ vectors h_{ij} ($2^n \times 2^n$ matrices) for the 2D Haar transform, in the sense that for any matrix A, its matrix C of Haar coefficients is given by

$$C = \sum_{i=1}^{2^n} \sum_{j=1}^{2^n} a_{ij} h_{ij}.$$
Figure 3.13: Haar transforms after one, two, three, and nine rounds of averaging.
3.4. THE EFFECT OF A CHANGE OF BASES ON MATRICES

If the columns of \(W^{-1} \) are \(w'_1, \ldots, w'_{2n} \), then

\[
h_{ij} = w'_i(w'_j)^\top.
\]

We leave it as exercise to compute the bases \((w_{ij})\) and \((h_{ij})\) for \(n = 2 \), and to display the corresponding images using the command `imagesc`.

3.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the following proposition.

Proposition 3.4. Let \(E \) and \(F \) be vector spaces, let \(\mathcal{U} = (u_1, \ldots, u_n) \) and \(\mathcal{U}' = (u'_1, \ldots, u'_n) \) be two bases of \(E \), and let \(\mathcal{V} = (v_1, \ldots, v_m) \) and \(\mathcal{V}' = (v'_1, \ldots, v'_m) \) be two bases of \(F \). Let \(P = P_{\mathcal{U}'\mathcal{U}} \) be the change of basis matrix from \(\mathcal{U} \) to \(\mathcal{U}' \), and let \(Q = P_{\mathcal{V}'\mathcal{V}} \) be the change of basis matrix from \(\mathcal{V} \) to \(\mathcal{V}' \). For any linear map \(f: E \to F \), let \(M(f) = M_{\mathcal{U}\mathcal{V}}(f) \) be the matrix associated to \(f \) w.r.t. the bases \(\mathcal{U} \) and \(\mathcal{V} \), and let \(M'(f) = M_{\mathcal{U}'\mathcal{V}'}(f) \) be the matrix associated to \(f \) w.r.t. the bases \(\mathcal{U}' \) and \(\mathcal{V}' \). We have

\[
M'(f) = Q^{-1}M(f)P,
\]

or more explicitly

\[
M_{\mathcal{U}'\mathcal{V}'}(f) = P_{\mathcal{V}'\mathcal{V}}^{-1}M_{\mathcal{U}\mathcal{V}}(f)P_{\mathcal{U}'\mathcal{U}} = P_{\mathcal{V}'\mathcal{V}}M_{\mathcal{U}\mathcal{V}}(f)P_{\mathcal{U}'\mathcal{U}}.
\]

Proof. Since \(f: E \to F \) can be written as \(f = \text{id}_F \circ f \circ \text{id}_E \), since \(P \) is the matrix of \(\text{id}_E \) w.r.t. the bases \((u'_1, \ldots, u'_n)\) and \((u_1, \ldots, u_n)\), and \(Q^{-1} \) is the matrix of \(\text{id}_F \) w.r.t. the bases \((v_1, \ldots, v_m)\) and \((v'_1, \ldots, v'_m)\), by Proposition 3.2, we have \(M'(f) = Q^{-1}M(f)P \).

As a corollary, we get the following result.

Corollary 3.5. Let \(E \) be a vector space, and let \(\mathcal{U} = (u_1, \ldots, u_n) \) and \(\mathcal{U}' = (u'_1, \ldots, u'_n) \) be two bases of \(E \). Let \(P = P_{\mathcal{U}'\mathcal{U}} \) be the change of basis matrix from \(\mathcal{U} \) to \(\mathcal{U}' \). For any linear map \(f: E \to E \), let \(M(f) = M_{\mathcal{U}}(f) \) be the matrix associated to \(f \) w.r.t. the basis \(\mathcal{U} \), and let \(M'(f) = M_{\mathcal{U}'}(f) \) be the matrix associated to \(f \) w.r.t. the basis \(\mathcal{U}' \). We have

\[
M'(f) = P^{-1}M(f)P,
\]

or more explicitly,

\[
M_{\mathcal{U}'}(f) = P_{\mathcal{U}'\mathcal{U}}^{-1}M_{\mathcal{U}}(f)P_{\mathcal{U}'\mathcal{U}} = P_{\mathcal{U}'\mathcal{U}}M_{\mathcal{U}}(f)P_{\mathcal{U}'\mathcal{U}}.
\]
CHAPTER 3. MATRICES AND LINEAR MAPS

Example 3.3. Let $E = \mathbb{R}^2$, $\mathcal{U} = (e_1, e_2)$ where $e_1 = (1, 0)$ and $e_2 = (0, 1)$ are the canonical basis vectors, let $\mathcal{V} = (v_1, v_2) = (e_1, e_1 - e_2)$, and let

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

The change of basis matrix $P = P_{\mathcal{V} \mathcal{U}}$ from \mathcal{U} to \mathcal{V} is

$$P = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$

and we check that

$$P^{-1} = P.$$

Therefore, in the basis \mathcal{V}, the matrix representing the linear map f defined by A is

$$A' = P^{-1}AP = PAP = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = D,$$

a diagonal matrix. In the basis \mathcal{V}, it is clear what the action of f is: it is a stretch by a factor of 2 in the v_1 direction and it is the identity in the v_2 direction. Observe that v_1 and v_2 are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are the eigenvalues of A (and f), and v_1 and v_2 are corresponding eigenvectors. We will come back to eigenvalues and eigenvectors later on.

The above example showed that the same linear map can be represented by different matrices. This suggests making the following definition:

Definition 3.10. Two $n \times n$ matrices A and B are said to be similar iff there is some invertible matrix P such that

$$B = P^{-1}AP.$$

It is easily checked that similarity is an equivalence relation. From our previous considerations, two $n \times n$ matrices A and B are similar iff they represent the same linear map with respect to two different bases. The following surprising fact can be shown: Every square matrix A is similar to its transpose A^\top. The proof requires advanced concepts (the Jordan form, or similarity invariants).

If $\mathcal{U} = (u_1, \ldots, u_n)$ and $\mathcal{V} = (v_1, \ldots, v_n)$ are two bases of E, the change of basis matrix

$$P = P_{\mathcal{V} \mathcal{U}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}.$$
3.4. THE EFFECT OF A CHANGE OF BASES ON MATRICES

from \((u_1, \ldots, u_n)\) to \((v_1, \ldots, v_n)\) is the matrix whose \(j\)th column consists of the coordinates of \(v_j\) over the basis \((u_1, \ldots, u_n)\), which means that

\[
v_j = \sum_{i=1}^{n} a_{ij} u_i.
\]

It is natural to extend the matrix notation and to express the vector \(
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{pmatrix}
\) in \(E^n\) as the product of a matrix times the vector \(
\begin{pmatrix}
 u_1 \\
 \vdots \\
 u_n
\end{pmatrix}
\) in \(E^n\), namely as

\[
\begin{pmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{21} & \cdots & a_{n1} \\
 a_{12} & a_{22} & \cdots & a_{n2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{1n} & a_{2n} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_n
\end{pmatrix},
\]

but notice that the matrix involved is not \(P\), but its transpose \(P^\top\).

This observation has the following consequence: if \(U = (u_1, \ldots, u_n)\) and \(V = (v_1, \ldots, v_n)\) are two bases of \(E\) and if

\[
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{pmatrix} = A
\begin{pmatrix}
 u_1 \\
 \vdots \\
 u_n
\end{pmatrix},
\]

that is,

\[
v_i = \sum_{j=1}^{n} a_{ij} u_j,
\]

for any vector \(w \in E\), if

\[
w = \sum_{i=1}^{n} x_i u_i = \sum_{k=1}^{n} y_k v_k,
\]

then

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = A^\top
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix},
\]

and so

\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix} = (A^\top)^{-1}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}.
\]
It is easy to see that $(A^\top)^{-1} = (A^{-1})^\top$. Also, if $\mathbf{U} = (u_1, \ldots, u_n)$, $\mathbf{V} = (v_1, \ldots, v_n)$, and $\mathbf{W} = (w_1, \ldots, w_n)$ are three bases of E, and if the change of basis matrix from \mathbf{U} to \mathbf{V} is $P = P_{\mathbf{V}\mathbf{U}}$ and the change of basis matrix from \mathbf{V} to \mathbf{W} is $Q = P_{\mathbf{W}\mathbf{V}}$, then
\[
\begin{pmatrix}
v_1 \\
\vdots \\
v_n
\end{pmatrix} = P^\top
\begin{pmatrix}
u_1 \\
\vdots \\
u_n
\end{pmatrix},
\begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix} = Q^\top
\begin{pmatrix}
v_1 \\
\vdots \\
v_n
\end{pmatrix},
\]
so
\[
\begin{pmatrix}
w_1 \\
\vdots \\
w_n
\end{pmatrix} = Q^\top P^\top
\begin{pmatrix}
u_1 \\
\vdots \\
u_n
\end{pmatrix} = (PQ)^\top
\begin{pmatrix}
u_1 \\
\vdots \\
u_n
\end{pmatrix},
\]
which means that the change of basis matrix $P_{\mathbf{W}\mathbf{U}}$ from \mathbf{U} to \mathbf{W} is PQ. This proves that $P_{\mathbf{W}\mathbf{U}} = P_{\mathbf{V}\mathbf{U}} P_{\mathbf{W}\mathbf{V}}$.

Even though matrices are indispensable since they are the major tool in applications of linear algebra, one should not lose track of the fact that linear maps are more fundamental, because they are intrinsic objects that do not depend on the choice of bases. Consequently, we advise the reader to try to think in terms of linear maps rather than reduce everything to matrices.

In our experience, this is particularly effective when it comes to proving results about linear maps and matrices, where proofs involving linear maps are often more “conceptual.” These proofs are usually more general because they do not depend on the fact that the dimension is finite. Also, instead of thinking of a matrix decomposition as a purely algebraic operation, it is often illuminating to view it as a geometric decomposition. This is the case of the SVD, which in geometric term says that every linear map can be factored as a rotation, followed by a rescaling along orthogonal axes, and then another rotation.

After all, a

a matrix is a representation of a linear map

and most decompositions of a matrix reflect the fact that with a suitable choice of a basis (or bases), the linear map is represented by a matrix having a special shape. The problem is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we confess that it takes a certain amount of practice to reach the point where it becomes more natural to deal with linear maps. We still recommend it! For example, try to translate a result stated in terms of matrices into a result stated in terms of linear maps. Whenever we tried this exercise, we learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on space.
3.5 Summary

The main concepts and results of this chapter are listed below:

- The representation of linear maps by matrices.
- The vector space of linear maps $\text{Hom}_K(E, F)$.
- The matrix representation mapping $M : \text{Hom}(E, F) \rightarrow M_{n,p}$ and the representation isomorphism (Proposition 3.2).
- Haar basis vectors and a glimpse at Haar wavelets.
- Kronecker product (or tensor product) of matrices.
- Change of basis matrix and Proposition 3.4.
Chapter 4

Direct Sums, Affine Maps

4.1 Direct Products

There are some useful ways of forming new vector spaces from older ones.

Definition 4.1. Given $p \geq 2$ vector spaces E_1, \ldots, E_p, the product $F = E_1 \times \cdots \times E_p$ can be made into a vector space by defining addition and scalar multiplication as follows:

$$(u_1, \ldots, u_p) + (v_1, \ldots, v_p) = (u_1 + v_1, \ldots, u_p + v_p)$$

$$\lambda(u_1, \ldots, u_p) = (\lambda u_1, \ldots, \lambda u_p),$$

for all $u_i, v_i \in E_i$ and all $\lambda \in \mathbb{R}$. The zero vector of $E_1 \times \cdots \times E_p$ is the p-tuple

$$(0, \ldots, 0),$$

where the ith zero is the zero vector of E_i.

With the above addition and multiplication, the vector space $F = E_1 \times \cdots \times E_p$ is called the *direct product* of the vector spaces E_1, \ldots, E_p.

As a special case, when $E_1 = \cdots = E_p = \mathbb{R}$, we find again the vector space $F = \mathbb{R}^p$. The *projection maps* $pr_i : E_1 \times \cdots \times E_p \to E_i$ given by

$$pr_i(u_1, \ldots, u_p) = u_i$$

are clearly linear. Similarly, the maps $in_i : E_i \to E_1 \times \cdots \times E_p$ given by

$$in_i(u_i) = (0, \ldots, 0, u_i, 0, \ldots, 0)$$

are linear.
are injective and linear. If \(\dim(E_i) = n_i \) and if \((e^i_1, \ldots, e^i_{n_i}) \) is a basis of \(E_i \) for \(i = 1, \ldots, p \), then it is easy to see that the \(n_1 + \cdots + n_p \) vectors

\[
\begin{align*}
(e^1_1,0,\ldots,0), & \quad \ldots \quad (e^{n_1}_1,0,\ldots,0), \\
\vdots & \quad \vdots \\
(0,\ldots,0,e^1_1,0,\ldots,0), & \quad \ldots \quad (0,\ldots,0,e^{n_1}_1,0,\ldots,0), \\
\vdots & \quad \vdots \\
(0,\ldots,0,e^p_1), & \quad \ldots \quad (0,\ldots,0,e^{n_p}_p)
\end{align*}
\]

form a basis of \(E_1 \times \cdots \times E_p \), and so

\[
\dim(E_1 \times \cdots \times E_p) = \dim(E_1) + \cdots + \dim(E_p).
\]

4.2 Sums and Direct Sums

Let us now consider a vector space \(E \) and \(p \) subspaces \(U_1, \ldots, U_p \) of \(E \). We have a map

\[
a: U_1 \times \cdots \times U_p \to E
\]

given by

\[
a(u_1, \ldots, u_p) = u_1 + \cdots + u_p,
\]

with \(u_i \in U_i \) for \(i = 1, \ldots, p \). It is clear that this map is linear, and so its image is a subspace of \(E \) denoted by

\[
U_1 + \cdots + U_p
\]

and called the **sum** of the subspaces \(U_1, \ldots, U_p \). By definition,

\[
U_1 + \cdots + U_p = \{u_1 + \cdots + u_p \mid u_i \in U_i, \ 1 \leq i \leq p\},
\]

and it is immediately verified that \(U_1 + \cdots + U_p \) is the smallest subspace of \(E \) containing \(U_1, \ldots, U_p \). This also implies that \(U_1 + \cdots + U_p \) does not depend on the order of the factors \(U_i \); in particular,

\[
U_1 + U_2 = U_2 + U_1.
\]

If the map \(a \) is injective, then by Proposition 2.12 we have \(\text{Ker } a = \{(0, \ldots, 0)\} \) where each 0 is the zero vector of \(E \), which means that if \(u_i \in U_i \) for \(i = 1, \ldots, p \) and if

\[
u_1 + \cdots + u_p = 0,
\]

then \((u_1, \ldots, u_p) = (0, \ldots, 0)\), that is, \(u_1 = 0, \ldots, u_p = 0 \). In this case, every \(u \in U_1 + \cdots + U_p \) has a **unique** expression as a sum

\[
u = u_1 + \cdots + u_p.
\]
with $u_i \in U_i$, for $i = 1, \ldots, p$. Indeed, if

$$u = v_1 + \cdots + v_p = w_1 + \cdots + w_p,$$

with $v_i, w_i \in U_i$, for $i = 1, \ldots, p$, then we have

$$w_1 - v_1 + \cdots + w_p - v_p = 0,$$

and since $v_i, w_i \in U_i$ and each U_i is a subspace, $w_i - v_i \in U_i$. The injectivity of a implies that $w_i - v_i = 0$, that is, $w_i = v_i$ for $i = 1, \ldots, p$, which shows the uniqueness of the decomposition of u.

It is also clear that any p nonzero vectors u_1, \ldots, u_p with $u_i \in U_i$ are linearly independent. To see this, assume that

$$\lambda_1 u_1 + \cdots + \lambda_p u_p = 0$$

for some $\lambda_i \in \mathbb{R}$. Since $u_i \in U_i$ and U_i is a subspace, $\lambda_i u_i \in U_i$, and the injectivity of a implies that $\lambda_i u_i = 0$, for $i = 1, \ldots, p$. Since $u_i \neq 0$, we must have $\lambda_i = 0$ for $i = 1, \ldots, p$; that is, u_1, \ldots, u_p with $u_i \in U_i$ and $u_i \neq 0$ are linearly independent.

Observe that if a is injective, then we must have $U_i \cap U_j = (0)$ whenever $i \neq j$. However, this condition is generally not sufficient if $p \geq 3$. For example, if $E = \mathbb{R}^2$ and U_1 the line spanned by $e_1 = (1, 0)$, U_2 is the line spanned by $d = (1, 1)$, and U_3 is the line spanned by $e_2 = (0, 1)$, then $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{(0, 0)\}$, but $U_1 + U_2 = U_1 + U_3 = U_2 + U_3 = \mathbb{R}^2$, so $U_1 + U_2 + U_3$ is not a direct sum. For example, d is expressed in two different ways as

$$d = (1, 1) = (1, 0) + (0, 1) = e_1 + e_2.$$

Definition 4.2. For any vector space E and any $p \geq 2$ subspaces U_1, \ldots, U_p of E, if the map a defined above is injective, then the sum $U_1 + \cdots + U_p$ is called a direct sum and it is denoted by

$$U_1 \oplus \cdots \oplus U_p.$$

The space E is the direct sum of the subspaces U_i if

$$E = U_1 \oplus \cdots \oplus U_p.$$

As in the case of a sum, $U_1 \oplus U_2 = U_2 \oplus U_1$. Observe that when the map a is injective, then it is a linear isomorphism between $U_1 \times \cdots \times U_p$ and $U_1 \oplus \cdots \oplus U_p$. The difference is that $U_1 \times \cdots \times U_p$ is defined even if the spaces U_i are not assumed to be subspaces of some common space.

If E is a direct sum $E = U_1 \oplus \cdots \oplus U_p$, since any p nonzero vectors u_1, \ldots, u_p with $u_i \in U_i$ are linearly independent, if we pick a basis $(u_k)_{k \in I_j}$ in U_j for $j = 1, \ldots, p$, then $(u_i)_{i \in I}$ with $I = I_1 \cup \cdots \cup I_p$ is a basis of E. Intuitively, E is split into p independent subspaces.
Conversely, given a basis \((u_i)_{i \in I}\) of \(E\), if we partition the index set \(I\) as \(I = I_1 \cup \cdots \cup I_p\), then each subfamily \((u_k)_{k \in I_j}\) spans some subspace \(U_j\) of \(E\), and it is immediately verified that we have a direct sum
\[
E = U_1 \oplus \cdots \oplus U_p.
\]

Let \(f: E \to E\) be a linear map. If \(f(U_j) \subseteq U_j\) we say that \(U_j\) is invariant under \(f\). Assume that \(E\) is finite-dimensional, a direct sum \(E = U_1 \oplus \cdots \oplus U_p\), and that each \(U_j\) is invariant under \(f\). If we pick a basis \((u_i)_{i \in I}\) as above with \(I = I_1 \cup \cdots \cup I_p\) and with each \((u_k)_{k \in I_j}\) a basis of \(U_j\), since each \(U_j\) is invariant under \(f\), the image \(f(u_k)\) of every basis vector \(u_k\) with \(k \in I_j\) belongs to \(U_j\), so the matrix \(A\) representing \(f\) over the basis \((u_i)_{i \in I}\) is a block diagonal matrix of the form
\[
A = \begin{pmatrix}
A_1 & & \\
& A_2 & \\
& & \ddots \\
& & & A_p
\end{pmatrix},
\]
with each block \(A_j\) a \(d_j \times d_j\)-matrix with \(d_j = \dim(U_j)\) and all other entries equal to 0. If \(d_j = 1\) for \(j = 1, \ldots, p\), the matrix \(A\) is a diagonal matrix.

There are natural injections from each \(U_i\) to \(E\) denoted by \(i_n: U_i \to E\).

Now, if \(p = 2\), it is easy to determine the kernel of the map \(a: U_1 \times U_2 \to E\). We have
\[
a(u_1, u_2) = u_1 + u_2 = 0 \quad \text{iff} \quad u_1 = -u_2, \ u_1 \in U_1, u_2 \in U_2,
\]
which implies that
\[
\ker a = \{(u, -u) \mid u \in U_1 \cap U_2\}.
\]
Now, \(U_1 \cap U_2\) is a subspace of \(E\) and the linear map \(u \mapsto (u, -u)\) is clearly an isomorphism between \(U_1 \cap U_2\) and \(\ker a\), so \(\ker a\) is isomorphic to \(U_1 \cap U_2\). As a consequence, we get the following result:

Proposition 4.1. Given any vector space \(E\) and any two subspaces \(U_1\) and \(U_2\), the sum \(U_1 + U_2\) is a direct sum iff \(U_1 \cap U_2 = (0)\).

An interesting illustration of the notion of direct sum is the decomposition of a square matrix into its symmetric part and its skew-symmetric part. Recall that an \(n \times n\) matrix \(A \in M_n\) is symmetric if \(A^\top = A\), skew-symmetric if \(A^\top = -A\). It is clear that
\[
S(n) = \{A \in M_n \mid A^\top = A\} \quad \text{and} \quad \text{Skew}(n) = \{A \in M_n \mid A^\top = -A\}
\]
are subspaces of \(M_n\), and that \(S(n) \cap \text{Skew}(n) = (0)\). Observe that for any matrix \(A \in M_n\), the matrix \(H(A) = (A + A^\top)/2\) is symmetric and the matrix \(S(A) = (A - A^\top)/2\) is skew-symmetric. Since
\[
A = H(A) + S(A) = \frac{A + A^\top}{2} + \frac{A - A^\top}{2},
\]
we see that \(M_n = S(n) + \text{Skew}(n) \), and since \(S(n) \cap \text{Skew}(n) = (0) \), we have the direct sum
\[M_n = S(n) \oplus \text{Skew}(n). \]

Remark: The vector space \(\text{Skew}(n) \) of skew-symmetric matrices is also denoted by \(\mathfrak{so}(n) \). It is the Lie algebra of the group \(\text{SO}(n) \).

Proposition 4.1 can be generalized to any \(p \geq 2 \) subspaces at the expense of notation. The proof of the following proposition is left as an exercise.

Proposition 4.2. Given any vector space \(E \) and any \(p \geq 2 \) subspaces \(U_1, \ldots, U_p \), the following properties are equivalent:

1. The sum \(U_1 + \cdots + U_p \) is a direct sum.
2. We have
\[U_i \cap \left(\sum_{j=1, j \neq i}^{p} U_j \right) = (0), \quad i = 1, \ldots, p. \]
3. We have
\[U_i \cap \left(\sum_{j=1}^{i-1} U_j \right) = (0), \quad i = 2, \ldots, p. \]

Because of the isomorphism
\[U_1 \times \cdots \times U_p \cong U_1 \oplus \cdots \oplus U_p, \]
we have

Proposition 4.3. If \(E \) is any vector space, for any (finite-dimensional) subspaces \(U_1, \ldots, U_p \) of \(E \), we have
\[\dim(U_1 \oplus \cdots \oplus U_p) = \dim(U_1) + \cdots + \dim(U_p). \]

If \(E \) is a direct sum
\[E = U_1 \oplus \cdots \oplus U_p, \]
since every \(u \in E \) can be written in a unique way as
\[u = u_1 + \cdots + u_p \]
with \(u_i \in U_i \) for \(i = 1 \ldots, p \), we can define the maps \(\pi_i : E \rightarrow U_i \), called projections, by
\[\pi_i(u) = \pi_i(u_1 + \cdots + u_p) = u_i. \]
It is easy to check that these maps are linear and satisfy the following properties:

\[
\pi_j \circ \pi_i = \begin{cases}
\pi_i & \text{if } i = j \\
0 & \text{if } i \neq j,
\end{cases}
\]

\[
\pi_1 + \cdots + \pi_p = \text{id}_E.
\]

For example, in the case of the direct sum

\[M_n = \mathbf{S}(n) \oplus \text{Skew}(n),\]

the projection onto \(\mathbf{S}(n)\) is given by

\[
\pi_1(A) = H(A) = \frac{A + A^\top}{2},
\]

and the projection onto \(\text{Skew}(n)\) is given by

\[
\pi_2(A) = S(A) = \frac{A - A^\top}{2}.
\]

Clearly, \(H(A) + S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A),\) and \(H(S(A)) = S(H(A)) = 0.\)

A function \(f\) such that \(f \circ f = f\) is said to be idempotent. Thus, the projections \(\pi_i\) are idempotent. Conversely, the following proposition can be shown:

Proposition 4.4. Let \(E\) be a vector space. For any \(p \geq 2\) linear maps \(f_i: E \to E\), if

\[
f_j \circ f_i = \begin{cases}
f_i & \text{if } i = j \\
0 & \text{if } i \neq j,
\end{cases}
\]

\[
f_1 + \cdots + f_p = \text{id}_E,
\]

then if we let \(U_i = f_i(E)\), we have a direct sum

\[E = U_1 \oplus \cdots \oplus U_p.\]

We also have the following proposition characterizing idempotent linear maps whose proof is also left as an exercise.

Proposition 4.5. For every vector space \(E\), if \(f: E \to E\) is an idempotent linear map, i.e., \(f \circ f = f\), then we have a direct sum

\[E = \text{Ker } f \oplus \text{Im } f,\]

so that \(f\) is the projection onto its image \(\text{Im } f\).

We are now ready to prove a very crucial result relating the rank and the dimension of the kernel of a linear map.
4.3 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following theorem which shows that given a linear map \(f : E \to F \), its domain \(E \) is the direct sum of its kernel \(\text{Ker} \ f \) with some isomorphic copy of its image \(\text{Im} \ f \).

Theorem 4.6. (Rank-nullity theorem) Let \(f : E \to F \) be a linear map. For any choice of a basis \((f_1, \ldots, f_r) \) of \(\text{Im} \ f \), let \((u_1, \ldots, u_r) \) be any vectors in \(E \) such that \(f_i = f(u_i) \), for \(i = 1, \ldots, r \). If \(s : \text{Im} \ f \to E \) is the unique linear map defined by \(s(f_i) = u_i \), for \(i = 1, \ldots, r \), then \(s \) is injective, \(f \circ s = \text{id} \), and we have a direct sum

\[
E = \text{Ker} \ f \oplus \text{Im} \ s
\]

as illustrated by the following diagram:

\[
\begin{array}{ccc}
\text{Ker} \ f & \longrightarrow & E = \text{Ker} \ f \oplus \text{Im} \ s \\
 & & \underset{s}{\longrightarrow} \text{Im} \ f \subseteq F.
\end{array}
\]

See Figure 4.1. As a consequence,

\[
\dim(E) = \dim(\text{Ker} \ f) + \dim(\text{Im} \ f) = \dim(\text{Ker} \ f) + \text{rk}(f).
\]

![Diagram showing the rank-nullity theorem](image)

Figure 4.1: Let \(f : E \to F \) be the linear map from \(\mathbb{R}^3 \) to \(\mathbb{R}^2 \) given by \(f(x, y, z) = (x, y) \). Then \(s : \mathbb{R}^2 \to \mathbb{R}^3 \) is given by \(s(x, y) = (x, y, x + y) \) and maps the pink \(\mathbb{R}^2 \) isomorphically onto the slanted pink plane of \(\mathbb{R}^3 \) whose equation is \(-x - y + z = 0\). Theorem 4.6 shows that \(\mathbb{R}^3 \) is the direct sum of the plane \(-x - y + z = 0\) and the kernel of \(f \) which the orange \(z \)-axis.

Proof. The vectors \(u_1, \ldots, u_r \) must be linearly independent since otherwise we would have a nontrivial linear dependence

\[
\lambda_1 u_1 + \cdots + \lambda_r u_r = 0,
\]
and by applying f, we would get the nontrivial linear dependence
\[0 = \lambda_1 f(u_1) + \cdots + \lambda_r f(u_r) = \lambda_1 f_1 + \cdots + \lambda_r f_r, \]
contradicting the fact that (f_1, \ldots, f_r) is a basis. Therefore, the unique linear map s given by $s(f_i) = u_i$, for $i = 1, \ldots, r$, is a linear isomorphism between $\text{Im } f$ and its image, the subspace spanned by (u_1, \ldots, u_r). It is also clear by definition that $f \circ s = \text{id}$. For any $u \in E$, let
\[h = u - (s \circ f)(u). \]
Since $f \circ s = \text{id}$, we have
\[f(h) = f(u - (s \circ f)(u)) = f(u) - (f \circ s \circ f)(u) = f(u) - (\text{id} \circ f)(u) = f(u) - f(u) = 0, \]
which shows that $h \in \text{Ker } f$. Since $h = u - (s \circ f)(u)$, it follows that
\[u = h + s(f(u)), \]
with $h \in \text{Ker } f$ and $s(f(u)) \in \text{Im } s$, which proves that
\[E = \text{Ker } f + \text{Im } s. \]
Now, if $u \in \text{Ker } f \cap \text{Im } s$, then $u = s(v)$ for some $v \in F$ and $f(u) = 0$ since $u \in \text{Ker } f$. Since $u = s(v)$ and $f \circ s = \text{id}$, we get
\[0 = f(u) = f(s(v)) = v, \]
and so $u = s(v) = s(0) = 0$. Thus, $\text{Ker } f \cap \text{Im } s = (0)$, which proves that we have a direct sum
\[E = \text{Ker } f \oplus \text{Im } s. \]
The equation
\[\dim(E) = \dim(\text{Ker } f) + \dim(\text{Im } f) = \dim(\text{Ker } f) + \text{rk}(f) \]
is an immediate consequence of the fact that the dimension is an additive property for direct sums, that by definition the rank of f is the dimension of the image of f, and that $\dim(\text{Im } s) = \dim(\text{Im } f)$, because s is an isomorphism between $\text{Im } f$ and $\text{Im } s$.

Remark: The dimension $\dim(\text{Ker } f)$ of the kernel of a linear map f is often called the *nullity* of f.

We now derive some important results using Theorem 4.6.

Proposition 4.7. Given a vector space E, if U and V are any two subspaces of E, then
\[\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V), \]
an equation known as Grassmann’s relation.
4.3. THE RANK-NULLITY THEOREM; GRASSMANN’S RELATION

Proof. Recall that $U + V$ is the image of the linear map

$$a: U \times V \to E$$

given by

$$a(u, v) = u + v,$$

and that we proved earlier that the kernel $\text{Ker} \ a$ of a is isomorphic to $U \cap V$. By Theorem 4.6,

$$\dim(U \times V) = \dim(\text{Ker} \ a) + \dim(\text{Im} \ a),$$

but $\dim(U \times V) = \dim(U) + \dim(V)$, $\dim(\text{Ker} \ a) = \dim(U \cap V)$, and $\text{Im} \ a = U + V$, so the Grassmann relation holds.

The Grassmann relation can be very useful to figure out whether two subspaces have a nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in \mathbb{R}^5, there are subspaces U and V with $\dim(U) = 3$ and $\dim(V) = 2$ such that $U \cap V = (0)$; for example, let U be generated by the vectors $(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)$, and V be generated by the vectors $(0, 0, 0, 1, 0)$ and $(0, 0, 0, 0, 1)$. However, we claim that if $\dim(U) = 3$ and $\dim(V) = 3$, then $\dim(U \cap V) \geq 1$. Indeed, by the Grassmann relation, we have

$$\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V),$$

namely

$$3 + 3 = 6 = \dim(U + V) + \dim(U \cap V),$$

and since $U + V$ is a subspace of \mathbb{R}^5, $\dim(U + V) \leq 5$, which implies

$$6 \leq 5 + \dim(U \cap V),$$

that is $1 \leq \dim(U \cap V)$.

As another consequence of Proposition 4.7, if U and V are two hyperplanes in a vector space of dimension n, so that $\dim(U) = n - 1$ and $\dim(V) = n - 1$, the reader should show that

$$\dim(U \cap V) \geq n - 2,$$

and so, if $U \neq V$, then

$$\dim(U \cap V) = n - 2.$$

Here is a characterization of direct sums that follows directly from Theorem 4.6.

Proposition 4.8. If U_1, \ldots, U_p are any subspaces of a finite dimensional vector space E, then

$$\dim(U_1 + \cdots + U_p) \leq \dim(U_1) + \cdots + \dim(U_p),$$

and

$$\dim(U_1 + \cdots + U_p) = \dim(U_1) + \cdots + \dim(U_p)$$

iff the U_is form a direct sum $U_1 \oplus \cdots \oplus U_p$.
Proof. If we apply Theorem 4.6 to the linear map
\[a : U_1 \times \cdots \times U_p \to U_1 + \cdots + U_p \]
given by \(a(u_1, \ldots, u_p) = u_1 + \cdots + u_p \), we get
\[
\dim(U_1 + \cdots + U_p) = \dim(U_1 \times \cdots \times U_p) - \dim(\text{Ker} \ a)
\]
\[
= \dim(U_1) + \cdots + \dim(U_p) - \dim(\text{Ker} \ a),
\]
so the inequality follows. Since \(a \) is injective iff \(\text{Ker} \ a = (0) \), the \(U_i \)'s form a direct sum iff the second equation holds. \(\square \)

Another important corollary of Theorem 4.6 is the following result:

Proposition 4.9. Let \(E \) and \(F \) be two vector spaces with the same finite dimension \(\dim(E) = \dim(F) = n \). For every linear map \(f : E \to F \), the following properties are equivalent:

(a) \(f \) is bijective.

(b) \(f \) is surjective.

(c) \(f \) is injective.

(d) \(\text{Ker} \ f = (0) \).

Proof. Obviously, (a) implies (b).

If \(f \) is surjective, then \(\text{Im} \ f = F \), and so \(\dim(\text{Im} \ f) = n \). By Theorem 4.6,
\[
\dim(E) = \dim(\text{Ker} \ f) + \dim(\text{Im} \ f),
\]
and since \(\dim(E) = n \) and \(\dim(\text{Im} \ f) = n \), we get \(\dim(\text{Ker} \ f) = 0 \), which means that \(\text{Ker} \ f = (0) \), and so \(f \) is injective (see Proposition 2.12). This proves that (b) implies (c).

If \(f \) is injective, then by Proposition 2.12, \(\text{Ker} \ f = (0) \), so (c) implies (d).

Finally, assume that \(\text{Ker} \ f = (0) \), so that \(\dim(\text{Ker} \ f) = 0 \) and \(f \) is injective (by Proposition 2.12). By Theorem 4.6,
\[
\dim(E) = \dim(\text{Ker} \ f) + \dim(\text{Im} \ f),
\]
and since \(\dim(\text{Ker} \ f) = 0 \), we get
\[
\dim(\text{Im} \ f) = \dim(E) = \dim(F),
\]
which proves that \(f \) is also surjective, and thus bijective. This proves that (d) implies (a) and concludes the proof. \(\square \)
One should be warned that Proposition 4.9 fails in infinite dimension.

Here are a few applications of Proposition 4.9. Let A be an $n \times n$ matrix and assume that A some right inverse B, which means that B is an $n \times n$ matrix such that

$$AB = I.$$

The linear map associated with A is surjective, since for every $u \in \mathbb{R}^n$, we have $A(Bu) = u$. By Proposition 4.9, this map is bijective so B is actually the inverse of A; in particular $BA = I$.

Similarly, assume that A has a left inverse B, so that

$$BA = I.$$

This time, the linear map associated with A is injective, because if $Au = 0$, then $BAu = B0 = 0$, and since $BA = I$ we get $u = 0$. Again, By Proposition 4.9, this map is bijective so B is actually the inverse of A; in particular $AB = I$.

Now, assume that the linear system $Ax = b$ has some solution for every b. Then the linear map associated with A is surjective and by Proposition 4.9, A is invertible.

Finally, assume that the linear system $Ax = b$ has at most one solution for every b. Then the linear map associated with A is injective and by Proposition 4.9, A is invertible.

We also have the following basic proposition about injective or surjective linear maps.

Proposition 4.10. Let E and F be vector spaces, and let $f: E \to F$ be a linear map. If $f: E \to F$ is injective, then there is a surjective linear map $r: F \to E$ called a retraction, such that $r \circ f = \text{id}_E$. If $f: E \to F$ is surjective, then there is an injective linear map $s: F \to E$ called a section, such that $f \circ s = \text{id}_F$.

Proof. Let $(u_i)_{i \in I}$ be a basis of E. Since $f: E \to F$ is an injective linear map, by Proposition 2.13, $(f(u_i))_{i \in I}$ is linearly independent in F. By Theorem 2.5, there is a basis $(v_j)_{j \in J}$ of F, where $I \subseteq J$, and where $v_i = f(u_i)$, for all $i \in I$. By Proposition 2.13, a linear map $r: F \to E$ can be defined such that $r(v_i) = u_i$, for all $i \in I$, and $r(v_j) = w$ for all $j \in (J - I)$, where w is any given vector in E, say $w = 0$. Since $r(f(u_i)) = u_i$ for all $i \in I$, by Proposition 2.13, we have $r \circ f = \text{id}_E$.

Now, assume that $f: E \to F$ is surjective. Let $(v_j)_{j \in J}$ be a basis of F. Since $f: E \to F$ is surjective, for every $v_j \in F$, there is some $u_j \in E$ such that $f(u_j) = v_j$. Since $(v_j)_{j \in J}$ is a basis of F, by Proposition 2.13, there is a unique linear map $s: F \to E$ such that $s(v_j) = u_j$. Also, since $f(s(v_j)) = v_j$, by Proposition 2.13 (again), we must have $f \circ s = \text{id}_F$.

The converse of Proposition 4.10 is obvious.

The notion of rank of a linear map or of a matrix important, both theoretically and practically, since it is the key to the solvability of linear equations. We have the following simple proposition.
Proposition 4.11. Given a linear map \(f : E \to F \), the following properties hold:

(i) \(\text{rk}(f) + \dim(\ker f) = \dim(E) \).

(ii) \(\text{rk}(f) \leq \min(\dim(E), \dim(F)) \).

Proof. Property (i) follows from Proposition 4.6. As for (ii), since \(\text{Im} f \) is a subspace of \(F \), we have \(\text{rk}(f) \leq \dim(F) \), and since \(\text{rk}(f) + \dim(\ker f) = \dim(E) \), we have \(\text{rk}(f) \leq \dim(E) \).

The rank of a matrix is defined as follows.

Definition 4.3. Given a \(m \times n \)-matrix \(A = (a_{ij}) \), the rank \(\text{rk}(A) \) of the matrix \(A \) is the maximum number of linearly independent columns of \(A \) (viewed as vectors in \(\mathbb{R}^m \)).

In view of Proposition 2.6, the rank of a matrix \(A \) is the dimension of the subspace of \(\mathbb{R}^m \) generated by the columns of \(A \). Let \(E \) and \(F \) be two vector spaces, and let \((u_1, \ldots, u_n) \) be a basis of \(E \), and \((v_1, \ldots, v_m) \) a basis of \(F \). Let \(f : E \to F \) be a linear map, and let \(M(f) \) be its matrix w.r.t. the bases \((u_1, \ldots, u_n) \) and \((v_1, \ldots, v_m) \). Since the rank \(\text{rk}(f) \) of \(f \) is the dimension of \(\text{Im} f \), which is generated by \((f(u_1), \ldots, f(u_n)) \), the rank of \(f \) is the maximum number of linearly independent vectors in \((f(u_1), \ldots, f(u_n)) \), which is equal to the number of linearly independent columns of \(M(f) \), since \(F \) and \(\mathbb{R}^m \) are isomorphic. Thus, we have \(\text{rk}(f) = \text{rk}(M(f)) \), for every matrix representing \(f \).

We will see later, using duality, that the rank of a matrix \(A \) is also equal to the maximal number of linearly independent rows of \(A \).

4.4 Affine Maps

We showed in Section 2.7 that every linear map \(f \) must send the zero vector to the zero vector; that is,

\[f(0) = 0. \]

Yet, for any fixed nonzero vector \(u \in E \) (where \(E \) is any vector space), the function \(t_u \) given by

\[t_u(x) = x + u, \quad \text{for all } x \in E \]

shows up in practice (for example, in robotics). Functions of this type are called translations. They are not linear for \(u \neq 0 \), since \(t_u(0) = 0 + u = u \).

More generally, functions combining linear maps and translations occur naturally in many applications (robotics, computer vision, etc.), so it is necessary to understand some basic properties of these functions. For this, the notion of affine combination turns out to play a key role.
Recall from Section 2.7 that for any vector space E, given any family $(u_i)_{i \in I}$ of vectors $u_i \in E$, an affine combination of the family $(u_i)_{i \in I}$ is an expression of the form

$$\sum_{i \in I} \lambda_i u_i \quad \text{with} \quad \sum_{i \in I} \lambda_i = 1,$$

where $(\lambda_i)_{i \in I}$ is a family of scalars.

A linear combination places no restriction on the scalars involved, but an affine combination is a linear combination with the restriction that the scalars λ_i must add up to 1. Nevertheless, a linear combination can always be viewed as an affine combination using the following trick involving 0. For any family $(u_i)_{i \in I}$ of vectors in E and for any family of scalars $(\lambda_i)_{i \in I}$, we can write the linear combination $\sum_{i \in I} \lambda_i u_i$ as an affine combination as follows:

$$\sum_{i \in I} \lambda_i u_i = \sum_{i \in I} \lambda_i u_i + \left(1 - \sum_{i \in I} \lambda_i \right) 0.$$

Affine combinations are also called barycentric combinations.

Although this is not obvious at first glance, the condition that the scalars λ_i add up to 1 ensures that affine combinations are preserved under translations. To make this precise, consider functions $f : E \to F$, where E and F are two vector spaces, such that there is some linear map $h : E \to F$ and some fixed vector $b \in F$ (a translation vector), such that

$$f(x) = h(x) + b, \quad \text{for all} \quad x \in E.$$

The map f given by

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 8/5 & -6/5 \\ 3/10 & 2/5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

is an example of the composition of a linear map with a translation.

We claim that functions of this type preserve affine combinations.

Proposition 4.12. For any two vector spaces E and F, given any function $f : E \to F$ defined such that

$$f(x) = h(x) + b, \quad \text{for all} \quad x \in E,$$

where $h : E \to F$ is a linear map and b is some fixed vector in F, for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have

$$f\left(\sum_{i \in I} \lambda_i u_i \right) = \sum_{i \in I} \lambda_i f(u_i).$$

In other words, f preserves affine combinations.
Proof. By definition of f, using the fact that h is linear and the fact that $\sum_{i \in I} \lambda_i = 1$, we have
\[
f \left(\sum_{i \in I} \lambda_i u_i \right) = \sum_{i \in I} \lambda_i h(u_i) + b = \sum_{i \in I} \lambda_i h(u_i) + \left(\sum_{i \in I} \lambda_i \right) b = \sum_{i \in I} \lambda_i (h(u_i) + b) = \sum_{i \in I} \lambda_i f(u_i),
\]
as claimed.

Observe how the fact that $\sum_{i \in I} \lambda_i = 1$ was used in a crucial way in line 3. Surprisingly, the converse of Proposition 4.12 also holds.

Proposition 4.13. For any two vector spaces E and F, let $f: E \to F$ be any function that preserves affine combinations, i.e., for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have
\[
f \left(\sum_{i \in I} \lambda_i u_i \right) = \sum_{i \in I} \lambda_i f(u_i).
\]
Then, for any $a \in E$, the function $h: E \to F$ given by
\[h(x) = f(a + x) - f(a)\]
is a linear map independent of a, and
\[f(a + x) = h(x) + f(a), \quad \text{for all} \quad x \in E.\]
In particular, for $a = 0$, if we let $c = f(0)$, then
\[f(x) = h(x) + c, \quad \text{for all} \quad x \in E.\]

Proof. First, let us check that h is linear. Since f preserves affine combinations and since $a + u + v = (a + u) + (a + v) - a$ is an affine combination $(1 + 1 - 1 = 1)$, we have
\[
h(u + v) = f(a + u + v) - f(a) = f((a + u) + (a + v) - a) - f(a) = f(a + u) + f(a + v) - f(a) - f(a) = f(a + u) - f(a) + f(a + v) - f(a) = h(u) + h(v).
\]
This proves that
\[h(u + v) = h(u) + h(v), \quad u, v \in E. \]
Observe that \(a + \lambda u = \lambda(a + u) + (1 - \lambda)a \) is also an affine combination \((\lambda + 1 - \lambda = 1)\), so we have
\[
h(\lambda u) = f(a + \lambda u) - f(a) \\
= f(\lambda(a + u) + (1 - \lambda)a) - f(a) \\
= \lambda f(a + u) + (1 - \lambda)f(a) - f(a) \\
= \lambda(f(a + u) - f(a)) \\
= \lambda h(u).
\]
This proves that
\[h(\lambda u) = \lambda h(u), \quad u \in E, \lambda \in \mathbb{R}. \]
Therefore, \(h \) is indeed linear.

For any \(b \in E \), since \(b + u = (a + u) - a + b \) is an affine combination \((1 - 1 + 1 = 1)\), we have
\[
f(b + u) - f(b) = f((a + u) - a + b) - f(b) \\
= f(a + u) - f(a) + f(b) - f(b) \\
= f(a + u) - f(a),
\]
which proves that for all \(a, b \in E \),
\[f(b + u) - f(b) = f(a + u) - f(a), \quad u \in E. \]
Therefore \(h(x) = f(a + u) - f(a) \) does not depend on \(a \), and it is obvious by the definition of \(h \) that
\[f(a + x) = h(x) + f(a), \quad \text{for all} \quad x \in E. \]
For \(a = 0 \), we obtain the last part of our proposition. \(\square \)

We should think of \(a \) as a chosen origin in \(E \). The function \(f \) maps the origin \(a \) in \(E \) to the origin \(f(a) \) in \(F \). Proposition 4.13 shows that the definition of \(h \) does not depend on the origin chosen in \(E \). Also, since
\[f(x) = h(x) + c, \quad \text{for all} \quad x \in E \]
for some fixed vector \(c \in F \), we see that \(f \) is the composition of the linear map \(h \) with the translation \(t_c \) (in \(F \)).

The unique linear map \(h \) as above is called the linear map associated with \(f \) and it is sometimes denoted by \(\tilde{f} \).

In view of Propositions 4.12 and 4.13, it is natural to make the following definition.
CHAPTER 4. DIRECT SUMS, AFFINE MAPS

Definition 4.4. For any two vector spaces E and F, a function $f : E \to F$ is an affine map if f preserves affine combinations, i.e., for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have

$$f \left(\sum_{i \in I} \lambda_i u_i \right) = \sum_{i \in I} \lambda_i f(u_i).$$

Equivalently, a function $f : E \to F$ is an affine map if there is some linear map $h : E \to F$ (also denoted by \overrightarrow{f}) and some fixed vector $c \in F$ such that

$$f(x) = h(x) + c, \quad \text{for all } x \in E.$$

Note that a linear map always maps the standard origin 0 in E to the standard origin 0 in F. However an affine map usually maps 0 to a nonzero vector $c = f(0)$. This is the “translation component” of the affine map.

When we deal with affine maps, it is often fruitful to think of the elements of E and F not only as vectors but also as points. In this point of view, points can only be combined using affine combinations, but vectors can be combined in an unrestricted fashion using linear combinations. We can also think of $u + v$ as the result of translating the point u by the translation t_v. These ideas lead to the definition of affine spaces.

The idea is that instead of a single space E, an affine space consists of two sets E and \overrightarrow{E}, where E is just an unstructured set of points, and \overrightarrow{E} is a vector space. Furthermore, the vector space \overrightarrow{E} acts on E. We can think of \overrightarrow{E} as a set of translations specified by vectors, and given any point $a \in E$ and any vector (translation) $u \in \overrightarrow{E}$, the result of translating a by u is the point (not vector) $a + u$. Formally, we have the following definition.

Definition 4.5. An affine space is either the degenerate space reduced to the empty set, or a triple $\langle E, \overrightarrow{E}, + \rangle$ consisting of a nonempty set E (of points), a vector space \overrightarrow{E} (of translations, or free vectors), and an action $+: E \times \overrightarrow{E} \to E$, satisfying the following conditions.

(A1) $a + 0 = a$, for every $a \in E$.

(A2) $(a + u) + v = a + (u + v)$, for every $a \in E$, and every $u, v \in \overrightarrow{E}$.

(A3) For any two points $a, b \in E$, there is a unique $u \in \overrightarrow{E}$ such that $a + u = b$.

The unique vector $u \in \overrightarrow{E}$ such that $a + u = b$ is denoted by \overrightarrow{ab}, or sometimes by ab, or even by $b - a$. Thus, we also write

$$b = a + \overrightarrow{ab}$$

(or $b = a + ab$, or even $b = a + (b - a)$).
It is important to note that adding or rescaling points does not make sense! However, using the fact that \vec{E} acts on E is a special way (this action is transitive and faithful), it is possible to define rigorously the notion of affine combinations of points and to define affine spaces, affine maps, etc. However, this would lead us to far afield, and for our purposes it is enough to stick to vector spaces. Still, one should be aware that affine combinations really apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces with $\dim(E) = n$ and $\dim(F) = m$, then it is useful to represent an affine map with respect to bases in E in F. However, the translation part c of the affine map must be somewhow incorporated. There is a standard trick to do this which amounts to viewing an affine map as a linear map between spaces of dimension $n+1$ and $m+1$. We also have the extra flexibility of choosing origins $a \in E$ and $b \in F$.

Let (u_1, \ldots, u_n) be a basis of E, (v_1, \ldots, v_m) be a basis of F, and let $a \in E$ and $b \in F$ be any two fixed vectors viewed as origins. Our affine map f has the property that if $v = f(u)$, then

$$v - b = f(a + u - a) - b = f(a) - b + h(u - a).$$

So, if we let $y = v - b$, $x = u - a$, and $d = f(a) - b$, then

$$y = h(x) + d, \quad x \in E.$$

Over the basis $\mathcal{U} = (u_1, \ldots, u_n)$, we write

$$x = x_1 u_1 + \cdots + x_n u_n,$$

and over the basis $\mathcal{V} = (v_1, \ldots, v_m)$, we write

$$y = y_1 v_1 + \cdots + y_m v_m,$$

$$d = d_1 v_1 + \cdots + d_m v_m.$$

Then, since

$$y = h(x) + d,$$

if we let A be the $m \times n$ matrix representing the linear map h, that is, the jth column of A consists of the coordinates of $h(u_j)$ over the basis (v_1, \ldots, v_m), then we can write

$$y_\mathcal{V} = A x_\mathcal{U} + d_\mathcal{V}.$$

where $x_\mathcal{U} = (x_1, \ldots, x_n)^\top$, $y_\mathcal{V} = (y_1, \ldots, y_m)^\top$, and $d_\mathcal{V} = (d_1, \ldots, d_m)^\top$. The above is the matrix representation of our affine map f with respect to $(a, (u_1, \ldots, u_n))$ and $(b, (v_1, \ldots, v_m))$.

The reason for using the origins a and b is that it gives us more flexibility. In particular, we can choose $b = f(a)$, and then f behaves like a linear map with respect to the origins a and $b = f(a)$.

When \(E = F \), if there is some \(a \in E \) such that \(f(a) = a \) (a is a fixed point of \(f \)), then we can pick \(b = a \). Then, because \(f(a) = a \), we get

\[
v = f(u) = f(a + u - a) = f(a) + h(u - a) = a + h(u - a),
\]
that is

\[
v - a = h(u - a).
\]
With respect to the new origin \(a \), if we define \(x \) and \(y \) by

\[
x = u - a \quad \text{and} \quad y = v - a,
\]
then we get

\[
y = h(x).
\]
Therefore, \(f \) really behaves like a linear map, but with respect to the new origin \(a \) (not the standard origin \(0 \)). This is the case of a rotation around an axis that does not pass through the origin.

Remark: A pair \((a, (u_1, \ldots, u_n))\) where \((u_1, \ldots, u_n)\) is a basis of \(E \) and \(a \) is an origin chosen in \(E \) is called an **affine frame**.

We now describe the trick which allows us to incorporate the translation part \(d \) into the matrix \(A \). We define the \((m + 1) \times (n + 1)\) matrix \(A' \) obtained by first adding \(d \) as the \((n + 1)\)th column, and then \((0, \ldots, 0, 1)\) as the \((m + 1)\)th row:

\[
A' = \begin{pmatrix} A & d \\ 0_n & 1 \end{pmatrix}.
\]
Then, it is clear that

\[
\begin{pmatrix} y \\ 1 \end{pmatrix} = \begin{pmatrix} A & d \\ 0_n & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}
\]
iff

\[
y = Ax + d.
\]
This amounts to considering a point \(x \in \mathbb{R}^n \) as a point \((x, 1)\) in the (affine) hyperplane \(H_{n+1} \) in \(\mathbb{R}^{n+1} \) of equation \(x_{n+1} = 1 \). Then, an affine map is the restriction to the hyperplane \(H_{n+1} \) of the linear map \(\hat{f} \) from \(\mathbb{R}^{n+1} \) to \(\mathbb{R}^{m+1} \) corresponding to the matrix \(A' \) which maps \(H_{n+1} \) into \(H_{m+1} \) (\(\hat{f}(H_{n+1}) \subseteq H_{m+1} \)). Figure 4.2 illustrates this process for \(n = 2 \).

For example, the map

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix}
\]
defines an affine map f which is represented in \mathbb{R}^3 by

$$
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix} \mapsto
\begin{pmatrix}
 1 & 1 & 3 \\
 1 & 3 & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix}.
$$

It is easy to check that the point $a = (6, -3)$ is fixed by f, which means that $f(a) = a$, so by translating the coordinate frame to the origin a, the affine map behaves like a linear map.

The idea of considering \mathbb{R}^n as an hyperplane in \mathbb{R}^{n+1} can be used to define *projective maps*.

4.5 Summary

The main concepts and results of this chapter are listed below:

- *Direct products, sums, direct sums*.
- *Projections*.
- The fundamental equation

 $$\dim(E) = \dim(\ker f) + \dim(\im f) = \dim(\ker f) + \rk(f)$$

 (Proposition 4.6).
- *Grassmann's relation*

 $$\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V).$$
• Characterizations of a bijective linear map $f : E \to F$.

• Rank of a matrix.

• Affine Maps.
Chapter 5

Determinants

5.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear algebra. We begin with permutations and the signature of a permutation. Next, we define multilinear maps and alternating multilinear maps. Determinants are introduced as alternating multilinear maps taking the value 1 on the unit matrix (following Emil Artin). It is then shown how to compute a determinant using the Laplace expansion formula, and the connection with the usual definition is made. It is shown how determinants can be used to invert matrices and to solve (at least in theory!) systems of linear equations (the Cramer formulae). The determinant of a linear map is defined. We conclude by defining the characteristic polynomial of a matrix (and of a linear map) and by proving the celebrated Cayley–Hamilton theorem which states that every matrix is a “zero” of its characteristic polynomial (we give two proofs; one computational, the other one more conceptual).

Determinants can be defined in several ways. For example, determinants can be defined in a fancy way in terms of the exterior algebra (or alternating algebra) of a vector space. We will follow a more algorithmic approach due to Emil Artin. No matter which approach is followed, we need a few preliminaries about permutations on a finite set. We need to show that every permutation on \(n \) elements is a product of transpositions, and that the parity of the number of transpositions involved is an invariant of the permutation. Let \([n] = \{1, 2, \ldots, n\} \), where \(n \in \mathbb{N} \), and \(n > 0 \).

Definition 5.1. A permutation on \(n \) elements is a bijection \(\pi: [n] \rightarrow [n] \). When \(n = 1 \), the only function from \([1]\) to \([1]\) is the constant map: \(1 \mapsto 1 \). Thus, we will assume that \(n \geq 2 \).

A transposition is a permutation \(\tau: [n] \rightarrow [n] \) such that, for some \(i < j \) (with \(1 \leq i < j \leq n \)), \(\tau(i) = j \), \(\tau(j) = i \), and \(\tau(k) = k \), for all \(k \in [n] - \{i, j\} \). In other words, a transposition exchanges two distinct elements \(i, j \in [n] \).

If \(\tau \) is a transposition, clearly, \(\tau \circ \tau = \text{id} \). We will also use the terminology product of permutations (or transpositions), as a synonym for composition of permutations. A permutation \(\sigma \) on \(n \) elements, say \(\sigma(i) = k_i \) for \(i = 1, \ldots, n \), can be represented in functional...
notation by the $2 \times n$ array
\[
\begin{pmatrix}
1 & \cdots & i & \cdots & n \\
k_1 & \cdots & k_i & \cdots & k_n
\end{pmatrix}
\]
known as Cauchy two-line notation. For example, we have the permutation σ denoted by
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 3 & 6 & 5 & 1
\end{pmatrix}
\]
A more concise notation often used in computer science and in combinatorics is to represent a permutation by its image, namely by the sequence $\sigma(1) \sigma(2) \cdots \sigma(n)$ written as a row vector without commas separating the entries. The above is known as the one-line notation. For example, in the one-line notation, our previous permutation σ is represented by $2 4 3 6 5 1$.

The reason for not enclosing the above sequence within parentheses is avoid confusion with the notation for cycles, for which is it customary to include parentheses.

Clearly, the composition of two permutations is a permutation and every permutation has an inverse which is also a permutation. Therefore, the set of permutations on $[n]$ is a group often denoted \mathfrak{S}_n and called the symmetric group on n elements.

It is easy to show by induction that the group \mathfrak{S}_n has $n!$ elements. The following proposition shows the importance of transpositions.

Proposition 5.1. For every $n \geq 2$, every permutation $\pi : [n] \to [n]$ can be written as a nonempty composition of transpositions.

Proof. We proceed by induction on n. If $n = 2$, there are exactly two permutations on $[2]$, the transposition τ exchanging 1 and 2, and the identity. However, $\text{id}_2 = \tau^2$. Now, let $n \geq 3$. If $\pi(n) = n$, since by the induction hypothesis, the restriction of π to $[n - 1]$ can be written as a product of transpositions, π itself can be written as a product of transpositions. If $\pi(n) = k \neq n$, letting τ be the transposition such that $\tau(n) = k$ and $\tau(k) = n$, it is clear that $\tau \circ \pi$ leaves n invariant, and by the induction hypothesis, we have $\tau \circ \pi = \tau_m \circ \ldots \circ \tau_1$ for some transpositions, and thus
\[
\pi = \tau \circ \tau_m \circ \ldots \circ \tau_1,
\]
a product of transpositions (since $\tau \circ \tau = \text{id}_n$).

Remark: When $\pi = \text{id}_n$ is the identity permutation, we can agree that the composition of 0 transpositions is the identity. Proposition 5.1 shows that the transpositions generate the group of permutations \mathfrak{S}_n.
5.1. PERMUTATIONS, SIGNATURE OF A PERMUTATION

A transposition \(\tau \) that exchanges two consecutive elements \(k \) and \(k + 1 \) of \([n]\) \((1 \leq k \leq n - 1)\) may be called a basic transposition. We leave it as a simple exercise to prove that every transposition can be written as a product of basic transpositions. In fact, the transposition that exchanges \(k \) and \(k + p \) \((1 \leq p \leq n - k)\) can be realized using \(2p - 1\) basic transpositions. Therefore, the group of permutations \(\mathfrak{S}_n \) is also generated by the basic transpositions.

Given a permutation written as a product of transpositions, we now show that the parity of the number of transpositions is an invariant. For this, we introduce the following function.

Definition 5.2. For every \(n \geq 2 \), let \(\Delta: \mathbb{Z}^n \to \mathbb{Z} \) be the function given by

\[
\Delta(x_1, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_i - x_j).
\]

More generally, for any permutation \(\sigma \in \mathfrak{S}_n \), define \(\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \) by

\[
\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = \prod_{1 \leq i < j \leq n} (x_{\sigma(i)} - x_{\sigma(j)}).
\]

The expression \(\Delta(x_1, \ldots, x_n) \) is often called the discriminant of \((x_1, \ldots, x_n)\).

It is clear that if the \(x_i \) are pairwise distinct, then \(\Delta(x_1, \ldots, x_n) \neq 0 \).

Proposition 5.2. For every basic transposition \(\tau \) of \([n]\) \((n \geq 2)\), we have

\[
\Delta(x_{\tau(1)}, \ldots, x_{\tau(n)}) = -\Delta(x_1, \ldots, x_n).
\]

The above also holds for every transposition, and more generally, for every composition of transpositions \(\sigma = \tau_p \circ \cdots \circ \tau_1 \), we have

\[
\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = (-1)^p \Delta(x_1, \ldots, x_n).
\]

Consequently, for every permutation \(\sigma \) of \([n]\), the parity of the number \(p \) of transpositions involved in any decomposition of \(\sigma \) as \(\sigma = \tau_p \circ \cdots \circ \tau_1 \) is an invariant (only depends on \(\sigma \)).

Proof. Suppose \(\tau \) exchanges \(x_k \) and \(x_{k+1} \). The terms \(x_i - x_j \) that are affected correspond to \(i = k \), or \(i = k + 1 \), or \(j = k \), or \(j = k + 1 \). The contribution of these terms in \(\Delta(x_1, \ldots, x_n) \) is

\[
(x_k - x_{k+1})[(x_k - x_{k+2}) \cdots (x_k - x_n)][(x_{k+1} - x_{k+2}) \cdots (x_{k+1} - x_n)]
\]

\[
[(x_1 - x_k) \cdots (x_{k-1} - x_k)][(x_1 - x_{k+1}) \cdots (x_{k-1} - x_{k+1})].
\]

When we exchange \(x_k \) and \(x_{k+1} \), the first factor is multiplied by \(-1\), the second and the third factor are exchanged, and the fourth and the fifth factor are exchanged, so the whole product \(\Delta(x_1, \ldots, x_n) \) is is indeed multiplied by \(-1\), that is,

\[
\Delta(x_{\tau(1)}, \ldots, x_{\tau(n)}) = -\Delta(x_1, \ldots, x_n).
\]
For the second statement, first we observe that since every transposition \(\tau \) can be written as the composition of an odd number of basic transpositions (see the remark following Proposition 5.1), we also have

\[
\Delta(x_{\tau(1)}, \ldots, x_{\tau(n)}) = -\Delta(x_1, \ldots, x_n).
\]

Next, we proceed by induction on the number \(p \) of transpositions involved in the decomposition of a permutation \(\sigma \).

The base case \(p = 1 \) has just been proved. If \(p \geq 2 \), if we write \(\omega = \tau_{p-1} \circ \cdots \circ \tau_1 \), then \(\sigma = \tau_p \circ \omega \) and

\[
\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = \Delta(x_{\tau_p(\omega(1))}, \ldots, x_{\tau_p(\omega(n))})
\]
\[
= -\Delta(x_{\omega(1)}, \ldots, x_{\omega(n)})
\]
\[
= -(-1)^{p-1}\Delta(x_1, \ldots, x_n)
\]
\[
= (-1)^p\Delta(x_1, \ldots, x_n),
\]

where we used the induction hypothesis from the second to the third line, establishing the induction hypothesis. Since \(\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \) only depends on \(\sigma \), the equation

\[
\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = (-1)^p\Delta(x_1, \ldots, x_n).
\]

shows that the parity \((-1)^p\) of the number of transpositions in any decomposition of \(\sigma \) is an invariant. \(\square \)

In view of Proposition 5.2, the following definition makes sense:

Definition 5.3. For every permutation \(\sigma \) of \([n]\), the parity \(\epsilon(\sigma) \) (or \(\text{sgn}(\sigma) \)) of the number of transpositions involved in any decomposition of \(\sigma \) is called the signature (or sign) of \(\sigma \).

Obviously \(\epsilon(\tau) = -1 \) for every transposition \(\tau \) (since \((-1)^1 = -1\)).

A simple way to compute the signature of a permutation is to count its number of inversions.

Definition 5.4. Given any permutation \(\sigma \) on \(n \) elements, we say that a pair \((i, j)\) of indices \(i, j \in \{1, \ldots, n\} \) such that \(i < j \) and \(\sigma(i) > \sigma(j) \) is an inversion of the permutation \(\sigma \).

For example, the permutation \(\sigma \) given by

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 3 & 6 & 5 & 1
\end{pmatrix}
\]

has seven inversions

\((1, 6), \ (2, 3), \ (2, 6), \ (3, 6), \ (4, 5), \ (4, 6), \ (5, 6)\).
Proposition 5.3. The signature $\epsilon(\sigma)$ of any permutation σ is equal to the parity $(-1)^{I(\sigma)}$ of the number $I(\sigma)$ of inversions in σ.

Proof. In the product

$$\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = \prod_{1 \leq i < j \leq n} (x_{\sigma(i)} - x_{\sigma(j)}),$$

the terms $x_{\sigma(i)} - x_{\sigma(j)}$ for which $\sigma(i) < \sigma(j)$ occur in $\Delta(x_1, \ldots, x_n)$, whereas the terms $x_{\sigma(i)} - x_{\sigma(j)}$ for which $\sigma(i) > \sigma(j)$ occur in $\Delta(x_1, \ldots, x_n)$ with a minus sign. Therefore, the number ν of terms in $\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ whose sign is the opposite of a term in $\Delta(x_1, \ldots, x_n)$, is equal to the number $I(\sigma)$ of inversions in σ, which implies that

$$\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = (-1)^{I(\sigma)}\Delta(x_1, \ldots, x_n).$$

By Proposition 5.2, the sign of $(-1)^{I(\sigma)}$ is equal to the signature of σ. \hfill \Box

For example, the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 6 & 5 & 1 \end{pmatrix}$$

has odd signature since it has seven inversions and $(-1)^7 = -1$.

Remark: When $\pi = \text{id}_n$ is the identity permutation, since we agreed that the composition of 0 transpositions is the identity, it still correct that $(-1)^0 = \epsilon(\text{id}) = +1$. From proposition 5.2, it is immediate that $\epsilon(\pi' \circ \pi) = \epsilon(\pi')\epsilon(\pi)$. In particular, since $\pi^{-1} \circ \pi = \text{id}_n$, we get $\epsilon(\pi^{-1}) = \epsilon(\pi)$.

We can now proceed with the definition of determinants.

5.2 Alternating Multilinear Maps

First, we define multilinear maps, symmetric multilinear maps, and alternating multilinear maps.

Remark: Most of the definitions and results presented in this section also hold when K is a commutative ring, and when we consider modules over K (free modules, when bases are needed).

Let E_1, \ldots, E_n, and F, be vector spaces over a field K, where $n \geq 1$.

Definition 5.5. A function $f : E_1 \times \ldots \times E_n \to F$ is a multilinear map (or an n-linear map) if it is linear in each argument, holding the others fixed. More explicitly, for every i,
1 ≤ i ≤ n, for all \(x_1 \in E_1, \ldots, x_{i-1} \in E_{i-1}, x_{i+1} \in E_{i+1}, \ldots, x_n \in E_n \), for all \(x, y \in E_i \), for all \(\lambda \in K \),

\[
\begin{align*}
f(x_1, \ldots, x_{i-1}, x + y, x_{i+1}, \ldots, x_n) &= f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n) \\
&\quad + f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n), \\
f(x_1, \ldots, x_{i-1}, \lambda x, x_{i+1}, \ldots, x_n) &= \lambda f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n).
\end{align*}
\]

When \(F = K \), we call \(f \) an \(n \)-linear form (or multilinear form). If \(n \geq 2 \) and \(E_1 = E_2 = \ldots = E_n \), an \(n \)-linear map \(f: E \times \ldots \times E \to F \) is called symmetric, if \(f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)}) \), for every permutation \(\pi \) on \(\{1, \ldots, n\} \). An \(n \)-linear map \(f: E \times \ldots \times E \to F \) is called alternating, if \(f(x_1, \ldots, x_n) = 0 \) whenever \(x_i = x_{i+1} \), for some \(i \), \(1 \leq i \leq n - 1 \) (in other words, when two adjacent arguments are equal). It does not harm to agree that when \(n = 1 \), a linear map is considered to be both symmetric and alternating, and we will do so.

When \(n = 2 \), a 2-linear map \(f: E_1 \times E_2 \to F \) is called a bilinear map. We have already seen several examples of bilinear maps. Multiplication \(\cdot: K \times K \to K \) is a bilinear map, treating \(K \) as a vector space over itself.

The operation \(\langle -, - \rangle: E^* \times E \to K \) applying a linear form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role in geometry (inner products, quadratic forms), and in differential calculus (partial derivatives).

A bilinear map is symmetric if \(f(u, v) = f(v, u) \), for all \(u, v \in E \).

Alternating multilinear maps satisfy the following simple but crucial properties.

Proposition 5.4. Let \(f: E \times \ldots \times E \to F \) be an \(n \)-linear alternating map, with \(n \geq 2 \). The following properties hold:

1. \(f(\ldots, x_i, x_{i+1}, \ldots) = -f(\ldots, x_{i+1}, x_i, \ldots) \)

2. \(f(\ldots, x_i, \ldots, x_j, \ldots) = 0 \),
 where \(x_i = x_j \), and \(1 \leq i < j \leq n \).

3. \(f(\ldots, x_i, \ldots, x_j, \ldots) = -f(\ldots, x_j, \ldots, x_i, \ldots) \),
 where \(1 \leq i < j \leq n \).

4. \(f(\ldots, x_i, \ldots) = f(\ldots, x_i + \lambda x_j, \ldots) \),
 for any \(\lambda \in K \), and where \(i \neq j \).
5.2. ALTERNATING MULTILINEAR MAPS

Proof. (1) By multilinearity applied twice, we have
\[f(\ldots, x_i + x_{i+1}, x_i + x_{i+1}, \ldots) = f(\ldots, x_i, x_i, \ldots) + f(\ldots, x_i, x_{i+1}, x_{i+1}, \ldots) \]
and since \(f \) is alternating, this yields
\[0 = f(\ldots, x_i, x_{i+1}, x_{i+1}, \ldots) + f(\ldots, x_i, x_{i+1}, x_{i+1}, \ldots), \]
that is, \(f(\ldots, x_i, x_{i+1}, \ldots) = -f(\ldots, x_i, x_{i+1}, \ldots) \).

(2) If \(x_i = x_j \) and \(i \) and \(j \) are not adjacent, we can interchange \(x_i \) and \(x_{i+1} \), and then \(x_i \) and \(x_{i+2} \), etc, until \(x_i \) and \(x_j \) become adjacent. By (1),
\[f(\ldots, x_i, \ldots, x_{i+1}, x_j, \ldots) = \epsilon f(\ldots, x_i, x_{i+1}, x_j, \ldots), \]
where \(\epsilon = +1 \) or \(-1\), but \(f(\ldots, x_i, x_j, \ldots) = 0 \), since \(x_i = x_j \), and (2) holds.

(3) follows from (2) as in (1). (4) is an immediate consequence of (2).

Proposition 5.4 will now be used to show a fundamental property of alternating multilinear maps. First, we need to extend the matrix notation a little bit. Let \(E \) be a vector space over \(K \). Given an \(n \times n \) matrix \(A = (a_{ij}) \) over \(K \), we can define a map \(L(A): E^n \to E^n \) as follows:
\[L(A)_1(u) = a_{11}u_1 + \cdots + a_{1n}u_n, \]
\[\cdots \]
\[L(A)_n(u) = a_{n1}u_1 + \cdots + a_{nn}u_n, \]
for all \(u_1, \ldots, u_n \in E \) and with \(u = (u_1, \ldots, u_n) \). It is immediately verified that \(L(A) \) is linear. Then, given two \(n \times n \) matrices \(A = (a_{ij}) \) and \(B = (b_{ij}) \), by repeating the calculations establishing the product of matrices (just before Definition 2.10), we can show that
\[L(AB) = L(A) \circ L(B). \]

It is then convenient to use the matrix notation to describe the effect of the linear map \(L(A) \), as
\[\begin{pmatrix} L(A)_1(u) \\ L(A)_2(u) \\ \vdots \\ L(A)_n(u) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}. \]

Lemma 5.5. Let \(f: E \times \ldots \times E \to F \) be an \(n \)-linear alternating map. Let \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_n)\) be two families of \(n \) vectors, such that,
\[v_1 = a_{11}u_1 + \cdots + a_{1n}u_n, \]
\[\cdots \]
\[v_n = a_{n1}u_1 + \cdots + a_{nn}u_n. \]
Equivalently, letting
\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}, \]
assume that we have
\[\begin{pmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n
\end{pmatrix} = A^\top \begin{pmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_n
\end{pmatrix}. \]

Then,
\[f(v_1, \ldots, v_n) = \left(\sum_{\pi \in S_n} \epsilon(\pi) a_{\pi(1)} \cdots a_{\pi(n)} \right) f(u_1, \ldots, u_n), \]
where the sum ranges over all permutations \(\pi \) on \(\{1, \ldots, n\} \).

Proof. Expanding \(f(v_1, \ldots, v_n) \) by multilinearity, we get a sum of terms of the form
\[a_{\pi(1)} \cdots a_{\pi(n)} f(u_{\pi(1)}, \ldots, u_{\pi(n)}), \]
for all possible functions \(\pi: \{1, \ldots, n\} \to \{1, \ldots, n\} \). However, because \(f \) is alternating, only the terms for which \(\pi \) is a permutation are nonzero. By Proposition 5.1, every permutation \(\pi \) is a product of transpositions, and by Proposition 5.2, the parity \(\epsilon(\pi) \) of the number of transpositions only depends on \(\pi \). Then, applying Proposition 5.4 (3) to each transposition in \(\pi \), we get
\[a_{\pi(1)} \cdots a_{\pi(n)} f(u_{\pi(1)}, \ldots, u_{\pi(n)}) = \epsilon(\pi) a_{\pi(1)} \cdots a_{\pi(n)} f(u_1, \ldots, u_n). \]
Thus, we get the expression of the lemma. \(\square \)

The quantity
\[\det(A) = \sum_{\pi \in S_n} \epsilon(\pi) a_{\pi(1)} \cdots a_{\pi(n)} \]
is in fact the value of the determinant of \(A \) (which, as we shall see shortly, is also equal to the determinant of \(A^\top \)). However, working directly with the above definition is quite awkward, and we will proceed via a slightly indirect route.

Remark: The reader might have been puzzled by the fact that it is the transpose matrix \(A^\top \) rather than \(A \) itself that appears in Lemma 5.5. The reason is that if we want the generic term in the determinant to be
\[\epsilon(\pi) a_{\pi(1)} \cdots a_{\pi(n)}, \]
where the permutation applies to the first index, then we have to express the v_js in terms of the u_is in terms of A^\top as we did. Furthermore, since

$$v_j = a_{1j}u_1 + \cdots + a_{ij}u_i + \cdots + a_{nj}u_n,$$

we see that v_j corresponds to the jth column of the matrix A, and so the determinant is viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a determinant as we did. Others use A itself, which amounts to viewing det as a function of the rows, in which case we get the expression

$$\sum_{\sigma \in \mathfrak{S}_n} \epsilon(\sigma)a_{1\sigma(1)} \cdots a_{n\sigma(n)}.$$

Corollary 5.8 show that these two expressions are equal, so it doesn’t matter which is chosen. This is a matter of taste.

5.3 Definition of a Determinant

Recall that the set of all square $n \times n$-matrices with coefficients in a field K is denoted by $M_n(K)$.

Definition 5.6. A *determinant* is defined as any map

$$D: M_n(K) \to K,$$

which, when viewed as a map on $(K^n)^n$, i.e., a map of the n columns of a matrix, is n-linear alternating and such that $D(I_n) = 1$ for the identity matrix I_n. Equivalently, we can consider a vector space E of dimension n, some fixed basis (e_1, \ldots, e_n), and define

$$D: E^n \to K$$

as an n-linear alternating map such that $D(e_1, \ldots, e_n) = 1$.

First, we will show that such maps D exist, using an inductive definition that also gives a recursive method for computing determinants. Actually, we will define a family $(\mathcal{D}_n)_{n \geq 1}$ of (finite) sets of maps $D: M_n(K) \to K$. Second, we will show that determinants are in fact uniquely defined, that is, we will show that each \mathcal{D}_n consists of a single map. This will show the equivalence of the direct definition $\det(A)$ of Lemma 5.5 with the inductive definition $D(A)$. Finally, we will prove some basic properties of determinants, using the uniqueness theorem.

Given a matrix $A \in M_n(K)$, we denote its n columns by A^1, \ldots, A^n. In order to describe the recursive process to define a determinant we need the notion of a minor.
Definition 5.7. Given any $n \times n$ matrix with $n \geq 2$, for any two indices i, j with $1 \leq i, j \leq n$, let A_{ij} be the $(n - 1) \times (n - 1)$ matrix obtained by deleting row i and column j from A and called a minor:

$$A_{ij} = \begin{pmatrix} \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ \end{pmatrix}$$

For example, if

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ \end{pmatrix}$$

then

$$A_{23} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ \end{pmatrix}.$$

Definition 5.8. For every $n \geq 1$, we define a finite set D_n of maps $D : M_n(K) \to K$ inductively as follows:

When $n = 1$, D_1 consists of the single map D such that, $D(A) = a$, where $A = (a)$, with $a \in K$.

Assume that D_{n-1} has been defined, where $n \geq 2$. Then, D_n consists of all the maps D such that, for some i, $1 \leq i \leq n$,

$$D(A) = (-1)^{i+1}a_{i1}D(A_{i1}) + \cdots + (-1)^{i+n}a_{in}D(A_{in}),$$

where for every j, $1 \leq j \leq n$, $D(A_{ij})$ is the result of applying any D in D_{n-1} to the minor A_{ij}.

We confess that the use of the same letter D for the member of D_n being defined, and for members of D_{n-1}, may be slightly confusing. We considered using subscripts to distinguish, but this seems to complicate things unnecessarily. One should not worry too much anyway, since it will turn out that each D_n contains just one map.

Each $(-1)^{i+j}D(A_{ij})$ is called the cofactor of a_{ij}, and the inductive expression for $D(A)$ is called a Laplace expansion of D according to the i-th row. Given a matrix $A \in M_n(K)$, each $D(A)$ is called a determinant of A.
5.3. DEFINITION OF A DETERMINANT

We can think of each member of \(D_n \) as an *algorithm* to evaluate “the” determinant of \(A \). The main point is that these algorithms, which recursively evaluate a determinant using all possible Laplace row expansions, all yield the same result, \(\det(A) \).

We will prove shortly that \(D(A) \) is uniquely defined (at the moment, it is not clear that \(D_n \) consists of a single map). Assuming this fact, given a \(n \times n \)-matrix \(A = (a_{ij}) \),

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]

its determinant is denoted by \(D(A) \) or \(\det(A) \), or more explicitly by

\[
\det(A) = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\]

First, let us first consider some examples.

Example 5.1.

1. When \(n = 2 \), if

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

expanding according to any row, we have

\[
D(A) = ad - bc.
\]

2. When \(n = 3 \), if

\[
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
\]

expanding according to the first row, we have

\[
D(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
\]

that is,

\[
D(A) = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22}),
\]

which gives the explicit formula

\[
D(A) = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} - a_{31}a_{22}a_{13}.
\]
We now show that each $D \in \mathcal{D}_n$ is a determinant (map).

Lemma 5.6. For every $n \geq 1$, for every $D \in \mathcal{D}_n$ as defined in Definition 5.8, D is an alternating multilinear map such that $D(I_n) = 1$.

Proof. By induction on n, it is obvious that $D(I_n) = 1$. Let us now prove that D is multilinear. Let us show that D is linear in each column. Consider any column k. Since

\[D(A) = (-1)^{i+1}a_{i1}D(A_{i1}) + \cdots + (-1)^{i+j}a_{ij}D(A_{ij}) + \cdots + (-1)^{i+n}a_{in}D(A_{in}), \]

if $j \neq k$, then by induction, $D(A_{ij})$ is linear in column k, and a_{ij} does not belong to column k, so $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in column k. If $j = k$, then $D(A_{ij})$ does not depend on column $k = j$, since A_{ij} is obtained from A by deleting row i and column $j = k$, and a_{ij} belongs to column $j = k$. Thus, $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in column k. Consequently, in all cases, $(-1)^{i+j}a_{ij}D(A_{ij})$ is linear in column k, and thus, $D(A)$ is linear in column k.

Let us now prove that D is alternating. Assume that two adjacent columns of A are equal, say $A^k = A^{k+1}$. First, let $j \neq k$ and $j \neq k+1$. Then, the matrix A_{ij} has two identical adjacent columns, and by the induction hypothesis, $D(A_{ij}) = 0$. The remaining terms of $D(A)$ are

\[(-1)^{i+k}a_{ik}D(A_{ik}) + (-1)^{i+k+1}a_{ik+1}D(A_{ik+1}). \]

However, the two matrices A_{ik} and A_{ik+1} are equal, since we are assuming that columns k and $k+1$ of A are identical, and since A_{ik} is obtained from A by deleting row i and column k, and A_{ik+1} is obtained from A by deleting row i and column $k+1$. Similarly, $a_{ik} = a_{ik+1}$, since columns k and $k+1$ of A are equal. But then,

\[(-1)^{i+k}a_{ik}D(A_{ik}) + (-1)^{i+k+1}a_{ik+1}D(A_{ik+1}) = (-1)^{i+k}a_{ik}D(A_{ik}) - (-1)^{i+k}a_{ik}D(A_{ik}) = 0. \]

This shows that D is alternating, and completes the proof. \qed

Lemma 5.6 shows the existence of determinants. We now prove their uniqueness.

Theorem 5.7. For every $n \geq 1$, for every $D \in \mathcal{D}_n$, for every matrix $A \in M_n(K)$, we have

\[D(A) = \sum_{\pi \in S_n} \epsilon(\pi)a_{\pi(1)}1 \cdots a_{\pi(n)}n, \]

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. As a consequence, \mathcal{D}_n consists of a single map for every $n \geq 1$, and this map is given by the above explicit formula.

Proof. Consider the standard basis (e_1, \ldots, e_n) of K^n, where $(e_i)_j = 1$ and $(e_j)_j = 0$, for $j \neq i$. Then, each column A^j of A corresponds to a vector v_j whose coordinates over the basis (e_1, \ldots, e_n) are the components of A^j, that is, we can write

\[v_1 = a_{11}e_1 + \cdots + a_{n1}e_n, \]

\[\cdots \]

\[v_n = a_{1n}e_1 + \cdots + a_{nn}e_n. \]
Since by Lemma 5.6, each D is a multilinear alternating map, by applying Lemma 5.5, we get

$$D(A) = D(v_1, \ldots, v_n) = \left(\sum_{\pi \in S_n} \epsilon(\pi)a_{\pi(1)} \cdots a_{\pi(n)} \right) D(e_1, \ldots, e_n),$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. But $D(e_1, \ldots, e_n) = D(I_n)$, and by Lemma 5.6, we have $D(I_n) = 1$. Thus,

$$D(A) = \sum_{\pi \in S_n} \epsilon(\pi)a_{\pi(1)} \cdots a_{\pi(n)},$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. \hfill \square

From now on, we will favor the notation $\det(A)$ over $D(A)$ for the determinant of a square matrix.

Remark: There is a geometric interpretation of determinants which we find quite illuminating. Given n linearly independent vectors (u_1, \ldots, u_n) in \mathbb{R}^n, the set

$$P_n = \{ \lambda_1 u_1 + \cdots + \lambda_n u_n \mid 0 \leq \lambda_i \leq 1, 1 \leq i \leq n \}$$

is called a parallelootope. If $n = 2$, then P_2 is a parallelogram and if $n = 3$, then P_3 is a parallelepiped, a skew box having u_1, u_2, u_3 as three of its corner sides. Then, it turns out that $\det(u_1, \ldots, u_n)$ is the signed volume of the parallelootope P_n (where volume means n-dimensional volume). The sign of this volume accounts for the orientation of P_n in \mathbb{R}^n.

We can now prove some properties of determinants.

Corollary 5.8. For every matrix $A \in M_n(K)$, we have $\det(A) = \det(A^\top)$.

Proof. By Theorem 5.7, we have

$$\det(A) = \sum_{\pi \in S_n} \epsilon(\pi)a_{\pi(1)} \cdots a_{\pi(n)},$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$. Since a permutation is invertible, every product

$$a_{\pi(1)} \cdots a_{\pi(n)}$$

can be rewritten as

$$a_1 \pi^{-1}(1) \cdots a_n \pi^{-1}(n),$$

and since $\epsilon(\pi^{-1}) = \epsilon(\pi)$ and the sum is taken over all permutations on $\{1, \ldots, n\}$, we have

$$\sum_{\pi \in S_n} \epsilon(\pi)a_{\pi(1)} \cdots a_{\pi(n)} = \sum_{\sigma \in S_n} \epsilon(\sigma)a_1 \sigma(1) \cdots a_n \sigma(n),$$

where π and σ range over all permutations. But it is immediately verified that

$$\det(A^\top) = \sum_{\sigma \in S_n} \epsilon(\sigma)a_1 \sigma(1) \cdots a_n \sigma(n).$$
A useful consequence of Corollary 5.8 is that the determinant of a matrix is also a multi-linear alternating map of its rows. This fact, combined with the fact that the determinant of a matrix is a multilinear alternating map of its columns is often useful for finding short-cuts in computing determinants. We illustrate this point on the following example which shows up in polynomial interpolation.

Example 5.2. Consider the so-called *Vandermonde determinant*

\[
V(x_1, \ldots, x_n) = \begin{vmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_n \\
x_1^2 & x_2^2 & \cdots & x_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1}
\end{vmatrix}.
\]

We claim that

\[
V(x_1, \ldots, x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i),
\]

with \(V(x_1, \ldots, x_n) = 1\), when \(n = 1\). We prove it by induction on \(n \geq 1\). The case \(n = 1\) is obvious. Assume \(n \geq 2\). We proceed as follows: multiply row \(n - 1\) by \(x_1\) and subtract it from row \(n\) (the last row), then multiply row \(n - 2\) by \(x_1\) and subtract it from row \(n - 1\), etc, multiply row \(i - 1\) by \(x_1\) and subtract it from row \(i\), until we reach row 1. We obtain the following determinant:

\[
V(x_1, \ldots, x_n) = \begin{vmatrix}
1 & 1 & \cdots & 1 \\
0 & x_2 - x_1 & \cdots & x_n - x_1 \\
0 & x_2(x_2 - x_1) & \cdots & x_n(x_n - x_1) \\
\vdots & \vdots & \ddots & \vdots \\
0 & x_2^{n-2}(x_2 - x_1) & \cdots & x_n^{n-2}(x_n - x_1)
\end{vmatrix}.
\]

Now, expanding this determinant according to the first column and using multilinearity, we can factor \((x_i - x_1)\) from the column of index \(i - 1\) of the matrix obtained by deleting the first row and the first column, and thus

\[
V(x_1, \ldots, x_n) = (x_2 - x_1)(x_3 - x_1) \cdots (x_n - x_1)V(x_2, \ldots, x_n),
\]

which establishes the induction step.

Remark: Observe that

\[
\Delta(x_1, \ldots, x_n) = V(x_n, \ldots, x_1),
\]

where \(\Delta(x_1, \ldots, x_n)\) is the discriminant of \((x_1, \ldots, x_n)\) introduced in Definition 5.2.

Lemma 5.5 can be reformulated nicely as follows.
Proposition 5.9. Let \(f : E \times \ldots \times E \to F \) be an \(n \)-linear alternating map. Let \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_n)\) be two families of \(n \) vectors, such that
\[
\begin{align*}
v_1 &= a_{11}u_1 + \cdots + a_{1n}u_n, \\
v_2 &= a_{21}u_1 + \cdots + a_{2n}u_n, \\
&\vdots \\
v_n &= a_{n1}u_1 + \cdots + a_{nn}u_n.
\end{align*}
\]

Equivalently, letting
\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
& \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\]
assume that we have
\[
\begin{pmatrix}
v_1 \\
v_2 \\
& \vdots \\
v_n
\end{pmatrix} = A \begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_n
\end{pmatrix}.
\]

Then,
\[
f(v_1, \ldots, v_n) = \det(A)f(u_1, \ldots, u_n).
\]

Proof. The only difference with Lemma 5.5 is that here, we are using \(A^\top \) instead of \(A \). Thus, by Lemma 5.5 and Corollary 5.8, we get the desired result.

As a consequence, we get the very useful property that the determinant of a product of matrices is the product of the determinants of these matrices.

Proposition 5.10. For any two \(n \times n \)-matrices \(A \) and \(B \), we have \(\det(AB) = \det(A)\det(B) \).

Proof. We use Proposition 5.9 as follows: let \((e_1, \ldots, e_n)\) be the standard basis of \(K^n \), and let
\[
\begin{pmatrix}
w_1 \\
w_2 \\
& \vdots \\
w_n
\end{pmatrix} = AB \begin{pmatrix}
e_1 \\
e_2 \\
& \vdots \\
e_n
\end{pmatrix}.
\]

Then, we get
\[
\det(w_1, \ldots, w_n) = \det(AB)\det(e_1, \ldots, e_n) = \det(AB),
\]
since \(\det(e_1, \ldots, e_n) = 1 \). Now, letting
\[
\begin{pmatrix}
v_1 \\
v_2 \\
& \vdots \\
v_n
\end{pmatrix} = B \begin{pmatrix}
e_1 \\
e_2 \\
& \vdots \\
e_n
\end{pmatrix},
\]

\[
\det(v_1, \ldots, v_n) = \det(B)\det(e_1, \ldots, e_n) = \det(AB).
\]
we get
\[\det(v_1, \ldots, v_n) = \det(B), \]
and since
\[
\begin{pmatrix}
 w_1 \\
 w_2 \\
 \vdots \\
 w_n
\end{pmatrix} = A
\begin{pmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_n
\end{pmatrix},
\]
we get
\[\det(w_1, \ldots, w_n) = \det(A) \det(v_1, \ldots, v_n) = \det(A) \det(B). \]

It should be noted that all the results of this section, up to now, also hold when \(K \) is a commutative ring, and not necessarily a field. We can now characterize when an \(n \times n \)-matrix \(A \) is invertible in terms of its determinant \(\det(A) \).

5.4 Inverse Matrices and Determinants

In the next two sections, \(K \) is a commutative ring, and when needed a field.

Definition 5.9. Let \(K \) be a commutative ring. Given a matrix \(A \in M_n(K) \), let \(\tilde{A} = (b_{ij}) \) be the matrix defined such that

\[b_{ij} = (-1)^{i+j} \det(A_{ji}), \]

the cofactor of \(a_{ji} \). The matrix \(\tilde{A} \) is called the adjugate of \(A \), and each matrix \(A_{ji} \) is called a minor of the matrix \(A \).

Note the reversal of the indices in

\[b_{ij} = (-1)^{i+j} \det(A_{ji}). \]

Thus, \(\tilde{A} \) is the transpose of the matrix of cofactors of elements of \(A \).

We have the following proposition.

Proposition 5.11. Let \(K \) be a commutative ring. For every matrix \(A \in M_n(K) \), we have

\[A\tilde{A} = \tilde{A}A = \det(A)I_n. \]

As a consequence, \(A \) is invertible iff \(\det(A) \) is invertible, and if so, \(A^{-1} = (\det(A))^{-1} \tilde{A} \).
5.4. INVERSE MATRICES AND DETERMINANTS

Proof. If $\tilde{A} = (b_{ij})$ and $A\tilde{A} = (c_{ij})$, we know that the entry c_{ij} in row i and column j of $A\tilde{A}$ is

$$c_{ij} = a_{i1}b_{1j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj},$$

which is equal to

$$a_{i1}(-1)^{j+1}\det(A_{j1}) + \cdots + a_{in}(-1)^{j+n}\det(A_{jn}).$$

If $j = i$, then we recognize the expression of the expansion of $\det(A)$ according to the i-th row:

$$c_{ii} = \det(A) = a_{i1}(-1)^{i+1}\det(A_{i1}) + \cdots + a_{in}(-1)^{i+n}\det(A_{in}).$$

If $j \neq i$, we can form the matrix A' by replacing the j-th row of A by the i-th row of A. Now, the matrix A'_{jk} obtained by deleting row j and column k from A is equal to the matrix A'_{jk} obtained by deleting row j and column k from A', since A and A' only differ by the j-th row. Thus,

$$\det(A_{jk}) = \det(A'_{jk}),$$

and we have

$$c_{ij} = a_{i1}(-1)^{j+1}\det(A'_{j1}) + \cdots + a_{in}(-1)^{j+n}\det(A'_{jn}).$$

However, this is the expansion of $\det(A')$ according to the j-th row, since the j-th row of A' is equal to the i-th row of A, and since A' has two identical rows i and j, because \det is an alternating map of the rows (see an earlier remark), we have $\det(A') = 0$. Thus, we have shown that $c_{ii} = \det(A)$, and $c_{ij} = 0$, when $j \neq i$, and so

$$A\tilde{A} = \det(A)I_n.$$

It is also obvious from the definition of \tilde{A}, that

$$\tilde{A}^\top = \tilde{A}^\top.$$

Then, applying the first part of the argument to A^\top, we have

$$A^\top \tilde{A}^\top = \det(A^\top)I_n,$$

and since, $\det(A^\top) = \det(A)$, $\tilde{A}^\top = \tilde{A}^\top$, and $(\tilde{A}A)^\top = A^\top \tilde{A}^\top$, we get

$$\det(A)I_n = A^\top \tilde{A}^\top = A^\top \tilde{A}^\top = (\tilde{A}A)^\top,$$

that is,

$$(\tilde{A}A)^\top = \det(A)I_n,$$

which yields

$$\tilde{A}A = \det(A)I_n,$$
CHAPTER 5. DETERMINANTS

since $I_n^T = I_n$. This proves that

$$A\tilde{A} = \tilde{A}A = \det(A)I_n.$$

As a consequence, if $\det(A)$ is invertible, we have $A^{-1} = (\det(A))^{-1}\tilde{A}$. Conversely, if A is invertible, from $AA^{-1} = I_n$, by Proposition 5.10, we have $\det(A)\det(A^{-1}) = 1$, and $\det(A)$ is invertible.

When K is a field, an element $a \in K$ is invertible iff $a \neq 0$. In this case, the second part of the proposition can be stated as A is invertible iff $\det(A) \neq 0$. Note in passing that this method of computing the inverse of a matrix is usually not practical.

We now consider some applications of determinants to linear independence and to solving systems of linear equations. Although these results hold for matrices over certain rings, their proofs require more sophisticated methods. Therefore, we assume again that K is a field (usually, $K = \mathbb{R}$ or $K = \mathbb{C}$).

Let A be an $n \times n$-matrix, x a column vectors of variables, and b another column vector, and let A^1, \ldots, A^n denote the columns of A. Observe that the system of equation $Ax = b$,

$$
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
$$

is equivalent to

$$x_1A^1 + \cdots + x_jA^j + \cdots + x_nA^n = b,$$

since the equation corresponding to the i-th row is in both cases

$$a_{i1}x_1 + \cdots + a_{ij}x_j + \cdots + a_{in}x_n = b_i.$$

First, we characterize linear independence of the column vectors of a matrix A in terms of its determinant.

Proposition 5.12. Given an $n \times n$-matrix A over a field K, the columns A^1, \ldots, A^n of A are linearly dependent iff $\det(A) = \det(A^1, \ldots, A^n) = 0$. Equivalently, A has rank n iff $\det(A) \neq 0$.

Proof. First, assume that the columns A^1, \ldots, A^n of A are linearly dependent. Then, there are $x_1, \ldots, x_n \in K$, such that

$$x_1A^1 + \cdots + x_jA^j + \cdots + x_nA^n = 0,$$

where $x_j \neq 0$ for some j. If we compute

$$\det(A^1, \ldots, x_1A^1 + \cdots + x_jA^j + \cdots + x_nA^n, \ldots, A^n) = \det(A^1, \ldots, 0, \ldots, A^n) = 0,$$
where 0 occurs in the j-th position, by multilinearity, all terms containing two identical columns A^k for $k \neq j$ vanish, and we get

$$x_j \det(A^1, \ldots, A^n) = 0.$$

Since $x_j \neq 0$ and K is a field, we must have $\det(A^1, \ldots, A^n) = 0$.

Conversely, we show that if the columns A^1, \ldots, A^n of A are linearly independent, then $\det(A^1, \ldots, A^n) \neq 0$. If the columns A^1, \ldots, A^n of A are linearly independent, then they form a basis of K^n, and we can express the standard basis (e_1, \ldots, e_n) of K^n in terms of A^1, \ldots, A^n. Thus, we have

$$
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n
\end{pmatrix}
=
\begin{pmatrix}
b_1^1 & b_1^2 & \ldots & b_1^n \\
b_2^1 & b_2^2 & \ldots & b_2^n \\
\vdots & \vdots & \ddots & \vdots \\
b_n^1 & b_n^2 & \ldots & b_n^n
\end{pmatrix}
\begin{pmatrix}
A^1 \\
A^2 \\
\vdots \\
A^n
\end{pmatrix},
$$

for some matrix $B = (b_{ij})$, and by Proposition 5.9, we get

$$\det(e_1, \ldots, e_n) = \det(B) \det(A^1, \ldots, A^n),$$

and since $\det(e_1, \ldots, e_n) = 1$, this implies that $\det(A^1, \ldots, A^n) \neq 0$ (and $\det(B) \neq 0$). For the second assertion, recall that the rank of a matrix is equal to the maximum number of linearly independent columns, and the conclusion is clear.

If we combine Proposition 5.12 with Proposition 9.12, we obtain the following criterion for finding the rank of a matrix.

Proposition 5.13. Given any $m \times n$ matrix A over a field K (typically $K = \mathbb{R}$ or $K = \mathbb{C}$), the rank of A is the maximum natural number r such that there is an $r \times r$ submatrix B of A obtained by selecting r rows and r columns of A, and such that $\det(B) \neq 0$.

5.5 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations of the form $Ax = b$ has a unique solution.

Proposition 5.14. Given an $n \times n$-matrix A over a field K, the following properties hold:

1. For every column vector b, there is a unique column vector x such that $Ax = b$ iff the only solution to $Ax = 0$ is the trivial vector $x = 0$, iff $\det(A) \neq 0$.

2. If $\det(A) \neq 0$, the unique solution of $Ax = b$ is given by the expressions

$$x_j = \frac{\det(A^1, \ldots, A^{j-1}, b, A^{j+1}, \ldots, A^n)}{\det(A^1, \ldots, A^{j-1}, A^j, A^{j+1}, \ldots, A^n)},$$

known as Cramer’s rules.
(3) The system of linear equations $Ax = 0$ has a nonzero solution iff $\det(A) = 0$.

Proof. Assume that $Ax = b$ has a single solution x_0, and assume that $Ay = 0$ with $y \neq 0$. Then,

$$A(x_0 + y) = Ax_0 + Ay = Ax_0 + 0 = b,$$

and $x_0 + y \neq x_0$ is another solution of $Ax = b$, contradicting the hypothesis that $Ax = b$ has a single solution x_0. Thus, $Ax = 0$ only has the trivial solution. Now, assume that $Ax = 0$ only has the trivial solution. This means that the columns A_1, \ldots, A_n of A are linearly independent, and by Proposition 5.12, we have $\det(A) \neq 0$. Finally, if $\det(A) \neq 0$, by Proposition 5.11, this means that A is invertible, and then, for every b, $Ax = b$ is equivalent to $x = A^{-1}b$, which shows that $Ax = b$ has a single solution.

(2) Assume that $Ax = b$. If we compute

$$\det(A_1, \ldots, x_1A_1^1 + \cdots + x_jA_1^j + \cdots + x_nA_1^n, \ldots, A_n) = \det(A_1, \ldots, b, \ldots, A_n),$$

where b occurs in the j-th position, by multilinearity, all terms containing two identical columns A_k for $k \neq j$ vanish, and we get

$$x_j \det(A_1, \ldots, A^n) = \det(A_1, \ldots, A^{j-1}, b, A^{j+1}, \ldots, A^n),$$

for every j, $1 \leq j \leq n$. Since we assumed that $\det(A) = \det(A_1, \ldots, A^n) \neq 0$, we get the desired expression.

(3) Note that $Ax = 0$ has a nonzero solution iff A_1, \ldots, A_n are linearly dependent (as observed in the proof of Proposition 5.12), which, by Proposition 5.12, is equivalent to $\det(A) = 0$. \qed

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear equations using the above expressions. However, these formula imply an interesting fact, which is that the solution of the system $Ax = b$ are continuous in A and b. If we assume that the entries in A are continuous functions $a_{ij}(t)$ and the entries in b are are also continuous functions $b_j(t)$ of a real parameter t, since determinants are polynomial functions of their entries, the expressions

$$x_j(t) = \frac{\det(A_1, \ldots, A^{j-1}, b, A^{j+1}, \ldots, A^n)}{\det(A_1, \ldots, A^{j-1}, A^j, A^{j+1}, \ldots, A^n)}$$

are ratios of polynomials, and thus are also continuous as long as $\det(A(t))$ is nonzero. Similarly, if the functions $a_{ij}(t)$ and $b_j(t)$ are differentiable, so are the $x_j(t)$.

5.6 Determinant of a Linear Map

We close this chapter with the notion of determinant of a linear map $f : E \rightarrow E$.

Given a vector space E of finite dimension n, given a basis (u_1, \ldots, u_n) of E, for every linear map $f: E \to E$, if $M(f)$ is the matrix of f w.r.t. the basis (u_1, \ldots, u_n), we can define $\det(f) = \det(M(f))$. If (v_1, \ldots, v_n) is any other basis of E, and if P is the change of basis matrix, by Corollary 3.5, the matrix of f with respect to the basis (v_1, \ldots, v_n) is $P^{-1}M(f)P$. Now, by proposition 5.10, we have

$$\det(P^{-1}M(f)P) = \det(P^{-1}) \det(M(f)) \det(P) = \det(P^{-1}) \det(P) \det(M(f)) = \det(M(f)).$$

Thus, $\det(f)$ is indeed independent of the basis of E.

Definition 5.10. Given a vector space E of finite dimension, for any linear map $f: E \to E$, we define the **determinant** $\det(f)$ of f as the determinant $\det(M(f))$ of the matrix of f in any basis (since, from the discussion just before this definition, this determinant does not depend on the basis).

Then, we have the following proposition.

Proposition 5.15. Given any vector space E of finite dimension n, a linear map $f: E \to E$ is invertible iff $\det(f) \neq 0$.

Proof. The linear map $f: E \to E$ is invertible iff its matrix $M(f)$ in any basis is invertible (by Proposition 3.2), iff $\det(M(f)) \neq 0$, by Proposition 5.11.

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear maps $f: E \to E$ such that $\det(f) = 1$ is a group under composition. This group is a subgroup of the general linear group $\text{GL}(E)$. It is called the **special linear group** (of E), and it is denoted by $\text{SL}(E)$, or when $E = K^n$, by $\text{SL}(n,K)$, or even by $\text{SL}(n)$.

5.7 The Cayley–Hamilton Theorem

We conclude this chapter with an interesting and important application of Proposition 5.11, the **Cayley–Hamilton theorem**. The results of this section apply to matrices over any commutative ring K. First, we need the concept of the characteristic polynomial of a matrix.

Definition 5.11. If K is any commutative ring, for every $n \times n$ matrix $A \in \text{M}_n(K)$, the **characteristic polynomial** $P_A(X)$ of A is the determinant

$$P_A(X) = \det(XI - A).$$

The characteristic polynomial $P_A(X)$ is a polynomial in $K[X]$, the ring of polynomials in the indeterminate X with coefficients in the ring K. For example, when $n = 2$, if

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

then
\[P_A(X) = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = X^2 - (a + d)X + ad - bc. \]

We can substitute the matrix \(A \) for the variable \(X \) in the polynomial \(P_A(X) \), obtaining a matrix \(P_A \). If we write
\[P_A(X) = X^n + c_1X^{n-1} + \cdots + c_n, \]
then
\[P_A = A^n + c_1A^{n-1} + \cdots + c_nI. \]

We have the following remarkable theorem.

Theorem 5.16. (Cayley–Hamilton) If \(K \) is any commutative ring, for every \(n \times n \) matrix \(A \in M_n(K) \), if we let
\[P_A(X) = X^n + c_1X^{n-1} + \cdots + c_n \]
be the characteristic polynomial of \(A \), then
\[P_A = A^n + c_1A^{n-1} + \cdots + c_nI = 0. \]

Proof. We can view the matrix \(B = XI - A \) as a matrix with coefficients in the polynomial ring \(K[X] \), and then we can form the matrix \(\tilde{B} \) which is the transpose of the matrix of cofactors of elements of \(B \). Each entry in \(\tilde{B} \) is an \((n-1) \times (n-1)\) determinant, and thus a polynomial of degree at most \(n - 1 \), so we can write \(\tilde{B} \) as
\[\tilde{B} = X^{n-1}B_0 + X^{n-2}B_1 + \cdots + B_{n-1}, \]
for some matrices \(B_0, \ldots, B_{n-1} \) with coefficients in \(K \). For example, when \(n = 2 \), we have
\[B = \begin{pmatrix} X - a & -b \\ -c & X - d \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} X - d & b \\ c & X - a \end{pmatrix} = X \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -d & b \\ c & -a \end{pmatrix}. \]

By Proposition 5.11, we have
\[B\tilde{B} = \det(B)I = P_A(X)I. \]

On the other hand, we have
\[B\tilde{B} = (XI - A)(X^{n-1}B_0 + X^{n-2}B_1 + \cdots + X^{n-j-1}B_j + \cdots + B_{n-1}), \]
and by multiplying out the right-hand side, we get
\[B\tilde{B} = X^nD_0 + X^{n-1}D_1 + \cdots + X^{n-j}D_j + \cdots + D_n, \]
with

\[
\begin{align*}
D_0 &= B_0 \\
D_1 &= B_1 - AB_0 \\
\vdots \\
D_j &= B_j - AB_{j-1} \\
\vdots \\
D_{n-1} &= B_{n-1} - AB_{n-2} \\
D_n &= -AB_{n-1}.
\end{align*}
\]

Since

\[P_A(X)I = (X^n + c_1X^{n-1} + \cdots + c_n)I,
\]
the equality

\[X^nD_0 + X^{n-1}D_1 + \cdots + D_n = (X^n + c_1X^{n-1} + \cdots + c_n)I
\]
is an equality between two matrices, so it requires that all corresponding entries are equal, and since these are polynomials, the coefficients of these polynomials must be identical, which is equivalent to the set of equations

\[
\begin{align*}
I &= B_0 \\
c_1I &= B_1 - AB_0 \\
\vdots \\
c_jI &= B_j - AB_{j-1} \\
\vdots \\
c_{n-1}I &= B_{n-1} - AB_{n-2} \\
c_nI &= -AB_{n-1},
\end{align*}
\]

for all \(j\), with \(1 \leq j \leq n-1\). If we multiply the first equation by \(A^n\), the last by \(I\), and generally the \((j + 1)\)th by \(A^{n-j}\), when we add up all these new equations, we see that the right-hand side adds up to 0, and we get our desired equation

\[A^n + c_1A^{n-1} + \cdots + c_nI = 0,
\]
as claimed.

As a concrete example, when \(n = 2\), the matrix

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
satisfies the equation

\[A^2 - (a + d)A + (ad - bc)I = 0.
\]
Most readers will probably find the proof of Theorem 5.16 rather clever but very mysterious and unmotivated. The conceptual difficulty is that we really need to understand how polynomials in one variable “act” on vectors, in terms of the matrix A. This can be done and yields a more “natural” proof. Actually, the reasoning is simpler and more general if we free ourselves from matrices and instead consider a finite-dimensional vector space E and some given linear map $f : E \rightarrow E$. Given any polynomial $p(X) = a_0X^n + a_1X^{n-1} + \cdots + a_n$ with coefficients in the field K, we define the linear map $p(f) : E \rightarrow E$ by

$$p(f) = a_0f^n + a_1f^{n-1} + \cdots + a_n \text{id},$$

where $f^k = f \circ \cdots \circ f$, the k-fold composition of f with itself. Note that

$$p(f)(u) = a_0f^n(u) + a_1f^{n-1}(u) + \cdots + a_n u,$$

for every vector $u \in E$. Then, we define a new kind of scalar multiplication $\cdot : K[X] \times E \rightarrow E$ by polynomials as follows: for every polynomial $p(X) \in K[X]$, for every $u \in E$,

$$p(X) \cdot u = p(f)(u).$$

It is easy to verify that this is a “good action,” which means that

$$p \cdot (u + v) = p \cdot u + p \cdot v$$

$$(p + q) \cdot u = p \cdot u + q \cdot u$$

$$(pq) \cdot u = p \cdot (q \cdot u)$$

$$1 \cdot u = u,$$

for all $p, q \in K[X]$ and all $u, v \in E$. With this new scalar multiplication, E is a $K[X]$-module.

If $p = \lambda$ is just a scalar in K (a polynomial of degree 0), then

$$\lambda \cdot u = (\lambda \text{id})(u) = \lambda u,$$

which means that K acts on E by scalar multiplication as before. If $p(X) = X$ (the monomial X), then

$$X \cdot u = f(u).$$

Now, if we pick a basis (e_1, \ldots, e_n), if a polynomial $p(X) \in K[X]$ has the property that

$$p(X) \cdot e_i = 0, \quad i = 1, \ldots, n,$$

then this means that $p(f)(e_i) = 0$ for $i = 1, \ldots, n$, which means that the linear map $p(f)$ vanishes on E. We can also check, as we did in Section 5.2, that if A and B are two $n \times n$ matrices and if (u_1, \ldots, u_n) are any n vectors, then

$$A \cdot \begin{pmatrix} B \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \end{pmatrix} = (AB) \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}. $$
This suggests the plan of attack for our second proof of the Cayley–Hamilton theorem. For simplicity, we prove the theorem for vector spaces over a field. The proof goes through for a free module over a commutative ring.

Theorem 5.17. (Cayley–Hamilton) For every finite-dimensional vector space over a field
\(K \), for every linear map \(f : E \to E \), for every basis \((e_1, \ldots, e_n)\), if \(A \) is the matrix over \(f \) over the basis \((e_1, \ldots, e_n)\) and if

\[
P_A(X) = X^n + c_1X^{n-1} + \cdots + c_n
\]

is the characteristic polynomial of \(A \), then

\[
P_A(f) = f^n + c_1f^{n-1} + \cdots + c_n\text{id} = 0.
\]

Proof. Since the columns of \(A \) consist of the vector \(f(e_j) \) expressed over the basis \((e_1, \ldots, e_n)\), we have

\[
f(e_j) = \sum_{i=1}^{n} a_{ij}e_i, \quad 1 \leq j \leq n.
\]

Using our action of \(K[X] \) on \(E \), the above equations can be expressed as

\[
X \cdot e_j = \sum_{i=1}^{n} a_{ij} \cdot e_i, \quad 1 \leq j \leq n,
\]

which yields

\[
\sum_{i=1}^{j-1} -a_{ij} \cdot e_i + (X - a_{jj}) \cdot e_j + \sum_{i=j+1}^{n} -a_{ij} \cdot e_i = 0, \quad 1 \leq j \leq n.
\]

Observe that the transpose of the characteristic polynomial shows up, so the above system can be written as

\[
\begin{pmatrix}
X - a_{11} & -a_{21} & \cdots & -a_{n1} \\
-a_{12} & X - a_{22} & \cdots & -a_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{1n} & -a_{2n} & \cdots & X - a_{nn}
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}.
\]

If we let \(B = XI - A^\top \), then as in the previous proof, if \(\tilde{B} \) is the transpose of the matrix of cofactors of \(B \), we have

\[
\tilde{B}B = \det(B)I = \det(XI - A^\top)I = \det(XI - A)I = P_AI.
\]

But then, since

\[
B \cdot \begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix},
\]

\[
\tilde{B}B = \det(B)I = \det(XI - A^\top)I = \det(XI - A)I = P_AI.
\]
and since \tilde{B} is matrix whose entries are polynomials in $K[X]$, it makes sense to multiply on the left by \tilde{B} and we get

$$\tilde{B} \cdot B \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = (\tilde{B}B) \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = P_A \cdot \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \tilde{B} \cdot \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix};$$

that is,

$$P_A \cdot e_j = 0, \quad j = 1, \ldots, n,$$

which proves that $P_A(f) = 0$, as claimed.

If K is a field, then the characteristic polynomial of a linear map $f : E \to E$ is independent of the basis (e_1, \ldots, e_n) chosen in E. To prove this, observe that the matrix of f over another basis will be of the form $P^{-1}AP$, for some invertible matrix P, and then

$$\det(XI - P^{-1}AP) = \det(XP^{-1}IP - P^{-1}AP)$$
$$= \det(P^{-1}(XI - A)P)$$
$$= \det(P^{-1}) \det(XI - A) \det(P)$$
$$= \det(XI - A).$$

Therefore, the characteristic polynomial of a linear map is intrinsic to f, and it is denoted by P_f.

The zeros (roots) of the characteristic polynomial of a linear map f are called the eigenvalues of f. They play an important role in theory and applications. We will come back to this topic later on.

5.8 Permanents

Recall that the explicit formula for the determinant of an $n \times n$ matrix is

$$\det(A) = \sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1)1} \cdots a_{\pi(n)n}.$$

If we drop the sign $\epsilon(\pi)$ of every permutation from the above formula, we obtain a quantity known as the permanent:

$$\text{per}(A) = \sum_{\pi \in \mathfrak{S}_n} a_{\pi(1)1} \cdots a_{\pi(n)n}.$$

Permanents and determinants were investigated as early as 1812 by Cauchy. It is clear from the above definition that the permanent is a multilinear and symmetric form. We also have

$$\text{per}(A) = \text{per}(A^\top),$$
and the following unsigned version of the Laplace expansion formula:

\[\text{per}(A) = a_{i1}\text{per}(A_{i1}) + \cdots + a_{ij}\text{per}(A_{ij}) + \cdots + a_{in}\text{per}(A_{in}), \]

for \(i = 1, \ldots, n \). However, unlike determinants which have a clear geometric interpretation as signed volumes, permanents do not have any natural geometric interpretation. Furthermore, determinants can be evaluated efficiently, for example using the conversion to row reduced echelon form, but computing the permanent is hard.

Permanents turn out to have various combinatorial interpretations. One of these is in terms of perfect matchings of bipartite graphs which we now discuss.

Recall that a bipartite (undirected) graph \(G = (V, E) \) is a graph whose set of nodes \(V \) can be partitioned into two nonempty disjoint subsets \(V_1 \) and \(V_2 \), such that every edge \(e \in E \) has one endpoint in \(V_1 \) and one endpoint in \(V_2 \). An example of a bipartite graph with 14 nodes is shown in Figure 5.1; its nodes are partitioned into the two sets \(\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \) and \(\{y_1, y_2, y_3, y_4, y_5, y_6, y_7\} \).

![Figure 5.1: A bipartite graph G.](image)

A matching in a graph \(G = (V, E) \) (bipartite or not) is a set \(M \) of pairwise non-adjacent edges, which means that no two edges in \(M \) share a common vertex. A perfect matching is a matching such that every node in \(V \) is incident to some edge in the matching \(M \) (every node in \(V \) is an endpoint of some edge in \(M \)). Figure 5.2 shows a perfect matching (in red) in the bipartite graph \(G \).

Obviously, a perfect matching in a bipartite graph can exist only if its set of nodes has a partition in two blocks of equal size, say \(\{x_1, \ldots, x_m\} \) and \(\{y_1, \ldots, y_m\} \). Then, there is a bijection between perfect matchings and bijections \(\pi: \{x_1, \ldots, x_m\} \to \{y_1, \ldots, y_m\} \) such that \(\pi(x_i) = y_j \) iff there is an edge between \(x_i \) and \(y_j \).

Now, every bipartite graph \(G \) with a partition of its nodes into two sets of equal size as above is represented by an \(m \times m \) matrix \(A = (a_{ij}) \) such that \(a_{ij} = 1 \) iff there is an edge between \(x_i \) and \(y_j \), and \(a_{ij} = 0 \) otherwise. Using the interpretation of perfect matchings as bijections \(\pi: \{x_1, \ldots, x_m\} \to \{y_1, \ldots, y_m\} \), we see that the permanent \(\text{per}(A) \) of the \((0,1) \)-matrix \(A \) representing the bipartite graph \(G \) counts the number of perfect matchings in \(G \).
In a famous paper published in 1979, Leslie Valiant proves that computing the permanent is a \#P-complete problem. Such problems are suspected to be intractable. It is known that if a polynomial-time algorithm existed to solve a \#P-complete problem, then we would have $P = NP$, which is believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given in terms of systems of distinct representatives. Given a finite set S, let (A_1, \ldots, A_n) be any sequence of nonempty subsets of S (not necessarily distinct). A system of distinct representatives (for short SDR) of the sets A_1, \ldots, A_n is a sequence of n distinct elements (a_1, \ldots, a_n), with $a_i \in A_i$ for $i = 1, \ldots, n$. The number of SDR’s of a sequence of sets plays an important role in combinatorics. Now, if $S = \{1, 2, \ldots, n\}$ and if we associate to any sequence (A_1, \ldots, A_n) of nonempty subsets of S the matrix $A = (a_{ij})$ defined such that $a_{ij} = 1$ if $j \in A_i$ and $a_{ij} = 0$ otherwise, then the permanent $\operatorname{per}(A)$ counts the number of SDR’s of the set A_1, \ldots, A_n.

This interpretation of permanents in terms of SDR’s can be used to prove bounds for the permanents of various classes of matrices. Interested readers are referred to van Lint and Wilson [56] (Chapters 11 and 12). In particular, a proof of a theorem known as Van der Waerden conjecture is given in Chapter 12. This theorem states that for any $n \times n$ matrix A with nonnegative entries in which all row-sums and column-sums are 1 (doubly stochastic matrices), we have

$$\operatorname{per}(A) \geq \frac{n!}{n^n},$$

with equality for the matrix in which all entries are equal to $1/n$.

5.9 Summary

The main concepts and results of this chapter are listed below:

- permutations, transpositions, basics transpositions.
- Every permutation can be written as a composition of permutations.
• The parity of the number of transpositions involved in any decomposition of a permutation \(\sigma \) is an invariant; it is the signature \(\epsilon(\sigma) \) of the permutation \(\sigma \).

• Multilinear maps (also called \(n \)-linear maps); bilinear maps.

• Symmetric and alternating multilinear maps.

• A basic property of alternating multilinear maps (Lemma 5.5) and the introduction of the formula expressing a determinant.

• Definition of a determinant as a multilinear alternating map \(D : M_n(K) \to K \) such that \(D(I) = 1 \).

• We define the set of algorithms \(\mathcal{D}_n \), to compute the determinant of an \(n \times n \) matrix.

• Laplace expansion according to the \(i \)th row; cofactors.

• We prove that the algorithms in \(\mathcal{D}_n \) compute determinants (Lemma 5.6).

• We prove that all algorithms in \(\mathcal{D}_n \) compute the same determinant (Theorem 5.7).

• We give an interpretation of determinants as signed volumes.

• We prove that \(\det(A) = \det(A^\top) \).

• We prove that \(\det(AB) = \det(A) \det(B) \).

• The adjugate \(\tilde{A} \) of a matrix \(A \).

• Formula for the inverse in terms of the adjugate.

• A matrix \(A \) is invertible iff \(\det(A) \neq 0 \).

• Solving linear equations using Cramer’s rules.

• Determinant of a linear map.

• The characteristic polynomial of a matrix.

• The Cayley–Hamilton theorem.

• The action of the polynomial ring induced by a linear map on a vector space.

• Permanents.

• Permanents count the number of perfect matchings in bipartite graphs.

• Computing the permanent is a \#P-perfect problem (L. Valiant).

• Permanents count the number of SDRs of sequences of subsets of a given set.
5.10 Further Readings

Thorough expositions of the material covered in Chapter 2–4 and 5 can be found in Strang [51, 50], Lax [35], Lang [32], Artin [3], Mac Lane and Birkhoff [37], Hoffman and Kunze [30], Dummit and Foote [18], Bourbaki [8, 9], Van Der Waerden [55], Serre [46], Horn and Johnson [28], and Bertin [7]. These notions of linear algebra are nicely put to use in classical geometry, see Berger [5, 6], Tisseron [53] and Dieudonné [16].
Chapter 6

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

6.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics (path planning). There are many ways of tackling this problem and in this section we will describe a solution using cubic splines. Such splines consist of cubic Bézier curves. They are often used because they are cheap to implement and give more flexibility than quadratic Bézier curves.

A cubic Bézier curve $C(t)$ (in \mathbb{R}^2 or \mathbb{R}^3) is specified by a list of four control points (b_0, b_1, b_2, b_3) and is given parametrically by the equation

$$C(t) = (1 - t)^3 b_0 + 3(1 - t)^2 t b_1 + 3(1 - t) t^2 b_2 + t^3 b_3.$$

Clearly, $C(0) = b_0$, $C(1) = b_3$, and for $t \in [0, 1]$, the point $C(t)$ belongs to the convex hull of the control points b_0, b_1, b_2, b_3. The polynomials

$$(1 - t)^3, \quad 3(1 - t)^2 t, \quad 3(1 - t) t^2, \quad t^3$$

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of t in the interval $[0, 1]$. Still, the placement of the control points drastically affects the shape of the curve segment, which can even have a self-intersection; See Figures 6.1, 6.2, 6.3 illustrating various configurations.
Figure 6.1: A “standard” Bézier curve

Figure 6.2: A Bézier curve with an inflexion point
Interpolation problems require finding curves passing through some given data points and possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier curves, say C_1, \ldots, C_m ($m \geq 2$). We will assume that F defined on $[0, m]$, so that for $i = 1, \ldots, m$,

$$F(t) = C_i(t - i + 1), \quad i - 1 \leq t \leq i.$$

Typically, some smoothness is required between any two junction points, that is, between any two points $C_i(1)$ and $C_{i+1}(0)$, for $i = 1, \ldots, m - 1$. We require that $C_i(1) = C_{i+1}(0)$ (C^0-continuity), and typically that the derivatives of C_i at 1 and of C_{i+1} at 0 agree up to second order derivatives. This is called C^2-continuity, and it ensures that the tangents agree as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common problems which can be stated as follows:

Problem: Given $N + 1$ data points x_0, \ldots, x_N, find a C^2 cubic spline curve F such that $F(i) = x_i$ for all i, $0 \leq i \leq N$ ($N \geq 2$).

A way to solve this problem is to find $N + 3$ auxiliary points d_{-1}, \ldots, d_{N+1}, called de Boor control points, from which N Bézier curves can be found. Actually,

$$d_{-1} = x_0 \quad \text{and} \quad d_{N+1} = x_N.$$
so we only need to find \(N + 1 \) points \(d_0, \ldots, d_N \).

It turns out that the \(C^2 \)-continuity constraints on the \(N \) Bézier curves yield only \(N - 1 \) equations, so \(d_0 \) and \(d_N \) can be chosen arbitrarily. In practice, \(d_0 \) and \(d_N \) are chosen according to various end conditions, such as prescribed velocities at \(x_0 \) and \(x_N \). For the time being, we will assume that \(d_0 \) and \(d_N \) are given.

Figure 6.4 illustrates an interpolation problem involving \(N + 1 = 7 + 1 = 8 \) data points. The control points \(d_0 \) and \(d_7 \) were chosen arbitrarily.

\[
\begin{align*}
&d_0, d_1, d_2, \ldots, d_N \\
\hline
&d_0, d_1, \quad 1, \quad 4, \quad 1, \quad 0 \\
&\vdots, \quad \vdots, \quad \vdots \\
&d_0, d_1, \quad 1, \quad 4, \quad 1, \quad \frac{7}{2} \\
&6x_1 - \frac{3}{2}d_0 \\
&6x_2 \\
&\vdots \\
&6x_{N-2} \\
&6x_{N-1} - \frac{3}{2}d_N
\end{align*}
\]

We will show later that the above matrix is invertible because it is strictly diagonally dominant.
Once the above system is solved, the Bézier cubics C_1, \ldots, C_N are determined as follows (we assume $N \geq 2$): For $2 \leq i \leq N - 1$, the control points $(b_i^0, b_i^1, b_i^2, b_i^3)$ of C_i are given by

\begin{align*}
b_i^0 &= x_{i-1} \\
b_i^1 &= \frac{2}{3}d_{i-1} + \frac{1}{3}d_i \\
b_i^2 &= \frac{1}{3}d_{i-1} + \frac{2}{3}d_i \\
b_i^3 &= x_i.
\end{align*}

The control points $(b_1^0, b_1^1, b_1^2, b_1^3)$ of C_1 are given by

\begin{align*}
b_1^0 &= x_0 \\
b_1^1 &= d_0 \\
b_1^2 &= \frac{1}{2}d_0 + \frac{1}{2}d_1 \\
b_1^3 &= x_1.
\end{align*}

and the control points $(b_N^0, b_N^1, b_N^2, b_N^3)$ of C_N are given by

\begin{align*}
b_N^0 &= x_{N-1} \\
b_N^1 &= \frac{1}{2}d_{N-1} + \frac{1}{2}d_N \\
b_N^2 &= d_N \\
b_N^3 &= x_N.
\end{align*}

We will now describe various methods for solving linear systems. Since the matrix of the above system is tridiagonal, there are specialized methods which are more efficient than the general methods. We will discuss a few of these methods.

6.2 Gaussian Elimination

Let A be an $n \times n$ matrix, let $b \in \mathbb{R}^n$ be an n-dimensional vector and assume that A is invertible. Our goal is to solve the system $Ax = b$. Since A is assumed to be invertible, we know that this system has a unique solution $x = A^{-1}b$. Experience shows that two counter-intuitive facts are revealed:

1. One should avoid computing the inverse A^{-1} of A explicitly. This is because this would amount to solving the n linear systems $Au^{(j)} = e_j$ for $j = 1, \ldots, n$, where $e_j = (0, \ldots, 1, \ldots, 0)$ is the jth canonical basis vector of \mathbb{R}^n (with a 1 is the jth slot). By doing so, we would replace the resolution of a single system by the resolution of n systems, and we would still have to multiply A^{-1} by b.
(2) One does not solve (large) linear systems by computing determinants (using Cramer’s
formulae). This is because this method requires a number of additions (resp. multipli-
cations) proportional to \((n+1)!\) (resp. \((n+2)!\)).

The key idea on which most direct methods (as opposed to iterative methods, that look
for an approximation of the solution) are based is that if \(A\) is an upper-triangular matrix,
which means that \(a_{ij} = 0\) for \(1 \leq j < i \leq n\) (resp. lower-triangular, which means that
\(a_{ij} = 0\) for \(1 \leq i < j \leq n\)), then computing the solution \(x\) is trivial. Indeed, say \(A\) is an
upper-triangular matrix

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n-2} & a_{1n-1} & a_{1n} \\
0 & a_{22} & \cdots & a_{2n-2} & a_{2n-1} & a_{2n} \\
0 & 0 & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & a_{n-1n-1} & a_{n-1n} \\
0 & 0 & \cdots & 0 & 0 & a_{nn}
\end{pmatrix}.
\]

Then, \(\det(A) = a_{11}a_{22}\cdots a_{nn} \neq 0\), which implies that \(a_{ii} \neq 0\) for \(i = 1, \ldots, n\), and we can
solve the system \(Ax = b\) from bottom-up by back-substitution. That is, first we compute
\(x_n\) from the last equation, next plug this value of \(x_n\) into the next to the last equation and
compute \(x_{n-1}\) from it, etc. This yields

\[
x_n = a_{nn}^{-1}b_n \\
x_{n-1} = a_{n-1n-1}^{-1}(b_{n-1} - a_{n-1n}x_n) \\
\vdots \\
x_1 = a_{11}^{-1}(b_1 - a_{12}x_2 - \cdots - a_{1n}x_n).
\]

Note that the use of determinants can be avoided to prove that if \(A\) is invertible then
\(a_{ii} \neq 0\) for \(i = 1, \ldots, n\). Indeed, it can be shown directly (by induction) that an upper (or
lower) triangular matrix is invertible iff all its diagonal entries are nonzero.

If \(A\) is lower-triangular, we solve the system from top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-
triangular form. This can be done by elimination. Let us illustrate this method on the
following example:

\[
\begin{align*}
2x + y + z &= 5 \\
4x - 6y &= -2 \\
-2x + 7y + 2z &= 9.
\end{align*}
\]

We can eliminate the variable \(x\) from the second and the third equation as follows: Subtract
twice the first equation from the second and add the first equation to the third. We get the
new system
\[
\begin{align*}
2x + y + z &= 5 \\
-8y - 2z &= -12 \\
8y + 3z &= 14.
\end{align*}
\]
This time, we can eliminate the variable \(y \) from the third equation by adding the second equation to the third:
\[
\begin{align*}
2x + y + z &= 5 \\
-8y - 2z &= -12 \\
\quad z &= 2.
\end{align*}
\]
This last system is upper-triangular. Using back-substitution, we find the solution: \(z = 2, y = 1, x = 1 \).

Observe that we have performed only row operations. The general method is to iteratively eliminate variables using simple row operations (namely, adding or subtracting a multiple of a row to another row of the matrix) while simultaneously applying these operations to the vector \(b \), to obtain a system, \(MAx = Mb \), where \(MA \) is upper-triangular. Such a method is called \textit{Gaussian elimination}. However, one extra twist is needed for the method to work in all cases: It may be necessary to permute rows, as illustrated by the following example:
\[
\begin{align*}
x + y + z &= 1 \\
x + y + 3z &= 1 \\
2x + 5y + 8z &= 1.
\end{align*}
\]
In order to eliminate \(x \) from the second and third row, we subtract the first row from the second and we subtract twice the first row from the third:
\[
\begin{align*}
x + y + z &= 1 \\
\quad 2z &= 0 \\
3y + 6z &= -1.
\end{align*}
\]
Now, the trouble is that \(y \) does not occur in the second row; so, we can’t eliminate \(y \) from the third row by adding or subtracting a multiple of the second row to it. The remedy is simple: Permute the second and the third row! We get the system:
\[
\begin{align*}
x + y + z &= 1 \\
3y + 6z &= -1 \\
\quad 2z &= 0,
\end{align*}
\]
which is already in triangular form. Another example where some permutations are needed is:
\[
\begin{align*}
z &= 1 \\
-2x + 7y + 2z &= 1 \\
4x - 6y &= -1.
\end{align*}
\]
First, we permute the first and the second row, obtaining

\[-2x + 7y + 2z = 1\]
\[z = 1\]
\[4x - 6y = -1,\]

and then, we add twice the first row to the third, obtaining:

\[-2x + 7y + 2z = 1\]
\[z = 1\]
\[8y + 4z = 1.\]

Again, we permute the second and the third row, getting

\[-2x + 7y + 2z = 1\]
\[8y + 4z = 1\]
\[z = 1,\]

an upper-triangular system. Of course, in this example, \(z\) is already solved and we could have eliminated it first, but for the general method, we need to proceed in a systematic fashion.

We now describe the method of Gaussian Elimination applied to a linear system \(Ax = b\), where \(A\) is assumed to be invertible. We use the variable \(k\) to keep track of the stages of elimination. Initially, \(k = 1\).

1. The first step is to pick some nonzero entry \(a_{i1}\) in the first column of \(A\). Such an entry must exist, since \(A\) is invertible (otherwise, the first column of \(A\) would be the zero vector, and the columns of \(A\) would not be linearly independent. Equivalently, we would have \(\det(A) = 0\)). The actual choice of such an element has some impact on the numerical stability of the method, but this will be examined later. For the time being, we assume that some arbitrary choice is made. This chosen element is called the pivot of the elimination step and is denoted \(\pi_1\) (so, in this first step, \(\pi_1 = a_{i1}\)).

2. Next, we permute the row \((i)\) corresponding to the pivot with the first row. Such a step is called pivoting. So, after this permutation, the first element of the first row is nonzero.

3. We now eliminate the variable \(x_1\) from all rows except the first by adding suitable multiples of the first row to these rows. More precisely we add \(-a_{i1}/\pi_1\) times the first row to the \(i\)th row for \(i = 2, \ldots, n\). At the end of this step, all entries in the first column are zero except the first.

4. Increment \(k\) by 1. If \(k = n\), stop. Otherwise, \(k < n\), and then iteratively repeat steps (1), (2), (3) on the \((n - k + 1) \times (n - k + 1)\) subsystem obtained by deleting the first \(k - 1\) rows and \(k - 1\) columns from the current system.
If we let $A_1 = A$ and $A_k = (a_{ij}^{(k)})$ be the matrix obtained after $k-1$ elimination steps ($2 \leq k \leq n$), then the kth elimination step is applied to the matrix A_k of the form

$$A_k = \begin{pmatrix}
a_{11}^{(k)} & a_{12}^{(k)} & \cdots & \cdots & a_{1n}^{(k)} \\
a_{21}^{(k)} & a_{22}^{(k)} & \cdots & \cdots & a_{2n}^{(k)} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{k1}^{(k)} & a_{k2}^{(k)} & \cdots & a_{kn}^{(k)} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
a_{n1}^{(k)} & a_{n2}^{(k)} & \cdots & a_{nn}^{(k)}
\end{pmatrix}.$$

Actually, note that $a_{ij}^{(k)} = a_{ij}^{(i)}$ for all i,j with $1 \leq i \leq k-2$ and $i \leq j \leq n$, since the first $k-1$ rows remain unchanged after the $(k-1)$th step.

We will prove later that $\det(A_k) = \pm \det(A)$. Consequently, A_k is invertible. The fact that A_k is invertible iff A is invertible can also be shown without determinants from the fact that there is some invertible matrix M_k such that $A_k = M_k A$, as we will see shortly.

Since A_k is invertible, some entry $a_{ik}^{(k)}$ with $k \leq i \leq n$ is nonzero. Otherwise, the last $n-k+1$ entries in the first k columns of A_k would be zero, and the first k columns of A_k would yield k vectors in \mathbb{R}^{k-1}. But then, the first k columns of A_k would be linearly dependent and A_k would not be invertible, a contradiction.

So, one the entries $a_{ik}^{(k)}$ with $k \leq i \leq n$ can be chosen as pivot, and we permute the kth row with the ith row, obtaining the matrix $\alpha^{(k)} = (a_{ij}^{(k)})$. The new pivot is $\pi_k = a_{kk}^{(k)}$, and we zero the entries $i = k+1, \ldots, n$ in column k by adding $-a_{ik}^{(k)}/\pi_k$ times row k to row i. At the end of this step, we have A_{k+1}. Observe that the first $k-1$ rows of A_k are identical to the first $k-1$ rows of A_{k+1}.

The process of Gaussian elimination is illustrated in schematic form below:

$$\begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix} \Rightarrow \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \Rightarrow \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix} \Rightarrow \begin{pmatrix} \times & \times & \times \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix}.$$

6.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row operations used during Gaussian elimination. The key point is that if $A = PB$, where A, B are $m \times n$ matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and
B by A_1, \ldots, A_m and B_1, \ldots, B_m, then the formula

$$a_{ij} = \sum_{k=1}^{m} p_{ik} b_{kj}$$

giving the (i,j)th entry in A shows that the ith row of A is a linear combination of the rows of B:

$$A_i = p_{i1} B_1 + \cdots + p_{im} B_m.$$

Therefore, multiplication of a matrix on the left by a square matrix performs row operations. Similarly, multiplication of a matrix on the right by a square matrix performs column operations.

The permutation of the kth row with the ith row is achieved by multiplying A on the left by the transposition matrix $P(i,k)$, which is the matrix obtained from the identity matrix by permuting rows i and k, i.e.,

$$P(i,k) = \begin{pmatrix}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & \ddots \\
1 & 1 & 0 & 1 & 1
\end{pmatrix}.$$

Observe that $\det(P(i,k)) = -1$. Furthermore, $P(i,k)$ is symmetric ($P(i,k)^\top = P(i,k)$), and

$$P(i,k)^{-1} = P(i,k).$$

During the permutation step (2), if row k and row i need to be permuted, the matrix A is multiplied on the left by the matrix P_k such that $P_k = P(i,k)$, else we set $P_k = I$.

Adding β times row j to row i (with $i \neq j$) is achieved by multiplying A on the left by the elementary matrix,

$$E_{i,j;\beta} = I + \beta e_{ij},$$

where

$$(e_{ij})_{kl} = \begin{cases}
1 & \text{if } k = i \text{ and } l = j \\
0 & \text{if } k \neq i \text{ or } l \neq j,
\end{cases}$$
6.3. ELEMENTARY MATRICES AND ROW OPERATIONS

\[E_{i,j;\beta} = \begin{pmatrix}
1 & & & & \\
1 & 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
\beta & & & & 1
\end{pmatrix} \quad \text{or} \quad E_{i,j;\beta} = \begin{pmatrix}
1 & & & & \\
1 & 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
1 & 1 & & & 1
\end{pmatrix}. \]

On the left, \(i > j \), and on the right, \(i < j \). Observe that the inverse of \(E_{i,j;\beta} = I + \beta e_{i,j} \) is \(E_{i,j;\beta} = I - \beta e_{i,j} \) and that \(\det(E_{i,j;\beta}) = 1 \). Therefore, during step 3 (the elimination step), the matrix \(A \) is multiplied on the left by a product \(E_k \) of matrices of the form \(E_{i,k;\beta_{i,k}} \), with \(i > k \).

Consequently, we see that

\[A_{k+1} = E_k P_k A_k, \]

and then

\[A_k = E_{k-1} P_{k-1} \cdots E_1 P_1 A. \]

This justifies the claim made earlier that \(A_k = M_k A \) for some invertible matrix \(M_k \); we can pick

\[M_k = E_{k-1} P_{k-1} \cdots E_1 P_1, \]

a product of invertible matrices.

The fact that \(\det(P(i,k)) = -1 \) and that \(\det(E_{i,j;\beta}) = 1 \) implies immediately the fact claimed above: We always have

\[\det(A_k) = \pm \det(A). \]

Furthermore, since

\[A_k = E_{k-1} P_{k-1} \cdots E_1 P_1 A \]

and since Gaussian elimination stops for \(k = n \), the matrix

\[A_n = E_{n-1} P_{n-1} \cdots E_2 P_2 E_1 P_1 A \]

is upper-triangular. Also note that if we let \(M = E_{n-1} P_{n-1} \cdots E_2 P_2 E_1 P_1 \), then \(\det(M) = \pm 1 \), and

\[\det(A) = \pm \det(A_n). \]

The matrices \(P(i,k) \) and \(E_{i,j;\beta} \) are called elementary matrices. We can summarize the above discussion in the following theorem:
Theorem 6.1. (Gaussian Elimination) Let A be an $n \times n$ matrix (invertible or not). Then there is some invertible matrix M so that $U = MA$ is upper-triangular. The pivots are all nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the last assertion. Now, A is singular iff some pivot is zero, say at stage k of the elimination. If so, we must have $a_{i,k}^{(k)} = 0$ for $i = k, \ldots, n$; but in this case, $A_{k+1} = A_k$ and we may pick $P_k = E_k = I$. □

Remark: Obviously, the matrix M can be computed as

$$M = E_{n-1}P_{n-1} \cdots E_2P_2E_1P_1,$$

but this expression is of no use. Indeed, what we need is M^{-1}; when no permutations are needed, it turns out that M^{-1} can be obtained immediately from the matrices E_k’s, in fact, from their inverses, and no multiplications are necessary.

Remark: Instead of looking for an invertible matrix M so that MA is upper-triangular, we can look for an invertible matrix M so that MA is a diagonal matrix. Only a simple change to Gaussian elimination is needed. At every stage, k, after the pivot has been found and pivoting been performed, if necessary, in addition to adding suitable multiples of the kth row to the rows below row k in order to zero the entries in column k for $i = k + 1, \ldots, n$, also add suitable multiples of the kth row to the rows above row k in order to zero the entries in column k for $i = 1, \ldots, k - 1$. Such steps are also achieved by multiplying on the left by elementary matrices $E_{i,k; \beta_{i,k}}$, except that $i < k$, so that these matrices are not lower-triangular matrices. Nevertheless, at the end of the process, we find that $A_n = MA$, is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is more expensive than Gaussian elimination, this method is not used much in practice. However, Gauss-Jordan factorization can be used to compute the inverse of a matrix A. Indeed, we find the jth column of A^{-1} by solving the system $Ax^{(j)} = e_j$ (where e_j is the jth canonical basis vector of \mathbb{R}^n). By applying Gauss-Jordan, we are led to a system of the form $D_jx^{(j)} = M_je_j$, where D_j is a diagonal matrix, and we can immediately compute $x^{(j)}$.

It remains to discuss the choice of the pivot, and also conditions that guarantee that no permutations are needed during the Gaussian elimination process. We begin by stating a necessary and sufficient condition for an invertible matrix to have an LU-factorization (i.e., Gaussian elimination does not require pivoting).

6.4 LU-Factorization

We say that an invertible matrix A has an LU-factorization if it can be written as $A = LU$, where U is upper-triangular invertible and L is lower-triangular, with $L_{ii} = 1$ for $i = 1, \ldots, n$.
A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular matrix. Given an \(n \times n \) matrix \(A = (a_{ij}) \), for any \(k \) with \(1 \leq k \leq n \), let \(A[1..k, 1..k] \) denote the submatrix of \(A \) whose entries are \(a_{ij} \), where \(1 \leq i, j \leq k \).

Proposition 6.2. Let \(A \) be an invertible \(n \times n \)-matrix. Then, \(A \) has an \(LU \)-factorization \(A = LU \) iff every matrix \(A[1..k, 1..k] \) is invertible for \(k = 1, \ldots, n \). Furthermore, when \(A \) has an \(LU \)-factorization, we have

\[
\det(A[1..k, 1..k]) = \pi_1 \pi_2 \cdots \pi_k, \quad k = 1, \ldots, n,
\]

where \(\pi_k \) is the pivot obtained after \(k - 1 \) elimination steps. Therefore, the \(k \)th pivot is given by

\[
\pi_k = \begin{cases}
 a_{11} = \det(A[1..1, 1..1]) & \text{if } k = 1 \\
 \frac{\det(A[1..k, 1..k])}{\det(A[1..k-1, 1..k-1])} & \text{if } k = 2, \ldots, n.
\end{cases}
\]

Proof. First, assume that \(A = LU \) is an \(LU \)-factorization of \(A \). We can write

\[
A = \begin{pmatrix} A[1..k, 1..k] & A_2 \\ A_3 & A_4 \end{pmatrix} = \begin{pmatrix} L_1 & 0 \\ L_3 & L_4 \end{pmatrix} \begin{pmatrix} U_1 & U_2 \\ 0 & U_4 \end{pmatrix} = \begin{pmatrix} L_1 U_1 & L_1 U_2 \\ L_3 U_1 & L_3 U_2 + L_4 U_4 \end{pmatrix},
\]

where \(L_1, L_4 \) are unit lower-triangular and \(U_1, U_4 \) are upper-triangular. Thus,

\[
A[1..k, 1..k] = L_1 U_1,
\]

and since \(U \) is invertible, \(U_1 \) is also invertible (the determinant of \(U \) is the product of the diagonal entries in \(U \), which is the product of the diagonal entries in \(U_1 \) and \(U_4 \)). As \(L_1 \) is invertible (since its diagonal entries are equal to 1), we see that \(A[1..k, 1..k] \) is invertible for \(k = 1, \ldots, n \).

Conversely, assume that \(A[1..k, 1..k] \) is invertible for \(k = 1, \ldots, n \). We just need to show that Gaussian elimination does not need pivoting. We prove by induction on \(k \) that the \(k \)th step does not need pivoting.

This holds for \(k = 1 \), since \(A[1..1, 1..1] = (a_{11}) \), so \(a_{11} \neq 0 \). Assume that no pivoting was necessary for the first \(k - 1 \) steps \((2 \leq k \leq n - 1) \). In this case, we have

\[
E_{k-1} \cdots E_2 E_1 A = A_k,
\]

where \(L = E_{k-1} \cdots E_2 E_1 \) is a unit lower-triangular matrix and \(A_k[1..k, 1..k] \) is upper-triangular, so that \(LA = A_k \) can be written as

\[
\begin{pmatrix} L_1 & 0 \\ L_3 & L_4 \end{pmatrix} \begin{pmatrix} A[1..k, 1..k] & A_2 \\ A_3 & A_4 \end{pmatrix} = \begin{pmatrix} U_1 & B_2 \\ 0 & B_4 \end{pmatrix},
\]

where \(L_1 \) is unit lower-triangular and \(U_1 \) is upper-triangular. But then,

\[
L_1 A[1..k, 1..k]) = U_1,
\]
where \(L_1\) is invertible (in fact, \(\det(L_1) = 1\)), and since by hypothesis \(A[1..k, 1..k]\) is invertible, \(U_1\) is also invertible, which implies that \((U_1)_{kk} \neq 0\), since \(U_1\) is upper-triangular. Therefore, no pivoting is needed in step \(k\), establishing the induction step. Since \(\det(L_1) = 1\), we also have
\[
\det(U_1) = \det(L_1 A[1..k, 1..k]) = \det(L_1) \det(A[1..k, 1..k]) = \det(A[1..k, 1..k]),
\]
and since \(U_1\) is upper-triangular and has the pivots \(\pi_1, \ldots, \pi_k\) on its diagonal, we get
\[
\det(A[1..k, 1..k]) = \pi_1 \pi_2 \cdots \pi_k, \quad k = 1, \ldots, n,
\]
as claimed.

\[\square\]

Remark: The use of determinants in the first part of the proof of Proposition 6.2 can be avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are nonzero.

Corollary 6.3. (LU-Factorization) Let \(A\) be an invertible \(n \times n\)-matrix. If every matrix \(A[1..k, 1..k]\) is invertible for \(k = 1, \ldots, n\), then Gaussian elimination requires no pivoting and yields an \(LU\)-factorization \(A = LU\).

Proof. We proved in Proposition 6.2 that in this case Gaussian elimination requires no pivoting. Then, since every elementary matrix \(E_{i,k;\beta}\) is lower-triangular (since we always arrange that the pivot \(\pi_k\) occurs above the rows that it operates on), since \(E_{i,k;\beta}^{-1} = E_{i,k;\beta}^{-1}\) and the \(E_k\)'s are products of \(E_{i,k;\beta}\)'s, from
\[
E_{n-1} \cdots E_2 E_1 A = U,
\]
where \(U\) is an upper-triangular matrix, we get
\[
A = LU,
\]
where \(L = E_1^{-1} E_2^{-1} \cdots E_{n-1}^{-1}\) is a lower-triangular matrix. Furthermore, as the diagonal entries of each \(E_{i,k;\beta}\) are 1, the diagonal entries of each \(E_k\) are also 1. \[\square\]

The reader should verify that the example below is indeed an \(LU\)-factorization.
\[
\begin{pmatrix}
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
8 & 7 & 9 & 5 \\
6 & 7 & 9 & 8
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
4 & 3 & 1 & 0 \\
3 & 4 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 2
\end{pmatrix}.
\]

One of the main reasons why the existence of an \(LU\)-factorization for a matrix \(A\) is interesting is that if we need to solve several linear systems \(Ax = b\) corresponding to the same matrix \(A\), we can do this cheaply by solving the two triangular systems
\[
Lw = b, \quad \text{and} \quad Ux = w.
\]
There is a certain asymmetry in the LU-decomposition $A = LU$ of an invertible matrix A. Indeed, the diagonal entries of L are all 1, but this is generally false for U. This asymmetry can be eliminated as follows: if

$$D = \text{diag}(u_{11}, u_{22}, \ldots, u_{nn})$$

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then we if let $U' = D^{-1}U$, we can write

$$A = LDL'',$

where L is lower-triangular, U' is upper-triangular, all diagonal entries of both L and U' are 1, and D is a diagonal matrix of pivots. Such a decomposition is called an LDU-factorization.

We will see shortly that if A is symmetric, then $U' = L^\top$.

As we will see a bit later, symmetric positive definite matrices satisfy the condition of Proposition 6.2. Therefore, linear systems involving symmetric positive definite matrices can be solved by Gaussian elimination without pivoting. Actually, it is possible to do better: This is the Cholesky factorization.

If a square invertible matrix A has an LU-factorization, then it is possible to find L and U while performing Gaussian elimination. Recall that at step k, we pick a pivot $\pi_k = a_{ik}(k) \neq 0$ in the portion consisting of the entries of index $j \geq k$ of the k-th column of the matrix A_k obtained so far, we swap rows i and k if necessary (the pivoting step), and then we zero the entries of index $j = k+1, \ldots, n$ in column k. Schematically, we have the following steps:

$$(\begin{array}{cccc} \times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & a_{ik}^{(k)} & \times & \times \\
0 & \times & \times & \times \end{array}) \xrightarrow{\text{pivot}} (\begin{array}{cccc} \times & \times & \times & \times \\
0 & a_{ik}^{(k)} & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \end{array}) \xrightarrow{\text{elim}} (\begin{array}{cccc} \times & \times & \times & \times \\
0 & 0 & \times & \times \end{array}).$$

More precisely, after permuting row k and row i (the pivoting step), if the entries in column k below row k are $\alpha_{k+1k}, \ldots, \alpha_{nk}$, then we add $-\alpha_{jk}/\pi_k$ times row k to row j; this process is illustrated below:

$$(\begin{array}{cccc} a_{kk}^{(k)} \\
a_{k+1k}^{(k)} \\
\vdots \\
a_{ik}^{(k)} \\
a_{nk}^{(k)} \end{array}) \xrightarrow{\text{pivot}} (\begin{array}{cccc} a_{ik}^{(k)} \\
a_{k+1k}^{(k)} \\
\vdots \\
a_{ik}^{(k)} \\
a_{nk}^{(k)} \end{array}) = \begin{pmatrix} \pi_k \\ \alpha_{k+1k} \\ \vdots \\ \alpha_{ik} \\ \alpha_{nk} \end{pmatrix} \xrightarrow{\text{elim}} \begin{pmatrix} \pi_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
Then, if we write \(\ell_{jk} = \alpha_{jk}/\pi_k \) for \(j = k + 1, \ldots, n \), the \(k \)th column of \(L \) is

\[
\begin{pmatrix}
0 \\
\vdots \\
0 \\
\ell_{k+1k} \\
\vdots \\
\ell_{nk}
\end{pmatrix}.
\]

Observe that the signs of the multipliers \(-\alpha_{jk}/\pi_k\) have been flipped. Thus, we obtain the unit lower triangular matrix

\[
L = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1
\end{pmatrix}
\]

It is easy to see (and this is proved in Theorem 6.5) that the inverse of \(L \) is obtained from \(L \) by flipping the signs of the \(\ell_{ij} \):

\[
L^{-1} = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
-\ell_{21} & 1 & 0 & \cdots & 0 \\
-\ell_{31} & -\ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\ell_{n1} & -\ell_{n2} & -\ell_{n3} & \cdots & 1
\end{pmatrix}
\]

Furthermore, if the result of Gaussian elimination (without pivoting) is \(U = E_{n-1} \cdots E_1A \), then

\[
E_k = \begin{pmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -\ell_{k+1k} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & -\ell_{nk} & 0 & \cdots & 1
\end{pmatrix}
\]

and

\[
E_k^{-1} = \begin{pmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \ell_{k+1k} & 1 & \cdots & 0 \\
0 & \cdots & \ell_{nk} & 0 & \cdots & 1
\end{pmatrix}
\]

so the \(k \)th column of \(E_k \) is the \(k \)th column of \(L^{-1} \).

Here is an example illustrating the method. Given

\[
A = A_1 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & -1
\end{pmatrix},
\]
we have the following sequence of steps: The first pivot is \(\pi_1 = 1 \) in row 1, and we substract row 1 from rows 2, 3, and 4. We get

\[
A_2 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & -2 & -1 & -1 \\
\end{pmatrix}, \quad L_1 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\end{pmatrix}.
\]

The next pivot is \(\pi_2 = -2 \) in row 2, and we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We get

\[
A_3 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2 \\
\end{pmatrix}, \quad L_2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{pmatrix}.
\]

The next pivot is \(\pi_3 = -2 \) in row 3, and since the fourth entry in column 3 is already a zero, we add 0 times row 3 to row 4. We get

\[
A_4 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2 \\
\end{pmatrix}, \quad L_3 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{pmatrix}.
\]

The procedure is finished, and we have

\[
L = L_3 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{pmatrix}, \quad U = A_4 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2 \\
\end{pmatrix}.
\]

It is easy to check that indeed

\[
LU = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{pmatrix} \begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2 \\
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & -1 \\
\end{pmatrix} = A.
\]

We now show how to extend the above method to deal with pivoting efficiently. This is the \(PA = LU \) factorization.

6.5 \(PA = LU \) Factorization

The following easy proposition shows that, in principle, \(A \) can be premultiplied by some permutation matrix \(P \), so that \(PA \) can be converted to upper-triangular form without using
any pivoting. Permutations are discussed in some detail in Section 5.1, but for now we just need their definition. A permutation matrix is a square matrix that has a single 1 in every row and every column and zeros everywhere else. It is shown in Section 5.1 that every permutation matrix is a product of transposition matrices (the $P(i, k)$s), and that P is invertible with inverse P^\top.

Proposition 6.4. Let A be an invertible $n \times n$-matrix. Then, there is some permutation matrix P so that $(PA)[1..k, 1..k]$ is invertible for $k = 1, \ldots, n$.

Proof. The case $n = 1$ is trivial, and so is the case $n = 2$ (we swap the rows if necessary). If $n \geq 3$, we proceed by induction. Since A is invertible, its columns are linearly independent; in particular, its first $n - 1$ columns are also linearly independent. Delete the last column of A. Since the remaining $n - 1$ columns are linearly independent, there are also $n - 1$ linearly independent rows in the corresponding $n \times (n - 1)$ matrix. Thus, there is a permutation of these n rows so that the $(n - 1) \times (n - 1)$ matrix consisting of the first $n - 1$ rows is invertible. But, then, there is a corresponding permutation matrix P_1, so that the first $n - 1$ rows and columns of P_1A form an invertible matrix A'. Applying the induction hypothesis to the $(n - 1) \times (n - 1)$ matrix A', we see that there some permutation matrix P_2 (leaving the nth row fixed), so that $P_2P_1A[1..k, 1..k]$ is invertible, for $k = 1, \ldots, n - 1$. Since A is invertible in the first place and P_1 and P_2 are invertible, P_1P_2A is also invertible, and we are done. \qed

Remark: One can also prove Proposition 6.4 using a clever reordering of the Gaussian elimination steps suggested by Trefethen and Bau [54] (Lecture 21). Indeed, we know that if A is invertible, then there are permutation matrices P_i and products of elementary matrices E_i, so that

$$A_n = E_{n-1}P_{n-1} \cdots E_2P_2E_1P_1A,$$

where $U = A_n$ is upper-triangular. For example, when $n = 4$, we have $E_3P_3E_2P_2E_1P_1A = U$.

We can define new matrices E'_1, E'_2, E'_3 which are still products of elementary matrices so that we have

$$E'_3E'_2E'_1P_3P_2P_1A = U.$$

Indeed, if we let $E'_3 = E_3$, $E'_2 = P_3E_2P_3^{-1}$, and $E'_1 = P_3P_2E_1P_2^{-1}P_3^{-1}$, we easily verify that each E'_k is a product of elementary matrices and that

$$E'_3E'_2E'_1P_3P_2P_1 = E_3(P_3E_2P_3^{-1})(P_3P_2E_1P_2^{-1}P_3^{-1})P_3P_2P_1 = E_3P_3E_2P_2E_1P_1.$$

It can also be proved that E'_1, E'_2, E'_3 are lower triangular (see Theorem 6.5).

In general, we let

$$E'_k = P_{n-1} \cdots P_{k+1}E_kP_{k+1}^{-1} \cdots P_{n-1}^{-1},$$

and we have

$$E'_{n-1} \cdots E'_1P_{n-1} \cdots P_1A = U,$$
where each E'_j is a lower triangular matrix (see Theorem 6.5).

It is remarkable that if pivoting steps are necessary during Gaussian elimination, a very simple modification of the algorithm for finding an LU-factorization yields the matrices L, U, and P, such that $PA = LU$. To describe this new method, since the diagonal entries of L are 1s, it is convenient to write

$$L = I + \Lambda.$$

Then, in assembling the matrix Λ while performing Gaussian elimination with pivoting, we make the same transposition on the rows of Λ (really Λ_{k-1}) that we make on the rows of A (really A_k) during a pivoting step involving row k and row i. We also assemble P by starting with the identity matrix and applying to P the same row transpositions that we apply to A and Λ. Here is an example illustrating this method. Given

$$A = A_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix},$$

we have the following sequence of steps: We initialize $\Lambda_0 = 0$ and $P_0 = I_4$. The first pivot is $\pi_1 = 1$ in row 1, and we substract row 1 from rows 2, 3, and 4. We get

$$A_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & -2 & -1 & -1 \end{pmatrix}, \quad \Lambda_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The next pivot is $\pi_2 = -2$ in row 3, so we permute row 2 and 3; we also apply this permutation to Λ and P:

$$A_3 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & -1 & -1 \end{pmatrix}, \quad \Lambda'_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Next, we substract row 2 from row 4 (and add 0 times row 2 to row 3). We get

$$A_4 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The next pivot is $\pi_3 = -2$ in row 3, and since the fourth entry in column 3 is already a zero, we add 0 times row 3 to row 4. We get

$$A_5 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}, \quad \Lambda_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \quad P_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
The procedure is finished, and we have

\[L = A_3 + I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \quad U = A_4 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \quad P = P_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

It is easy to check that indeed

\[LU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{pmatrix} \]

and

\[PA = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & -1 \end{pmatrix}. \]

Using the idea in the remark before the above example, we can prove the theorem below which shows the correctness of the algorithm for computing \(P, L \) and \(U \) using a simple adaptation of Gaussian elimination.

We are not aware of a detailed proof of Theorem 6.5 in the standard texts. Although Golub and Van Loan [24] state a version of this theorem as their Theorem 3.1.4, they say that “The proof is a messy subscripting argument.” Meyer [39] also provides a sketch of proof (see the end of Section 3.10). In view of this situation, we offer a complete proof. It does involve a lot of subscripts and superscripts, but in our opinion, it contains some interesting techniques that go far beyond symbol manipulation.

Theorem 6.5. For every invertible \(n \times n \)-matrix \(A \), the following hold:

1. There is some permutation matrix \(P \), some upper-triangular matrix \(U \), and some unit lower-triangular matrix \(L \), so that \(PA = LU \) (recall, \(L_{ii} = 1 \) for \(i = 1, \ldots, n \)). Furthermore, if \(P = I \), then \(L \) and \(U \) are unique and they are produced as a result of Gaussian elimination without pivoting.

2. If \(E_{n-1} \ldots E_1 A = U \) is the result of Gaussian elimination without pivoting, write as usual \(A_k = E_{k-1} \ldots E_1 A \) (with \(A_k = (a_{ij}^{(k)}) \)), and let \(\ell_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)} \), with \(1 \leq k \leq n - 1 \) and \(k + 1 \leq i \leq n \). Then

\[
L = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
\ell_{n1} & \ell_{n2} & \ell_{n3} & \cdots & 1
\end{pmatrix},
\]
where the kth column of L is the kth column of E_k^{-1}, for $k = 1, \ldots, n - 1$.

(3) If $E_{n-1}P_{n-1} \cdots E_1P_1A = U$ is the result of Gaussian elimination with some pivoting, write $A_k = E_{k-1}P_{k-1} \cdots E_1P_1A$, and define E^k_j, with $1 \leq j \leq n - 1$ and $j \leq k \leq n - 1$, such that, for $j = 1, \ldots, n - 2$,

\[
E^k_j = P_k E^k_{j+1} P_k, \quad \text{for } k = j + 1, \ldots, n - 1,
\]

and

\[
E^{n-1}_{n-1} = E_{n-1}.
\]

Then,

\[
E^k_j = P_k P_{k-1} \cdots P_{j+1} E^k_{j+1} P_{j+1} \cdots P_{k-1} P_k
\]

and if we set

\[
P = P_{n-1} \cdots P_1
\]

\[
L = (E_{n-1}^{-1})^{-1} \cdots (E_{1}^{-1})^{-1},
\]

then

\[
PA = LU.
\]

Furthermore,

\[
(E^k_j)^{-1} = I + \mathcal{E}^k_j, \quad 1 \leq j \leq n - 1, \quad j \leq k \leq n - 1,
\]

where \mathcal{E}^k_j is a lower triangular matrix of the form

\[
\mathcal{E}^k_j = \begin{pmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & \ell^{(k)}_{j+1j} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \ell^{(k)}_{nj} & 0 & \cdots & 0
\end{pmatrix},
\]

we have

\[
E^k_j = I - \mathcal{E}^k_j,
\]

and

\[
\mathcal{E}^k_j = P_k \mathcal{E}^{k-1}_j, \quad 1 \leq j \leq n - 2, \quad j + 1 \leq k \leq n - 1,
\]

where $P_k = I$ or else $P_k = P(k,i)$ for some i such that $k + 1 \leq i \leq n$; if $P_k \neq I$, this means that $(E^k_j)^{-1}$ is obtained from $(E^{k-1}_j)^{-1}$ by permuting the entries on row i and
In order to find L, define lower triangular matrices Λ_k of the form

$$
\Lambda_k = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\lambda_{k+1}^{(k)} & 0 & 0 & 0 & 0 & \vdots & \vdots \\
\lambda_{k+2}^{(k)} & \lambda_{k+2}^{(k)} & \cdots & \lambda_{k+2}^{(k)} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
\lambda_{k+n-1}^{(k)} & \lambda_{n-1}^{(k)} & \cdots & \lambda_{n-1}^{(k)} & 0 & \cdots & 0 \\
\lambda_{n}^{(k)} & \lambda_{n}^{(k)} & \cdots & \lambda_{n}^{(k)} & 0 & \cdots & 0
\end{pmatrix}
$$

to assemble the columns of L iteratively as follows: let

$$
(-\ell_{k+1}^{(k)}, \ldots, -\ell_{nk}^{(k)})
$$

be the last $n-k$ elements of the kth column of E_k, and define Λ_k inductively by setting

$$
\Lambda_1 = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
\ell_{21}^{(1)} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n1}^{(1)} & 0 & \cdots & 0
\end{pmatrix},
$$

then for $k = 2, \ldots, n-1$, define

$$
\Lambda'_k = P_k \Lambda_{k-1},
$$

and

$$
\Lambda_k = (I + \Lambda'_k)E^{-1}_k - I = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \vdots & \vdots \\
\ell_{k+1}^{(k)} & \lambda_{k+1}^{(k)} & \cdots & \lambda_{k+1}^{(k)} & 0 & \cdots & 0 \\
\lambda_{n1}^{(k)} & \lambda_{n2}^{(k)} & \cdots & \lambda_{nk}^{(k)} & 0 & \cdots & 0
\end{pmatrix},
$$
with $P_k = I$ or $P_k = P(k,i)$ for some $i > k$. This means that in assembling L, row k and row i of A_{k-1} need to be permuted when a pivoting step permuting row k and row i of A_k is required. Then

$$I + \Lambda_k = (E_1^k)^{-1} \cdots (E_n^k)^{-1}$$

$$\Lambda_k = \mathcal{E}_1^k \cdots \mathcal{E}_n^k,$$

for $k = 1, \ldots, n-1$, and therefore

$$L = I + \Lambda_{n-1}.$$

Proof. (1) The only part that has not been proved is the uniqueness part (when $P = I$). Assume that A is invertible and that $A = L_1 U_1 = L_2 U_2$, with L_1, L_2 unit lower-triangular and U_1, U_2 upper-triangular. Then, we have

$$L_2^{-1} L_1 = U_2 U_1^{-1}.$$

However, it is obvious that L_2^{-1} is lower-triangular and that U_1^{-1} is upper-triangular, and so $L_2^{-1} L_1$ is lower-triangular and $U_2 U_1^{-1}$ is upper-triangular. Since the diagonal entries of L_1 and L_2 are 1, the above equality is only possible if $U_2 U_1^{-1} = I$, that is, $U_1 = U_2$, and so $L_1 = L_2$.

(2) When $P = I$, we have $L = E_1^{-1} E_2^{-1} \cdots E_{n-1}^{-1}$, where E_k is the product of $n-k$ elementary matrices of the form $E_{i,k,-\ell_i}$, where $E_{i,k,-\ell_i}$ subtracts ℓ_i times row k from row i, with $\ell_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$, $1 \leq k \leq n-1$, and $k+1 \leq i \leq n$. Then, it is immediately verified that

$$E_k = \begin{pmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -\ell_{k+1k} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & -\ell_{nk} & 0 & \cdots & 1
\end{pmatrix},$$

and that

$$E_k^{-1} = \begin{pmatrix}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & \ell_{k+1k} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \ell_{nk} & 0 & \cdots & 1
\end{pmatrix}. $$
If we define L_k by

$$L_k = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & 0 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & \ddots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & 1 & 0 & \cdots & 0 \\
\ell_{k+11} & \ell_{k+12} & \cdots & \ell_{k+1k} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & 0 \\
\ell_{n1} & \ell_{n2} & \cdots & \ell_{nk} & 0 & \cdots & 1
\end{pmatrix}$$

for $k = 1, \ldots, n - 1$, we easily check that $L_1 = E_1^{-1}$, and that

$$L_k = L_{k-1}E_k^{-1}, \quad 2 \leq k \leq n - 1,$$

because multiplication on the right by E_k^{-1} adds ℓ_i times column i to column k (of the matrix L_{k-1}) with $i > k$, and column i of L_{k-1} has only the nonzero entry 1 as its ith element. Since

$$L_k = E_1^{-1} \cdots E_k^{-1}, \quad 1 \leq k \leq n - 1,$$

we conclude that $L = L_{n-1}$, proving our claim about the shape of L.

(3) First, we prove by induction on k that

$$A_{k+1} = E_k^k \cdots E_1^k P_k \cdots P_1 A, \quad k = 1, \ldots, n - 2.$$

For $k = 1$, we have $A_2 = E_1 P_1 A = E_1^1 P_1 A$, since $E_1^1 = E_1$, so our assertion holds trivially. Now, if $k \geq 2$, $A_{k+1} = E_k P_k A_k$, and by the induction hypothesis,

$$A_k = E_{k-1}^{k-1} \cdots E_1^{k-1} E_1^{k-1} P_{k-1} \cdots P_1 A.$$

Because P_k is either the identity or a transposition, $P_k^2 = I$, so by inserting occurrences of $P_k P_k$ as indicated below we can write

$$A_{k+1} = E_k P_k A_k
= E_k P_k E_{k-1}^{k-1} \cdots E_2^{k-1} E_1^{k-1} P_{k-1} \cdots P_1 A
= E_k P_k E_{k-1}^{k-1} (P_k P_k) \cdots (P_k P_k) E_1^{k-1} (P_k P_k) P_{k-1} \cdots P_1 A
= E_k (P_k E_{k-1}^{k-1} P_k) \cdots (P_k E_2^{k-1} P_k) (P_k E_1^{k-1} P_k) P_{k-1} \cdots P_1 A.$$

Observe that P_k has been “moved” to the right of the elimination steps. However, by definition,

$$E_j^k = P_k E_j^{k-1} P_k, \quad j = 1, \ldots, k - 1
E_k^k = E_k,$$
so we get
\[A_{k+1} = E_k^k E_{k-1}^k \cdots E_2^k E_1^k P_k \cdots P_1 A, \]
establishing the induction hypothesis. For \(k = n - 2 \), we get
\[U = A_{n-1} = E_{n-1}^{n-1} \cdots E_1^{n-1} P_{n-1} \cdots P_1 A, \]
as claimed, and the factorization \(PA = LU \) with
\[
\begin{align*}
P & = P_{n-1} \cdots P_1 \\
L & = (E_1^{n-1})^{-1} \cdots (E_{n-1}^{n-1})^{-1}
\end{align*}
\]
is clear,

Since for \(j = 1, \ldots, n - 2 \), we have \(E_j^j = E_j \),
\[E_j^k = P_k E_j^{j-1} P_k, \quad k = j + 1, \ldots, n - 1, \]
since \(E_{n-1}^{n-1} = E_{n-1} \) and \(P_{k-1} = P_k \), we get \((E_j^j)^{-1} = E_j^{-1} \) for \(j = 1, \ldots, n - 1 \), and for \(j = 1, \ldots, n - 2 \), we have
\[(E_j^k)^{-1} = P_k (E_j^{j-1})^{-1} P_k, \quad k = j + 1, \ldots, n - 1. \]

Since
\[(E_j^{j-1})^{-1} = I + \mathcal{E}_j^{k-1} \]
and \(P_k = P(k, i) \) is a transposition, \(P_k^2 = I \), so we get
\[(E_j^k)^{-1} = P_k (E_j^{j-1})^{-1} P_k = P_k (I + \mathcal{E}_j^{k-1}) P_k = P_k^2 + P_k \mathcal{E}_j^{k-1} P_k = I + P_k \mathcal{E}_j^{k-1} P_k. \]

Therefore, we have
\[(E_j^k)^{-1} = I + P_k \mathcal{E}_j^{k-1} P_k, \quad 1 \leq j \leq n - 2, \quad j + 1 \leq k \leq n - 1. \]

We prove for \(j = 1, \ldots, n - 1 \), that for \(k = j, \ldots, n - 1 \), each \(\mathcal{E}_j^k \) is a lower triangular matrix of the form
\[
\mathcal{E}_j^k = \begin{pmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & \ell_{j+1}^{(k)} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \ell_{n}^{(k)} & 0 & \cdots & 0
\end{pmatrix},
\]
and that
\[\mathcal{E}_j^k = P_k \mathcal{E}_j^{k-1}, \quad 1 \leq j \leq n - 2, \quad j + 1 \leq k \leq n - 1, \]
with \(P_k = I \) or \(P_k = P(k, i) \) for some \(i \) such that \(k + 1 \leq i \leq n \).
For each j ($1 \leq j \leq n - 1$) we proceed by induction on $k = j, \ldots, n - 1$. Since $(E_j^j)^{-1} = E_j^{-1}$ and since E_j^{-1} is of the above form, the base case holds.

For the induction step, we only need to consider the case where $P_k = P(k, i)$ is a transposition, since the case where $P_k = I$ is trivial. We have to figure out what $P_k \mathcal{E}_j^{k-1} P_k = P(k, i) \mathcal{E}_j^{k-1} P(k, i)$ is. However, since

$$\mathcal{E}_j^{k-1} = \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \ell_{j+1j}^{(k-1)} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \ell_{nj}^{(k-1)} & \cdots & 0 & 0 \end{pmatrix},$$

and because $k + 1 \leq i \leq n$ and $j \leq k - 1$, multiplying \mathcal{E}_j^{k-1} on the right by $P(k, i)$ will permute columns i and k, which are columns of zeros, so

$$P(k, i) \mathcal{E}_j^{k-1} P(k, i) = P(k, i) \mathcal{E}_j^{k-1},$$

and thus,

$$(E_j^j)^{-1} = I + P(k, i) \mathcal{E}_j^{k-1},$$

which shows that

$$\mathcal{E}_j^k = P(k, i) \mathcal{E}_j^{k-1}.$$

We also know that multiplying $(\mathcal{E}_j^{k-1})^{-1}$ on the left by $P(k, i)$ will permute rows i and k, which shows that \mathcal{E}_j^k has the desired form, as claimed. Since all \mathcal{E}_j^k are strictly lower triangular, all $(E_j^k)^{-1} = I + \mathcal{E}_j^k$ are lower triangular, so the product

$$L = (E_1^{n-1})^{-1} \cdots (E_{n-1}^{n-1})^{-1}$$

is also lower triangular.

From the beginning of part (3), we know that

$$L = (E_1^{n-1})^{-1} \cdots (E_{n-1}^{n-1})^{-1}.$$

We prove by induction on k that

$$I + \Lambda_k = (E_k^k)^{-1} \cdots (E_k^k)^{-1}$$

$$\Lambda_k = \mathcal{E}_1^k \cdots \mathcal{E}_k^k,$$

for $k = 1, \ldots, n - 1$.
If \(k = 1 \), we have \(E_1^1 = E_1 \) and
\[
E_1 = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
-\ell^{(1)}_{21} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\ell^{(1)}_{n1} & 0 & \cdots & 1
\end{pmatrix}.
\]
We get
\[
(E_1^{-1})^{-1} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
\ell^{(1)}_{21} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell^{(1)}_{n1} & 0 & \cdots & 1
\end{pmatrix} = I + \Lambda_1,
\]
Since \((E_1^{-1})^{-1} = I + \mathcal{E}_1^1 \), we also get \(\Lambda_1 = \mathcal{E}_1^1 \), and the base step holds.

Since \((E_k^j)^{-1} = I + \mathcal{E}_k^j \) with
\[
\mathcal{E}_k^j = \begin{pmatrix}
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & \ell^{(k)}_{j+1j} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & \ell^{(k)}_{nj} & 0 & \cdots & 0
\end{pmatrix},
\]
as in part (2) for the computation involving the products of \(L_k \)'s, we get
\[
(E_1^{-1})^{-1} \cdots (E_{k-1}^{-1})^{-1} = I + \mathcal{E}_1^{k-1} \cdots \mathcal{E}_{k-1}^{k-1}, \quad 2 \leq k \leq n. \quad (\ast)
\]
Similarly, from the fact that \(\mathcal{E}_j^{k-1} P(k, i) = \mathcal{E}_j^{k-1} \) if \(i \geq k + 1 \) and \(j \leq k - 1 \) and since
\[
(E_j^k)^{-1} = I + P_k \mathcal{E}_j^{k-1}, \quad 1 \leq j \leq n - 2, \quad j + 1 \leq k \leq n - 1,
\]
we get
\[
(E_1^{-1})^{-1} \cdots (E_{k-1}^{-1})^{-1} = I + P_k \mathcal{E}_1^{k-1} \cdots \mathcal{E}_{k-1}^{k-1}, \quad 2 \leq k \leq n - 1. \quad (\ast\ast)
\]
By the induction hypothesis,
\[
I + \Lambda_{k-1} = (E_1^{k-1})^{-1} \cdots (E_{k-1}^{k-1})^{-1},
\]
and from \((\ast)\), we get
\[
\Lambda_{k-1} = \mathcal{E}_1^{k-1} \cdots \mathcal{E}_{k-1}^{k-1}.
\]
Using \((\ast\ast)\), we deduce that
\[
(E_1^k)^{-1} \cdots (E_{k-1}^k)^{-1} = I + P_k \Lambda_{k-1}.
\]
Since $E_k^k = E_k$, we obtain

$$(E_1^k)^{-1} \cdots (E_{k-1}^k)^{-1} (E_k^k)^{-1} = (I + P_k \Lambda_{k-1}) E_k^{-1}.$$

However, by definition

$$I + \Lambda_k = (I + P_k \Lambda_{k-1}) E_k^{-1},$$

which proves that

$$I + \Lambda_k = (E_1^k)^{-1} \cdots (E_{k-1}^k)^{-1} (E_k^k)^{-1},$$

and finishes the induction step for the proof of this formula.

If we apply equation (1) again with $k + 1$ in place of k, we have

$$(E_1^k)^{-1} \cdots (E_{k-1}^k)^{-1} = I + \mathcal{E}_1^k \cdots \mathcal{E}_k^k,$$

and together with (1), we obtain,

$$\Lambda_k = \mathcal{E}_1^k \cdots \mathcal{E}_k^k,$$

also finishing the induction step for the proof of this formula. For $k = n - 1$ in (1), we obtain the desired equation: $L = I + \Lambda_{n-1}$.

We emphasize again that part (3) of Theorem 6.5 shows the remarkable fact that in assembling the matrix L while performing Gaussian elimination with pivoting, the only change to the algorithm is to make the same transposition on the rows of Λ_{k-1} that we make on the rows of A (really A_k) during a pivoting step involving row k and row i. We can also assemble P by starting with the identity matrix and applying to P the same row transpositions that we apply to A and Λ. Here is an example illustrating this method.

Consider the matrix

$$A = \begin{pmatrix}
1 & 2 & -3 & 4 \\
4 & 8 & 12 & -8 \\
2 & 3 & 2 & 1 \\
-3 & -1 & 1 & -4
\end{pmatrix}.$$

We set $P_0 = I_4$, and we can also set $\Lambda_0 = 0$. The first step is to permute row 1 and row 2, using the pivot 4. We also apply this permutation to P_0:

$$A'_1 = \begin{pmatrix}
4 & 8 & 12 & -8 \\
1 & 2 & -3 & 4 \\
2 & 3 & 2 & 1 \\
-3 & -1 & 1 & -4
\end{pmatrix} \quad P_1 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

Next, we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4 times row 1 to row 4, and start assembling Λ:

$$A_2 = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 0 & -6 & 6 \\
0 & -1 & -4 & 5 \\
0 & 5 & 10 & -10
\end{pmatrix} \quad \Lambda_1 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 \\
1/2 & 0 & 0 & 0 \\
-3/4 & 0 & 0 & 0
\end{pmatrix} \quad P_1 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$
Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to \(\Lambda \) and \(P \):

\[
A_3' = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & -2 & 3 & 0 \\
0 & 0 & -6 & 6
\end{pmatrix}, \quad \Lambda_2' = \begin{pmatrix}
0 & 0 & 0 & 0 \\
-3/4 & 0 & 0 & 0 \\
1/2 & -1/5 & 0 & 0 \\
1/4 & 0 & 0 & 0
\end{pmatrix}, \quad P_2 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]

Next we add \(1/5 \) times row 2 to row 3, and update \(\Lambda_2' \):

\[
A_3 = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & -2 & 3 & 0 \\
0 & 0 & -6 & 6
\end{pmatrix}, \quad \Lambda_2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
-3/4 & 0 & 0 & 0 \\
1/2 & -1/5 & 0 & 0 \\
1/4 & 0 & 0 & 0
\end{pmatrix}, \quad P_2 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]

Next we permute row 3 and row 4, using the pivot \(-6\). We also apply this permutation to \(\Lambda \) and \(P \):

\[
A_4' = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & 0 & -6 & 6 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad \Lambda_3' = \begin{pmatrix}
0 & 0 & 0 & 0 \\
-3/4 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 \\
1/2 & -1/5 & 0 & 0
\end{pmatrix}, \quad P_3 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

Finally, we subtract \(1/3 \) times row 3 from row 4, and update \(\Lambda_3' \):

\[
A_4 = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & 0 & -6 & 6 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad \Lambda_3 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
-3/4 & 0 & 0 & 0 \\
1/4 & 0 & 0 & 0 \\
1/2 & -1/5 & 0 & 1/3
\end{pmatrix}, \quad P_3 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

Consequently, adding the identity to \(\Lambda_3 \), we obtain

\[
L = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-3/4 & 1 & 0 & 0 \\
1/4 & 0 & 1 & 0 \\
1/2 & -1/5 & 1/3 & 1
\end{pmatrix}, \quad U = \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & 0 & -6 & 6 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad P = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

We check that

\[
PA = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
1 & 2 & -3 & 4 \\
4 & 8 & 12 & -8 \\
2 & 3 & 2 & 1 \\
-3 & -1 & 1 & -4
\end{pmatrix} = \begin{pmatrix}
4 & 8 & 12 & -8 \\
-3 & -1 & 1 & -4 \\
1 & 2 & -3 & 4 \\
2 & 3 & 2 & 1
\end{pmatrix},
\]

and that

\[
LU = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-3/4 & 1 & 0 & 0 \\
1/4 & 0 & 1 & 0 \\
1/2 & -1/5 & 1/3 & 1
\end{pmatrix} \begin{pmatrix}
4 & 8 & 12 & -8 \\
0 & 5 & 10 & -10 \\
0 & 0 & -6 & 6 \\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
4 & 8 & 12 & -8 \\
-3 & -1 & 1 & -4 \\
1 & 2 & -3 & 4 \\
2 & 3 & 2 & 1
\end{pmatrix} = PA.
\]
Note that if one willing to overwrite the lower triangular part of the evolving matrix A, one can store the evolving Λ there, since these entries will eventually be zero anyway! There is also no need to save explicitly the permutation matrix P. One could instead record the permutation steps in an extra column (record the vector $(\pi(1), \ldots, \pi(n))$ corresponding to the permutation π applied to the rows). We let the reader write such a bold and space-efficient version of LU-decomposition!

As a corollary of Theorem 6.5(1), we can show the following result.

Proposition 6.6. If an invertible symmetric matrix A has an LU-decomposition, then A has a factorization of the form

$$A = LDL^\top,$$

where L is a lower-triangular matrix whose diagonal entries are equal to 1, and where D consists of the pivots. Furthermore, such a decomposition is unique.

Proof. If A has an LU-factorization, then it has an LDU factorization

$$A = LDU,$$

where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and U are equal to 1. Since A is symmetric, we have

$$LDU = A = A^\top = U^\top DL^\top,$$

with U^\top lower-triangular and DL^\top upper-triangular. By the uniqueness of LU-factorization (part (1) of Theorem 6.5), we must have $L = U^\top$ (and $DU = DL^\top$), thus $U = L^\top$, as claimed. \hfill \Box

Remark: It can be shown that Gaussian elimination + back-substitution requires $n^3/3 + O(n^2)$ additions, $n^3/3 + O(n^2)$ multiplications and $n^2/2 + O(n)$ divisions.

6.6 Dealing with Roundoff Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot can be chosen, the possibility of roundoff errors implies that it is not a good idea to pick very small pivots. The following example illustrates this point. Consider the linear system

$$
\begin{align*}
10^{-4}x + y &= 1 \\
x + y &= 2.
\end{align*}
$$

Since 10^{-4} is nonzero, it can be taken as pivot, and we get

$$
\begin{align*}
10^{-4}x + y &= 1 \\
(1 - 10^{-4})y &= 2 - 10^{-4}.
\end{align*}
$$
Thus, the exact solution is
\[x = \frac{10^4}{10^4 - 1}, \; y = \frac{10^4 - 2}{10^4 - 1}. \]

However, if roundoff takes place on the fourth digit, then \(10^4 - 1 = 9999 \) and \(10^4 - 2 = 9998 \) will be rounded off both to 9990, and then the solution is \(x = 0 \) and \(y = 1 \), very far from the exact solution where \(x \approx 1 \) and \(y \approx 1 \). The problem is that we picked a very small pivot. If instead we permute the equations, the pivot is 1, and after elimination, we get the system
\[
\begin{align*}
x + y &= 2 \\
(1 - 10^{-4})y &= 1 - 2 \times 10^{-4}.
\end{align*}
\]
This time, \(1 - 10^{-4} = 0.9999 \) and \(1 - 2 \times 10^{-4} = 0.9998 \) are rounded off to 0.999 and the solution is \(x = 1, y = 1 \), much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting. This consists of choosing during step \(k \) (\(1 \leq k \leq n - 1 \)) one of the entries \(a_{ik}^{(k)} \) such that
\[
|a_{ik}^{(k)}| = \max_{k \leq p \leq n} |a_{pk}^{(k)}|.
\]
By maximizing the value of the pivot, we avoid dividing by undesirably small pivots.

Remark: A matrix, \(A \), is called *strictly column diagonally dominant* iff
\[
|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|, \; \text{for} \; j = 1, \ldots, n
\]
(resp. *strictly row diagonally dominant* iff
\[
|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \; \text{for} \; i = 1, \ldots, n.
\]
It has been known for a long time (before 1900, say by Hadamard) that if a matrix \(A \) is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it is invertible. (This is a good exercise, try it!) It can also be shown that if \(A \) is strictly column diagonally dominant, then Gaussian elimination with partial pivoting does not actually require pivoting (See Problem 21.6 in Trefethen and Bau [54], or Question 2.19 in Demmel [15]).

Another strategy, called *complete pivoting*, consists in choosing some entry \(a_{ij}^{(k)} \), where \(k \leq i, j \leq n \), such that
\[
|a_{ij}^{(k)}| = \max_{k \leq p, q \leq n} |a_{pq}^{(k)}|.
\]
However, in this method, if the chosen pivot is not in column \(k \), it is also necessary to permute columns. This is achieved by multiplying on the right by a permutation matrix. However, complete pivoting tends to be too expensive in practice, and partial pivoting is the method of choice.

A special case where the *LU*-factorization is particularly efficient is the case of tridiagonal matrices, which we now consider.
6.7 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

\[
A = \begin{pmatrix}
 b_1 & c_1 & & \\
 a_2 & b_2 & c_2 & \\
 & a_3 & b_3 & c_3 \\
 & & \ddots & \ddots & \ddots \\
 & & & a_{n-2} & b_{n-2} & c_{n-2} \\
 & & & & a_{n-1} & b_{n-1} & c_{n-1} \\
 & & & & & a_n & b_n
\end{pmatrix}.
\]

Define the sequence

\[
\delta_0 = 1, \quad \delta_1 = b_1, \quad \delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}, \quad 2 \leq k \leq n.
\]

Proposition 6.7. If \(A \) is the tridiagonal matrix above, then \(\delta_k = \det(A[1..k, 1..k]) \) for \(k = 1, \ldots, n \).

Proof. By expanding \(\det(A[1..k, 1..k]) \) with respect to its last row, the proposition follows by induction on \(k \).

Theorem 6.8. If \(A \) is the tridiagonal matrix above and \(\delta_k \neq 0 \) for \(k = 1, \ldots, n \), then \(A \) has the following \(LU \)-factorization:

\[
A = \begin{pmatrix}
 1 & \delta_0 & & \\
 a_2 & \delta_1 & 1 & \\
 & a_3 & \delta_2 & 1 \\
 & & \ddots & \ddots & \ddots \\
 & & & a_{n-3} & \delta_{n-2} & 1 \\
 & & & & a_{n-2} & \delta_{n-1} \\
 & & & & & a_n & \delta_n
\end{pmatrix} \begin{pmatrix}
 \delta_0 & c_1 & & \\
 \delta_1 & \delta_2 & c_2 & \\
 \delta_2 & \delta_3 & c_3 & \\
 & \ddots & \ddots & \ddots \\
 & & & \delta_{n-2} & c_{n-1} & \\
 & & & & \delta_{n-1} & c_n
\end{pmatrix}.
\]

Proof. Since \(\delta_k = \det(A[1..k, 1..k]) \neq 0 \) for \(k = 1, \ldots, n \), by Theorem 6.5 (and Proposition 6.2), we know that \(A \) has a unique \(LU \)-factorization. Therefore, it suffices to check that the proposed factorization works. We easily check that

\[
(LU)_{k+1} = c_k, \quad 1 \leq k \leq n - 1
\]

\[
(LU)_{k-1} = a_k, \quad 2 \leq k \leq n
\]

\[
(LU)_{kl} = 0, \quad |k - l| \geq 2
\]

\[
(LU)_{11} = \frac{\delta_1}{\delta_0} = b_1
\]

\[
(LU)_{kk} = \frac{a_k c_{k-1} \delta_{k-2} + \delta_k}{\delta_{k-1}} = b_k, \quad 2 \leq k \leq n,
\]

respectively.
since $\delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}$.

It follows that there is a simple method to solve a linear system $Ax = d$ where A is tridiagonal (and $\delta_k \neq 0$ for $k = 1, \ldots, n$). For this, it is convenient to “squeeze” the diagonal matrix Δ defined such that $\Delta_{kk} = \delta_k / \delta_{k-1}$ into the factorization so that $A = (L\Delta)(\Delta^{-1}U)$, and if we let

$$z_1 = \frac{c_1}{b_1}, \quad z_k = \frac{c_k}{b_k - a_k z_{k-1}}, \quad 2 \leq k \leq n - 1, \quad z_n = \frac{\delta_n}{\delta_{n-1}} = b_n - a_n z_{n-1},$$

$A = (L\Delta)(\Delta^{-1}U)$ is written as

$$A = \begin{pmatrix} c_1 \\ z_1 \\ a_2 \\ \frac{c_2}{z_2} \\ \frac{c_3}{z_3} \\ \vdots \\ a_{n-1} \\ \frac{c_{n-1}}{z_{n-1}} \\ a_n \\ \frac{z_n}{z_{n-1}} \end{pmatrix} \begin{pmatrix} 1 & z_1 \\ 1 & z_2 \\ 1 & z_3 \\ \vdots & \vdots \\ 1 & z_{n-1} \\ 1 & z_n \end{pmatrix}$$

As a consequence, the system $Ax = d$ can be solved by constructing three sequences: First, the sequence

$$z_1 = \frac{c_1}{b_1}, \quad z_k = \frac{c_k}{b_k - a_k z_{k-1}}, \quad 2 \leq k \leq n - 1, \quad z_n = b_n - a_n z_{n-1},$$

corresponding to the recurrence $\delta_k = b_k \delta_{k-1} - a_k c_{k-1} \delta_{k-2}$ and obtained by dividing both sides of this equation by δ_{k-1}, next

$$w_1 = \frac{d_1}{b_1}, \quad w_k = \frac{d_k - a_k w_{k-1}}{b_k - a_k z_{k-1}}, \quad k = 2, \ldots, n,$$

corresponding to solving the system $L\Delta w = d$, and finally

$$x_n = w_n, \quad x_k = w_k - z_k x_{k+1}, \quad k = n - 1, n - 2, \ldots, 1,$$

corresponding to solving the system $\Delta^{-1}U x = w$.

Remark: It can be verified that this requires $3(n - 1)$ additions, $3(n - 1)$ multiplications, and $2n$ divisions, a total of $8n - 6$ operations, which is much less than the $O(2n^3/3)$ required by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices (SPD matrices).
6.8 SPD Matrices and the Cholesky Decomposition

Recall that an $n \times n$ symmetric matrix A is positive definite iff
\[x^\top A x > 0 \quad \text{for all } x \in \mathbb{R}^n \text{ with } x \neq 0. \]

Equivalently, A is symmetric positive definite iff all its eigenvalues are strictly positive. The following facts about a symmetric positive definite matrix A are easily established (some left as an exercise):

1. The matrix A is invertible. (Indeed, if $Ax = 0$, then $x^\top A x = 0$, which implies $x = 0$.)

2. We have $a_{ii} > 0$ for $i = 1, \ldots, n$. (Just observe that for $x = e_i$, the ith canonical basis vector of \mathbb{R}^n, we have $e_i^\top A e_i = a_{ii} > 0$.)

3. For every $n \times n$ invertible matrix Z, the matrix $Z^\top A Z$ is symmetric positive definite iff A is symmetric positive definite.

4. The set of $n \times n$ symmetric positive definite matrices is convex. This means that if A and B are two $n \times n$ symmetric positive definite matrices, then for any λ such that $0 \leq \lambda \leq 1$, the matrix $(1 - \lambda)A + \lambda B$ is also symmetric positive definite. Clearly since A and B are symmetric, $(1 - \lambda)A + \lambda B$ is also symmetric. For any nonzero $x \in \mathbb{R}^n$, we have $x^\top A x > 0$ and $x^\top B x > 0$, so
\[x^\top ((1 - \lambda)A + \lambda B)x = (1 - \lambda)x^\top A x + \lambda x^\top B x > 0, \]

because $0 \leq \lambda \leq 1$, so $1 - \lambda \geq 0$ and $\lambda \geq 0$, and $1 - \lambda$ and λ can’t be zero simultaneously.

5. The set of $n \times n$ symmetric positive definite matrices is a cone. This means that if A is symmetric positive definite and if $\lambda > 0$ is any real, then λA is symmetric positive definite. Clearly λA is symmetric, and for nonzero $x \in \mathbb{R}^n$, we have $x^\top A x > 0$, and since $\lambda > 0$, we have $x^\top \lambda A x = \lambda x^\top A x > 0$.

It is instructive to characterize when a 2×2 symmetric matrix A is positive definite. Write
\[A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}. \]

Then we have
\[(x \ y) \begin{pmatrix} a & c \\ c & b \end{pmatrix} (x \ y) = ax^2 + 2cxy + by^2. \]

If the above expression is strictly positive for all nonzero vectors $(x \ y)$, then for $x = 1, y = 0$ we get $a > 0$ and for $x = 0, y = 1$ we get $b > 0$. Then we can write
\[ax^2 + 2cxy + by^2 = \left(\sqrt{a} x + \frac{c}{\sqrt{a}} y \right)^2 + by^2 - \frac{c^2}{a} y^2 \]
\[= \left(\sqrt{a} x + \frac{c}{\sqrt{a}} y \right)^2 + \frac{1}{a} (ab - c^2) y^2. \]
Since \(a > 0 \), if \(ab - c^2 \leq 0 \), then we can choose \(y > 0 \) so that the second term is negative or zero, and we can set \(x = -(c/a)y \) to make the first term zero, in which case \(ax^2 + 2cxy + by^2 \leq 0 \), so we must have \(ab - c^2 > 0 \).

Conversely, if \(a > 0, b > 0 \) and \(ab > c^2 \), then for any \((x, y) \neq (0, 0)\), if \(y = 0 \) then \(x \neq 0 \) and the first term is positive, and if \(y \neq 0 \) then the second term is positive. Therefore, the symmetric matrix \(A \) is positive definite iff

\[
a > 0, \ b > 0, \ ab > c^2.
\]

Note that \(ab - c^2 = \det(A) \), so the third condition says that \(\det(A) > 0 \).

Observe that the condition \(b > 0 \) is redundant, since if \(a > 0 \) and \(ab > c^2 \), then we must have \(b > 0 \) (and similarly \(b > 0 \) and \(ab > c^2 \) implies that \(a > 0 \)).

We can try to visualize the space of \(2 \times 2 \) symmetric positive definite matrices in \(\mathbb{R}^3 \), by viewing \((a, b, c)\) as the coordinates along the \(x, y, z \) axes. Then the locus determined by the strict inequalities in \((*)\) corresponds to the region on the side of the cone of equation \(xy = z^2 \) that does not contain the origin and for which \(x > 0 \) and \(y > 0 \). For \(z = \delta \) fixed, the equation \(xy = \delta^2 \) define a hyperbola in the plane \(z = \delta \). The cone of equation \(xy = z^2 \) consists of the lines through the origin that touch the hyperbola \(xy = 1 \) in the plane \(z = 1 \). We only consider the branch of this hyperbola for which \(x > 0 \) and \(y > 0 \).

It is not hard to show that the inverse of a symmetric positive definite matrix is also symmetric positive definite, but the product of two symmetric positive definite matrices may not be symmetric positive definite, as the following example shows:

\[
\begin{pmatrix}
1 & 1 \\
1 & 2
\end{pmatrix}
\begin{pmatrix}
1/\sqrt{2} & -1/\sqrt{2} \\
-1/\sqrt{2} & 3/\sqrt{2}
\end{pmatrix}
= \begin{pmatrix}
0 & 2/\sqrt{2} \\
-1/\sqrt{2} & 5/\sqrt{2}
\end{pmatrix}.
\]

According to the above criterion, the two matrices on the left-hand side are symmetric positive definite, but the matrix on the right-hand side is not even symmetric, and

\[
\begin{pmatrix}
-6 & 1 \\
-1/\sqrt{2} & 5/\sqrt{2}
\end{pmatrix}
\begin{pmatrix}
0 & 2/\sqrt{2} \\
-6 & 1
\end{pmatrix}
= \begin{pmatrix}
-6 & 1 \\
2/\sqrt{2} & 11/\sqrt{2}
\end{pmatrix} = -1/\sqrt{5},
\]
even though its eigenvalues are both real and positive.

Next, we prove that a symmetric positive definite matrix has a special \(LU \)-factorization of the form \(A = BB^\top \), where \(B \) is a lower-triangular matrix whose diagonal elements are strictly positive. This is the Cholesky factorization.

First, we note that a symmetric positive definite matrix satisfies the condition of Proposition 6.2.

Proposition 6.9. If \(A \) is a symmetric positive definite matrix, then \(A[1..k, 1..k] \) is symmetric positive definite, and thus invertible for \(k = 1, \ldots, n \).
Proof. Since A is symmetric, each $A[1..k, 1..k]$ is also symmetric. If $w \in \mathbb{R}^k$, with $1 \leq k \leq n$, we let $x \in \mathbb{R}^n$ be the vector with $x_i = w_i$ for $i = 1, \ldots, k$ and $x_i = 0$ for $i = k + 1, \ldots, n$. Now, since A is symmetric positive definite, we have $x^T A x > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$. This holds in particular for all vectors x obtained from nonzero vectors $w \in \mathbb{R}^k$ as defined earlier, and clearly

$$x^T A x = w^T A[1..k, 1..k] w,$$

which implies that $A[1..k, 1..k]$ is positive definite. Thus, $A[1..k, 1..k]$ is also invertible.

Proposition 6.9 can be strengthened as follows: A symmetric matrix A is positive definite iff $\det(A[1..k, 1..k]) > 0$ for $k = 1, \ldots, n$.

The above fact is known as Sylvester’s criterion. We will prove it after establishing the Cholesky factorization.

Let A be an $n \times n$ symmetric positive definite matrix and write

$$A = \begin{pmatrix} a_{11} & W^T \\ W & C \end{pmatrix},$$

where C is an $(n - 1) \times (n - 1)$ symmetric matrix and W is an $(n - 1) \times 1$ matrix. Since A is symmetric positive definite, $a_{11} > 0$, and we can compute $\alpha = \sqrt{a_{11}}$. The trick is that we can factor A uniquely as

$$A = \begin{pmatrix} a_{11} & W^T \\ W & C \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ W/\alpha & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & C - WW^T/a_{11} \end{pmatrix} \begin{pmatrix} \alpha & W^T/\alpha \\ 0 & I \end{pmatrix},$$

i.e., as $A = B_1 A_1 B_1^T$, where B_1 is lower-triangular with positive diagonal entries. Thus, B_1 is invertible, and by fact (3) above, A_1 is also symmetric positive definite.

Remark: The matrix $C - WW^T/a_{11}$ is known as the Schur complement of the matrix (a_{11}).

Theorem 6.10. (Cholesky Factorization) Let A be a symmetric positive definite matrix. Then, there is some lower-triangular matrix B so that $A = BB^T$. Furthermore, B can be chosen so that its diagonal elements are strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For $n = 1$, we must have $a_{11} > 0$, and if we let $\alpha = \sqrt{a_{11}}$ and $B = (\alpha)$, the theorem holds trivially. If $n \geq 2$, as we explained above, again we must have $a_{11} > 0$, and we can write

$$A = \begin{pmatrix} a_{11} & W^T \\ W & C \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ W/\alpha & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & C - WW^T/a_{11} \end{pmatrix} \begin{pmatrix} \alpha & W^T/\alpha \\ 0 & I \end{pmatrix} = B_1 A_1 B_1^T,$$

where $\alpha = \sqrt{a_{11}}$, the matrix B_1 is invertible and

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & C - WW^T/a_{11} \end{pmatrix}.$$
is symmetric positive definite. However, this implies that \(C - WW^T/a_{11} \) is also symmetric positive definite (consider \(x^T A_1 x \) for every \(x \in \mathbb{R}^n \) with \(x \neq 0 \) and \(x_1 = 0 \)). Thus, we can apply the induction hypothesis to \(C - WW^T/a_{11} \) (which is an \((n - 1) \times (n - 1)\) matrix), and we find a unique lower-triangular matrix \(L \) with positive diagonal entries so that
\[
C - WW^T/a_{11} = LL^T.
\]
But then, we get
\[
A = \begin{pmatrix}
\alpha & 0 \\
W/\alpha & I
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & C - WW^T/a_{11}
\end{pmatrix}
\begin{pmatrix}
\alpha & W^T/\alpha \\
0 & I
\end{pmatrix}
= \begin{pmatrix}
\alpha & 0 \\
W/\alpha & I
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & LL^T
\end{pmatrix}
\begin{pmatrix}
\alpha & W^T/\alpha \\
0 & I
\end{pmatrix}
= \begin{pmatrix}
\alpha & 0 \\
W/\alpha & L
\end{pmatrix}
\begin{pmatrix}
\alpha & W^T/\alpha \\
0 & L^T
\end{pmatrix}.
\]
Therefore, if we let
\[
B = \begin{pmatrix}
\alpha & 0 \\
W/\alpha & L
\end{pmatrix},
\]
we have a unique lower-triangular matrix with positive diagonal entries and \(A = BB^T \).

The uniqueness of the Cholesky decomposition can also be established using the uniqueness of an \(LU \)-decomposition. Indeed, if \(A = B_1 B_1^T = B_2 B_2^T \) where \(B_1 \) and \(B_2 \) are lower triangular with positive diagonal entries, if we let \(\Delta_1 \) (resp. \(\Delta_2 \)) be the diagonal matrix consisting of the diagonal entries of \(B_1 \) (resp. \(B_2 \)) so that \((\Delta_k)_{ii} = (B_k)_{ii} \) for \(k = 1, 2 \), then we have two \(LU \)-decompositions
\[
A = (B_1 \Delta_1^{-1})(\Delta_1 B_1^T) = (B_2 \Delta_2^{-1})(\Delta_2 B_2^T)
\]
with \(B_1 \Delta_1^{-1}, B_2 \Delta_2^{-1} \) unit lower triangular, and \(\Delta_1 B_1^T, \Delta_2 B_2^T \) upper triangular. By uniqueness of \(LU \)-factorization (Theorem 6.5(1)), we have
\[
B_1 \Delta_1^{-1} = B_2 \Delta_2^{-1}, \quad \Delta_1 B_1^T = \Delta_2 B_2^T,
\]
and the second equation yields
\[
B_1 \Delta_1 = B_2 \Delta_2. \tag{\star}
\]
The diagonal entries of \(B_1 \Delta_1 \) are \((B_1)_{ii}^2\) and similarly the diagonal entries of \(B_2 \Delta_2 \) are \((B_2)_{ii}^2\), so the above equation implies that
\[
(B_1)_{ii}^2 = (B_2)_{ii}^2, \quad i = 1, \ldots, n.
\]
Since the diagonal entries of both \(B_1 \) and \(B_2 \) are assumed to be positive, we must have
\[
(B_1)_{ii} = (B_2)_{ii}, \quad i = 1, \ldots, n;
\]
that is, \(\Delta_1 = \Delta_2 \), and since both are invertible, we conclude from \(\star \) that \(B_1 = B_2 \). \(\square \)
The proof of Theorem 6.10 immediately yields an algorithm to compute B from A by solving for a lower triangular matrix B such that $A = BB^\top$. For $j = 1, \ldots, n$,

$$b_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} b_{jk}^2\right)^{1/2},$$

and for $i = j + 1, \ldots, n$ (and $j = 1, \ldots, n - 1$)

$$b_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} b_{ik}b_{jk}\right) / b_{jj}.$$

The above formulae are used to compute the jth column of B from top-down, using the first $j - 1$ columns of B previously computed, and the matrix A.

For example, if

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 4 & 4 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix},$$

we find that

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$
Proof. Obviously, BB^\top is symmetric, and since B is invertible, B^\top is invertible, and from
\[x^\top Ax = x^\top BB^\top x = (B^\top x)^\top B^\top x, \]
it is clear that $x^\top Ax > 0$ if $x \neq 0$. \hfill \square

We now give three more criteria for a symmetric matrix to be positive definite.

Proposition 6.11. Let A be any $n \times n$ symmetric matrix. The following conditions are equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: $\det(A[1..k, 1..k]) > 0$ for $k = 1, \ldots, n$ (Sylvester’s criterion).

(c) A has an LU-factorization and all pivots are positive.

(d) A has an LDL^\top-factorization and all pivots in D are positive.

Proof. By Proposition 6.9, if A is symmetric positive definite, then each matrix $A[1..k, 1..k]$ is symmetric positive definite for $k = 1, \ldots, n$. By the Cholesky decomposition, $A[1..k, 1..k] = Q^\top Q$ for some invertible matrix Q, so $\det(A[1..k, 1..k]) = \det(Q)^2 > 0$. This shows that (a) implies (b).

If $\det(A[1..k, 1..k]) > 0$ for $k = 1, \ldots, n$, then each $A[1..k, 1..k]$ is invertible. By Proposition 6.2, the matrix A has an LU-factorization, and since the pivots π_k are given by
\[
\pi_k = \begin{cases}
a_{11} = \det(A[1..1, 1..1]) & \text{if } k = 1 \\
\frac{\det(A[1..k, 1..k])}{\det(A[1..k-1, 1..k-1])} & \text{if } k = 2, \ldots, n,
\end{cases}
\]
we see that $\pi_k > 0$ for $k = 1, \ldots, n$. Thus (b) implies (c).

Assume A has an LU-factorization and that the pivots are all positive. Since A is symmetric, this implies that A has a factorization of the form
\[A = LDL^\top, \]
with L lower-triangular with 1’s on its diagonal, and where D is a diagonal matrix with positive entries on the diagonal (the pivots). This shows that (c) implies (d).

Given a factorization $A = LDL^\top$ with all pivots in D positive, if we form the diagonal matrix
\[\sqrt{D} = \text{diag}(\sqrt{\pi_1}, \ldots, \sqrt{\pi_n}) \]
and if we let $B = L\sqrt{D}$, then we have
\[A = BB^\top, \]
with B lower-triangular and invertible. By the remark before Proposition 6.11, A is positive definite. Hence, (d) implies (a). \hfill \square
Criterion (c) yields a simple computational test to check whether a symmetric matrix is positive definite. There is one more criterion for a symmetric matrix to be positive definite: its eigenvalues must be positive. We will have to learn about the spectral theorem for symmetric matrices to establish this criterion.

For more on the stability analysis and efficient implementation methods of Gaussian elimination, LU-factoring and Cholesky factoring, see Demmel [15], Trefethen and Bau [54], Ciarlet [13], Golub and Van Loan [24], Meyer [39], Strang [50, 51], and Kincaid and Cheney [31].

6.9 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 6.2 can also be applied to rectangular matrices. This yields a method for determining whether a system $Ax = b$ is solvable, and a description of all the solutions when the system is solvable, for any rectangular $m \times n$ matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we need a third kind of elementary matrix. For any $\lambda \neq 0$, let $E_{i,\lambda}$ be the $n \times n$ diagonal matrix

$$E_{i,\lambda} = \begin{pmatrix} 1 & \cdots & \lambda & 1 \\ \vdots & \ddots & \ddots & \ddots \\ & \ddots & 1 & \lambda \\ & & \ddots & 1 \\ & & & 1 \end{pmatrix},$$

with $(E_{i,\lambda})_{ii} = \lambda$ ($1 \leq i \leq n$). Note that $E_{i,\lambda}$ is also given by

$$E_{i,\lambda} = I + (\lambda - 1)e_{ii},$$

and that $E_{i,\lambda}$ is invertible with

$$E^{-1}_{i,\lambda} = E_{i,\lambda^{-1}}.$$

Now, after $k - 1$ elimination steps, if the bottom portion

$$(a_{kk}^{(k)}, a_{k+1,k}^{(k)}, \ldots, a_{mk}^{(k)})$$

of the kth column of the current matrix A_k is nonzero so that a pivot π_k can be chosen, after a permutation of rows if necessary, we also divide row k by π_k to obtain the pivot 1, and not only do we zero all the entries $i = k + 1, \ldots, m$ in column k, but also all the entries $i = 1, \ldots, k - 1$, so that the only nonzero entry in column k is a 1 in row k. These row operations are achieved by multiplication on the left by elementary matrices.

If $a_{kk}^{(k)} = a_{k+1,k}^{(k)} = \cdots = a_{mk}^{(k)} = 0$, we move on to column $k + 1$.
6.9. REDUCED ROW ECHELON FORM

When the kth column contains a pivot, the kth stage of the procedure for converting a matrix to $rref$ consists of the following three steps illustrated below:

\[
\begin{pmatrix}
1 & 0 & \times & \times & \times & \times \\
0 & 1 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & a_{ik}^{(k)} & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
\end{pmatrix}
\]

pivot \Rightarrow

\[
\begin{pmatrix}
1 & 0 & \times & \times & \times & \times \\
0 & 1 & a_{ik}^{(k)} & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
\end{pmatrix}
\]

rescale \Rightarrow

\[
\begin{pmatrix}
1 & 0 & 0 & \times & \times & \times \\
0 & 1 & 0 & \times & \times & \times \\
0 & 0 & 1 & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
\end{pmatrix}
\]

elim \Rightarrow

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & \times & \times \\
0 & 1 & 0 & 0 & \times & \times \\
0 & 0 & 1 & 3 & 1 & 2 \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
\end{pmatrix}
\]

If the kth column does not contain a pivot, we simply move on to the next column.

The result is that after performing such elimination steps, we obtain a matrix that has a special shape known as a reduced row echelon matrix, for short $rref$.

Here is an example illustrating this process: Starting from the matrix

\[
A_1 = \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
1 & 1 & 5 & 2 & 7 \\
1 & 2 & 8 & 4 & 12 \\
\end{pmatrix}
\]

we perform the following steps

\[
A_1 \longrightarrow A_2 = \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
0 & 1 & 3 & 1 & 2 \\
0 & 2 & 6 & 3 & 7 \\
\end{pmatrix},
\]

by subtracting row 1 from row 2 and row 3;

\[
A_2 \longrightarrow \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
0 & 2 & 6 & 3 & 7 \\
0 & 1 & 3 & 1 & 2 \\
\end{pmatrix} \longrightarrow \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
0 & 1 & 3 & 3/2 & 7/2 \\
0 & 1 & 3 & 1 & 2 \\
\end{pmatrix} \longrightarrow A_3 = \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
0 & 1 & 3 & 3/2 & 7/2 \\
0 & 0 & 0 & -1/2 & -3/2 \\
\end{pmatrix},
\]

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and subtracting row 2 from row 3;

\[
A_3 \longrightarrow \begin{pmatrix}
1 & 0 & 2 & 1 & 5 \\
0 & 1 & 3 & 3/2 & 7/2 \\
0 & 0 & 0 & 1 & 3 \\
\end{pmatrix} \longrightarrow A_4 = \begin{pmatrix}
1 & 0 & 2 & 0 & 2 \\
0 & 1 & 3 & 0 & -1 \\
0 & 0 & 0 & 1 & 3 \\
\end{pmatrix},
\]
after dividing row 3 by $-1/2$, subtracting row 3 from row 1, and subtracting $(3/2) \times$ row 3 from row 2.

It is clear that columns 1, 2 and 4 are linearly independent, that column 3 is a linear combination of columns 1 and 2, and that column 5 is a linear combinations of columns 1, 2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For example, we could have chosen 1 instead of 2 as the second pivot in matrix A_2. Nevertheless, the reduced row echelon matrix obtained from any given matrix is unique; that is, it does not depend on the the sequence of steps that are followed during the reduction process. This fact is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form $Ax = b$, we apply elementary row operations to both the matrix A and the right-hand side b. To do this conveniently, we form the augmented matrix (A, b), which is the $m \times (n + 1)$ matrix obtained by adding b as an extra column to the matrix A. For example if

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 5 & 2 \\ 1 & 2 & 8 & 4 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 5 \\ 7 \\ 12 \end{pmatrix},$$

then the augmented matrix is

$$(A, b) = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 1 & 1 & 5 & 2 & 7 \\ 1 & 2 & 8 & 4 & 12 \end{pmatrix}.$$

Now, for any matrix M, since $M(A, b) = (MA, Mb)$, performing elementary row operations on (A, b) is equivalent to simultaneously performing operations on both A and b. For example, consider the system

$$\begin{align*}
x_1 + 2x_3 + x_4 &= 5 \\
x_1 + x_2 + 5x_3 + 2x_4 &= 7 \\
x_1 + 2x_2 + 8x_3 + 4x_4 &= 12.
\end{align*}$$

Its augmented matrix is the matrix

$$(A, b) = \begin{pmatrix} 1 & 0 & 2 & 1 & 5 \\ 1 & 1 & 5 & 2 & 7 \\ 1 & 2 & 8 & 4 & 12 \end{pmatrix}$$

considered above, so the reduction steps applied to this matrix yield the system

$$\begin{align*}
x_1 + 2x_3 &= 2 \\
x_2 + 3x_3 &= -1 \\
x_4 &= 3.
\end{align*}$$
This reduced system has the same set of solutions as the original, and obviously x_3 can be chosen arbitrarily. Therefore, our system has infinitely many solutions given by

$$x_1 = 2 - 2x_3, \quad x_2 = -1 - 3x_3, \quad x_4 = 3,$$

where x_3 is arbitrary.

The following proposition shows that the set of solutions of a system $Ax = b$ is preserved by any sequence of row operations.

Proposition 6.12. Given any $m \times n$ matrix A and any vector $b \in \mathbb{R}^m$, for any sequence of elementary row operations E_1, \ldots, E_k, if $P = E_k \cdots E_1$ and $(A', b') = P(A, b)$, then the solutions of $Ax = b$ are the same as the solutions of $A'x = b'$.

Proof. Since each elementary row operation E_i is invertible, so is P, and since $(A', b') = P(A, b)$, then $A' = PA$ and $b' = Pb$. If x is a solution of the original system $Ax = b$, then multiplying both sides by P we get $PAx = Pb$; that is, $A'x = b'$, so x is a solution of the new system. Conversely, assume that x is a solution of the new system, that is $A'x = b'$. Then, because $A' = PA$, $b' = PB$, and P is invertible, we get

$$Ax = P^{-1}A'x = P^{-1}b' = b,$$

so x is a solution of the original system $Ax = b$. \square

Another important fact is this:

Proposition 6.13. Given a $m \times n$ matrix A, for any sequence of row operations E_1, \ldots, E_k, if $P = E_k \cdots E_1$ and $B = PA$, then the subspaces spanned by the rows of A and the rows of B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A and B also have the same (column) rank.

Proof. Since $B = PA$, from a previous observation, the rows of B are linear combinations of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A. Since P is invertible, $A = P^{-1}B$, so by the same reasoning the span of the rows of A is a subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A and the rows of B are identical, which implies that A and B have the same row rank.

Proposition 6.12 implies that the systems $Ax = 0$ and $Bx = 0$ have the same solutions. Since Ax is a linear combinations of the columns of A and Bx is a linear combinations of the columns of B, the maximum number of linearly independent columns in A is equal to the maximum number of linearly independent columns in B; that is, A and B have the same rank. \square

Remark: The subspaces spanned by the columns of A and B can be different! However, their dimension must be the same.

Of course, we know from Proposition 9.11 that the row rank is equal to the column rank. We will see that the reduction to row echelon form provides another proof of this important fact. Let us now define precisely what is a reduced row echelon matrix.
Definition 6.1. A \(m \times n \) matrix \(A \) is a reduced row echelon matrix iff the following conditions hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot.

(b) The first nonzero entry of row \(i + 1 \) is to the right of the first nonzero entry of row \(i \).

(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form, for short \(rref \).

Note that condition (b) implies that the entries below a pivot are also zero. For example, the matrix

\[
A = \begin{pmatrix}
1 & 6 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

is a reduced row echelon matrix. In general, a matrix in \(rref \) has the following shape:

\[
\begin{pmatrix}
1 & 0 & 0 & \times & \times & 0 & 0 & \times \\
0 & 1 & 0 & \times & \times & 0 & 0 & \times \\
0 & 0 & 1 & \times & \times & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

if the last row consists of zeros, or

\[
\begin{pmatrix}
1 & 0 & 0 & \times & \times & 0 & 0 & \times \\
0 & 1 & 0 & \times & \times & 0 & 0 & \times \\
0 & 0 & 1 & \times & \times & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \times \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

if the last row contains a pivot.

The following proposition shows that every matrix can be converted to a reduced row echelon form using row operations.

Proposition 6.14. Given any \(m \times n \) matrix \(A \), there is a sequence of row operations \(E_1, \ldots, E_k \) such that if \(P = E_k \cdots E_1 \), then \(U = PA \) is a reduced row echelon matrix.
Proof. We proceed by induction on \(m \). If \(m = 1 \), then either all entries on this row are zero, so \(A = 0 \), or if \(a_j \) is the first nonzero entry in \(A \), let \(P = (a_j^{-1}) \) (a \(1 \times 1 \) matrix); clearly, \(PA \) is a reduced row echelon matrix.

Let us now assume that \(m \geq 2 \). If \(A = 0 \) we are done, so let us assume that \(A \neq 0 \). Since \(A \neq 0 \), there is a leftmost column \(j \) which is nonzero, so pick any pivot \(\pi = a_{ij} \) in the \(j \)th column, permute row \(i \) and row 1 if necessary, multiply the new first row by \(\pi^{-1} \), and clear out the other entries in column \(j \) by subtracting suitable multiples of row 1. At the end of this process, we have a matrix \(A_1 \) that has the following shape:

\[
A_1 = \begin{pmatrix}
0 & \cdots & 0 & 1 & * & \cdots & * \\
0 & \cdots & 0 & 0 & * & \cdots & * \\
\vdots & & \vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & 0 & * & \cdots & *
\end{pmatrix},
\]

where * stands for an arbitrary scalar, or more concisely

\[
A_1 = \begin{pmatrix}
0 & 1 & B \\
0 & 0 & D
\end{pmatrix},
\]

where \(D \) is a \((m-1) \times (n-j) \) matrix. If \(j = n \), we are done. Otherwise, by the induction hypothesis applied to \(D \), there is a sequence of row operations that converts \(D \) to a reduced row echelon matrix \(R' \), and these row operations do not affect the first row of \(A_1 \), which means that \(A_1 \) is reduced to a matrix of the form

\[
R = \begin{pmatrix}
0 & 1 & B \\
0 & 0 & R'
\end{pmatrix}.
\]

Because \(R' \) is a reduced row echelon matrix, the matrix \(R \) satisfies conditions (a) and (b) of the reduced row echelon form. Finally, the entries above all pivots in \(R' \) can be cleared out by subtracting suitable multiples of the rows of \(R' \) containing a pivot. The resulting matrix also satisfies condition (c), and the induction step is complete.

Remark: There is a Matlab function named \texttt{rref} that converts any matrix to its reduced row echelon form.

If \(A \) is any matrix and if \(R \) is a reduced row echelon form of \(A \), the second part of Proposition 6.13 can be sharpened a little. Namely, the rank of \(A \) is equal to the number of pivots in \(R \).

This is because the structure of a reduced row echelon matrix makes it clear that its rank is equal to the number of pivots.

Given a system of the form \(Ax = b \), we can apply the reduction procedure to the augmented matrix \((A, b) \) to obtain a reduced row echelon matrix \((A', b') \) such that the system
$A'x = b'$ has the same solutions as the original system $Ax = b$. The advantage of the reduced system $A'x = b'$ is that there is a simple test to check whether this system is solvable, and to find its solutions if it is solvable.

Indeed, if any row of the matrix A' is zero and if the corresponding entry in b' is nonzero, then it is a pivot and we have the “equation”

$$0 = 1,$$

which means that the system $A'x = b'$ has no solution. On the other hand, if there is no pivot in b', then for every row i in which $b'_i \neq 0$, there is some column j in A' where the entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable x_k if column k does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

$$(A', b') = \begin{pmatrix} 1 & 6 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

there is no solution to $A'x = b'$ because the third equation is $0 = 1$. On the other hand, the reduced system

$$(A', b') = \begin{pmatrix} 1 & 6 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

has solutions. We can pick the variables x_2, x_4 corresponding to nonpivot columns arbitrarily, and then solve for x_3 (using the second equation) and x_1 (using the first equation).

The above reasoning proved the following theorem:

Theorem 6.15. Given any system $Ax = b$ where A is a $m \times n$ matrix, if the augmented matrix (A, b) is a reduced row echelon matrix, then the system $Ax = b$ has a solution iff there is no pivot in b. In that case, an arbitrary value can be assigned to the variable x_j if column j does not contain a pivot.

Nonpivot variables are often called *free variables*.

Putting Proposition 6.14 and Theorem 6.15 together we obtain a criterion to decide whether a system $Ax = b$ has a solution: Convert the augmented system (A, b) to a row reduced echelon matrix (A', b') and check whether b' has no pivot.

Remark: When writing a program implementing row reduction, we may stop when the last column of the matrix A is reached. In this case, the test whether the system $Ax = b$ is solvable is that the row-reduced matrix A' has no zero row of index $i > r$ such that $b'_i \neq 0$ (where r is the number of pivots, and b' is the row-reduced right-hand side).

If we have a *homogeneous system* $Ax = 0$, which means that $b = 0$, of course $x = 0$ is always a solution, but Theorem 6.15 implies that if the system $Ax = 0$ has more variables than equations, then it has some nonzero solution (we call it a *nontrivial solution*).
Proposition 6.16. Given any homogeneous system $Ax = 0$ of m equations in n variables, if $m < n$, then there is a nonzero vector $x \in \mathbb{R}^n$ such that $Ax = 0$.

Proof. Convert the matrix A to a reduced row echelon matrix A'. We know that $Ax = 0$ iff $A'x = 0$. If r is the number of pivots of A', we must have $r \leq m$, so by Theorem 6.15 we may assign arbitrary values to $n - r > 0$ nonpivot variables and we get nontrivial solutions.

Theorem 6.15 can also be used to characterize when a square matrix is invertible. First, note the following simple but important fact:

If a square $n \times n$ matrix A is a row reduced echelon matrix, then either A is the identity or the bottom row of A is zero.

Proposition 6.17. Let A be a square matrix of dimension n. The following conditions are equivalent:

(a) The matrix A can be reduced to the identity by a sequence of elementary row operations.

(b) The matrix A is a product of elementary matrices.

(c) The matrix A is invertible.

(d) The system of homogeneous equations $Ax = 0$ has only the trivial solution $x = 0$.

Proof. First, we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence of row operations E_1, \ldots, E_p, this means that $E_p \cdots E_1 A = I$. Since each E_i is invertible, we get

$$A = E_1^{-1} \cdots E_p^{-1},$$

where each E_i^{-1} is also an elementary row operation, so (b) holds. Now if (b) holds, since elementary row operations are invertible, A is invertible, and (c) holds. If A is invertible, we already observed that the homogeneous system $Ax = 0$ has only the trivial solution $x = 0$, because from $Ax = 0$, we get $A^{-1}Ax = A^{-1}0$; that is, $x = 0$. It remains to prove that (d) implies (a), and for this we prove the contrapositive: if (a) does not hold, then (d) does not hold.

Using our basic observation about reducing square matrices, if A does not reduce to the identity, then A reduces to a row echelon matrix A' whose bottom row is zero. Say $A' = PA$, where P is a product of elementary row operations. Because the bottom row of A' is zero, the system $A'x = 0$ has at most $n - 1$ nontrivial equations, and by Proposition 6.16, this system has a nontrivial solution x. But then, $Ax = P^{-1}A'x = 0$ with $x \neq 0$, contradicting the fact that the system $Ax = 0$ is assumed to have only the trivial solution. Therefore, (d) implies (a) and the proof is complete.

Proposition 6.17 yields a method for computing the inverse of an invertible matrix A: reduce A to the identity using elementary row operations, obtaining

$$ E_p \cdots E_1 A = I. $$

Multiplying both sides by A^{-1} we get

$$ A^{-1} = E_p \cdots E_1. $$

From a practical point of view, we can build up the product $E_p \cdots E_1$ by reducing to row echelon form the augmented $n \times 2n$ matrix (A, I_n) obtained by adding the n columns of the identity matrix to A. This is just another way of performing the Gauss–Jordan procedure.

Here is an example: let us find the inverse of the matrix

$$ A = \begin{pmatrix} 5 & 4 \\ 6 & 5 \end{pmatrix}. $$

We form the 2×4 block matrix

$$ (A, I) = \begin{pmatrix} 5 & 4 & 1 & 0 \\ 6 & 5 & 0 & 1 \end{pmatrix} $$

and apply elementary row operations to reduce A to the identity. For example:

$$ (A, I) = \begin{pmatrix} 5 & 4 & 1 & 0 \\ 6 & 5 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 5 & 4 & 1 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix} $$

by subtracting row 1 from row 2,

$$ \begin{pmatrix} 5 & 4 & 1 & 0 \\ 1 & 1 & -1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 5 & -4 \\ 1 & 1 & -1 & 1 \end{pmatrix} $$

by subtracting $4 \times$ row 2 from row 1,

$$ \begin{pmatrix} 1 & 0 & 5 & -4 \\ 1 & 1 & -1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 5 & -4 \\ 0 & 1 & -6 & 5 \end{pmatrix} = (I, A^{-1}), $$

by subtracting row 1 from row 2. Thus

$$ A^{-1} = \begin{pmatrix} 5 & -4 \\ -6 & 5 \end{pmatrix}. $$

Proposition 6.17 can also be used to give an elementary proof of the fact that if a square matrix A has a left inverse B (resp. a right inverse B), so that $BA = I$ (resp. $AB = I$), then A is invertible and $A^{-1} = B$. This is an interesting exercise, try it!

For the sake of completeness, we prove that the reduced row echelon form of a matrix is unique. The neat proof given below is borrowed and adapted from W. Kahan.
Proposition 6.18. Let A be any $m \times n$ matrix. If U and V are two reduced row echelon matrices obtained from A by applying two sequences of elementary row operations E_1, \ldots, E_p and F_1, \ldots, F_q, so that

$$U = E_p \cdots E_1 A \quad \text{and} \quad V = F_q \cdots F_1 A,$$

then $U = V$ and $E_p \cdots E_1 = F_q \cdots F_1$. In other words, the reduced row echelon form of any matrix is unique.

Proof. Let

$$C = E_p \cdots E_1 F_1^{-1} \cdots F_q^{-1},$$

so that

$$U = CV \quad \text{and} \quad V = C^{-1} U.$$

We prove by induction on n that $U = V$ (and $C = I$).

Let ℓ_j denote the jth column of the identity matrix I_n, and let $u_j = U\ell_j$, $v_j = V\ell_j$, $c_j = C\ell_j$, and $a_j = A\ell_j$, be the jth column of U, V, C, and A respectively.

First, I claim that $u_j = 0$ iff $v_j = 0$, iff $a_j = 0$.

Indeed, if $v_j = 0$, then (because $U = CV$) $u_j = Cv_j = 0$, and if $u_j = 0$, then $v_j = C^{-1}u_j = 0$. Since $A = E_p \cdots E_1 U$, we also get $a_j = 0$ iff $u_j = 0$.

Therefore, we may simplify our task by striking out columns of zeros from U, V, and A, since they will have corresponding indices. We still use n to denote the number of columns of A. Observe that because U and V are reduced row echelon matrices with no zero columns, we must have $u_1 = v_1 = \ell_1$.

Claim. If U and V are reduced row echelon matrices without zero columns such that $U = CV$, for all $k \geq 1$, if $k \leq n$, then ℓ_k occurs in U iff ℓ_k occurs in V, and if ℓ_k does occur in U, then

1. ℓ_k occurs for the same index j_k in both U and V;
2. the first j_k columns of U and V match;
3. the subsequent columns in U and V (of index $> j_k$) whose elements beyond the kth all vanish also match;
4. the first k columns of C match the first k columns of I_n.

We prove this claim by induction on k.

For the base case $k = 1$, we already know that $u_1 = v_1 = \ell_1$. We also have

$$c_1 = C\ell_1 = Cv_1 = u_1 = \ell_1.$$
If \(v_j = \lambda \ell_1 \) for some \(\mu \in \mathbb{R} \), then
\[
u_j = U \ell_1 = CV \ell_1 = C\lambda v_j = \lambda \mu \ell_1 = v_j.\]

A similar argument using \(C^{-1} \) shows that if \(u_j = \lambda \ell_1 \), then \(v_j = u_j \). Therefore, all the columns of \(U \) and \(V \) proportional to \(\ell_1 \) match, which establishes the base case. Observe that if \(\ell_2 \) appears in \(U \), then it must appear in both \(U \) and \(V \) for the same index, and if not then \(U = V \).

Next we now prove the induction step; this is only necessary if \(\ell_{k+1} \) appears in both \(U \), in which case, by (3) of the induction hypothesis, it appears in both \(U \) and \(V \) for the same index, say \(j_{k+1} \). Thus \(u_{j_{k+1}} = v_{j_{k+1}} = \ell_{k+1} \). It follows that
\[
c_{k+1} = C\ell_{k+1} = Cv_{j_{k+1}} = u_{j_{k+1}} = \ell_{k+1},\]
so the first \(k+1 \) columns of \(C \) match the first \(k+1 \) columns of \(I_n \).

Consider any subsequent column \(v_j \) (with \(j > j_{k+1} \)) whose elements beyond the \((k+1)\)th all vanish. Then, \(v_j \) is a linear combination of columns of \(V \) to the left of \(v_j \), so
\[
u_j = Cv_j = v_j.\]

because the first \(k+1 \) columns of \(C \) match the first column of \(I_n \). Similarly, any subsequent column \(u_j \) (with \(j > j_{k+1} \)) whose elements beyond the \((k+1)\)th all vanish is equal to \(v_j \). Therefore, all the subsequent columns in \(U \) and \(V \) (of index > \(j_{k+1} \)) whose elements beyond the \((k+1)\)th all vanish also match, which completes the induction hypothesis.

We can now prove that \(U = V \) (recall that we may assume that \(U \) and \(V \) have no zero columns). We noted earlier that \(u_1 = v_1 = \ell_1 \), so there is a largest \(k \leq n \) such that \(\ell_k \) occurs in \(U \). Then, the previous claim implies that all the columns of \(U \) and \(V \) match, which means that \(U = V \).

The reduction to row echelon form also provides a method to describe the set of solutions of a linear system of the form \(Ax = b \).

6.10 Solving Linear Systems Using RREF

First, we have the following simple result.

Proposition 6.19. Let \(A \) be any \(m \times n \) matrix and let \(b \in \mathbb{R}^m \) be any vector. If the system \(Ax = b \) has a solution, then the set \(Z \) of all solutions of this system is the set
\[
Z = x_0 + \text{Ker} (A) = \{ x_0 + x \mid Ax = 0 \},
\]
where \(x_0 \in \mathbb{R}^n \) is any solution of the system \(Ax = b \), which means that \(Ax_0 = b \) (\(x_0 \) is called a special solution), and where \(\text{Ker} (A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \} \), the set of solutions of the homogeneous system associated with \(Ax = b \).
6.10. SOLVING LINEAR SYSTEMS USING RREF

Proof. Assume that the system $Ax = b$ is solvable and let x_0 and x_1 be any two solutions so that $Ax_0 = b$ and $Ax_1 = b$. Subtracting the first equation from the second, we get

$$A(x_1 - x_0) = 0,$$

which means that $x_1 - x_0 \in \text{Ker}(A)$. Therefore, $Z \subseteq x_0 + \text{Ker}(A)$, where x_0 is a special solution of $Ax = b$. Conversely, if $Ax_0 = b$, then for any $z \in \text{Ker}(A)$, we have $Az = 0$, and so

$$A(x_0 + z) = Ax_0 + Az = b + 0 = b,$$

which shows that $x_0 + \text{Ker}(A) \subseteq Z$. Therefore, $Z = x_0 + \text{Ker}(A)$. \qed

Given a linear system $Ax = b$, reduce the augmented matrix (A, b) to its row echelon form (A', b'). As we showed before, the system $Ax = b$ has a solution iff b' contains no pivot. Assume that this is the case. Then, if (A', b') has r pivots, which means that A' has r pivots since b' has no pivot, we know that the first r columns of I_m appear in A'.

We can permute the columns of A' and renumber the variables in x correspondingly so that the first r columns of I_m match the first r columns of A', and then our reduced echelon matrix is of the form (R, b') with

$$R = \begin{pmatrix} I_r & F \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix}$$

and

$$b' = \begin{pmatrix} d \\ 0_{m-r} \end{pmatrix},$$

where F is a $r \times (n - r)$ matrix and $d \in \mathbb{R}^r$. Note that R has $m - r$ zero rows.

Then, because

$$\begin{pmatrix} I_r & F \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix} \begin{pmatrix} d \\ 0_{n-r} \end{pmatrix} = \begin{pmatrix} d \\ 0_{m-r} \end{pmatrix} = b',$$

we see that

$$x_0 = \begin{pmatrix} d \\ 0_{n-r} \end{pmatrix}$$

is a special solution of $Rx = b'$, and thus to $Ax = b$. In other words, we get a special solution by assigning the first r components of b' to the pivot variables and setting the nonpivot variables (the free variables) to zero.

We can also find a basis of the kernel (nullspace) of A using F. If $x = (u, v)$ is in the kernel of A, with $u \in \mathbb{R}^r$ and $v \in \mathbb{R}^{n-r}$, then x is also in the kernel of R, which means that $Rx = 0$; that is,

$$\begin{pmatrix} I_r & F \\ 0_{m-r,r} & 0_{m-r,n-r} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u + Fv \\ 0_{m-r} \end{pmatrix} = \begin{pmatrix} 0_r \\ 0_{m-r} \end{pmatrix}.$$
Therefore, $u = -Fv$, and $\text{Ker}(A)$ consists of all vectors of the form

$$(-Fv) = (-F)_{n-r}v,$$

for any arbitrary $v \in \mathbb{R}^{n-r}$. It follows that the $n-r$ columns of the matrix

$$N = (-F)_{n-r}$$

form a basis of the kernel of A. This is because N contains the identity matrix I_{n-r} as a submatrix, so the columns of N are linearly independent. In summary, if N^1, \ldots, N^{n-r} are the columns of N, then the general solution of the equation $Ax = b$ is given by

$$x = \begin{pmatrix} d \\ 0_{n-r} \end{pmatrix} + x_{r+1}N^1 + \cdots + x_nN^{n-r},$$

where x_{r+1}, \ldots, x_n are the free variables; that is, the nonpivot variables.

In the general case where the columns corresponding to pivots are mixed with the columns corresponding to free variables, we find the special solution as follows. Let $i_1 < \cdots < i_r$ be the indices of the columns corresponding to pivots. Then, assign b^k_k to the pivot variable x_{i_k} for $k = 1, \ldots, r$, and set all other variables to 0. To find a basis of the kernel, we form the $n-r$ vectors N^k obtained as follows. Let $j_1 < \cdots < j_{n-r}$ be the indices of the columns corresponding to free variables. For every column j_k corresponding to a free variable $(1 \leq k \leq n-r)$, form the vector N^k defined so that the entries $N^k_{i_1}, \ldots, N^k_{i_r}$ are equal to the negatives of the first r entries in column j_k (flip the sign of these entries); let $N^k_{j_k} = 1$, and set all other entries to zero. Schematically, if the column of index j_k (corresponding to the free variable x_{j_k}) is

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_r \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$
then the vector N^k is given by

$$
\begin{pmatrix}
1 & 0 \\
\vdots & \vdots \\
\hat{i}_1 - 1 & 0 \\
\hat{i}_1 & -\alpha_1 \\
\hat{i}_1 + 1 & 0 \\
\vdots & \vdots \\
\hat{i}_r - 1 & 0 \\
\hat{i}_r & -\alpha_r \\
\hat{i}_r + 1 & 0 \\
\vdots & \vdots \\
\hat{j}_k - 1 & 0 \\
\hat{j}_k & 1 \\
\hat{j}_k + 1 & 0 \\
\vdots & \vdots \\
n & 0
\end{pmatrix}
$$

The presence of the 1 in position j_k guarantees that N^1, \ldots, N^{n-r} are linearly independent.

An illustration of the above method, consider the problem of finding a basis of the subspace V of $n \times n$ matrices $A \in M_n(\mathbb{R})$ satisfying the following properties:

1. The sum of the entries in every row has the same value (say c_1);

2. The sum of the entries in every column has the same value (say c_2).

It turns out that $c_1 = c_2$ and that the $2n - 2$ equations corresponding to the above conditions are linearly independent. We leave the proof of these facts as an interesting exercise. By the duality theorem, the dimension of the space V of matrices satisfying the above equations is $n^2 - (2n - 2)$. Let us consider the case $n = 4$. There are 6 equations, and the space V has dimension 10. The equations are

$$
a_{11} + a_{12} + a_{13} + a_{14} - a_{21} - a_{22} - a_{23} - a_{24} = 0
$$
$$
a_{21} + a_{22} + a_{23} + a_{24} - a_{31} - a_{32} - a_{33} - a_{34} = 0
$$
$$
a_{31} + a_{32} + a_{33} + a_{34} - a_{41} - a_{42} - a_{43} - a_{44} = 0
$$
$$
a_{11} + a_{21} + a_{31} + a_{41} - a_{12} - a_{22} - a_{32} - a_{42} = 0
$$
$$
a_{12} + a_{22} + a_{32} + a_{42} - a_{13} - a_{23} - a_{33} - a_{43} = 0
$$
$$
a_{13} + a_{23} + a_{33} + a_{43} - a_{14} - a_{24} - a_{34} - a_{44} = 0,
$$
and the corresponding matrix is

$$A = \begin{pmatrix}
1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & -1 \\
\end{pmatrix}.$$

The result of performing the reduction to row echelon form yields the following matrix in rref:

$$U = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & -1 & 2 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
\end{pmatrix}.$$

The list pivlist of indices of the pivot variables and the list freelist of indices of the free variables is given by

$$\text{pivlist} = (1, 2, 3, 4, 5, 9),$$

$$\text{freelist} = (6, 7, 8, 10, 11, 12, 13, 14, 15, 16).$$

After applying the algorithm to find a basis of the kernel of U, we find the following 16×10 matrix

$$BK = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & -2 & -1 & -1 & -1 \\
-1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & -1 & 0 & 0 & -1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & -1 & 1 & 1 & 1 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}.$$

The reader should check that that in each column j of BK, the lowest 1 belongs to the row whose index is the jth element in freelist, and that in each column j of BK, the signs of
6.10. SOLVING LINEAR SYSTEMS USING RREF

the entries whose indices belong to pivlist are the flipped signs of the 6 entries in the column U corresponding to the jth index in freelist. We can now read off from BK the 4×4 matrices that form a basis of V: every column of BK corresponds to a matrix whose rows have been concatenated. We get the following 10 matrices:

$$M_1 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

$$M_4 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_5 = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_6 = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

$$M_7 = \begin{pmatrix} -2 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad M_8 = \begin{pmatrix} -1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad M_9 = \begin{pmatrix} -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

$$M_{10} = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Recall that a magic square is a square matrix that satisfies the two conditions about the sum of the entries in each row and in each column to be the same number, and also the additional two constraints that the main descending and the main ascending diagonals add up to this common number. Furthermore, the entries are also required to be positive integers. For $n = 4$, the additional two equations are

$$a_{22} + a_{33} + a_{44} - a_{12} - a_{13} - a_{14} = 0$$

$$a_{41} + a_{32} + a_{23} - a_{11} - a_{12} - a_{13} = 0,$$

and the 8 equations stating that a matrix is a magic square are linearly independent. Again, by running row elimination, we get a basis of the “generalized magic squares” whose entries are not restricted to be positive integers. We find a basis of 8 matrices. For $n = 3$, we find a basis of 3 matrices.

A magic square is said to be normal if its entries are precisely the integers $1, 2, \ldots, n^2$. Then, since the sum of these entries is

$$1 + 2 + 3 + \cdots + n^2 = \frac{n^2(n^2 + 1)}{2},$$
and since each row (and column) sums to the same number, this common value (the magic sum) is

\[\frac{n(n^2 + 1)}{2}. \]

It is easy to see that there are no normal magic squares for \(n = 2 \). For \(n = 3 \), the magic sum is 15, for \(n = 4 \), it is 34, and for \(n = 5 \), it is 65.

In the case \(n = 3 \), we have the additional condition that the rows and columns add up to 15, so we end up with a solution parametrized by two numbers \(x_1, x_2 \); namely,

\[
\begin{pmatrix}
 x_1 + x_2 - 5 & 10 - x_2 & 10 - x_1 \\
 20 - 2x_1 - x_2 & 5 & 2x_1 + x_2 - 10 \\
 x_1 & x_2 & 15 - x_1 - x_2
\end{pmatrix}.
\]

Thus, in order to find a normal magic square, we have the additional inequality constraints

\[
\begin{align*}
 x_1 + x_2 &> 5 \\
 x_1 &< 10 \\
 x_2 &< 10 \\
 2x_1 + x_2 &< 20 \\
 2x_1 + x_2 &> 10 \\
 x_1 &> 0 \\
 x_2 &> 0 \\
 x_1 + x_2 &< 15,
\end{align*}
\]

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the remarkable fact that there is a unique normal magic square (up to rotations and reflections):

\[
\begin{pmatrix}
 2 & 7 & 6 \\
 9 & 5 & 1 \\
 4 & 3 & 8
\end{pmatrix}.
\]

It turns out that there are 880 different normal magic squares for \(n = 4 \), and 275, 305, 224 normal magic squares for \(n = 5 \) (up to rotations and reflections). Even for \(n = 4 \), it takes a fair amount of work to enumerate them all! Finding the number of magic squares for \(n > 5 \) is an open problem!

6.11 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix \(A \), we can perform elementary columns operations, which means that we multiply \(A \) by elementary matrices on the right. As elementary row and column operations, \(P(i, k), E_{ij}; \beta, E_{i, \lambda} \) perform the following actions:
1. As a row operation, \(P(i, k) \) permutes row \(i \) and row \(k \).

2. As a column operation, \(P(i, k) \) permutes column \(i \) and column \(k \).

3. The inverse of \(P(i, k) \) is \(P(i, k) \) itself.

4. As a row operation, \(E_{i,j;\beta} \) adds \(\beta \) times row \(j \) to row \(i \).

5. As a column operation, \(E_{i,j;\beta} \) adds \(\beta \) times column \(i \) to column \(j \) (note the switch in the indices).

6. The inverse of \(E_{i,j;\beta} \) is \(E_{i,j;\beta} \).

7. As a row operation, \(E_{i,\lambda} \) multiplies row \(i \) by \(\lambda \).

8. As a column operation, \(E_{i,\lambda} \) multiplies column \(i \) by \(\lambda \).

9. The inverse of \(E_{i,\lambda} \) is \(E_{i,\lambda^{-1}} \).

We can define the notion of a reduced column echelon matrix and show that every matrix can be reduced to a unique reduced column echelon form. Now, given any \(m \times n \) matrix \(A \), if we first convert \(A \) to its reduced row echelon form \(R \), it is easy to see that we can apply elementary column operations that will reduce \(R \) to a matrix of the form

\[
\begin{pmatrix}
I_r & 0_{r,n-r} \\
0_{m-r,r} & 0_{m-r,n-r}
\end{pmatrix},
\]

where \(r \) is the number of pivots (obtained during the row reduction). Therefore, for every \(m \times n \) matrix \(A \), there exist two sequences of elementary matrices \(E_1, \ldots, E_p \) and \(F_1, \ldots, F_q \), such that

\[
E_p \cdots E_1 AF_1 \cdots F_q = \begin{pmatrix}
I_r & 0_{r,n-r} \\
0_{m-r,r} & 0_{m-r,n-r}
\end{pmatrix}.
\]

The matrix on the right-hand side is called the rank normal form of \(A \). Clearly, \(r \) is the rank of \(A \). It is easy to see that the rank normal form also yields a proof of the fact that \(A \) and its transpose \(A^T \) have the same rank.

6.12 Transvections and Dilatations

In this section, we characterize the linear isomorphisms of a vector space \(E \) that leave every vector in some hyperplane fixed. These maps turn out to be the linear maps that are represented in some suitable basis by elementary matrices of the form \(E_{i,j;\beta} \) (transvections) or \(E_{i,\lambda} \) (dilatations). Furthermore, the transvections generate the group \(\text{SL}(E) \), and the dilatations generate the group \(\text{GL}(E) \).
Let H be any hyperplane in E, and pick some (nonzero) vector $v \in E$ such that $v \notin H$, so that

$$E = H \oplus Kv.$$

Assume that $f: E \to E$ is a linear isomorphism such that $f(u) = u$ for all $u \in H$, and that f is not the identity. We have

$$f(v) = h + \alpha v, \quad \text{for some } h \in H \text{ and some } \alpha \in K,$$

with $\alpha \neq 0$, because otherwise we would have $f(v) = h = f(h)$ since $h \in H$, contradicting the injectivity of f ($v \neq h$ since $v \notin H$). For any $x \in E$, if we write

$$x = y + tv, \quad \text{for some } y \in H \text{ and some } t \in K,$$

then

$$f(x) = f(y) + f(tv) = y + tf(v) = y + th + t\alpha v,$$

and since $\alpha x = \alpha y + t\alpha v$, we get

$$f(x) - \alpha x = (1 - \alpha)y + th$$
$$f(x) - x = t(h + (\alpha - 1)v).$$

Observe that if E is finite-dimensional, by picking a basis of E consisting of v and basis vectors of H, then the matrix of f is a lower triangular matrix whose diagonal entries are all 1 except the first entry which is equal to α. Therefore, $\det(f) = \alpha$.

Case 1. $\alpha \neq 1$.

We have $f(x) = \alpha x$ iff $(1 - \alpha)y + th = 0$ iff

$$y = \frac{t}{\alpha - 1}h.$$

Then, if we let $w = h + (\alpha - 1)v$, for $y = (t/(\alpha - 1))h$, we have

$$x = y + tv = \frac{t}{\alpha - 1}h + tv = \frac{t}{\alpha - 1}(h + (\alpha - 1)v) = \frac{t}{\alpha - 1}w,$$

which shows that $f(x) = \alpha x$ iff $x \in Kw$. Note that $w \notin H$, since $\alpha \neq 1$ and $v \notin H$. Therefore,

$$E = H \oplus Kw,$$

and f is the identity on H and a magnification by α on the line $D = Kw$.

Definition 6.2. Given a vector space E, for any hyperplane H in E, any nonzero vector $u \in E$ such that $u \notin H$, and any scalar $\alpha \neq 0, 1$, a linear map f such that $f(x) = x$ for all $x \in H$ and $f(x) = \alpha x$ for every $x \in D = Ku$ is called a dilatation of hyperplane H, direction D, and scale factor α.
6.12. TRANSVECTIONS AND DILATATIONS

If π_H and π_D are the projections of E onto H and D, then we have

$$f(x) = \pi_H(x) + \alpha \pi_D(x).$$

The inverse of f is given by

$$f^{-1}(x) = \pi_H(x) + \alpha^{-1} \pi_D(x).$$

When $\alpha = -1$, we have $f^2 = \text{id}$, and f is a symmetry about the hyperplane H in the direction D.

Case 2. $\alpha = 1$.

In this case,

$$f(x) - x = th,$$

that is, $f(x) - x \in Kh$ for all $x \in E$. Assume that the hyperplane H is given as the kernel of some linear form φ, and let $a = \varphi(v)$. We have $a \neq 0$, since $v \notin H$. For any $x \in E$, we have

$$\varphi(x - a^{-1} \varphi(x)v) = \varphi(x) - a^{-1} \varphi(x) \varphi(v) = \varphi(x) - \varphi(x) = 0,$$

which shows that $x - a^{-1} \varphi(x)v \in H$ for all $x \in E$. Since every vector in H is fixed by f, we get

$$x - a^{-1} \varphi(x)v = f(x - a^{-1} \varphi(x)v) = f(x) - a^{-1} \varphi(x)f(v),$$

so

$$f(x) = x + \varphi(x)(f(a^{-1}v) - a^{-1}v).$$

Since $f(z) - z \in Kh$ for all $z \in E$, we conclude that $u = f(a^{-1}v) - a^{-1}v = \beta h$ for some $\beta \in K$, so $\varphi(u) = 0$, and we have

$$f(x) = x + \varphi(x)u, \quad \varphi(u) = 0. \quad (\ast)$$

A linear map defined as above is denoted by $\tau_{\varphi,u}$.

Conversely for any linear map $f = \tau_{\varphi,u}$ given by equation (\ast), where φ is a nonzero linear form and u is some vector $u \in E$ such that $\varphi(u) = 0$, if $u = 0$ then f is the identity, so assume that $u \neq 0$. If so, we have $f(x) = x$ iff $\varphi(x) = 0$, that is, iff $x \in H$. We also claim that the inverse of f is obtained by changing u to $-u$. Actually, we check the slightly more general fact that

$$\tau_{\varphi,u} \circ \tau_{\varphi,v} = \tau_{\varphi,u+v}.$$

Indeed, using the fact that $\varphi(v) = 0$, we have

$$\tau_{\varphi,u}(\tau_{\varphi,v}(x)) = \tau_{\varphi,v}(x) + \varphi(\tau_{\varphi,v}(v))u$$

$$= \tau_{\varphi,v}(x) + (\varphi(x) + \varphi(x) \varphi(v))u$$

$$= \tau_{\varphi,v}(x) + \varphi(x)u$$

$$= x + \varphi(x)v + \varphi(x)u$$

$$= x + \varphi(x)(u + v).$$
For \(v = -u \), we have \(\tau_{\varphi,u+v} = \varphi_{\varphi,0} = \text{id} \), so \(\tau_{\varphi,-u}^{-1} = \tau_{\varphi,-u} \), as claimed.

Therefore, we proved that every linear isomorphism of \(E \) that leaves every vector in some hyperplane \(H \) fixed and has the property that \(f(x) - x \in H \) for all \(x \in E \) is given by a map \(\tau_{\varphi,u} \) as defined by equation (\(*\)), where \(\varphi \) is some nonzero linear form defining \(H \) and \(u \) is some vector in \(H \). We have \(\tau_{\varphi,u} = \text{id} \) iff \(u = 0 \).

Definition 6.3. Given any hyperplane \(H \) in \(E \), for any nonzero nonlinear form \(\varphi \in E^* \) defining \(H \) (which means that \(H = \ker(\varphi) \)) and any nonzero vector \(u \in H \), the linear map \(\tau_{\varphi,u} \) given by

\[
\tau_{\varphi,u}(x) = x + \varphi(x)u, \quad \varphi(u) = 0,
\]

for all \(x \in E \) is called a transvection of hyperplane \(H \) and direction \(u \). The map \(\tau_{\varphi,u} \) leaves every vector in \(H \) fixed, and \(f(x) - x \in Ku \) for all \(x \in E \).

The above arguments show the following result.

Proposition 6.20. Let \(f: E \to E \) be a bijective linear map and assume that \(f \neq \text{id} \) and that \(f(x) = x \) for all \(x \in H \), where \(H \) is some hyperplane in \(E \). If there is some nonzero vector \(u \in E \) such that \(u \notin H \) and \(f(u) - u \in H \), then \(f \) is a transvection of hyperplane \(H \); otherwise, \(f \) is a dilatation of hyperplane \(H \).

Proof. Using the notation as above, for some \(v \notin H \), we have \(f(v) = h + \alpha v \) with \(\alpha \neq 0 \), and write \(u = y + tv \) with \(y \in H \) and \(t \neq 0 \) since \(u \notin H \). If \(f(u) - u \in H \), from

\[
f(u) - u = t(h + (\alpha - 1)v),
\]

we get \((\alpha - 1)v \in H \), and since \(v \notin H \), we must have \(\alpha = 1 \), and we proved that \(f \) is a transvection. Otherwise, \(\alpha \neq 0,1 \), and we proved that \(f \) is a dilatation. \(\square \)

If \(E \) is finite-dimensional, then \(\alpha = \det(f) \), so we also have the following result.

Proposition 6.21. Let \(f: E \to E \) be a bijective linear map of a finite-dimensional vector space \(E \) and assume that \(f \neq \text{id} \) and that \(f(x) = x \) for all \(x \in H \), where \(H \) is some hyperplane in \(E \). If \(\det(f) = 1 \), then \(f \) is a transvection of hyperplane \(H \); otherwise, \(f \) is a dilatation of hyperplane \(H \).

Suppose that \(f \) is a dilatation of hyperplane \(H \) and direction \(u \), and say \(\det(f) = \alpha \neq 0,1 \). Pick a basis \((u,e_2,\ldots,e_n) \) of \(E \) where \((e_2,\ldots,e_n) \) is a basis of \(H \). Then, the matrix of \(f \) is of the form

\[
\begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}.
\]
which is an elementary matrix of the form $E_{1,\alpha}$. Conversely, it is clear that every elementary matrix of the form $E_{i,\alpha}$ with $\alpha \neq 0, 1$ is a dilatation.

Now, assume that f is a transvection of hyperplane H and direction $u \in H$. Pick some $v \notin H$, and pick some basis (u, e_3, \ldots, e_n) of H, so that (v, u, e_3, \ldots, e_n) is a basis of E. Since $f(v) - v \in Ku$, the matrix of f is of the form

$$
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
\alpha & 1 & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix},
$$

which is an elementary matrix of the form $E_{2,1,\alpha}$. Conversely, it is clear that every elementary matrix of the form $E_{i,j,\alpha}$ ($\alpha \neq 0$) is a transvection.

The following proposition is an interesting exercise that requires good mastery of the elementary row operations $E_{i,j,\beta}$.

Proposition 6.22. Given any invertible $n \times n$ matrix A, there is a matrix S such that

$$SA = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \alpha \end{pmatrix} = E_{n,\alpha},$$

with $\alpha = \det(A)$, and where S is a product of elementary matrices of the form $E_{i,j,\beta}$; that is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 6.23. If the field K is not of characteristic 2, then every transvection f of hyperplane H can be written as $f = d_2 \circ d_1$, where d_1, d_2 are dilatations of hyperplane H, where the direction of d_1 can be chosen arbitrarily.

Proof. Pick some dilatation d_1 of hyperplane H and scale factor $\alpha \neq 0, 1$. Then, $d_2 = f \circ d_1^{-1}$ leaves every vector in H fixed, and $\det(d_2) = \alpha^{-1} \neq 1$. By Proposition 6.21, the linear map d_2 is a dilatation of hyperplane H, and we have $f = d_2 \circ d_1$, as claimed. \qed

Observe that in Proposition 6.23, we can pick $\alpha = -1$; that is, every transvection of hyperplane H is the compositions of two symmetries about the hyperplane H, one of which can be picked arbitrarily.

Remark: Proposition 6.23 holds as long as $K \neq \{0, 1\}$.

The following important result is now obtained.

Theorem 6.24. Let E be any finite-dimensional vector space over a field K of characteristic not equal to 2. Then, the group $\text{SL}(E)$ is generated by the transvections, and the group $\text{GL}(E)$ is generated by the dilatations.
Proof. Consider any \(f \in \text{SL}(E) \), and let \(A \) be its matrix in any basis. By Proposition 6.22, there is a matrix \(S \) such that

\[
SA = \begin{pmatrix} I_{n-1} & 0 \\ 0 & \alpha \end{pmatrix} = E_{n,\alpha},
\]

with \(\alpha = \det(A) \), and where \(S \) is a product of elementary matrices of the form \(E_{i,j;\beta} \). Since \(\det(A) = 1 \), we have \(\alpha = 1 \), and the result is proved. Otherwise, \(E_{n,\alpha} \) is a dilatation, \(S \) is a product of transvections, and by Proposition 6.23, every transvection is the composition of two dilatations, so the second result is also proved.

We conclude this section by proving that any two transvections are conjugate in \(\text{GL}(E) \). Let \(\tau_{\varphi,u} \ (u \neq 0) \) be a transvection and let \(g \in \text{GL}(E) \) be any invertible linear map. We have

\[
(g \circ \tau_{\varphi,u} \circ g^{-1})(x) = g(g^{-1}(x) + \varphi(g^{-1}(x)))u = x + \varphi(g^{-1}(x))g(u).
\]

Let us find the hyperplane determined by the linear form \(x \mapsto \varphi(g^{-1}(x)) \). This is the set of vectors \(x \in E \) such that \(\varphi(g^{-1}(x)) = 0 \), which holds iff \(g^{-1}(x) \in H \) iff \(x \in g(H) \). Therefore, \(\ker(\varphi \circ g^{-1}) = g(H) = H' \), and we have \(g(u) \in g(H) = H' \), so \(g \circ \tau_{\varphi,u} \circ g^{-1} \) is the transvection of hyperplane \(H' = g(H) \) and direction \(u' = g(u) \) (with \(u' \in H' \)).

Conversely, let \(\tau_{\psi,u'} \) be some transvection \((u' \neq 0)\). Pick some vector \(v, v' \) such that \(\varphi(v) = \psi(v') = 1 \), so that

\[
E = H \oplus K v = H' \oplus v'.
\]

There is a linear map \(g \in \text{GL}(E) \) such that \(g(u) = u' \), \(g(v) = v' \), and \(g(H) = H' \). To define \(g \), pick a basis \((v,u,e_2,\ldots,e_{n-1})\) where \((u,e_2,\ldots,e_{n-1})\) is a basis of \(H \) and pick a basis \((v',u',e_2',\ldots,e_{n-1}')\) where \((u',e_2',\ldots,e_{n-1}')\) is a basis of \(H' \); then \(g \) is defined so that \(g(v) = v' \), \(g(u) = u' \), and \(g(e_i) = g(e'_i) \), for \(i = 2,\ldots,n-1 \). If \(n = 2 \), then \(e_i \) and \(e'_i \) are missing. Then, we have

\[
(g \circ \tau_{\varphi,u} \circ g^{-1})(x) = x + \varphi(g^{-1}(x))u'.
\]

Now, \(\varphi \circ g^{-1} \) also determines the hyperplane \(H' = g(H) \), so we have \(\varphi \circ g^{-1} = \lambda \psi \) for some nonzero \(\lambda \) in \(K \). Since \(v' = g(v) \), we get

\[
\varphi(v) = \varphi \circ g^{-1}(v') = \lambda \psi(v'),
\]

and since \(\varphi(v) = \psi(v') = 1 \), we must have \(\lambda = 1 \). It follows that

\[
(g \circ \tau_{\varphi,u} \circ g^{-1})(x) = x + \psi(x)u' = \tau_{\psi,u'}(x).
\]

In summary, we proved almost all parts the following result.
Proposition 6.25. Let E be any finite-dimensional vector space. For every transvection $\tau_{\varphi,u}$ ($u \neq 0$) and every linear map $g \in \text{GL}(E)$, the map $g \circ \tau_{\varphi,u} \circ g^{-1}$ is the transvection of hyperplane $g(H)$ and direction $g(u)$ (that is, $g \circ \tau_{\varphi,u} \circ g^{-1} = \tau_{\varphi \circ g^{-1}, g(u)}$). For every other transvection $\tau_{\psi,u'}$ ($u' \neq 0$), there is some $g \in \text{GL}(E)$ such $\tau_{\psi,u'} = g \circ \tau_{\varphi,u} \circ g^{-1}$; in other words any two transvections ($\neq \text{id}$) are conjugate in $\text{GL}(E)$. Moreover, if $n \geq 3$, then the linear isomorphism g as above can be chosen so that $g \in \text{SL}(E)$.

Proof. We just need to prove that if $n \geq 3$, then for any two transvections $\tau_{\varphi,u}$ and $\tau_{\psi,u'}$ ($u, u' \neq 0$), there is some $g \in \text{SL}(E)$ such that $\tau_{\psi,u'} = g \circ \tau_{\varphi,u} \circ g^{-1}$. As before, we pick a basis $(v, u, e_2, \ldots, e_{n-1})$ where $(u, e_2, \ldots, e_{n-1})$ is a basis of H, we pick a basis $(v', u', e'_2, \ldots, e'_{n-1})$ where $(u', e'_2, \ldots, e'_{n-1})$ is a basis of H', and we define g as the unique linear map such that $g(v) = v'$, $g(u) = u'$, and $g(e_i) = e'_i$, for $i = 1, \ldots, n-1$. But, in this case, both H and $H' = g(H)$ have dimension at least 2, so in any basis of H' including u', there is some basis vector e'_2 independent of u', and we can rescale e'_2 in such a way that the matrix of g over the two bases has determinant $+1$. \hfill \qed

6.13 Summary

The main concepts and results of this chapter are listed below:

- One does not solve (large) linear systems by computing determinants.
- Upper-triangular (lower-triangular) matrices.
- Solving by back-substitution (forward-substitution).
- Gaussian elimination.
- Permuting rows.
- The pivot of an elimination step; pivoting.
- Transposition matrix; elementary matrix.
- The Gaussian elimination theorem (Theorem 6.1).
- Gauss-Jordan factorization.
- LU-factorization; Necessary and sufficient condition for the existence of an LU-factorization (Proposition 6.2).
- LDU-factorization.
- “PA = LU theorem” (Theorem 6.5).
- LDL$^\top$-factorization of a symmetric matrix.
• Avoiding small pivots: partial pivoting; complete pivoting.

• Gaussian elimination of tridiagonal matrices.

• LU-factorization of tridiagonal matrices.

• Symmetric positive definite matrices (SPD matrices).

• Cholesky factorization (Theorem 6.10).

• Criteria for a symmetric matrix to be positive definite; Sylvester’s criterion.

• Reduced row echelon form.

• Reduction of a rectangular matrix to its row echelon form.

• Using the reduction to row echelon form to decide whether a system \(Ax = b \) is solvable, and to find its solutions, using a special solution and a basis of the homogeneous system \(Ax = 0 \).

• Magic squares.

• Transvections and dilatations.
Chapter 7

Vector Norms and Matrix Norms

7.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order to define the convergence of sequences of vectors or matrices, we can use the notion of a norm. Recall that \(\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x \geq 0 \} \). Also recall that if \(z = a + ib \in \mathbb{C} \) is a complex number, with \(a, b \in \mathbb{R} \), then \(\bar{z} = a - ib \) and \(|z| = \sqrt{z\bar{z}} = \sqrt{a^2 + b^2} \) (\(|z| \) is the modulus of \(z \)).

Definition 7.1. Let \(E \) be a vector space over a field \(K \), where \(K \) is either the field \(\mathbb{R} \) of reals, or the field \(\mathbb{C} \) of complex numbers. A **norm** on \(E \) is a function \(\| \cdot \| : E \to \mathbb{R}_+ \), assigning a nonnegative real number \(\| u \| \) to any vector \(u \in E \), and satisfying the following conditions for all \(x, y, z \in E \):

\[
\begin{align*}
\text{(N1)} \quad & \| x \| \geq 0, \text{ and } \| x \| = 0 \text{ iff } x = 0. & \text{(positivity)} \\
\text{(N2)} \quad & \| \lambda x \| = |\lambda| \| x \|. & \text{(homogeneity (or scaling))} \\
\text{(N3)} \quad & \| x + y \| \leq \| x \| + \| y \|. & \text{(triangle inequality)}
\end{align*}
\]

A vector space \(E \) together with a norm \(\| \cdot \| \) is called a **normed vector space**.

By (N2), setting \(\lambda = -1 \), we obtain

\[
\| -x \| = \| (-1) x \| = | -1 | \| x \| = \| x \| ;
\]

that is, \(\| -x \| = \| x \| \). From (N3), we have

\[
\| x \| = \| x - y + y \| \leq \| x - y \| + \| y \| ,
\]

which implies that

\[
\| x \| - \| y \| \leq \| x - y \| .
\]

By exchanging \(x \) and \(y \) and using the fact that by (N2),

\[
\| y - x \| = \| -(x - y) \| = \| x - y \| ,
\]

207
we also have

\[\|y\| - \|x\| \leq \|x - y\|. \]

Therefore,

\[\|\| x \| - \| y \| \| \leq \| x - y \|, \quad \text{for all } x, y \in E. \] \tag{*}

Observe that setting \(\lambda = 0 \) in (N2), we deduce that \(\|0\| = 0 \) without assuming (N1). Then, by setting \(y = 0 \) in (*), we obtain

\[\|\| x \| \| \leq \| x \|, \quad \text{for all } x \in E. \]

Therefore, the condition \(\|x\| \geq 0 \) in (N1) follows from (N2) and (N3), and (N1) can be replaced by the weaker condition

(N1’) For all \(x \in E \), if \(\|x\| = 0 \) then \(x = 0 \),

A function \(\|\| : E \to \mathbb{R} \) satisfying axioms (N2) and (N3) is called a seminorm. From the above discussion, a seminorm also has the properties

\[\|x\| \geq 0 \text{ for all } x \in E, \text{ and } \|0\| = 0. \]

However, there may be nonzero vectors \(x \in E \) such that \(\|x\| = 0 \). Let us give some examples of normed vector spaces.

Example 7.1.

1. Let \(E = \mathbb{R} \), and \(\|x\| = |x| \), the absolute value of \(x \).
2. Let \(E = \mathbb{C} \), and \(\|z\| = |z| \), the modulus of \(z \).
3. Let \(E = \mathbb{R}^n \) (or \(E = \mathbb{C}^n \)). There are three standard norms. For every \((x_1, \ldots, x_n) \in E \), we have the norm \(\|x\|_1 \), defined such that,

\[\|x\|_1 = |x_1| + \cdots + |x_n|, \]

we have the Euclidean norm \(\|x\|_2 \), defined such that,

\[\|x\|_2 = (|x_1|^2 + \cdots + |x_n|^2)^{\frac{1}{2}}, \]

and the sup-norm \(\|x\|_\infty \), defined such that,

\[\|x\|_\infty = \max\{|x_i| \mid 1 \leq i \leq n\}. \]

More generally, we define the \(\ell_p \)-norm (for \(p \geq 1 \)) by

\[\|x\|_p = (|x_1|^p + \cdots + |x_n|^p)^{\frac{1}{p}}. \]

There are other norms besides the \(\ell_p \)-norms. Here are some examples.
7.1. NORMED VECTOR SPACES

1. For $E = \mathbb{R}^2$,
 \[\|(u_1, u_2)\| = |u_1| + 2|u_2|\].

2. For $E = \mathbb{R}^2$,
 \[\|(u_1, u_2)\| = ((u_1 + u_2)^2 + u_1^2)^{1/2}\].

3. For $E = \mathbb{C}^2$,
 \[\|(u_1, u_2)\| = |u_1 + iu_2| + |u_1 - iu_2|\].

The reader should check that they satisfy all the axioms of a norm.

Some work is required to show the triangle inequality for the ℓ_p-norm.

Proposition 7.1. If E is a finite-dimensional vector space over \mathbb{R} or \mathbb{C}, for every real number $p \geq 1$, the ℓ_p-norm is indeed a norm.

Proof. The cases $p = 1$ and $p = \infty$ are easy and left to the reader. If $p > 1$, then let $q > 1$ such that \(\frac{1}{p} + \frac{1}{q} = 1\).

We will make use of the following fact: for all $\alpha, \beta \in \mathbb{R}$, if $\alpha, \beta \geq 0$, then
\[
\alpha\beta \leq \frac{\alpha^p}{p} + \frac{\beta^q}{q}. \tag{*}
\]

To prove the above inequality, we use the fact that the exponential function $t \mapsto e^t$ satisfies the following convexity inequality:
\[
e^{\theta x + (1-\theta)y} \leq \theta e^x + (1 - \theta)e^y,
\]
for all $x, y \in \mathbb{R}$ and all θ with $0 \leq \theta \leq 1$.

Since the case $\alpha\beta = 0$ is trivial, let us assume that $\alpha > 0$ and $\beta > 0$. If we replace θ by $1/p$, x by $p \log \alpha$ and y by $q \log \beta$, then we get
\[
e^{\frac{1}{p}p \log \alpha + \frac{1}{q}q \log \beta} \leq \frac{1}{p}e^{p \log \alpha} + \frac{1}{q}e^{q \log \beta},
\]
which simplifies to
\[
\alpha\beta \leq \frac{\alpha^p}{p} + \frac{\beta^q}{q},
\]
as claimed.

We will now prove that for any two vectors $u, v \in E$, we have
\[
\sum_{i=1}^{n} |u_i v_i| \leq \|u\|_p \|v\|_q. \tag{**}
\]
CHAPTER 7. VECTOR NORMS AND MATRIX NORMS

Since the above is trivial if \(u = 0 \) or \(v = 0 \), let us assume that \(u \neq 0 \) and \(v \neq 0 \). Then, the inequality (*) with \(\alpha = \frac{|u_i|}{\|u\|_p} \) and \(\beta = \frac{|v_i|}{\|v\|_q} \) yields

\[
\frac{|u_iv_i|}{\|u\|_p \|v\|_q} \leq \frac{|u_i|^p}{p \|u\|_p^p} + \frac{|v_i|^q}{q \|v\|_q^q},
\]

for \(i = 1, \ldots, n \), and by summing up these inequalities, we get

\[
\sum_{i=1}^{n} |u_iv_i| \leq \|u\|_p \|v\|_q,
\]
as claimed. To finish the proof, we simply have to prove that property (N3) holds, since (N1) and (N2) are clear. Now, for \(i = 1, \ldots, n \), we can write

\[
(|u_i| + |v_i|)^p = |u_i|(|u_i| + |v_i|)^{p-1} + |v_i|(|u_i| + |v_i|)^{p-1},
\]
so that by summing up these equations we get

\[
\sum_{i=1}^{n} (|u_i| + |v_i|)^p = \sum_{i=1}^{n} |u_i|(|u_i| + |v_i|)^{p-1} + \sum_{i=1}^{n} |v_i|(|u_i| + |v_i|)^{p-1},
\]
and using the inequality (**), we get

\[
\sum_{i=1}^{n} (|u_i| + |v_i|)^p \leq (\|u\|_p + \|v\|_q) \left(\sum_{i=1}^{n} (|u_i| + |v_i|)^{(p-1)q} \right)^{1/q}.
\]

However, \(1/p + 1/q = 1 \) implies \(pq = p + q \), that is, \((p - 1)q = p \), so we have

\[
\sum_{i=1}^{n} (|u_i| + |v_i|)^p \leq (\|u\|_p + \|v\|_p) \left(\sum_{i=1}^{n} (|u_i| + |v_i|)^p \right)^{1/q},
\]
which yields

\[
\left(\sum_{i=1}^{n} (|u_i| + |v_i|)^p \right)^{1/p} \leq \|u\|_p + \|v\|_p.
\]

Since \(|u_i + v_i| \leq |u_i| + |v_i| \), the above implies the triangle inequality \(\|u + v\|_p \leq \|u\|_p + \|v\|_p \), as claimed.

For \(p > 1 \) and \(1/p + 1/q = 1 \), the inequality

\[
\sum_{i=1}^{n} |u_iv_i| \leq \left(\sum_{i=1}^{n} |u_i|^p \right)^{1/p} \left(\sum_{i=1}^{n} |v_i|^q \right)^{1/q}
\]
is known as Hölder’s inequality. For \(p = 2 \), it is the Cauchy–Schwarz inequality.
Actually, if we define the Hermitian inner product $\langle - , - \rangle$ on \mathbb{C}^n by
\[
\langle u, v \rangle = \sum_{i=1}^{n} u_i \overline{v}_i,
\]
where $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$, then
\[
|\langle u, v \rangle| \leq \sum_{i=1}^{n} |u_i \overline{v}_i| = \sum_{i=1}^{n} |u_i v_i|,
\]
so Hölder’s inequality implies the following inequality.

Corollary 7.2. (Hölder’s inequality) For any real numbers p, q, such that $p, q \geq 1$ and
\[
\frac{1}{p} + \frac{1}{q} = 1,
\]
(with $q = +\infty$ if $p = 1$ and $p = +\infty$ if $q = 1$), we have the inequality
\[
|\langle u, v \rangle| \leq \|u\|_p \|v\|_q, \quad u, v \in \mathbb{C}^n.
\]

For $p = 2$, this is the standard Cauchy–Schwarz inequality. The triangle inequality for the ℓ_p-norm,
\[
\left(\sum_{i=1}^{n} \left| u_i + v_i \right|^p \right)^{1/p} \leq \left(\sum_{i=1}^{n} |u_i|^p \right)^{1/p} + \left(\sum_{i=1}^{n} |v_i|^q \right)^{1/q},
\]
is known as Minkowski’s inequality.

When we restrict the Hermitian inner product to real vectors, $u, v \in \mathbb{R}^n$, we get the Euclidean inner product
\[
\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i.
\]
It is very useful to observe that if we represent (as usual) $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ (in \mathbb{R}^n) by column vectors, then their Euclidean inner product is given by
\[
\langle u, v \rangle = u^\top v = v^\top u,
\]
and when $u, v \in \mathbb{C}^n$, their Hermitian inner product is given by
\[
\langle u, v \rangle = v^* u = \overline{u^* v}.
\]
In particular, when $u = v$, in the complex case we get
\[
\|u\|_2^2 = u^* u,
\]
and in the real case, this becomes
\[\|u\|_2^2 = u^\top u. \]
As convenient as these notations are, we still recommend that you do not abuse them; the notation \(\langle u, v \rangle \) is more intrinsic and still “works” when our vector space is infinite dimensional.

Remark: If \(0 < p < 1 \), then \(x \mapsto \|x\|_p \) is not a norm because the triangle inequality fails. For example, consider \(x = (2, 0) \) and \(y = (0, 2) \). Then \(x + y = (2, 2) \), and we have \(\|x\|_p = (2^p + 0^p)^{1/p} = 2, \|y\|_p = (0^p + 2^p)^{1/p} = 2, \) and \(\|x + y\|_p = (2^p + 2^p)^{1/p} = 2^{(p+1)/p} \).

Thus
\[\|x + y\|_p = 2^{(p+1)/p}, \quad \|x\|_p + \|y\|_p = 4 = 2^2. \]
Since \(0 < p < 1 \), we have \(2p < p + 1 \), that is, \((p + 1)/p > 2 \), so \(2^{(p+1)/p} > 2^2 = 4 \), and the triangle inequality \(\|x + y\|_p \leq \|x\|_p + \|y\|_p \) fails.

Observe that
\[\|(1/2)x\|_p = (1/2) \|x\|_p = \|(1/2)y\|_p = (1/2) \|y\|_p = 1, \quad \|(1/2)(x + y)\|_p = 2^{1/p}, \]
and since \(p < 1 \), we have \(2^{1/p} > 2 \), so
\[\|(1/2)(x + y)\|_p = 2^{1/p} > 2 = (1/2) \|x\|_p + (1/2) \|y\|_p, \]
and the map \(x \mapsto \|x\|_p \) is not convex.

For \(p = 0 \), for any \(x \in \mathbb{R}^n \), we have
\[\|x\|_0 = |\{i \in \{1, \ldots, n\} | x_i \neq 0\}|, \]
the number of nonzero components of \(x \). The map \(x \mapsto \|x\|_0 \) is not a norm, this time because axiom (N2) fails. For example
\[\|(1, 0)\|_0 = \|(10, 0)\|_0 = 1 \neq 0 = 10 = 10 \|(1, 0)\|_0. \]
The map \(x \mapsto \|x\|_0 \) is also not convex. For example,
\[\|(1/2)(2, 2)\|_0 = \|(1, 1)\|_0 = 2, \]
and
\[\|(2, 0)\|_0 = \|(0, 2)\|_0 = 1, \]
but
\[\|(1/2)(2, 2)\|_0 = 2 > 1 = (1/2) \|(2, 0)\|_0 + (1/2) \|(0, 2)\|_0. \]

Nevertheless, the “zero-norm” \(x \mapsto \|x\|_0 \) is used in machine learning as a regularizing term which encourages sparsity, namely increases the number of zero components of the vector \(x \).

The following proposition is easy to show.
Proposition 7.3. The following inequalities hold for all \(x \in \mathbb{R}^n \) (or \(x \in \mathbb{C}^n \)):

\[
\|x\|_\infty \leq \|x\|_1 \leq n \|x\|_\infty,
\|x\|_\infty \leq \|x\|_2 \leq \sqrt{n} \|x\|_\infty,
\|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2.
\]

Proposition 7.3 is actually a special case of a very important result: in a finite-dimensional vector space, any two norms are equivalent.

Definition 7.2. Given any (real or complex) vector space \(E \), two norms \(\|\cdot\|_a \) and \(\|\cdot\|_b \) are equivalent iff there exists some positive reals \(C_1, C_2 > 0 \), such that

\[
\|u\|_a \leq C_1 \|u\|_b \quad \text{and} \quad \|u\|_b \leq C_2 \|u\|_a, \quad \text{for all} \ u \in E.
\]

Given any norm \(\|\cdot\| \) on a vector space of dimension \(n \), for any basis \((e_1, \ldots, e_n) \) of \(E \), observe that for any vector \(x = x_1 e_1 + \cdots + x_n e_n \), we have

\[
\|x\| = \|x_1 e_1 + \cdots + x_n e_n\| \leq |x_1| \|e_1\| + \cdots + |x_n| \|e_n\| \leq C(|x_1| + \cdots + |x_n|) = C \|x\|_1,
\]

with \(C = \max_{1 \leq i \leq n} \|e_i\| \) and

\[
\|x\|_1 = \|x_1 e_1 + \cdots + x_n e_n\| = |x_1| + \cdots + |x_n|.
\]

The above implies that

\[
|\|u\| - \|v\|| \leq \|u - v\| \leq C \|u - v\|_1,
\]

which means that the map \(u \mapsto \|u\| \) is continuous with respect to the norm \(\|\cdot\|_1 \).

Let \(S_1^{n-1} \) be the unit sphere with respect to the norm \(\|\cdot\|_1 \), namely

\[
S_1^{n-1} = \{ x \in E \mid \|x\|_1 = 1 \}.
\]

Now, \(S_1^{n-1} \) is a closed and bounded subset of a finite-dimensional vector space, so by Heine-Borel (or equivalently, by Bolzano-Weierstrass), \(S_1^{n-1} \) is compact. On the other hand, it is a well known result of analysis that any continuous real-valued function on a nonempty compact set has a minimum and a maximum, and that they are achieved. Using these facts, we can prove the following important theorem:

Theorem 7.4. If \(E \) is any real or complex vector space of finite dimension, then any two norms on \(E \) are equivalent.

Proof. It is enough to prove that any norm \(\|\cdot\| \) is equivalent to the 1-norm. We already proved that the function \(x \mapsto \|x\| \) is continuous with respect to the norm \(\|\cdot\|_1 \) and we observed that the unit sphere \(S_1^{n-1} \) is compact. Now, we just recalled that because the function \(f : x \mapsto \|x\| \) is continuous and because \(S_1^{n-1} \) is compact, the function \(f \) has a minimum \(m \) and a maximum
M, and because $\|x\|$ is never zero on S_{1}^{n-1}, we must have $m > 0$. Consequently, we just proved that if $\|x\|_{1} = 1$, then

$$0 < m \leq \|x\| \leq M,$$

so for any $x \in E$ with $x \neq 0$, we get

$$m \leq \|x/\|x\|_{1}\| \leq M,$$

which implies

$$m \|x\|_{1} \leq \|x\| \leq M \|x\|_{1}.$$

Since the above inequality holds trivially if $x = 0$, we just proved that $\| \|$ and $\|\|_{1}$ are equivalent, as claimed.

Remark: Let P be a $n \times n$ symmetric positive definite matrix. It is immediately verified that the map $x \mapsto \|x\|_{P}$ given by

$$\|x\|_{P} = (x^{\top}Px)^{1/2}$$

is a norm on \mathbb{R}^{n} called a quadratic norm. Using some convex analysis (the Löwner–John ellipsoid), it can be shown that any norm $\| \|$ on \mathbb{R}^{n} can be approximated by a quadratic norm in the sense that there is a quadratic norm $\|\|_{P}$ such that

$$\|x\|_{P} \leq \|x\| \leq \sqrt{n}\|x\|_{P} \quad \text{for all } x \in \mathbb{R}^{n};$$

see Boyd and Vandenberghe [11], Section 8.4.1.

Next, we will consider norms on matrices.

7.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces $M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{C})$ of square $n \times n$ matrices. Most results also hold for the spaces $M_{m,n}(\mathbb{R})$ and $M_{m,n}(\mathbb{C})$ of rectangular $m \times n$ matrices. Since $n \times n$ matrices can be multiplied, the idea behind matrix norms is that they should behave “well” with respect to matrix multiplication.

Definition 7.3. A matrix norm $\| \|$ on the space of square $n \times n$ matrices in $M_{n}(K)$, with $K = \mathbb{R}$ or $K = \mathbb{C}$, is a norm on the vector space $M_{n}(K)$, with the additional property called submultiplicativity that

$$\|AB\| \leq \|A\| \|B\|,$$

for all $A, B \in M_{n}(K)$. A norm on matrices satisfying the above property is often called a submultiplicative matrix norm.
Since $I^2 = I$, from $\|I\| = \|I^2\| \leq \|I\|^2$, we get $\|I\| \geq 1$, for every matrix norm.

Before giving examples of matrix norms, we need to review some basic definitions about matrices. Given any matrix $A = (a_{ij}) \in M_{m,n}(\mathbb{C})$, the conjugate \overline{A} of A is the matrix such that

$$\overline{A}_{ij} = \overline{a}_{ij}, \quad 1 \leq i \leq m, \ 1 \leq j \leq n.$$

The transpose of A is the $n \times m$ matrix A^\top such that

$$A^\top_{ij} = a_{ji}, \quad 1 \leq i \leq m, \ 1 \leq j \leq n.$$

The adjoint of A is the $n \times m$ matrix A^* such that

$$A^* = (A^\top)^\top.$$

When A is a real matrix, $A^* = A^\top$. A matrix $A \in M_n(\mathbb{C})$ is Hermitian if

$$A^* = A.$$

If A is a real matrix ($A \in M_n(\mathbb{R})$), we say that A is symmetric if

$$A^\top = A.$$

A matrix $A \in M_n(\mathbb{C})$ is normal if

$$AA^* = A^*A,$$

and if A is a real matrix, it is normal if

$$AA^\top = A^\top A.$$

A matrix $U \in M_n(\mathbb{C})$ is unitary if

$$UU^* = U^*U = I.$$

A real matrix $Q \in M_n(\mathbb{R})$ is orthogonal if

$$QQ^\top = Q^\top Q = I.$$

Given any matrix $A = (a_{ij}) \in M_n(\mathbb{C})$, the trace $\text{tr}(A)$ of A is the sum of its diagonal elements

$$\text{tr}(A) = a_{11} + \cdots + a_{nn}.$$

It is easy to show that the trace is a linear map, so that

$$\text{tr}(\lambda A) = \lambda \text{tr}(A)$$

and

$$\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B).$$

Moreover, if A is an $m \times n$ matrix and B is an $n \times m$ matrix, it is not hard to show that

$$\text{tr}(AB) = \text{tr}(BA).$$

We also review eigenvalues and eigenvectors. We content ourselves with definition involving matrices. A more general treatment will be given later on (see Chapter 13).
Definition 7.4. Given any square matrix $A \in M_n(\mathbb{C})$, a complex number $\lambda \in \mathbb{C}$ is an eigenvalue of A if there is some nonzero vector $u \in \mathbb{C}^n$, such that

$$Au = \lambda u.$$

If λ is an eigenvalue of A, then the nonzero vectors $u \in \mathbb{C}^n$ such that $Au = \lambda u$ are called eigenvectors of A associated with λ; together with the zero vector, these eigenvectors form a subspace of \mathbb{C}^n denoted by $E_\lambda(A)$, and called the eigenspace associated with λ.

Remark: Note that Definition 7.4 requires an eigenvector to be nonzero. A somewhat unfortunate consequence of this requirement is that the set of eigenvectors is not a subspace, since the zero vector is missing! On the positive side, whenever eigenvectors are involved, there is no need to say that they are nonzero. The fact that eigenvectors are nonzero is implicitly used in all the arguments involving them, so it seems safer (but perhaps not as elegant) to stipulate that eigenvectors should be nonzero.

If A is a square real matrix $A \in M_n(\mathbb{R})$, then we restrict Definition 7.4 to real eigenvalues $\lambda \in \mathbb{R}$ and real eigenvectors. However, it should be noted that although every complex matrix always has at least some complex eigenvalue, a real matrix may not have any real eigenvalues. For example, the matrix

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

has the complex eigenvalues i and $-i$, but no real eigenvalues. Thus, typically, even for real matrices, we consider complex eigenvalues.

Observe that $\lambda \in \mathbb{C}$ is an eigenvalue of A

iff $Au = \lambda u$ for some nonzero vector $u \in \mathbb{C}^n$

iff $(\lambda I - A)u = 0$

iff the matrix $\lambda I - A$ defines a linear map which has a nonzero kernel, that is,

iff $\lambda I - A$ not invertible.

However, from Proposition 5.11, $\lambda I - A$ is not invertible iff

$$\det(\lambda I - A) = 0.$$

Now, $\det(\lambda I - A)$ is a polynomial of degree n in the indeterminate λ, in fact, of the form

$$\lambda^n - \text{tr}(A)\lambda^{n-1} + \cdots + (-1)^n \det(A).$$

Thus, we see that the eigenvalues of A are the zeros (also called roots) of the above polynomial. Since every complex polynomial of degree n has exactly n roots, counted with their multiplicity, we have the following definition:
Definition 7.5. Given any square $n \times n$ matrix $A \in \mathbb{M}_n(\mathbb{C})$, the polynomial
\[
det(\lambda I - A) = \lambda^n - \text{tr}(A)\lambda^{n-1} + \cdots + (-1)^n \det(A)
\]
is called the *characteristic polynomial* of A. The n (not necessarily distinct) roots $\lambda_1, \ldots, \lambda_n$ of the characteristic polynomial are all the *eigenvalues* of A and constitute the *spectrum* of A. We let
\[
\rho(A) = \max_{1 \leq i \leq n} |\lambda_i|
\]
be the largest modulus of the eigenvalues of A, called the *spectral radius* of A.

Since the eigenvalue $\lambda_1, \ldots, \lambda_n$ of A are the zeros of the polynomial
\[
det(\lambda I - A) = \lambda^n - \text{tr}(A)\lambda^{n-1} + \cdots + (-1)^n \det(A),
\]
we deduce (see Section 13.1 for details) that
\[
\text{tr}(A) = \lambda_1 + \cdots + \lambda_n
\]
\[
det(A) = \lambda_1 \cdots \lambda_n.
\]

Proposition 7.5. For any matrix norm $\| \|$ on $\mathbb{M}_n(\mathbb{C})$ and for any square $n \times n$ matrix $A \in \mathbb{M}_n(\mathbb{C})$, we have
\[
\rho(A) \leq \|A\|.
\]

Proof. Let λ be some eigenvalue of A for which $|\lambda|$ is maximum, that is, such that $|\lambda| = \rho(A)$. If $u \neq 0$ is any eigenvector associated with λ and if U is the $n \times n$ matrix whose columns are all u, then $Au = \lambda u$ implies
\[
AU = \lambda U,
\]
and since
\[
|\lambda| \|U\| = \|\lambda U\| = \|AU\| \leq \|A\| \|U\|
\]
and $U \neq 0$, we have $\|U\| \neq 0$, and get
\[
\rho(A) = |\lambda| \leq \|A\|,
\]
as claimed. \qed

Proposition 7.5 also holds for any real matrix norm $\| \|$ on $\mathbb{M}_n(\mathbb{R})$ but the proof is more subtle and requires the notion of induced norm. We prove it after giving Definition 7.7.

Now, it turns out that if A is a real $n \times n$ symmetric matrix, then the eigenvalues of A are all real and there is some orthogonal matrix Q such that
\[
A = Q \text{diag}(\lambda_1, \ldots, \lambda_n) Q^\top,
\]
CHAPTER 7. VECTOR NORMS AND MATRIX NORMS

where \(\text{diag}(\lambda_1, \ldots, \lambda_n) \) denotes the matrix whose only nonzero entries (if any) are its diagonal entries, which are the (real) eigenvalues of \(A \). Similarly, if \(A \) is a complex \(n \times n \) Hermitian matrix, then the eigenvalues of \(A \) are all real and there is some unitary matrix \(U \) such that

\[
A = U \text{diag}(\lambda_1, \ldots, \lambda_n) U^*,
\]

where \(\text{diag}(\lambda_1, \ldots, \lambda_n) \) denotes the matrix whose only nonzero entries (if any) are its diagonal entries, which are the (real) eigenvalues of \(A \).

We now return to matrix norms. We begin with the so-called Frobenius norm, which is just the norm \(\| \cdot \|_2 \) on \(\mathbb{C}^{n^2} \), where the \(n \times n \) matrix \(A \) is viewed as the vector obtained by concatenating together the rows (or the columns) of \(A \). The reader should check that for any \(n \times n \) complex matrix \(A = (a_{ij}) \),

\[
\left(\sum_{i,j=1}^n |a_{ij}|^2 \right)^{1/2} = \sqrt{\text{tr}(A^*A)} = \sqrt{\text{tr}(AA^*)}.
\]

Definition 7.6. The Frobenius norm \(\| \cdot \|_F \) is defined so that for every square \(n \times n \) matrix \(A \in \mathbb{M}_n(\mathbb{C}) \),

\[
\| A \|_F = \left(\sum_{i,j=1}^n |a_{ij}|^2 \right)^{1/2} = \sqrt{\text{tr}(AA^*)} = \sqrt{\text{tr}(A^*A)}.
\]

The following proposition show that the Frobenius norm is a matrix norm satisfying other nice properties.

Proposition 7.6. The Frobenius norm \(\| \cdot \|_F \) on \(\mathbb{M}_n(\mathbb{C}) \) satisfies the following properties:

1. It is a matrix norm; that is, \(\| AB \|_F \leq \| A \|_F \| B \|_F \), for all \(A, B \in \mathbb{M}_n(\mathbb{C}) \).
2. It is unitarily invariant, which means that for all unitary matrices \(U, V \), we have

\[
\| A \|_F = \| UA \|_F = \| AV \|_F = \| UAV \|_F.
\]

3. \(\sqrt{\rho(A^*A)} \leq \| A \|_F \leq \sqrt{n} \sqrt{\rho(A^*A)} \), for all \(A \in \mathbb{M}_n(\mathbb{C}) \).

Proof. (1) The only property that requires a proof is the fact \(\| AB \|_F \leq \| A \|_F \| B \|_F \). This follows from the Cauchy–Schwarz inequality:

\[
\| AB \|_F^2 = \sum_{i,j=1}^n \left| \sum_{k=1}^n a_{ik} b_{kj} \right|^2 \\
\leq \sum_{i,j=1}^n \left(\sum_{h=1}^n |a_{ih}|^2 \right) \left(\sum_{k=1}^n |b_{kj}|^2 \right) \\
= \left(\sum_{i,h=1}^n |a_{ih}|^2 \right) \left(\sum_{k,j=1}^n |b_{kj}|^2 \right) = \| A \|_F^2 \| B \|_F^2.
\]
7.2. MATRIX NORMS

(2) We have

\[\|A\|_F^2 = \text{tr}(A^*A) = \text{tr}(VV^*A) = \text{tr}(V^*A^*AV) = \|AV\|_F^2, \]

and

\[\|A\|_F^2 = \text{tr}(A^*A) = \text{tr}(A^*U^*UA) = \|UA\|_F^2. \]

The identity

\[\|A\|_F = \|UA\|_F \]

follows from the previous two.

(3) It is well known that the trace of a matrix is equal to the sum of its eigenvalues. Furthermore, \(A^*A\) is symmetric positive semidefinite (which means that its eigenvalues are nonnegative), so \(\rho(A^*A)\) is the largest eigenvalue of \(A^*A\) and

\[\rho(A^*A) \leq \text{tr}(A^*A) \leq n\rho(A^*A), \]

which yields (3) by taking square roots.

\[\square \]

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm or the Schur norm. So many famous names associated with such a simple thing!

We now give another method for obtaining matrix norms using subordinate norms. First, we need a proposition that shows that in a finite-dimensional space, the linear map induced by a matrix is bounded, and thus continuous.

Proposition 7.7. For every norm \(\|\cdot\|\) on \(\mathbb{C}^n\) (or \(\mathbb{R}^n\)), for every matrix \(A \in M_n(\mathbb{C})\) (or \(A \in M_n(\mathbb{R})\)), there is a real constant \(C_A \geq 0\), such that

\[\|Au\| \leq C_A \|u\|, \]

for every vector \(u \in \mathbb{C}^n\) (or \(u \in \mathbb{R}^n\) if \(A\) is real).

Proof. For every basis \((e_1, \ldots, e_n)\) of \(\mathbb{C}^n\) (or \(\mathbb{R}^n\)), for every vector \(u = u_1e_1 + \cdots + u_ne_n\), we have

\[\|Au\| = \|u_1A(e_1) + \cdots + u_nA(e_n)\| \leq |u_1| \|A(e_1)\| + \cdots + |u_n| \|A(e_n)\| \leq C_1(|u_1| + \cdots + |u_n|) = C_1 \|u\|_1, \]

where \(C_1 = \max_{1 \leq i \leq n} \|A(e_i)\|\). By Theorem 7.4, the norms \(\|\cdot\|\) and \(\|\cdot\|_1\) are equivalent, so there is some constant \(C_2 > 0\) so that \(\|u\|_1 \leq C_2 \|u\|\) for all \(u\), which implies that

\[\|Au\| \leq C_A \|u\|, \]

where \(C_A = C_1C_2\).

\[\square \]
Proposition 7.7 says that every linear map on a finite-dimensional space is *bounded*. This implies that every linear map on a finite-dimensional space is continuous. Actually, it is not hard to show that a linear map on a normed vector space E is bounded iff it is continuous, regardless of the dimension of E.

Proposition 7.7 implies that for every matrix $A \in M_n(\mathbb{C})$ (or $A \in M_n(\mathbb{R})$),

$$\sup_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} \leq C_A.$$

Now, since $\|\lambda u\| = |\lambda| \|u\|$, for every nonzero vector x, we have

$$\frac{\|Ax\|}{\|x\|} = \frac{\|x\| \|A(x/\|x\|)\|}{\|x\|} = \|A(x/\|x\|)\|,$$

which implies that

$$\sup_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{x \in \mathbb{C}^n, \|x\|=1} \|Ax\|.$$

Similarly

$$\sup_{x \in \mathbb{R}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{x \in \mathbb{R}^n, \|x\|=1} \|Ax\|.$$

The above considerations justify the following definition.

Definition 7.7. If $\|\|$ is any norm on \mathbb{C}^n, we define the function $\|\|$ on $M_n(\mathbb{C})$ by

$$\|A\| = \sup_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{x \in \mathbb{C}^n, \|x\|=1} \|Ax\|.$$

The function $A \mapsto \|A\|$ is called the *subordinate matrix norm* or *operator norm* induced by the norm $\|\|$.

It is easy to check that the function $A \mapsto \|A\|$ is indeed a norm, and by definition, it satisfies the property

$$\|Ax\| \leq \|A\| \|x\|,$$

for all $x \in \mathbb{C}^n$. A norm $\|\|$ on $M_n(\mathbb{C})$ satisfying the above property is said to be *subordinate* to the vector norm $\|\|$ on \mathbb{C}^n. As a consequence of the above inequality, we have

$$\|ABx\| \leq \|A\| \|Bx\| \leq \|A\| \|B\| \|x\|,$$

for all $x \in \mathbb{C}^n$, which implies that

$$\|AB\| \leq \|A\| \|B\|$$

for all $A, B \in M_n(\mathbb{C})$.

showing that \(A \mapsto \|A\| \) is a matrix norm (it is submultiplicative).

Observe that the operator norm is also defined by
\[
\|A\| = \inf\{\lambda \in \mathbb{R} \mid \|Ax\| \leq \lambda \|x\|, \text{ for all } x \in \mathbb{C}^n\}.
\]
Since the function \(x \mapsto \|Ax\| \) is continuous (because \(|\|Ay\| - \|Ax\|| \leq \|Ay - Ax\| \leq C_\|\|\|x - y\||\) and the unit sphere \(S^{n-1} = \{x \in \mathbb{C}^n \mid \|x\| = 1\} \) is compact, there is some \(x \in \mathbb{C}^n \) such that \(\|x\| = 1 \) and
\[
\|Ax\| = \|A\|.
\]
Equivalently, there is some \(x \in \mathbb{C}^n \) such that \(x \neq 0 \) and
\[
\|Ax\| = \|A\| \|x\|.
\]
The definition of an operator norm also implies that \(\|I\| = 1 \).

The above shows that the Frobenius norm is not a subordinate matrix norm (why?). The notion of subordinate norm can be slightly generalized.

Definition 7.8. If \(K = \mathbb{R} \) or \(K = \mathbb{C} \), for any norm \(\| \| \) on \(M_{m,n}(K) \), and for any two norms \(\| \|_a \) on \(K^n \) and \(\| \|_b \) on \(K^m \), we say that the norm \(\| \| \) is subordinate to the norms \(\| \|_a \) and \(\| \|_b \) if
\[
\|Ax\|_b \leq \|A\| \|x\|_a \quad \text{for all } A \in M_{m,n}(K) \text{ and all } x \in K^n.
\]

Remark: For any norm \(\| \| \) on \(\mathbb{C}^n \), we can define the function \(\| \|_\mathbb{R} \) on \(M_n(\mathbb{R}) \) by
\[
\|A\|_\mathbb{R} = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{x \in \mathbb{R}^n, \|x\|=1} \|Ax\|.
\]
The function \(A \mapsto \|A\|_\mathbb{R} \) is a matrix norm on \(M_n(\mathbb{R}) \), and
\[
\|A\|_\mathbb{R} \leq \|A\|,
\]
for all real matrices \(A \in M_n(\mathbb{R}) \). However, it is possible to construct vector norms \(\| \| \) on \(\mathbb{C}^n \) and real matrices \(A \) such that
\[
\|A\|_\mathbb{R} < \|A\|.
\]
In order to avoid this kind of difficulties, we define subordinate matrix norms over \(M_n(\mathbb{C}) \). Luckily, it turns out that \(\|A\|_\mathbb{R} = \|A\| \) for the vector norms, \(\| \|_1, \| \|_2, \) and \(\| \|_\infty \).

We now prove Proposition 7.5 for real matrix norms.

Proposition 7.8. For any matrix norm \(\| \| \) on \(M_n(\mathbb{R}) \) and for any square \(n \times n \) matrix \(A \in M_n(\mathbb{R}) \), we have
\[
\rho(A) \leq \|A\|.
\]
Proof. We follow the proof in Denis Serre’s book [46]. If \(A \) is a real matrix, the problem is that the eigenvectors associated with the eigenvalue of maximum modulus may be complex. We use a trick based on the fact that for every matrix \(A \) (real or complex),

\[
\rho(A^k) = (\rho(A))^k,
\]

which is left as an exercise (use Proposition 13.5 which shows that if \((\lambda_1, \ldots, \lambda_n)\) are the (not necessarily distinct) eigenvalues of \(A \), then \((\lambda_1^k, \ldots, \lambda_n^k)\) are the eigenvalues of \(A^k \), for \(k \geq 1 \)).

Pick any complex matrix norm \(\| \cdot \|_c \) on \(\mathbb{C}^n \) (for example, the Frobenius norm, or any subordinate matrix norm induced by a norm on \(\mathbb{C}^n \)). The restriction of \(\| \cdot \|_c \) to real matrices is a real norm that we also denote by \(\| \cdot \|_c \). Now, by Theorem 7.4, since \(M_n(\mathbb{R}) \) has finite dimension \(n^2 \), there is some constant \(C > 0 \) so that

\[
\| B \|_c \leq C \| B \|, \quad \text{for all} \quad B \in M_n(\mathbb{R}).
\]

Furthermore, for every \(k \geq 1 \) and for every real \(n \times n \) matrix \(A \), by Proposition 7.5, \(\rho(A^k) \leq \| A^k \|_c \), and because \(\| \cdot \| \) is a matrix norm, \(\| A^k \| \leq \| A \|^k \), so we have

\[
(\rho(A))^k = \rho(A^k) \leq \| A^k \|_c \leq C \| A^k \| \leq C \| A \|^k,
\]

for all \(k \geq 1 \). It follows that

\[
\rho(A) \leq C^{1/k} \| A \|, \quad \text{for all} \quad k \geq 1.
\]

However because \(C > 0 \), we have \(\lim_{k \to \infty} C^{1/k} = 1 \) (we have \(\lim_{k \to \infty} \frac{1}{k} \log(C) = 0 \)). Therefore, we conclude that

\[
\rho(A) \leq \| A \|,
\]

as desired. \(\square \)

We now determine explicitly what are the subordinate matrix norms associated with the vector norms \(\| \cdot \|_1, \| \cdot \|_2, \) and \(\| \cdot \|_\infty \).

Proposition 7.9. For every square matrix \(A = (a_{ij}) \in M_n(\mathbb{C}) \), we have

\[
\| A \|_1 = \sup_{x \in \mathbb{C}^n, \| x \|_1 = 1} \| Ax \|_1 = \max_j \sum_{i=1}^n |a_{ij}|
\]

\[
\| A \|_\infty = \sup_{x \in \mathbb{C}^n, \| x \|_\infty = 1} \| Ax \|_\infty = \max_i \sum_{j=1}^n |a_{ij}|
\]

\[
\| A \|_2 = \sup_{x \in \mathbb{C}^n, \| x \|_2 = 1} \| Ax \|_2 = \sqrt{\rho(A^*A)} = \sqrt{\rho(AA^*)}.
\]
Furthermore, \(\|A^*\|_2 = \|A\|_2 \), the norm \(\| \cdot \|_2 \) is unitarily invariant, which means that
\[
\|A\|_2 = \|UAV\|_2
\]
for all unitary matrices \(U, V \), and if \(A \) is a normal matrix, then \(\|A\|_2 = \rho(A) \).

Proof. For every vector \(u \), we have
\[
\|Au\|_1 = \sum_i \left| \sum_j a_{ij} u_j \right| \leq \sum_j |u_j| \sum_i |a_{ij}| \leq \left(\max_j \sum_i |a_{ij}| \right) \|u\|_1,
\]
which implies that
\[
\|A\|_1 \leq \max_j \sum_{i=1}^n |a_{ij}|.
\]
It remains to show that equality can be achieved. For this let \(j_0 \) be some index such that
\[
\max_j \sum_i |a_{ij}| = \sum_i |a_{ij_0}|,
\]
and let \(u_i = 0 \) for all \(i \neq j_0 \) and \(u_{j_0} = 1 \).

In a similar way, we have
\[
\|Au\|_\infty = \max_i \left| \sum_j a_{ij} u_j \right| \leq \left(\max_i \sum_j |a_{ij}| \right) \|u\|_\infty,
\]
which implies that
\[
\|A\|_\infty \leq \max_i \sum_{j=1}^n |a_{ij}|.
\]
To achieve equality, let \(i_0 \) be some index such that
\[
\max_i \sum_j |a_{ij}| = \sum_j |a_{i_0j}|.
\]
The reader should check that the vector given by
\[
\begin{cases}
\frac{a_{i_0j}}{|a_{i_0j}|} & \text{if } a_{i_0j} \neq 0 \\
1 & \text{if } a_{i_0j} = 0
\end{cases}
\]
works.

We have
\[
\|A\|_2^2 = \sup_{x \in \mathbb{C}^n, x^*x = 1} \|Ax\|_2^2 = \sup_{x^*x = 1} x^*A^*Ax.
\]
Since the matrix A^*A is symmetric, it has real eigenvalues and it can be diagonalized with respect to an orthogonal matrix. These facts can be used to prove that the function $x \mapsto x^*A^*Ax$ has a maximum on the sphere $x^*x = 1$ equal to the largest eigenvalue of A^*A, namely, $\rho(A^*A)$. We postpone the proof until we discuss optimizing quadratic functions. Therefore,

$$\|A\|_2 = \sqrt{\rho(A^*A)}.$$

Let us now prove that $\rho(A^*A) = \rho(AA^*)$. First, assume that $\rho(A^*A) > 0$. In this case, there is some eigenvector $u (\neq 0)$ such that

$$A^*Au = \rho(A^*A)u,$$

and since $\rho(A^*A) > 0$, we must have $Au \neq 0$. Since $Au \neq 0$,

$$AA^*(Au) = \rho(A^*A)Au$$

which means that $\rho(A^*A)$ is an eigenvalue of AA^*, and thus

$$\rho(A^*A) \leq \rho(AA^*).$$

Because $(A^*)^* = A$, by replacing A by A^*, we get

$$\rho(AA^*) \leq \rho(A^*A),$$

and so $\rho(A^*A) = \rho(AA^*)$.

If $\rho(A^*A) = 0$, then we must have $\rho(AA^*) = 0$, since otherwise by the previous reasoning we would have $\rho(A^*A) = \rho(AA^*) > 0$. Hence, in all case

$$\|A\|_2^2 = \rho(A^*A) = \rho(AA^*) = \|A^*\|_2^2.$$

For any unitary matrices U and V, it is an easy exercise to prove that V^*A^*AV and A^*A have the same eigenvalues, so

$$\|A\|_2^2 = \rho(A^*A) = \rho(V^*A^*AV) = \|AV\|_2^2,$$

and also

$$\|A\|_2^2 = \rho(A^*A) = \rho(A^*U^*UA) = \|UA\|_2^2.$$

Finally, if A is a normal matrix $(AA^* = A^*A)$, it can be shown that there is some unitary matrix U so that

$$A = UDU^*, $$

where $D = \text{diag} (\lambda_1, \ldots, \lambda_n)$ is a diagonal matrix consisting of the eigenvalues of A, and thus

$$A^*A = (UDU^*)^*UDU^* = UD^*U^*UDU^* = UD^*DU^*.$$

However, $D^*D = \text{diag} (|\lambda_1|^2, \ldots, |\lambda_n|^2)$, which proves that

$$\rho(A^*A) = \rho(D^*D) = \max_i |\lambda_i|^2 = (\rho(A))^2,$$

so that $\|A\|_2 = \rho(A)$.

\Box
The norm $\| A \|_2$ is often called the *spectral norm*. Observe that property (3) of proposition 7.6 says that
$$\| A \|_2 \leq \| A \|_F \leq \sqrt{n} \| A \|_2,$$
which shows that the Frobenius norm is an upper bound on the spectral norm. The Frobenius norm is much easier to compute than the spectral norm.

The reader will check that the above proof still holds if the matrix A is real, confirming the fact that $\| A \|_R = \| A \|$ for the vector norms $\| \cdot \|_1, \| \cdot \|_2,$ and $\| \cdot \|_\infty$. It is also easy to verify that the proof goes through for rectangular matrices, with the same formulae. Similarly, the Frobenius norm is also a norm on rectangular matrices. For these norms, whenever AB makes sense, we have
$$\| AB \| \leq \| A \| \| B \| .$$

Remark: It can be shown that for any two real numbers $p, q \geq 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$, we have
$$\| A^* \|_q = \| A \|_p = \text{sup}\{\Re(y^*Ax) \mid \|x\|_p = 1, \|y\|_q = 1\} = \text{sup}\{\|Ax,y\| \mid \|x\|_p = 1, \|y\|_q = 1\},$$
where $\| A^* \|_q$ and $\| A \|_p$ are the operator norms.

Remark: Let $(E, \| \cdot \|)$ and $(F, \| \cdot \|)$ be two normed vector spaces (for simplicity of notation, we use the same symbol $\| \cdot \|$ for the norms on E and F; this should not cause any confusion). Recall that a function $f : E \rightarrow F$ is *continuous* if for every $a \in E$, for every $\epsilon > 0$, there is some $\eta > 0$ such that for all $x \in E$,
if $\| x - a \| \leq \eta$ then $\| f(x) - f(a) \| \leq \epsilon$.

It is not hard to show that a *linear map* $f : E \rightarrow F$ is continuous iff there is some constant $C \geq 0$ such that
$$\| f(x) \| \leq C \| x \| \text{ for all } x \in E.$$

If so, we say that f is *bounded* (or a *linear bounded operator*). We let $\mathcal{L}(E; F)$ denote the set of all continuous (equivalently, bounded) linear maps from E to F. Then we can define the *operator norm* (or *subordinate norm*) $\| \cdot \|$ on $\mathcal{L}(E; F)$ as follows: for every $f \in \mathcal{L}(E; F)$,
$$\| f \| = \text{sup} \{ \frac{\| f(x) \|}{\| x \|} \mid x \in E, \| x \| = 1 \},$$
or equivalently by
$$\| f \| = \text{inf} \{ \lambda \in \mathbb{R} \mid \| f(x) \| \leq \lambda \| x \| , \text{ for all } x \in E \}.$$

It is not hard to show that the map $f \mapsto \| f \|$ is a norm on $\mathcal{L}(E; F)$ satisfying the property
$$\| f(x) \| \leq \| f \| \| x \|$$
for all $x \in E$, and that if $f \in \mathcal{L}(E;F)$ and $g \in \mathcal{L}(F;G)$, then

$$\|g \circ f\| \leq \|g\| \|f\|.$$

Operator norms play an important role in functional analysis, especially when the spaces E and F are complete.

The following proposition will be needed when we deal with the condition number of a matrix.

Proposition 7.10. Let $\|\|$ be any matrix norm and let B be a matrix such that $\|B\| < 1$.

1. If $\|\|$ is a subordinate matrix norm, then the matrix $I + B$ is invertible and

$$\|(I + B)^{-1}\| \leq \frac{1}{1 - \|B\|}.$$

2. If a matrix of the form $I + B$ is singular, then $\|B\| \geq 1$ for every matrix norm (not necessarily subordinate).

Proof. (1) Observe that $(I + B)u = 0$ implies $Bu = -u$, so

$$\|u\| = \|Bu\|.$$

Recall that

$$\|Bu\| \leq \|B\| \|u\|$$

for every subordinate norm. Since $\|B\| < 1$, if $u \neq 0$, then

$$\|Bu\| < \|u\|,$$

which contradicts $\|u\| = \|Bu\|$. Therefore, we must have $u = 0$, which proves that $I + B$ is injective, and thus bijective, i.e., invertible. Then, we have

$$(I + B)^{-1} + B(I + B)^{-1} = (I + B)(I + B)^{-1} = I,$$

so we get

$$(I + B)^{-1} = I - B(I + B)^{-1},$$

which yields

$$\|(I + B)^{-1}\| \leq 1 + \|B\| \|(I + B)^{-1}\|,$$

and finally,

$$\|(I + B)^{-1}\| \leq \frac{1}{1 - \|B\|}.$$

(2) If $I + B$ is singular, then -1 is an eigenvalue of B, and by Proposition 7.5, we get $\rho(B) \leq \|B\|$, which implies $1 \leq \rho(B) \leq \|B\|$. \qed
The following result is needed to deal with the convergence of sequences of powers of matrices.

Proposition 7.11. For every matrix $A \in M_n(\mathbb{C})$ and for every $\epsilon > 0$, there is some subordinate matrix norm $\| \|$ such that

$$\| A \| \leq \rho(A) + \epsilon.$$

Proof. By Theorem 13.4, there exists some invertible matrix U and some upper triangular matrix T such that

$$A = UTU^{-1},$$

and say that

$$T = \begin{pmatrix}
\lambda_1 & t_{12} & t_{13} & \cdots & t_{1n} \\
0 & \lambda_2 & t_{23} & \cdots & t_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & t_{n-1,n} \\
0 & 0 & \cdots & 0 & \lambda_n
\end{pmatrix},$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. For every $\delta \neq 0$, define the diagonal matrix

$$D_\delta = \text{diag}(1, \delta, \delta^2, \ldots, \delta^{n-1}),$$

and consider the matrix

$$(UD_\delta)^{-1}A(UD_\delta) = D_\delta^{-1}TD_\delta = \begin{pmatrix}
\lambda_1 & \delta t_{12} & \delta^2 t_{13} & \cdots & \delta^{n-1} t_{1n} \\
0 & \lambda_2 & \delta t_{23} & \cdots & \delta^{n-2} t_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & \delta t_{n-1,n} \\
0 & 0 & \cdots & 0 & \lambda_n
\end{pmatrix}. $$

Now, define the function $\| \| : M_n(\mathbb{C}) \to \mathbb{R}$ by

$$\| B \| = \|(UD_\delta)^{-1}B(UD_\delta)\|_{\infty},$$

for every $B \in M_n(\mathbb{C})$. Then it is easy to verify that the above function is the matrix norm subordinate to the vector norm

$$v \mapsto \|(UD_\delta)^{-1}v\|_{\infty}.$$

Furthermore, for every $\epsilon > 0$, we can pick δ so that

$$\sum_{j=i+1}^{n} |\delta^{j-i} t_{ij}| \leq \epsilon, \quad 1 \leq i \leq n - 1,$$

and by definition of the norm $\| \|_{\infty}$, we get

$$\| A \| \leq \rho(A) + \epsilon,$$

which shows that the norm that we have constructed satisfies the required properties. \qed
Note that equality is generally not possible; consider the matrix
\[A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \]
for which \(\rho(A) = 0 < \|A\| \), since \(A \neq 0 \).

7.3 Condition Numbers of Matrices

Unfortunately, there exist linear systems \(Ax = b \) whose solutions are not stable under small perturbations of either \(b \) or \(A \). For example, consider the system
\[
\begin{pmatrix}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix}
= \begin{pmatrix}
32 \\
23 \\
33 \\
31
\end{pmatrix}.
\]
The reader should check that it has the solution \(x = (1, 1, 1, 1) \). If we perturb slightly the right-hand side, obtaining the new system
\[
\begin{pmatrix}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{pmatrix}
\begin{pmatrix}
x_1 + \Delta x_1 \\
x_2 + \Delta x_2 \\
x_3 + \Delta x_3 \\
x_4 + \Delta x_4
\end{pmatrix}
= \begin{pmatrix}
32.1 \\
22.9 \\
33.1 \\
30.9
\end{pmatrix},
\]
the new solutions turns out to be \(x = (9.2, -12.6, 4.5, -1.1) \). In other words, a relative error of the order 1/200 in the data (here, \(b \)) produces a relative error of the order 10/1 in the solution, which represents an amplification of the relative error of the order 2000.

Now, let us perturb the matrix slightly, obtaining the new system
\[
\begin{pmatrix}
10 & 7 & 8.1 & 7.2 \\
7.08 & 5.04 & 6 & 5 \\
8 & 5.98 & 9.98 & 9 \\
\end{pmatrix}
\begin{pmatrix}
x_1 + \Delta x_1 \\
x_2 + \Delta x_2 \\
x_3 + \Delta x_3 \\
x_4 + \Delta x_4
\end{pmatrix}
= \begin{pmatrix}
32 \\
23 \\
33 \\
31
\end{pmatrix}.
\]
This time, the solution is \(x = (-81, 137, -34, 22) \). Again, a small change in the data alters the result rather drastically. Yet, the original system is symmetric, has determinant 1, and has integer entries. The problem is that the matrix of the system is badly conditioned, a concept that we will now explain.

Given an invertible matrix \(A \), first, assume that we perturb \(b \) to \(b + \delta b \), and let us analyze the change between the two exact solutions \(x \) and \(x + \delta x \) of the two systems
\[
Ax = b \\
A(x + \delta x) = b + \delta b.
\]
7.3. CONDITION NUMBERS OF MATRICES

We also assume that we have some norm $\| \|$ and we use the subordinate matrix norm on matrices. From

\[
Ax = b \\
Ax + A\delta x = b + \delta b,
\]

we get

\[
\delta x = A^{-1}\delta b,
\]

and we conclude that

\[
\|\delta x\| \leq \|A^{-1}\| \|\delta b\| \\
\|b\| \leq \|A\| \|x\|.
\]

Consequently, the relative error in the result $\|\delta x\| / \|x\|$ is bounded in terms of the relative error $\|\delta b\| / \|b\|$ in the data as follows:

\[
\frac{\|\delta x\|}{\|x\|} \leq \left(\|A\| \|A^{-1}\| \right) \frac{\|\delta b\|}{\|b\|}.
\]

Now let us assume that A is perturbed to $A + \Delta A$, and let us analyze the change between the exact solutions of the two systems

\[
Ax = b \\
(A + \Delta A)(x + \Delta x) = b.
\]

The second equation yields $Ax + A\Delta x + \Delta A(x + \Delta x) = b$, and by subtracting the first equation we get

\[
\Delta x = -A^{-1}\Delta A(x + \Delta x).
\]

It follows that

\[
\|\Delta x\| \leq \|A^{-1}\| \|\Delta A\| \|x + \Delta x\|,
\]

which can be rewritten as

\[
\frac{\|\Delta x\|}{\|x + \Delta x\|} \leq \left(\|A\| \|A^{-1}\| \right) \frac{\|\Delta A\|}{\|A\|}.
\]

Observe that the above reasoning is valid even if the matrix $A + \Delta A$ is singular, as long as $x + \Delta x$ is a solution of the second system. Furthermore, if $\|\Delta A\|$ is small enough, it is not unreasonable to expect that the ratio $\|\Delta x\| / \|x + \Delta x\|$ is close to $\|\Delta x\| / \|x\|$. This will be made more precise later.

In summary, for each of the two perturbations, we see that the relative error in the result is bounded by the relative error in the data, multiplied the number $\|A\| \|A^{-1}\|$. In fact, this factor turns out to be optimal and this suggests the following definition:
Definition 7.9. For any subordinate matrix norm \(\| \| \), for any invertible matrix \(A \), the number
\[
\text{cond}(A) = \| A \| \| A^{-1} \|
\]
is called the condition number of \(A \) relative to \(\| \| \).

The condition number \(\text{cond}(A) \) measures the sensitivity of the linear system \(Ax = b \) to variations in the data \(b \) and \(A \); a feature referred to as the condition of the system. Thus, when we say that a linear system is ill-conditioned, we mean that the condition number of its matrix is large. We can sharpen the preceding analysis as follows:

Proposition 7.12. Let \(A \) be an invertible matrix and let \(x \) and \(x + \delta x \) be the solutions of the linear systems
\[
Ax = b
A(x + \delta x) = b + \delta b.
\]
If \(b \neq 0 \), then the inequality
\[
\frac{\| \delta x \|}{\| x \|} \leq \text{cond}(A) \frac{\| \delta b \|}{\| b \|}
\]
holds and is the best possible. This means that for a given matrix \(A \), there exist some vectors \(b \neq 0 \) and \(\delta b \neq 0 \) for which equality holds.

Proof. We already proved the inequality. Now, because \(\| \| \) is a subordinate matrix norm, there exist some vectors \(x \neq 0 \) and \(\delta b \neq 0 \) for which
\[
\| A^{-1} \delta b \| = \| A^{-1} \| \| \delta b \| \quad \text{and} \quad \| Ax \| = \| A \| \| x \| .
\]

Proposition 7.13. Let \(A \) be an invertible matrix and let \(x \) and \(x + \Delta x \) be the solutions of the two systems
\[
Ax = b
(A + \Delta A)(x + \Delta x) = b.
\]
If \(b \neq 0 \), then the inequality
\[
\frac{\| \Delta x \|}{\| x + \Delta x \|} \leq \text{cond}(A) \frac{\| \Delta A \|}{\| A \|}
\]
holds and is the best possible. This means that given a matrix \(A \), there exist a vector \(b \neq 0 \) and a matrix \(\Delta A \neq 0 \) for which equality holds. Furthermore, if \(\| \Delta A \| \) is small enough (for instance, if \(\| \Delta A \| < 1/\| A^{-1} \| \)), we have
\[
\frac{\| \Delta x \|}{\| x \|} \leq \text{cond}(A) \frac{\| \Delta A \|}{\| A \|} (1 + O(\| \Delta A \|));
\]
in fact, we have
\[
\frac{\| \Delta x \|}{\| x \|} \leq \text{cond}(A) \frac{\| \Delta A \|}{\| A \|} \left(\frac{1}{1 - \| A^{-1} \| \| \Delta A \|} \right).
\]
Proof. The first inequality has already been proved. To show that equality can be achieved, let \(w \) be any vector such that \(w \neq 0 \) and
\[
\|A^{-1}w\| = \|A^{-1}\| \|w\|
\]
and let \(\beta \neq 0 \) be any real number. Now, the vectors
\[
\Delta x = -\beta A^{-1}w \\
x + \Delta x = w \\
b = (A + \beta I)w
\]
and the matrix
\[
\Delta A = \beta I
\]
satisfy the equations
\[
Ax = b \\
(A + \Delta A)(x + \Delta x) = b \\
\|\Delta x\| = |\beta| \|A^{-1}w\| = \|\Delta A\| \|A^{-1}\| \|x + \Delta x\|
\]
Finally, we can pick \(\beta \) so that \(-\beta\) is not equal to any of the eigenvalues of \(A \), so that \(A + \Delta A = A + \beta I \) is invertible and \(b \) is is nonzero.
If \(\|\Delta A\| < 1/\|A^{-1}\| \), then
\[
\|A^{-1}\Delta A\| \leq \|A^{-1}\| \|\Delta A\| < 1,
\]
so by Proposition 7.10, the matrix \(I + A^{-1}\Delta A \) is invertible and
\[
\|(I + A^{-1}\Delta A)^{-1}\| \leq \frac{1}{1 - \|A^{-1}\Delta A\|} \leq \frac{1}{1 - \|A^{-1}\| \|\Delta A\|}
\]
Recall that we proved earlier that
\[
\Delta x = -A^{-1}\Delta A(x + \Delta x),
\]
and by adding \(x \) to both sides and moving the right-hand side to the left-hand side yields
\[
(I + A^{-1}\Delta A)(x + \Delta x) = x,
\]
and thus
\[
x + \Delta x = (I + A^{-1}\Delta A)^{-1}x,
\]
which yields
\[
\Delta x = ((I + A^{-1}\Delta A)^{-1} - I)x = (I + A^{-1}\Delta A)^{-1}(I - (I + A^{-1}\Delta A))x \\
= -(I + A^{-1}\Delta A)^{-1}A^{-1}(\Delta A)x.
\]
CHAPTER 7. VECTOR NORMS AND MATRIX NORMS

From this and
\[\|(I + A^{-1} \Delta A)^{-1}\| \leq \frac{1}{1 - \|A^{-1}\| \|\Delta A\|}, \]
we get
\[\|\Delta x\| \leq \frac{\|A^{-1}\| \|\Delta A\|}{1 - \|A^{-1}\| \|\Delta A\|} \|x\|, \]
which can be written as
\[\frac{\|\Delta x\|}{\|x\|} \leq \text{cond}(A) \frac{\|\Delta A\|}{\|A\|} \left(\frac{1}{1 - \|A^{-1}\| \|\Delta A\|} \right), \]
which is the kind of inequality that we were seeking.

Remark: If \(A\) and \(b\) are perturbed simultaneously, so that we get the “perturbed” system
\[(A + \Delta A)(x + \delta x) = b + \delta b,\]
it can be shown that if \(\|\Delta A\| < 1/\|A^{-1}\|\) (and \(b \neq 0\)), then
\[\frac{\|\Delta x\|}{\|x\|} \leq \frac{\text{cond}(A) \|\Delta A\|}{\|A\|} \left(\frac{1}{1 - \|A^{-1}\| \|\Delta A\|} \right) + \frac{\|\delta b\|}{\|b\|}; \]
see Demmel [15], Section 2.2 and Horn and Johnson [28], Section 5.8.

We now list some properties of condition numbers and figure out what \(\text{cond}(A)\) is in the case of the spectral norm (the matrix norm induced by \(\|\|_2\)). First, we need to introduce a very important factorization of matrices, the singular value decomposition, for short, **SVD**.

It can be shown that given any \(n \times n\) matrix \(A \in M_n(\mathbb{C})\), there exist two unitary matrices \(U\) and \(V\), and a real diagonal matrix \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)\), with \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0\), such that
\[A = V \Sigma U^*. \]
The nonnegative numbers \(\sigma_1, \ldots, \sigma_n\) are called the singular values of \(A\).

If \(A\) is a real matrix, the matrices \(U\) and \(V\) are orthogonal matrices. The factorization \(A = V \Sigma U^*\) implies that
\[A^*A = U \Sigma^2 U^* \quad \text{and} \quad AA^* = V \Sigma^2 V^*, \]
which shows that \(\sigma_1^2, \ldots, \sigma_n^2\) are the eigenvalues of both \(A^*A\) and \(AA^*\), that the columns of \(U\) are corresponding eigenvectors for \(A^*A\), and that the columns of \(V\) are corresponding eigenvectors for \(AA^*\). Since \(\sigma_1^2\) is the largest eigenvalue of \(A^*A\) (and \(AA^*\)), note that \(\sqrt{\rho(A^*A)} = \sqrt{\rho(AA^*)} = \sigma_1\); that is, the spectral norm \(\|A\|_2\) of a matrix \(A\) is equal to the
7.3. CONDITION NUMBERS OF MATRICES

The largest singular value of A. Equivalently, the spectral norm $\|A\|_2$ of a matrix A is equal to the ℓ_∞-norm of its vector of singular values,

$$\|A\|_2 = \max_{1 \leq i \leq n} \sigma_i = \|\sigma_1, \ldots, \sigma_n\|_\infty.$$

Since the Frobenius norm of a matrix A is defined by $\|A\|_F = \sqrt{\text{tr}(A^*A)}$ and since

$$\text{tr}(A^*A) = \sigma_1^2 + \cdots + \sigma_n^2$$

where $\sigma_1^2, \ldots, \sigma_n^2$ are the eigenvalues of A^*A, we see that

$$\|A\|_F = (\sigma_1^2 + \cdots + \sigma_n^2)^{1/2} = \|\sigma_1, \ldots, \sigma_n\|_2.$$

This shows that the Frobenius norm of a matrix is given by the ℓ_2-norm of its vector of singular values.

In the case of a normal matrix if $\lambda_1, \ldots, \lambda_n$ are the (complex) eigenvalues of A, then

$$\sigma_i = |\lambda_i|, \quad 1 \leq i \leq n.$$

Proposition 7.14. For every invertible matrix $A \in M_n(\mathbb{C})$, the following properties hold:

1. $\text{cond}(A) \geq 1$,
 $$\text{cond}(A) = \text{cond}(A^{-1})$$
 $$\text{cond}(\alpha A) = \text{cond}(A) \quad \text{for all } \alpha \in \mathbb{C} - \{0\}.$$

2. If $\text{cond}_2(A)$ denotes the condition number of A with respect to the spectral norm, then

 $$\text{cond}_2(A) = \frac{\sigma_1}{\sigma_n},$$

 where $\sigma_1 \geq \cdots \geq \sigma_n$ are the singular values of A.

3. If the matrix A is normal, then

 $$\text{cond}_2(A) = \frac{|\lambda_1|}{|\lambda_n|},$$

 where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A sorted so that $|\lambda_1| \geq \cdots \geq |\lambda_n|$.

4. If A is a unitary or an orthogonal matrix, then

 $$\text{cond}_2(A) = 1.$$
(5) The condition number $\text{cond}_2(A)$ is invariant under unitary transformations, which means that

$$\text{cond}_2(A) = \text{cond}_2(UA) = \text{cond}_2(AV),$$

for all unitary matrices U and V.

Proof. The properties in (1) are immediate consequences of the properties of subordinate matrix norms. In particular, $AA^{-1} = I$ implies

$$1 = \|I\| \leq \|A\| \|A^{-1}\| = \text{cond}(A).$$

(2) We showed earlier that $\|A\|^2 = \rho(A^*A)$, which is the square of the modulus of the largest eigenvalue of A^*A. Since we just saw that the eigenvalues of A^*A are $\sigma_1^2 \geq \cdots \geq \sigma_n^2$, where $\sigma_1, \ldots, \sigma_n$ are the singular values of A, we have

$$\|A\|_2 = \sigma_1.$$

Now, if A is invertible, then $\sigma_1 \geq \cdots \geq \sigma_n > 0$, and it is easy to show that the eigenvalues of $(A^*A)^{-1}$ are $\sigma_n^{-2} \geq \cdots \geq \sigma_1^{-2}$, which shows that

$$\|A^{-1}\|_2 = \sigma_n^{-1},$$

and thus

$$\text{cond}_2(A) = \frac{\sigma_1}{\sigma_n}.$$

(3) This follows from the fact that $\|A\|_2 = \rho(A)$ for a normal matrix.

(4) If A is a unitary matrix, then $A^*A = AA^* = I$, so $\rho(A^*A) = 1$, and $\|A\|_2 = \sqrt{\rho(A^*A)} = 1$. We also have $\|A^{-1}\|_2 = \|A^*\|_2 = \sqrt{\rho(AA^*)} = 1$, and thus $\text{cond}(A) = 1$.

(5) This follows immediately from the unitary invariance of the spectral norm. \qed

Proposition 7.14 (4) shows that unitary and orthogonal transformations are very well-conditioned, and part (5) shows that unitary transformations preserve the condition number.

In order to compute $\text{cond}_2(A)$, we need to compute the top and bottom singular values of A, which may be hard. The inequality

$$\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2,$$

may be useful in getting an approximation of $\text{cond}_2(A) = \|A\|_2 \|A^{-1}\|_2$, if A^{-1} can be determined.

Remark: There is an interesting geometric characterization of $\text{cond}_2(A)$. If $\theta(A)$ denotes the least angle between the vectors Au and Av as u and v range over all pairs of orthonormal vectors, then it can be shown that

$$\text{cond}_2(A) = \cot(\theta(A)/2)).$$
Thus, if A is nearly singular, then there will be some orthonormal pair u, v such that Au and Av are nearly parallel; the angle $\theta(A)$ will be small and $\cot(\theta(A)/2)$ will be large. For more details, see Horn and Johnson [28] (Section 5.8 and Section 7.4).

It should be noted that in general (if A is not a normal matrix) a matrix could have a very large condition number even if all its eigenvalues are identical! For example, if we consider the $n \times n$ matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 1 & 2 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & 2 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & 1 & 2 & 0 \\ 0 & 0 & \ldots & 0 & 0 & 1 & 2 \\ 0 & 0 & \ldots & 0 & 0 & 0 & 1 \end{bmatrix},$$

it turns out that $\text{cond}_2(A) \geq 2^{n-1}$.

A classical example of matrix with a very large condition number is the Hilbert matrix $H^{(n)}$, the $n \times n$ matrix with

$$H_{ij}^{(n)} = \frac{1}{i+j-1}.$$

For example, when $n = 5$,

$$H^{(5)} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{pmatrix}.$$

It can be shown that

$$\text{cond}_2(H^{(5)}) \approx 4.77 \times 10^5.$$

Hilbert introduced these matrices in 1894 while studying a problem in approximation theory. The Hilbert matrix $H^{(n)}$ is symmetric positive definite. A closed-form formula can be given for its determinant (it is a special form of the so-called Cauchy determinant). The inverse of $H^{(n)}$ can also be computed explicitly! It can be shown that

$$\text{cond}_2(H^{(n)}) = O((1 + \sqrt{2})^4 n / \sqrt{n}).$$

Going back to our matrix

$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix},$$
which is a symmetric, positive, definite, matrix, it can be shown that its eigenvalues, which
in this case are also its singular values because A is SPD, are

$$
\lambda_1 \approx 30.2887 > \lambda_2 \approx 3.858 > \lambda_3 \approx 0.8431 > \lambda_4 \approx 0.01015,
$$

so that

$$
\text{cond}_2(A) = \frac{\lambda_1}{\lambda_4} \approx 2984.
$$

The reader should check that for the perturbation of the right-hand side b used earlier, the
relative errors $\|\delta x\|/\|x\|$ and $\|\delta x\|/\|x\|$ satisfy the inequality

$$
\frac{\|\delta x\|}{\|x\|} \leq \text{cond}(A) \frac{\|\delta b\|}{\|b\|}
$$

and comes close to equality.

7.4 An Application of Norms: Solving Inconsistent Linear Systems

The problem of solving an inconsistent linear system $Ax = b$ often arises in practice. This
is a system where b does not belong to the column space of A, usually with more equations
than variables. Thus, such a system has no solution. Yet, we would still like to “solve” such
a system, at least approximately.

Such systems often arise when trying to fit some data. For example, we may have a set
of 3D data points

$$
\{p_1, \ldots, p_n\},
$$

and we have reason to believe that these points are nearly coplanar. We would like to find
a plane that best fits our data points. Recall that the equation of a plane is

$$
\alpha x + \beta y + \gamma z + \delta = 0,
$$

with $(\alpha, \beta, \gamma) \neq (0, 0, 0)$. Thus, every plane is either not parallel to the x-axis ($\alpha \neq 0$) or not
parallel to the y-axis ($\beta \neq 0$) or not parallel to the z-axis ($\gamma \neq 0$).

Say we have reasons to believe that the plane we are looking for is not parallel to the
z-axis. If we are wrong, in the least squares solution, one of the coefficients, α, β, will be
very large. If $\gamma \neq 0$, then we may assume that our plane is given by an equation of the form

$$
z = ax + by + d,
$$

and we would like this equation to be satisfied for all the p_i’s, which leads to a system of n
equations in 3 unknowns a, b, d, with $p_i = (x_i, y_i, z_i)$;

$$
ax_1 + by_1 + d = z_1
$$

$$
\vdots
$$

$$
ax_n + by_n + d = z_n.
$$
However, if \(n \) is larger than 3, such a system generally has no solution. Since the above system can’t be solved exactly, we can try to find a solution \((a, b, d)\) that minimizes the least-squares error

\[
\sum_{i=1}^{n} (ax_i + by_i + d - z_i)^2.
\]

This is what Legendre and Gauss figured out in the early 1800’s!

In general, given a linear system

\[Ax = b,\]

we solve the least squares problem: minimize \(\|Ax - b\|^2\).

Fortunately, every \(n \times m\)-matrix \(A\) can be written as

\[A = VD U^\top\]

where \(U\) and \(V\) are orthogonal and \(D\) is a rectangular diagonal matrix with non-negative entries (singular value decomposition, or SVD); see Chapter 16.

The SVD can be used to solve an inconsistent system. It is shown in Chapter 17 that there is a vector \(x\) of smallest norm minimizing \(\|Ax - b\|_2\). It is given by the (Penrose) pseudo-inverse of \(A\) (itself given by the SVD).

It has been observed that solving in the least-squares sense may give too much weight to “outliers,” that is, points clearly outside the best-fit plane. In this case, it is preferable to minimize (the \(\ell_1\)-norm)

\[
\sum_{i=1}^{n} |ax_i + by_i + d - z_i|.
\]

This does not appear to be a linear problem, but we can use a trick to convert this minimization problem into a linear program (which means a problem involving linear constraints).

Note that \(|x| = \max\{x, -x\}\). So, by introducing new variables \(e_1, \ldots, e_n\), our minimization problem is equivalent to the linear program (LP):

\[
\begin{align*}
\text{minimize} & \quad e_1 + \cdots + e_n \\
\text{subject to} & \quad ax_i + by_i + d - z_i \leq e_i \\
& \quad -(ax_i + by_i + d - z_i) \leq e_i \\
& \quad 1 \leq i \leq n.
\end{align*}
\]

Observe that the constraints are equivalent to

\[e_i \geq |ax_i + by_i + d - z_i|, \quad 1 \leq i \leq n.\]
For an optimal solution, we must have equality, since otherwise we could decrease some \(e_i \) and get an even better solution. Of course, we are no longer dealing with “pure” linear algebra, since our constraints are inequalities.

We prefer not getting into linear programming right now, but the above example provides a good reason to learn more about linear programming!

7.5 Summary

The main concepts and results of this chapter are listed below:

- **Norms and normed vector spaces**.
- The triangle inequality.
- The Euclidean norm; the \(\ell_p \)-norms.
- Hölder’s inequality; the Cauchy–Schwarz inequality; Minkowski’s inequality.
- Hermitian inner product and Euclidean inner product.
- Equivalent norms.
- All norms on a finite-dimensional vector space are equivalent (Theorem 7.4).
- **Matrix norms**.
- Hermitian, symmetric and normal matrices. Orthogonal and unitary matrices.
- The trace of a matrix.
- Eigenvalues and eigenvectors of a matrix.
- The characteristic polynomial of a matrix.
- The spectral radius \(\rho(A) \) of a matrix \(A \).
- The Frobenius norm.
- The Frobenius norm is a unitarily invariant matrix norm.
- Bounded linear maps.
- **Subordinate matrix norms**.
- Characterization of the subordinate matrix norms for the vector norms \(\| \cdot \|_1, \| \cdot \|_2, \) and \(\| \cdot \|_{\infty} \).
7.5. SUMMARY

- The spectral norm.
- For every matrix $A \in M_n(\mathbb{C})$ and for every $\epsilon > 0$, there is some subordinate matrix norm $\|\|$ such that $\|A\| \leq \rho(A) + \epsilon$.
- Condition numbers of matrices.
- Perturbation analysis of linear systems.
- The singular value decomposition (SVD).
- Properties of conditions numbers. Characterization of $\text{cond}_2(A)$ in terms of the largest and smallest singular values of A.
- The Hilbert matrix: a very badly conditioned matrix.
- Solving inconsistent linear systems by the method of least-squares; linear programming.
Chapter 8

Iterative Methods for Solving Linear Systems

8.1 Convergence of Sequences of Vectors and Matrices

In Chapter 6 we have discussed some of the main methods for solving systems of linear equations. These methods are direct methods, in the sense that they yield exact solutions (assuming infinite precision!).

Another class of methods for solving linear systems consists in approximating solutions using iterative methods. The basic idea is this: Given a linear system $Ax = b$ (with A a square invertible matrix), find another matrix B and a vector c, such that

1. The matrix $I - B$ is invertible
2. The unique solution \tilde{x} of the system $Ax = b$ is identical to the unique solution \tilde{u} of the system

$$u = Bu + c,$$

and then, starting from any vector u_0, compute the sequence (u_k) given by

$$u_{k+1} = Bu_k + c, \quad k \in \mathbb{N}.$$

Under certain conditions (to be clarified soon), the sequence (u_k) converges to a limit \tilde{u} which is the unique solution of $u = Bu + c$, and thus of $Ax = b$.

Consequently, it is important to find conditions that ensure the convergence of the above sequences and to have tools to compare the “rate” of convergence of these sequences. Thus, we begin with some general results about the convergence of sequences of vectors and matrices.

Let $(E, ||\cdot||)$ be a normed vector space. Recall that a sequence (u_k) of vectors $u_k \in E$ converges to a limit $u \in E$, if for every $\epsilon > 0$, there some natural number N such that

$$||u_k - u|| \leq \epsilon, \quad \text{for all } k \geq N.$$
We write
\[u = \lim_{k \to \infty} u_k. \]

If \(E \) is a finite-dimensional vector space and \(\dim(E) = n \), we know from Theorem 7.4 that any two norms are equivalent, and if we choose the norm \(\| \cdot \|_\infty \), we see that the convergence of the sequence of vectors \(u_k \) is equivalent to the convergence of the \(n \) sequences of scalars formed by the components of these vectors (over any basis). The same property applies to the finite-dimensional vector space \(\mathbb{M}_{m,n}(K) \) of \(m \times n \) matrices (with \(K = \mathbb{R} \) or \(K = \mathbb{C} \)), which means that the convergence of a sequence of matrices \(A_k = (a_{ij}^{(k)}) \) is equivalent to the convergence of the \(m \times n \) sequences of scalars \((a_{ij}^{(k)}) \), with \(i, j \) fixed (\(1 \leq i \leq m, 1 \leq j \leq n \)).

The first theorem below gives a necessary and sufficient condition for the sequence \((B_k) \) of powers of a matrix \(B \) to converge to the zero matrix. Recall that the spectral radius \(\rho(B) \) of a matrix \(B \) is the maximum of the moduli \(|\lambda_i| \) of the eigenvalues of \(B \).

Theorem 8.1. For any square matrix \(B \), the following conditions are equivalent:

1. \(\lim_{k \to \infty} B^k = 0 \),
2. \(\lim_{k \to \infty} B^k v = 0 \), for all vectors \(v \),
3. \(\rho(B) < 1 \),
4. \(\|B\| < 1 \), for some subordinate matrix norm \(\| \cdot \| \).

Proof. Assume (1) and let \(\| \cdot \| \) be a vector norm on \(E \) and \(\| \cdot \| \) be the corresponding matrix norm. For every vector \(v \in E \), because \(\| \cdot \| \) is a matrix norm, we have
\[
\|B^k v\| \leq \|B^k\| \|v\|,
\]
and since \(\lim_{k \to \infty} B^k = 0 \) means that \(\lim_{k \to \infty} \|B^k\| = 0 \), we conclude that \(\lim_{k \to \infty} \|B^k v\| = 0 \), that is, \(\lim_{k \to \infty} B^k v = 0 \). This proves that (1) implies (2).

Assume (2). If \(\rho(B) \geq 1 \), then there would be some eigenvector \(u \neq 0 \) and some eigenvalue \(\lambda \) such that
\[
Bu = \lambda u, \quad |\lambda| = \rho(B) \geq 1,
\]
but then the sequence \((B^k u) \) would not converge to 0, because \(B^k u = \lambda^k u \) and \(|\lambda^k| = |\lambda|^k \geq 1 \). It follows that (2) implies (3).

Assume that (3) holds, that is, \(\rho(B) < 1 \). By Proposition 7.11, we can find \(\epsilon > 0 \) small enough that \(\rho(B) + \epsilon < 1 \), and a subordinate matrix norm \(\| \cdot \| \) such that
\[
\|B\| \leq \rho(B) + \epsilon,
\]
which is (4).
Finally, assume (4). Because $\|\|$ is a matrix norm,
\[\|B^k\| \leq \|B\|^k,\]
and since $\|B\| < 1$, we deduce that (1) holds.

The following proposition is needed to study the rate of convergence of iterative methods.

Proposition 8.2. For every square matrix B and every matrix norm $\|\|$, we have
\[\lim_{k \to \infty} \|B^k\|^{1/k} = \rho(B).\]

Proof. We know from Proposition 7.5 that $\rho(B) \leq \|B\|$, and since $\rho(B) = (\rho(B^k))^{1/k}$, we deduce that
\[\rho(B) \leq \|B^k\|^{1/k} \text{ for all } k \geq 1,\]
and so
\[\rho(B) \leq \lim_{k \to \infty} \|B^k\|^{1/k}.\]

Now, let us prove that for every $\epsilon > 0$, there is some integer $N(\epsilon)$ such that
\[\|B^k\|^{1/k} \leq \rho(B) + \epsilon \text{ for all } k \geq N(\epsilon),\]
which proves that
\[\lim_{k \to \infty} \|B^k\|^{1/k} \leq \rho(B),\]
and our proposition.

For any given $\epsilon > 0$, let B_ϵ be the matrix
\[B_\epsilon = \frac{B}{\rho(B) + \epsilon}.\]
Since $\|B_\epsilon\| < 1$, Theorem 8.1 implies that $\lim_{k \to \infty} B^k_\epsilon = 0$. Consequently, there is some integer $N(\epsilon)$ such that for all $k \geq N(\epsilon)$, we have
\[\|B^k\| = \frac{\|B^k\|}{(\rho(B) + \epsilon)^k} \leq 1,\]
which implies that
\[\|B^k\|^{1/k} \leq \rho(B) + \epsilon,\]
as claimed.

We now apply the above results to the convergence of iterative methods.
8.2 Convergence of Iterative Methods

Recall that iterative methods for solving a linear system $Ax = b$ (with A invertible) consists in finding some matrix B and some vector c, such that $I - B$ is invertible, and the unique solution \tilde{x} of $Ax = b$ is equal to the unique solution \tilde{u} of $u = Bu + c$. Then, starting from any vector u_0, compute the sequence (u_k) given by

$$u_{k+1} = Bu_k + c, \quad k \in \mathbb{N},$$

and say that the iterative method is convergent iff

$$\lim_{k \to \infty} u_k = \tilde{u},$$

for every initial vector u_0.

Here is a fundamental criterion for the convergence of any iterative methods based on a matrix B, called the matrix of the iterative method.

Theorem 8.3. Given a system $u = Bu + c$ as above, where $I - B$ is invertible, the following statements are equivalent:

1. The iterative method is convergent.
2. $\rho(B) < 1$.
3. $\|B\| < 1$, for some subordinate matrix norm $\|\|$.

Proof. Define the vector e_k (error vector) by

$$e_k = u_k - \tilde{u},$$

where \tilde{u} is the unique solution of the system $u = Bu + c$. Clearly, the iterative method is convergent iff

$$\lim_{k \to \infty} e_k = 0.$$

We claim that

$$e_k = B^k e_0, \quad k \geq 0,$$

where $e_0 = u_0 - \tilde{u}$.

This is proved by induction on k. The base case $k = 0$ is trivial. By the induction hypothesis, $e_k = B^k e_0$, and since $u_{k+1} = Bu_k + c$, we get

$$u_{k+1} - \tilde{u} = Bu_k + c - \tilde{u},$$

and because $\tilde{u} = B\tilde{u} + c$ and $e_k = B^k e_0$ (by the induction hypothesis), we obtain

$$u_{k+1} - \tilde{u} = Bu_k - B\tilde{u} = B(uk - \tilde{u}) = Be_k = BB^k e_0 = B^{k+1} e_0,$$

proving the induction step. Thus, the iterative method converges iff

$$\lim_{k \to \infty} B^k e_0 = 0.$$

Consequently, our theorem follows by Theorem 8.1.
8.2. CONVERGENCE OF ITERATIVE METHODS

The next proposition is needed to compare the rate of convergence of iterative methods. It shows that asymptotically, the error vector \(e_k = B^k e_0 \) behaves at worst like \((\rho(B))^k \).

Proposition 8.4. Let \(\| \| \) be any vector norm, let \(B \) be a matrix such that \(I - B \) is invertible, and let \(\tilde{u} \) be the unique solution of \(u = Bu + c \).

1. If \((u_k) \) is any sequence defined iteratively by
 \[
 u_{k+1} = Bu_k + c, \quad k \in \mathbb{N},
 \]
 then
 \[
 \lim_{k \to \infty} \left[\sup_{\|u_0 - \tilde{u}\| = 1} \|u_k - \tilde{u}\|^{1/k} \right] = \rho(B).
 \]

2. Let \(B_1 \) and \(B_2 \) be two matrices such that \(I - B_1 \) and \(I - B_2 \) are invertible, assume that both \(u = B_1 u + c_1 \) and \(u = B_2 u + c_2 \) have the same unique solution \(\tilde{u} \), and consider any two sequences \((u_k) \) and \((v_k) \) defined inductively by
 \[
 u_{k+1} = B_1 u_k + c_1, \quad v_{k+1} = B_2 v_k + c_2,
 \]
 with \(u_0 = v_0 \). If \(\rho(B_1) < \rho(B_2) \), then for any \(\epsilon > 0 \), there is some integer \(N(\epsilon) \), such that for all \(k \geq N(\epsilon) \), we have
 \[
 \sup_{\|u_0 - \tilde{u}\| = 1} \left\{ \frac{\|v_k - \tilde{u}\|}{\|u_k - \tilde{u}\|} \right\}^{1/k} \geq \frac{\rho(B_2)}{\rho(B_1)} + \epsilon.
 \]

Proof. Let \(\| \| \) be the subordinate matrix norm. Recall that
\[
\|u_k - \tilde{u}\| = B^k e_0,
\]
with \(e_0 = u_0 - \tilde{u} \). For every \(k \in \mathbb{N} \), we have
\[
(\rho(B_1))^k = \rho(B_1^k) \leq \|B_1^k\| = \sup_{\|e_0\| = 1} \|B_1^k e_0\|,
\]
which implies
\[
\rho(B_1) = \sup_{\|e_0\| = 1} \|B_1^k e_0\|^{1/k} = \|B_1^k\|^{1/k},
\]
and statement (1) follows from Proposition 8.2.

Because \(u_0 = v_0 \), we have
\[
\begin{align*}
 u_k - \tilde{u} &= B_1^k e_0, \\
v_k - \tilde{u} &= B_2^k e_0,
\end{align*}
\]
with \(e_0 = u_0 - \tilde{u} = v_0 - \tilde{u} \). Again, by Proposition 8.2, for every \(\epsilon > 0 \), there is some natural number \(N(\epsilon) \) such that if \(k \geq N(\epsilon) \), then
\[
\sup_{\|e_0\|=1} \|B_1^k e_0\|^{1/k} \leq \rho(B_1) + \epsilon.
\]
Furthermore, for all \(k \geq N(\epsilon) \), there exists a vector \(e_0 = e_0(k) \) such that
\[
\|e_0\| = 1 \quad \text{and} \quad \|B_2^k e_0\|^{1/k} = \|B_2^k\|^{1/k} \geq \rho(B_2),
\]
which implies statement (2).

In light of the above, we see that when we investigate new iterative methods, we have to deal with the following two problems:

1. Given an iterative method with matrix \(B \), determine whether the method is convergent. This involves determining whether \(\rho(B) < 1 \), or equivalently whether there is a subordinate matrix norm such that \(\|B\| < 1 \). By Proposition 7.10, this implies that \(I - B \) is invertible (since \(\|I - B\| = \|B\| \), Proposition 7.10 applies).

2. Given two convergent iterative methods, compare them. The iterative method which is faster is that whose matrix has the smaller spectral radius.

We now discuss three iterative methods for solving linear systems:

1. Jacobi’s method
2. Gauss-Seidel’s method
3. The relaxation method.

8.3 Description of the Methods of Jacobi, Gauss-Seidel, and Relaxation

The methods described in this section are instances of the following scheme: Given a linear system \(Ax = b \), with \(A \) invertible, suppose we can write \(A \) in the form
\[
A = M - N,
\]
with \(M \) invertible, and “easy to invert,” which means that \(M \) is close to being a diagonal or a triangular matrix (perhaps by blocks). Then, \(Au = b \) is equivalent to
\[
Mu = Nu + b,
\]
that is,
\[
u = M^{-1} Nu + M^{-1} b.
\]
Therefore, we are in the situation described in the previous sections with \(B = M^{-1}N \) and \(c = M^{-1}b \). In fact, since \(A = M - N \), we have
\[
B = M^{-1}N = M^{-1}(M - A) = I - M^{-1}A,
\]
which shows that \(I - B = M^{-1}A \) is invertible. The iterative method associated with the matrix \(B = M^{-1}N \) is given by
\[
 u_{k+1} = M^{-1}Nu_k + M^{-1}b, \quad k \geq 0,
\]
starting from any arbitrary vector \(u_0 \). From a practical point of view, we do not invert \(M \), and instead we solve iteratively the systems
\[
 Mu_{k+1} = Nu_k + b, \quad k \geq 0.
\]

Various methods correspond to various ways of choosing \(M \) and \(N \) from \(A \). The first two methods choose \(M \) and \(N \) as disjoint submatrices of \(A \), but the relaxation method allows some overlapping of \(M \) and \(N \).

To describe the various choices of \(M \) and \(N \), it is convenient to write \(A \) in terms of three submatrices \(D, E, F \), as
\[
 A = D - E - F,
\]
where the only nonzero entries in \(D \) are the diagonal entries in \(A \), the only nonzero entries in \(E \) are entries in \(A \) below the the diagonal, and the only nonzero entries in \(F \) are entries in \(A \) above the diagonal. More explicitly, if
\[
 A = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n-1} & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n-1} & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n-1} & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 a_{n,1} & a_{n,2} & a_{n,3} & \cdots & a_{n,n-1} & a_{nn}
\end{pmatrix},
\]
then
\[
 D = \begin{pmatrix}
 a_{11} & 0 & 0 & \cdots & 0 & 0 \\
 0 & a_{22} & 0 & \cdots & 0 & 0 \\
 0 & 0 & a_{33} & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & a_{n-1,n-1} & 0 \\
 0 & 0 & 0 & \cdots & 0 & a_{nn}
\end{pmatrix},
\]
In *Jacobi’s method*, we assume that all diagonal entries in A are nonzero, and we pick

\[
M = D \\
N = E + F,
\]

so that

\[
B = M^{-1} N = D^{-1} (E + F) = I - D^{-1} A.
\]

As a matter of notation, we let

\[
J = I - D^{-1} A = D^{-1} (E + F),
\]

which is called *Jacobi’s matrix*. The corresponding method, *Jacobi’s iterative method*, computes the sequence (u_k) using the recurrence

\[
u_{k+1} = D^{-1} (E + F) u_k + D^{-1} b, \quad k \geq 0.
\]

In practice, we iteratively solve the systems

\[
D u_{k+1} = (E + F) u_k + b, \quad k \geq 0.
\]

If we write $u_k = (u_1^k, \ldots, u_n^k)$, we solve iteratively the following system:

\[
\begin{align*}
a_{11} u_{1k}^{k+1} &= -a_{12} u_{2k}^k - a_{13} u_{3k}^k \cdots - a_{1n} u_{nk}^k + b_1 \\
a_{22} u_{2k}^{k+1} &= -a_{21} u_{1k}^k - a_{23} u_{3k}^k \cdots - a_{2n} u_{nk}^k + b_2 \\
& \vdots \\
a_{n-1n-1} u_{n-1k}^{k+1} &= -a_{n-1n} u_{nk}^k \cdots a_{n-1-k} u_{n-2}^k - a_{n-1n} u_{nk}^k + b_{n-1} \\
a_{nn} u_{nk}^{k+1} &= -a_{nn} u_{nk}^k - a_{n-1n} u_{nk}^k \cdots -a_{nn} u_{nk}^k + b_n
\end{align*}
\]

Observe that we can try to “speed up” the method by using the new value u_1^{k+1} instead of u_1^k in solving for u_2^{k+2} using the second equations, and more generally, use $u_i^{k+1}, \ldots, u_{i-1}^{k+1}$ instead of u_1^k, \ldots, u_{i-1}^k in solving for u_i^{k+1} in the ith equation. This observation leads to the system

\[
\begin{align*}
a_{11} u_{1k}^{k+1} &= -a_{12} u_{2k}^k - a_{13} u_{3k}^k \cdots - a_{1n} u_{nk}^k + b_1 \\
a_{22} u_{2k}^{k+1} &= -a_{21} u_{1k}^1 - a_{23} u_{3k}^k \cdots - a_{2n} u_{nk}^k + b_2 \\
& \vdots \\
a_{n-1n-1} u_{n-1k}^{k+1} &= -a_{n-1n} u_{nk}^k \cdots a_{n-1n} u_{n-2}^k - a_{n-1n} u_{nk}^k + b_{n-1} \\
a_{nn} u_{nk}^{k+1} &= -a_{nn} u_{nk}^1 - a_{n-1n} u_{nk}^k \cdots -a_{nn} u_{nk}^k + b_n
\end{align*}
\]
which, in matrix form, is written
\[Du_{k+1} = Eu_{k+1} + Fu_k + b. \]

Because \(D \) is invertible and \(E \) is lower triangular, the matrix \(D - E \) is invertible, so the above equation is equivalent to
\[u_{k+1} = (D - E)^{-1}Fu_k + (D - E)^{-1}b, \quad k \geq 0. \]

The above corresponds to choosing \(M \) and \(N \) to be
\[M = D - E, \]
\[N = F, \]
and the matrix \(B \) is given by
\[B = M^{-1}N = (D - E)^{-1}F. \]

Since \(M = D - E \) is invertible, we know that \(I - B = M^{-1}A \) is also invertible.

The method that we just described is the \textit{iterative method of Gauss-Seidel}, and the matrix \(B \) is called the \textit{matrix of Gauss-Seidel} and denoted by \(L_1 \), with
\[L_1 = (D - E)^{-1}F. \]

One of the advantages of the method of Gauss-Seidel is that it requires only half of the memory used by Jacobi’s method, since we only need
\[u_1^{k+1}, \ldots, u_{i-1}^{k+1}, u_i^k, u_{i+1}^k, \ldots, u_n^k \]
to compute \(u_i^{k+1} \). We also show that in certain important cases (for example, if \(A \) is a tridiagonal matrix), the method of Gauss-Seidel converges faster than Jacobi’s method (in this case, they both converge or diverge simultaneously).

The new ingredient in the \textit{relaxation method} is to incorporate part of the matrix \(D \) into \(N \): we define \(M \) and \(N \) by
\[M = \frac{D}{\omega} - E, \]
\[N = \frac{1 - \omega}{\omega} D + F, \]
where \(\omega \neq 0 \) is a real parameter to be suitably chosen. Actually, we show in Section 8.4 that for the relaxation method to converge, we must have \(\omega \in (0, 2) \). Note that the case \(\omega = 1 \) corresponds to the method of Gauss-Seidel.
If we assume that all diagonal entries of D are nonzero, the matrix M is invertible. The matrix B is denoted by L_ω and called the matrix of relaxation, with

$$L_\omega = \left(\frac{D}{\omega} - E \right)^{-1} \left(\frac{1-\omega}{\omega} D + F \right) = (D - \omega E)^{-1}((1-\omega)D + \omega F).$$

The number ω is called the parameter of relaxation. When $\omega > 1$, the relaxation method is known as successive overrelaxation, abbreviated as SOR.

At first glance, the relaxation matrix L_ω seems at lot more complicated than the Gauss-Seidel matrix L_1, but the iterative system associated with the relaxation method is very similar to the method of Gauss-Seidel, and is quite simple. Indeed, the system associated with the relaxation method is given by

$$\left(\frac{D}{\omega} - E \right) u_{k+1} = \left(\frac{1-\omega}{\omega} D + F \right) u_k + b,$$

which is equivalent to

$$(D - \omega E) u_{k+1} = ((1-\omega)D + \omega F) u_k + \omega b,$$

and can be written

$$Du_{k+1} = Du_k - \omega(Du_k - Eu_{k+1} - Fu_k - b).$$

Explicitly, this is the system

$$
\begin{align*}
a_{11}u_1^{k+1} &= a_{11}u_1^k - \omega(a_{11}u_1^k + a_{12}u_2^k + a_{13}u_3^k + \cdots + a_{1n-2}u_{n-2}^k + a_{1n-1}u_{n-1}^k + a_{1n}u_n^k - b_1) \\
a_{22}u_2^{k+1} &= a_{22}u_2^k - \omega(a_{21}u_1^{k+1} + a_{22}u_2^k + a_{23}u_3^k + \cdots + a_{2n-2}u_{n-2}^k + a_{2n-1}u_{n-1}^k + a_{2n}u_n^k - b_2) \\
&\vdots \\
a_{nn}u_n^{k+1} &= a_{nn}u_n^k - \omega(a_{n1}u_1^{k+1} + a_{n2}u_2^{k+1} + \cdots + a_{n(n-2)}u_{n-2}^{k+1} + a_{n(n-1)}u_{n-1}^{k+1} + a_{nn}u_n^k - b_n).
\end{align*}
$$

What remains to be done is to find conditions that ensure the convergence of the relaxation method (and the Gauss-Seidel method), that is:

1. Find conditions on ω, namely some interval $I \subseteq \mathbb{R}$ so that $\omega \in I$ implies $\rho(L_\omega) < 1$; we will prove that $\omega \in (0, 2)$ is a necessary condition.

2. Find if there exist some optimal value ω_0 of $\omega \in I$, so that

$$\rho(L_{\omega_0}) = \inf_{\omega \in I} \rho(L_\omega).$$

We will give partial answers to the above questions in the next section.

It is also possible to extend the methods of this section by using block decompositions of the form $A = D - E - F$, where $D, E,$ and F consist of blocks, and with D an invertible block-diagonal matrix.
8.4 Convergence of the Methods of Jacobi, Gauss-Seidel, and Relaxation

We begin with a general criterion for the convergence of an iterative method associated with a (complex) Hermitian, positive, definite matrix, \(A = M - N \). Next, we apply this result to the relaxation method.

Proposition 8.5. Let \(A \) be any Hermitian, positive, definite matrix, written as
\[
A = M - N,
\]
with \(M \) invertible. Then, \(M^* + N \) is Hermitian, and if it is positive, definite, then
\[
\rho(M^{-1}N) < 1,
\]
so that the iterative method converges.

Proof. Since \(M = A + N \) and \(A \) is Hermitian, \(A^* = A \), so we get
\[
M^* + N = A^* + N^* + N = A + N + N^* = M + N^* = (M^* + N)^*,
\]
which shows that \(M^* + N \) is indeed Hermitian.

Because \(A \) is symmetric, positive, definite, the function
\[
v \mapsto (v^*Av)^{1/2}
\]
from \(\mathbb{C}^n \) to \(\mathbb{R} \) is a vector norm \(\| \cdot \| \), and let \(\| \cdot \| \) also denote its subordinate matrix norm. We prove that
\[
\|M^{-1}N\| < 1,
\]
which, by Theorem 8.1 proves that \(\rho(M^{-1}N) < 1 \). By definition
\[
\|M^{-1}N\| = \|I - M^{-1}A\| = \sup_{\|v\|=1} \|v - M^{-1}Av\|,
\]
which leads us to evaluate \(\|v - M^{-1}Av\| \) when \(\|v\| = 1 \). If we write \(w = M^{-1}Av \), using the facts that \(\|v\| = 1 \), \(v = A^{-1}Mw \), \(A^* = A \), and \(A = M - N \), we have
\[
\|v - w\|^2 = (v - w)^*A(v - w)
= \|v\|^2 - v^*Aw - w^*Av + w^*Aw
= 1 - w^*Mw - w^*Mw + w^*Aw
= 1 - w^*(M^* + N)w.
\]
Now, since we assumed that \(M^* + N \) is positive definite, if \(w \neq 0 \), then \(w^*(M^* + N)w > 0 \), and we conclude that
\[
\text{if } \|v\| = 1 \text{ then } \|v - M^{-1}Av\| < 1.
\]
Finally, the function
\[v \mapsto \| v - M^{-1}Av \| \]

is continuous as a composition of continuous functions, therefore it achieves its maximum on the compact subset \(\{ v \in \mathbb{C}^n \mid \| v \| = 1 \} \), which proves that
\[
\sup_{\| v \| = 1} \| v - M^{-1}Av \| < 1,
\]
and completes the proof. \(\square\)

Now, as in the previous sections, we assume that \(A \) is written as \(A = D - E - F \), with \(D \) invertible, possibly in block form. The next theorem provides a sufficient condition (which turns out to be also necessary) for the relaxation method to converge (and thus, for the method of Gauss-Seidel to converge). This theorem is known as the Ostrowski-Reich theorem.

Theorem 8.6. If \(A = D - E - F \) is Hermitian, positive, definite, and if \(0 < \omega < 2 \), then the relaxation method converges. This also holds for a block decomposition of \(A \).

Proof. Recall that for the relaxation method, \(A = M - N \) with
\[
M = \frac{D}{\omega} - E \\
N = \frac{1}{\omega} D + F,
\]
and because \(D^* = D \), \(E^* = F \) (since \(A \) is Hermitian) and \(\omega \neq 0 \) is real, we have
\[
M^* + N = \frac{D^*}{\omega} - E^* \frac{1}{\omega} D + F = \frac{2}{\omega} D.
\]
If \(D \) consists of the diagonal entries of \(A \), then we know from Section 6.7 that these entries are all positive, and since \(\omega \in (0, 2) \), we see that the matrix \(((2 - \omega)/\omega)D \) is positive definite. If \(D \) consists of diagonal blocks of \(A \), because \(A \) is positive, definite, by choosing vectors \(z \) obtained by picking a nonzero vector for each block of \(D \) and padding with zeros, we see that each block of \(D \) is positive, definite, and thus \(D \) itself is positive definite. Therefore, in all cases, \(M^* + N \) is positive, definite, and we conclude by using Proposition 8.5. \(\square\)

Remark: What if we allow the parameter \(\omega \) to be a nonzero complex number \(\omega \in \mathbb{C} \)? In this case, we get
\[
M^* + N = \frac{D^*}{\omega} - E^* \frac{1}{\omega} D + F = \left(\frac{1}{\omega} + \frac{1}{\omega} - 1 \right) D.
\]
8.4. CONVERGENCE OF THE METHODS

But,
\[
\frac{1}{\omega} + \frac{1}{\omega} - 1 = \frac{\omega + \omega - \omega \omega}{\omega \omega} = \frac{1 - (\omega - 1)(\omega - 1)}{\omega^2} = \frac{1 - |\omega - 1|^2}{\omega^2},
\]
so the relaxation method also converges for \(\omega \in \mathbb{C} \), provided that \(|\omega - 1| < 1\).

This condition reduces to \(0 < \omega < 2 \) if \(\omega \) is real.

Unfortunately, Theorem 8.6 does not apply to Jacobi’s method, but in special cases, Proposition 8.5 can be used to prove its convergence. On the positive side, if a matrix is strictly column (or row) diagonally dominant, then it can be shown that the method of Jacobi and the method of Gauss-Seidel both converge. The relaxation method also converges if \(\omega \in (0, 1] \), but this is not a very useful result because the speed-up of convergence usually occurs for \(\omega > 1 \).

We now prove that, without any assumption on \(A = D - E - F \), other than the fact that \(A \) and \(D \) are invertible, in order for the relaxation method to converge, we must have \(\omega \in (0, 2) \).

Proposition 8.7. Given any matrix \(A = D - E - F \), with \(A \) and \(D \) invertible, for any \(\omega \neq 0 \), we have
\[
\rho(L_\omega) \geq |\omega - 1|.
\]

Therefore, the relaxation method (possibly by blocks) does not converge unless \(\omega \in (0, 2) \). If we allow \(\omega \) to be complex, then we must have
\[
|\omega - 1| < 1
\]
for the relaxation method to converge.

Proof. Observe that the product \(\lambda_1 \cdots \lambda_n \) of the eigenvalues of \(L_\omega \), which is equal to \(\det(L_\omega) \), is given by
\[
\lambda_1 \cdots \lambda_n = \det(L_\omega) = \frac{\det \left(\frac{1-\omega}{\omega} D + F \right)}{\det \left(\frac{D}{\omega} - E \right)} = (1 - \omega)^n.
\]
It follows that
\[
\rho(L_\omega) \geq |\lambda_1 \cdots \lambda_n|^{1/n} = |\omega - 1|.
\]
The proof is the same if \(\omega \in \mathbb{C} \). \(\square \)

We now consider the case where \(A \) is a tridiagonal matrix, possibly by blocks. In this case, we obtain precise results about the spectral radius of \(J \) and \(L_\omega \), and as a consequence, about the convergence of these methods. We also obtain some information about the rate of convergence of these methods. We begin with the case \(\omega = 1 \), which is technically easier to deal with. The following proposition gives us the precise relationship between the spectral radii \(\rho(J) \) and \(\rho(L_1) \) of the Jacobi matrix and the Gauss-Seidel matrix.
Proposition 8.8. Let A be a tridiagonal matrix (possibly by blocks). If $\rho(J)$ is the spectral radius of the Jacobi matrix and $\rho(L_1)$ is the spectral radius of the Gauss-Seidel matrix, then we have

$$\rho(L_1) = (\rho(J))^2.$$

Consequently, the method of Jacobi and the method of Gauss-Seidel both converge or both diverge simultaneously (even when A is tridiagonal by blocks); when they converge, the method of Gauss-Seidel converges faster than Jacobi’s method.

Proof. We begin with a preliminary result. Let $A(\mu)$ with a tridiagonal matrix by block of the form

$$A(\mu) = \begin{pmatrix}
A_1 & \mu^{-1}C_1 & 0 & 0 & \cdots & 0 \\
\mu B_1 & A_2 & \mu^{-1}C_2 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \mu B_{p-2} & A_{p-1} & \mu^{-1}C_{p-1} \\
0 & \cdots & 0 & \mu B_{p-1} & A_p
\end{pmatrix},$$

then

$$\det(A(\mu)) = \det(A(1)), \quad \mu \neq 0.$$

To prove this fact, form the block diagonal matrix

$$P(\mu) = \text{diag}(\mu I_1, \mu^2 I_2, \ldots, \mu^p I_p),$$

where I_j is the identity matrix of the same dimension as the block A_j. Then, it is easy to see that

$$A(\mu) = P(\mu)A(1)P(\mu)^{-1},$$

and thus,

$$\det(A(\mu)) = \det(P(\mu)A(1)P(\mu)^{-1}) = \det(A(1)).$$

Since the Jacobi matrix is $J = D^{-1}(E + F)$, the eigenvalues of J are the zeros of the characteristic polynomial

$$p_J(\lambda) = \det(\lambda I - D^{-1}(E + F)),$$

and thus, they are also the zeros of the polynomial

$$q_J(\lambda) = \det(\lambda D - E - F) = \det(D)p_J(\lambda).$$

Similarly, since the Gauss-Seidel matrix is $L_1 = (D - E)^{-1}F$, the zeros of the characteristic polynomial

$$p_{L_1}(\lambda) = \det(\lambda I - (D - E)^{-1}F)$$

are also the zeros of the polynomial

$$q_{L_1}(\lambda) = \det(\lambda D - \lambda E - F) = \det(D - E)p_{L_1}(\lambda).$$
Since A is tridiagonal (or tridiagonal by blocks), using our preliminary result with $\mu = \lambda \neq 0$, we get

$$q_{L_1}(\lambda^2) = \det(\lambda^2 D - \lambda^2 E - F) = \det(\lambda^2 D - \lambda E - \lambda F) = \lambda^n q_J(\lambda).$$

By continuity, the above equation also holds for $\lambda = 0$. But then, we deduce that:

1. For any $\beta \neq 0$, if β is an eigenvalue of L_1, then $\beta^{1/2}$ and $-\beta^{1/2}$ are both eigenvalues of J, where $\beta^{1/2}$ is one of the complex square roots of β.

2. For any $\alpha \neq 0$, if α and $-\alpha$ are both eigenvalues of J, then α^2 is an eigenvalue of L_1.

The above immediately implies that $\rho(L_1) = (\rho(J))^2$.

We now consider the more general situation where ω is any real in $(0, 2)$.

Proposition 8.9. Let A be a tridiagonal matrix (possibly by blocks), and assume that the eigenvalues of the Jacobi matrix are all real. If $\omega \in (0, 2)$, then the method of Jacobi and the method of relaxation both converge or both diverge simultaneously (even when A is tridiagonal by blocks). When they converge, the function $\omega \mapsto \rho(L_\omega)$ (for $\omega \in (0, 2)$) has a unique minimum equal to $\omega_0 - 1$ for

$$\omega_0 = \frac{2}{1 + \sqrt{1 - (\rho(J))^2}},$$

where $1 < \omega_0 < 2$ if $\rho(J) > 0$. We also have $\rho(L_1) = (\rho(J))^2$, as before.

Proof. The proof is very technical and can be found in Serre [46] and Ciarlet [13]. As in the proof of the previous proposition, we begin by showing that the eigenvalues of the matrix L_ω are the zeros of the polynomial

$$q_{L_\omega}(\lambda) = \det \left(\frac{\lambda + \omega - 1}{\omega} D - \lambda E - F \right) = \det \left(\frac{D}{\omega} - E \right) p_{L_\omega}(\lambda),$$

where $p_{L_\omega}(\lambda)$ is the characteristic polynomial of L_ω. Then, using the preliminary fact from Proposition 8.8, it is easy to show that

$$q_{L_\omega}(\lambda^2) = \lambda^n q_J \left(\frac{\lambda^2 + \omega - 1}{\lambda \omega} \right),$$

for all $\lambda \in \mathbb{C}$, with $\lambda \neq 0$. This time, we cannot extend the above equation to $\lambda = 0$. This leads us to consider the equation

$$\frac{\lambda^2 + \omega - 1}{\lambda \omega} = \alpha,$

which is equivalent to

$$\lambda^2 - \alpha \omega \lambda + \omega - 1 = 0,$$

for all $\lambda \neq 0$. Since $\lambda \neq 0$, the above equivalence does not hold for $\omega = 1$, but this is not a problem since the case $\omega = 1$ has already been considered in the previous proposition. Then, we can show the following:
1. For any \(\beta \neq 0 \), if \(\beta \) is an eigenvalue of \(\mathcal{L}_\omega \), then
\[
\frac{\beta + \omega - 1}{\beta^{1/2}\omega}, \quad \frac{-\beta + \omega - 1}{\beta^{1/2}\omega}
\]
are eigenvalues of \(J \).

2. For every \(\alpha \neq 0 \), if \(\alpha \) and \(-\alpha \) are eigenvalues of \(J \), then \(\mu_+^{(\alpha,\omega)} \) and \(\mu_-^{(\alpha,\omega)} \) are eigenvalues of \(\mathcal{L}_\omega \), where \(\mu_+^{(\alpha,\omega)} \) and \(\mu_-^{(\alpha,\omega)} \) are the squares of the roots of the equation
\[
\lambda^2 - \alpha\omega\lambda + \omega - 1 = 0.
\]
It follows that
\[
\rho(\mathcal{L}_\omega) = \max_{\lambda \mid p(\lambda) = 0} \{\max(|\mu_+^{(\alpha,\omega)}|, |\mu_-^{(\alpha,\omega)}|)\},
\]
and since we are assuming that \(J \) has real roots, we are led to study the function
\[
M(\alpha, \omega) = \max\{|\mu_+^{(\alpha,\omega)}|, |\mu_-^{(\alpha,\omega)}|\},
\]
where \(\alpha \in \mathbb{R} \) and \(\omega \in (0, 2) \). Actually, because \(M(-\alpha, \omega) = M(\alpha, \omega) \), it is only necessary to consider the case where \(\alpha \geq 0 \).

Note that for \(\alpha \neq 0 \), the roots of the equation
\[
\lambda^2 - \alpha\omega\lambda + \omega - 1 = 0.
\]
are
\[
\frac{\alpha\omega \pm \sqrt{\alpha^2\omega^2 - 4\omega + 4}}{2}.
\]
In turn, this leads to consider the roots of the equation
\[
\omega^2\alpha^2 - 4\omega + 4 = 0,
\]
which are
\[
\frac{2(1 \pm \sqrt{1 - \alpha^2})}{\alpha^2},
\]
for \(\alpha \neq 0 \). Since we have
\[
\frac{2(1 + \sqrt{1 - \alpha^2})}{\alpha^2} = \frac{2(1 + \sqrt{1 - \alpha^2})(1 - \sqrt{1 - \alpha^2})}{\alpha^2(1 - \sqrt{1 - \alpha^2})} = \frac{2}{1 - \sqrt{1 - \alpha^2}}
\]
and
\[
\frac{2(1 - \sqrt{1 - \alpha^2})}{\alpha^2} = \frac{2(1 + \sqrt{1 - \alpha^2})(1 - \sqrt{1 - \alpha^2})}{\alpha^2(1 + \sqrt{1 - \alpha^2})} = \frac{2}{1 + \sqrt{1 - \alpha^2}},
\]
these roots are
\[
\omega_0(\alpha) = \frac{2}{1 + \sqrt{1 - \alpha^2}}, \quad \omega_1(\alpha) = \frac{2}{1 - \sqrt{1 - \alpha^2}}.
\]
Observe that the expression for $\omega_0(\alpha)$ is exactly the expression in the statement of our proposition! The rest of the proof consists in analyzing the variations of the function $M(\alpha, \omega)$ by considering various cases for α. In the end, we find that the minimum of $\rho(L_\omega)$ is obtained for $\omega_0(\rho(J))$. The details are tedious and we omit them. The reader will find complete proofs in Serre [46] and Ciarlet [13].

\[\omega_0 = \frac{2}{1 + \sqrt{1 - (\rho(J))^2}}, \]

such that
\[\rho(L_{\omega_0}) = \inf_{0 < \omega < 2} \rho(L_\omega) = \omega_0 - 1. \]

Furthermore, if $\rho(J) > 0$, then
\[\rho(L_{\omega_0}) < \rho(L_1) = (\rho(J))^2 < \rho(J), \]

and if $\rho(J) = 0$, then $\omega_0 = 1$ and $\rho(L_1) = \rho(J) = 0$.

Proof. In order to apply Proposition 8.9, we have to check that $J = D^{-1}(E + F)$ has real eigenvalues. However, if α is any eigenvalue of J and if u is any corresponding eigenvector, then
\[D^{-1}(E + F)u = \alpha u \]

implies that
\[(E + F)u = \alpha Du, \]

and since $A = D - E - F$, the above shows that $(D - A)u = \alpha Du$, that is,
\[Au = (1 - \alpha)Du. \]

Consequently,
\[u^*Au = (1 - \alpha)u^*Du, \]

and since A and D are hermitian, positive, definite, we have $u^*Au > 0$ and $u^*Du > 0$ if $u \neq 0$, which proves that $\alpha \in \mathbb{R}$. The rest follows from Theorem 8.6 and Proposition 8.9. \qed

Remark: It is preferable to overestimate rather than underestimate the relaxation parameter when the optimum relaxation parameter is not known exactly.
8.5 Summary

The main concepts and results of this chapter are listed below:

- Iterative methods. Splitting A as $A = M - N$.

- Convergence of a sequence of vectors or matrices.

- A criterion for the convergence of the sequence (B^k) of powers of a matrix B to zero in terms of the spectral radius $\rho(B)$.

- A characterization of the spectral radius $\rho(B)$ as the limit of the sequence $(\|B^k\|^{1/k})$.

- A criterion of the convergence of iterative methods.

- Asymptotic behavior of iterative methods.

- Splitting A as $A = D - E - F$, and the methods of Jacobi, Gauss-Seidel, and relaxation (and SOR).

- The Jacobi matrix, $J = D^{-1}(E + F)$.

- The Gauss-Seidel matrix, $L_2 = (D - E)^{-1}F$.

- The matrix of relaxation, $L_\omega = (D - \omega E)^{-1}((1 - \omega)D + \omega F)$.

- Convergence of iterative methods: a general result when $A = M - N$ is Hermitian, positive, definite.

- A sufficient condition for the convergence of the methods of Jacobi, Gauss-Seidel, and relaxation. The Ostrowski-Reich Theorem: A is symmetric, positive, definite, and $\omega \in (0, 2)$.

- A necessary condition for the convergence of the methods of Jacobi, Gauss-Seidel, and relaxation: $\omega \in (0, 2)$.

- The case of tridiagonal matrices (possibly by blocks). Simultaneous convergence or divergence of Jacobi’s method and Gauss-Seidel’s method, and comparison of the spectral radii of $\rho(J)$ and $\rho(L_1)$: $\rho(L_1) = (\rho(J))^2$.

- The case of tridiagonal, Hermitian, positive, definite matrices (possibly by blocks). The methods of Jacobi, Gauss-Seidel, and relaxation, all converge.

- In the above case, there is a unique optimal relaxation parameter for which $\rho(L_\omega) < \rho(L_1) = (\rho(J))^2 < \rho(J)$ (if $\rho(J) \neq 0$).
Chapter 9

The Dual Space and Duality

9.1 The Dual Space E^* and Linear Forms

In Section 2.8 we defined linear forms, the dual space $E^* = \text{Hom}(E, K)$ of a vector space E, and showed the existence of dual bases for vector spaces of finite dimension.

In this chapter, we take a deeper look at the connection between a space E and its dual space E^*. As we will see shortly, every linear map $f: E \to F$ gives rise to a linear map $f^\top: F^* \to E^*$, and it turns out that in a suitable basis, the matrix of f^\top is the transpose of the matrix of f. Thus, the notion of dual space provides a conceptual explanation of the phenomena associated with transposition.

But it does more, because it allows us to view a linear equation as an element of the dual space E^*, and thus to view subspaces of E as solutions of sets of linear equations and vice-versa. The relationship between subspaces and sets of linear forms is the essence of duality, a term which is often used loosely, but can be made precise as a bijection between the set of subspaces of a given vector space E and the set of subspaces of its dual E^*. In this correspondence, a subspace V of E yields the subspace V^0 of E^* consisting of all linear forms that vanish on V (that is, have the value zero for all input in V).

Consider the following set of two “linear equations” in \mathbb{R}^3,

\[
\begin{align*}
x - y + z &= 0 \\
x - y - z &= 0,
\end{align*}
\]

and let us find out what is their set V of common solutions $(x, y, z) \in \mathbb{R}^3$. By subtracting the second equation from the first, we get $2z = 0$, and by adding the two equations, we find that $2(x - y) = 0$, so the set V of solutions is given by

\[
\begin{align*}
y &= x \\
z &= 0.
\end{align*}
\]

This is a one dimensional subspace of \mathbb{R}^3. Geometrically, this is the line of equation $y = x$ in the plane $z = 0$.

259
Now, why did we say that the above equations are linear? This is because, as functions of \((x, y, z)\), both maps \(f_1: (x, y, z) \mapsto x - y + z\) and \(f_2: (x, y, z) \mapsto x - y - z\) are linear. The set of all such linear functions from \(\mathbb{R}^3\) to \(\mathbb{R}\) is a vector space; we used this fact to form linear combinations of the “equations” \(f_1\) and \(f_2\). Observe that the dimension of the subspace \(V\) is 1. The ambient space has dimension \(n = 3\) and there are two “independent” equations \(f_1, f_2\), so it appears that the dimension \(\dim(V)\) of the subspace \(V\) defined by \(m\) independent equations is

\[
\dim(V) = n - m,
\]

which is indeed a general fact (proved in Theorem 9.1).

More generally, in \(\mathbb{R}^n\), a linear equation is determined by an \(n\)-tuple \((a_1, \ldots, a_n) \in \mathbb{R}^n\), and the solutions of this linear equation are given by the \(n\)-tuples \((x_1, \ldots, x_n) \in \mathbb{R}^n\) such that

\[
a_1 x_1 + \cdots + a_n x_n = 0;
\]

these solutions constitute the kernel of the linear map \((x_1, \ldots, x_n) \mapsto a_1 x_1 + \cdots + a_n x_n\).

The above considerations assume that we are working in the canonical basis \((e_1, \ldots, e_n)\) of \(\mathbb{R}^n\), but we can define “linear equations” independently of bases and in any dimension, by viewing them as elements of the vector space \(\text{Hom}(E, K)\) of linear maps from \(E\) to the field \(K\).

Definition 9.1. Given a vector space \(E\), the vector space \(\text{Hom}(E, K)\) of linear maps from \(E\) to the field \(K\) is called the dual space (or dual) of \(E\). The space \(\text{Hom}(E, K)\) is also denoted by \(E^*\), and the linear maps in \(E^*\) are called the linear forms, or covectors. The dual space \(E^{**}\) of the space \(E^*\) is called the bidual of \(E\).

As a matter of notation, linear forms \(f: E \to K\) will also be denoted by starred symbol, such as \(u^*, x^*\), etc.

Given a vector space \(E\) and any basis \((u_i)_{i \in I}\) for \(E\), we can associate to each \(u_i\) a linear form \(u_i^* \in E^*\), and the \(u_i^*\) have some remarkable properties.

Definition 9.2. Given a vector space \(E\) and any basis \((u_i)_{i \in I}\) for \(E\), by Proposition 2.13, for every \(i \in I\), there is a unique linear form \(u_i^*\) such that

\[
u_i^*(u_j) = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j,
\end{cases}
\]

for every \(j \in I\). The linear form \(u_i^*\) is called the coordinate form of index \(i\) w.r.t. the basis \((u_i)_{i \in I}\).

The reason for the terminology coordinate form was explained in Section 2.8.

We proved in Theorem 2.16 that if \((u_1, \ldots, u_n)\) is a basis of \(E\), then \((u_1^*, \ldots, u_n^*)\) is a basis of \(E^*\) called the dual basis.
If \((u_1, \ldots, u_n)\) is a basis of \(\mathbb{R}^n\) (more generally \(K^n\)), it is possible to find explicitly the dual basis \((u_1^*, \ldots, u_n^*)\), where each \(u_i^*\) is represented by a row vector. For example, consider the columns of the Bézier matrix

\[
B_4 = \begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Since the form \(u_1^*\) is defined by the conditions \(u_1^*(u_1) = 1, u_1^*(u_2) = 0, u_1^*(u_3) = 0, u_1^*(u_4) = 0\), it is represented by a row vector \((\lambda_1, \lambda_2, \lambda_3, \lambda_4)\) such that

\[
\begin{pmatrix}
\lambda_1 & \lambda_2 & \lambda_3 & \lambda_4
\end{pmatrix}
\begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix}
= \begin{pmatrix}1 & 0 & 0 & 0\end{pmatrix}.
\]

This implies that \(u_1^*\) is the first row of the inverse of \(B_4\). Since

\[
B_4^{-1} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1/3 & 2/3 & 1 \\
0 & 0 & 1/3 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

the linear forms \((u_1^*, u_2^*, u_3^*, u_4^*)\) correspond to the rows of \(B_4^{-1}\). In particular, \(u_1^*\) is represented by \((1 \ 1 \ 1 \ 1)\).

The above method works for any \(n\). Given any basis \((u_1, \ldots, u_n)\) of \(\mathbb{R}^n\), if \(P\) is the \(n \times n\) matrix whose \(j\)th column is \(u_j\), then the dual form \(u_i^*\) is given by the \(i\)th row of the matrix \(P^{-1}\).

When \(E\) is of finite dimension \(n\) and \((u_1, \ldots, u_n)\) is a basis of \(E\), by Theorem 9.1 (1), the family \((u_1^*, \ldots, u_n^*)\) is a basis of the dual space \(E^*\). Let us see how the coordinates of a linear form \(\varphi^* \in E^*\) over the dual basis \((u_1^*, \ldots, u_n^*)\) vary under a change of basis.

Let \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_n)\) be two bases of \(E\), and let \(P = (a_{ij})\) be the change of basis matrix from \((u_1, \ldots, u_n)\) to \((v_1, \ldots, v_n)\), so that

\[
v_j = \sum_{i=1}^n a_{ij} u_i,
\]

and let \(P^{-1} = (b_{ij})\) be the inverse of \(P\), so that

\[
u_i = \sum_{j=1}^n b_{ij} v_j.
\]
Since \(u_i^*(u_j) = \delta_{i,j} \) and \(v_i^*(v_j) = \delta_{i,j} \), we get

\[
v_j^*(u_i) = v_j^*(\sum_{k=1}^{n} b_{k,i}v_k) = b_{j,i},
\]

and thus

\[
v_j^* = \sum_{i=1}^{n} b_{j,i}u_i^*,
\]

and

\[
u_i^* = \sum_{j=1}^{n} a_{i,j}v_j^*.
\]

This means that the change of basis from the dual basis \((u_1^*,\ldots,u_n^*)\) to the dual basis \((v_1^*,\ldots,v_n^*)\) is \((P^{-1})^\top\). Since

\[
\varphi^* = \sum_{i=1}^{n} \varphi_i u_i^* = \sum_{i=1}^{n} \varphi_i' v_i^*,
\]

we get

\[
\varphi'_j = \sum_{i=1}^{n} a_{i,j} \varphi_i,
\]

so the new coordinates \(\varphi'_j\) are expressed in terms of the old coordinates \(\varphi_i\) using the matrix \(P^\top\). If we use the row vectors \((\varphi_1,\ldots,\varphi_n)\) and \((\varphi'_1,\ldots,\varphi'_n)\), we have

\[
(\varphi'_1,\ldots,\varphi'_n) = (\varphi_1,\ldots,\varphi_n)P.
\]

Comparing with the change of basis

\[
v_j = \sum_{i=1}^{n} a_{i,j} u_i,
\]

we note that this time, the coordinates \((\varphi_i)\) of the linear form \(\varphi^*\) change in the same direction as the change of basis. For this reason, we say that the coordinates of linear forms are covariant. By abuse of language, it is often said that linear forms are covariant, which explains why the term covector is also used for a linear form.

Observe that if \((e_1,\ldots,e_n)\) is a basis of the vector space \(E\), then, as a linear map from \(E\) to \(K\), every linear form \(f \in E^*\) is represented by a \(1 \times n\) matrix, that is, by a row vector \((\lambda_1 \cdots \lambda_n)\), with respect to the basis \((e_1,\ldots,e_n)\) of \(E\), and 1 of \(K\), where \(f(e_i) = \lambda_i\). A vector \(u = \sum_{i=1}^{n} u_i e_i \in E\) is represented by a \(n \times 1\) matrix, that is, by a column vector

\[
\begin{pmatrix}
u_1 \\ \vdots \\ u_n
\end{pmatrix},
\]
and the action of \(f \) on \(u \), namely \(f(u) \), is represented by the matrix product

\[
(\lambda_1 \cdots \lambda_n) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \lambda_1 u_1 + \cdots + \lambda_n u_n.
\]

On the other hand, with respect to the dual basis \((e^*_1, \ldots, e^*_n)\) of \(E^* \), the linear form \(f \) is represented by the column vector

\[
\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.
\]

Remark: In many texts using tensors, vectors are often indexed with lower indices. If so, it is more convenient to write the coordinates of a vector \(x \) over the basis \((u_1, \ldots, u_n)\) as \((x^i)\), using an upper index, so that

\[
x = \sum_{i=1}^n x^i u_i,
\]

and in a change of basis, we have

\[
v_j = \sum_{i=1}^n a^i_j u_i
\]

and

\[
x^i = \sum_{j=1}^n a^i_j x^j.
\]

Dually, linear forms are indexed with upper indices. Then, it is more convenient to write the coordinates of a covector \(\varphi^* \) over the dual basis \((u^*1, \ldots, u^*n)\) as \((\varphi^*i)\), using a lower index, so that

\[
\varphi^* = \sum_{i=1}^n \varphi^*_i u^*_i
\]

and in a change of basis, we have

\[
u^*_i = \sum_{j=1}^n a^i_j v^*_j
\]

and

\[
\varphi^*_j = \sum_{i=1}^n a^i_j \varphi_i.
\]

With these conventions, the index of summation appears once in upper position and once in lower position, and the summation sign can be safely omitted, a trick due to *Einstein*. For example, we can write

\[
\varphi^*_j = a^i_j \varphi_i
\]
as an abbreviation for
\[\varphi'_j = \sum_{i=1}^{n} a^i_j \varphi_i. \]

For another example of the use of Einstein’s notation, if the vectors \((v_1, \ldots, v_n)\) are linear combinations of the vectors \((u_1, \ldots, u_n)\), with
\[v_i = \sum_{j=1}^{n} a_{ij} u_j, \quad 1 \leq i \leq n, \]
then the above equations are written as
\[v_i = a^i_j u_j, \quad 1 \leq i \leq n. \]

Thus, in Einstein’s notation, the \(n \times n\) matrix \((a_{ij})\) is denoted by \((a^i_j)\), a \((1,1)\)-tensor.

 Beware that some authors view a matrix as a mapping between coordinates, in which case the matrix \((a_{ij})\) is denoted by \((a^i_j)\).

9.2 Pairing and Duality Between \(E\) and \(E^*\)

Given a linear form \(u^* \in E^*\) and a vector \(v \in E\), the result \(u^*(v)\) of applying \(u^*\) to \(v\) is also denoted by \(\langle u^*, v \rangle\). This defines a binary operation \(\langle -, - \rangle : E^* \times E \to K\) satisfying the following properties:

\[
\begin{align*}
\langle u^*_1 + u^*_2, v \rangle &= \langle u^*_1, v \rangle + \langle u^*_2, v \rangle \\
\langle u^*, v_1 + v_2 \rangle &= \langle u^*, v_1 \rangle + \langle u^*, v_2 \rangle \\
\langle \lambda u^*, v \rangle &= \lambda \langle u^*, v \rangle \\
\langle u^*, \lambda v \rangle &= \lambda \langle u^*, v \rangle.
\end{align*}
\]

The above identities mean that \(\langle -, - \rangle\) is a bilinear map, since it is linear in each argument. It is often called the canonical pairing between \(E^*\) and \(E\). In view of the above identities, given any fixed vector \(v \in E\), the map \(\text{eval}_v : E^* \to K\) (evaluation at \(v\)) defined such that
\[\text{eval}_v(u^*) = \langle u^*, v \rangle = u^*(v) \quad \text{for every} \quad u^* \in E^* \]
is a linear map from \(E^*\) to \(K\), that is, \(\text{eval}_v\) is a linear form in \(E^{**}\). Again, from the above identities, the map \(\text{eval}_E : E \to E^{**}\), defined such that
\[\text{eval}_E(v) = \text{eval}_v \quad \text{for every} \quad v \in E, \]
is a linear map. Observe that
\[\text{eval}_E(v)(u^*) = \langle u^*, v \rangle = u^*(v), \quad \text{for all} \quad v \in E \text{ and all} \quad u^* \in E^*. \]
We shall see that the map eval_E is injective, and that it is an isomorphism when E has finite dimension.

We now formalize the notion of the set V^0 of linear equations vanishing on all vectors in a given subspace $V \subseteq E$, and the notion of the set U^0 of common solutions of a given set $U \subseteq E^*$ of linear equations. The duality theorem (Theorem 9.1) shows that the dimensions of V and V^0, and the dimensions of U and U^0, are related in a crucial way. It also shows that, in finite dimension, the maps $V \mapsto V^0$ and $U \mapsto U^0$ are inverse bijections from subspaces of E to subspaces of E^*.

Definition 9.3. Given a vector space E and its dual E^*, we say that a vector $v \in E$ and a linear form $u^* \in E^*$ are orthogonal iff $\langle u^*, v \rangle = 0$. Given a subspace V of E and a subspace U of E^*, we say that V and U are orthogonal iff $\langle u^*, v \rangle = 0$ for every $u^* \in U$ and every $v \in V$. Given a subset V of E (resp. a subset U of E^*), the orthogonal V^0 of V is the subspace V^0 of E^* defined such that

$$V^0 = \{ u^* \in E^* \mid \langle u^*, v \rangle = 0, \text{ for every } v \in V \}$$

(resp. the orthogonal U^0 of U is the subspace U^0 of E defined such that

$$U^0 = \{ v \in E \mid \langle u^*, v \rangle = 0, \text{ for every } u^* \in U \}).$$

The subspace $V^0 \subseteq E^*$ is also called the annihilator of V. The subspace $U^0 \subseteq E$ annihilated by $U \subseteq E^*$ does not have a special name. It seems reasonable to call it the linear subspace (or linear variety) defined by U.

Informally, V^0 is the set of linear equations that vanish on V, and U^0 is the set of common zeros of all linear equations in U. We can also define V^0 by

$$V^0 = \{ u^* \in E^* \mid V \subseteq \text{Ker } u^* \}$$

and U^0 by

$$U^0 = \bigcap_{u^* \in U} \text{Ker } u^*.$$

Observe that $E^0 = \{0\} = (0)$, and $\{0\}^0 = E^*$. Furthermore, if $V_1 \subseteq V_2 \subseteq E$, then $V_2^0 \subseteq V_1^0 \subseteq E^*$, and if $U_1 \subseteq U_2 \subseteq E^*$, then $U_2^0 \subseteq U_1^0 \subseteq E$.

Proof. Indeed, if $V_1 \subseteq V_2 \subseteq E$, then for any $f^* \in V_2^0$ we have $f^*(v) = 0$ for all $v \in V_2$, and thus $f^*(v) = 0$ for all $v \in V_1$, so $f^* \in V_1^0$. Similarly, if $U_1 \subseteq U_2 \subseteq E^*$, then for any $v \in U_2^0$, we have $f^*(v) = 0$ for all $f^* \in U_2$, so $f^*(v) = 0$ for all $f^* \in U_1$, which means that $v \in U_1^0$.

Here are some examples. Let $E = M_2(\mathbb{R})$, the space of real 2×2 matrices, and let V be the subspace of $M_2(\mathbb{R})$ spanned by the matrices

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
We check immediately that the subspace V consists of all matrices of the form
\[
\begin{pmatrix}
 b & a \\
 a & c
\end{pmatrix},
\]
that is, all symmetric matrices. The matrices
\[
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\]
in V satisfy the equation
\[a_{12} - a_{21} = 0,\]
and all scalar multiples of these equations, so V^0 is the subspace of E^* spanned by the linear form given by $u^*(a_{11}, a_{12}, a_{21}, a_{22}) = a_{12} - a_{21}$. By the duality theorem (Theorem 9.1) we have
\[\dim(V^0) = \dim(E) - \dim(V) = 4 - 3 = 1.\]

The above example generalizes to $E = M_n(\mathbb{R})$ for any $n \geq 1$, but this time, consider the space U of linear forms asserting that a matrix A is symmetric; these are the linear forms spanned by the $n(n - 1)/2$ equations
\[a_{ij} - a_{ji} = 0, \quad 1 \leq i < j \leq n;\]
Note there are no constraints on diagonal entries, and half of the equations
\[a_{ij} - a_{ji} = 0, \quad 1 \leq i \neq j \leq n\]
are redundant. It is easy to check that the equations (linear forms) for which $i < j$ are linearly independent. To be more precise, let U be the space of linear forms in E^* spanned by the linear forms
\[u^*_{ij}(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn}) = a_{ij} - a_{ji}, \quad 1 \leq i < j \leq n.\]
The dimension of U is $n(n - 1)/2$. Then, the set U^0 of common solutions of these equations is the space $S(n)$ of symmetric matrices. By the duality theorem (Theorem 9.1), this space has dimension
\[\frac{n(n + 1)}{2} = n^2 - \frac{n(n - 1)}{2}.\]
We leave it as an exercise to find a basis of $S(n)$.

If $E = M_n(\mathbb{R})$, consider the subspace U of linear forms in E^* spanned by the linear forms
\[u^*_{ij}(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn}) = a_{ij} + a_{ji}, \quad 1 \leq i < j \leq n\]
\[u^*_{ii}(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{n1}, \ldots, a_{nn}) = a_{ii}, \quad 1 \leq i \leq n.\]
It is easy to see that these linear forms are linearly independent, so \(\dim(U) = n(n + 1)/2 \). The space \(U^0 \) of matrices \(A \in \text{M}_n(\mathbb{R}) \) satisfying all of the above equations is clearly the space \(\text{Skew}(n) \) of skew-symmetric matrices. By the duality theorem (Theorem 9.1), the dimension of \(U^0 \) is

\[
\frac{n(n - 1)}{2} = n^2 - \frac{n(n + 1)}{2}.
\]

We leave it as an exercise to find a basis of \(\text{Skew}(n) \).

For yet another example with \(E = \text{M}_n(\mathbb{R}) \), for any \(A \in \text{M}_n(\mathbb{R}) \), consider the linear form in \(E^* \) given by

\[
\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn},
\]
called the trace of \(A \). The subspace \(U^0 \) of \(E \) consisting of all matrices \(A \) such that \(\text{tr}(A) = 0 \) is a space of dimension \(n^2 - 1 \). We leave it as an exercise to find a basis of this space.

The dimension equations

\[
\dim(V) + \dim(V^0) = \dim(E)
\]

\[
\dim(U) + \dim(U^0) = \dim(E)
\]

are always true (if \(E \) is finite-dimensional). This is part of the duality theorem (Theorem 9.1).

In contrast with the previous examples, given a matrix \(A \in \text{M}_n(\mathbb{R}) \), the equations asserting that \(A^\top A = I \) are not linear constraints. For example, for \(n = 2 \), we have

\[
a_{11}^2 + a_{21}^2 = 1
\]

\[
a_{21}^2 + a_{22}^2 = 1
\]

\[
a_{11}a_{12} + a_{21}a_{22} = 0.
\]

Remarks:

(1) The notation \(V^0 \) (resp. \(U^0 \)) for the orthogonal of a subspace \(V \) of \(E \) (resp. a subspace \(U \) of \(E^* \)) is not universal. Other authors use the notation \(V^\perp \) (resp. \(U^\perp \)). However, the notation \(V^\perp \) is also used to denote the orthogonal complement of a subspace \(V \) with respect to an inner product on a space \(E \), in which case \(V^\perp \) is a subspace of \(E \) and not a subspace of \(E^* \) (see Chapter 10). To avoid confusion, we prefer using the notation \(V^0 \).

(2) Since linear forms can be viewed as linear equations (at least in finite dimension), given a subspace (or even a subset) \(U \) of \(E^* \), we can define the set \(Z(U) \) of common zeros of the equations in \(U \) by

\[
Z(U) = \{ v \in E | u^*(v) = 0, \text{ for all } u^* \in U \}.
\]
Of course \(\mathcal{Z}(U) = U^0 \), but the notion \(\mathcal{Z}(U) \) can be generalized to more general kinds of equations, namely polynomial equations. In this more general setting, \(U \) is a set of polynomials in \(n \) variables with coefficients in a field \(K \) (where \(n = \dim(E) \)). Sets of the form \(\mathcal{Z}(U) \) are called algebraic varieties. Linear forms correspond to the special case where homogeneous polynomials of degree 1 are considered.

If \(V \) is a subset of \(E \), it is natural to associate with \(V \) the set of polynomials in \(K[X_1, \ldots, X_n] \) that vanish on \(V \). This set, usually denoted \(\mathcal{I}(V) \), has some special properties that make it an ideal. If \(V \) is a linear subspace of \(E \), it is natural to restrict our attention to the space \(V^0 \) of linear forms that vanish on \(V \), and in this case we identify \(\mathcal{I}(V) \) and \(V^0 \) (although technically, \(\mathcal{I}(V) \) is no longer an ideal).

For any arbitrary set of polynomials \(U \subseteq K[X_1, \ldots, X_n] \) (resp. subset \(V \subseteq E \)), the relationship between \(\mathcal{I}(\mathcal{Z}(U)) \) and \(U \) (resp. \(\mathcal{Z}(\mathcal{I}(V)) \) and \(V \)) is generally not simple, even though we always have \(U \subseteq \mathcal{I}(\mathcal{Z}(U)) \) (resp. \(V \subseteq \mathcal{Z}(\mathcal{I}(V)) \)).

However, when the field \(K \) is algebraically closed, then \(\mathcal{I}(\mathcal{Z}(U)) \) is equal to the radical of the ideal \(U \), a famous result due to Hilbert known as the Nullstellensatz (see Lang [32] or Dummit and Foote [18]). The study of algebraic varieties is the main subject of algebraic geometry, a beautiful but formidable subject. For a taste of algebraic geometry, see Lang [32] or Dummit and Foote [18].

The duality theorem (Theorem 9.1) shows that the situation is much simpler if we restrict our attention to linear subspaces; in this case

\[
U = \mathcal{I}(\mathcal{Z}(U)) \quad \text{and} \quad V = \mathcal{Z}(\mathcal{I}(V)).
\]

We claim that \(V \subseteq V^{00} \) for every subspace \(V \) of \(E \), and that \(U \subseteq U^{00} \) for every subspace \(U \) of \(E^* \).

Proof. Indeed, for any \(v \in V \), to show that \(v \in V^{00} \) we need to prove that \(u^*(v) = 0 \) for all \(u^* \in V^0 \). However, \(V^0 \) consists of all linear forms \(u^* \) such that \(u^*(y) = 0 \) for all \(y \in V \); in particular, for a fixed \(v \in V \), we have \(u^*(v) = 0 \) for all \(u^* \in V^0 \), as required.

Similarly, for any \(u^* \in U \), to show that \(u^* \in U^{00} \) we need to prove that \(u^*(v) = 0 \) for all \(v \in U^0 \). However, \(U^0 \) consists of all vectors \(v \) such that \(f^*(v) = 0 \) for all \(f^* \in U \); in particular, for a fixed \(u^* \in U \), we have \(u^*(v) = 0 \) for all \(v \in U^0 \), as required.

We will see shortly that in finite dimension, we have \(V = V^{00} \) and \(U = U^{00} \).
9.3 The Duality Theorem

Given a vector space E of dimension $n \geq 1$ and a subspace U of E, by Theorem 2.9, every basis (u_1, \ldots, u_m) of U can be extended to a basis (u_1, \ldots, u_n) of E. We have the following important theorem adapted from E. Artin [2] (Chapter 1).

Theorem 9.1. (Duality theorem) Let E be a vector space of dimension n. The following properties hold:

(a) For every basis (u_1, \ldots, u_n) of E, the family of coordinate forms (u_1^*, \ldots, u_n^*) is a basis of E^* (called the dual basis of (u_1, \ldots, u_n)).

(b) For every subspace V of E, we have $V^{00} = V$.

(c) For every pair of subspaces V and W of E such that $E = V \oplus W$, with V of dimension m, for every basis (u_1, \ldots, u_n) of E such that (u_1, \ldots, u_m) is a basis of V and (u_{m+1}, \ldots, u_n) is a basis of W, the family (u_1^*, \ldots, u_n^*) is a basis of the orthogonal W^0 of W in E^*, so that

$$\dim(W) + \dim(W^0) = \dim(E).$$

Furthermore, we have $W^{00} = W$.

(d) For every subspace U of E^*, we have

$$\dim(U) + \dim(U^0) = \dim(E),$$

where U^0 is the orthogonal of U in E, and $U^{00} = U$.

Proof. (a) This part was proved in Theorem 2.16.

(b) Clearly, we have $V \subseteq V^{00}$. If $V \neq V^{00}$, then let (u_1, \ldots, u_p) be a basis of V^{00} such that (u_1, \ldots, u_m) is a basis of V, with $m < p$. Since $u_{m+1} \in V^{00}$, u_{m+1} is orthogonal to every linear form in V^0. Now, we have $u_{m+1}^*(u_i) = 0$ for all $i = 1, \ldots, m$, and thus $u_{m+1}^* \in W^0$. However, $u_{m+1}^*(u_{m+1}) = 1$, contradicting the fact that u_{m+1} is orthogonal to every linear form in V^0. Thus, $V = V^{00}$.

(c) Every linear form $f^* \in W^0$ is orthogonal to every u_j for $j = m + 1, \ldots, n$, and thus, $f^*(u_j) = 0$ for $j = m + 1, \ldots, n$. For such a linear form $f^* \in W^0$, let

$$g^* = f^*(u_1)u_1^* + \cdots + f^*(u_m)u_m^*.$$

We have $g^*(u_i) = f^*(u_i)$, for every i, $1 \leq i \leq m$. Furthermore, by definition, g^* vanishes on all u_j with $j = m+1, \ldots, n$. Thus, f^* and g^* agree on the basis (u_1, \ldots, u_n) of E, and so $g^* = f^*$. This shows that (u_1^*, \ldots, u_n^*) generates W^0, and since it is also a linearly independent family, (u_1^*, \ldots, u_n^*) is a basis of W^0. It is then obvious that $\dim(W) + \dim(W^0) = \dim(E)$, and by part (b), we have $W^{00} = W$.

(d) Let \((f_1^*, \ldots, f_m^*)\) be a basis of \(U\). Note that the map \(h: E \rightarrow K^m\) defined such that
\[
h(v) = (f_1^*(v), \ldots, f_m^*(v))
\]
for every \(v \in E\) is a linear map, and that its kernel \(\text{Ker} \ h\) is precisely \(U^0\). Then, by Proposition 4.6,
\[n = \dim(E) = \dim(\text{Ker} \ h) + \dim(\text{Im} \ h) \leq \dim(U^0) + m,
\]
since \(\dim(\text{Im} \ h) \leq m\). Thus, \(n - \dim(U^0) \leq m\). By (c), we have \(\dim(U^0) + \dim(U^{00}) = \dim(E) = n\), so we get \(\dim(U^{00}) \leq m\). However, it is clear that \(U \subseteq U^{00}\), which implies \(m = \dim(U) \leq \dim(U^{00})\), so \(\dim(U) = \dim(U^{00}) = m\), and we must have \(U = U^{00}\).

Part (a) of Theorem 9.1 shows that
\[\dim(E) = \dim(E^*),\]
and if \((u_1, \ldots, u_n)\) is a basis of \(E\), then \((u_1^*, \ldots, u_n^*)\) is a basis of the dual space \(E^*\) called the dual basis of \((u_1, \ldots, u_n)\).

Define the function \(E\) (\(E\) for equations) from subspaces of \(E\) to subspaces of \(E^*\) and the function \(Z\) (\(Z\) for zeros) from subspaces of \(E^*\) to subspaces of \(E\) by
\[
E(V) = V^0, \quad V \subseteq E
\]
\[
Z(U) = U^0, \quad U \subseteq E^*.
\]
By part (c) and (d) of theorem 9.1,
\[
(Z \circ E)(V) = V^{00} = V
\]
\[
(E \circ Z)(U) = U^{00} = U,
\]
so \(Z \circ E = \text{id}\) and \(E \circ Z = \text{id}\), and the maps \(E\) and \(V\) are inverse bijections. These maps set up a duality between subspaces of \(E\) and subspaces of \(E^*\). In particular, every subspace \(V \subseteq E\) of dimension \(m\) is the set of common zeros of the space of linear forms (equations) \(V^0\), which has dimension \(n - m\). This confirms the claim we made about the dimension of the subspace defined by a set of linear equations.

One should be careful that this bijection does not hold if \(E\) has infinite dimension. Some restrictions on the dimensions of \(U\) and \(V\) are needed.

However, even if \(E\) is infinite-dimensional, the identity \(V = V^{00}\) holds for every subspace \(V\) of \(E\). The proof is basically the same but uses an infinite basis of \(V^{00}\) extending a basis of \(V\).

Suppose that \(V\) is a subspace of \(\mathbb{R}^n\) of dimension \(m\) and that \((v_1, \ldots, v_m)\) is a basis of \(V\). To find a basis of \(V^0\), we first extend \((v_1, \ldots, v_m)\) to a basis \((v_1, \ldots, v_n)\) of \(\mathbb{R}^n\), and then by
part (c) of Theorem 9.1, we know that \((v^*_{m+1}, \ldots, v^*_n)\) is a basis of \(V^0\). For example, suppose that \(V\) is the subspace of \(\mathbb{R}^4\) spanned by the two linearly independent vectors

\[
v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix},
\]

the first two vectors of the Haar basis in \(\mathbb{R}^4\). The four columns of the Haar matrix

\[
W = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}
\]

form a basis of \(\mathbb{R}^4\), and the inverse of \(W\) is given by

\[
W^{-1} = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 1/4 & 1/4 & -1/4 & -1/4 \\ 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \end{pmatrix}.
\]

Since the dual basis \((v_1^*, v_2^*, v_3^*, v_4^*)\) is given by the row of \(W^{-1}\), the last two rows of \(W^{-1}\),

\[
\begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \end{pmatrix},
\]

form a basis of \(V^0\). We also obtain a basis by rescaling by the factor 1/2, so the linear forms given by the row vectors

\[
\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}
\]

form a basis of \(V^0\), the space of linear forms (linear equations) that vanish on the subspace \(V\).

The method that we described to find \(V^0\) requires first extending a basis of \(V\) and then inverting a matrix, but there is a more direct method. Indeed, let \(A\) be the \(n \times m\) matrix whose columns are the basis vectors \((v_1, \ldots, v_m)\) of \(V\). Then, a linear form \(u\) represented by a row vector belongs to \(V^0\) iff \(u v_i = 0\) for \(i = 1, \ldots, m\) iff

\[
u A = 0
\]

iff

\[
A^\top u^\top = 0.
\]

Therefore, all we need to do is to find a basis of the nullspace of \(A^\top\). This can be done quite effectively using the reduction of a matrix to reduced row echelon form (rref); see Section 6.9.
Let us now consider the problem of finding a basis of the hyperplane H in \mathbb{R}^n defined by the equation

$$c_1x_1 + \cdots + c_nx_n = 0.$$

More precisely, if $u^*(x_1, \ldots, x_n)$ is the linear form in $(\mathbb{R}^n)^*$ given by $u^*(x_1, \ldots, x_n) = c_1x_1 + \cdots + c_nx_n$, then the hyperplane H is the kernel of u^*. Of course we assume that some c_j is nonzero, in which case the linear form u^* spans a one-dimensional subspace U of $(\mathbb{R}^n)^*$, and $U^0 = H$ has dimension $n - 1$.

Since u^* is not the linear form which is identically zero, there is a smallest positive index $j \leq n$ such that $c_j \neq 0$, so our linear form is really $u^*(x_1, \ldots, x_n) = c_jx_j + \cdots + c_nx_n$. We claim that the following $n - 1$ vectors (in \mathbb{R}^n) form a basis of H:

$$
\begin{array}{cccccccc}
1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 \\
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
2 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
 j-1 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
 j & 0 & 0 & \cdots & 0 & -c_{j+1}/c_j & -c_{j+2}/c_j & \cdots & -c_n/c_j \\
 j+1 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
 j+2 & 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
n & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\
\end{array}
$$

Observe that the $(n-1) \times (n-1)$ matrix obtained by deleting row j is the identity matrix, so the columns of the above matrix are linearly independent. A simple calculation also shows that the linear form $u^*(x_1, \ldots, x_n) = c_jx_j + \cdots + c_nx_n$ vanishes on every column of the above matrix. For a concrete example in \mathbb{R}^6, if $u^*(x_1, \ldots, x_6) = x_3 + 2x_4 + 3x_5 + 4x_6$, we obtain the basis for the hyperplane H of equation

$$x_3 + 2x_4 + 3x_5 + 4x_6 = 0$$

given by the following matrix:

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -2 & -3 & -4 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
$$

Conversely, given a hyperplane H in \mathbb{R}^n given as the span of $n-1$ linearly vectors (u_1, \ldots, u_{n-1}), it is possible using determinants to find a linear form $(\lambda_1, \ldots, \lambda_n)$ that vanishes
THE DUALITY THEOREM

on H. In the case $n = 2$, we are looking for a row vector $(\lambda_1, \lambda_2, \lambda_3)$ such that if

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

are two linearly independent vectors, then

$$\begin{pmatrix} u_1 & u_2 & u_2 \\ v_1 & v_2 & v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and the cross-product $u \times v$ of u and v given by

$$u \times v = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix}$$

is a solution.

Here is another example illustrating the power of Theorem 9.1. Let $E = M_n(\mathbb{R})$, and consider the equations asserting that the sum of the entries in every row of a matrix $A \in M_n(\mathbb{R})$ is equal to the same number. We have $n - 1$ equations

$$\sum_{j=1}^{n} (a_{ij} - a_{i+1j}) = 0, \quad 1 \leq i \leq n - 1,$$

and it is easy to see that they are linearly independent. Therefore, the space U of linear forms in E^* spanned by the above linear forms (equations) has dimension $n - 1$, and the space U^0 of matrices satisfying all these equations has dimension $n^2 - n + 1$. It is not so obvious to find a basis for this space.

We will now pin down the relationship between a vector space E and its bidual E^{**}.

Proposition 9.2. Let E be a vector space. The following properties hold:

(a) The linear map $\text{eval}_E : E \to E^{**}$ defined such that

$$\text{eval}_E(v) = \text{eval}_v \quad \text{for all } v \in E,$$

that is, $\text{eval}_E(v)(u^*) = \langle u^*, v \rangle = u^*(v)$ for every $u^* \in E^*$, is injective.

(b) When E is of finite dimension n, the linear map $\text{eval}_E : E \to E^{**}$ is an isomorphism (called the canonical isomorphism).
Proof. (a) Let \((u_i)_{i \in I}\) be a basis of \(E\), and let \(v = \sum_{i \in I} v_i u_i\). If \(\text{eval}_E(v)(u^*_i) = 0\) for all \(u^*_i\), and since
\[
\text{eval}_E(v)(u^*_i) = \langle u^*_i, v \rangle = v_i,
\]
we have \(v_i = 0\) for all \(i \in I\), that is, \(v = 0\), showing that \(\text{eval}_E: E \to E^{**}\) is injective.

If \(E\) is of finite dimension \(n\), by Theorem 9.1, for every basis \((u_1, \ldots, u_n)\), the family \((u^*_1, \ldots, u^*_n)\) is a basis of the dual space \(E^*\), and thus the family \((u^{**}_1, \ldots, u^{**}_n)\) is a basis of the bidual \(E^{**}\). This shows that \(\dim(E) = \dim(E^{**}) = n\), and since by part (a), we know that \(\text{eval}_E: E \to E^{**}\) is injective, in fact, \(\text{eval}_E: E \to E^{**}\) is bijective (by Proposition 4.9).

When \(E\) is of finite dimension and \((u_1, \ldots, u_n)\) is a basis of \(E\), in view of the canonical isomorphism \(\text{eval}_E: E \to E^{**}\), the basis \((u^{**}_1, \ldots, u^{**}_n)\) of the bidual is identified with \((u_1, \ldots, u_n)\).

Proposition 9.2 can be reformulated very fruitfully in terms of pairings, a remarkably useful concept discovered by Pontrjagin in 1931 (adapted from E. Artin [2], Chapter 1). Given two vector spaces \(E\) and \(F\) over a field \(K\), we say that a function \(\varphi: E \times F \to K\) is bilinear if for every \(v \in V\), the map \(u \mapsto \varphi(u, v)\) (from \(E\) to \(K\)) is linear, and for every \(u \in E\), the map \(v \mapsto \varphi(u, v)\) (from \(F\) to \(K\)) is linear.

Definition 9.4. Given two vector spaces \(E\) and \(F\) over \(K\), a pairing between \(E\) and \(F\) is a bilinear map \(\varphi: E \times F \to K\). Such a pairing is nondegenerate iff

1. for every \(u \in E\), if \(\varphi(u, v) = 0\) for all \(v \in F\), then \(u = 0\), and
2. for every \(v \in F\), if \(\varphi(u, v) = 0\) for all \(u \in E\), then \(v = 0\).

A pairing \(\varphi: E \times F \to K\) is often denoted by \(\langle -,- \rangle: E \times F \to K\). For example, the map \(\langle -,- \rangle: E^* \times F \to K\) defined earlier is a nondegenerate pairing (use the proof of (a) in Proposition 9.2). If \(E = F\) and \(K = \mathbb{R}\), any inner product on \(E\) is a nondegenerate pairing (because an inner product is positive definite); see Chapter 10.

Given a pairing \(\varphi: E \times F \to K\), we can define two maps \(l_\varphi: E \to F^*\) and \(r_\varphi: F \to E^*\) as follows: For every \(u \in E\), we define the linear form \(l_\varphi(u)\) in \(F^*\) such that
\[
l_\varphi(u)(y) = \varphi(u, y) \quad \text{for every } y \in F,
\]
and for every \(v \in F\), we define the linear form \(r_\varphi(v)\) in \(E^*\) such that
\[
r_\varphi(v)(x) = \varphi(x, v) \quad \text{for every } x \in E.
\]
We have the following useful proposition.
9.4. HYPERPLANES AND LINEAR FORMS

Proposition 9.3. Given two vector spaces E and F over K, for every nondegenerate pairing $\varphi: E \times F \to K$ between E and F, the maps $l_\varphi: E \to F^*$ and $r_\varphi: F \to E^*$ are linear and injective. Furthermore, if E and F have finite dimension, then this dimension is the same and $l_\varphi: E \to F^*$ and $r_\varphi: F \to E^*$ are bijections.

Proof. The maps $l_\varphi: E \to F^*$ and $r_\varphi: F \to E^*$ are linear because a pairing is bilinear. If $l_\varphi(u) = 0$ (the null form), then

$$l_\varphi(u)(v) = \varphi(u, v) = 0 \quad \text{for every } v \in F,$$

and since φ is nondegenerate, $u = 0$. Thus, $l_\varphi: E \to F^*$ is injective. Similarly, $r_\varphi: F \to E^*$ is injective. When F has finite dimension n, we have seen that F and F^* have the same dimension. Since $l_\varphi: E \to F^*$ is injective, we have $m = \dim(E) \leq \dim(F) = n$. The same argument applies to E, and thus $n = \dim(F) \leq \dim(E) = m$. But then, $\dim(E) = \dim(F)$, and $l_\varphi: E \to F^*$ and $r_\varphi: F \to E^*$ are bijections. \hfill \Box

When E has finite dimension, the nondegenerate pairing $\langle -, - \rangle: E^* \times E \to K$ yields another proof of the existence of a natural isomorphism between E and E^{**}. When $E = F$, the nondegenerate pairing induced by an inner product on E yields a natural isomorphism between E and E^* (see Section 10.2).

Interesting nondegenerate pairings arise in exterior algebra and differential geometry. We now show the relationship between hyperplanes and linear forms.

9.4 Hyperplanes and Linear Forms

Actually, Proposition 9.4 below follows from parts (c) and (d) of Theorem 9.1, but we feel that it is also interesting to give a more direct proof.

Proposition 9.4. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form $f^* \in E^*$, its kernel $H = \text{Ker } f^*$ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form $f^* \in E^*$ such that $H = \text{Ker } f^*$.

(c) Given any hyperplane H in E and any (nonnull) linear form $f^* \in E^*$ such that $H = \text{Ker } f^*$, for every linear form $g^* \in E^*$, $H = \text{Ker } g^*$ iff $g^* = \lambda f^*$ for some $\lambda \neq 0$ in K.

Proof. (a) If $f^* \in E^*$ is nonnull, there is some vector $v_0 \in E$ such that $f^*(v_0) \neq 0$. Let $H = \text{Ker } f^*$. For every $v \in E$, we have

$$f^* \left(v - \frac{f^*(v)}{f^*(v_0)} v_0 \right) = f^*(v) - \frac{f^*(v)}{f^*(v_0)} f^*(v_0) = f^*(v) - f^*(v) = 0.$$
Thus,
\[v - \frac{f^* (v)}{f^* (v_0)} v_0 = h \in H,\]
and
\[v = h + \frac{f^* (v)}{f^* (v_0)} v_0,\]
that is, \(E = H + Kv_0\). Also, since \(f^* (v_0) \neq 0\), we have \(v_0 \notin H\), that is, \(H \cap K v_0 = 0\). Thus, \(E = H \oplus K v_0\), and \(H\) is a hyperplane.

(b) If \(H\) is a hyperplane, \(E = H \oplus K v_0\) for some \(v_0 \notin H\). Then, every \(v \in E\) can be written in a unique way as \(v = h + \lambda v_0\). Thus, there is a well-defined function \(f^*: E \to K\), such that, \(f^* (v) = \lambda\), for every \(v = h + \lambda v_0\). We leave as a simple exercise the verification that \(f^*\) is a linear form. Since \(f^* (v_0) = 1\), the linear form \(f^*\) is nonnull. Also, by definition, it is clear that \(\lambda = 0\) iff \(v \in H\), that is, \(\text{Ker} f^* = H\).

(c) Let \(H\) be a hyperplane in \(E\), and let \(f^* \in E^*\) be any (nonnull) linear form such that \(H = \text{Ker} f^*\). Clearly, if \(g^* = \lambda f^*\) for some \(\lambda \neq 0\), then \(H = \text{Ker} g^*\). Conversely, assume that \(H = \text{Ker} g^*\) for some nonnull linear form \(g^*\). From (a), we have \(E = H \oplus K v_0\), for some \(v_0\) such that \(f^* (v_0) \neq 0\) and \(g^* (v_0) \neq 0\). Then, observe that
\[g^* - \frac{g^* (v_0)}{f^* (v_0)} f^*\]
is a linear form that vanishes on \(H\), since both \(f^*\) and \(g^*\) vanish on \(H\), but also vanishes on \(K v_0\). Thus, \(g^* = \lambda f^*\), with
\[\lambda = \frac{g^* (v_0)}{f^* (v_0)}.\]

We leave as an exercise the fact that every subspace \(V \neq E\) of a vector space \(E\) is the intersection of all hyperplanes that contain \(V\). We now consider the notion of transpose of a linear map and of a matrix.

9.5 Transpose of a Linear Map and of a Matrix

Given a linear map \(f: E \to F\), it is possible to define a map \(f^\top: F^* \to E^*\) which has some interesting properties.

Definition 9.5. Given a linear map \(f: E \to F\), the transpose \(f^\top: F^* \to E^*\) of \(f\) is the linear map defined such that
\[f^\top (v^*) = v^* \circ f, \quad \text{for every } v^* \in F^*,\]
as shown in the diagram below:

\[
\begin{array}{ccc}
E & \xrightarrow{f} & F \\
\downarrow{f^\top(v^*)} & & \downarrow{v^*} \\
K & & \\
\end{array}
\]

Equivalently, the linear map \(f^\top : F^* \to E^* \) is defined such that
\[
\langle v^*, f(u) \rangle = \langle f^\top(v^*), u \rangle,
\]
for all \(u \in E \) and all \(v^* \in F^* \).

It is easy to verify that the following properties hold:
\[
\begin{align*}
(f + g)^\top &= f^\top + g^\top \\
(g \circ f)^\top &= f^\top \circ g^\top \\
\text{id}_{E^*}^\top &= \text{id}_{E^*}.
\end{align*}
\]

Note the reversal of composition on the right-hand side of \((g \circ f)^\top = f^\top \circ g^\top \).

The equation \((g \circ f)^\top = f^\top \circ g^\top \) implies the following useful proposition.

Proposition 9.5. If \(f : E \to F \) is any linear map, then the following properties hold:

1. If \(f \) is injective, then \(f^\top \) is surjective.
2. If \(f \) is surjective, then \(f^\top \) is injective.

Proof. If \(f : E \to F \) is injective, then it has a retraction \(r : F \to E \) such that \(r \circ f = \text{id}_E \), and if \(f : E \to F \) is surjective, then it has a section \(s : F \to E \) such that \(f \circ s = \text{id}_F \). Now, if \(f : E \to F \) is injective, then we have
\[
(r \circ f)^\top = f^\top \circ r^\top = \text{id}_{E^*},
\]
which implies that \(f^\top \) is surjective, and if \(f \) is surjective, then we have
\[
(f \circ s)^\top = s^\top \circ f^\top = \text{id}_{F^*},
\]
which implies that \(f^\top \) is injective.

We also have the following property showing the naturality of the eval map.

Proposition 9.6. For any linear map \(f : E \to F \), we have
\[
f^{\top\top} \circ \text{eval}_E = \text{eval}_F \circ f,
\]
or equivalently the following diagram commutes:

\[
\begin{array}{ccc}
E^{**} & \xrightarrow{f^{\top\top}} & F^{**} \\
\downarrow{\text{eval}_E} & & \downarrow{\text{eval}_F} \\
E & \xrightarrow{f} & F.
\end{array}
\]
Proof. For every \(u \in E \) and every \(\varphi \in F^* \), we have
\[
(f^\top \circ \text{eval}_E)(u)(\varphi) = \langle f^\top(\text{eval}_E(u)), \varphi \rangle
= \langle \text{eval}_E(u), f^\top(\varphi) \rangle
= \langle f^\top(\varphi), u \rangle
= \langle \varphi, f(u) \rangle
= \langle \text{eval}_F(f(u)), \varphi \rangle
= \langle (\text{eval}_F \circ f)(u), \varphi \rangle
= \langle \text{eval}_F \circ f)(u)(\varphi),
\]
which proves that \(f^\top \circ \text{eval}_E = \text{eval}_F \circ f \), as claimed.

If \(E \) and \(F \) are finite-dimensional, then \(\text{eval}_E \) and \(\text{eval}_F \) are isomorphisms, so Proposition 9.6 shows that
\[
f^\top = \text{eval}_F^{-1} \circ f \circ \text{eval}_E.
\]
The above equation is often interpreted as follows: if we identify \(E \) with its bidual \(E^{**} \) and \(F \) with its bidual \(F^{**} \), then \(f^\top = f \). This is an abuse of notation; the rigorous statement is (*).

As a corollary of Proposition 9.6, if \(\dim(E) \) is finite, then we have
\[
\ker (f^\top) = \text{eval}_E(\ker (f)).
\]

Proof. Indeed, if \(E \) is finite-dimensional, the map \(\text{eval}_E : E \to E^{**} \) is an isomorphism, so every \(\varphi \in E^{**} \) is of the form \(\varphi = \text{eval}_E(u) \) for some \(u \in E \), the map \(\text{eval}_F : F \to F^{**} \) is injective, and we have
\[
f^\top(\varphi) = 0 \quad \text{iff} \quad f^\top(\text{eval}_E(u)) = 0
\quad \text{iff} \quad \text{eval}_F(f(u)) = 0
\quad \text{iff} \quad f(u) = 0
\quad \text{iff} \quad u \in \ker (f)
\quad \text{iff} \quad \varphi \in \text{eval}_E(\ker (f)),
\]
which proves that \(\ker (f^\top) = \text{eval}_E(\ker (f)) \).

The following proposition shows the relationship between orthogonality and transposition.

Proposition 9.7. Given a linear map \(f : E \to F \), for any subspace \(V \) of \(E \), we have
\[
f(V)^0 = (f^\top)^{-1}(V^0) = \{ w^* \in F^* \mid f^\top(w^*) \in V^0 \}.
\]
As a consequence,
\[
\ker f^\top = (\text{Im } f)^0 \quad \text{and} \quad \ker f = (\text{Im } f^\top)^0.
\]
9.5. TRANSPOSE OF A LINEAR MAP AND OF A MATRIX

Proof. We have
\[\langle w^*, f(v) \rangle = (f^T(w^*), v), \]
for all \(v \in E \) and all \(w^* \in F^* \), and thus, we have \(\langle w^*, f(v) \rangle = 0 \) for every \(v \in V \), i.e. \(w^* \in f(V)^0 \) iff \((f^T(w^*), v) = 0 \) for every \(v \in V \) iff \(f^T(w^*) \in V^0 \), i.e. \(w^* \in (f^T)^{-1}(V^0) \), proving that
\[f(V)^0 = (f^T)^{-1}(V^0). \]

Since we already observed that \(E^0 = (0) \), letting \(V = E \) in the above identity we obtain that
\[\text{Ker } f^T = (\text{Im } f)^0. \]

From the equation
\[\langle w^*, f(v) \rangle = (f^T(w^*), v), \]
we deduce that \(v \in (\text{Im } f^T)^0 \) iff \((f^T(w^*), v) = 0 \) for all \(w^* \in F^* \) iff \(\langle w^*, f(v) \rangle = 0 \) for all \(w^* \in F^* \). Assume that \(v \in (\text{Im } f^T)^0 \). If we pick a basis \((w_i)_{i \in I} \) of \(F \), then we have the linear forms \(w_i^*: F \to K \) such that \(w_i^*(w_j) = \delta_{ij} \), and since we must have \(\langle w_i^*, f(v) \rangle = 0 \) for all \(i \in I \) and \((w_i)_{i \in I} \) is a basis of \(F \), we conclude that \(f(v) = 0 \), and thus \(v \in \text{Ker } f \) (this is because \(\langle w_i^*, f(v) \rangle \) is the coefficient of \(f(v) \) associated with the basis vector \(w_i \)). Conversely, if \(v \in \text{Ker } f \), then \(\langle w^*, f(v) \rangle = 0 \) for all \(w^* \in F^* \), so we conclude that \(v \in (\text{Im } f^T)^0 \). Therefore, \(v \in (\text{Im } f^T)^0 \) iff \(v \in \text{Ker } f \); that is,
\[\text{Ker } f = (\text{Im } f^T)^0, \]
as claimed. \(\square \)

The following theorem shows the relationship between the rank of \(f \) and the rank of \(f^T \).

Theorem 9.8. Given a linear map \(f: E \to F \), the following properties hold.

(a) The dual \((\text{Im } f)^*\) of \(\text{Im } f \) is isomorphic to \(\text{Im } f^T = f^T(F^*) \); that is,
\[(\text{Im } f)^* \cong \text{Im } f^T. \]

(b) If \(F \) is finite dimensional, then \(\text{rk}(f) = \text{rk}(f^T) \).

Proof. (a) Consider the linear maps
\[E \xrightarrow{p} \text{Im } f \xrightarrow{j} F, \]
where \(E \xrightarrow{p} \text{Im } f \) is the surjective map induced by \(E \xrightarrow{j} F \), and \(\text{Im } f \xrightarrow{j} F \) is the injective inclusion map of \(\text{Im } f \) into \(F \). By definition, \(f = j \circ p \). To simplify the notation, let \(I = \text{Im } f \). By Proposition 9.5, since \(E \xrightarrow{p} I \) is surjective, \(I^* \xrightarrow{p^T} E^* \) is injective, and since \(\text{Im } f \xrightarrow{j} F \) is injective, \(F^* \xrightarrow{j^T} I^* \) is surjective. Since \(f = j \circ p \), we also have
\[f^T = (j \circ p)^T = p^T \circ j^T, \]
and since $F^* \xrightarrow{f^T} I^*$ is surjective, and $I^* \xrightarrow{p^T} E^*$ is injective, we have an isomorphism between $(\text{Im } f)^*$ and $f^T(F^*)$.

(b) We already noted that part (a) of Theorem 9.1 shows that $\dim(F) = \dim(F^*)$, for every vector space F of finite dimension. Consequently, $\dim(\text{Im } f) = \dim((\text{Im } f)^*)$, and thus, by part (a) we have $\text{rk}(f) = \text{rk}(f^T)$.

When both E and F are finite-dimensional, there is also a simple proof of (b) that doesn’t use the result of part (a). By Theorem 9.1(c)

$$\dim(\text{Im } f) + \dim((\text{Im } f)^0) = \dim(F),$$

and by Theorem 4.6

$$\dim(\text{Ker } f^T) + \dim(\text{Im } f^T) = \dim(F^*).$$

Furthermore, by Proposition 9.7, we have

$$\text{Ker } f^T = (\text{Im } f)^0,$$

and since F is finite-dimensional $\dim(F) = \dim(F^*)$, so we deduce

$$\dim(\text{Im } f) + \dim((\text{Im } f)^0) = \dim((\text{Im } f)^0) + \dim(\text{Im } f^T),$$

which yields $\dim(\text{Im } f) = \dim(\text{Im } f^T)$; that is, $\text{rk}(f) = \text{rk}(f^T)$. \qed

Remarks:

1. If $\dim(E)$ is finite, following an argument of Dan Guralnik, we can also prove that $\text{rk}(f) = \text{rk}(f^T)$ as follows.

 We know from Proposition 9.7 applied to $f^T : F^* \to E^*$ that

 $$\text{Ker } (f^{TT}) = (\text{Im } f^T)^0,$$

 and we showed as a consequence of Proposition 9.6 that

 $$\text{Ker } (f^{TT}) = \text{eval}_E(\text{Ker } (f)).$$

 It follows (since eval_E is an isomorphism) that

 $$\dim((\text{Im } f^T)^0) = \dim(\text{Ker } (f^{TT})) = \dim(\text{Ker } (f)) = \dim(E) - \dim(\text{Im } f),$$

 and since

 $$\dim(\text{Im } f^T) + \dim((\text{Im } f^T)^0) = \dim(E),$$

 we get

 $$\dim(\text{Im } f^T) = \dim(\text{Im } f).$$
2. As indicated by Dan Guralnik, if \(\dim(E) \) is finite, the above result can be used to prove that

\[
\text{Im} \ f^\top = (\text{Ker} \ (f))^0.
\]

From

\[
\langle f^\top(\varphi), u \rangle = \langle \varphi, f(u) \rangle
\]

for all \(\varphi \in F^* \) and all \(u \in E \), we see that if \(u \in \text{Ker} \ (f) \), then \(\langle f^\top(\varphi), u \rangle = \langle \varphi, 0 \rangle = 0 \), which means that \(f^\top(\varphi) \in (\text{Ker} \ (f))^0 \), and thus, \(\text{Im} \ f^\top \subseteq (\text{Ker} \ (f))^0 \). For the converse, since \(\dim(E) \) is finite, we have

\[
\dim((\text{Ker} \ (f))^0) = \dim(E) - \dim(\text{Ker} \ (f)) = \dim(\text{Im} \ f),
\]

but we just proved that \(\dim(\text{Im} \ f^\top) = \dim(\text{Im} \ f) \), so we get

\[
\dim((\text{Ker} \ (f))^0) = \dim(\text{Im} \ f^\top),
\]

and since \(\text{Im} \ f^\top \subseteq (\text{Ker} \ (f))^0 \), we obtain

\[
\text{Im} \ f^\top = (\text{Ker} \ (f))^0,
\]

as claimed. Now, since \((\text{Ker} \ (f))^{00} = \text{Ker} \ (f) \), the above equation yields another proof of the fact that

\[
\text{Ker} \ (f) = (\text{Im} \ f^\top)^0,
\]

when \(E \) is finite-dimensional.

3. The equation

\[
\text{Im} \ f^\top = (\text{Ker} \ (f))^0
\]

is actually valid even if when \(E \) if infinite-dimensional, but we will not prove this here.

The following proposition can be shown, but it requires a generalization of the duality theorem, so is proof is omitted.

Proposition 9.9. If \(f: E \to F \) is any linear map, then the following identities hold:

\[
\text{Im} \ f^\top = (\text{Ker} \ (f))^0 \\
\text{Ker} \ (f^\top) = (\text{Im} \ f)^0 \\
\text{Im} \ f = (\text{Ker} \ (f^\top))^0 \\
\text{Ker} \ (f) = (\text{Im} \ (f^\top))^0.
\]

The following proposition shows the relationship between the matrix representing a linear map \(f: E \to F \) and the matrix representing its transpose \(f^\top: F^* \to E^* \).
Proposition 9.10. Let E and F be two vector spaces, and let (u_1,\ldots,u_n) be a basis for E and (v_1,\ldots,v_m) be a basis for F. Given any linear map $f: E \to F$, if $M(f)$ is the $m \times n$-matrix representing f w.r.t. the bases (u_1,\ldots,u_n) and (v_1,\ldots,v_m) the $n \times m$-matrix $M(f^\top)$ representing $f^\top: F^* \to E^*$ w.r.t. the dual bases (v_1^*,\ldots,v_m^*) and (u_1^*,\ldots,u_n^*) is the transpose $M(f)^\top$ of $M(f)$.

Proof. Recall that the entry a_{ij} in row i and column j of $M(f)$ is the i-th coordinate of $f(u_j)$ over the basis (v_1,\ldots,v_m). By definition of v_i^*, we have $\langle v_i^*, f(u_j) \rangle = a_{ij}$. The entry a_{ji}^\top in row j and column i of $M(f^\top)$ is the j-th coordinate of

$$f^\top(v_i^*) = a_{1i}^\top u_1^* + \cdots + a_{ji}^\top u_j^* + \cdots + a_{ni}^\top u_n^*$$

over the basis (u_1^*,\ldots,u_n^*), which is just $a_{ji}^\top = f^\top(v_i^*)(u_j) = \langle f^\top(v_i^*), u_j \rangle$. Since

$$\langle v_i^*, f(u_j) \rangle = \langle f^\top(v_i^*), u_j \rangle,$$

we have $a_{ij} = a_{ji}^\top$, proving that $M(f^\top) = M(f)^\top$. \qed

We now can give a very short proof of the fact that the rank of a matrix is equal to the rank of its transpose.

Proposition 9.11. Given a $m \times n$ matrix A over a field K, we have $\text{rk}(A) = \text{rk}(A^\top)$.

Proof. The matrix A corresponds to a linear map $f: K^n \to K^m$, and by Theorem 9.8, $\text{rk}(f) = \text{rk}(f^\top)$. By Proposition 9.10, the linear map f^\top corresponds to A^\top. Since $\text{rk}(A) = \text{rk}(f)$, and $\text{rk}(A^\top) = \text{rk}(f^\top)$, we conclude that $\text{rk}(A) = \text{rk}(A^\top)$. \qed

Thus, given an $m \times n$-matrix A, the maximum number of linearly independent columns is equal to the maximum number of linearly independent rows. There are other ways of proving this fact that do not involve the dual space, but instead some elementary transformations on rows and columns.

Proposition 9.11 immediately yields the following criterion for determining the rank of a matrix:

Proposition 9.12. Given any $m \times n$ matrix A over a field K (typically $K = \mathbb{R}$ or $K = \mathbb{C}$), the rank of A is the maximum natural number r such that there is an invertible $r \times r$ submatrix of A obtained by selecting r rows and r columns of A.

For example, the 3×2 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$
has rank 2 iff one of the three 2×2 matrices
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\quad \begin{pmatrix}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{pmatrix}
\quad \begin{pmatrix}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\]
is invertible. We saw in Chapter 5 that this is equivalent to the fact the determinant of one of the above matrices is nonzero. This is not a very efficient way of finding the rank of a matrix. We will see that there are better ways using various decompositions such as LU, QR, or SVD.

9.6 The Four Fundamental Subspaces

Given a linear map $f : E \to F$ (where E and F are finite-dimensional), Proposition 9.7 revealed that the four spaces
\[
\text{Im } f, \text{ Im } f^\top, \text{ Ker } f, \text{ Ker } f^\top
\]
play a special role. They are often called the fundamental subspaces associated with f. These spaces are related in an intimate manner, since Proposition 9.7 shows that
\[
\text{Ker } f = (\text{Im } f^\top)^0 \\
\text{Ker } f^\top = (\text{Im } f)^0,
\]
and Theorem 9.8 shows that
\[
\text{rk}(f) = \text{rk}(f^\top).
\]
It is instructive to translate these relations in terms of matrices (actually, certain linear algebra books make a big deal about this!). If $\dim(E) = n$ and $\dim(F) = m$, given any basis (u_1, \ldots, u_n) of E and a basis (v_1, \ldots, v_m) of F, we know that f is represented by an $m \times n$ matrix $A = (a_{ij})$, where the jth column of A is equal to $f(u_j)$ over the basis (v_1, \ldots, v_m). Furthermore, the transpose map f^\top is represented by the $n \times m$ matrix A^\top (with respect to the dual bases). Consequently, the four fundamental spaces
\[
\text{Im } f, \text{ Im } f^\top, \text{ Ker } f, \text{ Ker } f^\top
\]
correspond to

1. The column space of A, denoted by $\text{Im } A$ or $\mathcal{R}(A)$; this is the subspace of \mathbb{R}^m spanned by the columns of A, which corresponds to the image $\text{Im } f$ of f.

2. The kernel or nullspace of A, denoted by $\text{Ker } A$ or $\mathcal{N}(A)$; this is the subspace of \mathbb{R}^n consisting of all vectors $x \in \mathbb{R}^n$ such that $Ax = 0$.

3. The row space of A, denoted by $\text{Im } A^\top$ or $\mathcal{R}(A^\top)$; this is the subspace of \mathbb{R}^n spanned by the rows of A, or equivalently, spanned by the columns of A^\top, which corresponds to the image $\text{Im } f^\top$ of f^\top.
The left kernel or left nullspace of A denoted by $\text{Ker} \, A^\top$ or $\mathcal{N}(A^\top)$; this is the kernel (nullspace) of A^\top, the subspace of \mathbb{R}^m consisting of all vectors $y \in \mathbb{R}^m$ such that $A^\top y = 0$, or equivalently, $y^\top A = 0$.

Recall that the dimension r of $\text{Im} \, f$, which is also equal to the dimension of the column space $\text{Im} \, A = \mathcal{R}(A)$, is the rank of A (and f). Then, some our previous results can be reformulated as follows:

1. The column space $\mathcal{R}(A)$ of A has dimension r.

2. The nullspace $\mathcal{N}(A)$ of A has dimension $n - r$.

3. The row space $\mathcal{R}(A^\top)$ has dimension r.

4. The left nullspace $\mathcal{N}(A^\top)$ of A has dimension $m - r$.

The above statements constitute what Strang calls the Fundamental Theorem of Linear Algebra, Part I (see Strang [51]).

The two statements

$$\text{Ker} \, f = (\text{Im} \, f^\top)^0$$
$$\text{Ker} \, f^\top = (\text{Im} \, f)^0$$

translate to

1. The nullspace of A is the orthogonal of the row space of A.

2. The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental Theorem of Linear Algebra, Part II (see Strang [51]).

Since vectors are represented by column vectors and linear forms by row vectors (over a basis in E or F), a vector $x \in \mathbb{R}^n$ is orthogonal to a linear form y iff

$$yx = 0.$$

Then, a vector $x \in \mathbb{R}^n$ is orthogonal to the row space of A iff x is orthogonal to every row of A, namely $Ax = 0$, which is equivalent to the fact that x belong to the nullspace of A. Similarly, the column vector $y \in \mathbb{R}^m$ (representing a linear form over the dual basis of F^*) belongs to the nullspace of A^\top iff $A^\top y = 0$, iff $y^\top A = 0$, which means that the linear form given by y^\top (over the basis in F) is orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal of the left nullspace of A, we get the following criterion for the solvability of an equation of the form $Ax = b$:

9.7. SUMMARY

The equation $Ax = b$ has a solution iff for all $y \in \mathbb{R}^m$, if $A^\top y = 0$, then $y^\top b = 0$.

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace of A; that is, b belongs to the column space of A.

This criterion can be cheaper to check that checking directly that b is spanned by the columns of A. For example, if we consider the system

\[
\begin{align*}
x_1 - x_2 &= b_1 \\
x_2 - x_3 &= b_2 \\
x_3 - x_1 &= b_3
\end{align*}
\]

which, in matrix form, is written $Ax = b$ as below:

\[
\begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix},
\]

we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that the left nullspace of A is spanned by $y = (1, 1, 1)$, and so the system is solvable iff $y^\top b = 0$, namely

\[
b_1 + b_2 + b_3 = 0.
\]

Note that the above criterion can also be stated negatively as follows:

The equation $Ax = b$ has no solution iff there is some $y \in \mathbb{R}^m$ such that $A^\top y = 0$ and $y^\top b \neq 0$.

Since $A^\top y = 0$ iff $y^\top A = 0$, we can view y^\top as a row vector representing a linear form, and $y^\top A = 0$ asserts that the linear form y^\top vanishes on the columns A^1, \ldots, A^n of A but does not vanish on b. Since the linear form y^\top defines the hyperplane H of equation $y^\top z = 0$ (with $z \in \mathbb{R}^m$), geometrically the equation $Ax = b$ has no solution iff there is a hyperplane H containing A^1, \ldots, A^n and not containing b.

9.7 Summary

The main concepts and results of this chapter are listed below:

- The dual space E^* and linear forms (covector). The bidual E^{**}.
- The bilinear pairing $\langle -, - \rangle : E^* \times E \to K$ (the canonical pairing).
- Evaluation at v: $\text{eval}_v : E^* \to K$.
- The map $\text{eval}_E : E \to E^{**}$.
- Orthogonality between a subspace V of E and a subspace U of E^*; the orthogonal V^0 and the orthogonal U^0.
• *Coordinate forms.*

• The *Duality theorem* (Theorem 9.1).

• The *dual basis* of a basis.

• The isomorphism $\text{eval}_E : E \to E^{**}$ when $\dim(E)$ is finite.

• *Pairing* between two vector spaces; *nondegenerate pairing*; Proposition 9.3.

• Hyperplanes and linear forms.

• The *transpose* $f^\top : F^* \to E^*$ of a linear map $f : E \to F$.

• The fundamental identities:

$$\text{Ker } f^\top = (\text{Im } f)^0 \quad \text{and} \quad \text{Ker } f = (\text{Im } f^\top)^0$$

(Proposition 9.7).

• If F is finite-dimensional, then

$$\text{rk}(f) = \text{rk}(f^\top).$$

(Theorem 9.8).

• The matrix of the transpose map f^\top is equal to the transpose of the matrix of the map f (Proposition 9.10).

• For any $m \times n$ matrix A,

$$\text{rk}(A) = \text{rk}(A^\top).$$

• Characterization of the rank of a matrix in terms of a maximal invertible submatrix (Proposition 9.12).

• The *four fundamental subspaces*:

$$\text{Im } f, \text{ Im } f^\top, \text{ Ker } f, \text{ Ker } f^\top.$$

• The *column space*, the *nullspace*, the *row space*, and the *left nullspace* (of a matrix).

• Criterion for the solvability of an equation of the form $Ax = b$ in terms of the left nullspace.
Chapter 10
Euclidean Spaces

Rien n’est beau que le vrai.
—Hermann Minkowski

10.1 Inner Products, Euclidean Spaces

So far, the framework of vector spaces allows us to deal with ratios of vectors and linear combinations, but there is no way to express the notion of length of a line segment or to talk about orthogonality of vectors. A Euclidean structure allows us to deal with metric notions such as orthogonality and length (or distance).

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of Euclidean geometry are investigated in Chapter 11. One of our main goals is to give the basic properties of the transformations that preserve the Euclidean structure, rotations and reflections, since they play an important role in practice. Euclidean geometry is the study of properties invariant under certain affine maps called rigid motions. Rigid motions are the maps that preserve the distance between points.

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz inequality and the Minkowski inequality are shown. We define orthogonality of vectors and of subspaces, orthogonal bases, and orthonormal bases. We prove that every finite-dimensional Euclidean space has orthonormal bases. The first proof uses duality, and the second one the Gram–Schmidt orthogonalization procedure. The QR-decomposition for invertible matrices is shown as an application of the Gram–Schmidt procedure. Linear isometries (also called orthogonal transformations) are defined and studied briefly. We conclude with a short section in which some applications of Euclidean geometry are sketched. One of the most important applications, the method of least squares, is discussed in Chapter 17.

For a more detailed treatment of Euclidean geometry, see Berger [5, 6], Snapper and Troyer [47], or any other book on geometry, such as Pedoe [41], Coxeter [14], Fresnel [21], Tisseron [53], or Cagnac, Ramis, and Commeau [12]. Serious readers should consult Emil
Artin’s famous book [2], which contains an in-depth study of the orthogonal group, as well as other groups arising in geometry. It is still worth consulting some of the older classics, such as Hadamard [25, 26] and Rouché and de Comberousse [42]. The first edition of [25] was published in 1898, and finally reached its thirteenth edition in 1947! In this chapter it is assumed that all vector spaces are defined over the field \(\mathbb{R} \) of real numbers unless specified otherwise (in a few cases, over the complex numbers \(\mathbb{C} \)).

First, we define a Euclidean structure on a vector space. Technically, a Euclidean structure over a vector space \(E \) is provided by a symmetric bilinear form on the vector space satisfying some extra properties. Recall that a bilinear form \(\varphi : E \times E \to \mathbb{R} \) is definite if for every \(u \in E \), \(u \neq 0 \) implies that \(\varphi(u,u) \neq 0 \), and positive if for every \(u \in E \), \(\varphi(u,u) \geq 0 \).

Definition 10.1. A Euclidean space is a real vector space \(E \) equipped with a symmetric bilinear form \(\varphi : E \times E \to \mathbb{R} \) that is positive definite. More explicitly, \(\varphi : E \times E \to \mathbb{R} \) satisfies the following axioms:

\[
\begin{align*}
\varphi(u_1 + u_2, v) &= \varphi(u_1, v) + \varphi(u_2, v), \\
\varphi(u, v_1 + v_2) &= \varphi(u, v_1) + \varphi(u, v_2), \\
\varphi(\lambda u, v) &= \lambda \varphi(u, v), \\
\varphi(u, \lambda v) &= \lambda \varphi(u, v), \\
\varphi(u, v) &= \varphi(v, u), \\
\end{align*}
\]

\(u \neq 0 \) implies that \(\varphi(u, u) > 0 \).

The real number \(\varphi(u,v) \) is also called the inner product (or scalar product) of \(u \) and \(v \). We also define the quadratic form associated with \(\varphi \) as the function \(\Phi : E \to \mathbb{R}_+ \) such that

\[\Phi(u) = \varphi(u,u), \]

for all \(u \in E \).

Since \(\varphi \) is bilinear, we have \(\varphi(0,0) = 0 \), and since it is positive definite, we have the stronger fact that

\[\varphi(u,u) = 0 \quad \text{iff} \quad u = 0, \]

that is, \(\Phi(u) = 0 \) iff \(u = 0 \).

Given an inner product \(\varphi : E \times E \to \mathbb{R} \) on a vector space \(E \), we also denote \(\varphi(u,v) \) by

\[u \cdot v \quad \text{or} \quad \langle u,v \rangle \quad \text{or} \quad (u|v), \]

and \(\sqrt{\Phi(u)} \) by \(||u|| \).

Example 10.1. The standard example of a Euclidean space is \(\mathbb{R}^n \), under the inner product \(\cdot \) defined such that

\[(x_1, \ldots, x_n) \cdot (y_1, \ldots, y_n) = x_1y_1 + x_2y_2 + \cdots + x_ny_n. \]

This Euclidean space is denoted by \(\mathbb{E}^n \).
There are other examples.

Example 10.2. For instance, let E be a vector space of dimension 2, and let (e_1, e_2) be a basis of E. If $a > 0$ and $b^2 - ac < 0$, the bilinear form defined such that

$$\varphi(x_1 e_1 + y_1 e_2, x_2 e_1 + y_2 e_2) = ax_1 x_2 + b(x_1 y_2 + x_2 y_1) + cy_1 y_2$$

yields a Euclidean structure on E. In this case,

$$\Phi(xe_1 + ye_2) = ax^2 + 2bxy + cy^2.$$

Example 10.3. Let $C[a,b]$ denote the set of continuous functions $f : [a,b] \to \mathbb{R}$. It is easily checked that $C[a,b]$ is a vector space of infinite dimension. Given any two functions $f, g \in C[a,b]$, let

$$\langle f, g \rangle = \int_a^b f(t)g(t)dt.$$

We leave as an easy exercise that $\langle - , - \rangle$ is indeed an inner product on $C[a,b]$. In the case where $a = -\pi$ and $b = \pi$ (or $a = 0$ and $b = 2\pi$, this makes basically no difference), one should compute

$$\langle \sin px, \sin qx \rangle, \quad \langle \sin px, \cos qx \rangle, \quad \text{and} \quad \langle \cos px, \cos qx \rangle,$$

for all natural numbers $p, q \geq 1$. The outcome of these calculations is what makes Fourier analysis possible!

Example 10.4. Let $E = M_n(\mathbb{R})$ be the vector space of real $n \times n$ matrices. If we view a matrix $A \in M_n(\mathbb{R})$ as a “long” column vector obtained by concatenating together its columns, we can define the inner product of two matrices $A, B \in M_n(\mathbb{R})$ as

$$\langle A, B \rangle = \sum_{i,j=1}^{n} a_{ij} b_{ij},$$

which can be conveniently written as

$$\langle A, B \rangle = \text{tr}(A^\top B) = \text{tr}(B^\top A).$$

Since this can be viewed as the Euclidean product on \mathbb{R}^{n^2}, it is an inner product on $M_n(\mathbb{R})$. The corresponding norm

$$\|A\|_F = \sqrt{\text{tr}(A^\top A)}$$

is the Frobenius norm (see Section 7.2).

Let us observe that φ can be recovered from Φ. Indeed, by bilinearity and symmetry, we have

$$\Phi(u + v) = \varphi(u + v, u + v)$$

$$= \varphi(u, u + v) + \varphi(v, u + v)$$

$$= \varphi(u, u) + 2\varphi(u, v) + \varphi(v, v)$$

$$= \Phi(u) + 2\varphi(u, v) + \Phi(v).$$
Thus, we have

\[\varphi(u, v) = \frac{1}{2} [\Phi(u + v) - \Phi(u) - \Phi(v)]. \]

We also say that \(\varphi \) is the polar form of \(\Phi \).

If \(E \) is finite-dimensional and if \(\varphi : E \times E \to \mathbb{R} \) is a bilinear form on \(E \), given any basis \((e_1, \ldots, e_n)\) of \(E \), we can write \(x = \sum_{i=1}^{n} x_i e_i \) and \(y = \sum_{j=1}^{n} y_j e_j \), and we have

\[\varphi(x, y) = \varphi \left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j \right) = \sum_{i,j=1}^{n} x_i y_j \varphi(e_i, e_j). \]

If we let \(G \) be the matrix \(G = (\varphi(e_i, e_j)) \), and if \(x \) and \(y \) are the column vectors associated with \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\), then we can write

\[\varphi(x, y) = x^\top G y = y^\top G^\top x. \]

Note that we are committing an abuse of notation, since \(x = \sum_{i=1}^{n} x_i e_i \) is a vector in \(E \), but the column vector associated with \((x_1, \ldots, x_n)\) belongs to \(\mathbb{R}^n \). To avoid this minor abuse, we could denote the column vector associated with \((x_1, \ldots, x_n)\) by \(x \) and similarly \(y \) for the column vector associated with \((y_1, \ldots, y_n)\), in which case the “correct” expression for \(\varphi(x, y) \) is

\[\varphi(x, y) = x^\top G y. \]

However, in view of the isomorphism between \(E \) and \(\mathbb{R}^n \), to keep notation as simple as possible, we will use \(x \) and \(y \) instead of \(x \) and \(y \).

Also observe that \(\varphi \) is symmetric iff \(G = G^\top \), and \(\varphi \) is positive definite iff the matrix \(G \) is positive definite, that is,

\[x^\top G x > 0 \quad \text{for all } x \in \mathbb{R}^n, \quad x \neq 0. \]

The matrix \(G \) associated with an inner product is called the Gram matrix of the inner product with respect to the basis \((e_1, \ldots, e_n)\).

Conversely, if \(A \) is a symmetric positive definite \(n \times n \) matrix, it is easy to check that the bilinear form

\[\langle x, y \rangle = x^\top A y \]

is an inner product. If we make a change of basis from the basis \((e_1, \ldots, e_n)\) to the basis \((f_1, \ldots, f_n)\), and if the change of basis matrix is \(P \) (where the \(j \)th column of \(P \) consists of the coordinates of \(f_j \) over the basis \((e_1, \ldots, e_n)\)), then with respect to coordinates \(x' \) and \(y' \) over the basis \((f_1, \ldots, f_n)\), we have

\[x^\top G y = x'^\top P^\top G P y', \]

so the matrix of our inner product over the basis \((f_1, \ldots, f_n)\) is \(P^\top G P \). We summarize these facts in the following proposition.
Proposition 10.1. Let E be a finite-dimensional vector space, and let (e_1, \ldots, e_n) be a basis of E.

1. For any inner product $\langle -, - \rangle$ on E, if $G = (\langle e_i, e_j \rangle)$ is the Gram matrix of the inner product $\langle -, - \rangle$ w.r.t. the basis (e_1, \ldots, e_n), then G is symmetric positive definite.

2. For any change of basis matrix P, the Gram matrix of $\langle -, - \rangle$ with respect to the new basis is $P^\top GP$.

3. If A is any $n \times n$ symmetric positive definite matrix, then $\langle x, y \rangle = x^\top Ay$ is an inner product on E.

We will see later that a symmetric matrix is positive definite iff its eigenvalues are all positive.

One of the very important properties of an inner product φ is that the map $u \mapsto \sqrt{\Phi(u)}$ is a norm.

Proposition 10.2. Let E be a Euclidean space with inner product φ, and let Φ be the corresponding quadratic form. For all $u, v \in E$, we have the Cauchy–Schwarz inequality

$$\varphi(u, v)^2 \leq \Phi(u)\Phi(v),$$

the equality holding iff u and v are linearly dependent.

We also have the Minkowski inequality

$$\sqrt{\Phi(u + v)} \leq \sqrt{\Phi(u)} + \sqrt{\Phi(v)},$$

the equality holding iff u and v are linearly dependent, where in addition if $u \neq 0$ and $v \neq 0$, then $u = \lambda v$ for some $\lambda > 0$.

Proof. For any vectors $u, v \in E$, we define the function $T : \mathbb{R} \to \mathbb{R}$ such that

$$T(\lambda) = \Phi(u + \lambda v),$$

for all $\lambda \in \mathbb{R}$. Using bilinearity and symmetry, we have

$$\Phi(u + \lambda v) = \varphi(u + \lambda v, u + \lambda v) = \varphi(u, u + \lambda v) + \lambda \varphi(v, u + \lambda v) = \varphi(u, u) + 2\lambda \varphi(u, v) + \lambda^2 \varphi(v, v) = \Phi(u) + 2\lambda \varphi(u, v) + \lambda^2 \Phi(v).$$

Since φ is positive definite, Φ is nonnegative, and thus $T(\lambda) \geq 0$ for all $\lambda \in \mathbb{R}$. If $\Phi(v) = 0$, then $v = 0$, and we also have $\varphi(u, v) = 0$. In this case, the Cauchy–Schwarz inequality is trivial, and $v = 0$ and u are linearly dependent.
Now, assume $\Phi(v) > 0$. Since $T(\lambda) \geq 0$, the quadratic equation
\[
\lambda^2 \Phi(v) + 2\lambda \varphi(u, v) + \Phi(u) = 0
\]
cannot have distinct real roots, which means that its discriminant
\[
\Delta = 4(\varphi(u, v)^2 - \Phi(u)\Phi(v))
\]
is null or negative, which is precisely the Cauchy–Schwarz inequality
\[
\varphi(u, v)^2 \leq \Phi(u)\Phi(v).
\]
If
\[
\varphi(u, v)^2 = \Phi(u)\Phi(v)
\]
then there are two cases. If $\Phi(v) = 0$, then $v = 0$ and u and v are linearly dependent. If $\Phi(v) \neq 0$, then the above quadratic equation has a double root λ_0, and we have $\Phi(u + \lambda_0 v) = 0$. Since φ is positive definite, $\Phi(u + \lambda_0 v) = 0$ implies that $u + \lambda_0 v = 0$, which shows that u and v are linearly dependent. Conversely, it is easy to check that we have equality when u and v are linearly dependent.

The Minkowski inequality
\[
\sqrt{\Phi(u + v)} \leq \sqrt{\Phi(u)} + \sqrt{\Phi(v)}
\]
is equivalent to
\[
\Phi(u + v) \leq \Phi(u) + \Phi(v) + 2\sqrt{\Phi(u)\Phi(v)}.
\]
However, we have shown that
\[
2\varphi(u, v) = \Phi(u + v) - \Phi(u) - \Phi(v),
\]
and so the above inequality is equivalent to
\[
\varphi(u, v) \leq \sqrt{\Phi(u)\Phi(v)},
\]
which is trivial when $\varphi(u, v) \leq 0$, and follows from the Cauchy–Schwarz inequality when $\varphi(u, v) \geq 0$. Thus, the Minkowski inequality holds. Finally, assume that $u \neq 0$ and $v \neq 0$, and that
\[
\sqrt{\Phi(u + v)} = \sqrt{\Phi(u)} + \sqrt{\Phi(v)}.
\]
When this is the case, we have
\[
\varphi(u, v) = \sqrt{\Phi(u)\Phi(v)},
\]
and we know from the discussion of the Cauchy–Schwarz inequality that the equality holds iff u and v are linearly dependent. The Minkowski inequality is an equality when u or v is null. Otherwise, if $u \neq 0$ and $v \neq 0$, then $u = \lambda v$ for some $\lambda \neq 0$, and since
\[
\varphi(u, v) = \lambda \varphi(v, v) = \sqrt{\Phi(u)\Phi(v)},
\]
by positivity, we must have $\lambda > 0$. \qed
Note that the Cauchy–Schwarz inequality can also be written as
\[|\varphi(u, v)| \leq \sqrt{\Phi(u)} \sqrt{\Phi(v)}. \]

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequalities still hold for a symmetric bilinear form that is positive, but not necessarily definite (i.e., \(\varphi(u, v) \geq 0 \) for all \(u, v \in E \)). However, \(u \) and \(v \) need not be linearly dependent when the equality holds.

The Minkowski inequality
\[\sqrt{\Phi(u + v)} \leq \sqrt{\Phi(u)} + \sqrt{\Phi(v)} \]
shows that the map \(u \mapsto \sqrt{\Phi(u)} \) satisfies the convexity inequality (also known as triangle inequality), condition (N3) of Definition 7.1, and since \(\varphi \) is bilinear and positive definite, it also satisfies conditions (N1) and (N2) of Definition 7.1, and thus it is a norm on \(E \). The norm induced by \(\varphi \) is called the **Euclidean norm induced by \(\varphi \).**

Note that the Cauchy–Schwarz inequality can be written as
\[|u \cdot v| \leq \|u\| \|v\|, \]
and the Minkowski inequality as
\[\|u + v\| \leq \|u\| + \|v\|. \]

Remark: One might wonder if every norm on a vector space is induced by some Euclidean inner product. In general, this is false, but remarkably, there is a simple necessary and sufficient condition, which is that the norm must satisfy the **parallelogram law:**
\[\|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2). \]
If \(\langle -, - \rangle \) is an inner product, then we have
\[
\begin{align*}
\|u + v\|^2 &= \|u\|^2 + \|v\|^2 + 2\langle u, v \rangle \\
\|u - v\|^2 &= \|u\|^2 + \|v\|^2 - 2\langle u, v \rangle,
\end{align*}
\]
and by adding and subtracting these identities, we get the parallelogram law and the equation
\[\langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2), \]
which allows us to recover \(\langle -, - \rangle \) from the norm.
CHAPTER 10. EUCLIDEAN SPACES

Conversely, if $\| \|$ is a norm satisfying the parallelogram law, and if it comes from an inner product, then this inner product must be given by

$$\langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2).$$

We need to prove that the above form is indeed symmetric and bilinear.

Symmetry holds because

$$\|u - v\| = \|v - u\| = \|u - v\|.$$

Let us prove additivity in the variable u. By the parallelogram law, we have

$$2(\|x + z\|^2 + \|y\|^2) = \|x + y + z\|^2 + \|x - y + z\|^2$$

which yields

$$\|x + y + z\|^2 = 2(\|x + z\|^2 + \|y\|^2) - \|x - y + z\|^2$$

$$\|x + y + z\|^2 = 2(\|y + z\|^2 + \|x\|^2) - \|y - x + z\|^2,$$

where the second formula is obtained by swapping x and y. Then by adding up these equations, we get

$$\|x + y + z\|^2 = \|x\|^2 + \|y\|^2 + \|x + z\|^2 + \|y + z\|^2 - \frac{1}{2}\|x - y + z\|^2 - \frac{1}{2}\|y - x + z\|^2.$$

Replacing z by $-z$ in the above equation, we get

$$\|x + y - z\|^2 = \|x\|^2 + \|y\|^2 + \|x - z\|^2 + \|y - z\|^2 - \frac{1}{2}\|x - y - z\|^2 - \frac{1}{2}\|y - x - z\|^2,$$

Since $\|x - y + z\| = \|-(x - y + z)\| = \|y - x - z\|$ and $\|y - x + z\| = \|-(y - x + z)\| = \|x - y - z\|$, by subtracting the last two equations, we get

$$\langle x + y, z \rangle = \frac{1}{4}(\|x + y + z\|^2 - \|x + y - z\|^2)$$

$$\quad = \frac{1}{4}(\|x + z\|^2 - \|x - z\|^2) + \frac{1}{4}(\|y + z\|^2 - \|y - z\|^2)$$

$$\quad = \langle x, z \rangle + \langle y, z \rangle,$$

as desired.

Proving that

$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

for all $\lambda \in \mathbb{R}$ is a little tricky. The strategy is to prove the identity for $\lambda \in \mathbb{Z}$, then to promote it to \mathbb{Q}, and then to \mathbb{R} by continuity.

Since

$$\langle -u, v \rangle = \frac{1}{4}(\|-u + v\|^2 - \|-u - v\|^2)$$

$$\quad = \frac{1}{4}(\|u - v\|^2 - \|u + v\|^2)$$

$$\quad = -\langle u, v \rangle,$$
the property holds for \(\lambda = -1 \). By linearity and by induction, for any \(n \in \mathbb{N} \) with \(n \geq 1 \), writing \(n = n - 1 + 1 \), we get
\[
\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \text{for all } \lambda \in \mathbb{N},
\]
and since the above also holds for \(\lambda = -1 \), it holds for all \(\lambda \in \mathbb{Z} \). For \(\lambda = p/q \) with \(p, q \in \mathbb{Z} \) and \(q \neq 0 \), we have
\[
qu \langle (p/q)u, v \rangle = \langle pu, v \rangle = p \langle u, v \rangle,
\]
which shows that
\[
\langle (p/q)u, v \rangle = (p/q) \langle u, v \rangle,
\]
and thus
\[
\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \text{for all } \lambda \in \mathbb{Q}.
\]
To finish the proof, we use the fact that a norm is a continuous map \(x \mapsto \|x\| \). Then, the continuous function \(t \mapsto \frac{1}{t} \langle tu, v \rangle \) defined on \(\mathbb{R} - \{0\} \) agrees with \(\langle u, v \rangle \) on \(\mathbb{Q} - \{0\} \), so it is equal to \(\langle u, v \rangle \) on \(\mathbb{R} - \{0\} \). The case \(\lambda = 0 \) is trivial, so we are done.

We now define orthogonality.

10.2 Orthogonality, Duality, Adjoint of a Linear Map

An inner product on a vector space gives the ability to define the notion of orthogonality. Families of nonnull pairwise orthogonal vectors must be linearly independent. They are called orthogonal families. In a vector space of finite dimension it is always possible to find orthogonal bases. This is very useful theoretically and practically. Indeed, in an orthogonal basis, finding the coordinates of a vector is very cheap: It takes an inner product. Fourier series make crucial use of this fact. When \(E \) has finite dimension, we prove that the inner product on \(E \) induces a natural isomorphism between \(E \) and its dual space \(E^* \). This allows us to define the adjoint of a linear map in an intrinsic fashion (i.e., independently of bases). It is also possible to orthonormalize any basis (certainly when the dimension is finite). We give two proofs, one using duality, the other more constructive using the Gram–Schmidt orthonormalization procedure.

Definition 10.2. Given a Euclidean space \(E \), any two vectors \(u, v \in E \) are *orthogonal*, or *perpendicular*, if \(u \cdot v = 0 \). Given a family \((u_i)_{i \in I} \) of vectors in \(E \), we say that \((u_i)_{i \in I} \) is *orthogonal* if \(u_i \cdot u_j = 0 \) for all \(i, j \in I \); where \(i \neq j \). We say that the family \((u_i)_{i \in I} \) is *orthonormal* if \(u_i \cdot u_j = 0 \) for all \(i, j \in I \), where \(i \neq j \), and \(\|u_i\| = u_i \cdot u_i = 1 \), for all \(i \in I \). For any subset \(F \) of \(E \), the set
\[
F^\perp = \{v \in E \mid u \cdot v = 0, \text{ for all } u \in F\},
\]
of all vectors orthogonal to all vectors in \(F \), is called the *orthogonal complement of \(F \).*
Since inner products are positive definite, observe that for any vector $u \in E$, we have

$$u \cdot v = 0 \quad \text{for all } v \in E \iff u = 0.$$

It is immediately verified that the orthogonal complement F^\perp of F is a subspace of E.

Example 10.5. Going back to Example 10.3 and to the inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$$

on the vector space $C[-\pi, \pi]$, it is easily checked that

$$\langle \sin px, \sin qx \rangle = \begin{cases}
\pi & \text{if } p = q, p, q \geq 1, \\
0 & \text{if } p \neq q, p, q \geq 1,
\end{cases}$$

$$\langle \cos px, \cos qx \rangle = \begin{cases}
\pi & \text{if } p = q, p, q \geq 1, \\
0 & \text{if } p \neq q, p, q \geq 0,
\end{cases}$$

and

$$\langle \sin px, \cos qx \rangle = 0,$$

for all $p \geq 1$ and $q \geq 0$, and of course, $\langle 1, 1 \rangle = \int_{-\pi}^{\pi} dx = 2\pi$.

As a consequence, the family $(\sin px)_{p \geq 1} \cup (\cos qx)_{q \geq 0}$ is orthogonal. It is not orthonormal, but becomes so if we divide every trigonometric function by $\sqrt{\pi}$, and 1 by $\sqrt{2\pi}$.

Proposition 10.3. Given a Euclidean space E, for any family $(u_i)_{i \in I}$ of nonnull vectors in E, if $(u_i)_{i \in I}$ is orthogonal, then it is linearly independent.

Proof. Assume there is a linear dependence

$$\sum_{j \in J} \lambda_j u_j = 0$$

for some $\lambda_j \in \mathbb{R}$ and some finite subset J of I. By taking the inner product with u_i for any $i \in J$, and using the the bilinearity of the inner product and the fact that $u_i \cdot u_j = 0$ whenever $i \neq j$, we get

$$0 = u_i \cdot 0 = u_i \cdot \left(\sum_{j \in J} \lambda_j u_j \right)$$

$$= \sum_{j \in J} \lambda_j (u_i \cdot u_j) = \lambda_i (u_i \cdot u_i),$$

so

$$\lambda_i (u_i \cdot u_i) = 0, \quad \text{for all } i \in J,$$

and since $u_i \neq 0$ and an inner product is positive definite, $u_i \cdot u_i \neq 0$, so we obtain

$$\lambda_i = 0, \quad \text{for all } i \in J,$$

which shows that the family $(u_i)_{i \in I}$ is linearly independent. \qed
We leave the following simple result as an exercise.

Proposition 10.4. Given a Euclidean space E, any two vectors $u, v \in E$ are orthogonal iff

$$
\|u + v\|^2 = \|u\|^2 + \|v\|^2.
$$

One of the most useful features of orthonormal bases is that they afford a very simple method for computing the coordinates of a vector over any basis vector. Indeed, assume that (e_1, \ldots, e_m) is an orthonormal basis. For any vector

$$x = x_1 e_1 + \cdots + x_m e_m,$$

if we compute the inner product $x \cdot e_i$, we get

$$x \cdot e_i = x_1 e_1 \cdot e_i + \cdots + x_i e_i \cdot e_i + \cdots + x_m e_m \cdot e_i = x_i,$$

since

$$e_i \cdot e_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$$

is the property characterizing an orthonormal family. Thus,

$$x_i = x \cdot e_i,$$

which means that $x_i e_i = (x \cdot e_i) e_i$ is the orthogonal projection of x onto the subspace generated by the basis vector e_i. If the basis is orthogonal but not necessarily orthonormal, then

$$x_i = \frac{x \cdot e_i}{e_i \cdot e_i} = \frac{x \cdot e_i}{\|e_i\|^2}.$$

All this is true even for an infinite orthonormal (or orthogonal) basis $(e_i)_{i \in I}$.

However, remember that every vector x is expressed as a linear combination

$$x = \sum_{i \in I} x_i e_i$$

where the family of scalars $(x_i)_{i \in I}$ has **finite support**, which means that $x_i = 0$ for all $i \in I - J$, where J is a finite set. Thus, even though the family $(\sin px)_{p \geq 1} \cup (\cos qx)_{q \geq 0}$ is orthogonal (it is not orthonormal, but becomes so if we divide every trigonometric function by $\sqrt{\pi}$, and 1 by $\sqrt{2\pi}$; we won’t because it looks messy!), the fact that a function $f \in C^0[-\pi, \pi]$ can be written as a Fourier series as

$$f(x) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$
does not mean that \((\sin px)_{p \geq 1} \cup (\cos qx)_{q \geq 0}\) is a basis of this vector space of functions, because in general, the families \((a_k)\) and \((b_k)\) do not have finite support! In order for this infinite linear combination to make sense, it is necessary to prove that the partial sums
\[
a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)
\]
of the series converge to a limit when \(n\) goes to infinity. This requires a topology on the space.

A very important property of Euclidean spaces of finite dimension is that the inner product induces a canonical bijection (i.e., independent of the choice of bases) between the vector space \(E\) and its dual \(E^*\). The reason is that an inner product \(\cdot : E \times E \to \mathbb{R}\) defines a nondegenerate pairing, as defined in Definition 9.4. Indeed, if \(u \cdot v = 0\) for all \(v \in E\) then \(u = 0\), and similarly if \(u \cdot v = 0\) for all \(u \in E\) then \(v = 0\) (since an inner product is positive definite and symmetric). By Proposition 9.3, there is a canonical isomorphism between \(E\) and \(E^*\). We feel that the reader will appreciate if we exhibit this mapping explicitly and reprove that it is an isomorphism.

The mapping from \(E\) to \(E^*\) is defined as follows. For any vector \(u \in E\), let \(\varphi_u : E \to \mathbb{R}\) be the map defined such that
\[
\varphi_u(v) = u \cdot v, \quad \text{for all } v \in E.
\]
Since the inner product is bilinear, the map \(\varphi_u\) is a linear form in \(E^*\). Thus, we have a map \(\flat : E \to E^*\), defined such that
\[
\flat(u) = \varphi_u.
\]

Theorem 10.5. Given a Euclidean space \(E\), the map \(\flat : E \to E^*\) defined such that
\[
\flat(u) = \varphi_u
\]
is linear and injective. When \(E\) is also of finite dimension, the map \(\flat : E \to E^*\) is a canonical isomorphism.

Proof. That \(\flat : E \to E^*\) is a linear map follows immediately from the fact that the inner product is bilinear. If \(\varphi_u = \varphi_v\), then \(\varphi_u(w) = \varphi_v(w)\) for all \(w \in E\), which by definition of \(\varphi_u\) means that \(u \cdot w = v \cdot w\) for all \(w \in E\), which by bilinearity is equivalent to
\[
(v - u) \cdot w = 0
\]
for all \(w \in E\), which implies that \(u = v\), since the inner product is positive definite. Thus, \(\flat : E \to E^*\) is injective. Finally, when \(E\) is of finite dimension \(n\), we know that \(E^*\) is also of dimension \(n\), and then \(\flat : E \to E^*\) is bijective. \(\square\)
The inverse of the isomorphism $\flat : E \rightarrow E^*$ is denoted by $\sharp : E^* \rightarrow E$.

As a consequence of Theorem 10.5, if E is a Euclidean space of finite dimension, every linear form $f \in E^*$ corresponds to a unique $u \in E$ such that

$$f(v) = u \cdot v,$$

for every $v \in E$. In particular, if f is not the null form, the kernel of f, which is a hyperplane H, is precisely the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map” $\flat : E \rightarrow E^*$ is not surjective when E has infinite dimension. The result can be salvaged by restricting our attention to continuous linear maps, and by assuming that the vector space E is a Hilbert space (i.e., E is a complete normed vector space w.r.t. the Euclidean norm). This is the famous “little” Riesz theorem (or Riesz representation theorem).

(2) Theorem 10.5 still holds if the inner product on E is replaced by a nondegenerate symmetric bilinear form φ. We say that a symmetric bilinear form $\varphi : E \times E \rightarrow \mathbb{R}$ is nondegenerate if for every $u \in E$,

$$\text{if } \varphi(u, v) = 0 \text{ for all } v \in E, \text{ then } u = 0.$$

For example, the symmetric bilinear form on \mathbb{R}^4 (the Lorentz form) defined such that

$$\varphi(((x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)) = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4$$

is nondegenerate. However, there are nonnull vectors $u \in \mathbb{R}^4$ such that $\varphi(u, u) = 0$, which is impossible in a Euclidean space. Such vectors are called isotropic.

Example 10.6. Consider \mathbb{R}^n with its usual Euclidean inner product. Given any differentiable function $f : U \rightarrow \mathbb{R}$, where U is some open subset of \mathbb{R}^n, by definition, for any $x \in U$, the total derivative df_x of f at x is the linear form defined so that for all $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$,

$$df_x(u) = \left(\frac{\partial f}{\partial x_1}(x) \right) \cdots \left(\frac{\partial f}{\partial x_n}(x) \right) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) u_i.$$

The unique vector $v \in \mathbb{R}^n$ such that

$$v \cdot u = df_x(u) \text{ for all } u \in \mathbb{R}^n$$

is the transpose of the Jacobian matrix of f at x, the $1 \times n$ matrix

$$\left(\frac{\partial f}{\partial x_1}(x) \cdots \frac{\partial f}{\partial x_n}(x) \right).$$
This is the gradient \(\text{grad}(f)_x \) of \(f \) at \(x \), given by
\[
\text{grad}(f)_x = \left(\begin{array}{c}
\frac{\partial f}{\partial x_1}(x) \\
\vdots \\
\frac{\partial f}{\partial x_n}(x)
\end{array} \right).
\]

Example 10.7. Given any two vectors \(u, v \in \mathbb{R}^3 \), let \(c(u, v) \) be the linear form given by
\[
c(u, v)(w) = \det(u, v, w) \quad \text{for all } w \in \mathbb{R}^3.
\]
Since
\[
\det(u, v, w) = \begin{vmatrix}
 u_1 & v_1 & w_1 \\
 u_2 & v_2 & w_2 \\
 u_3 & v_3 & w_3
\end{vmatrix} = w_1 \begin{vmatrix}
 u_2 & v_2 \\
 u_3 & v_3
\end{vmatrix} - w_2 \begin{vmatrix}
 u_1 & v_1 \\
 u_3 & v_3
\end{vmatrix} + w_3 \begin{vmatrix}
 u_1 & v_1 \\
 u_2 & v_2
\end{vmatrix},
\]
we see that the unique vector \(z \in \mathbb{R}^3 \) such that
\[
z \cdot w = c(u, v)(w) = \det(u, v, w) \quad \text{for all } w \in \mathbb{R}^3
\]
is the vector
\[
z = \begin{pmatrix}
 u_2v_3 - u_3v_2 \\
 u_3v_1 - u_1v_3 \\
 u_1v_2 - u_2v_1
\end{pmatrix}.
\]
This is just the cross-product \(u \times v \) of \(u \) and \(v \). Since \(\det(u, v, u) = \det(u, v, v) = 0 \), we see that \(u \times v \) is orthogonal to both \(u \) and \(v \). The above allows us to generalize the cross-product to \(\mathbb{R}^n \). Given any \(n - 1 \) vectors \(u_1, \ldots, u_{n-1} \in \mathbb{R}^n \), the cross-product \(u_1 \times \cdots \times u_{n-1} \) is the unique vector in \(\mathbb{R}^n \) such that
\[
(u_1 \times \cdots \times u_{n-1}) \cdot w = \det(u_1, \ldots, u_{n-1}, w) \quad \text{for all } w \in \mathbb{R}^n.
\]

Example 10.8. Consider the vector space \(M_n(\mathbb{R}) \) of real \(n \times n \) matrices with the inner product
\[
\langle A, B \rangle = \text{tr}(A^\top B).
\]
Let \(s: M_n(\mathbb{R}) \to \mathbb{R} \) be the function given by
\[
s(A) = \sum_{i,j=1}^{n} a_{ij},
\]
where \(A = (a_{ij}) \). It is immediately verified that \(s \) is a linear form. It is easy to check that the unique matrix \(Z \) such that
\[
\langle Z, A \rangle = s(A) \quad \text{for all } A \in M_n(\mathbb{R})
\]
is the matrix \(Z = \text{ones}(n, n) \) whose entries are all equal to 1.
The existence of the isomorphism $\flat : E \to E^*$ is crucial to the existence of adjoint maps. The importance of adjoint maps stems from the fact that the linear maps arising in physical problems are often self-adjoint, which means that $f = f^*$. Moreover, self-adjoint maps can be diagonalized over orthonormal bases of eigenvectors. This is the key to the solution of many problems in mechanics, and engineering in general (see Strang [50]).

Let E be a Euclidean space of finite dimension n, and let $f : E \to E$ be a linear map. For every $u \in E$, the map

$$v \mapsto u \cdot f(v)$$

is clearly a linear form in E^*, and by Theorem 10.5, there is a unique vector in E denoted by $f^*(u)$ such that

$$f^*(u) \cdot v = u \cdot f(v),$$

for every $v \in E$. The following simple proposition shows that the map f^* is linear.

Proposition 10.6. Given a Euclidean space E of finite dimension, for every linear map $f : E \to E$, there is a unique linear map $f^* : E \to E$ such that

$$f^*(u) \cdot v = u \cdot f(v),$$

for all $u, v \in E$. The map f^* is called the adjoint of f (w.r.t. to the inner product).

Proof. Given $u_1, u_2 \in E$, since the inner product is bilinear, we have

$$(u_1 + u_2) \cdot f(v) = u_1 \cdot f(v) + u_2 \cdot f(v),$$

for all $v \in E$, and

$$(f^*(u_1) + f^*(u_2)) \cdot v = f^*(u_1) \cdot v + f^*(u_2) \cdot v,$$

for all $v \in E$, and since by assumption,

$$f^*(u_1) \cdot v = u_1 \cdot f(v) \quad \text{and} \quad f^*(u_2) \cdot v = u_2 \cdot f(v),$$

for all $v \in E$, we get

$$(f^*(u_1) + f^*(u_2)) \cdot v = (u_1 + u_2) \cdot f(v),$$

for all $v \in E$. Since \flat is bijective, this implies that

$$f^*(u_1 + u_2) = f^*(u_1) + f^*(u_2).$$

Similarly,

$$(\lambda u) \cdot f(v) = \lambda (u \cdot f(v)),$$

for all $v \in E$, and

$$(\lambda f^*(u)) \cdot v = \lambda (f^*(u) \cdot v),$$

for all $v \in E$, and since by assumption,

$$f^*(u) \cdot v = u \cdot f(v),$$

for all $v \in E$. This shows that f^* is linear.
for all $v \in E$, we get

$$(\lambda f^*(u)) \cdot v = \lambda (u \cdot f(v)) = (\lambda u) \cdot f(v)$$

for all $v \in E$. Since \flat is bijective, this implies that

$$f^*(\lambda u) = \lambda f^*(u).$$

Thus, f^* is indeed a linear map, and it is unique, since \flat is a bijection.

Linear maps $f : E \to E$ such that $f = f^*$ are called self-adjoint maps. They play a very important role because they have real eigenvalues, and because orthonormal bases arise from their eigenvectors. Furthermore, many physical problems lead to self-adjoint linear maps (in the form of symmetric matrices).

Remark: Proposition 10.6 still holds if the inner product on E is replaced by a nondegenerate symmetric bilinear form φ.

Linear maps such that $f^{-1} = f^*$, or equivalently

$$f^* \circ f = f \circ f^* = \text{id},$$

also play an important role. They are linear isometries, or isometries. Rotations are special kinds of isometries. Another important class of linear maps are the linear maps satisfying the property

$$f^* \circ f = f \circ f^*,$$

called normal linear maps. We will see later on that normal maps can always be diagonalized over orthonormal bases of eigenvectors, but this will require using a Hermitian inner product (over \mathbb{C}).

Given two Euclidean spaces E and F, where the inner product on E is denoted by $\langle - , - \rangle_1$ and the inner product on F is denoted by $\langle - , - \rangle_2$, given any linear map $f : E \to F$, it is immediately verified that the proof of Proposition 10.6 can be adapted to show that there is a unique linear map $f^* : F \to E$ such that

$$\langle f(u), v \rangle_2 = \langle u, f^*(v) \rangle_1$$

for all $u \in E$ and all $v \in F$. The linear map f^* is also called the adjoint of f.

The following properties immediately follow from the definition of the adjoint map:

1. For any linear map $f : E \to F$, we have

$$f^{**} = f.$$
(2) For any two linear maps $f, g : E \to F$ and any scalar $\lambda \in \mathbb{R}$:

$$(f + g)^* = f^* + g^*$$

$$(\lambda f)^* = \lambda f^*.$$

(3) If E, F, G are Euclidean spaces with respective inner products $\langle -, - \rangle_1, \langle -, - \rangle_2,$ and $\langle -, - \rangle_3,$ and if $f: E \to F$ and $g: F \to G$ are two linear maps, then

$$(g \circ f)^* = f^* \circ g^*.$$

Remark: Given any basis for E and any basis for $F,$ it is possible to characterize the matrix of the adjoint f^* of f in terms of the matrix of $f,$ and the symmetric matrices defining the inner products. We will do so with respect to orthonormal bases. Also, since inner products are symmetric, the adjoint f^* of f is also characterized by

$$f(u) \cdot v = u \cdot f^*(v),$$

for all $u, v \in E.$

We can also use Theorem 10.5 to show that any Euclidean space of finite dimension has an orthonormal basis.

Proposition 10.7. Given any nontrivial Euclidean space E of finite dimension $n \geq 1,$ there is an orthonormal basis (u_1, \ldots, u_n) for $E.$

Proof. We proceed by induction on $n.$ When $n = 1,$ take any nonnull vector $v \in E,$ which exists, since we assumed E nontrivial, and let

$$u = \frac{v}{\|v\|}.$$

If $n \geq 2,$ again take any nonnull vector $v \in E,$ and let

$$u_1 = \frac{v}{\|v\|}.$$

Consider the linear form φ_{u_1} associated with $u_1.$ Since $u_1 \neq 0,$ by Theorem 10.5, the linear form φ_{u_1} is nonnull, and its kernel is a hyperplane $H.$ Since $\varphi_{u_1}(w) = 0$ iff $u_1 \cdot w = 0,$ the hyperplane H is the orthogonal complement of $\{u_1\}.$ Furthermore, since $u_1 \neq 0$ and the inner product is positive definite, $u_1 \cdot u_1 \neq 0,$ and thus, $u_1 \notin H,$ which implies that $E = H \oplus \mathbb{R}u_1.$ However, since E is of finite dimension $n,$ the hyperplane H has dimension $n - 1,$ and by the induction hypothesis, we can find an orthonormal basis (u_2, \ldots, u_n) for $H.$ Now, because H and the one dimensional space $\mathbb{R}u_1$ are orthogonal and $E = H \oplus \mathbb{R}u_1,$ it is clear that (u_1, \ldots, u_n) is an orthonormal basis for $E.$ \qed
There is a more constructive way of proving Proposition 10.7, using a procedure known as the Gram–Schmidt orthonormalization procedure. Among other things, the Gram–Schmidt orthonormalization procedure yields the QR-decomposition for matrices, an important tool in numerical methods.

Proposition 10.8. Given any nontrivial Euclidean space E of finite dimension $n \geq 1$, from any basis (e_1, \ldots, e_n) for E we can construct an orthonormal basis (u_1, \ldots, u_n) for E, with the property that for every k, $1 \leq k \leq n$, the families (e_1, \ldots, e_k) and (u_1, \ldots, u_k) generate the same subspace.

Proof. We proceed by induction on n. For $n = 1$, let

$$u_1 = \frac{e_1}{\|e_1\|}.$$

For $n \geq 2$, we also let

$$u_1 = \frac{e_1}{\|e_1\|},$$

and assuming that (u_1, \ldots, u_k) is an orthonormal system that generates the same subspace as (e_1, \ldots, e_k), for every k with $1 \leq k < n$, we note that the vector

$$u_{k+1}' = e_{k+1} - \sum_{i=1}^{k} (e_{k+1} \cdot u_i) u_i$$

is nonnull, since otherwise, because (u_1, \ldots, u_k) and (e_1, \ldots, e_k) generate the same subspace, (e_1, \ldots, e_{k+1}) would be linearly dependent, which is absurd, since (e_1, \ldots, e_n) is a basis. Thus, the norm of the vector u_{k+1}' being nonzero, we use the following construction of the vectors u_k and u_k':

$$u_1' = e_1, \quad u_1 = \frac{u_1'}{\|u_1'\|},$$

and for the inductive step

$$u_{k+1}' = e_{k+1} - \sum_{i=1}^{k} (e_{k+1} \cdot u_i) u_i, \quad u_{k+1} = \frac{u_{k+1}'}{\|u_{k+1}'\|},$$

where $1 \leq k \leq n - 1$. It is clear that $\|u_{k+1}\| = 1$, and since (u_1, \ldots, u_k) is an orthonormal system, we have

$$u_{k+1}' \cdot u_i = e_{k+1} \cdot u_i - (e_{k+1} \cdot u_i) u_i \cdot u_i = e_{k+1} \cdot u_i - e_{k+1} \cdot u_i = 0,$$

for all i with $1 \leq i \leq k$. This shows that the family (u_1, \ldots, u_{k+1}) is orthonormal, and since (u_1, \ldots, u_k) and (e_1, \ldots, e_k) generates the same subspace, it is clear from the definition of u_{k+1} that (u_1, \ldots, u_{k+1}) and (e_1, \ldots, e_{k+1}) generate the same subspace. This completes the induction step and the proof of the proposition. \qed
10.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP

Note that u'_{k+1} is obtained by subtracting from e_{k+1} the projection of e_{k+1} itself onto the orthonormal vectors u_1, \ldots, u_k that have already been computed. Then, u'_{k+1} is normalized.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this until Section 10.4.

(2) We could compute u'_{k+1} using the formula

$$u'_{k+1} = e_{k+1} - \sum_{i=1}^{k} \left(\frac{e_{k+1} \cdot u'_i}{\|u'_i\|^2} \right) u'_i,$$

and normalize the vectors u'_i at the end. This time, we are subtracting from e_{k+1} the projection of e_{k+1} itself onto the orthogonal vectors u'_1, \ldots, u'_k. This might be preferable when writing a computer program.

(3) The proof of Proposition 10.8 also works for a countably infinite basis for E, producing a countably infinite orthonormal basis.

Example 10.9. If we consider polynomials and the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(t) g(t) dt,$$

applying the Gram–Schmidt orthonormalization procedure to the polynomials

$$1, x, x^2, \ldots, x^n, \ldots,$$

which form a basis of the polynomials in one variable with real coefficients, we get a family of orthonormal polynomials $Q_n(x)$ related to the Legendre polynomials.

The Legendre polynomials $P_n(x)$ have many nice properties. They are orthogonal, but their norm is not always 1. The Legendre polynomials $P_n(x)$ can be defined as follows. Letting f_n be the function

$$f_n(x) = (x^2 - 1)^n,$$

we define $P_n(x)$ as follows:

$$P_0(x) = 1, \quad \text{and} \quad P_n(x) = \frac{1}{2^n n!} f_n^{(n)}(x),$$

where $f_n^{(n)}$ is the nth derivative of f_n.
They can also be defined inductively as follows:

\[P_0(x) = 1, \]
\[P_1(x) = x, \]
\[P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x). \]

Here is an explicit summation for \(P_n(x) \) (thanks to Jocelyn Qaintance for telling me about this formula):

\[P_n(x) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \left(\frac{2n-2k}{n} \right) x^{n-2k}. \]

The polynomials \(Q_n \) are related to the Legendre polynomials \(P_n \) as follows:

\[Q_n(x) = \sqrt{\frac{2n+1}{2}} P_n(x). \]

Example 10.10. Consider polynomials over \([-1, 1]\), with the symmetric bilinear form

\[\langle f, g \rangle = \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} f(t) g(t) dt. \]

We leave it as an exercise to prove that the above defines an inner product. It can be shown that the polynomials \(T_n(x) \) given by

\[T_n(x) = \cos(n \arccos x), \quad n \geq 0, \]

(equivalently, with \(x = \cos \theta \), we have \(T_n(\cos \theta) = \cos(n \theta) \)) are orthogonal with respect to the above inner product. These polynomials are the Chebyshev polynomials. Their norm is not equal to 1. Instead, we have

\[\langle T_n, T_n \rangle = \begin{cases} \frac{\pi}{2} & \text{if } n > 0, \\ \pi & \text{if } n = 0. \end{cases} \]

Using the identity \((\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta\) and the binomial formula, we obtain the following expression for \(T_n(x) \):

\[T_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} (x^2 - 1)^k x^{n-2k}. \]

The Chebyshev polynomials are defined inductively as follows:

\[T_0(x) = 1 \]
\[T_1(x) = x \]
\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad n \geq 1. \]
Using these recurrence equations, we can show that
\[
T_n(x) = \frac{(x - \sqrt{x^2 - 1})^n + (x + \sqrt{x^2 - 1})^n}{2}.
\]
The polynomial \(T_n\) has \(n\) distinct roots in the interval \([-1, 1]\). The Chebyshev polynomials play an important role in approximation theory. They are used as an approximation to a best polynomial approximation of a continuous function under the sup-norm (\(\infty\)-norm).

The inner products of the last two examples are special cases of an inner product of the form
\[
\langle f, g \rangle = \int_{-1}^{1} W(t) f(t) g(t) dt,
\]
where \(W(t)\) is a weight function. If \(W\) is a nonzero continuous function such that \(W(x) \geq 0\) on \((-1, 1)\), then the above bilinear form is indeed positive definite. Families of orthogonal polynomials used in approximation theory and in physics arise by a suitable choice of the weight function \(W\). Besides the previous two examples, the Hermite polynomials correspond to \(W(x) = e^{-x^2}\), the Laguerre polynomials to \(W(x) = e^{-x}\), and the Jacobi polynomials to \(W(x) = (1 - x)^{\alpha}(1 + x)^{\beta}\), with \(\alpha, \beta > -1\). Comprehensive treatments of orthogonal polynomials can be found in Lebedev [36], Sansone [43], and Andrews, Askey and Roy [1].

As a consequence of Proposition 10.7 (or Proposition 10.8), given any Euclidean space of finite dimension \(n\), if \((e_1, \ldots, e_n)\) is an orthonormal basis for \(E\), then for any two vectors \(u = u_1 e_1 + \cdots + u_n e_n\) and \(v = v_1 e_1 + \cdots + v_n e_n\), the inner product \(u \cdot v\) is expressed as
\[
(u_1 e_1 + \cdots + u_n e_n) \cdot (v_1 e_1 + \cdots + v_n e_n) = \sum_{i=1}^{n} u_i v_i,
\]
and the norm \(\|u\|\) as
\[
\|u\| = \|u_1 e_1 + \cdots + u_n e_n\| = \left(\sum_{i=1}^{n} u_i^2\right)^{1/2}.
\]

The fact that a Euclidean space always has an orthonormal basis implies that any Gram matrix \(G\) can be written as
\[
G = Q^\top Q,
\]
for some invertible matrix \(Q\). Indeed, we know that in a change of basis matrix, a Gram matrix \(G\) becomes \(G' = P^\top G P\). If the basis corresponding to \(G'\) is orthonormal, then \(G' = I\), so \(G = (P^{-1})^\top P^{-1}\).

We can also prove the following proposition regarding orthogonal spaces.

Proposition 10.9. Given any nontrivial Euclidean space \(E\) of finite dimension \(n \geq 1\), for any subspace \(F\) of dimension \(k\), the orthogonal complement \(F^\perp\) of \(F\) has dimension \(n - k\), and \(E = F \oplus F^\perp\). Furthermore, we have \(F^{\perp\perp} = F\).
Proof. From Proposition 10.7, the subspace \(F \) has some orthonormal basis \((u_1, \ldots, u_k)\). This linearly independent family \((u_1, \ldots, u_k)\) can be extended to a basis \((u_1, \ldots, u_k, v_{k+1}, \ldots, v_n)\), and by Proposition 10.8, it can be converted to an orthonormal basis \((u_1, \ldots, u_n)\), which contains \((u_1, \ldots, u_k)\) as an orthonormal basis of \(F \). Now, any vector \(w = w_1u_1 + \cdots + w_nu_n \in E \) is orthogonal to \(F \) iff \(w \cdot u_i = 0 \), for every \(i \), where \(1 \leq i \leq k \), iff \(w_i = 0 \) for every \(i \), where \(1 \leq i \leq k \). Clearly, this shows that \((u_{k+1}, \ldots, u_n)\) is a basis of \(F^\perp \), and thus \(E = F \oplus F^\perp \), and \(F^\perp \) has dimension \(n - k \). Similarly, any vector \(w = w_1u_1 + \cdots + w_nu_n \in E \) is orthogonal to \(F^\perp \) iff \(w \cdot u_i = 0 \), for every \(i \), where \(k + 1 \leq i \leq n \), iff \(w_i = 0 \) for every \(i \), where \(k + 1 \leq i \leq n \). Thus, \((u_1, \ldots, u_k)\) is a basis of \(F^{\perp\perp} \), and \(F^{\perp\perp} = F \). \(\square \)

10.3 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the Euclidean norm. These transformations, sometimes called rigid motions, play an important role in geometry.

Definition 10.3. Given any two nontrivial Euclidean spaces \(E \) and \(F \) of the same finite dimension \(n \), a function \(f: E \to F \) is an orthogonal transformation, or a linear isometry, if it is linear and

\[
\|f(u)\| = \|u\|, \quad \text{for all } u \in E.
\]

Remarks:

(1) A linear isometry is often defined as a linear map such that

\[
\|f(v) - f(u)\| = \|v - u\|,
\]

for all \(u, v \in E \). Since the map \(f \) is linear, the two definitions are equivalent. The second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 10.3 is called a metric map, and a linear isometry is defined as a bijective metric map.

An isometry (without the word linear) is sometimes defined as a function \(f: E \to F \) (not necessarily linear) such that

\[
\|f(v) - f(u)\| = \|v - u\|,
\]

for all \(u, v \in E \), i.e., as a function that preserves the distance. This requirement turns out to be very strong. Indeed, the next proposition shows that all these definitions are equivalent when \(E \) and \(F \) are of finite dimension, and for functions such that \(f(0) = 0 \).

Proposition 10.10. Given any two nontrivial Euclidean spaces \(E \) and \(F \) of the same finite dimension \(n \), for every function \(f: E \to F \), the following properties are equivalent:

(1) \(f \) is a linear map and \(\|f(u)\| = \|u\| \), for all \(u \in E \);
10.3. LINEAR ISOMETRIES (ORTHOGONAL TRANSFORMATIONS)

(2) \(\|f(v) - f(u)\| = \|v - u\|\), for all \(u, v \in E\), and \(f(0) = 0\);

(3) \(f(u) \cdot f(v) = u \cdot v\), for all \(u, v \in E\).

Furthermore, such a map is bijective.

Proof. Clearly, (1) implies (2), since in (1) it is assumed that \(f\) is linear.

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove that if \(\|f(v) - f(u)\| = \|v - u\|\) for all \(u, v \in E\), then for any vector \(\tau \in E\), the function \(g: E \rightarrow F\) defined such that

\[g(u) = f(\tau + u) - f(\tau) \]

for all \(u \in E\) is a linear map such that \(g(0) = 0\) and (3) holds. Clearly, \(g(0) = f(\tau) - f(\tau) = 0\).

Note that from the hypothesis \(\|f(v) - f(u)\| = \|v - u\|\) for all \(u, v \in E\), we conclude that

\[\|g(v) - g(u)\| = \|f(\tau + v) - f(\tau) - (f(\tau + u) - f(\tau))\|, \]

\[= \|f(\tau + v) - f(\tau + u)\|, \]

\[= \|\tau + v - (\tau + u)\|, \]

\[= \|v - u\|, \]

for all \(u, v \in E\). Since \(g(0) = 0\), by setting \(u = 0\) in

\[\|g(v) - g(u)\| = \|v - u\|, \]

we get

\[\|g(v)\| = \|v\| \]

for all \(v \in E\). In other words, \(g\) preserves both the distance and the norm.

To prove that \(g\) preserves the inner product, we use the simple fact that

\[2u \cdot v = \|u\|^2 + \|v\|^2 - \|u - v\|^2 \]

for all \(u, v \in E\). Then, since \(g\) preserves distance and norm, we have

\[2g(u) \cdot g(v) = \|g(u)\|^2 + \|g(v)\|^2 - \|g(u) - g(v)\|^2 \]

\[= \|u\|^2 + \|v\|^2 - \|u - v\|^2 \]

\[= 2u \cdot v, \]
and thus \(g(u) \cdot g(v) = u \cdot v\), for all \(u, v \in E\), which is (3). In particular, if \(f(0) = 0\), by letting \(\tau = 0\), we have \(g = f\), and \(f\) preserves the scalar product, i.e., (3) holds.

Now assume that (3) holds. Since \(E\) is of finite dimension, we can pick an orthonormal basis \((e_1, \ldots, e_n)\) for \(E\). Since \(f\) preserves inner products, \((f(e_1), \ldots, f(e_n))\) is also orthonormal, and since \(F\) also has dimension \(n\), it is a basis of \(F\). Then note that for any \(u = u_1e_1 + \cdots + u_ne_n\), we have

\[
u_i = u \cdot e_i,
\]

for all \(i, 1 \leq i \leq n\). Thus, we have

\[
f(u) = \sum_{i=1}^{n} (f(u) \cdot f(e_i))f(e_i),
\]

and since \(f\) preserves inner products, this shows that

\[
f(u) = \sum_{i=1}^{n} (u \cdot e_i)f(e_i) = \sum_{i=1}^{n} u_i f(e_i),
\]

which shows that \(f\) is linear. Obviously, \(f\) preserves the Euclidean norm, and (3) implies (1).

Finally, if \(f(u) = f(v)\), then by linearity \(f(v - u) = 0\), so that \(\|f(v - u)\| = 0\), and since \(f\) preserves norms, we must have \(\|v - u\| = 0\), and thus \(u = v\). Thus, \(f\) is injective, and since \(E\) and \(F\) have the same finite dimension, \(f\) is bijective. \(\square\)

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when \(f\) is not known to be linear, and to prove that \(f\) is surjective, but the proof shows that (1) implies that \(f\) is injective.

(ii) The implication that (3) implies (1) holds if we also assume that \(f\) is surjective, even if \(E\) has infinite dimension.

In (2), when \(f\) does not satisfy the condition \(f(0) = 0\), the proof shows that \(f\) is an affine map. Indeed, taking any vector \(\tau\) as an origin, the map \(g\) is linear, and

\[
f(\tau + u) = f(\tau) + g(u)
\]

for all \(u \in E\).

By Proposition 4.13, this shows that \(f\) is affine with associated linear map \(g\).

This fact is worth recording as the following proposition.
Proposition 10.11. Given any two nontrivial Euclidean spaces E and F of the same finite dimension n, for every function $f : E \to F$, if
\[\|f(v) - f(u)\| = \|v - u\| \quad \text{for all } u, v \in E, \]
then f is an affine map, and its associated linear map g is an isometry.

In view of Proposition 10.10, we usually abbreviate “linear isometry” as “isometry,” unless we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries $f : E \to E$ of a Euclidean space of finite dimension.

10.4 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of orthogonal matrices.

Proposition 10.12. Let E be any Euclidean space of finite dimension n, and let $f : E \to E$ be any linear map. The following properties hold:

1. The linear map $f : E \to E$ is an isometry iff
\[f \circ f^* = f^* \circ f = \text{id}. \]

2. For every orthonormal basis (e_1, \ldots, e_n) of E, if the matrix of f is A, then the matrix of f^* is the transpose A^\top of A, and f is an isometry iff A satisfies the identities
\[AA^\top = A^\top A = I_n, \]
where I_n denotes the identity matrix of order n, iff the columns of A form an orthonormal basis of \mathbb{R}^n, iff the rows of A form an orthonormal basis of \mathbb{R}^n.

Proof. (1) The linear map $f : E \to E$ is an isometry iff
\[f(u) \cdot f(v) = u \cdot v, \]
for all $u, v \in E$, iff
\[f^*(f(u)) \cdot v = f(u) \cdot f(v) = u \cdot v \]
for all $u, v \in E$, which implies
\[(f^*(f(u)) - u) \cdot v = 0 \]
for all \(u, v \in E \). Since the inner product is positive definite, we must have
\[
f^*(f(u)) - u = 0
\]
for all \(u \in E \), that is,
\[
f^* \circ f = f \circ f^* = \text{id}.
\]
The converse is established by doing the above steps backward.

(2) If \((e_1, \ldots, e_n)\) is an orthonormal basis for \(E \), let \(A = (a_{ij}) \) be the matrix of \(f \), and let \(B = (b_{ij}) \) be the matrix of \(f^* \). Since \(f^* \) is characterized by
\[
f^*(u) \cdot v = u \cdot f(v)
\]
for all \(u, v \in E \), using the fact that if \(w = w_1 e_1 + \cdots + w_n e_n \) we have \(w_k = w \cdot e_k \) for all \(k \), \(1 \leq k \leq n \), letting \(u = e_i \) and \(v = e_j \), we get
\[
b_{ij} = f^*(e_i) \cdot e_j = e_i \cdot f(e_j) = a_{ij},
\]
for all \(i, j, 1 \leq i, j \leq n \). Thus, \(B = A^\top \). Now, if \(X \) and \(Y \) are arbitrary matrices over the basis \((e_1, \ldots, e_n)\), denoting as usual the \(j \)th column of \(X \) by \(X^j \), and similarly for \(Y \), a simple calculation shows that
\[
X^\top Y = (X^i \cdot Y^j)_{1 \leq i, j \leq n}.
\]
Then it is immediately verified that if \(X = Y = A \), then
\[
A^\top A = A A^\top = I_n
\]
iff the column vectors \((A^1, \ldots, A^n)\) form an orthonormal basis. Thus, from (1), we see that (2) is clear (also because the rows of \(A \) are the columns of \(A^\top \)). \(\square \)

Proposition 10.12 shows that the inverse of an isometry \(f \) is its adjoint \(f^* \). Recall that the set of all real \(n \times n \) matrices is denoted by \(M_n(\mathbb{R}) \). Proposition 10.12 also motivates the following definition.

Definition 10.4. A real \(n \times n \) matrix is an orthogonal matrix if
\[
A A^\top = A^\top A = I_n.
\]

Remark: It is easy to show that the conditions \(A A^\top = I_n, A^\top A = I_n \), and \(A^{-1} = A^\top \), are equivalent. Given any two orthonormal bases \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_n)\), if \(P \) is the change of basis matrix from \((u_1, \ldots, u_n)\) to \((v_1, \ldots, v_n)\), since the columns of \(P \) are the coordinates of the vectors \(v_j \) with respect to the basis \((u_1, \ldots, u_n)\), and since \((v_1, \ldots, v_n)\) is orthonormal, the columns of \(P \) are orthonormal, and by Proposition 10.12 (2), the matrix \(P \) is orthogonal.
The proof of Proposition 10.10 (3) also shows that if \(f \) is an isometry, then the image of an orthonormal basis \((u_1, \ldots, u_n) \) is an orthonormal basis. Students often ask why orthogonal matrices are not called orthonormal matrices, since their columns (and rows) are orthonormal bases! I have no good answer, but isometries do preserve orthogonality, and orthogonal matrices correspond to isometries.

Recall that the determinant \(\det(f) \) of a linear map \(f : E \to E \) is independent of the choice of a basis in \(E \). Also, for every matrix \(A \in M_n(\mathbb{R}) \), we have \(\det(A) = \det(A^\top) \), and for any two \(n \times n \) matrices \(A \) and \(B \), we have \(\det(AB) = \det(A) \det(B) \). Then, if \(f \) is an isometry, and \(A \) is its matrix with respect to any orthonormal basis, \(AA^\top = A^\top A = I_n \) implies that \(\det(A)^2 = 1 \), that is, either \(\det(A) = 1 \), or \(\det(A) = -1 \). It is also clear that the isometries of a Euclidean space of dimension \(n \) form a group, and that the isometries of determinant +1 form a subgroup. This leads to the following definition.

Definition 10.5. Given a Euclidean space \(E \) of dimension \(n \), the set of isometries \(f : E \to E \) forms a subgroup of \(\text{GL}(E) \) denoted by \(\text{O}(E) \), or \(\text{O}(n) \) when \(E = \mathbb{R}^n \), called the orthogonal group (of \(E \)). For every isometry \(f \), we have \(\det(f) = \pm 1 \), where \(\det(f) \) denotes the determinant of \(f \). The isometries such that \(\det(f) = 1 \) are called rotations, or proper isometries, or proper orthogonal transformations, and they form a subgroup of the special linear group \(\text{SL}(E) \) (and of \(\text{O}(E) \)), denoted by \(\text{SO}(E) \), or \(\text{SO}(n) \) when \(E = \mathbb{R}^n \), called the special orthogonal group (of \(E \)). The isometries such that \(\det(f) = -1 \) are called improper isometries, or improper orthogonal transformations, or flip transformations.

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain the \(QR \)-decomposition for invertible matrices.

10.5 \(QR \)-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the Gram–Schmidt orthonormalization procedure immediately yields the \(QR \)-decomposition for matrices.

Proposition 10.13. Given any real \(n \times n \) matrix \(A \), if \(A \) is invertible, then there is an orthogonal matrix \(Q \) and an upper triangular matrix \(R \) with positive diagonal entries such that \(A = QR \).

Proof. We can view the columns of \(A \) as vectors \(A^1, \ldots, A^n \) in \(\mathbb{R}^n \). If \(A \) is invertible, then they are linearly independent, and we can apply Proposition 10.8 to produce an orthonormal basis using the Gram–Schmidt orthonormalization procedure. Recall that we construct vectors \(Q^k \) and \(Q^k' \) as follows:

\[
Q^1 = A, \quad Q^1 = \frac{Q^1}{\|Q^1\|},
\]

\[
Q^1 = A, \quad Q^1 = \frac{Q^1}{\|Q^1\|},
\]
and for the inductive step

\[Q^{k+1} = A^{k+1} - \sum_{i=1}^{k} (A^{k+1} \cdot Q^i) Q^i, \quad Q^{k+1} = \frac{Q^{k+1}}{\|Q^{k+1}\|}, \]

where \(1 \leq k \leq n - 1 \). If we express the vectors \(A^k \) in terms of the \(Q^i \) and \(Q^i' \), we get the triangular system

\[
A^1 = \|Q^1\|Q^1,
\]

\[
A^2 = (A^1 \cdot Q^1) Q^1 + \cdots + (A^2 \cdot Q^i) Q^i + \cdots + \|Q^j\|Q^i,
\]

\[
A^n = (A^n \cdot Q^1) Q^1 + \cdots + (A^n \cdot Q^{n-1}) Q^{n-1} + \|Q^n\|Q^n.
\]

Letting \(r_{kk} = \|Q^k\| \), and \(r_{ij} = A^j \cdot Q^i \) (the reversal of \(i \) and \(j \) on the right-hand side is intentional!), where \(1 \leq k \leq n, 2 \leq j \leq n \), and \(1 \leq i \leq j - 1 \), and letting \(q_{ij} \) be the \(i \)th component of \(Q^j \), we note that \(a_{ij} \), the \(i \)th component of \(A^j \), is given by

\[
a_{ij} = r_{1j}q_{1i} + \cdots + r_{ij}q_{ii} + \cdots + r_{jj}q_{ij} = q_{i1}r_{1j} + \cdots + q_{ii}r_{ij} + \cdots + q_{jj}r_{jj}.
\]

If we let \(Q = (q_{ij}) \), the matrix whose columns are the components of the \(Q^j \), and \(R = (r_{ij}) \), the above equations show that \(A = QR \), where \(R \) is upper triangular. The diagonal entries \(r_{kk} = \|Q^k\| = A^k \cdot Q^k \) are indeed positive.

The reader should try the above procedure on some concrete examples for \(2 \times 2 \) and \(3 \times 3 \) matrices.

Remarks:

(1) Because the diagonal entries of \(R \) are positive, it can be shown that \(Q \) and \(R \) are unique.

(2) The \(QR \)-decomposition holds even when \(A \) is not invertible. In this case, \(R \) has some zero on the diagonal. However, a different proof is needed. We will give a nice proof using Householder matrices (see Proposition 11.3, and also Strang [50, 51], Golub and Van Loan [24], Trefethen and Bau [54], Demmel [15], Kincaid and Cheney [31], or Ciarlet [13]).

Example 10.11. Consider the matrix

\[
A = \begin{pmatrix}
0 & 0 & 5 \\
0 & 4 & 1 \\
1 & 1 & 1
\end{pmatrix}.
\]
We leave as an exercise to show that $A = QR$, with

$$Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix}. $$

Example 10.12. Another example of QR-decomposition is

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & \sqrt{2} \\ 0 & 1/\sqrt{2} & \sqrt{2} \\ 0 & 0 & 1 \end{bmatrix}. $$

The QR-decomposition yields a rather efficient and numerically stable method for solving systems of linear equations. Indeed, given a system $Ax = b$, where A is an $n \times n$ invertible matrix, writing $A = QR$, since Q is orthogonal, we get

$$Rx = Q^\top b,$$

and since R is upper triangular, we can solve it by Gaussian elimination, by solving for the last variable x_n first, substituting its value into the system, then solving for x_{n-1}, etc. The QR-decomposition is also very useful in solving least squares problems (we will come back to this later on), and for finding eigenvalues. It can be easily adapted to the case where A is a rectangular $m \times n$ matrix with independent columns (thus, $n \leq m$). In this case, Q is not quite orthogonal. It is an $m \times n$ matrix whose columns are orthogonal, and R is an invertible $n \times n$ upper triangular matrix with positive diagonal entries. For more on QR, see Strang [50, 51], Golub and Van Loan [24], Demmel [15], Trefethen and Bau [54], or Serre [46].

It should also be said that the Gram–Schmidt orthonormalization procedure that we have presented is not very stable numerically, and instead, one should use the modified Gram–Schmidt method. To compute Q^{k+1}, instead of projecting A^{k+1} onto Q^1, \ldots, Q^k in a single step, it is better to perform k projections. We compute $Q_1^{k+1}, Q_2^{k+1}, \ldots, Q_k^{k+1}$ as follows:

$$Q_1^{k+1} = A^{k+1} - (A^{k+1} \cdot Q^1) Q^1, \quad Q_{i+1}^{k+1} = Q_i^{k+1} - (Q_i^{k+1} \cdot Q_i^{i+1}) Q_i^{i+1},$$

where $1 \leq i \leq k - 1$. It is easily shown that $Q^{k+1} = Q_k^{k+1}$. The reader is urged to code this method.

A somewhat surprising consequence of the QR-decomposition is a famous determinantal inequality due to Hadamard.

Proposition 10.14. (Hadamard) For any real $n \times n$ matrix $A = (a_{ij})$, we have

$$|\det(A)| \leq \prod_{i=1}^n \left(\sum_{j=1}^n a_{ij}^2 \right)^{1/2} \quad \text{and} \quad |\det(A)| \leq \prod_{j=1}^n \left(\sum_{i=1}^n a_{ij}^2 \right)^{1/2}. $$

Moreover, equality holds if and only if either A has a zero column in the left inequality or a zero row in the right inequality, or A is orthogonal.
CHAPTER 10. EUCLIDEAN SPACES

Proof. If \(\det(A) = 0 \), then the inequality is trivial. In addition, if the righthand side is also 0, then either some column or some row is zero. If \(\det(A) \neq 0 \), then we can factor \(A \) as \(A = QR \), with \(Q \) is orthogonal and \(R = (r_{ij}) \) upper triangular with positive diagonal entries. Then, since \(Q \) is orthogonal \(\det(Q) = \pm 1 \), so

\[
| \det(A) | = | \det(Q) | | \det(R) | = \prod_{j=1} r_{jj}.
\]

Now, as \(Q \) is orthogonal, it preserves the Euclidean norm, so

\[
\sum_{i=1}^{n} a_{ij}^2 = \| A^i \|_2^2 = \| QR^j \|_2^2 = \| R^j \|_2^2 = \sum_{i=1}^{n} r_{ij}^2 \geq r_{jj}^2,
\]

which implies that

\[
| \det(A) | = \prod_{j=1}^{n} r_{jj} \leq \prod_{j=1}^{n} \| R^j \|_2 = \prod_{j=1}^{n} \left(\sum_{i=1}^{n} a_{ij}^2 \right)^{1/2}.
\]

The other inequality is obtained by replacing \(A \) by \(A^\top \). Finally, if \(\det(A) \neq 0 \) and equality holds, then we must have

\[
r_{jj} = \| A^j \|_2, \quad 1 \leq j \leq n,
\]

which can only occur if \(R \) is orthogonal. \qed

Another version of Hadamard’s inequality applies to symmetric positive semidefinite matrices.

Proposition 10.15. (Hadamard) For any real \(n \times n \) matrix \(A = (a_{ij}) \), if \(A \) is symmetric positive semidefinite, then we have

\[
\det(A) \leq \prod_{i=1}^{n} a_{ii}.
\]

Moreover, if \(A \) is positive definite, then equality holds iff \(A \) is a diagonal matrix.

Proof. If \(\det(A) = 0 \), the inequality is trivial. Otherwise, \(A \) is positive definite, and by Theorem 6.10 (the Cholesky Factorization), there is a unique upper triangular matrix \(B \) with positive diagonal entries such that

\[
A = B^\top B.
\]

Thus, \(\det(A) = \det(B^\top B) = \det(B^\top) \det(B) = \det(B)^2 \). If we apply the Hadamard inequality (Proposition 10.15) to \(B \), we obtain

\[
\det(B) \leq \prod_{j=1}^{n} \left(\sum_{i=1}^{n} b_{ij}^2 \right)^{1/2}.
\]

(∗)
10.6. SOME APPLICATIONS OF EUCLIDEAN GEOMETRY

However, the diagonal entries a_{jj} of $A = B^\top B$ are precisely the square norms $\|B^j\|_2^2 = \sum_{i=1}^n b_{ij}^2$, so by squaring (*), we obtain

$$\det(A) = \det(B)^2 \leq \prod_{j=1}^n \left(\sum_{i=1}^n b_{ij}^2 \right) = \prod_{j=1}^n a_{jj}.$$

If $\det(A) \neq 0$ and equality holds, then B must be orthogonal, which implies that B is a diagonal matrix, and so is A.

We derived the second Hadamard inequality (Proposition 10.15) from the first (Proposition 10.14). We leave it as an exercise to prove that the first Hadamard inequality can be deduced from the second Hadamard inequality.

10.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voronoi diagrams and Delaunay triangulations. In turn, Voronoi diagrams have applications in motion planning (see O’Rourke [40]).

Euclidean geometry also has applications to matrix analysis. Recall that a real $n \times n$ matrix A is symmetric if it is equal to its transpose A^\top. One of the most important properties of symmetric matrices is that they have real eigenvalues and that they can be diagonalized by an orthogonal matrix (see Chapter 14). This means that for every symmetric matrix A, there is a diagonal matrix D and an orthogonal matrix P such that

$$A = PDP^\top.$$

Even though it is not always possible to diagonalize an arbitrary matrix, there are various decompositions involving orthogonal matrices that are of great practical interest. For example, for every real matrix A, there is the QR-decomposition, which says that a real matrix A can be expressed as

$$A = QR,$$

where Q is orthogonal and R is an upper triangular matrix. This can be obtained from the Gram–Schmidt orthonormalization procedure, as we saw in Section 10.5, or better, using Householder matrices, as shown in Section 11.2. There is also the polar decomposition, which says that a real matrix A can be expressed as

$$A = QS,$$

where Q is orthogonal and S is symmetric positive semidefinite (which means that the eigenvalues of S are nonnegative). Such a decomposition is important in continuum mechanics and in robotics, since it separates stretching from rotation. Finally, there is the wonderful
singular value decomposition, abbreviated as SVD, which says that a real matrix A can be expressed as

$$A = V D U^T,$$

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries (see Chapter 16). This decomposition leads to the notion of *pseudo-inverse*, which has many applications in engineering (least squares solutions, etc). For an excellent presentation of all these notions, we highly recommend Strang [51, 50], Golub and Van Loan [24], Demmel [15], Serre [46], and Trefethen and Bau [54].

The method of least squares, invented by Gauss and Legendre around 1800, is another great application of Euclidean geometry. Roughly speaking, the method is used to solve inconsistent linear systems $Ax = b$, where the number of equations is greater than the number of variables. Since this is generally impossible, the method of least squares consists in finding a solution x minimizing the Euclidean norm $\|Ax - b\|^2$, that is, the sum of the squares of the “errors.” It turns out that there is always a unique solution x^+ of smallest norm minimizing $\|Ax - b\|^2$, and that it is a solution of the square system

$$A^T A x = A^T b,$$

called the system of *normal equations*. The solution x^+ can be found either by using the QR-decomposition in terms of Householder transformations, or by using the notion of pseudo-inverse of a matrix. The pseudo-inverse can be computed using the SVD decomposition. Least squares methods are used extensively in computer vision More details on the method of least squares and pseudo-inverses can be found in Chapter 17.

10.7 Summary

The main concepts and results of this chapter are listed below:

- Bilinear forms; *positive definite* bilinear forms.
- *inner products, scalar products, Euclidean spaces.*
- *quadratic form* associated with a bilinear form.
- The Euclidean space \mathbb{E}^n.
- The *polar form* of a quadratic form.
- *Gram matrix* associated with an inner product.
- The *Cauchy–Schwarz inequality*; the *Minkowski inequality*.
- The *parallelogram law*.
• Orthogonality, orthogonal complement F^\perp; orthonormal family.

• The musical isomorphisms $♭: E \to E^*$ and $♯: E^* \to E$ (when E is finite-dimensional); Theorem 10.5.

• The adjoint of a linear map (with respect to an inner product).

• Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition 10.7).

• The Gram–Schmidt orthonormalization procedure (Proposition 10.8).

• The Legendre and the Chebyshev polynomials.

• Linear isometries (orthogonal transformations, rigid motions).

• The orthogonal group, orthogonal matrices.

• The matrix representing the adjoint f^* of a linear map f is the transpose of the matrix representing f.

• The orthogonal group $O(n)$ and the special orthogonal group $SO(n)$.

• QR-decomposition for invertible matrices.

• The Hadamard inequality for arbitrary real matrices.

• The Hadamard inequality for symmetric positive semidefinite matrices.
Chapter 11

QR-Decomposition for Arbitrary Matrices

11.1 Orthogonal Reflections

Hyperplane reflections are represented by matrices called Householder matrices. These matrices play an important role in numerical methods, for instance for solving systems of linear equations, solving least squares problems, for computing eigenvalues, and for transforming a symmetric matrix into a tridiagonal matrix. We prove a simple geometric lemma that immediately yields the QR-decomposition of arbitrary matrices in terms of Householder matrices.

Orthogonal symmetries are a very important example of isometries. First let us review the definition of projections. Given a vector space E, let F and G be subspaces of E that form a direct sum $E = F \oplus G$. Since every $u \in E$ can be written uniquely as $u = v + w$, where $v \in F$ and $w \in G$, we can define the two projections $p_F: E \rightarrow F$ and $p_G: E \rightarrow G$ such that $p_F(u) = v$ and $p_G(u) = w$. It is immediately verified that p_G and p_F are linear maps, and that $p_F^2 = p_F$, $p_G^2 = p_G$, $p_F \circ p_G = p_G \circ p_F = 0$, and $p_F + p_G = \text{id}$.

Definition 11.1. Given a vector space E, for any two subspaces F and G that form a direct sum $E = F \oplus G$, the symmetry (or reflection) with respect to F and parallel to G is the linear map $s: E \rightarrow E$ defined such that

$$s(u) = 2p_F(u) - u,$$

for every $u \in E$.

Because $p_F + p_G = \text{id}$, note that we also have

$$s(u) = p_F(u) - p_G(u)$$

and

$$s(u) = u - 2p_G(u),$$
$s^2 = \text{id}$, s is the identity on F, and $s = -\text{id}$ on G. We now assume that E is a Euclidean space of finite dimension.

Definition 11.2. Let E be a Euclidean space of finite dimension n. For any two subspaces F and G, if F and G form a direct sum $E = F \oplus G$ and F and G are orthogonal, i.e., $F = G^\perp$, the **orthogonal symmetry (or reflection) with respect to F and parallel to G** is the linear map $s: E \to E$ defined such that

$$s(u) = 2p_F(u) - u,$$

for every $u \in E$. When F is a hyperplane, we call s a **hyperplane symmetry with respect to F (or reflection about F)**, and when G is a plane (and thus $\dim(F) = n - 2$), we call s a **flip about F**.

A reflection about a hyperplane F is shown in Figure 11.1.

![Figure 11.1: A reflection about the peach hyperplane F. Note that u is purple, $p_F(u)$ is blue and $p_G(u)$ is red.](image)

For any two vectors $u, v \in E$, it is easily verified using the bilinearity of the inner product that

$$\|u + v\|^2 - \|u - v\|^2 = 4(u \cdot v).$$

Then, since

$$u = p_F(u) + p_G(u)$$

and

$$s(u) = p_F(u) - p_G(u),$$

since F and G are orthogonal, it follows that

$$p_F(u) \cdot p_G(v) = 0.$$
11.1. ORTHOGONAL REFLECTIONS

and thus,
\[\|s(u)\| = \|u\|, \]
so that \(s \) is an isometry.

Using Proposition 10.8, it is possible to find an orthonormal basis \((e_1, \ldots, e_n)\) of \(E \) consisting of an orthonormal basis of \(F \) and an orthonormal basis of \(G \). Assume that \(F \) has dimension \(p \), so that \(G \) has dimension \(n - p \). With respect to the orthonormal basis \((e_1, \ldots, e_n)\), the symmetry \(s \) has a matrix of the form
\[
\begin{pmatrix}
I_p & 0 \\
0 & -I_{n-p}
\end{pmatrix}.
\]
Thus, \(\det(s) = (-1)^{n-p} \), and \(s \) is a rotation iff \(n - p \) is even. In particular, when \(F \) is a hyperplane \(H \), we have \(p = n - 1 \) and \(n - p = 1 \), so that \(s \) is an improper orthogonal transformation. When \(F = \{0\} \), we have \(s = -\text{id} \), which is called the symmetry with respect to the origin. The symmetry with respect to the origin is a rotation iff \(n \) is even, and an improper orthogonal transformation iff \(n \) is odd. When \(n \) is odd, we observe that every improper orthogonal transformation is the composition of a rotation with the symmetry with respect to the origin. When \(G \) is a plane, \(p = n - 2 \), and \(\det(s) = (-1)^2 = 1 \), so that a flip about \(F \) is a rotation. In particular, when \(n = 3 \), \(F \) is a line, and a flip about the line \(F \) is indeed a rotation of measure \(\pi \).

Remark: Given any two orthogonal subspaces \(F,G \) forming a direct sum \(E = F \oplus G \), let \(f \) be the symmetry with respect to \(F \) and parallel to \(G \), and let \(g \) be the symmetry with respect to \(G \) and parallel to \(F \). We leave as an exercise to show that
\[f \circ g = g \circ f = -\text{id}. \]

When \(F = H \) is a hyperplane, we can give an explicit formula for \(s(u) \) in terms of any nonnull vector \(w \) orthogonal to \(H \). Indeed, from
\[u = p_H(u) + p_G(u), \]
since \(p_G(u) \in G \) and \(G \) is spanned by \(w \), which is orthogonal to \(H \), we have
\[p_G(u) = \lambda w \]
for some \(\lambda \in \mathbb{R} \), and we get
\[u \cdot w = \lambda \|w\|^2, \]
and thus
\[p_G(u) = \frac{(u \cdot w)}{\|w\|^2} \cdot w. \]
Since
\[s(u) = u - 2p_G(u), \]
we get
\[s(u) = u - 2 \left(\frac{u \cdot w}{\|w\|^2} \right) w. \]

Such reflections are represented by matrices called *Householder matrices*, and they play an important role in numerical matrix analysis (see Kincaid and Cheney [31] or Ciarlet [13]). Householder matrices are symmetric and orthogonal. It is easily checked that over an orthonormal basis \((e_1, \ldots, e_n)\), a hyperplane reflection about a hyperplane \(H\) orthogonal to a nonnull vector \(w\) is represented by the matrix
\[
H = I_n - 2 \frac{WW^\top}{\|W\|^2} = I_n - 2 \frac{WW^\top}{W^\top W},
\]
where \(W\) is the column vector of the coordinates of \(w\) over the basis \((e_1, \ldots, e_n)\), and \(I_n\) is the identity \(n \times n\) matrix. Since
\[
p_G(u) = \frac{(u \cdot w)}{\|w\|^2} w,
\]
the matrix representing \(p_G\) is
\[
WW^\top \frac{1}{W^\top W},
\]
and since \(p_H + p_G = \text{id}\), the matrix representing \(p_H\) is
\[
I_n - \frac{WW^\top}{W^\top W}.
\]
These formulae can be used to derive a formula for a rotation of \(\mathbb{R}^3\), given the direction \(w\) of its axis of rotation and given the angle \(\theta\) of rotation.

The following fact is the key to the proof that every isometry can be decomposed as a product of reflections.

Proposition 11.1. *Let \(E\) be any nontrivial Euclidean space. For any two vectors \(u, v \in E\), if \(\|u\| = \|v\|\), then there is a hyperplane \(H\) such that the reflection \(s\) about \(H\) maps \(u\) to \(v\), and if \(u \neq v\), then this reflection is unique.***

Proof. If \(u = v\), then any hyperplane containing \(u\) does the job. Otherwise, we must have \(H = \{v - u\}^\perp\), and by the above formula,
\[
\begin{align*}
s(u) &= u - 2 \frac{(u \cdot (v - u))}{\|(v - u)\|^2} (v - u) = u + \frac{2\|u\|^2 - 2u \cdot v}{\|(v - u)\|^2} (v - u),
\end{align*}
\]
and since
\[
\|(v - u)\|^2 = \|u\|^2 + \|v\|^2 - 2u \cdot v
\]
11.2. **QR-DECOMPOSITION USING HOUSEHOLDER MATRICES**

and \(\|u\| = \|v\| \), we have

\[
\|(v - u)\|^2 = 2\|u\|^2 - 2u \cdot v,
\]

and thus, \(s(u) = v \). □

If \(E \) is a complex vector space and the inner product is Hermitian, Proposition 11.1 is false. The problem is that the vector \(v - u \) does not work unless the inner product \(u \cdot v \) is real! The proposition can be salvaged enough to yield the \(QR \)-decomposition in terms of Householder transformations; see Gallier [22].

We now show that hyperplane reflections can be used to obtain another proof of the \(QR \)-decomposition.

11.2 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder matrices, we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a \(QR \)-decomposition.

Proposition 11.2. Let \(E \) be a nontrivial Euclidean space of dimension \(n \). For any orthonormal basis \((e_1, \ldots, e_n)\) and for any \(n \)-tuple of vectors \((v_1, \ldots, v_n)\), there is a sequence of \(n \) isometries \(h_1, \ldots, h_n \) such that \(h_i \) is a hyperplane reflection or the identity, and if \((r_1, \ldots, r_n)\) are the vectors given by

\[
r_j = h_n \circ \cdots \circ h_2 \circ h_1(v_j),
\]

then every \(r_j \) is a linear combination of the vectors \((e_1, \ldots, e_j)\), \(1 \leq j \leq n \). Equivalently, the matrix \(R \) whose columns are the components of the \(r_j \) over the basis \((e_1, \ldots, e_n)\) is an upper triangular matrix. Furthermore, the \(h_i \) can be chosen so that the diagonal entries of \(R \) are nonnegative.

Proof. We proceed by induction on \(n \). For \(n = 1 \), we have \(v_1 = \lambda e_1 \) for some \(\lambda \in \mathbb{R} \). If \(\lambda \geq 0 \), we let \(h_1 = \text{id} \), else if \(\lambda < 0 \), we let \(h_1 = -\text{id} \), the reflection about the origin.

For \(n \geq 2 \), we first have to find \(h_1 \). Let

\[
r_{1,1} = \|v_1\|.
\]

If \(v_1 = r_{1,1} e_1 \), we let \(h_1 = \text{id} \). Otherwise, there is a unique hyperplane reflection \(h_1 \) such that

\[
h_1(v_1) = r_{1,1} e_1,
\]

defined such that

\[
h_1(u) = u - 2 \frac{(u \cdot w_1)}{\|w_1\|^2} w_1.
\]
for all \(u \in E \), where
\[
w_1 = r_{1,1} e_1 - v_1.
\]
The map \(h_1 \) is the reflection about the hyperplane \(H_1 \) orthogonal to the vector \(w_1 = r_{1,1} e_1 - v_1 \). Letting
\[
r_1 = h_1(v_1) = r_{1,1} e_1,
\]
it is obvious that \(r_1 \) belongs to the subspace spanned by \(e_1 \), and \(r_{1,1} = \|v_1\| \) is nonnegative.

Next, assume that we have found \(k \) linear maps \(h_1, \ldots, h_k \), hyperplane reflections or the identity, where \(1 \leq k \leq n - 1 \), such that if \((r_1, \ldots, r_k) \) are the vectors given by
\[
r_j = h_k \circ \cdots \circ h_2 \circ h_1(v_j),
\]
then every \(r_j \) is a linear combination of the vectors \((e_1, \ldots, e_j) \), \(1 \leq j \leq k \). The vectors \((e_1, \ldots, e_k) \) form a basis for the subspace denoted by \(U'_k \), the vectors \((e_{k+1}, \ldots, e_n) \) form a basis for the subspace denoted by \(U''_k \), the subspaces \(U'_k \) and \(U''_k \) are orthogonal, and \(E = U'_k \oplus U''_k \). Let
\[
u_{k+1} = h_k \circ \cdots \circ h_2 \circ h_1(v_{k+1}).
\]
We can write
\[
u_{k+1} = u'_{k+1} + u''_{k+1},
\]
where \(u'_{k+1} \in U'_k \) and \(u''_{k+1} \in U''_k \). Let
\[
r_{k+1} = \|u''_{k+1}\|.
\]
If \(u''_{k+1} = r_{k+1,k+1} e_{k+1} \), we let \(h_{k+1} = \text{id} \). Otherwise, there is a unique hyperplane reflection \(h_{k+1} \) such that
\[
h_{k+1}(u''_{k+1}) = r_{k+1,k+1} e_{k+1},
\]
defined such that
\[
h_{k+1}(u) = u - 2 \frac{(u \cdot w_{k+1})}{\|w_{k+1}\|^2} w_{k+1}
\]
for all \(u \in E \), where
\[
w_{k+1} = r_{k+1,k+1} e_{k+1} - u''_{k+1}.
\]
The map \(h_{k+1} \) is the reflection about the hyperplane \(H_{k+1} \) orthogonal to the vector \(w_{k+1} = r_{k+1,k+1} e_{k+1} - u''_{k+1} \). However, since \(u''_{k+1} \in U''_k \) and \(U'_k \) is orthogonal to \(U''_k \), the subspace \(U'_k \) is contained in \(H_{k+1} \), and thus, the vectors \((r_1, \ldots, r_k) \) and \(u'_{k+1} \), which belong to \(U'_k \), are invariant under \(h_{k+1} \). This proves that
\[
h_{k+1}(u_{k+1}) = h_{k+1}(u'_{k+1}) + h_{k+1}(u''_{k+1}) = u'_{k+1} + r_{k+1,k+1} e_{k+1}
\]
is a linear combination of \((e_1, \ldots, e_{k+1}) \). Letting
\[
r_{k+1} = h_{k+1}(u_{k+1}) = u'_{k+1} + r_{k+1,k+1} e_{k+1},
\]
since $u_{k+1} = h_k \circ \cdots \circ h_2 \circ h_1 (v_{k+1})$, the vector

$$r_{k+1} = h_{k+1} \circ \cdots \circ h_2 \circ h_1 (v_{k+1})$$

is a linear combination of (e_1, \ldots, e_{k+1}). The coefficient of r_{k+1} over e_{k+1} is $r_{k+1,k+1} = \| u''_{k+1} \|$, which is nonnegative. This concludes the induction step, and thus the proof.

Remarks:

1. Since every h_i is a hyperplane reflection or the identity,

$$\rho = h_n \circ \cdots \circ h_2 \circ h_1$$

is an isometry.

2. If we allow negative diagonal entries in R, the last isometry h_n may be omitted.

3. Instead of picking $r_{k,k} = \| u''_k \|$, which means that

$$w_k = r_{k,k} e_k - u''_k,$$

where $1 \leq k \leq n$, it might be preferable to pick $r_{k,k} = -\| u''_k \|$ if this makes $\| w_k \|^2$ larger, in which case

$$w_k = r_{k,k} e_k + u''_k.$$

Indeed, since the definition of h_k involves division by $\| w_k \|^2$, it is desirable to avoid division by very small numbers.

4. The method also applies to any m-tuple of vectors (v_1, \ldots, v_m), where m is not necessarily equal to n (the dimension of E). In this case, R is an upper triangular $n \times m$ matrix we leave the minor adjustments to the method as an exercise to the reader (if $m > n$, the last $m - n$ vectors are unchanged).

Proposition 11.2 directly yields the QR-decomposition in terms of Householder transformations (see Strang [50, 51], Golub and Van Loan [24], Trefethen and Bau [54], Kincaid and Cheney [31], or Ciarlet [13]).

Theorem 11.3. For every real $n \times n$ matrix A, there is a sequence H_1, \ldots, H_n of matrices, where each H_i is either a Householder matrix or the identity, and an upper triangular matrix R such that

$$R = H_n \cdots H_2 H_1 A.$$

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal and R is upper triangular, such that $A = QR$ (a QR-decomposition of A). Furthermore, R can be chosen so that its diagonal entries are nonnegative.
Proof. The jth column of A can be viewed as a vector v_j over the canonical basis (e_1, \ldots, e_n) of E^n (where $(e_j)_i = 1$ if $i = j$, and 0 otherwise, $1 \leq i, j \leq n$). Applying Proposition 11.2 to (v_1, \ldots, v_n), there is a sequence of n isometries h_1, \ldots, h_n such that h_i is a hyperplane reflection or the identity, and if (r_1, \ldots, r_n) are the vectors given by

$$r_j = h_n \circ \cdots \circ h_2 \circ h_1(v_j),$$

then every r_j is a linear combination of the vectors (e_1, \ldots, e_j), $1 \leq j \leq n$. Letting R be the matrix whose columns are the vectors r_j, and H_i the matrix associated with h_i, it is clear that

$$R = H_n \cdots H_2 H_1 A,$$

where R is upper triangular and every H_i is either a Householder matrix or the identity. However, $h_i \circ h_i = \text{id}$ for all i, $1 \leq i \leq n$, and so

$$v_j = h_1 \circ h_2 \circ \cdots \circ h_n(r_j)$$

for all j, $1 \leq j \leq n$. But $\rho = h_1 \circ h_2 \circ \cdots \circ h_n$ is an isometry represented by the orthogonal matrix $Q = H_1 H_2 \cdots H_n$. It is clear that $A = QR$, where R is upper triangular. As we noted in Proposition 11.2, the diagonal entries of R can be chosen to be nonnegative. \qed

Remarks:

(1) Letting

$$A_{k+1} = H_k \cdots H_2 H_1 A,$$

with $A_1 = A$, $1 \leq k \leq n$, the proof of Proposition 11.2 can be interpreted in terms of the computation of the sequence of matrices $A_1, \ldots, A_{n+1} = R$. The matrix A_{k+1} has the shape

$${A_{k+1} = \begin{pmatrix}
 \times & \times & \times & u_1^{k+1} & \times & \times & \times \\
 0 & \times & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & \times & u_k^{k+1} & \times & \times & \times \\
 0 & 0 & 0 & u_{k+1}^{k+1} & \times & \times & \times \\
 0 & 0 & 0 & u_{k+2}^{k+1} & \times & \times & \times \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & u_{n-1}^{k+1} & \times & \times & \times \\
 0 & 0 & 0 & u_n^{k+1} & \times & \times & \times
\end{pmatrix},}$$

where the $(k + 1)$th column of the matrix is the vector

$$u_{k+1} = h_k \circ \cdots \circ h_2 \circ h_1(v_{k+1}),$$

and thus

$$u'_{k+1} = (u_1^{k+1}, \ldots, u_k^{k+1})$$
and
\[u''_{k+1} = (u_{k+1}^{k+1}, u_{k+1}^{k+2}, \ldots, u_{n}^{k+1}). \]

If the last \(n - k - 1 \) entries in column \(k + 1 \) are all zero, there is nothing to do, and we let \(H_{k+1} = I \). Otherwise, we kill these \(n - k - 1 \) entries by multiplying \(A_{k+1} \) on the left by the Householder matrix \(H_{k+1} \) sending
\[
(0, \ldots, 0, u_{k+1}^{k+1}, \ldots, u_{n}^{k+1}) \quad \text{to} \quad (0, \ldots, 0, r_{k+1,k+1}, 0, \ldots, 0),
\]
where \(r_{k+1,k+1} = \|(u_{k+1}^{k+1}, \ldots, u_{n}^{k+1})\| \).

(2) If \(A \) is invertible and the diagonal entries of \(R \) are positive, it can be shown that \(Q \) and \(R \) are unique.

(3) If we allow negative diagonal entries in \(R \), the matrix \(H_n \) may be omitted (\(H_n = I \)).

(4) The method allows the computation of the determinant of \(A \). We have
\[
\det(A) = (-1)^m r_{1,1} \cdots r_{n,n},
\]
where \(m \) is the number of Householder matrices (not the identity) among the \(H_i \).

(5) The “condition number” of the matrix \(A \) is preserved (see Strang [51], Golub and Van Loan [24], Trefethen and Bau [54], Kincaid and Cheney [31], or Ciarlet [13]). This is very good for numerical stability.

(6) The method also applies to a rectangular \(m \times n \) matrix. In this case, \(R \) is also an \(m \times n \) matrix (and it is upper triangular).

11.3 Summary

The main concepts and results of this chapter are listed below:

- **Symmetry (or reflection) with respect to \(F \) and parallel to \(G \).**
- **Orthogonal symmetry (or reflection) with respect to \(F \) and parallel to \(G \); reflections, flips.**
- Hyperplane reflections and *Householder matrices*.
- A key fact about reflections (Proposition 11.1).
- **\(QR \)-decomposition in terms of Householder transformations** (Theorem 11.3).
Chapter 12

Hermitian Spaces

12.1 Sesquilinear and Hermitian Forms, Pre-Hilbert Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter 10 to vector spaces over the complex numbers. Such a generalization is inevitable, and not simply a luxury. For example, linear maps may not have real eigenvalues, but they always have complex eigenvalues. Furthermore, some very important classes of linear maps can be diagonalized if they are extended to the complexification of a real vector space. This is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex vector spaces are often the natural framework in physics or engineering, and they are more convenient for dealing with Fourier series. However, some complications arise due to complex conjugation.

Recall that for any complex number $z \in \mathbb{C}$, if $z = x + iy$ where $x, y \in \mathbb{R}$, we let $\Re z = x$, the real part of z, and $\Im z = y$, the imaginary part of z. We also denote the conjugate of $z = x + iy$ by $\overline{z} = x - iy$, and the absolute value (or length, or modulus) of z by $|z|$. Recall that $|z|^2 = z\overline{z} = x^2 + y^2$.

There are many natural situations where a map $\varphi : E \times E \to \mathbb{C}$ is linear in its first argument and only semilinear in its second argument, which means that $\varphi(u, \mu v) = \mu \varphi(u, v)$, as opposed to $\varphi(u, \mu v) = \mu \varphi(u, v)$. For example, the natural inner product to deal with functions $f : \mathbb{R} \to \mathbb{C}$, especially Fourier series, is

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx,$$

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case of a Euclidean space to the complex case, we always have to check very carefully that our proofs do not rely on linearity in the second argument. Otherwise, we need to revise our proofs, and sometimes the result is simply wrong!
Before defining the natural generalization of an inner product, it is convenient to define semilinear maps.

Definition 12.1. Given two vector spaces E and F over the complex field \mathbb{C}, a function $f: E \to F$ is **semilinear** if

\[
 f(u + v) = f(u) + f(v), \\
 f(\lambda u) = \lambda f(u),
\]

for all $u, v \in E$ and all $\lambda \in \mathbb{C}$.

Remark: Instead of defining semilinear maps, we could have defined the vector space \overline{E} as the vector space with the same carrier set E whose addition is the same as that of E, but whose multiplication by a complex number is given by

\[
 (\lambda, u) \mapsto \overline{\lambda} u.
\]

Then it is easy to check that a function $f: E \to \mathbb{C}$ is semilinear iff $f: \overline{E} \to \mathbb{C}$ is linear.

We can now define sesquilinear forms and Hermitian forms.

Definition 12.2. Given a complex vector space E, a function $\varphi: E \times E \to \mathbb{C}$ is a **sesquilinear form** if it is linear in its first argument and semilinear in its second argument, which means that

\[
 \varphi(u_1 + u_2, v) = \varphi(u_1, v) + \varphi(u_2, v), \\
 \varphi(u, v_1 + v_2) = \varphi(u, v_1) + \varphi(u, v_2), \\
 \varphi(\lambda u, v) = \lambda \varphi(u, v), \\
 \varphi(u, \mu v) = \overline{\mu} \varphi(u, v),
\]

for all $u, v, u_1, u_2, v_1, v_2 \in E$, and all $\lambda, \mu \in \mathbb{C}$. A function $\varphi: E \times E \to \mathbb{C}$ is a **Hermitian form** if it is sesquilinear and if

\[
 \varphi(v, u) = \overline{\varphi(u, v)}
\]

for all all $u, v \in E$.

Obviously, $\varphi(0, v) = \varphi(u, 0) = 0$. Also note that if $\varphi: E \times E \to \mathbb{C}$ is sesquilinear, we have

\[
 \varphi(\lambda u + \mu v, \lambda u + \mu v) = |\lambda|^2 \varphi(u, u) + \lambda \overline{\mu} \varphi(u, v) + \overline{\lambda} \mu \varphi(v, u) + |\mu|^2 \varphi(v, v),
\]

and if $\varphi: E \times E \to \mathbb{C}$ is Hermitian, we have

\[
 \varphi(\lambda u + \mu v, \lambda u + \mu v) = |\lambda|^2 \varphi(u, u) + 2\Re(\lambda \overline{\mu} \varphi(u, v)) + |\mu|^2 \varphi(v, v).
\]
Note that restricted to real coefficients, a sesquilinear form is bilinear (we sometimes say \(\mathbb{R} \)-bilinear). The function \(\Phi : E \to \mathbb{C} \) defined such that \(\Phi(u) = \varphi(u, u) \) for all \(u \in E \) is called the \textit{quadratic form} associated with \(\varphi \).

The standard example of a Hermitian form on \(\mathbb{C}^n \) is the map \(\varphi \) defined such that
\[
\varphi((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = x_1 \overline{y_1} + x_2 \overline{y_2} + \cdots + x_n \overline{y_n}.
\]
This map is also positive definite, but before dealing with these issues, we show the following useful proposition.

Proposition 12.1. Given a complex vector space \(E \), the following properties hold:

1. A sesquilinear form \(\varphi : E \times E \to \mathbb{C} \) is a Hermitian form iff \(\varphi(u, u) \in \mathbb{R} \) for all \(u \in E \).

2. If \(\varphi : E \times E \to \mathbb{C} \) is a sesquilinear form, then
\[
4\varphi(u, v) = \varphi(u + v, u + v) - \varphi(u - v, u - v) + i\varphi(u + iv, u + iv) - i\varphi(u - iv, u - iv),
\]
and
\[
2\varphi(u, v) = (1 + i)(\varphi(u, u) + \varphi(v, v)) - \varphi(u - v, u - v) - i\varphi(u - iv, u - iv).
\]
These are called polarization identities.

Proof.
(1) If \(\varphi \) is a Hermitian form, then
\[
\varphi(v, u) = \overline{\varphi(u, v)}
\]
is null that
\[
\varphi(u, u) = \overline{\varphi(u, u)},
\]
and thus \(\varphi(u, u) \in \mathbb{R} \). If \(\varphi \) is sesquilinear and \(\varphi(u, u) \in \mathbb{R} \) for all \(u \in E \), then
\[
\varphi(u + v, u + v) = \varphi(u, u) + \varphi(u, v) + \varphi(v, u) + \varphi(v, v),
\]
which proves that
\[
\varphi(u, v) + \varphi(v, u) = \alpha,
\]
where \(\alpha \) is real, and changing \(u \) to \(iu \), we have
\[
i(\varphi(u, v) - \varphi(v, u)) = \beta,
\]
where \(\beta \) is real, and thus
\[
\varphi(u, v) = \frac{\alpha - i\beta}{2} \text{ and } \varphi(v, u) = \frac{\alpha + i\beta}{2},
\]
proving that \(\varphi \) is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave them as an exercise. \(\square \)
Chapter 12. Hermitian Spaces

Proposition 12.1 shows that a sesquilinear form is completely determined by the quadratic form \(\Phi(u) = \varphi(u, u) \), even if \(\varphi \) is not Hermitian. This is false for a real bilinear form, unless it is symmetric. For example, the bilinear form \(\varphi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \) defined such that

\[
\varphi((x_1, y_1), (x_2, y_2)) = x_1 y_2 - x_2 y_1
\]

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear form is indeed determined by its values on the diagonal, as we saw in Chapter 10.

As in the Euclidean case, Hermitian forms for which \(\varphi(u, u) \geq 0 \) play an important role.

Definition 12.3. Given a complex vector space \(E \), a Hermitian form \(\varphi : E \times E \to \mathbb{C} \) is positive if \(\varphi(u, u) \geq 0 \) for all \(u \in E \), and positive definite if \(\varphi(u, u) > 0 \) for all \(u \neq 0 \). A pair \(\langle E, \varphi \rangle \) where \(E \) is a complex vector space and \(\varphi \) is a Hermitian form on \(E \) is called a pre-Hilbert space if \(\varphi \) is positive, and a Hermitian (or unitary) space if \(\varphi \) is positive definite.

We warn our readers that some authors, such as Lang [33], define a pre-Hilbert space as what we define as a Hermitian space. We prefer following the terminology used in Schwartz [44] and Bourbaki [10]. The quantity \(\varphi(u, v) \) is usually called the Hermitian product of \(u \) and \(v \). We will occasionally call it the inner product of \(u \) and \(v \).

Given a pre-Hilbert space \(\langle E, \varphi \rangle \), as in the case of a Euclidean space, we also denote \(\varphi(u, v) \) by

\[
 u \cdot v \text{ or } \langle u, v \rangle \text{ or } (u|v),
\]

and \(\sqrt{\Phi(u)} \) by \(||u|| \).

Example 12.1. The complex vector space \(\mathbb{C}^n \) under the Hermitian form

\[
\varphi((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = x_1 \overline{y_1} + x_2 \overline{y_2} + \cdots + x_n \overline{y_n}
\]

is a Hermitian space.

Example 12.2. Let \(l^2 \) denote the set of all countably infinite sequences \(x = (x_i)_{i \in \mathbb{N}} \) of complex numbers such that \(\sum_{i=0}^{\infty} |x_i|^2 \) is defined (i.e., the sequence \(\sum_{i=0}^{n} |x_i|^2 \) converges as \(n \to \infty \)). It can be shown that the map \(\varphi : l^2 \times l^2 \to \mathbb{C} \) defined such that

\[
\varphi((x_i)_{i \in \mathbb{N}}, (y_i)_{i \in \mathbb{N}}) = \sum_{i=0}^{\infty} x_i \overline{y_i}
\]

is well defined, and \(l^2 \) is a Hilbert space under \(\varphi \). Actually, \(l^2 \) is even a Hilbert space.

Example 12.3. Let \(C_{\text{piece}}[a, b] \) be the set of piecewise bounded continuous functions \(f : [a, b] \to \mathbb{C} \) under the Hermitian form

\[
\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx.
\]

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under this Hermitian form, \(C_{\text{piece}}[a, b] \) is only a pre-Hilbert space.
Example 12.4. Let $C[a,b]$ be the set of complex-valued continuous functions $f : [a,b] \rightarrow \mathbb{C}$ under the Hermitian form

$$\langle f, g \rangle = \int_a^b f(x)\overline{g(x)}dx.$$

It is easy to check that this Hermitian form is positive definite. Thus, $C[a,b]$ is a Hermitian space.

Example 12.5. Let $E = M_n(\mathbb{C})$ be the vector space of complex $n \times n$ matrices. If we view a matrix $A \in M_n(\mathbb{C})$ as a “long” column vector obtained by concatenating together its columns, we can define the Hermitian product of two matrices $A, B \in M_n(\mathbb{C})$ as

$$\langle A, B \rangle = \sum_{i,j=1}^{n} a_{ij} \overline{b}_{ij},$$

which can be conveniently written as

$$\langle A, B \rangle = \text{tr}(A^\top B) = \text{tr}(B^* A).$$

Since this can be viewed as the standard Hermitian product on \mathbb{C}^{n^2}, it is a Hermitian product on $M_n(\mathbb{C})$. The corresponding norm

$$\|A\|_F = \sqrt{\text{tr}(A^* A)}$$

is the Frobenius norm (see Section 7.2).

If E is finite-dimensional and if $\varphi : E \times E \rightarrow \mathbb{R}$ is a sequilinear form on E, given any basis (e_1, \ldots, e_n) of E, we can write $x = \sum_{i=1}^{n} x_i e_i$ and $y = \sum_{j=1}^{n} y_j e_j$, and we have

$$\varphi(x, y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i,j=1}^{n} x_i \overline{y}_j \varphi(e_i, e_j).$$

If we let $G = (g_{ij})$ be the matrix given by $g_{ij} = \varphi(e_j, e_i)$, and if x and y are the column vectors associated with (x_1, \ldots, x_n) and (y_1, \ldots, y_n), then we can write

$$\varphi(x, y) = x^\top G^\top \overline{y} = y^* G x,$$

where \overline{y} corresponds to $(\overline{y}_1, \ldots, \overline{y}_n)$. As in Section 10.1, we are committing the slight abuse of notation of letting x denote both the vector $x = \sum_{i=1}^{n} x_i e_i$ and the column vector associated with (x_1, \ldots, x_n) (and similarly for y). The “correct” expression for $\varphi(x, y)$ is

$$\varphi(x, y) = y^* G x = x^\top G^\top \overline{y}.$$

Observe that in $\varphi(x, y) = y^* G x$, the matrix involved is the transpose of the matrix $(\varphi(e_i, e_j))$. The reason for this is that we want G to be positive definite when φ is positive definite, not G^\top.

\[\square\]
Furthermore, observe that φ is Hermitian iff $G = G^*$, and φ is positive definite iff the matrix G is positive definite, that is,

$$(Gx)^\dagger = x^*Gx > 0 \quad \text{for all } x \in \mathbb{C}^n, \; x \neq 0.$$

The matrix G associated with a Hermitian product is called the Gram matrix of the Hermitian product with respect to the basis (e_1, \ldots, e_n).

Conversely, if A is a Hermitian positive definite $n \times n$ matrix, it is easy to check that the Hermitian form

$$\langle x, y \rangle = y^*Ax$$

is positive definite. If we make a change of basis from the basis (e_1, \ldots, e_n) to the basis (f_1, \ldots, f_n), and if the change of basis matrix is P (where the jth column of P consists of the coordinates of f_j over the basis (e_1, \ldots, e_n)), then with respect to coordinates x' and y' over the basis (f_1, \ldots, f_n), we have

$$y^*Gx = (y')^*P^*GPx',$$

so the matrix of our inner product over the basis (f_1, \ldots, f_n) is P^*GP. We summarize these facts in the following proposition.

Proposition 12.2. Let E be a finite-dimensional vector space, and let (e_1, \ldots, e_n) be a basis of E.

1. For any Hermitian inner product $\langle -, - \rangle$ on E, if $G = (g_{ij})$ with $g_{ij} = \langle e_j, e_i \rangle$ is the Gram matrix of the Hermitian product $\langle -, - \rangle$ w.r.t. the basis (e_1, \ldots, e_n), then G is Hermitian positive definite.

2. For any change of basis matrix P, the Gram matrix of $\langle -, - \rangle$ with respect to the new basis is P^*GP.

3. If A is any $n \times n$ Hermitian positive definite matrix, then

$$\langle x, y \rangle = y^*Ax$$

is a Hermitian product on E.

We will see later that a Hermitian matrix is positive definite iff its eigenvalues are all positive.

The following result reminiscent of the first polarization identity of Proposition 12.1 can be used to prove that two linear maps are identical.

Proposition 12.3. Given any Hermitian space E with Hermitian product $\langle -, - \rangle$, for any linear map $f : E \to E$, if $\langle f(x), x \rangle = 0$ for all $x \in E$, then $f = 0$.
Proof. Compute $\langle f(x + y), x + y \rangle$ and $\langle f(x - y), x - y \rangle$:

\[
\langle f(x + y), x + y \rangle = \langle f(x), x \rangle + \langle f(x), y \rangle + \langle f(y), x \rangle + \langle y, y \rangle
\]
\[
\langle f(x - y), x - y \rangle = \langle f(x), x \rangle - \langle f(x), y \rangle - \langle f(y), x \rangle + \langle y, y \rangle;
\]

then, subtract the second equation from the first, to obtain

\[
\langle f(x + y), x + y \rangle - \langle f(x - y), x - y \rangle = 2(\langle f(x), y \rangle + \langle f(y), x \rangle).
\]

If $\langle f(u), u \rangle = 0$ for all $u \in E$, we get

\[
\langle f(x), y \rangle + \langle f(y), x \rangle = 0 \quad \text{for all } x, y \in E.
\]

Then, the above equation also holds if we replace x by ix, and we obtain

\[
i \langle f(x), y \rangle - i \langle f(y), x \rangle = 0, \quad \text{for all } x, y \in E,
\]

so we have

\[
\langle f(x), y \rangle + \langle f(y), x \rangle = 0
\]
\[
\langle f(x), y \rangle - \langle f(y), x \rangle = 0,
\]

which implies that $\langle f(x), y \rangle = 0$ for all $x, y \in E$. Since $\langle -, - \rangle$ is positive definite, we have $f(x) = 0$ for all $x \in E$; that is, $f = 0$. \qed

One should be careful not to apply Proposition 12.3 to a linear map on a real Euclidean space, because it is false! The reader should find a counterexample.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert spaces and to Hermitian spaces.

Proposition 12.4. Let (E, φ) be a pre-Hilbert space with associated quadratic form Φ. For all $u, v \in E$, we have the Cauchy–Schwarz inequality

\[
|\varphi(u, v)| \leq \sqrt{\Phi(u)\Phi(v)}.
\]

Furthermore, if (E, φ) is a Hermitian space, the equality holds iff u and v are linearly dependent.

We also have the Minkowski inequality

\[
\sqrt{\Phi(u + v)} \leq \sqrt{\Phi(u)} + \sqrt{\Phi(v)}.
\]

Furthermore, if (E, φ) is a Hermitian space, the equality holds iff u and v are linearly dependent, where in addition, if $u \neq 0$ and $v \neq 0$, then $u = \lambda v$ for some real λ such that $\lambda > 0$.

Proof. For all \(u, v \in E \) and all \(\mu \in \mathbb{C} \), we have observed that
\[
\varphi(u + \mu v, u + \mu v) = \varphi(u, u) + 2\Re(\varphi(u, v)) + |\mu|^2 \varphi(v, v).
\]

Let \(\varphi(u, v) = \rho e^{i\theta} \), where \(|\varphi(u, v)| = \rho \) (\(\rho \geq 0 \)). Let \(F: \mathbb{R} \rightarrow \mathbb{R} \) be the function defined such that
\[
F(t) = \Phi(u + te^{i\theta} v),
\]
for all \(t \in \mathbb{R} \). The above shows that
\[
F(t) = \varphi(u, u) + 2t|\varphi(u, v)| + t^2 \varphi(v, v) = \Phi(u) + 2t|\varphi(u, v)| + t^2 \Phi(v).
\]
Since \(\varphi \) is assumed to be positive, we have \(F(t) \geq 0 \) for all \(t \in \mathbb{R} \). If \(\Phi(v) = 0 \), we must have \(\varphi(u, v) = 0 \), since otherwise, \(F(t) \) could be made negative by choosing \(t \) negative and small enough. If \(\Phi(v) > 0 \), in order for \(F(t) \) to be nonnegative, the equation
\[
\Phi(u) + 2t|\varphi(u, v)| + t^2 \Phi(v) = 0
\]
must not have distinct real roots, which is equivalent to
\[
|\varphi(u, v)|^2 \leq \Phi(u)\Phi(v).
\]
Taking the square root on both sides yields the Cauchy–Schwarz inequality.

For the second part of the claim, if \(\varphi \) is positive definite, we argue as follows. If \(u \) and \(v \) are linearly dependent, it is immediately verified that we get an equality. Conversely, if
\[
|\varphi(u, v)|^2 = \Phi(u)\Phi(v),
\]
then there are two cases. If \(\Phi(v) = 0 \), since \(\varphi \) is positive definite, we must have \(v = 0 \), so \(u \) and \(v \) are linearly dependent. Otherwise, the equation
\[
\Phi(u) + 2t|\varphi(u, v)| + t^2 \Phi(v) = 0
\]
has a double root \(t_0 \), and thus
\[
\Phi(u + t_0 e^{i\theta} v) = 0.
\]
Since \(\varphi \) is positive definite, we must have
\[
u + t_0 e^{i\theta} v = 0,
\]
which shows that \(u \) and \(v \) are linearly dependent.

If we square the Minkowski inequality, we get
\[
\Phi(u + v) \leq \Phi(u) + \Phi(v) + 2\sqrt{\Phi(u)\Phi(v)}.
\]
However, we observed earlier that
\[
\Phi(u + v) = \Phi(u) + \Phi(v) + 2\Re(\varphi(u, v)).
\]
Thus, it is enough to prove that
\[\Re(\varphi(u, v)) \leq \sqrt{\Phi(u)} \sqrt{\Phi(v)}, \]
but this follows from the Cauchy–Schwarz inequality
\[|\varphi(u, v)| \leq \sqrt{\Phi(u)} \sqrt{\Phi(v)} \]
and the fact that \(\Re z \leq |z| \).

If \(\varphi \) is positive definite and \(u \) and \(v \) are linearly dependent, it is immediately verified that we get an equality. Conversely, if equality holds in the Minkowski inequality, we must have
\[\Re(\varphi(u, v)) = \sqrt{\Phi(u)} \sqrt{\Phi(v)}, \]
which implies that
\[|\varphi(u, v)| = \sqrt{\Phi(u)} \sqrt{\Phi(v)}, \]
since otherwise, by the Cauchy–Schwarz inequality, we would have
\[\Re(\varphi(u, v)) \leq |\varphi(u, v)| < \sqrt{\Phi(u)} \sqrt{\Phi(v)}. \]
Thus, equality holds in the Cauchy–Schwarz inequality, and
\[\Re(\varphi(u, v)) = |\varphi(u, v)|. \]
But then, we proved in the Cauchy–Schwarz case that \(u \) and \(v \) are linearly dependent. Since we also just proved that \(\varphi(u, v) \) is real and nonnegative, the coefficient of proportionality between \(u \) and \(v \) is indeed nonnegative.

As in the Euclidean case, if \(\langle E, \varphi \rangle \) is a Hermitian space, the Minkowski inequality
\[\sqrt{\Phi(u + v)} \leq \sqrt{\Phi(u)} + \sqrt{\Phi(v)} \]
shows that the map \(u \mapsto \sqrt{\Phi(u)} \) is a norm on \(E \). The norm induced by \(\varphi \) is called the Hermitian norm induced by \(\varphi \). We usually denote \(\sqrt{\Phi(u)} \) by \(\|u\| \), and the Cauchy–Schwarz inequality is written as
\[|u \cdot v| \leq \|u\| \|v\|. \]

Since a Hermitian space is a normed vector space, it is a topological space under the topology induced by the norm (a basis for this topology is given by the open balls \(B_0(u, \rho) \) of center \(u \) and radius \(\rho > 0 \), where
\[B_0(u, \rho) = \{ v \in E \mid \|v - u\| < \rho \}. \]
If \(E \) has finite dimension, every linear map is continuous; see Chapter 7 (or Lang [33, 34], Dixmier [17], or Schwartz [44, 45]). The Cauchy–Schwarz inequality
\[|u \cdot v| \leq \|u\| \|v\|. \]
shows that \(\varphi : E \times E \to \mathbb{C} \) is continuous, and thus, that \(\| \| \) is continuous.

If \(\langle E, \varphi \rangle \) is only pre-Hilbertian, \(\| u \| \) is called a seminorm. In this case, the condition
\[
\| u \| = 0 \quad \text{implies} \quad u = 0
\]
is not necessarily true. However, the Cauchy–Schwarz inequality shows that if \(\| u \| = 0 \), then \(u \cdot v = 0 \) for all \(v \in E \).

Remark: As in the case of real vector spaces, a norm on a complex vector space is induced by some positive definite Hermitian product \(\langle - , - \rangle \) iff it satisfies the parallelogram law:
\[
\| u + v \|^2 + \| u - v \|^2 = 2(\| u \|^2 + \| v \|^2).
\]
This time, the Hermitian product is recovered using the polarization identity from Proposition 12.1:
\[
4\langle u, v \rangle = \| u + v \|^2 - \| u - v \|^2 + i \| u + iv \|^2 - i \| u - iv \|^2.
\]
It is easy to check that \(\langle u, u \rangle = \| u \|^2 \), and
\[
\langle v, u \rangle = \overline{\langle u, v \rangle}, \quad \langle iu, v \rangle = i\langle u, v \rangle,
\]
so it is enough to check linearity in the variable \(u \), and only for real scalars. This is easily done by applying the proof from Section 10.1 to the real and imaginary part of \(\langle u, v \rangle \); the details are left as an exercise.

We will now basically mirror the presentation of Euclidean geometry given in Chapter 10 rather quickly, leaving out most proofs, except when they need to be seriously amended.

12.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the Hermitian inner product by \(u \cdot v \) or \(\langle u, v \rangle \). The concepts of orthogonality, orthogonal family of vectors, orthonormal family of vectors, and orthogonal complement of a set of vectors are unchanged from the Euclidean case (Definition 10.2).

For example, the set \(C[-\pi, \pi] \) of continuous functions \(f : [-\pi, \pi] \to \mathbb{C} \) is a Hermitian space under the product
\[
\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx,
\]
and the family \((e^{ikx})_{k \in \mathbb{Z}} \) is orthogonal.

Proposition 10.3 and 10.4 hold without any changes. It is easy to show that
\[
\left\| \sum_{i=1}^{n} u_i \right\|^2 = \sum_{i=1}^{n} \| u_i \|^2 + \sum_{1 \leq i < j \leq n} 2 \Re (u_i \cdot u_j).
\]
Analogously to the case of Euclidean spaces of finite dimension, the Hermitian product induces a canonical bijection (i.e., independent of the choice of bases) between the vector space E and the space E^*. This is one of the places where conjugation shows up, but in this case, troubles are minor.

Given a Hermitian space E, for any vector $u \in E$, let $\varphi_u^l : E \to \mathbb{C}$ be the map defined such that
$$\varphi_u^l(v) = \overline{u \cdot v}, \quad \text{for all } v \in E.$$ Similarly, for any vector $v \in E$, let $\varphi_v^r : E \to \mathbb{C}$ be the map defined such that
$$\varphi_v^r(u) = u \cdot v, \quad \text{for all } u \in E.$$

Since the Hermitian product is linear in its first argument u, the map φ_v^r is a linear form in E^*, and since it is semilinear in its second argument v, the map φ_u^l is also a linear form in E^*. Thus, we have two maps $\flat^l : E \to E^*$ and $\flat^r : E \to E^*$, defined such that
$$\flat^l(u) = \varphi_u^l,$$ and $$\flat^r(v) = \varphi_v^r.$$ Actually, $\varphi_u^l = \varphi_u^*, \text{ and } \flat^l = \flat^r$. Indeed, for all $u, v \in E$, we have
$$\flat^l(u)(v) = \varphi_u^l(v)$$
$$= \overline{u \cdot v}$$
$$= v \cdot u$$
$$= \varphi^r_u(v)$$
$$= \flat^r(u)(v).$$

Therefore, we use the notation φ_u for both φ_u^l and φ_u^*, and \flat for both \flat^l and \flat^r.

Theorem 12.5. Let E be a Hermitian space E. The map $\flat : E \to E^*$ defined such that
$$\flat(u) = \varphi_u^l = \varphi_u^*, \quad \text{for all } u \in E$$

is semilinear and injective. When E is also of finite dimension, the map $\flat : E \to E^*$ is a canonical isomorphism.

Proof. That $\flat : E \to E^*$ is a semilinear map follows immediately from the fact that $\flat = \flat^r$, and that the Hermitian product is semilinear in its second argument. If $\varphi_u = \varphi_v$, then $\varphi_u(w) = \varphi_v(w)$ for all $w \in E$, which by definition of φ_u and φ_v means that
$$w \cdot u = w \cdot v$$
for all $w \in E$, which by semilinearity on the right is equivalent to
$$w \cdot (v - u) = 0 \quad \text{for all } w \in E,$$
which implies that $u = v$, since the Hermitian product is positive definite. Thus, $\flat : E \to E^*$ is injective. Finally, when E is of finite dimension n, E^* is also of dimension n, and then $\flat : E \to E^*$ is bijective. Since \flat is semilinear, the map $\flat : E \to E^*$ is an isomorphism. □
The inverse of the isomorphism $♭: E \rightarrow E^*$ is denoted by $♯: E^* \rightarrow E$.

As a corollary of the isomorphism $♭: E \rightarrow E^*$, if E is a Hermitian space of finite dimension, then every linear form $f \in E^*$ corresponds to a unique $v \in E$, such that

$$f(u) = u \cdot v, \quad \text{for every } u \in E.$$

In particular, if f is not the null form, the kernel of f, which is a hyperplane H, is precisely the set of vectors that are orthogonal to v.

Remarks:

1. The “musical map” $♭: E \rightarrow E^*$ is not surjective when E has infinite dimension. This result can be salvaged by restricting our attention to continuous linear maps, and by assuming that the vector space E is a Hilbert space.

2. Dirac’s “bra-ket” notation. Dirac invented a notation widely used in quantum mechanics for denoting the linear form $ϕ_u = ♭(u)$ associated to the vector $u \in E$ via the duality induced by a Hermitian inner product. Dirac’s proposal is to denote the vectors u in E by $|u\rangle$, and call them kets; the notation $|u\rangle$ is pronounced “ket u.” Given two kets (vectors) $|u\rangle$ and $|v\rangle$, their inner product is denoted by

$$\langle u|v \rangle$$

(instead of $|u\rangle \cdot |v\rangle$). The notation $\langle u|v \rangle$ for the inner product of $|u\rangle$ and $|v\rangle$ anticipates duality. Indeed, we define the dual (usually called adjoint) bra u of ket u, denoted by $⟨u|$, as the linear form whose value on any ket v is given by the inner product, so

$$⟨u|⟨v⟩⟩ = ⟨u|v⟩.$$

Thus, bra $u = ⟨u|$ is Dirac’s notation for our $♭(u)$. Since the map $♭$ is semi-linear, we have

$$⟨λu| = λ⟨u|. $$

Using the bra-ket notation, given an orthonormal basis $(|u_1\rangle, \ldots, |u_n\rangle)$, ket v (a vector) is written as

$$|v⟩ = \sum_{i=1}^{n} ⟨v|u_i⟩ |u_i⟩,$$

and the corresponding linear form bra v is written as

$$⟨v| = \sum_{i=1}^{n} ⟨v|u_i⟩ ⟨u_i| = \sum_{i=1}^{n} ⟨u_i|v⟩ ⟨u_i|$$

over the dual basis $(⟨u_1|, \ldots, ⟨u_n|)$. As cute as it looks, we do not recommend using the Dirac notation.
The existence of the isomorphism $\flat: E \rightarrow E^*$ is crucial to the existence of adjoint maps. Indeed, Theorem 12.5 allows us to define the adjoint of a linear map on a Hermitian space. Let E be a Hermitian space of finite dimension n, and let $f: E \rightarrow E$ be a linear map. For every $u \in E$, the map

$$v \mapsto u \cdot f(v)$$

is clearly a linear form in E^*, and by Theorem 12.5, there is a unique vector in E denoted by $f^*(u)$, such that

$$\overline{f^*(u)} \cdot v = \overline{u} \cdot f(v),$$

that is,

$$f^*(u) \cdot v = u \cdot f(v), \quad \text{for every } v \in E.$$

The following proposition shows that the map f^* is linear.

Proposition 12.6. Given a Hermitian space E of finite dimension, for every linear map $f: E \rightarrow E$ there is a unique linear map $f^*: E \rightarrow E$ such that

$$f^*(u) \cdot v = u \cdot f(v),$$

for all $u, v \in E$. The map f^* is called the adjoint of f (w.r.t. to the Hermitian product).

Proof. Careful inspection of the proof of Proposition 10.6 reveals that it applies unchanged. The only potential problem is in proving that $f^*(\lambda u) = \lambda f^*(u)$, but everything takes place in the first argument of the Hermitian product, and there, we have linearity. \qed

The fact that

$$v \cdot u = \overline{u} \cdot v$$

implies that the adjoint f^* of f is also characterized by

$$f(u) \cdot v = u \cdot f^*(v),$$

for all $u, v \in E$.

Given two Hermitian spaces E and F, where the Hermitian product on E is denoted by $\langle -, - \rangle_1$ and the Hermitian product on F is denoted by $\langle -, - \rangle_2$, given any linear map $f: E \rightarrow F$, it is immediately verified that the proof of Proposition 12.6 can be adapted to show that there is a unique linear map $f^*: F \rightarrow E$ such that

$$\langle f(u), v \rangle_2 = \langle u, f^*(v) \rangle_1$$

for all $u \in E$ and all $v \in F$. The linear map f^* is also called the adjoint of f.

As in the euclidean case, the following properties immediately follow from the definition of the adjoint map:

1. For any linear map $f: E \rightarrow F$, we have

$$f^{**} = f.$$
(2) For any two linear maps \(f, g : E \to F \) and any scalar \(\lambda \in \mathbb{R} \):
\[
(f + g)^* = f^* + g^*
\]
\[
(\lambda f)^* = \overline{\lambda} f^*.
\]

(3) If \(E, F, G \) are Hermitian spaces with respective inner products \(\langle - , - \rangle_1, \langle - , - \rangle_2 \), and \(\langle - , - \rangle_3 \), and if \(f : E \to F \) and \(g : F \to G \) are two linear maps, then
\[
(g \circ f)^* = f^* \circ g^*.
\]

As in the Euclidean case, a linear map \(f : E \to E \) (where \(E \) is a finite-dimensional Hermitian space) is self-adjoint if \(f = f^* \). The map \(f \) is positive semidefinite iff
\[
\langle f(x), x \rangle \geq 0 \quad \text{all } x \in E;
\]
positive definite iff
\[
\langle f(x), x \rangle > 0 \quad \text{all } x \in E, x \neq 0.
\]

An interesting corollary of Proposition 12.3 is that a positive semidefinite linear map must be self-adjoint. In fact, we can prove a slightly more general result.

Proposition 12.7. Given any finite-dimensional Hermitian space \(E \) with Hermitian product \(\langle - , - \rangle \), for any linear map \(f : E \to E \), if \(\langle f(x), x \rangle \in \mathbb{R} \) for all \(x \in E \), then \(f \) is self-adjoint. In particular, any positive semidefinite linear map \(f : E \to E \) is self-adjoint.

Proof. Since \(\langle f(x), x \rangle \in \mathbb{R} \) for all \(x \in E \), we have
\[
\langle f(x), x \rangle = \overline{\langle f(x), x \rangle}
= \langle x, f(x) \rangle
= \langle f^*(x), x \rangle,
\]
so we have
\[
\langle (f - f^*)(x), x \rangle = 0 \quad \text{all } x \in E,
\]
and Proposition 12.3 implies that \(f - f^* = 0 \).

Beware that Proposition 12.7 is false if \(E \) is a real Euclidean space.

As in the Euclidean case, Theorem 12.5 can be used to show that any Hermitian space of finite dimension has an orthonormal basis. The proof is unchanged.

Proposition 12.8. Given any nontrivial Hermitian space \(E \) of finite dimension \(n \geq 1 \), there is an orthonormal basis \((u_1, \ldots, u_n) \) for \(E \).

The Gram–Schmidt orthonormalization procedure also applies to Hermitian spaces of finite dimension, without any changes from the Euclidean case!
Proposition 12.9. Given a nontrivial Hermitian space E of finite dimension $n \geq 1$, from any basis (e_1, \ldots, e_n) for E we can construct an orthonormal basis (u_1, \ldots, u_n) for E with the property that for every k, $1 \leq k \leq n$, the families (e_1, \ldots, e_k) and (u_1, \ldots, u_k) generate the same subspace.

Remark: The remarks made after Proposition 10.8 also apply here, except that in the QR-decomposition, Q is a unitary matrix.

As a consequence of Proposition 10.7 (or Proposition 12.9), given any Hermitian space of finite dimension n, if (e_1, \ldots, e_n) is an orthonormal basis for E, then for any two vectors $u = u_1e_1 + \cdots + u_ne_n$ and $v = v_1e_1 + \cdots + v_ne_n$, the Hermitian product $u \cdot v$ is expressed as

$$u \cdot v = (u_1e_1 + \cdots + u_ne_n) \cdot (v_1e_1 + \cdots + v_ne_n) = \sum_{i=1}^{n} u_i\overline{v_i},$$

and the norm $\|u\|$ as

$$\|u\| = \|u_1e_1 + \cdots + u_ne_n\| = \left(\sum_{i=1}^{n} |u_i|^2\right)^{1/2}.$$

The fact that a Hermitian space always has an orthonormal basis implies that any Gram matrix G can be written as

$$G = Q^*Q,$$

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram matrix G becomes $G' = (P)^*G(P)$. If the basis corresponding to G' is orthonormal, then $G' = I$, so $G = (P^{-1})^*P^{-1}$.

Proposition 10.9 also holds unchanged.

Proposition 12.10. Given any nontrivial Hermitian space E of finite dimension $n \geq 1$, for any subspace F of dimension k, the orthogonal complement F^\perp of F has dimension $n - k$, and $E = F \oplus F^\perp$. Furthermore, we have $F^{\perp\perp} = F$.

12.3 Linear Isometries (Also Called Unitary Transformations)

In this section we consider linear maps between Hermitian spaces that preserve the Hermitian norm. All definitions given for Euclidean spaces in Section 10.3 extend to Hermitian spaces, except that orthogonal transformations are called unitary transformation, but Proposition 10.10 extends only with a modified condition (2). Indeed, the old proof that (2) implies (3) does not work, and the implication is in fact false! It can be repaired by strengthening condition (2). For the sake of completeness, we state the Hermitian version of Definition 10.3.
Definition 12.4. Given any two nontrivial Hermitian spaces E and F of the same finite dimension n, a function $f : E \rightarrow F$ is a unitary transformation, or a linear isometry, if it is linear and
\[\|f(u)\| = \|u\|, \quad \text{for all } u \in E. \]

Proposition 10.10 can be salvaged by strengthening condition (2).

Proposition 12.11. Given any two nontrivial Hermitian spaces E and F of the same finite dimension n, for every function $f : E \rightarrow F$, the following properties are equivalent:

1. f is a linear map and $\|f(u)\| = \|u\|$, for all $u \in E$;
2. $\|f(v) - f(u)\| = \|v - u\|$ and $f(iu) = if(u)$, for all $u, v \in E$.
3. $f(u) \cdot f(v) = u \cdot v$, for all $u, v \in E$.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Proposition 10.10 needs to be revised as follows. We use the polarization identity
\[2\varphi(u, v) = (1 + i)(\|u\|^2 + \|v\|^2) - \|u - v\|^2 - i\|u - iv\|^2. \]
Since $f(iv) = if(v)$, we get $f(0) = 0$ by setting $v = 0$, so the function f preserves distance and norm, and we get
\[2\varphi(f(u), f(v)) = (1 + i)(\|f(u)\|^2 + \|f(v)\|^2) - \|f(u) - f(v)\|^2 \]
\[= (1 + i)(\|f(u)\|^2 + \|f(v)\|^2) - \|f(u) - f(v)\|^2 \]
\[= (1 + i)(\|u\|^2 + \|v\|^2) - \|u - v\|^2 - i\|u - iv\|^2 \]
\[= 2\varphi(u, v), \]
which shows that f preserves the Hermitian inner product, as desired. The rest of the proof is unchanged. \hfill \Box

Remarks:

(i) In the Euclidean case, we proved that the assumption
\[\|f(v) - f(u)\| = \|v - u\| \quad \text{for all } u, v \in E \text{ and } f(0) = 0 \quad (2') \]
implies (3). For this we used the polarization identity
\[2u \cdot v = \|u\|^2 + \|v\|^2 - \|u - v\|^2. \]
In the Hermitian case the polarization identity involves the complex number i. In fact, the implication $(2')$ implies (3) is false in the Hermitian case! Conjugation $z \mapsto \overline{z}$ satisfies $(2')$ since
\[|z_2 - \overline{z_1}| = |\overline{z_2} - z_1| = |z_2 - z_1|, \]
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring that there be some $\tau \in E$ such that
\[f(\tau + iu) = f(\tau) + i(f(\tau) + u - f(\tau)) \]
for all $u \in E$, then the function $g: E \to E$ defined such that
\[g(u) = f(\tau + u) - f(\tau) \]
satisfies the old conditions of (2), and the implications $(2) \to (3)$ and $(3) \to (1)$ prove that g is linear, and thus that f is affine. In view of the first remark, some condition involving i is needed on f, in addition to the fact that f is distance-preserving.

12.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean space, we explore some of the fundamental properties of the unitary group and of unitary matrices. As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain the QR-decomposition for invertible matrices. In the Hermitian framework, the matrix of the adjoint of a linear map is not given by the transpose of the original matrix, but by its conjugate.

Definition 12.5
Given a complex $m \times n$ matrix A, the transpose A^\top of A is the $n \times m$ matrix $A^\top = (a^\top_{ij})$ defined such that
\[a^\top_{ij} = a_{ji}, \]
and the conjugate \overline{A} of A is the $m \times n$ matrix $\overline{A} = (b_{ij})$ defined such that
\[b_{ij} = \bar{a}_{ij} \]
for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. The adjoint A^* of A is the matrix defined such that
\[A^* = \overline{(A^\top)} = (\overline{A})^\top. \]

Proposition 12.12
Let E be any Hermitian space of finite dimension n, and let $f: E \to E$ be any linear map. The following properties hold:
(1) The linear map $f: E \to E$ is an isometry iff
\[f \circ f^* = f^* \circ f = \text{id}. \]

(2) For every orthonormal basis (e_1, \ldots, e_n) of E, if the matrix of f is A, then the matrix of f^* is the adjoint A^* of A, and f is an isometry iff A satisfies the identities
\[AA^* = A^*A = I_n, \]
where I_n denotes the identity matrix of order n, iff the columns of A form an orthonormal basis of \mathbb{C}^n, iff the rows of A form an orthonormal basis of \mathbb{C}^n.

Proof. (1) The proof is identical to that of Proposition 10.12 (1).

(2) If (e_1, \ldots, e_n) is an orthonormal basis for E, let $A = (a_{ij})$ be the matrix of f, and let $B = (b_{ij})$ be the matrix of f^*. Since f^* is characterized by
\[f^*(u) \cdot v = u \cdot f(v) \]
for all $u, v \in E$, using the fact that if $w = w_1e_1 + \cdots + w_ne_n$, we have $w_k = w \cdot e_k$, for all k, $1 \leq k \leq n$; letting $u = e_i$ and $v = e_j$, we get
\[b_{ij} = f^*(e_i) \cdot e_j = e_i \cdot f(e_j) = \overline{f(e_j)} \cdot e_i = \overline{a_{ij}}, \]
for all i, j, $1 \leq i, j \leq n$. Thus, $B = A^*$. Now, if X and Y are arbitrary matrices over the basis (e_1, \ldots, e_n), denoting as usual the jth column of X by X^j, and similarly for Y, a simple calculation shows that
\[Y^*X = (X^j \cdot Y^i)_{1 \leq i, j \leq n}. \]
Then it is immediately verified that if $X = Y = A$, then $A^*A = A A^* = I_n$ iff the column vectors (A^1, \ldots, A^n) form an orthonormal basis. Thus, from (1), we see that (2) is clear. \qed

Proposition 10.12 shows that the inverse of an isometry f is its adjoint f^*. Proposition 10.12 also motivates the following definition.

Definition 12.6. A complex $n \times n$ matrix is a unitary matrix if
\[AA^* = A^*A = I_n. \]

Remarks:

(1) The conditions $AA^* = I_n$, $A^*A = I_n$, and $A^{-1} = A^*$ are equivalent. Given any two orthonormal bases (u_1, \ldots, u_n) and (v_1, \ldots, v_n), if P is the change of basis matrix from (u_1, \ldots, u_n) to (v_1, \ldots, v_n), it is easy to show that the matrix P is unitary. The proof of Proposition 12.11 (3) also shows that if f is an isometry, then the image of an orthonormal basis (u_1, \ldots, u_n) is an orthonormal basis.
(2) Using the explicit formula for the determinant, we see immediately that
\[\det(A) = \overline{\det(A)}. \]

If \(f \) is a unitary transformation and \(A \) is its matrix with respect to any orthonormal basis, from \(AA^* = I \), we get
\[\det(AA^*) = \det(A) \overline{\det(A)} = \det(A) \overline{\det(A)} = | \det(A) |^2, \]
and so \(| \det(A) | = 1 \). It is clear that the isometries of a Hermitian space of dimension \(n \) form a group, and that the isometries of determinant +1 form a subgroup.

This leads to the following definition.

Definition 12.7. Given a Hermitian space \(E \) of dimension \(n \), the set of isometries \(f: E \to E \) forms a subgroup of \(\text{GL}(E, \mathbb{C}) \) denoted by \(U(E) \), or \(U(n) \) when \(E = \mathbb{C}^n \), called the unitary group (of \(E \)). For every isometry \(f \) we have \(| \det(f) | = 1 \), where \(\det(f) \) denotes the determinant of \(f \). The isometries such that \(\det(f) = 1 \) are called rotations, or proper isometries, or proper unitary transformations, and they form a subgroup of the special linear group \(\text{SL}(E, \mathbb{C}) \) (and of \(U(E) \)), denoted by \(\text{SU}(E) \), or \(\text{SU}(n) \) when \(E = \mathbb{C}^n \), called the special unitary group (of \(E \)). The isometries such that \(\det(f) \neq 1 \) are called improper isometries, or improper unitary transformations, or flip transformations.

A very important example of unitary matrices is provided by Fourier matrices (up to a factor of \(\sqrt{n} \)), matrices that arise in the various versions of the discrete Fourier transform. For more on this topic, see the problems, and Strang [50, 52].

Now that we have the definition of a unitary matrix, we can explain how the Gram–Schmidt orthonormalization procedure immediately yields the QR-decomposition for matrices.

Proposition 12.13. Given any \(n \times n \) complex matrix \(A \), if \(A \) is invertible, then there is a unitary matrix \(Q \) and an upper triangular matrix \(R \) with positive diagonal entries such that \(A = QR \).

The proof is absolutely the same as in the real case!

We have the following version of the Hadamard inequality for complex matrices. The proof is essentially the same as in the Euclidean case but it uses Proposition 12.13 instead of Proposition 10.13.

Proposition 12.14. (Hadamard) For any complex \(n \times n \) matrix \(A = (a_{ij}) \), we have
\[| \det(A) | \leq \prod_{i=1}^{n} \left(\sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2} \quad \text{and} \quad | \det(A) | \leq \prod_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij}|^2 \right)^{1/2}. \]
Moreover, equality holds iff either \(A \) has a zero column in the left inequality or a zero row in the right inequality, or \(A \) is unitary.
We also have the following version of Proposition 10.15 for Hermitian matrices. The proof of Proposition 10.15 goes through because the Cholesky decomposition for a Hermitian positive definite matrix holds in the form \(A = B^*B \), where \(B \) is upper triangular with positive diagonal entries. The details are left to the reader.

Proposition 12.15. (Hadamard) For any complex \(n \times n \) matrix \(A = (a_{ij}) \), if \(A \) is Hermitian positive semidefinite, then we have

\[
\det(A) \leq \prod_{i=1}^{n} a_{ii}.
\]

Moreover, if \(A \) is positive definite, then equality holds iff \(A \) is a diagonal matrix.

12.5 Orthogonal Projections and Involution

In this section, we assume that the field \(K \) is not a field of characteristic 2. Recall that a linear map \(f : E \to E \) is an involution iff \(f^2 = \text{id} \), and is idempotent iff \(f^2 = f \). We know from Proposition 4.5 that if \(f \) is idempotent, then

\[
E = \text{Im}(f) \oplus \text{Ker}(f),
\]

and that the restriction of \(f \) to its image is the identity. For this reason, a linear involution is called a projection. The connection between involutions and projections is given by the following simple proposition.

Proposition 12.16. For any linear map \(f : E \to E \), we have \(f^2 = \text{id} \) iff \(\frac{1}{2}(\text{id} - f) \) is a projection iff \(\frac{1}{2}(\text{id} + f) \) is a projection; in this case, \(f \) is equal to the difference of the two projections \(\frac{1}{2}(\text{id} + f) \) and \(\frac{1}{2}(\text{id} - f) \).

Proof. We have

\[
\left(\frac{1}{2}(\text{id} - f) \right)^2 = \frac{1}{4}(\text{id} - 2f + f^2)
\]

so

\[
\left(\frac{1}{2}(\text{id} - f) \right)^2 = \frac{1}{2}(\text{id} - f) \quad \text{iff} \quad f^2 = \text{id}.
\]

We also have

\[
\left(\frac{1}{2}(\text{id} + f) \right)^2 = \frac{1}{4}(\text{id} + 2f + f^2),
\]

so

\[
\left(\frac{1}{2}(\text{id} + f) \right)^2 = \frac{1}{2}(\text{id} + f) \quad \text{iff} \quad f^2 = \text{id}.
\]

Obviously, \(f = \frac{1}{2}(\text{id} + f) - \frac{1}{2}(\text{id} - f) \).
Let $U^+ = \text{Ker} \left(\frac{1}{2}(\text{id} - f) \right)$ and let $U^- = \text{Im} \left(\frac{1}{2}(\text{id} - f) \right)$. If $f^2 = \text{id}$, then
\[(\text{id} + f) \circ (\text{id} - f) = \text{id} - f^2 = \text{id} - \text{id} = 0,
\]
which implies that
\[\text{Im} \left(\frac{1}{2}(\text{id} + f) \right) \subseteq \text{Ker} \left(\frac{1}{2}(\text{id} - f) \right).
\]
Conversely, if $u \in \text{Ker} \left(\frac{1}{2}(\text{id} - f) \right)$, then $f(u) = u$, so
\[\frac{1}{2}(\text{id} + f)(u) = \frac{1}{2}(u + u) = u,
\]
and thus
\[\text{Ker} \left(\frac{1}{2}(\text{id} - f) \right) \subseteq \text{Im} \left(\frac{1}{2}(\text{id} + f) \right).
\]
Therefore,
\[U^+ = \text{Ker} \left(\frac{1}{2}(\text{id} - f) \right) = \text{Im} \left(\frac{1}{2}(\text{id} + f) \right),
\]
and so, $f(u) = u$ on U^+ and $f(u) = -u$ on U^-. The involutions of E that are unitary transformations are characterized as follows.

Proposition 12.17. Let $f \in \text{GL}(E)$ be an involution. The following properties are equivalent:

(a) The map f is unitary; that is, $f \in \text{U}(E)$.

(b) The subspaces $U^- = \text{Im}(\frac{1}{2}(\text{id} - f))$ and $U^+ = \text{Im}(\frac{1}{2}(\text{id} + f))$ are orthogonal.

Furthermore, if E is finite-dimensional, then (a) and (b) are equivalent to

(c) The map is self-adjoint; that is, $f = f^*$.

Proof. If f is unitary, then from $\langle f(u), f(v) \rangle = \langle u, v \rangle$ for all $u, v \in E$, we see that if $u \in U^+$ and $v \in U^-$, we get
\[\langle u, v \rangle = \langle f(u), f(v) \rangle = \langle u, -v \rangle = -\langle u, v \rangle,
\]
so $2\langle u, v \rangle = 0$, which implies $\langle u, v \rangle = 0$, that is, U^+ and U^- are orthogonal. Thus, (a) implies (b).

Conversely, if (b) holds, since $f(u) = u$ on U^+ and $f(u) = -u$ on U^-, we see that $\langle f(u), f(v) \rangle = \langle u, v \rangle$ if $u, v \in U^+$ or if $u, v \in U^-$. Since $E = U^+ \oplus U^-$ and since U^+ and U^- are orthogonal, we also have $\langle f(u), f(v) \rangle = \langle u, v \rangle$ for all $u, v \in E$, and (b) implies (a).

If E is finite-dimensional, the adjoint f^* of f exists, and we know that $f^{-1} = f^*$. Since f is an involution, $f^2 = \text{id}$, which implies that $f^* = f^{-1} = f$. □
A unitary involution is the identity on $U^+ = \text{Im}(\frac{1}{2} (\text{id} + f))$, and $f(v) = -v$ for all $v \in U^- = \text{Im}(\frac{1}{2} (\text{id} - f))$. Furthermore, E is an orthogonal direct sum $E = U^+ \oplus U^-$. We say that f is an orthogonal reflection about U^+. In the special case where U^+ is a hyperplane, we say that f is a hyperplane reflection. We already studied hyperplane reflections in the Euclidean case; see Chapter 11.

If $f : E \to E$ is a projection ($f^2 = f$), then

$$(\text{id} - 2f)^2 = \text{id} - 4f + 4f^2 = \text{id} - 4f + 4f = \text{id},$$

so $\text{id} - 2f$ is an involution. As a consequence, we get the following result.

Proposition 12.18. If $f : E \to E$ is a projection ($f^2 = f$), then $\text{Ker}(f)$ and $\text{Im}(f)$ are orthogonal iff $f^* = f$.

Proof. Apply Proposition 12.17 to $g = \text{id} - 2f$. Since $\text{id} - g = 2f$ we have

$$U^+ = \text{Ker} \left(\frac{1}{2} (\text{id} - g) \right) = \text{Ker}(f)$$

and

$$U^- = \text{Im} \left(\frac{1}{2} (\text{id} - g) \right) = \text{Im}(f),$$

which proves the proposition. \qed

A projection such that $f = f^*$ is called an orthogonal projection.

If (a_1, \ldots, a_k) are k linearly independent vectors in \mathbb{R}^n, let us determine the matrix P of the orthogonal projection onto the subspace of \mathbb{R}^n spanned by (a_1, \ldots, a_k). Let A be the $n \times k$ matrix whose jth column consists of the coordinates of the vector a_j over the canonical basis (e_1, \ldots, e_n).

Any vector in the subspace (a_1, \ldots, a_k) is a linear combination of the form Ax, for some $x \in \mathbb{R}^k$. Given any $y \in \mathbb{R}^n$, the orthogonal projection $Py = Ax$ of y onto the subspace spanned by (a_1, \ldots, a_k) is the vector Ax such that $y - Ax$ is orthogonal to the subspace spanned by (a_1, \ldots, a_k) (prove it). This means that $y - Ax$ is orthogonal to every a_j, which is expressed by

$$A^T(y - Ax) = 0;$$

that is,

$$A^T Ax = A^T y.$$

The matrix $A^T A$ is invertible because A has full rank k, thus we get

$$x = (A^T A)^{-1} A^T y,$$

and so

$$Py = Ax = A(A^T A)^{-1} A^T y.$$
Therefore, the matrix P of the projection onto the subspace spanned by (a_1, \ldots, a_k) is given by
\[P = A(A^\top A)^{-1}A^\top. \]
The reader should check that $P^2 = P$ and $P^\top = P$.

12.6 Dual Norms

In the remark following the proof of Proposition 7.9, we explained that if $(E, \| \cdot \|)$ and $(F, \| \cdot \|)$ are two normed vector spaces and if we let $\mathcal{L}(E;F)$ denote the set of all continuous (equivalently, bounded) linear maps from E to F, then, we can define the operator norm (or subordinate norm) $\| \cdot \|$ on $\mathcal{L}(E;F)$ as follows: for every $f \in \mathcal{L}(E;F)$,
\[\|f\| = \sup_{x \in E, x \neq 0} \frac{\|f(x)\|}{\|x\|} = \sup_{x \in E, \|x\|=1} \|f(x)\|. \]

In particular, if $F = \mathbb{C}$, then $\mathcal{L}(E;F) = E'$ is the dual space of E, and we get the operator norm denoted by $\| \cdot \|_*$ given by
\[\|f\|_* = \sup_{\|x\|=1} |f(x)|. \]

The norm $\| \cdot \|_*$ is called the dual norm of $\| \cdot \|$ on E'.

Let us now assume that E is a finite-dimensional Hermitian space, in which case $E' = E^*$. Theorem 12.5 implies that for every linear form $f \in E^*$, there is a unique vector $y \in E$ so that
\[f(x) = \langle x, y \rangle, \]
for all $x \in E$, and so we can write
\[\|f\|_* = \sup_{\|x\|=1} |\langle x, y \rangle|. \]

The above suggests defining a norm $\| \cdot \|^D$ on E.

Definition 12.8. If E is a finite-dimensional Hermitian space and $\| \cdot \|$ is any norm on E, for any $y \in E$ we let
\[\|y\|^D = \sup_{\|x\|=1} |\langle x, y \rangle|, \]
be the dual norm of $\| \cdot \|$ (on E). If E is a real Euclidean space, then the dual norm is defined by
\[\|y\|^D = \sup_{\|x\|=1} \langle x, y \rangle \]
for all $y \in E$.
Beware that $\| \|$ is generally not the Hermitian norm associated with the Hermitian inner product. The dual norm shows up in convex programming; see Boyd and Vandenberghe [11], Chapters 2, 3, 6, 9.

The fact that $\| D \|$ is a norm follows from the fact that $\| \|_*$ is a norm and can also be checked directly. It is worth noting that the triangle inequality for $\| D \|$ comes "for free," in the sense that it holds for any function $p: E \to \mathbb{R}$. Indeed, if we define p^D by

$$p^D(x) = \sup_{p(z) = 1} |\langle z, x \rangle|,$$

then we have

$$p^D(x + y) = \sup_{p(z) = 1} |\langle z, x + y \rangle|$$

$$= \sup_{p(z) = 1} (|\langle z, x \rangle| + |\langle z, y \rangle|)$$

$$\leq \sup_{p(z) = 1} (|\langle z, x \rangle| + |\langle z, y \rangle|)$$

$$\leq \sup_{p(z) = 1} |\langle z, x \rangle| + \sup_{p(z) = 1} |\langle z, y \rangle|$$

$$= p^D(x) + p^D(y).$$

If $p: E \to \mathbb{R}$ is a function such that

1. $p(x) \geq 0$ for all $x \in E$, and $p(x) = 0$ iff $x = 0$;
2. $p(\lambda x) = |\lambda| p(x)$, for all $x \in E$ and all $\lambda \in \mathbb{C}$;
3. p is continuous, in the sense that for some basis (e_1, \ldots, e_n) of E, the function

$$(x_1, \ldots, x_n) \mapsto p(x_1 e_1 + \cdots + x_n e_n)$$

from \mathbb{C}^n to \mathbb{R} is continuous;

then we say that p is a pre-norm. Obviously, every norm is a pre-norm, but a pre-norm may not satisfy the triangle inequality. However, we just showed that the dual norm of any pre-norm is actually a norm.

Proposition 12.19. For all $y \in E$, we have

$$\| y \|^D = \sup_{x \in E, \| x \| = 1} |\langle x, y \rangle| = \sup_{x \in E, \| x \| = 1} \Re \langle x, y \rangle.$$

Proof. Since E is finite dimensional, the unit sphere $S^{n-1} = \{ x \in E \mid \| x \| = 1 \}$ is compact, so there is some $x_0 \in S^{n-1}$ such that

$$\| y \|^D = |\langle x_0, y \rangle|.$$
If \(\langle x_0, y \rangle = \rho e^{i\theta} \), with \(\rho \geq 0 \), then
\[
|\langle e^{-i\theta} x_0, y \rangle| = |e^{-i\theta} \langle x_0, y \rangle| = |e^{-i\theta} \rho e^{i\theta}| = \rho,
\]
so
\[
\|y\|^D = \rho = \langle e^{-i\theta} x_0, y \rangle,
\]
with \(\|e^{-i\theta} x_0\| = \|x_0\| = 1 \). On the other hand,
\[
\Re \langle x, y \rangle \leq |\langle x, y \rangle|,
\]
so by \((*)\) we get
\[
\|y\|^D = \sup_{\|x\| = 1} |\langle x, y \rangle| = \sup_{\|x\| = 1} \Re \langle x, y \rangle,
\]
as claimed. \(\square\)

Proposition 12.20. For all \(x, y \in E \), we have
\[
|\langle x, y \rangle| \leq \|x\| \|y\|^D
\]
\[
|\langle x, y \rangle| \leq \|x\|^D \|y\|.
\]

Proof. If \(x = 0 \), then \(\langle x, y \rangle = 0 \) and these inequalities are trivial. If \(x \neq 0 \), since \(\|x/\|x\|\| = 1 \), by definition of \(\|y\|^D \), we have
\[
|\langle x/\|x\|, y \rangle| \leq \sup_{\|z\| = 1} |\langle z, y \rangle| = \|y\|^D,
\]
which yields
\[
|\langle x, y \rangle| \leq \|x\| \|y\|^D.
\]
The second inequality holds because \(|\langle x, y \rangle| = |\langle y, x \rangle| \).
\(\square\)

It is not hard to show that for all \(y \in \mathbb{C}^n \),
\[
\|y\|^1_p = \|y\|_\infty
\]
\[
\|y\|_\infty^D = \|y\|_1
\]
\[
\|y\|_2^D = \|y\|_2.
\]
Thus, the Euclidean norm is autodual. More generally, the following proposition holds.

Proposition 12.21. If \(p, q \geq 1 \) and \(1/p + 1/q = 1 \), then for all \(y \in \mathbb{C}^n \), we have
\[
\|y\|^p = \|y\|_q.
\]
CHAPTER 12. HERMITIAN SPACES

Proof. By Hölder’s inequality (Corollary 7.2), for all \(x, y \in \mathbb{C}^n \), we have

\[
|\langle x, y \rangle| \leq \|x\|_p \|y\|_q,
\]

so

\[
\|y\|_p^D = \sup_{\|x\|_p=1} |\langle x, y \rangle| \leq \|y\|_q.
\]

For the converse, we consider the cases \(p = 1 \), \(1 < p < +\infty \), and \(p = +\infty \). First, assume \(p = 1 \). The result is obvious for \(y = 0 \), so assume \(y \neq 0 \). Given \(y \), if we pick \(x_j = 1 \) for some index \(j \) such that \(\|y\|_\infty = \max_{1 \leq i \leq n} |y_i| = |y_j| \), and \(x_k = 0 \) for \(k \neq j \), then

\[
|\langle x, y \rangle| = |y_j| = \|y\|_\infty, \quad \text{so} \quad \|y\|_1^D = \|y\|_\infty.
\]

Now we turn to the case \(1 < p < +\infty \). Then we also have \(1 < q < +\infty \), and the equation \(\frac{1}{p} + \frac{1}{q} = 1 \) is equivalent to \(pq = p + q \), that is, \(p(q-1) = q \). Pick \(z_j = y_j |y_j|^{q-2} \) for \(j = 1, \ldots, n \), so that

\[
\|z\|_p = \left(\sum_{j=1}^{n} |z_j|^p \right)^{1/p} = \left(\sum_{j=1}^{n} |y_j|^{(q-1)p} \right)^{1/p} = \left(\sum_{j=1}^{n} |y_j|^q \right)^{1/p}.
\]

Then if \(x = z/\|z\|_p \), we have

\[
|\langle x, y \rangle| = \frac{\left| \sum_{j=1}^{n} z_j y_j \right|}{\|z\|_p} = \frac{\left| \sum_{j=1}^{n} y_j y_j |y_j|^{q-2} \right|}{\|z\|_p} = \frac{\sum_{j=1}^{n} |y_j|^{q}}{\left(\sum_{j=1}^{n} |y_j|^q \right)^{1/p}} = \left(\sum_{j=1}^{n} |y_j|^q \right)^{1/q} = \|y\|_q.
\]

Thus \(\|y\|_p^D = \|y\|_q \).

Finally, if \(p = \infty \), then pick \(x_j = y_j/|y_j| \) if \(y_j \neq 0 \), and \(x_j = 0 \) if \(y_j = 0 \). Then

\[
|\langle x, y \rangle| = \left| \sum_{y_j \neq 0} y_j \overline{y_j} / |y_j| \right| = \sum_{y_j \neq 0} |y_j| = \|y\|_1.
\]

Thus \(\|y\|_\infty^D = \|y\|_1 \). \hfill \square

We can show that the dual of the spectral norm is the trace norm (or nuclear norm) from Section 16.3. Recall from Proposition 7.9 that the spectral norm \(\|A\|_2 \) of a matrix \(A \) is the square root of the largest eigenvalue of \(A^*A \), that is, the largest singular value of \(A \).

Proposition 12.22. The dual of the spectral norm is given by

\[
\|A\|_2^D = \sigma_1 + \cdots + \sigma_r,
\]

where \(\sigma_1 > \cdots > \sigma_r > 0 \) are the singular values of \(A \in M_n(\mathbb{C}) \) (which has rank \(r \)).
Proof. In this case, the inner product on $M_n(\mathbb{C})$ is the Frobenius inner product $\langle A, B \rangle = \text{tr}(B^*A)$, and the dual norm of the spectral norm is given by

$$\|A\|^D_2 = \sup\{\|\text{tr}(A^*B)\| : \|B\|_2 = 1\}.$$

If we factor A using an SVD as $A = V\Sigma U^*$, where U and V are unitary and Σ is a diagonal matrix whose r nonzero entries are the singular values $\sigma_1 > \cdots > \sigma_r > 0$, where r is the rank of A, then

$$|\text{tr}(A^*B)| = |\text{tr}(U\Sigma V^*B)| = |\text{tr}(\Sigma V^*BU)|,$$

so if we pick $B = VU^*$, a unitary matrix such that $\|B\|_2 = 1$, we get

$$|\text{tr}(A^*B)| = \text{tr}(\Sigma) = \sigma_1 + \cdots + \sigma_r,$$

and thus

$$\|A\|^D_2 \geq \sigma_1 + \cdots + \sigma_r.$$

Since $\|B\|_2 = 1$ and U and V are unitary, by Proposition 7.9 we have $\|V^*BU\|_2 = \|B\|_2 = 1$. If $Z = V^*BU$, by definition of the operator norm

$$1 = \|Z\|_2 = \sup\{\|Zx\|_2 : \|x\|_2 = 1\},$$

so by picking x to be the canonical vector e_j, we see that $\|Z^j\|_2 \leq 1$ where Z^j is the jth column of Z, so $|z_{jj}| \leq 1$, and since

$$|\text{tr}(\Sigma V^*BU)| = |\text{tr}(\Sigma Z)| = \left| \sum_{j=1}^r \sigma_j z_{jj} \right| \leq \sum_{j=1}^r \sigma_j |z_{jj}| \leq \sum_{j=1}^r \sigma_j,$$

and we conclude that

$$|\text{tr}(\Sigma V^*BU)| \leq \sum_{j=1}^r \sigma_j.$$

The above implies that

$$\|A\|^D_2 \leq \sigma_1 + \cdots + \sigma_r,$$

and since we also have $\|A\|^D_2 \geq \sigma_1 + \cdots + \sigma_r$, we conclude that

$$\|A\|^D_2 = \sigma_1 + \cdots + \sigma_r,$$

proving our proposition. \qed

We close this section by stating the following duality theorem.

Theorem 12.23. If E is a finite-dimensional Hermitian space, then for any norm $\|\|$ on E, we have

$$\|y\|^{DD} = \|y\|$$

for all $y \in E$.
Proof. By Proposition 12.20, we have

\[|\langle x, y \rangle| \leq \|x\|^D \|y\|, \]

so we get

\[\|y\|^D = \sup_{\|x\|^D = 1} |\langle x, y \rangle| \leq \|y\|, \text{ for all } y \in E. \]

It remains to prove that

\[\|y\| \leq \|y\|^D, \text{ for all } y \in E. \]

Proofs of this fact can be found in Horn and Johnson [28] (Section 5.5), and in Serre [46] (Chapter 7). The proof makes use of the fact that a nonempty, closed, convex set has a supporting hyperplane through each of its boundary points, a result known as Minkowski’s lemma. This result is a consequence of the Hahn–Banach theorem; see Gallier [22]. We give the proof in the case where \(E \) is a real Euclidean space. Some minor modifications have to be made when dealing with complex vector spaces and are left as an exercise.

Since the unit ball \(B = \{ z \in E \mid \| z \| \leq 1 \} \) is closed and convex, the Minkowski lemma says for every \(x \) such that \(\| x \| = 1 \), there is an affine map \(g \), of the form

\[g(z) = \langle z, w \rangle - \langle x, w \rangle \]

with \(\|w\| = 1 \), such that \(g(x) = 0 \) and \(g(z) \leq 0 \) for all \(z \) such that \(\|z\| \leq 1 \). Then, it is clear that

\[\sup_{\|z\|=1} \langle z, w \rangle = \langle x, w \rangle, \]

and so

\[\|w\|^D = \langle x, w \rangle. \]

It follows that

\[\|x\|^D \geq \frac{\langle w/\|w\|^D, x \rangle}{\|w\|^D} = \frac{\langle x, w \rangle}{\|w\|^D} = 1 = \|x\| \]

for all \(x \) such that \(\|x\| = 1 \). By homogeneity, this is true for all \(y \in E \), which completes the proof in the real case. When \(E \) is a complex vector space, we have to view the unit ball \(B \) as a closed convex set in \(\mathbb{R}^{2n} \) and we use the fact that there is real affine map of the form

\[g(z) = \Re\langle z, w \rangle - \Re\langle x, w \rangle \]

such that \(g(x) = 0 \) and \(g(z) \leq 0 \) for all \(z \) with \(\|z\| = 1 \), so that \(\|w\|^D = \Re\langle x, w \rangle. \)

More details on dual norms and unitarily invariant norms can be found in Horn and Johnson [28] (Chapters 5 and 7).
12.7 Summary

The main concepts and results of this chapter are listed below:

- *Semilinear maps.*
- *Sesquilinear forms; Hermitian forms.*
- *Quadratic form* associated with a sesquilinear form.
- *Polarization identities.*
- *Positive and positive definite* Hermitian forms; *pre-Hilbert spaces, Hermitian spaces.*
- *Gram matrix* associated with a Hermitian product.
- The *Cauchy–Schwarz inequality* and the *Minkowski inequality.*
- *Hermitian inner product, Hermitian norm.*
- The *parallelogram law.*
- The musical isomorphisms $\flat: E \to E^*$ and $\flat^*: E^* \to \overline{E}$; Theorem 12.5 ($E$ is finite-dimensional).
- The *adjoint* of a linear map (with respect to a Hermitian inner product).
- Existence of orthonormal bases in a Hermitian space (Proposition 12.8).
- *Gram–Schmidt orthonormalization procedure.*
- *Linear isometries (unitary transformations).*
- The *unitary group, unitary matrices.*
- The *unitary group* $U(n)$;
- The *special unitary group* $SU(n)$.
- *QR-Decomposition* for invertible matrices.
- The *Hadamard inequality* for complex matrices.
- The *Hadamard inequality* for Hermitian positive semidefinite matrices.
- Orthogonal projections and involutions; orthogonal reflections.
- Dual norms.
Chapter 13

Eigenvectors and Eigenvalues

13.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let $f: E \rightarrow E$ be any linear map. If, by luck, there is a basis (e_1, \ldots, e_n) of E with respect to which f is represented by a diagonal matrix D:

$$D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_n
\end{pmatrix},$$

then the action of f on E is very simple; in every “direction” e_i, we have

$$f(e_i) = \lambda_i e_i.$$

We can think of f as a transformation that stretches or shrinks space along the direction e_1, \ldots, e_n (at least if E is a real vector space). In terms of matrices, the above property translates into the fact that there is an invertible matrix P and a diagonal matrix D such that a matrix A can be factored as

$$A = PDP^{-1}.$$

When this happens, we say that f (or A) is diagonalizable, the λ_is are called the eigenvalues of f, and the e_is are eigenvectors of f. For example, we will see that every symmetric matrix can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the matrix

$$A_1 = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}$$

can’t be diagonalized. Sometimes, a matrix fails to be diagonalizable because its eigenvalues do not belong to the field of coefficients, such as

$$A_2 = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix},$$
whose eigenvalues are $\pm i$. This is not a serious problem because A_2 can be diagonalized over the complex numbers. However, A_1 is a “fatal” case! Indeed, its eigenvalues are both 1 and the problem is that A_1 does not have enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is represented by an upper triangular matrix. In this case we say that f can be triangularized, or that f is triangulable. As we will see in Section 13.2, if all the eigenvalues of f belong to the field of coefficients K, then f can be triangularized. In particular, this is the case if $K = \mathbb{C}$.

Now, an alternative to triangularization is to consider the representation of f with respect to two bases (e_1, \ldots, e_n) and (f_1, \ldots, f_n), rather than a single basis. In this case, if $K = \mathbb{R}$ or $K = \mathbb{C}$, it turns out that we can even pick these bases to be orthonormal, and we get a diagonal matrix Σ with nonnegative entries, such that

$$f(e_i) = \sigma_i f_i, \quad 1 \leq i \leq n.$$

The nonzero σ_is are the singular values of f, and the corresponding representation is the singular value decomposition, or SVD. The SVD plays a very important role in applications, and will be considered in detail later.

In this section, we focus on the possibility of diagonalizing a linear map, and we introduce the relevant concepts to do so. Given a vector space E over a field K, let id denote the identity map on E.

The notion of eigenvalue of a linear map $f: E \to E$ defined on an infinite-dimensional space E is quite subtle because it cannot be defined in terms of eigenvectors as in the finite-dimensional case. The problem is that the map $\lambda \text{id} - f$ (with $\lambda \in \mathbb{C}$) could be noninvertible (because it is not surjective) and yet injective. In finite dimension this cannot happen, so until further notice we assume that E is of finite dimension n.

Definition 13.1. Given any vector space E of finite dimension n and any linear map $f: E \to E$, a scalar $\lambda \in K$ is called an eigenvalue, or proper value, or characteristic value of f if there is some nonzero vector $u \in E$ such that

$$f(u) = \lambda u.$$

Equivalently, λ is an eigenvalue of f if $\text{Ker} (\lambda \text{id} - f)$ is nontrivial (i.e., $\text{Ker} (\lambda \text{id} - f) \neq \{0\}$) iff $\lambda \text{id} - f$ is not invertible (this is where the fact that E is finite-dimensional is used; a linear map from E to itself is injective iff it is invertible). A vector $u \in E$ is called an eigenvector, or proper vector, or characteristic vector of f if $u \neq 0$ and if there is some $\lambda \in K$ such that

$$f(u) = \lambda u;$$

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with λ. Given any eigenvalue $\lambda \in K$, the nontrivial subspace $\text{Ker} (\lambda \text{id} - f)$ consists of all the eigenvectors associated with λ together with the zero vector; this subspace is denoted by $E_{\lambda}(f)$, or $E(\lambda, f)$, or even by E_{λ}, and is called the eigenspace associated with λ, or proper subspace associated with λ.
Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct eigenvalues correspond to disjoint sets of eigenvectors.

Remark: As we emphasized in the remark following Definition 7.4, we require an eigenvector to be nonzero. This requirement seems to have more benefits than inconveniences, even though it may considered somewhat inelegant because the set of all eigenvectors associated with an eigenvalue is not a subspace since the zero vector is excluded.

The next proposition shows that the eigenvalues of a linear map \(f : E \to E \) are the roots of a polynomial associated with \(f \).

Proposition 13.1. Let \(E \) be any vector space of finite dimension \(n \) and let \(f \) be any linear map \(f : E \to E \). The eigenvalues of \(f \) are the roots (in \(K \)) of the polynomial

\[
\det(\lambda \text{id} - f).
\]

Proof. A scalar \(\lambda \in K \) is an eigenvalue of \(f \) iff there is some vector \(u \neq 0 \) in \(E \) such that

\[
f(u) = \lambda u
\]

iff

\[(\lambda \text{id} - f)(u) = 0 \]

iff \((\lambda \text{id} - f)\) is not invertible iff, by Proposition 5.15,

\[
\det(\lambda \text{id} - f) = 0. \quad \square
\]

In view of the importance of the polynomial \(\det(\lambda \text{id} - f) \), we have the following definition.

Definition 13.2. Given any vector space \(E \) of dimension \(n \), for any linear map \(f : E \to E \), the polynomial \(P_f(X) = \chi_f(X) = \det(X \text{id} - f) \) is called the *characteristic polynomial* of \(f \). For any square matrix \(A \), the polynomial \(P_A(X) = \chi_A(X) = \det(XI - A) \) is called the *characteristic polynomial* of \(A \).

Note that we already encountered the characteristic polynomial in Section 5.7; see Definition 5.11.

Given any basis \((e_1, \ldots, e_n) \), if \(A = M(f) \) is the matrix of \(f \) w.r.t. \((e_1, \ldots, e_n) \), we can compute the characteristic polynomial \(\chi_f(X) = \det(X \text{id} - f) \) of \(f \) by expanding the following determinant:

\[
\det(XI - A) = \begin{vmatrix}
X - a_{11} & -a_{12} & \ldots & -a_{1n} \\
-a_{21} & X - a_{22} & \ldots & -a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n1} & -a_{n2} & \ldots & X - a_{nn}
\end{vmatrix}
\]
If we expand this determinant, we find that

\[\chi_A(X) = \det(XI - A) = X^n - (a_{11} + \cdots + a_{nn})X^{n-1} + \cdots + (-1)^n \det(A). \]

The sum \(\text{tr}(A) = a_{11} + \cdots + a_{nn} \) of the diagonal elements of \(A \) is called the \textit{trace} of \(A \). Since we proved in Section 5.7 that the characteristic polynomial only depends on the linear map \(f \), the above shows that \(\text{tr}(A) \) has the same value for all matrices \(A \) representing \(f \). Thus, the \textit{trace of a linear map} is well-defined; we have \(\text{tr}(f) = \text{tr}(A) \) for any matrix \(A \) representing \(f \).

\textbf{Remark:} The characteristic polynomial of a linear map is sometimes defined as \(\det(f - X \text{id}) \). Since \(\det(f - X \text{id}) = (-1)^n \det(X \text{id} - f) \), this makes essentially no difference but the version \(\det(X \text{id} - f) \) has the small advantage that the coefficient of \(X^n \) is +1.

If we write

\[\chi_A(X) = \det(XI - A) = X^n - \tau_1(A)X^{n-1} + \cdots + (-1)^k\tau_k(A)X^{n-k} + \cdots + (-1)^n\tau_n(A), \]

then we just proved that

\[\tau_1(A) = \text{tr}(A) \quad \text{and} \quad \tau_n(A) = \det(A). \]

It is also possible to express \(\tau_k(A) \) in terms of determinants of certain submatrices of \(A \). For any nonempty subset, \(I \subseteq \{1, \ldots, n\} \), say \(I = \{i_1 < \ldots < i_k\} \), let \(A_{I,I} \) be the \(k \times k \) submatrix of \(A \) whose \(j \)th column consists of the elements \(a_{i_h,j} \), where \(h = 1, \ldots, k \). Equivalently, \(A_{I,I} \) is the matrix obtained from \(A \) by first selecting the columns whose indices belong to \(I \), and then the rows whose indices also belong to \(I \). Then, it can be shown that

\[\tau_k(A) = \sum_{\substack{I \subseteq \{1, \ldots, n\} \\ |I| = k}} \det(A_{I,I}). \]

If all the roots, \(\lambda_1, \ldots, \lambda_n \), of the polynomial \(\det(XI - A) \) belong to the field \(K \), then we can write

\[\chi_A(X) = \det(XI - A) = (X - \lambda_1) \cdots (X - \lambda_n), \]

where some of the \(\lambda_i \)s may appear more than once. Consequently,

\[\chi_A(X) = \det(XI - A) = X^n - \sigma_1(\lambda)X^{n-1} + \cdots + (-1)^k\sigma_k(\lambda)X^{n-k} + \cdots + (-1)^n\sigma_n(\lambda), \]

where

\[\sigma_k(\lambda) = \sum_{\substack{I \subseteq \{1, \ldots, n\} \\ |I| = k}} \prod_{i \in I} \lambda_i, \]
the \(k \)th elementary symmetric polynomial (or function) of the \(\lambda_i \)'s, where \(\lambda = (\lambda_1, \ldots, \lambda_n) \). The elementary symmetric polynomial \(\sigma_k(\lambda) \) is often denoted \(E_k(\lambda) \), but this notation may be confusing in the context of linear algebra. For \(n = 5 \), the elementary symmetric polynomials are listed below:

\[
\begin{align*}
\sigma_0(\lambda) &= 1 \\
\sigma_1(\lambda) &= \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \\
\sigma_2(\lambda) &= \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_1\lambda_4 + \lambda_1\lambda_5 + \lambda_2\lambda_4 + \lambda_2\lambda_5 \\
&
\quad + \lambda_3\lambda_4 + \lambda_3\lambda_5 + \lambda_4\lambda_5 \\
\sigma_3(\lambda) &= \lambda_3\lambda_4\lambda_5 + \lambda_2\lambda_3\lambda_5 + \lambda_2\lambda_3\lambda_4 + \lambda_1\lambda_4\lambda_5 \\
&
\quad + \lambda_1\lambda_3\lambda_4 + \lambda_1\lambda_2\lambda_5 + \lambda_1\lambda_2\lambda_4 + \lambda_1\lambda_2\lambda_3 \\
\sigma_4(\lambda) &= \lambda_1\lambda_2\lambda_3\lambda_4 + \lambda_1\lambda_2\lambda_3\lambda_5 + \lambda_1\lambda_2\lambda_4\lambda_5 + \lambda_1\lambda_3\lambda_4\lambda_5 + \lambda_2\lambda_3\lambda_4\lambda_5 \\
\sigma_5(\lambda) &= \lambda_1\lambda_2\lambda_3\lambda_4\lambda_5.
\end{align*}
\]

Since

\[
\chi_A(X) = X^n - \tau_1(A)X^{n-1} + \cdots + (-1)^k\tau_k(A)X^{n-k} + \cdots + (-1)^n\tau_n(A)
\]

\[
= X^n - \sigma_1(\lambda)X^{n-1} + \cdots + (-1)^k\sigma_k(\lambda)X^{n-k} + \cdots + (-1)^n\sigma_n(\lambda),
\]

we have

\[
\sigma_k(\lambda) = \tau_k(A), \quad k = 1, \ldots, n,
\]

and in particular, the product of the eigenvalues of \(f \) is equal to \(\det(A) = \det(f) \), and the sum of the eigenvalues of \(f \) is equal to the trace \(\text{tr}(A) = \text{tr}(f) \), of \(f \); for the record,

\[
\text{tr}(f) = \lambda_1 + \cdots + \lambda_n
\]

\[
\det(f) = \lambda_1 \cdots \lambda_n,
\]

where \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(f \) (and \(A \)), where some of the \(\lambda_i \)'s may appear more than once. In particular, \(f \) is not invertible iff it admits 0 has an eigenvalue.

Remark: Depending on the field \(K \), the characteristic polynomial \(\chi_A(X) = \det(XI - A) \) may or may not have roots in \(K \). This motivates considering *algebraically closed fields*, which are fields \(K \) such that every polynomial with coefficients in \(K \) has all its root in \(K \). For example, over \(K = \mathbb{R} \), not every polynomial has real roots. If we consider the matrix

\[
A = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix},
\]

then the characteristic polynomial \(\det(XI - A) \) has no real roots unless \(\theta = k\pi \). However, over the field \(\mathbb{C} \) of complex numbers, every polynomial has roots. For example, the matrix above has the roots \(\cos \theta \pm i\sin \theta = e^{\pm i\theta} \).
It is possible to show that every linear map f over a complex vector space E must have some (complex) eigenvalue without having recourse to determinants (and the characteristic polynomial). Let $n = \dim(E)$, pick any nonzero vector $u \in E$, and consider the sequence

$$u, f(u), f^2(u), \ldots, f^n(u).$$

Since the above sequence has $n + 1$ vectors and E has dimension n, these vectors must be linearly dependent, so there are some complex numbers c_0, \ldots, c_m, not all zero, such that

$$c_0 f^m(u) + c_1 f^{m-1}(u) + \cdots + c_m u = 0,$$

where $m \leq n$ is the largest integer such that the coefficient of $f^m(u)$ is nonzero (m must exits since we have a nontrivial linear dependency). Now, because the field \mathbb{C} is algebraically closed, the polynomial

$$c_0 X^m + c_1 X^{m-1} + \cdots + c_m$$

can be written as a product of linear factors as

$$c_0 X^m + c_1 X^{m-1} + \cdots + c_m = c_0 (X - \lambda_1) \cdots (X - \lambda_m)$$

for some complex numbers $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$, not necessarily distinct. But then, since $c_0 \neq 0$,

$$c_0 f^m(u) + c_1 f^{m-1}(u) + \cdots + c_m u = 0$$

is equivalent to

$$(f - \lambda_1 \text{id}) \circ \cdots \circ (f - \lambda_m \text{id})(u) = 0.$$

If all the linear maps $f - \lambda_i \text{id}$ were injective, then $(f - \lambda_1 \text{id}) \circ \cdots \circ (f - \lambda_m \text{id})$ would be injective, contradicting the fact that $u \neq 0$. Therefore, some linear map $f - \lambda_i \text{id}$ must have a nontrivial kernel, which means that there is some $v \neq 0$ so that

$$f(v) = \lambda_i v,$$

that is, λ_i is some eigenvalue of f and v is some eigenvector of f.

As nice as the above argument is, it does not provide a method for finding the eigenvalues of f, and even if we prefer avoiding determinants as a much as possible, we are forced to deal with the characteristic polynomial $\det(X \text{id} - f)$.

Definition 13.3. Let A be an $n \times n$ matrix over a field K. Assume that all the roots of the characteristic polynomial $\chi_A(X) = \det(XI - A)$ of A belong to K, which means that we can write

$$\det(XI - A) = (X - \lambda_1)^{k_1} \cdots (X - \lambda_m)^{k_m},$$

where $\lambda_1, \ldots, \lambda_m \in K$ are the distinct roots of $\det(XI - A)$ and $k_1 + \cdots + k_m = n$. The integer k_i is called the algebraic multiplicity of the eigenvalue λ_i, and the dimension of the eigenspace $E_{\lambda_i} = \text{Ker}(\lambda_i I - A)$ is called the geometric multiplicity of λ_i. We denote the algebraic multiplicity of λ_i by $\text{alg}(\lambda_i)$, and its geometric multiplicity by $\text{geo}(\lambda_i)$.
By definition, the sum of the algebraic multiplicities is equal to \(n \), but the sum of the geometric multiplicities can be strictly smaller.

Proposition 13.2. Let \(A \) be an \(n \times n \) matrix over a field \(K \) and assume that all the roots of the characteristic polynomial \(\chi_A(X) = \det(XI - A) \) of \(A \) belong to \(K \). For every eigenvalue \(\lambda_i \) of \(A \), the geometric multiplicity of \(\lambda_i \) is always less than or equal to its algebraic multiplicity, that is,

\[\text{geo}(\lambda_i) \leq \text{alg}(\lambda_i). \]

Proof. To see this, if \(n_i \) is the dimension of the eigenspace \(E_{\lambda_i} \) associated with the eigenvalue \(\lambda_i \), we can form a basis of \(K^n \) obtained by picking a basis of \(E_{\lambda_i} \) and completing this linearly independent family to a basis of \(K^n \). With respect to this new basis, our matrix is of the form

\[A' = \begin{pmatrix} \lambda_iI_{n_i} & B \\ 0 & D \end{pmatrix} \]

and a simple determinant calculation shows that

\[\det(XI - A) = \det(XI - A') = (X - \lambda_i)^{n_i} \det(XI_{n-n_i} - D). \]

Therefore, \((X - \lambda_i)^{n_i} \) divides the characteristic polynomial of \(A' \), and thus, the characteristic polynomial of \(A \). It follows that \(n_i \) is less than or equal to the algebraic multiplicity of \(\lambda_i \). \(\square \)

The following proposition shows an interesting property of eigenspaces.

Proposition 13.3. Let \(E \) be any vector space of finite dimension \(n \) and let \(f \) be any linear map. If \(u_1, \ldots, u_m \) are eigenvectors associated with pairwise distinct eigenvalues \(\lambda_1, \ldots, \lambda_m \), then the family \((u_1, \ldots, u_m) \) is linearly independent.

Proof. Assume that \((u_1, \ldots, u_m) \) is linearly dependent. Then, there exists \(\mu_1, \ldots, \mu_k \in K \) such that

\[\mu_1 u_{i_1} + \cdots + \mu_k u_{i_k} = 0, \]

where \(1 \leq k \leq m \), \(\mu_i \neq 0 \) for all \(i \), \(1 \leq i \leq k \), \(\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, m\} \), and no proper subfamily of \((u_{i_1}, \ldots, u_{i_k}) \) is linearly dependent (in other words, we consider a dependency relation with \(k \) minimal). Applying \(f \) to this dependency relation, we get

\[\mu_1 \lambda_{i_1} u_{i_1} + \cdots + \mu_k \lambda_{i_k} u_{i_k} = 0, \]

and if we multiply the original dependency relation by \(\lambda_{i_1} \) and subtract it from the above, we get

\[\mu_2 (\lambda_{i_2} - \lambda_{i_1}) u_{i_2} + \cdots + \mu_k (\lambda_{i_k} - \lambda_{i_1}) u_{i_k} = 0, \]

which is a nontrivial linear dependency among a proper subfamily of \((u_{i_1}, \ldots, u_{i_k}) \) since the \(\lambda_j \) are all distinct and the \(\mu_i \) are nonzero, a contradiction. \(\square \)
Thus, from Proposition 13.3, if $\lambda_1, \ldots, \lambda_m$ are all the pairwise distinct eigenvalues of f (where $m \leq n$), we have a direct sum

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$

of the eigenspaces E_{λ_i}. Unfortunately, it is not always the case that

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}.$$

When

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m},$$

we say that f is diagonalizable (and similarly for any matrix associated with f). Indeed, picking a basis in each E_{λ_i}, we obtain a matrix which is a diagonal matrix consisting of the eigenvalues, each λ_i occurring a number of times equal to the dimension of E_{λ_i}. This happens if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable. It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.

For a negative example, we leave as exercise to show that the matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace of 1 only has dimension 1. The matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

cannot be diagonalized either, because it has no real eigenvalues, unless $\theta = k\pi$. However, over the field of complex numbers, it can be diagonalized.

13.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The next best thing is to “triangularize,” which means to find a basis over which the matrix has zero entries below the main diagonal. Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n-1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n-1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n-1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1n-1} & a_{n-1n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix},$$

i.e., $a_{ij} = 0$ whenever $j < i$, $1 \leq i, j \leq n$.

Theorem 13.4. Given any finite dimensional vector space over a field K, for any linear map $f: E \to E$, there is a basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix (in $M_n(K)$) iff all the eigenvalues of f belong to K. Equivalently, for every $n \times n$ matrix $A \in M_n(K)$, there is an invertible matrix P and an upper triangular matrix T (both in $M_n(K)$) such that

$$A = PTP^{-1}$$

iff all the eigenvalues of A belong to K.

Proof. If there is a basis (u_1, \ldots, u_n) with respect to which f is represented by an upper triangular matrix T in $M_n(K)$, then since the eigenvalues of f are the diagonal entries of T, all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E. For $n = 1$ the result is obvious. If $n > 1$, since by assumption f has all its eigenvalue in K, pick some eigenvalue $\lambda_1 \in K$ of f, and let u_1 be some corresponding (nonzero) eigenvector. We can find $n - 1$ vectors (v_2, \ldots, v_n) such that (u_1, v_2, \ldots, v_n) is a basis of E, and let F be the subspace of dimension $n - 1$ spanned by (v_2, \ldots, v_n). In the basis $(u_1, v_2 \ldots, v_n)$, the matrix of f is of the form

$$U = \begin{pmatrix}
\lambda_1 & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nn}
\end{pmatrix},$$

since its first column contains the coordinates of $\lambda_1 u_1$ over the basis (u_1, v_2, \ldots, v_n). If we let $p: E \to F$ be the projection defined such that $p(u_1) = 0$ and $p(v_i) = v_i$ when $2 \leq i \leq n$, the linear map $g: F \to F$ defined as the restriction of $p \circ f$ to F is represented by the $(n - 1) \times (n - 1)$ matrix $V = (a_{ij})_{2 \leq i, j \leq n}$ over the basis (v_2, \ldots, v_n). We need to prove that all the eigenvalues of g belong to K. However, since the first column of U has a single nonzero entry, we get

$$\chi_U(X) = \det(XI - U) = (X - \lambda_1) \det(XI - V) = (X - \lambda_1)\chi_V(X),$$

where $\chi_U(X)$ is the characteristic polynomial of U and $\chi_V(X)$ is the characteristic polynomial of V. It follows that $\chi_V(X)$ divides $\chi_U(X)$, and since all the roots of $\chi_U(X)$ are in K, all the roots of $\chi_V(X)$ are also in K. Consequently, we can apply the induction hypothesis, and there is a basis (u_2, \ldots, u_n) of F such that g is represented by an upper triangular matrix $(b_{ij})_{1 \leq i, j \leq n-1}$. However,

$$E = Ku_1 \oplus F,$$

and thus (u_1, \ldots, u_n) is a basis for E. Since p is the projection from $E = Ku_1 \oplus F$ onto F and $g: F \to F$ is the restriction of $p \circ f$ to F, we have

$$f(u_1) = \lambda_1 u_1.$$
and

\[f(u_{i+1}) = a_{1,i}u_1 + \sum_{j=1}^{i} b_{ij}u_{j+1} \]

for some \(a_{1,i} \in K \), when \(1 \leq i \leq n - 1 \). But then the matrix of \(f \) with respect to \((u_1, \ldots, u_n)\) is upper triangular.

For the matrix version, we assume that \(A \) is the matrix of \(f \) with respect to some basis. Then, we just proved that there is a change of basis matrix \(P \) such that \(A = PTP^{-1} \) where \(T \) is upper triangular.

If \(A = PTP^{-1} \) where \(T \) is upper triangular, note that the diagonal entries of \(T \) are the eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(A \). Indeed, \(A \) and \(T \) have the same characteristic polynomial. Also, if \(A \) is a real matrix whose eigenvalues are all real, then \(P \) can be chosen to real, and if \(A \) is a rational matrix whose eigenvalues are all rational, then \(P \) can be chosen rational. Since any polynomial over \(\mathbb{C} \) has all its roots in \(\mathbb{C} \), Theorem 13.4 implies that every complex \(n \times n \) matrix can be triangularized.

If \(\lambda \) is an eigenvalue of the matrix \(A \) and if \(u \) is an eigenvector associated with \(\lambda \), from

\[Au = \lambda u, \]

we obtain

\[A^2u = A(Au) = A(\lambda u) = \lambda Au = \lambda^2 u, \]

which shows that \(\lambda^2 \) is an eigenvalue of \(A^2 \) for the eigenvector \(u \). An obvious induction shows that \(\lambda^k \) is an eigenvalue of \(A^k \) for the eigenvector \(u \), for all \(k \geq 1 \). Now, if all eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(A \) are in \(K \), it follows that \(\lambda_1^k, \ldots, \lambda_n^k \) are eigenvalues of \(A^k \). However, it is not obvious that \(A^k \) does not have other eigenvalues. In fact, this can’t happen, and this can be proved using Theorem 13.4.

Proposition 13.5. Given any \(n \times n \) matrix \(A \in M_n(K) \) with coefficients in a field \(K \), if all eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(A \) are in \(K \), then for every polynomial \(q(X) \in K[X] \), the eigenvalues of \(q(A) \) are exactly \((q(\lambda_1), \ldots, q(\lambda_n))\).

Proof. By Theorem 13.4, there is an upper triangular matrix \(T \) and an invertible matrix \(P \) (both in \(M_n(K) \)) such that

\[A = PTP^{-1}. \]

Since \(A \) and \(T \) are similar, they have the same eigenvalues (with the same multiplicities), so the diagonal entries of \(T \) are the eigenvalues of \(A \). Since

\[A^k = PT^kP^{-1}, \quad k \geq 1, \]
13.2. REDUCTION TO UPPER TRIANGULAR FORM

for any polynomial \(q(X) = c_0X^m + \cdots + c_{m-1}X + c_m \), we have

\[
q(A) = c_0A^m + \cdots + c_{m-1}A + c_m I \\
= c_0PT^mP^{-1} + \cdots + c_{m-1}PTP^{-1} + c_mPIP^{-1} \\
= P(c_0T^m + \cdots + c_{m-1}(T + c_m I)P^{-1} \\
= Pq(T)P^{-1}.
\]

Furthermore, it is easy to check that \(q(T) \) is upper triangular and that its diagonal entries are \(q(\lambda_1), \ldots, q(\lambda_n) \), where \(\lambda_1, \ldots, \lambda_n \) are the diagonal entries of \(T \), namely the eigenvalues of \(A \). It follows that \(q(\lambda_1), \ldots, q(\lambda_n) \) are the eigenvalues of \(q(A) \).

If \(E \) is a Hermitian space (see Chapter 12), the proof of Theorem 13.4 can be easily adapted to prove that there is an orthonormal basis \((u_1, \ldots, u_n)\) with respect to which the matrix of \(f \) is upper triangular. This is usually known as Schur’s lemma.

Theorem 13.6. (Schur decomposition) Given any linear map \(f : E \to E \) over a complex Hermitian space \(E \), there is an orthonormal basis \((u_1, \ldots, u_n)\) with respect to which \(f \) is represented by an upper triangular matrix. Equivalently, for every \(n \times n \) matrix \(A \in M_n(\mathbb{C}) \), there is a unitary matrix \(U \) and an upper triangular matrix \(T \) such that

\[
A = UTU^*.
\]

If \(A \) is real and if all its eigenvalues are real, then there is an orthogonal matrix \(Q \) and a real upper triangular matrix \(T \) such that

\[
A = QTQ^\top.
\]

Proof. During the induction, we choose \(F \) to be the orthogonal complement of \(Cu_1 \) and we pick orthonormal bases (use Propositions 12.10 and 12.9). If \(E \) is a real Euclidean space and if the eigenvalues of \(f \) are all real, the proof also goes through with real matrices (use Propositions 10.9 and 10.8).

Using, Theorem 13.6, we can derive two very important results.

Proposition 13.7. If \(A \) is a Hermitian matrix (i.e. \(A^* = A \)), then its eigenvalues are real and \(A \) can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is a unitary matrix \(U \) and a real diagonal matrix \(D \) such that \(A = UDU^* \). If \(A \) is a real symmetric matrix (i.e. \(A^\top = A \)), then its eigenvalues are real and \(A \) can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is an orthogonal matrix \(Q \) and a real diagonal matrix \(D \) such that \(A = QDQ^\top \).

Proof. By Theorem 13.6, we can write \(A = UTU^* \) where \(T = (t_{ij}) \) is upper triangular and \(U \) is a unitary matrix. If \(A^* = A \), we get

\[
UTU^* = UT^*U^*.
\]
which implies that $T = T^*$. Since T is an upper triangular matrix, T^* is a lower triangular matrix, which implies that T is a diagonal matrix. Furthermore, since $T = T^*$, we have $t_{ii} = t_{ii}^*$ for $i = 1, \ldots, n$, which means that the t_{ii} are real, so T is indeed a real diagonal matrix, say D.

If we apply this result to a (real) symmetric matrix A, we obtain the fact that all the eigenvalues of a symmetric matrix are real, and by applying Theorem 13.6 again, we conclude that $A = QDQ^T$, where Q is orthogonal and D is a real diagonal matrix.

More general versions of Proposition 13.7 are proved in Chapter 14.

When a real matrix A has complex eigenvalues, there is a version of Theorem 13.6 involving only real matrices provided that we allow T to be block upper-triangular (the diagonal entries may be 2×2 matrices or real entries).

Theorem 13.6 is not a very practical result but it is a useful theoretical result to cope with matrices that cannot be diagonalized. For example, it can be used to prove that every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct eigenvalues!

Remark: There is another way to prove Proposition 13.5 that does not use Theorem 13.4, but instead uses the fact that given any field K, there is field extension \overline{K} of K ($K \subseteq \overline{K}$) such that every polynomial $q(X) = c_0X^m + \cdots + c_{m-1}X + c_m$ (of degree $m \geq 1$) with coefficients $c_i \in K$ factors as

$$q(X) = c_0(X - \alpha_1) \cdots (X - \alpha_n), \quad \alpha_i \in \overline{K}, i = 1, \ldots, n.$$

The field \overline{K} is called an *algebraically closed field* (and an algebraic closure of K).

Assume that all eigenvalues $\lambda_1, \ldots, \lambda_n$ of A belong to K. Let $q(X)$ be any polynomial (in $K[X]$) and let $\mu \in \overline{K}$ be any eigenvalue of $q(A)$ (this means that μ is a zero of the characteristic polynomial $\chi_{q(A)}(X) \in K[X]$ of $q(A)$. Since \overline{K} is algebraically closed, $\chi_{q(A)}(X)$ has all its root in \overline{K}). We claim that $\mu = q(\lambda_i)$ for some eigenvalue λ_i of A.

Proof. (After Lax [35], Chapter 6). Since \overline{K} is algebraically closed, the polynomial $\mu - q(X)$ factors as

$$\mu - q(X) = c_0(X - \alpha_1) \cdots (X - \alpha_n),$$

for some $\alpha_i \in \overline{K}$. Now, $\mu I - q(A)$ is a matrix in $M_n(\overline{K})$, and since μ is an eigenvalue of $q(A)$, it must be singular. We have

$$\mu I - q(A) = c_0(A - \alpha_1 I) \cdots (A - \alpha_n I),$$

and since the left-hand side is singular, so is the right-hand side, which implies that some factor $A - \alpha_i I$ is singular. This means that α_i is an eigenvalue of A, say $\alpha_i = \lambda_i$. As $\alpha_i = \lambda_i$ is a zero of $\mu - q(X)$, we get

$$\mu = q(\lambda_i),$$

which proves that μ is indeed of the form $q(\lambda_i)$ for some eigenvalue λ_i of A. \qed
13.3 Location of Eigenvalues

If A is an $n \times n$ complex (or real) matrix A, it would be useful to know, even roughly, where the eigenvalues of A are located in the complex plane \mathbb{C}. The Gershgorin discs provide some precise information about this.

Definition 13.4. For any complex $n \times n$ matrix A, for $i = 1, \ldots, n$, let

$$R'_i(A) = \sum_{j=1}^{n} |a_{ij}|$$

and let

$$G(A) = \bigcup_{i=1}^{n} \{ z \in \mathbb{C} \mid |z - a_{ii}| \leq R'_i(A) \}.$$

Each disc $\{ z \in \mathbb{C} \mid |z - a_{ii}| \leq R'_i(A) \}$ is called a *Gershgorin disc* and their union $G(A)$ is called the *Gershgorin domain*.

Although easy to prove, the following theorem is very useful:

Theorem 13.8. *(Gershgorin’s disc theorem)* For any complex $n \times n$ matrix A, all the eigenvalues of A belong to the Gershgorin domain $G(A)$. Furthermore the following properties hold:

1. If A is strictly row diagonally dominant, that is

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \text{ for } i = 1, \ldots, n,$$

then A is invertible.

2. If A is strictly row diagonally dominant, and if $a_{ii} > 0$ for $i = 1, \ldots, n$, then every eigenvalue of A has a strictly positive real part.

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we must have $u \neq 0$). Let k be an index such that

$$|u_k| = \max_{1 \leq i \leq n} |u_i|.$$

Since $Au = \lambda u$, we have

$$(\lambda - a_{kk})u_k = \sum_{j=1}^{n} a_{kj}u_j,$$

for $j \neq k$.
which implies that
\[
|\lambda - a_{kk}| |u_k| \leq \sum_{j=1\atop j \neq k}^{n} |a_{kj}| |u_j| \leq |u_k| \sum_{j=1\atop j \neq k}^{n} |a_{kj}|
\]
and since \(u \neq 0 \) and \(|u_k| = \max_{1 \leq i \leq n} |u_i| \), we must have \(|u_k| \neq 0 \), and it follows that
\[
|\lambda - a_{kk}| \leq \sum_{j=1\atop j \neq k}^{n} |a_{kj}| = R'_k(A),
\]
and thus
\[
\lambda \in \{ z \in \mathbb{C} \mid |z - a_{kk}| \leq R'_k(A) \} \subseteq G(A),
\]
as claimed.

(1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin discs, so all eigenvalues of \(A \) are nonzero, and \(A \) is invertible.

(2) If \(A \) is strictly row diagonally dominant and \(a_{ii} > 0 \) for \(i = 1, \ldots, n \), then each of the Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of \(A \) has a strictly positive real part.\[\square \]

In particular, Theorem 13.8 implies that if a symmetric matrix is strictly row diagonally dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 13.8 is sometimes called the Gershgorin–Hadamard theorem.

Since \(A \) and \(A^\top \) have the same eigenvalues (even for complex matrices) we also have a version of Theorem 13.8 for the discs of radius
\[
C'_j(A) = \sum_{i=1\atop i \neq j}^{n} |a_{ij}|,
\]
whose domain is denoted by \(G(A)^\top \). Thus we get the following:

Theorem 13.9. For any complex \(n \times n \) matrix \(A \), all the eigenvalues of \(A \) belong to the intersection of the Gershgorin domains, \(G(A) \cap G(A^\top) \). Furthermore the following properties hold:

(1) If \(A \) is strictly column diagonally dominant, that is
\[
|a_{ii}| > \sum_{i=1, i \neq j}^{n} |a_{ij}|, \quad \text{for} \ j = 1, \ldots, n,
\]
then \(A \) is invertible.
If A is strictly column diagonally dominant, and if $a_{ii} > 0$ for $i = 1, \ldots, n$, then every eigenvalue of A has a strictly positive real part.

There are refinements of Gershgorin’s theorem and eigenvalue location results involving other domains besides discs; for more on this subject, see Horn and Johnson [28], Sections 6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row diagonal dominance (or column diagonal dominance) is not a sufficient condition for invertibility.

13.4 Summary

The main concepts and results of this chapter are listed below:

- **Diagonal matrix.**
- **Eigenvalues, eigenvectors; the eigenspace associated** with an eigenvalue.
- The **characteristic polynomial**.
- The **trace**.
- **algebraic and geometric multiplicity**.
- Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 13.3).
- Reduction of a matrix to an upper-triangular matrix.
- **Schur decomposition**.
- The **Gershgorin’s discs** can be used to locate the eigenvalues of a complex matrix; see Theorems 13.8 and 13.9.
Chapter 14

Spectral Theorems in Euclidean and Hermitian Spaces

14.1 Introduction

The goal of this chapter is to show that there are nice normal forms for symmetric matrices, skew-symmetric matrices, orthogonal matrices, and normal matrices. The spectral theorem for symmetric matrices states that symmetric matrices have real eigenvalues and that they can be diagonalized over an orthonormal basis. The spectral theorem for Hermitian matrices states that Hermitian matrices also have real eigenvalues and that they can be diagonalized over a complex orthonormal basis. Normal real matrices can be block diagonalized over an orthonormal basis with blocks having size at most two, and there are refinements of this normal form for skew-symmetric and orthogonal matrices.

14.2 Normal Linear Maps

We begin by studying normal maps, to understand the structure of their eigenvalues and eigenvectors. This section and the next two were inspired by Lang [32], Artin [3], Mac Lane and Birkhoff [37], Berger [5], and Bertin [7].

Definition 14.1. Given a Euclidean space \(E \), a linear map \(f : E \to E \) is normal if

\[f \circ f^* = f^* \circ f. \]

A linear map \(f : E \to E \) is self-adjoint if \(f = f^* \), skew-self-adjoint if \(f = -f^* \), and orthogonal if \(f \circ f^* = f^* \circ f = \text{id} \).

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal linear map. Our first goal is to show that for every normal linear map \(f : E \to E \), there is an orthonormal basis (w.r.t. \(\langle -, - \rangle \)) such that the matrix of \(f \) over this basis has an especially
nice form: It is a block diagonal matrix in which the blocks are either one-dimensional matrices (i.e., single entries) or two-dimensional matrices of the form

\[
\begin{pmatrix}
\lambda & \mu \\
-\mu & \lambda
\end{pmatrix}.
\]

This normal form can be further refined if \(f \) is self-adjoint, skew-self-adjoint, or orthogonal. As a first step, we show that \(f \) and \(f^* \) have the same kernel when \(f \) is normal.

Proposition 14.1. Given a Euclidean space \(E \), if \(f: E \to E \) is a normal linear map, then \(\text{Ker} \ f = \text{Ker} \ f^* \).

Proof. First, let us prove that

\[
\langle f(u), f(v) \rangle = \langle f^*(u), f^*(v) \rangle
\]

for all \(u, v \in E \). Since \(f^* \) is the adjoint of \(f \) and \(f \circ f^* = f^* \circ f \), we have

\[
\langle f(u), f(u) \rangle = \langle u, (f^* \circ f)(u) \rangle,
\]

\[
= \langle u, (f \circ f^*)(u) \rangle,
\]

\[
= \langle f^*(u), f^*(u) \rangle.
\]

Since \(\langle -, - \rangle \) is positive definite,

\[
\langle f(u), f(u) \rangle = 0 \quad \text{iff} \quad f(u) = 0,
\]

\[
\langle f^*(u), f^*(u) \rangle = 0 \quad \text{iff} \quad f^*(u) = 0,
\]

and since

\[
\langle f(u), f(u) \rangle = \langle f^*(u), f^*(u) \rangle,
\]

we have

\[
f(u) = 0 \quad \text{iff} \quad f^*(u) = 0.
\]

Consequently, \(\text{Ker} \ f = \text{Ker} \ f^* \).

The next step is to show that for every linear map \(f: E \to E \) there is some subspace \(W \) of dimension 1 or 2 such that \(f(W) \subseteq W \). When \(\dim(W) = 1 \), the subspace \(W \) is actually an eigenspace for some real eigenvalue of \(f \). Furthermore, when \(f \) is normal, there is a subspace \(W \) of dimension 1 or 2 such that \(f(W) \subseteq W \) and \(f^*(W) \subseteq W \). The difficulty is that the eigenvalues of \(f \) are not necessarily real. One way to get around this problem is to complexify both the vector space \(E \) and the inner product \(\langle -, - \rangle \).

Every real vector space \(E \) can be embedded into a complex vector space \(E_C \), and every linear map \(f: E \to E \) can be extended to a linear map \(f_C: E_C \to E_C \).
Definition 14.2. Given a real vector space E, let E_C be the structure $E \times E$ under the addition operation
\[(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2),\]
and let multiplication by a complex scalar $z = x + iy$ be defined such that
\[(x + iy) \cdot (u, v) = (xu - yv, yu + xv).\]
The space E_C is called the complexification of E.

It is easily shown that the structure E_C is a complex vector space. It is also immediate that
\[(0, v) = i(v, 0),\]
and thus, identifying E with the subspace of E_C consisting of all vectors of the form $(u, 0)$, we can write
\[(u, v) = u + iv.\]

Observe that if (e_1, \ldots, e_n) is a basis of E (a real vector space), then (e_1, \ldots, e_n) is also a basis of E_C (recall that e_i is an abbreviation for $(e_i, 0)$).

A linear map $f : E \to E$ is extended to the linear map $f_C : E_C \to E_C$ defined such that
\[f_C(u + iv) = f(u) + if(v).\]

For any basis (e_1, \ldots, e_n) of E, the matrix $M(f)$ representing f over (e_1, \ldots, e_n) is identical to the matrix $M(f_C)$ representing f_C over (e_1, \ldots, e_n), where we view (e_1, \ldots, e_n) as a basis of E_C. As a consequence, $\det(zI - M(f)) = \det(zI - M(f_C))$, which means that f and f_C have the same characteristic polynomial (which has real coefficients). We know that every polynomial of degree n with real (or complex) coefficients always has n complex roots (counted with their multiplicity), and the roots of $\det(zI - M(f_C))$ that are real (if any) are the eigenvalues of f.

Next, we need to extend the inner product on E to an inner product on E_C.

The inner product $\langle - , - \rangle$ on a Euclidean space E is extended to the Hermitian positive definite form $\langle - , - \rangle_C$ on E_C as follows:
\[\langle u_1 + iv_1, u_2 + iv_2 \rangle_C = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle + i(\langle v_1, u_2 \rangle - \langle u_1, v_2 \rangle).\]

It is easily verified that $\langle - , - \rangle_C$ is indeed a Hermitian form that is positive definite, and it is clear that $\langle - , - \rangle_C$ agrees with $\langle - , - \rangle$ on real vectors. Then, given any linear map $f : E \to E$, it is easily verified that the map f_C^* defined such that
\[f_C^*(u + iv) = f^*(u) + if^*(v)\]
for all $u, v \in E$ is the adjoint of f_C w.r.t. $\langle - , - \rangle_C$.

Assuming again that E is a Hermitian space, observe that Proposition 14.1 also holds. We deduce the following corollary.
Proposition 14.2. Given a Hermitian space E, for any normal linear map $f : E \to E$, we have $\ker(f) \cap \im(f) = \{0\}$.

Proof. Assume $v \in \ker(f) \cap \im(f) = \{0\}$, which means that $v = f(u)$ for some $u \in E$, and $f(v) = 0$. By Proposition 14.1, $\ker(f) = \ker(f^*)$, so $f(v) = 0$ implies that $f^*(v) = 0$. Consequently,

$$0 = \langle f^*(v), u \rangle = \langle v, f(u) \rangle = \langle v, v \rangle,$$

and thus, $v = 0$. \hfill \square

We also have the following crucial proposition relating the eigenvalues of f and f^*.

Proposition 14.3. Given a Hermitian space E, for any normal linear map $f : E \to E$, a vector u is an eigenvector of f for the eigenvalue λ (in \mathbb{C}) iff u is an eigenvector of f^* for the eigenvalue $\overline{\lambda}$.

Proof. First, it is immediately verified that the adjoint of $f - \lambda \text{id}$ is $f^* - \overline{\lambda} \text{id}$. Furthermore, $f - \lambda \text{id}$ is normal. Indeed,

$$(f - \lambda \text{id}) \circ (f - \lambda \text{id})^* = (f - \lambda \text{id}) \circ (f^* - \overline{\lambda} \text{id}),$$

$$= f \circ f^* - \overline{\lambda}f - \lambda f^* + \lambda \overline{\lambda} \text{id},$$

$$= f^* \circ f - \lambda f^* - \overline{\lambda}f + \lambda \overline{\lambda} \text{id},$$

$$= (f^* - \overline{\lambda} \text{id}) \circ (f - \lambda \text{id}),$$

$$= (f - \lambda \text{id})^* \circ (f - \lambda \text{id}).$$

Applying Proposition 14.1 to $f - \lambda \text{id}$, for every nonnull vector u, we see that

$$(f - \lambda \text{id})(u) = 0 \iff (f^* - \overline{\lambda} \text{id})(u) = 0,$$

which is exactly the statement of the proposition. \hfill \square

The next proposition shows a very important property of normal linear maps: Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proposition 14.4. Given a Hermitian space E, for any normal linear map $f : E \to E$, if u and v are eigenvectors of f associated with the eigenvalues λ and μ (in \mathbb{C}) where $\lambda \neq \mu$, then $\langle u, v \rangle = 0$.

Proof. Let us compute $\langle f(u), v \rangle$ in two different ways. Since v is an eigenvector of f for μ, by Proposition 14.3, v is also an eigenvector of f^* for $\overline{\mu}$, and we have

$$\langle f(u), v \rangle = \langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
and
\[\langle f(u), v \rangle = \langle u, f^*(v) \rangle = \langle u, \overline{v} \rangle = \mu \langle u, v \rangle, \]
where the last identity holds because of the semilinearity in the second argument, and thus
\[\lambda \langle u, v \rangle = \mu \langle u, v \rangle, \]
that is,
\[(\lambda - \mu) \langle u, v \rangle = 0, \]
which implies that \(\langle u, v \rangle = 0 \), since \(\lambda \neq \mu \).

We can also show easily that the eigenvalues of a self-adjoint linear map are real.

Proposition 14.5. Given a Hermitian space \(E \), all the eigenvalues of any self-adjoint linear map \(f : E \to E \) are real.

Proof. Let \(z \) (in \(\mathbb{C} \)) be an eigenvalue of \(f \) and let \(u \) be an eigenvector for \(z \). We compute \(\langle f(u), u \rangle \) in two different ways. We have
\[\langle f(u), u \rangle = \langle zu, u \rangle = z \langle u, u \rangle, \]
and since \(f = f^* \), we also have
\[\langle f(u), u \rangle = \langle u, f^*(u) \rangle = \langle u, f(u) \rangle = \langle u, zu \rangle = z \langle u, u \rangle. \]
Thus,
\[z \langle u, u \rangle = z \langle u, u \rangle, \]
which implies that \(z = z \), since \(u \neq 0 \), and \(z \) is indeed real.

There is also a version of Proposition 14.5 for a (real) Euclidean space \(E \) and a self-adjoint map \(f : E \to E \).

Proposition 14.6. Given a Euclidean space \(E \), if \(f : E \to E \) is any self-adjoint linear map, then every eigenvalue \(\lambda \) of \(f \) is real and is actually an eigenvalue of \(f \) (which means that there is some real eigenvector \(u \in E \) such that \(f(u) = \lambda u \)). Therefore, all the eigenvalues of \(f \) are real.

Proof. Let \(E_\mathbb{C} \) be the complexification of \(E \), \(\langle -, - \rangle_\mathbb{C} \) the complexification of the inner product \(\langle -, - \rangle \) on \(E \), and \(f_\mathbb{C} : E_\mathbb{C} \to E_\mathbb{C} \) the complexification of \(f : E \to E \). By definition of \(f_\mathbb{C} \) and \(\langle -, -, \rangle_\mathbb{C} \), if \(f \) is self-adjoint, we have
\[
\langle f_\mathbb{C}(u_1 + iv_1), u_2 + iv_2 \rangle_\mathbb{C} = \langle f(u_1) + if(v_1), u_2 + iv_2 \rangle_\mathbb{C}
\]
which shows that f_C is also self-adjoint with respect to $\langle -,- \rangle_C$.

As we pointed out earlier, f and f_C have the same characteristic polynomial $\det(zI - f_C) = \det(zI - f)$, which is a polynomial with real coefficients. Proposition 14.5 shows that the zeros of $\det(zI - f_C) = \det(zI - f)$ are all real, and for each real zero λ of $\det(zI - f)$, the linear map $\lambda \text{id} - f$ is singular, which means that there is some nonzero $u \in E$ such that $f(u) = \lambda u$. Therefore, all the eigenvalues of f are real.

Given any subspace W of a Euclidean space E, recall that the orthogonal complement W^\perp of W is the subspace defined such that

$$W^\perp = \{ u \in E \mid \langle u, w \rangle = 0, \text{ for all } w \in W \}.$$

Recall from Proposition 10.9 that $E = W \oplus W^\perp$ (this can be easily shown, for example, by constructing an orthonormal basis of E using the Gram–Schmidt orthonormalization procedure). The same result also holds for Hermitian spaces; see Proposition 12.10.

As a warm up for the proof of Theorem 14.10, let us prove that every self-adjoint map on a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors.

Theorem 14.7. (Spectral theorem for self-adjoint linear maps on a Euclidean space) Given a Euclidean space E of dimension n, for every self-adjoint linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & \ldots & \\
& \lambda_2 & \ldots \\
& & \ddots & \\
& & & \lambda_n
\end{pmatrix},
$$

with $\lambda_i \in \mathbb{R}$.

Proof. We proceed by induction on the dimension n of E as follows. If $n = 1$, the result is trivial. Assume now that $n \geq 2$. From Proposition 14.6, all the eigenvalues of f are real, so pick some eigenvalue $\lambda \in \mathbb{R}$, and let w be some eigenvector for λ. By dividing w by its norm, we may assume that w is a unit vector. Let W be the subspace of dimension 1 spanned by w. Clearly, $f(W) \subseteq W$. We claim that $f(W^\perp) \subseteq W^\perp$, where W^\perp is the orthogonal complement of W.

Indeed, for any $v \in W^\perp$, that is, if $\langle v, w \rangle = 0$, because f is self-adjoint and $f(w) = \lambda w$, we have

$$
\langle f(v), w \rangle = \langle v, f(w) \rangle = \langle v, \lambda w \rangle = \lambda \langle v, w \rangle = 0
$$

Therefore, $f(W^\perp) \subseteq W^\perp$.

By induction hypothesis, there is a basis (e_1, \ldots, e_{n-1}) of W^\perp such that the matrix of f w.r.t. this basis is diagonal. Therefore, the matrix of f w.r.t. the basis $(e_1, \ldots, e_{n-1}, w)$ is also diagonal, which completes the proof.
since \((v, w) = 0\). Therefore,

\[f(W^\perp) \subseteq W^\perp. \]

Clearly, the restriction of \(f\) to \(W^\perp\) is self-adjoint, and we conclude by applying the induction hypothesis to \(W^\perp\) (whose dimension is \(n - 1\)).

We now come back to normal linear maps. One of the key points in the proof of Theorem 14.7 is that we found a subspace \(W\) with the property that \(f(W) \subseteq W\) implies that \(f(W^\perp) \subseteq W^\perp\). In general, this does not happen, but normal maps satisfy a stronger property which ensures that such a subspace exists.

The following proposition provides a condition that will allow us to show that a normal linear map can be diagonalized. It actually holds for any linear map. We found the inspiration for this proposition in Berger [5].

Proposition 14.8. Given a Hermitian space \(E\), for any linear map \(f: E \to E\) and any subspace \(W\) of \(E\), if \(f(W) \subseteq W\), then \(f^*(W^\perp) \subseteq W^\perp\). Consequently, if \(f(W) \subseteq W\) and \(f^*(W) \subseteq W\), then \(f(W^\perp) \subseteq W^\perp\) and \(f^*(W^\perp) \subseteq W^\perp\).

Proof. If \(u \in W^\perp\), then

\[\langle w, u \rangle = 0 \quad \text{for all} \ w \in W. \]

However,

\[\langle f(w), u \rangle = \langle w, f^*(u) \rangle, \]

and \(f(W) \subseteq W\) implies that \(f(w) \in W\). Since \(u \in W^\perp\), we get

\[0 = \langle f(w), u \rangle = \langle w, f^*(u) \rangle, \]

which shows that \(\langle w, f^*(u) \rangle = 0\) for all \(w \in W\), that is, \(f^*(u) \in W^\perp\). Therefore, we have \(f^*(W^\perp) \subseteq W^\perp\).

We just proved that if \(f(W) \subseteq W\), then \(f^*(W^\perp) \subseteq W^\perp\). If we also have \(f^*(W) \subseteq W\), then by applying the above fact to \(f^*\), we get \(f^{**}(W^\perp) \subseteq W^\perp\), and since \(f^{**} = f\), this is just \(f(W^\perp) \subseteq W^\perp\), which proves the second statement of the proposition.

It is clear that the above proposition also holds for Euclidean spaces.

Although we are ready to prove that for every normal linear map \(f\) (over a Hermitian space) there is an orthonormal basis of eigenvectors (see Theorem 14.11 below), we now return to real Euclidean spaces.

If \(f: E \to E\) is a linear map and \(w = u + iv\) is an eigenvector of \(f_C: E_C \to E_C\) for the eigenvalue \(z = \lambda + i\mu\), where \(u, v \in E\) and \(\lambda, \mu \in \mathbb{R}\), since

\[f_C(u + iv) = f(u) + if(v) \]

and

\[f_C(u + iv) = (\lambda + i\mu)(u + iv) = \lambda u - \mu v + i(\mu u + \lambda v), \]
we have
\[f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v, \]
from which we immediately obtain
\[f_C(u - iv) = (\lambda - i\mu)(u - iv), \]
which shows that \(w = u - iv \) is an eigenvector of \(f_C \) for \(z = \lambda - i\mu \). Using this fact, we can prove the following proposition.

Proposition 14.9. Given a Euclidean space \(E \), for any normal linear map \(f : E \to E \), if \(w = u + iv \) is an eigenvector of \(f_C \) associated with the eigenvalue \(z = \lambda + i\mu \) (where \(u, v \in E \) and \(\lambda, \mu \in \mathbb{R} \)), if \(\mu \neq 0 \) (i.e., \(z \) is not real) then \(\langle u, v \rangle = 0 \) and \(\langle u, u \rangle = \langle v, v \rangle \), which implies that \(u \) and \(v \) are linearly independent, and if \(W \) is the subspace spanned by \(u \) and \(v \), then \(f(W) = W \) and \(f^*(W) = W \). Furthermore, with respect to the (orthogonal) basis \((u, v) \), the restriction of \(f \) to \(W \) has the matrix
\[
\begin{pmatrix}
\lambda & \mu \\
-\mu & \lambda
\end{pmatrix}.
\]

If \(\mu = 0 \), then \(\lambda \) is a real eigenvalue of \(f \), and either \(u \) or \(v \) is an eigenvector of \(f \) for \(\lambda \). If \(W \) is the subspace spanned by \(u \) if \(u \neq 0 \), or spanned by \(v \) if \(u = 0 \), then \(f(W) \subseteq W \) and \(f^*(W) \subseteq W \).

Proof. Since \(w = u + iv \) is an eigenvector of \(f_C \), by definition it is nonnull, and either \(u \neq 0 \) or \(v \neq 0 \). From the fact stated just before Proposition 14.9, \(u - iv \) is an eigenvector of \(f_C \) for \(\lambda - i\mu \). It is easy to check that \(f_C \) is normal. However, if \(\mu \neq 0 \), then \(\lambda + i\mu \neq \lambda - i\mu \), and from Proposition 14.4, the vectors \(u + iv \) and \(u - iv \) are orthogonal w.r.t. \(\langle -, - \rangle_C \), that is,
\[
\langle u + iv, u - iv \rangle_C = \langle u, u \rangle - \langle v, v \rangle + 2i\langle u, v \rangle = 0.
\]
Thus, we get \(\langle u, v \rangle = 0 \) and \(\langle u, u \rangle = \langle v, v \rangle \), and since \(u \neq 0 \) or \(v \neq 0 \), \(u \) and \(v \) are linearly independent. Since
\[f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v \]
and since by Proposition 14.3 \(u + iv \) is an eigenvector of \(f_C^* \) for \(\lambda - i\mu \), we have
\[f^*(u) = \lambda u + \mu v \quad \text{and} \quad f^*(v) = -\mu u + \lambda v, \]
and thus \(f(W) = W \) and \(f^*(W) = W \), where \(W \) is the subspace spanned by \(u \) and \(v \).

When \(\mu = 0 \), we have
\[f(u) = \lambda u \quad \text{and} \quad f(v) = \lambda v, \]
and since \(u \neq 0 \) or \(v \neq 0 \), either \(u \) or \(v \) is an eigenvector of \(f \) for \(\lambda \). If \(W \) is the subspace spanned by \(u \) if \(u \neq 0 \), or spanned by \(v \) if \(u = 0 \), it is obvious that \(f(W) \subseteq W \) and \(f^*(W) \subseteq W \). Note that \(\lambda = 0 \) is possible, and this is why \(\subseteq \) cannot be replaced by =. \(\square \)
The beginning of the proof of Proposition 14.9 actually shows that for every linear map \(f: E \to E \) there is some subspace \(W \) such that \(f(W) \subseteq W \), where \(W \) has dimension 1 or 2. In general, it doesn’t seem possible to prove that \(W^\perp \) is invariant under \(f \). However, this happens when \(f \) is normal.

We can finally prove our first main theorem.

Theorem 14.10. (Main spectral theorem) Given a Euclidean space \(E \) of dimension \(n \), for every normal linear map \(f: E \to E \), there is an orthonormal basis \((e_1, \ldots, e_n)\) such that the matrix of \(f \) w.r.t. this basis is a block diagonal matrix of the form

\[
\begin{pmatrix}
A_1 & \cdots \\
\vdots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
& & & A_p
\end{pmatrix}
\]

such that each block \(A_j \) is either a one-dimensional matrix (i.e., a real scalar) or a two-dimensional matrix of the form

\[
A_j = \begin{pmatrix}
\lambda_j & -\mu_j \\
\mu_j & \lambda_j
\end{pmatrix},
\]

where \(\lambda_j, \mu_j \in \mathbb{R} \), with \(\mu_j > 0 \).

Proof. We proceed by induction on the dimension \(n \) of \(E \) as follows. If \(n = 1 \), the result is trivial. Assume now that \(n \geq 2 \). First, since \(\mathbb{C} \) is algebraically closed (i.e., every polynomial has a root in \(\mathbb{C} \), the linear map \(f_\mathbb{C}: E_\mathbb{C} \to E_\mathbb{C} \) has some eigenvalue \(z = \lambda + i\mu \) where \(\lambda, \mu \in \mathbb{R} \). Let \(w = u + iv \) be some eigenvector of \(f_\mathbb{C} \) for \(\lambda + i\mu \) (where \(u, v \in E \)). We can now apply Proposition 14.9.

If \(\mu = 0 \), then either \(u \) or \(v \) is an eigenvector of \(f \) for \(\lambda \in \mathbb{R} \). Let \(W \) be the subspace of dimension 1 spanned by \(e_1 = u/\|u\| \) if \(u \neq 0 \), or by \(e_1 = v/\|v\| \) otherwise. It is obvious that \(f(W) \subseteq W \) and \(f^*(W) \subseteq W \). The orthogonal \(W^\perp \) of \(W \) has dimension \(n - 1 \), and by Proposition 14.8, we have \(f(W^\perp) \subseteq W^\perp \). But the restriction of \(f \) to \(W^\perp \) is also normal, and we conclude by applying the induction hypothesis to \(W^\perp \).

If \(\mu \neq 0 \), then \(\langle u, v \rangle = 0 \) and \(\langle u, u \rangle = \langle v, v \rangle \), and if \(W \) is the subspace spanned by \(u/\|u\| \) and \(v/\|v\| \), then \(f(W) = W \) and \(f^*(W) = W \). We also know that the restriction of \(f \) to \(W \) has the matrix

\[
\begin{pmatrix}
\lambda & \mu \\
-\mu & \lambda
\end{pmatrix}
\]

with respect to the basis \((u/\|u\|, v/\|v\|)\). If \(\mu < 0 \), we let \(\lambda_1 = \lambda \), \(\mu_1 = -\mu \), \(e_1 = u/\|u\| \), and \(e_2 = v/\|v\| \). If \(\mu > 0 \), we let \(\lambda_1 = \lambda \), \(\mu_1 = \mu \), \(e_1 = v/\|v\| \), and \(e_2 = u/\|u\| \). In all cases, it is easily verified that the matrix of the restriction of \(f \) to \(W \) w.r.t. the orthonormal basis \((e_1, e_2)\) is

\[
A_1 = \begin{pmatrix}
\lambda_1 & -\mu_1 \\
\mu_1 & \lambda_1
\end{pmatrix},
\]
where $\lambda_1, \mu_1 \in \mathbb{R}$, with $\mu_1 > 0$. However, W^\perp has dimension $n - 2$, and by Proposition 14.8, $f(W^\perp) \subseteq W^\perp$. Since the restriction of f to W^\perp is also normal, we conclude by applying the induction hypothesis to W^\perp.

After this relatively hard work, we can easily obtain some nice normal forms for the matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. However, for the sake of completeness (and since we have all the tools to so do), we go back to the case of a Hermitian space and show that normal linear maps can be diagonalized with respect to an orthonormal basis. The proof is a slight generalization of the proof of Theorem 14.6.

Theorem 14.11. *(Spectral theorem for normal linear maps on a Hermitian space)* Given a Hermitian space E of dimension n, for every normal linear map $f : E \to E$ there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & & \\
& \lambda_2 & \\
& & \ddots & \ddots \\
& & & \ddots & \lambda_n \\
\end{pmatrix},
$$

where $\lambda_j \in \mathbb{C}$.

Proof. We proceed by induction on the dimension n of E as follows. If $n = 1$, the result is trivial. Assume now that $n \geq 2$. Since \mathbb{C} is algebraically closed (i.e., every polynomial has a root in \mathbb{C}), the linear map $f : E \to E$ has some eigenvalue $\lambda \in \mathbb{C}$, and let w be some unit eigenvector for λ. Let W be the subspace of dimension 1 spanned by w. Clearly, $f(W) \subseteq W$. By Proposition 14.3, w is an eigenvector of f^* for $\overline{\lambda}$, and thus $f^*(W) \subseteq W$. By Proposition 14.8, we also have $f(W^\perp) \subseteq W^\perp$. The restriction of f to W^\perp is still normal, and we conclude by applying the induction hypothesis to W^\perp (whose dimension is $n - 1$).

Thus, in particular, self-adjoint, skew-self-adjoint, and orthogonal linear maps can be diagonalized with respect to an orthonormal basis of eigenvectors. In this latter case, though, an orthogonal map is called a unitary map. Also, Proposition 14.5 shows that the eigenvalues of a self-adjoint linear map are real. It is easily shown that skew-self-adjoint maps have eigenvalues that are pure imaginary or null, and that unitary maps have eigenvalues of absolute value 1.

Remark: There is a converse to Theorem 14.11, namely, if there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f, then f is normal. We leave the easy proof as an exercise.

14.3 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Linear Maps

We begin with self-adjoint maps.
Theorem 14.12. Given a Euclidean space E of dimension n, for every self-adjoint linear map $f : E \to E$, there is an orthonormal basis (e_1, \ldots, e_n) of eigenvectors of f such that the matrix of f w.r.t. this basis is a diagonal matrix

$$
\begin{pmatrix}
\lambda_1 & \cdots \\
\vdots & \ddots & \ddots \\
& & \ddots & \ddots \\
& & & \lambda_n
\end{pmatrix},
$$

where $\lambda_i \in \mathbb{R}$.

Proof. We already proved this; see Theorem 14.6. However, it is instructive to give a more direct method not involving the complexification of $\langle -, - \rangle$ and Proposition 14.5.

Since \mathbb{C} is algebraically closed, f_C has some eigenvalue $\lambda + i\mu$, and let $u + iv$ be some eigenvector of f_C for $\lambda + i\mu$, where $\lambda, \mu \in \mathbb{R}$ and $u, v \in E$. We saw in the proof of Proposition 14.9 that

$$
f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v.
$$

Since $f = f^*$,

$$
\langle f(u), v \rangle = \langle u, f(v) \rangle
$$

for all $u, v \in E$. Applying this to

$$
f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v,
$$

we get

$$
\langle f(u), v \rangle = \langle \lambda u - \mu v, v \rangle = \lambda \langle u, v \rangle - \mu \langle v, v \rangle
$$

and

$$
\langle u, f(v) \rangle = \langle u, \mu u + \lambda v \rangle = \mu \langle u, u \rangle + \lambda \langle u, v \rangle,
$$

and thus we get

$$
\lambda \langle u, v \rangle - \mu \langle v, v \rangle = \mu \langle u, u \rangle + \lambda \langle u, v \rangle,
$$

that is,

$$
\mu (\langle u, v \rangle + \langle v, v \rangle) = 0,
$$

which implies $\mu = 0$, since either $u \neq 0$ or $v \neq 0$. Therefore, λ is a real eigenvalue of f.

Now, going back to the proof of Theorem 14.10, only the case where $\mu = 0$ applies, and the induction shows that all the blocks are one-dimensional. \qed

Theorem 14.12 implies that if $\lambda_1, \ldots, \lambda_p$ are the distinct real eigenvalues of f, and E_i is the eigenspace associated with λ_i, then

$$
E = E_1 \oplus \cdots \oplus E_p,
$$
where E_i and E_j are orthogonal for all $i \neq j$.

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to use a little bit of calculus. We learned such a proof from Herman Gluck. The idea is to consider the real-valued function $\Phi: E \to \mathbb{R}$ defined such that

$$\Phi(u) = \langle f(u), u \rangle$$

for every $u \in E$. This function is C^∞, and if we represent f by a matrix A over some orthonormal basis, it is easy to compute the gradient vector

$$\nabla \Phi(X) = \left(\frac{\partial \Phi}{\partial x_1}(X), \ldots, \frac{\partial \Phi}{\partial x_n}(X) \right)$$

of Φ at X. Indeed, we find that

$$\nabla \Phi(X) = (A + A^\top)X,$$

where X is a column vector of size n. But since f is self-adjoint, $A = A^\top$, and thus

$$\nabla \Phi(X) = 2AX.$$

The next step is to find the maximum of the function Φ on the sphere

$$S^{n-1} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 = 1\}.$$

Since S^{n-1} is compact and Φ is continuous, and in fact C^∞, Φ takes a maximum at some X on S^{n-1}. But then it is well known that at an extremum X of Φ we must have

$$d\Phi_X(Y) = \langle \nabla \Phi(X), Y \rangle = 0$$

for all tangent vectors Y to S^{n-1} at X, and so $\nabla \Phi(X)$ is orthogonal to the tangent plane at X, which means that

$$\nabla \Phi(X) = \lambda X$$

for some $\lambda \in \mathbb{R}$. Since $\nabla \Phi(X) = 2AX$, we get

$$2AX = \lambda X,$$

and thus $\lambda/2$ is a real eigenvalue of A (i.e., of f).

Next, we consider skew-self-adjoint maps.
Theorem 14.13. Given a Euclidean space E of dimension n, for every skew-self-adjoint linear map $f : E \to E$ there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & \cdots \\
& A_2 \\
& \vdots \\
& \vdots \\
& \cdots \\
& A_p
\end{pmatrix}
$$

such that each block A_j is either 0 or a two-dimensional matrix of the form

$$
A_j = \begin{pmatrix}
0 & -\mu_j \\
\mu_j & 0
\end{pmatrix},
$$

where $\mu_j \in \mathbb{R}$, with $\mu_j > 0$. In particular, the eigenvalues of f_C are pure imaginary of the form $\pm i\mu_j$ or 0.

Proof. The case where $n = 1$ is trivial. As in the proof of Theorem 14.10, f_C has some eigenvalue $z = \lambda + i\mu$, where $\lambda, \mu \in \mathbb{R}$. We claim that $\lambda = 0$. First, we show that

$$
\langle f(w), w \rangle = 0
$$

for all $w \in E$. Indeed, since $f = -f^*$, we get

$$
\langle f(w), w \rangle = \langle w, f^*(w) \rangle = \langle w, -f(w) \rangle = -\langle w, f(w) \rangle = -\langle f(w), w \rangle,
$$

since $\langle -, - \rangle$ is symmetric. This implies that

$$
\langle f(w), w \rangle = 0.
$$

Applying this to u and v and using the fact that

$$
f(u) = \lambda u - \mu v \quad \text{and} \quad f(v) = \mu u + \lambda v,
$$

we get

$$
0 = \langle f(u), u \rangle = \langle \lambda u - \mu v, u \rangle = \lambda \langle u, u \rangle - \mu \langle u, v \rangle
$$

and

$$
0 = \langle f(v), v \rangle = \langle \mu u + \lambda v, v \rangle = \mu \langle u, v \rangle + \lambda \langle v, v \rangle,
$$

from which, by addition, we get

$$
\lambda (\langle v, v \rangle + \langle v, v \rangle) = 0.
$$

Since $u \neq 0$ or $v \neq 0$, we have $\lambda = 0$.

Then, going back to the proof of Theorem 14.10, unless $\mu = 0$, the case where u and v are orthogonal and span a subspace of dimension 2 applies, and the induction shows that all the blocks are two-dimensional or reduced to 0.
Remark: One will note that if f is skew-self-adjoint, then if_C is self-adjoint w.r.t. $\langle -, - \rangle_C$. By Proposition 14.5, the map if_C has real eigenvalues, which implies that the eigenvalues of f_C are pure imaginary or 0.

Finally, we consider orthogonal linear maps.

Theorem 14.14. Given a Euclidean space E of dimension n, for every orthogonal linear map $f: E \to E$ there is an orthonormal basis (e_1, \ldots, e_n) such that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & & & \\
& A_2 & & \\
& & \ddots & \\
& & & A_p
\end{pmatrix}
$$

such that each block A_j is either 1, -1, or a two-dimensional matrix of the form

$$
A_j = \begin{pmatrix}
\cos \theta_j & -\sin \theta_j \\
\sin \theta_j & \cos \theta_j
\end{pmatrix}
$$

where $0 < \theta_j < \pi$. In particular, the eigenvalues of f_C are of the form $\cos \theta_j \pm i \sin \theta_j$, 1, or -1.

Proof. The case where $n = 1$ is trivial. As in the proof of Theorem 14.10, f_C has some eigenvalue $z = \lambda + i\mu$, where $\lambda, \mu \in \mathbb{R}$. It is immediately verified that $f \circ f^* = f^* \circ f = \text{id}$ implies that $f_C \circ f_C^* = f_C^* \circ f_C = \text{id}$, so the map f_C is unitary. In fact, the eigenvalues of f_C have absolute value 1. Indeed, if z (in \mathbb{C}) is an eigenvalue of f_C, and u is an eigenvector for z, we have

$$
\langle f_C(u), f_C(u) \rangle = \langle zu, zu \rangle = z\overline{z}\langle u, u \rangle
$$

and

$$
\langle f_C(u), f_C(u) \rangle = \langle u, (f_C^* \circ f_C)(u) \rangle = \langle u, u \rangle,
$$

from which we get

$$
z\overline{z}\langle u, u \rangle = \langle u, u \rangle.
$$

Since $u \neq 0$, we have $z\overline{z} = 1$, i.e., $|z| = 1$. As a consequence, the eigenvalues of f_C are of the form $\cos \theta \pm i \sin \theta$, 1, or -1. The theorem then follows immediately from Theorem 14.10, where the condition $\mu > 0$ implies that $\sin \theta_j > 0$, and thus, $0 < \theta_j < \pi$. \hfill \qed

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem 14.14, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

$$
\begin{pmatrix}
A_1 & & & \\
& \ddots & & \\
& & \ddots & \\
& & & A_p
\end{pmatrix}
$$

$$
\begin{pmatrix}
-\text{I}_q & \\
& \text{I}_p
\end{pmatrix}
$$
where each block A_j is a two-dimensional rotation matrix $A_j \neq \pm I_2$ of the form

$$A_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

with $0 < \theta_j < \pi$.

The linear map f has an eigenspace $E(1, f) = \text{Ker}(f - \text{id})$ of dimension p for the eigenvalue 1, and an eigenspace $E(-1, f) = \text{Ker}(f + \text{id})$ of dimension q for the eigenvalue -1. If $\det(f) = +1$ (f is a rotation), the dimension q of $E(-1, f)$ must be even, and the entries in $-I_q$ can be paired to form two-dimensional blocks, if we wish. In this case, every rotation in $\text{SO}(n)$ has a matrix of the form

$$\begin{pmatrix} A_1 & \ldots \\ \vdots & \ddots & \vdots \\ \ldots & \ldots & A_m \\ \ldots & & I_{n-2m} \end{pmatrix}$$

where the first m blocks A_j are of the form

$$A_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

with $0 < \theta_j \leq \pi$.

Theorem 14.14 can be used to prove a version of the Cartan–Dieudonné theorem.

Theorem 14.15. Let E be a Euclidean space of dimension $n \geq 2$. For every isometry $f \in \text{O}(E)$, if $p = \dim(E(1, f)) = \dim(\text{Ker}(f - \text{id}))$, then f is the composition of $n - p$ reflections, and $n - p$ is minimal.

Proof. From Theorem 14.14 there are r subspaces F_1, \ldots, F_r, each of dimension 2, such that

$$E = E(1, f) \oplus E(-1, f) \oplus F_1 \oplus \cdots \oplus F_r,$$

and all the summands are pairwise orthogonal. Furthermore, the restriction r_i of f to each F_i is a rotation $r_i \neq \text{id}$. Each 2D rotation r_i can be written as the composition $r_i = r'_i \circ s_i$ of two reflections s_i and s'_i about lines in F_i (forming an angle $\theta_i/2$). We can extend s_i and s'_i to hyperplane reflections in E by making them the identity on F_i^\perp. Then,

$$s'_r \circ s_r \circ \cdots \circ s'_1 \circ s_1$$

agrees with f on $F_1 \oplus \cdots \oplus F_r$ and is the identity on $E(1, f) \oplus E(-1, f)$. If $E(-1, f)$ has an orthonormal basis of eigenvectors (v_1, \ldots, v_q), letting s''_j be the reflection about the hyperplane $(v_j)^\perp$, it is clear that

$$s''_q \circ \cdots \circ s''_1.$$
agrees with f on $E(-1, f)$ and is the identity on $E(1, f) \oplus F_1 \oplus \cdots \oplus F_r$. But then,

$$f = s''_q \circ \cdots \circ s''_1 \circ s_r \circ \cdots \circ s'_1 \circ s_1,$$

the composition of $2r + q = n - p$ reflections.

If

$$f = s_t \circ \cdots \circ s_1,$$

for t reflections s_i, it is clear that

$$F = \bigcap_{i=1}^t E(1, s_i) \subseteq E(1, f),$$

where $E(1, s_i)$ is the hyperplane defining the reflection s_i. By the Grassmann relation, if we intersect $t \leq n$ hyperplanes, the dimension of their intersection is at least $n - t$. Thus, $n - t \leq p$, that is, $t \geq n - p$, and $n - p$ is the smallest number of reflections composing f.

As a corollary of Theorem 14.15, we obtain the following fact: If the dimension n of the Euclidean space E is odd, then every rotation $f \in \text{SO}(E)$ admits 1 has an eigenvalue.

Proof. The characteristic polynomial $\det(XI - f)$ of f has odd degree n and has real coefficients, so it must have some real root λ. Since f is an isometry, its n eigenvalues are of the form, $+1, -1, \text{ and } e^{\pm i\theta}$, with $0 < \theta < \pi$, so $\lambda = \pm 1$. Now, the eigenvalues $e^{\pm i\theta}$ appear in conjugate pairs, and since n is odd, the number of real eigenvalues of f is odd. This implies that $+1$ is an eigenvalue of f, since otherwise -1 would be the only real eigenvalue of f, and since its multiplicity is odd, we would have $\det(f) = -1$, contradicting the fact that f is a rotation.

When $n = 3$, we obtain the result due to Euler which says that every 3D rotation R has an invariant axis D, and that restricted to the plane orthogonal to D, it is a 2D rotation. Furthermore, if (a, b, c) is a unit vector defining the axis D of the rotation R and if the angle of the rotation is θ, if B is the skew-symmetric matrix

$$B = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix},$$

then it can be shown that

$$R = I + \sin \theta B + (1 - \cos \theta)B^2.$$

The theorems of this section and of the previous section can be immediately applied to matrices.
14.4 Normal and Other Special Matrices

First, we consider real matrices. Recall the following definitions.

Definition 14.3. Given a real $m \times n$ matrix A, the *transpose* A^\top of A is the $n \times m$ matrix $A^\top = (a_{ij})$ defined such that

$$a_{ij}^\top = a_{ji}$$

for all $i, j, 1 \leq i \leq m, 1 \leq j \leq n$. A real $n \times n$ matrix A is

- **normal** if
 $$AA^\top = A^\top A,$$

- **symmetric** if
 $$A^\top = A,$$

- **skew-symmetric** if
 $$A^\top = -A,$$

- **orthogonal** if
 $$AA^\top = A^\top A = I_n.$$

Recall from Proposition 10.12 that when E is a Euclidean space and (e_1, \ldots, e_n) is an orthonormal basis for E, if A is the matrix of a linear map $f: E \rightarrow E$ w.r.t. the basis (e_1, \ldots, e_n), then A^\top is the matrix of the adjoint f^* of f. Consequently, a normal linear map has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal matrix. Similarly, if E and F are Euclidean spaces, (u_1, \ldots, u_n) is an orthonormal basis for E, and (v_1, \ldots, v_m) is an orthonormal basis for F, if a linear map $f: E \rightarrow F$ has the matrix A w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m), then its adjoint f^* has the matrix A^\top w.r.t. the bases (v_1, \ldots, v_m) and (u_1, \ldots, u_n).

Furthermore, if (u_1, \ldots, u_n) is another orthonormal basis for E and P is the change of basis matrix whose columns are the components of the u_i w.r.t. the basis (e_1, \ldots, e_n), then P is orthogonal, and for any linear map $f: E \rightarrow E$, if A is the matrix of f w.r.t. (e_1, \ldots, e_n) and B is the matrix of f w.r.t. (u_1, \ldots, u_n), then

$$B = P^\top AP.$$

As a consequence, Theorems 14.10 and 14.12–14.14 can be restated as follows.
Theorem 14.16. For every normal matrix A there is an orthogonal matrix P and a block diagonal matrix D such that $A = PD P^\top$, where D is of the form

$$ D = \begin{pmatrix} D_1 & \cdots \\ & D_2 & \cdots \\ & & \ddots & \vdots \\ & & & \cdots & D_p \end{pmatrix} $$

such that each block D_j is either a one-dimensional matrix (i.e., a real scalar) or a two-dimensional matrix of the form

$$ D_j = \begin{pmatrix} \lambda_j & -\mu_j \\ \mu_j & \lambda_j \end{pmatrix}, $$

where $\lambda_j, \mu_j \in \mathbb{R}$, with $\mu_j > 0$.

Theorem 14.17. For every symmetric matrix A there is an orthogonal matrix P and a diagonal matrix D such that $A = PD P^\top$, where D is of the form

$$ D = \begin{pmatrix} \lambda_1 & \cdots \\ & \lambda_2 & \cdots \\ & & \ddots & \vdots \\ & & & \cdots & \lambda_n \end{pmatrix}, $$

where $\lambda_i \in \mathbb{R}$.

Theorem 14.18. For every skew-symmetric matrix A there is an orthogonal matrix P and a block diagonal matrix D such that $A = PD P^\top$, where D is of the form

$$ D = \begin{pmatrix} D_1 & \cdots \\ & D_2 & \cdots \\ & & \ddots & \vdots \\ & & & \cdots & D_p \end{pmatrix} $$

such that each block D_j is either 0 or a two-dimensional matrix of the form

$$ D_j = \begin{pmatrix} 0 & -\mu_j \\ \mu_j & 0 \end{pmatrix}, $$

where $\mu_j \in \mathbb{R}$, with $\mu_j > 0$. In particular, the eigenvalues of A are pure imaginary of the form $\pm i\mu_j$, or 0.

Theorem 14.19. For every orthogonal matrix A there is an orthogonal matrix P and a block diagonal matrix D such that $A = PD P^\top$, where D is of the form

$$ D = \begin{pmatrix} D_1 & \cdots \\ & D_2 & \cdots \\ & & \ddots & \vdots \\ & & & \cdots & D_p \end{pmatrix} $$
such that each block D_j is either 1, -1, or a two-dimensional matrix of the form

$$D_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

where $0 < \theta_j < \pi$. In particular, the eigenvalues of A are of the form $\cos \theta_j \pm i \sin \theta_j$, 1, or -1.

We now consider complex matrices.

Definition 14.4. Given a complex $m \times n$ matrix A, the transpose A^\top of A is the $n \times m$ matrix $A^\top = (a_{ij}^\top)$ defined such that

$$a_{ij}^\top = a_{ji}$$

for all i, j, $1 \leq i \leq m$, $1 \leq j \leq n$. The conjugate \overline{A} of A is the $m \times n$ matrix $\overline{A} = (b_{ij})$ defined such that

$$b_{ij} = \overline{a}_{ij}$$

for all i, j, $1 \leq i \leq m$, $1 \leq j \leq n$. Given an $m \times n$ complex matrix A, the adjoint A^* of A is the matrix defined such that

$$A^* = (A^\top)^\top = (\overline{A})^\top.$$

A complex $n \times n$ matrix A is

- **normal** if
 $$AA^* = A^*A,$$

- **Hermitian** if
 $$A^* = A,$$

- **skew-Hermitian** if
 $$A^* = -A,$$

- **unitary** if
 $$AA^* = A^*A = I_n.$$

Recall from Proposition 12.12 that when E is a Hermitian space and (e_1, \ldots, e_n) is an orthonormal basis for E, if A is the matrix of a linear map $f: E \to E$ w.r.t. the basis (e_1, \ldots, e_n), then A^* is the matrix of the adjoint f^* of f. Consequently, a normal linear map has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix.
Similarly, if E and F are Hermitian spaces, (u_1, \ldots, u_n) is an orthonormal basis for E, and (v_1, \ldots, v_m) is an orthonormal basis for F, if a linear map $f: E \to F$ has the matrix A w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m), then its adjoint f^* has the matrix A^* w.r.t. the bases (v_1, \ldots, v_m) and (u_1, \ldots, u_n).

Furthermore, if (u_1, \ldots, u_n) is another orthonormal basis for E and P is the change of basis matrix whose columns are the components of the u_i w.r.t. the basis (e_1, \ldots, e_n), then P is unitary, and for any linear map $f: E \to E$, if A is the matrix of f w.r.t. (e_1, \ldots, e_n) and B is the matrix of f w.r.t. (u_1, \ldots, u_n), then

$$B = P^* A P.$$

Theorem 14.11 can be restated in terms of matrices as follows. We can also say a little more about eigenvalues (easy exercise left to the reader).

Theorem 14.20. For every complex normal matrix A there is a unitary matrix U and a diagonal matrix D such that $A = UD U^*$. Furthermore, if A is Hermitian, then D is a real matrix; if A is skew-Hermitian, then the entries in D are pure imaginary or null; and if A is unitary, then the entries in D have absolute value 1.

14.5 Conditioning of Eigenvalue Problems

The following $n \times n$ matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & & 0 \\ 1 & 0 & 1 & & \vdots \\ & & \ddots & \ddots & \vdots \\ 0 & \cdots & & 1 & 0 \\ & & & 1 & 0 \end{pmatrix}$$

has the eigenvalue 0 with multiplicity n. However, if we perturb the top rightmost entry of A by ϵ, it is easy to see that the characteristic polynomial of the matrix

$$A(\epsilon) = \begin{pmatrix} 0 & 1 & 0 & & \epsilon \\ 1 & 0 & 1 & & \vdots \\ & & \ddots & \ddots & \vdots \\ 0 & \cdots & & 1 & 0 \\ & & & 1 & 0 \end{pmatrix}$$

is $X^n - \epsilon$. It follows that if $n = 40$ and $\epsilon = 10^{-40}$, $A(10^{-40})$ has the eigenvalues $e^{k2\pi i/40}10^{-1}$ with $k = 1, \ldots, 40$. Thus, we see that a very small change ($\epsilon = 10^{-40}$) to the matrix A causes
a significant change to the eigenvalues of A (from 0 to $e^{k\pi i/40}10^{-1}$). Indeed, the relative error is 10^{-39}. Worse, due to machine precision, since very small numbers are treated as 0, the error on the computation of eigenvalues (for example, of the matrix $A(10^{-40})$) can be very large.

This phenomenon is similar to the phenomenon discussed in Section 7.3 where we studied the effect of a small perturbation of the coefficients of a linear system $Ax = b$ on its solution. In Section 7.3, we saw that the behavior of a linear system under small perturbations is governed by the condition number $\text{cond}(A)$ of the matrix A. In the case of the eigenvalue problem (finding the eigenvalues of a matrix), we will see that the conditioning of the problem depends on the condition number of the change of basis matrix P used in reducing the matrix A to its diagonal form $D = P^{-1}AP$, rather than on the condition number of A itself. The following proposition in which we assume that A is diagonalizable and that the matrix norm $\| \|$ satisfies a special condition (satisfied by the operator norms $\| \|_p$ for $p = 1, 2, \infty$), is due to Bauer and Fike (1960).

Proposition 14.21. Let $A \in M_n(\mathbb{C})$ be a diagonalizable matrix, P be an invertible matrix and, D be a diagonal matrix $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ such that

$$A = PDP^{-1},$$

and let $\| \|$ be a matrix norm such that

$$\| \text{diag}(\alpha_1, \ldots, \alpha_n)\| = \max_{1 \leq i \leq n} |\alpha_i|,$$

for every diagonal matrix. Then, for every perturbation matrix δA, if we write

$$B_i = \{z \in \mathbb{C} \mid |z - \lambda_i| \leq \text{cond}(P) \| \delta A \|\},$$

for every eigenvalue λ of $A + \delta A$, we have

$$\lambda \in \bigcup_{k=1}^{n} B_k.$$

Proof. Let λ be any eigenvalue of the matrix $A + \delta A$. If $\lambda = \lambda_j$ for some j, then the result is trivial. Thus, assume that $\lambda \neq \lambda_j$ for $j = 1, \ldots, n$. In this case, the matrix $D - \lambda I$ is invertible (since its eigenvalues are $\lambda - \lambda_j$ for $j = 1, \ldots, n$), and we have

$$P^{-1}(A + \delta A - \lambda I)P = D - \lambda I + P^{-1}(\delta A)P = (D - \lambda I)(I + (D - \lambda I)^{-1}P^{-1}(\delta A)P).$$

Since λ is an eigenvalue of $A + \delta A$, the matrix $A + \delta A - \lambda I$ is singular, so the matrix

$$I + (D - \lambda I)^{-1}P^{-1}(\delta A)P$$
must also be singular. By Proposition 7.10(2), we have
\[1 \leq \| (D - \lambda I)^{-1} P^{-1} (\delta A) P \|, \]
and since \(\| \| \) is a matrix norm,
\[\| (D - \lambda I)^{-1} P^{-1} (\delta A) P \| \leq \| (D - \lambda I)^{-1} \| \| P^{-1} \| \| \delta A \| \| P \|, \]
so we have
\[1 \leq \| (D - \lambda I)^{-1} \| \| P^{-1} \| \| \delta A \| \| P \|. \]
Now, \((D - \lambda I)^{-1} \) is a diagonal matrix with entries \(1/(\lambda_i - \lambda) \), so by our assumption on the norm,
\[\| (D - \lambda I)^{-1} \| = \frac{1}{\min_i(|\lambda_i - \lambda|)}. \]
As a consequence, since there is some index \(k \) for which \(\min_i(|\lambda_i - \lambda|) = |\lambda_k - \lambda| \), we have
\[\| (D - \lambda I)^{-1} \| = \frac{1}{|\lambda_k - \lambda|}, \]
and we obtain
\[|\lambda - \lambda_k| \leq \| P^{-1} \| \| \delta A \| \| P \| = \text{cond}(P) \| \delta A \|, \]
which proves our result.

Proposition 14.21 implies that for any diagonalizable matrix \(A \), if we define \(\Gamma(A) \) by
\[\Gamma(A) = \inf \{ \text{cond}(P) \mid P^{-1} A P = D \}, \]
then for every eigenvalue \(\lambda \) of \(A + \delta A \), we have
\[\lambda \in \bigcup_{k=1}^{n} \{ z \in \mathbb{C}^n \mid |z - \lambda_k| \leq \Gamma(A) \| \delta A \| \}. \]
The number \(\Gamma(A) \) is called the \textit{conditioning of} \(A \) \textit{relative to the eigenvalue problem}. If \(A \) is a normal matrix, since by Theorem 14.20, \(A \) can be diagonalized with respect to a unitary matrix \(U \), and since for the spectral norm \(\| U \|_2 = 1 \), we see that \(\Gamma(A) = 1 \). Therefore, normal matrices are very well conditionned w.r.t. the eigenvalue problem. In fact, for every eigenvalue \(\lambda \) of \(A + \delta A \) (with \(A \) normal), we have
\[\lambda \in \bigcup_{k=1}^{n} \{ z \in \mathbb{C}^n \mid |z - \lambda_k| \leq \| \delta A \|_2 \}. \]
If \(A \) and \(A + \delta A \) are both symmetric (or Hermitian), there are sharper results; see Proposition 14.27.

Note that the matrix \(A(\epsilon) \) from the beginning of the section is not normal.
14.6 Rayleigh Ratios and the Courant-Fischer Theorem

A fact that is used frequently in optimization problems is that the eigenvalues of a symmetric matrix are characterized in terms of what is known as the Rayleigh ratio, defined by

$$R(A)(x) = \frac{x^\top Ax}{x^\top x}, \quad x \in \mathbb{R}^n, x \neq 0.$$

The following proposition is often used to prove the correctness of various optimization or approximation problems (for example PCA).

Proposition 14.22. (Rayleigh–Ritz) If A is a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and if (u_1, \ldots, u_n) is any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i, then

$$\max_{x \neq 0} \frac{x^\top Ax}{x^\top x} = \lambda_n$$

(with the maximum attained for $x = u_n$), and

$$\max_{x \neq 0, x \in \{u_{n-k+1}, \ldots, u_n\}^\perp} \frac{x^\top Ax}{x^\top x} = \lambda_{n-k}$$

(with the maximum attained for $x = u_{n-k}$), where $1 \leq k \leq n - 1$. Equivalently, if V_k is the subspace spanned by (u_1, \ldots, u_k), then

$$\lambda_k = \max_{x \neq 0, x \in V_k} \frac{x^\top Ax}{x^\top x}, \quad k = 1, \ldots, n.$$

Proof. First, observe that

$$\max_{x \neq 0} \frac{x^\top Ax}{x^\top x} = \max_x \{x^\top Ax \mid x^\top x = 1\},$$

and similarly,

$$\max_{x \neq 0, x \in \{u_{n-k+1}, \ldots, u_n\}^\perp} \frac{x^\top Ax}{x^\top x} = \max_x \left\{x^\top Ax \mid (x \in \{u_{n-k+1}, \ldots, u_n\}^\perp) \land (x^\top x = 1)\right\}.$$

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect to an orthonormal basis of eigenvectors, so let (u_1, \ldots, u_n) be such a basis. If we write

$$x = \sum_{i=1}^{n} x_i u_i,$$
a simple computation shows that
\[x^\top A x = \sum_{i=1}^{n} \lambda_i x_i^2. \]

If \(x^\top x = 1 \), then \(\sum_{i=1}^{n} x_i^2 = 1 \), and since we assumed that \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \), we get
\[x^\top A x = \sum_{i=1}^{n} \lambda_i x_i^2 \leq \lambda_n \left(\sum_{i=1}^{n} x_i^2 \right) = \lambda_n. \]

Thus,
\[\max_x \left\{ x^\top A x \mid x^\top x = 1 \right\} \leq \lambda_n, \]
and since this maximum is achieved for \(e_n = (0,0,\ldots,1) \), we conclude that
\[\max_x \left\{ x^\top A x \mid x^\top x = 1 \right\} = \lambda_n. \]

Next, observe that \(x \in \{ u_{n-k+1}, \ldots, u_n \}^\perp \) and \(x^\top x = 1 \) iff \(x_{n-k+1} = \cdots = x_n = 0 \) and \(\sum_{i=1}^{n-k} x_i^2 = 1 \). Consequently, for such an \(x \), we have
\[x^\top A x = \sum_{i=1}^{n-k} \lambda_i x_i^2 \leq \lambda_{n-k} \left(\sum_{i=1}^{n-k} x_i^2 \right) = \lambda_{n-k}. \]

Thus,
\[\max_x \left\{ x^\top A x \mid (x \in \{ u_{n-k+1}, \ldots, u_n \}^\perp) \land (x^\top x = 1) \right\} \leq \lambda_{n-k}, \]
and since this maximum is achieved for \(e_{n-k} = (0,\ldots,0,1,0,\ldots,0) \) with a 1 in position \(n-k \), we conclude that
\[\max_x \left\{ x^\top A x \mid (x \in \{ u_{n-k+1}, \ldots, u_n \}^\perp) \land (x^\top x = 1) \right\} = \lambda_{n-k}, \]
as claimed.

For our purposes, we need the version of Proposition 14.22 applying to min instead of max, whose proof is obtained by a trivial modification of the proof of Proposition 14.22.

Proposition 14.23. (Rayleigh–Ritz) If \(A \) is a symmetric \(n \times n \) matrix with eigenvalues \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) and if \((u_1, \ldots, u_n) \) is any orthonormal basis of eigenvectors of \(A \), where \(u_i \) is a unit eigenvector associated with \(\lambda_i \), then
\[\min_{x \neq 0} \frac{x^\top A x}{x^\top x} = \lambda_1 \]
(with the minimum attained for \(x = u_1 \)), and
\[\min_{x \neq 0, x \in \{ u_1, \ldots, u_{i-1} \}^\perp} \frac{x^\top A x}{x^\top x} = \lambda_i \]
14.6. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM

(with the minimum attained for \(x = u_i \)), where \(2 \leq i \leq n \). Equivalently, if \(W_k = V_{k-1}^\perp \) denotes the subspace spanned by \((u_k, \ldots, u_n)\) (with \(V_0 = \{0\} \)), then

\[
\lambda_k = \min_{x \neq 0, x \in W_k} \frac{x^\top Ax}{x^\top x} = \min_{x \neq 0, x \in V_{k-1}^\perp} \frac{x^\top Ax}{x^\top x}, \quad k = 1, \ldots, n.
\]

Propositions 14.22 and 14.23 together are known the Rayleigh–Ritz theorem.

As an application of Propositions 14.22 and 14.23, we prove a proposition which allows us to compare the eigenvalues of two symmetric matrices \(A \) and \(B = R^\top AR \), where \(R \) is a rectangular matrix satisfying the equation \(R^\top R = I \).

First, we need a definition.

Definition 14.5. Given an \(n \times n \) symmetric matrix \(A \) and an \(m \times m \) symmetric \(B \), with \(m \leq n \), if \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) are the eigenvalues of \(A \) and \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_m \) are the eigenvalues of \(B \), then we say that the eigenvalues of \(B \) interlace the eigenvalues of \(A \) if

\[
\lambda_i \leq \mu_i \leq \lambda_{n-m+i}, \quad i = 1, \ldots, m.
\]

For example, if \(n = 5 \) and \(m = 3 \), we have

\[
\begin{align*}
\lambda_1 & \leq \mu_1 \leq \lambda_3 \\
\lambda_2 & \leq \mu_2 \leq \lambda_4 \\
\lambda_3 & \leq \mu_3 \leq \lambda_5.
\end{align*}
\]

Proposition 14.24. Let \(A \) be an \(n \times n \) symmetric matrix, \(R \) be an \(n \times m \) matrix such that \(R^\top R = I \) (with \(m \leq n \)), and let \(B = R^\top AR \) (an \(m \times m \) matrix). The following properties hold:

(a) The eigenvalues of \(B \) interlace the eigenvalues of \(A \).

(b) If \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) are the eigenvalues of \(A \) and \(\mu_1 \leq \mu_2 \leq \cdots \leq \mu_m \) are the eigenvalues of \(B \), and if \(\lambda_i = \mu_i \), then there is an eigenvector \(v \) of \(B \) with eigenvalue \(\mu_i \) such that \(Rv \) is an eigenvector of \(A \) with eigenvalue \(\lambda_i \).

Proof. (a) Let \((u_1, \ldots, u_n)\) be an orthonormal basis of eigenvectors for \(A \), and let \((v_1, \ldots, v_m)\) be an orthonormal basis of eigenvectors for \(B \). Let \(U_j \) be the subspace spanned by \((u_1, \ldots, u_j)\) and let \(V_j \) be the subspace spanned by \((v_1, \ldots, v_j)\). For any \(i \), the subspace \(V_i \) has dimension \(i \) and the subspace \(R^\top U_{i-1} \) has dimension at most \(i - 1 \). Therefore, there is some nonzero vector \(v \in V_i \cap (R^\top U_{i-1})^\perp \), and since

\[
v^\top R^\top u_j = (Rv)^\top u_j = 0, \quad j = 1, \ldots, i - 1,
\]

we have \(Rv \in (U_{i-1})^\perp \). By Proposition 14.23 and using the fact that \(R^\top R = I \), we have

\[
\lambda_i \leq \frac{(Rv)^\top ARv}{(Rv)^\top Rv} = \frac{v^\top Bv}{v^\top v}.
\]
On the other hand, by Proposition 14.22,

$$\mu_i = \max_{x \neq 0, x \in \{v_{i+1}, \ldots, v_n\}^\perp} \frac{x^\top B x}{x^\top x} = \max_{x \neq 0, x \in \{v_1, \ldots, v_i\}} \frac{x^\top B x}{x^\top x},$$

so

$$\frac{w^\top B w}{w^\top w} \leq \mu_i \quad \text{for all } w \in V_i,$$

and since $v \in V_i$, we have

$$\lambda_i \leq \frac{v^\top B v}{v^\top v} \leq \mu_i, \quad i = 1, \ldots, m.$$

We can apply the same argument to the symmetric matrices $-A$ and $-B$, to conclude that

$$-\lambda_{n-m+i} \leq -\mu_i,$$

that is,

$$\mu_i \leq \lambda_{n-m+i}, \quad i = 1, \ldots, m.$$

Therefore,

$$\lambda_i \leq \mu_i \leq \lambda_{n-m+i}, \quad i = 1, \ldots, m,$$

as desired.

(b) If $\lambda_i = \mu_i$, then

$$\lambda_i = \frac{(R v)^\top A R v}{(R v)^\top R v} = \frac{v^\top B v}{v^\top v} = \mu_i,$$

so v must be an eigenvector for B and $R v$ must be an eigenvector for A, both for the eigenvalue $\lambda_i = \mu_i$. \hfill \Box

Proposition 14.24 immediately implies the Poincaré separation theorem. It can be used in situations, such as in quantum mechanics, where one has information about the inner products $u_i^\top A u_j$.

Proposition 14.25. (Poincaré separation theorem) Let A be a $n \times n$ symmetric (or Hermitian) matrix, let r be some integer with $1 \leq r \leq n$, and let (u_1, \ldots, u_r) be r orthonormal vectors. Let $B = (u_i^\top A u_j)$ (an $r \times r$ matrix), let $\lambda_1(A) \leq \ldots \leq \lambda_n(A)$ be the eigenvalues of A and $\lambda_1(B) \leq \ldots \leq \lambda_r(B)$ be the eigenvalues of B; then we have

$$\lambda_k(A) \leq \lambda_k(B) \leq \lambda_{k+n-r}(A), \quad k = 1, \ldots, r.$$

Observe that Proposition 14.24 implies that

$$\lambda_1 + \cdots + \lambda_m \leq \text{tr}(R^\top A R) \leq \lambda_{n-m+1} + \cdots + \lambda_n.$$
14.6. RAYLEIGH RATIOS AND THE COURANT-FISCHER THEOREM

If P_1 is the the $n \times (n - 1)$ matrix obtained from the identity matrix by dropping its last column, we have $P_1^T P_1 = I$, and the matrix $B = P_1^T A P_1$ is the matrix obtained from A by deleting its last row and its last column. In this case, the interlacing result is

$$
\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \mu_{n-2} \leq \lambda_{n-1} \leq \mu_{n-1} \leq \lambda_n,
$$
a genuine interlacing. We obtain similar results with the matrix P_{n-r} obtained by dropping the last $n - r$ columns of the identity matrix and setting $B = P_{n-r}^T A P_{n-r}$ (B is the $r \times r$ matrix obtained from A by deleting its last $n - r$ rows and columns). In this case, we have the following interlacing inequalities known as *Cauchy interlacing theorem*:

$$
\lambda_k \leq \mu_k \leq \lambda_{k+n-r}, \quad k = 1, \ldots, r. \quad (*)
$$

Another useful tool to prove eigenvalue equalities is the Courant–Fischer characterization of the eigenvalues of a symmetric matrix, also known as the Min-max (and Max-min) theorem.

Theorem 14.26. (Courant–Fischer) Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. If \mathcal{V}_k denotes the set of subspaces of \mathbb{R}^n of dimension k, then

$$
\lambda_k = \max_{W \in \mathcal{V}_{n-k+1}} \min_{x \in W, x \neq 0} \frac{x^T Ax}{x^T x},
$$

$$
\lambda_k = \min_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^T Ax}{x^T x}.
$$

Proof. Let us consider the second equality, the proof of the first equality being similar. Let (u_1, \ldots, u_n) be any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i. Observe that the space V_k spanned by (u_1, \ldots, u_k) has dimension k, and by Proposition 14.22, we have

$$
\lambda_k = \max_{x \neq 0, x \in V_k} \frac{x^T Ax}{x^T x} \geq \min_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^T Ax}{x^T x}.
$$

Therefore, we need to prove the reverse inequality; that is, we have to show that

$$
\lambda_k \leq \max_{x \neq 0, x \in W} \frac{x^T Ax}{x^T x}, \quad \text{for all } W \in \mathcal{V}_k.
$$

Now, for any $W \in \mathcal{V}_k$, if we can prove that $W \cap V_{k-1}^\perp \neq (0)$, then for any nonzero $v \in W \cap V_{k-1}^\perp$, by Proposition 14.23, we have

$$
\lambda_k = \min_{x \neq 0, x \in V_{k-1}^\perp} \frac{x^T Ax}{x^T x} \leq \frac{v^T Av}{v^T v} \leq \max_{x \in W, x \neq 0} \frac{x^T Ax}{x^T x}.
$$

It remains to prove that $\dim(W \cap V_{k-1}^\perp) \geq 1$. However, $\dim(V_{k-1}) = k - 1$, so $\dim(V_{k-1}^\perp) = n - k + 1$, and by hypothesis $\dim(W) = k$. By the Grassmann relation,

$$
\dim(W) + \dim(V_{k-1}^\perp) = \dim(W \cap V_{k-1}^\perp) + \dim(W + V_{k-1}^\perp),
$$
and since \(\dim(W + V_{k-1}^\perp) \leq \dim(\mathbb{R}^n) = n \), we get

\[
k + n - k + 1 \leq \dim(W \cap V_{k-1}^\perp) + n;
\]

that is, \(1 \leq \dim(W \cap V_{k-1}^\perp) \), as claimed. \(\square\)

The Courant–Fischer theorem yields the following useful result about perturbing the eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 14.27. Given two \(n \times n \) symmetric matrices \(A \) and \(B = A + \delta A \), if \(\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n \) are the eigenvalues of \(A \) and \(\beta_1 \leq \beta_2 \leq \cdots \leq \beta_n \) are the eigenvalues of \(B \), then

\[
|\alpha_k - \beta_k| \leq \rho(\delta A) \leq \|\delta A\|_2, \quad k = 1, \ldots, n.
\]

Proof. Let \(V_k \) be defined as in the Courant–Fischer theorem and let \(V_k \) be the subspace spanned by the \(k \) eigenvectors associated with \(\lambda_1, \ldots, \lambda_k \). By the Courant–Fischer theorem applied to \(B \), we have

\[
\beta_k = \min_{W \in V_k} \max_{x \in W, x \neq 0} \frac{x^\top B x}{x^\top x}.
\]

By Proposition 14.22, we have

\[
\alpha_k = \max_{x \in V_k} \frac{x^\top A x}{x^\top x},
\]

so we obtain

\[
\beta_k \leq \max_{x \in V_k} \frac{x^\top A x}{x^\top x} + \max_{x \in V_k} \frac{x^\top \delta A x}{x^\top x}
\]

\[
= \alpha_k + \max_{x \in V_k} \frac{x^\top \delta A x}{x^\top x}
\]

\[
\leq \alpha_k + \max_{x \in \mathbb{R}^n} \frac{x^\top \delta A x}{x^\top x}.
\]

Now, by Proposition 14.22 and Proposition 7.8, we have

\[
\max_{x \in \mathbb{R}^n} \frac{x^\top \delta A x}{x^\top x} = \max_i \lambda_i(\delta A) \leq \rho(\delta A) \leq \|\delta A\|_2,
\]
where $\lambda_i(\delta A)$ denotes the ith eigenvalue of δA, which implies that

$$\beta_k \leq \alpha_k + \rho(\delta A) \leq \alpha_k + \|\delta A\|_2.$$

By exchanging the roles of A and B, we also have

$$\alpha_k \leq \beta_k + \rho(\delta A) \leq \beta_k + \|\delta A\|_2,$$

and thus,

$$|\alpha_k - \beta_k| \leq \rho(\delta A) \leq \|\delta A\|_2, \quad k = 1, \ldots, n,$$

as claimed. \qed

Proposition 14.27 also holds for Hermitian matrices.

A pretty result of Wielandt and Hoffman asserts that

$$\sum_{k=1}^{n} (\alpha_k - \beta_k)^2 \leq \|\delta A\|_F^2,$$

where $\|\cdot\|_F$ is the Frobenius norm. However, the proof is significantly harder than the above proof; see Lax [35].

The Courant–Fischer theorem can also be used to prove some famous inequalities due to Hermann Weyl. Given two symmetric (or Hermitian) matrices A and B, let $\lambda_i(A), \lambda_i(B)$, and $\lambda_i(A + B)$ denote the ith eigenvalue of A, B, and $A + B$, respectively, arranged in nondecreasing order.

Proposition 14.28. (Weyl) Given two symmetric (or Hermitian) $n \times n$ matrices A and B, the following inequalities hold: For all i, j, k with $1 \leq i, j, k \leq n$:

1. If $i + j = k + 1$, then

 $$\lambda_i(A) + \lambda_j(B) \leq \lambda_k(A + B).$$

2. If $i + j = k + n$, then

 $$\lambda_k(A + B) \leq \lambda_i(A) + \lambda_j(B).$$

Proof. Observe that the first set of inequalities is obtained form the second set by replacing A by $-A$ and B by $-B$, so it is enough to prove the second set of inequalities. By the Courant–Fischer theorem, there is a subspace H of dimension $n - k + 1$ such that

$$\lambda_k(A + B) = \min_{x \in H, x \neq 0} \frac{x^\top (A + B)x}{x^\top x}.$$

Similarly, there exist a subspace F of dimension i and a subspace G of dimension j such that

$$\lambda_i(A) = \max_{x \in F, x \neq 0} \frac{x^\top Ax}{x^\top x}, \quad \lambda_j(B) = \max_{x \in G, x \neq 0} \frac{x^\top Bx}{x^\top x}.$$
We claim that \(F \cap G \cap H \neq (0) \). To prove this, we use the Grassmann relation twice. First,
\[
\dim(F \cap G \cap H) = \dim(F) + \dim(G \cap H) - \dim(F + (G \cap H)) \geq \dim(F) + \dim(G \cap H) - n,
\]
and second,
\[
\dim(G \cap H) = \dim(G) + \dim(H) - \dim(G + H) \geq \dim(G) + \dim(H) - n,
\]
so
\[
\dim(F \cap G \cap H) \geq \dim(F) + \dim(G) + \dim(H) - 2n.
\]
However,
\[
\dim(F) + \dim(G) + \dim(H) = i + j + n - k + 1
\]
and \(i + j = k + n \), so we have
\[
\dim(F \cap G \cap H) \geq i + j + n - k + 1 - 2n = k + n + n - k + 1 - 2n = 1,
\]
which shows that \(F \cap G \cap H \neq (0) \). Then, for any unit vector \(z \in F \cap G \cap H \neq (0) \), we have
\[
\lambda_k(A + B) \leq z^\top(A + B)z, \quad \lambda_i(A) \geq z^\top Az, \quad \lambda_j(B) \geq z^\top Bz,
\]
establishing the desired inequality \(\lambda_k(A + B) \leq \lambda_i(A) + \lambda_j(B) \). \qed

In the special case \(i = j = k \), we obtain
\[
\lambda_1(A) + \lambda_1(B) \leq \lambda_1(A + B), \quad \lambda_n(A + B) \leq \lambda_n(A) + \lambda_n(B).
\]
It follows that \(\lambda_1 \) is concave, while \(\lambda_n \) is convex.

If \(i = 1 \) and \(j = k \), we obtain
\[
\lambda_1(A) + \lambda_k(B) \leq \lambda_k(A + B),
\]
and if \(i = k \) and \(j = n \), we obtain
\[
\lambda_k(A + B) \leq \lambda_k(A) + \lambda_n(B),
\]
and combining them, we get
\[
\lambda_1(A) + \lambda_k(B) \leq \lambda_k(A + B) \leq \lambda_k(A) + \lambda_n(B).
\]
In particular, if \(B \) is positive semidefinite, since its eigenvalues are nonnegative, we obtain the following inequality known as the \textit{monotonicity theorem} for symmetric (or Hermitian) matrices: if \(A \) and \(B \) are symmetric (or Hermitian) and \(B \) is positive semidefinite, then
\[
\lambda_k(A) \leq \lambda_k(A + B) \quad k = 1, \ldots, n.
\]
The reader is referred to Horn and Johnson [28] (Chapters 4 and 7) for a very complete treatment of matrix inequalities and interlacing results, and also to Lax [35] and Serre [46].

We now have all the tools to present the important \textit{singular value decomposition} (SVD) and the \textit{polar form} of a matrix. However, we prefer to first illustrate how the material of this section can be used to discretize boundary value problems, and we give a brief introduction to the finite elements method.
14.7 Summary

The main concepts and results of this chapter are listed below:

- Normal linear maps, self-adjoint linear maps, skew-self-adjoint linear maps, and orthogonal linear maps.
- Properties of the eigenvalues and eigenvectors of a normal linear map.
- The complexification of a real vector space, of a linear map, and of a Euclidean inner product.
- The eigenvalues of a self-adjoint map in a Hermitian space are real.
- The eigenvalues of a self-adjoint map in a Euclidean space are real.
- Every self-adjoint linear map on a Euclidean space has an orthonormal basis of eigenvectors.
- Every normal linear map on a Euclidean space can be block diagonalized (blocks of size at most 2×2) with respect to an orthonormal basis of eigenvectors.
- Every normal linear map on a Hermitian space can be diagonalized with respect to an orthonormal basis of eigenvectors.
- The spectral theorems for self-adjoint, skew-self-adjoint, and orthogonal linear maps (on a Euclidean space).
- The spectral theorems for normal, symmetric, skew-symmetric, and orthogonal (real) matrices.
- The spectral theorems for normal, Hermitian, skew-Hermitian, and unitary (complex) matrices.
- The conditioning of eigenvalue problems.
- The Rayleigh ratio and the Rayleigh–Ritz theorem.
- Interlacing inequalities and the Cauchy interlacing theorem.
- The Poincaré separation theorem.
- The Courant–Fischer theorem.
- Inequalities involving perturbations of the eigenvalues of a symmetric matrix.
- The Weyl inequalities.
Chapter 15

Variational Approximation of Boundary-Value Problems; Introduction to the Finite Elements Method

15.1 A One-Dimensional Problem: Bending of a Beam

Consider a beam of unit length supported at its ends in 0 and 1, stretched along its axis by a force P, and subjected to a transverse load $f(x)\,dx$ per element dx, as illustrated in Figure 15.1.

Consider a beam of unit length supported at its ends in 0 and 1, stretched along its axis by a force P, and subjected to a transverse load $f(x)\,dx$ per element dx, as illustrated in Figure 15.1.

![Figure 15.1: Vertical deflection of a beam](image)

The bending moment $u(x)$ at the absissa x is the solution of a boundary problem (BP) of the form

$$-u''(x) + c(x)u(x) = f(x), \quad 0 < x < 1$$

$$u(0) = \alpha$$

$$u(1) = \beta,$$
where \(c(x) = P/(EI(x)) \), where \(E \) is the Young’s modulus of the material of which the beam is made and \(I(x) \) is the principal moment of inertia of the cross-section of the beam at the abcissa \(x \), and with \(\alpha = \beta = 0 \). For this problem, we may assume that \(c(x) \geq 0 \) for all \(x \in [0, 1] \).

Remark: The vertical deflection \(w(x) \) of the beam and the bending moment \(u(x) \) are related by the equation

\[
u(x) = -EI \frac{d^2 w}{dx^2}.
\]

If we seek a solution \(u \in C^2([0, 1]) \), that is, a function whose first and second derivatives exist and are continuous, then it can be shown that the problem has a unique solution (assuming \(c \) and \(f \) to be continuous functions on \([0, 1]\)).

Except in very rare situations, this problem has no closed-form solution, so we are led to seek approximations of the solutions.

One way to proceed is to use the finite difference method, where we discretize the problem and replace derivatives by differences. Another way is to use a variational approach. In this approach, we follow a somewhat surprising path in which we come up with a so-called “weak formulation” of the problem, by using a trick based on integrating by parts!

First, let us observe that we can always assume that \(\alpha = \beta = 0 \), by looking for a solution of the form \(u(x) = (\alpha(1-x) + \beta x) \). This turns out to be crucial when we integrate by parts. There are a lot of subtle mathematical details involved to make what follows rigorous, but here, we will take a “relaxed” approach.

First, we need to specify the space of “weak solutions.” This will be the vector space \(V \) of continuous functions \(f \) on \([0, 1]\), with \(f(0) = f(1) = 0 \), and which are piecewise continuously differentiable on \([0, 1]\). This means that there is a finite number of points \(x_0, \ldots, x_{N+1} \) with \(x_0 = 0 \) and \(x_{N+1} = 1 \), such that \(f'(x_i) \) is undefined for \(i = 1, \ldots, N \), but otherwise \(f' \) is defined and continuous on each interval \((x_i, x_{i+1})\) for \(i = 0, \ldots, N \). The space \(V \) becomes a Euclidean vector space under the inner product

\[
\langle f, g \rangle_V = \int_0^1 (f(x)g(x) + f'(x)g'(x))dx,
\]

for all \(f, g \in V \). The associated norm is

\[
\|f\|_V = \left(\int_0^1 (f(x)^2 + f'(x)^2)dx \right)^{1/2}.
\]

Assume that \(u \) is a solution of our original boundary problem (BP), so that

\[
-u''(x) + c(x)u(x) = f(x), \quad 0 < x < 1
\]

\[
u(0) = 0
\]

\[
u(1) = 0.
\]

\[1\text{We also assume that } f'(x) \text{ has a limit when } x \text{ tends to a boundary of } (x_i, x_{i+1}).\]
Multiply the differential equation by any arbitrary test function $v \in V$, obtaining

$$-u''(x)v(x) + c(x)u(x)v(x) = f(x)v(x),$$

and integrate this equation! We get

$$-\int_0^1 u''(x)v(x)dx + \int_0^1 c(x)u(x)v(x)dx = \int_0^1 f(x)v(x)dx. \quad (\dagger)$$

Now, the trick is to use integration by parts on the first term. Recall that

$$(u'v)' = u'' + u'v',$$

and to be careful about discontinuities, write

$$\int_0^1 u''(x)v(x)dx = \sum_{i=0}^N \int_{x_i}^{x_{i+1}} u''(x)v(x)dx.$$

Using integration by parts, we have

$$\int_{x_i}^{x_{i+1}} u''(x)v(x)dx = \int_{x_i}^{x_{i+1}} (u'(x)v(x))'dx - \int_{x_i}^{x_{i+1}} u'(x)v'(x)dx$$

$$= [u'(x)v(x)]_{x=x_i}^{x=x_{i+1}} - \int_{x_i}^{x_{i+1}} u'(x)v'(x)dx$$

$$= u'(x_{i+1})v(x_{i+1}) - u'(x_i)v(x_i) - \int_{x_i}^{x_{i+1}} u'(x)v'(x)dx.$$

It follows that

$$\int_0^1 u''(x)v(x)dx = \sum_{i=0}^N \int_{x_i}^{x_{i+1}} u''(x)v(x)dx$$

$$= \sum_{i=0}^N \left(u'(x_{i+1})v(x_{i+1}) - u'(x_i)v(x_i) - \int_{x_i}^{x_{i+1}} u'(x)v'(x)dx \right)$$

$$= u'(1)v(1) - u'(0)v(0) - \int_0^1 u'(x)v'(x)dx.$$

However, the test function v satisfies the boundary conditions $v(0) = v(1) = 0$ (recall that $v \in V$), so we get

$$\int_0^1 u''(x)v(x)dx = -\int_0^1 u'(x)v'(x)dx.$$

Consequently, the equation (\dagger) becomes

$$\int_0^1 u'(x)v'(x)dx + \int_0^1 c(x)u(x)v(x)dx = \int_0^1 f(x)v(x)dx,$$
or
$$\int_0^1 (u'v' + cuv)dx = \int_0^1 fvdx, \quad \text{for all } v \in V. \quad (**$$

Thus, it is natural to introduce the bilinear form \(a: V \times V \to \mathbb{R}\) given by
$$a(u, v) = \int_0^1 (u'v' + cuv)dx, \quad \text{for all } u, v \in V,$$

and the linear form \(\tilde{f}: V \to \mathbb{R}\) given by
$$\tilde{f}(v) = \int_0^1 f(x)v(x)dx, \quad \text{for all } v \in V.$$

Then, (** becomes
$$a(u, v) = \tilde{f}(v), \quad \text{for all } v \in V.$$

We also introduce the energy function \(J\) given by
$$J(v) = \frac{1}{2}a(v, v) - \tilde{f}(v) \quad v \in V.$$

Then, we have the following theorem.

Theorem 15.1. Let \(u\) be any solution of the boundary problem (BP).

1. Then we have
 $$a(u, v) = \tilde{f}(v), \quad \text{for all } v \in V, \quad \text{(WF)}$$
 where
 $$a(u, v) = \int_0^1 (u'v' + cuv)dx, \quad \text{for all } u, v \in V,$$
 and
 $$\tilde{f}(v) = \int_0^1 f(x)v(x)dx, \quad \text{for all } v \in V.$$

2. If \(c(x) \geq 0\) for all \(x \in [0, 1]\), then a function \(u \in V\) is a solution of (WF) iff \(u\) minimizes \(J(v)\), that is,
 $$J(u) = \inf_{v \in V} J(v),$$
 with
 $$J(v) = \frac{1}{2}a(v, v) - \tilde{f}(v) \quad v \in V.$$

Furthermore, \(u\) is unique.
15.1. A ONE-DIMENSIONAL PROBLEM: BENDING OF A BEAM

Proof. We already proved (1).

To prove (2), first we show that
\[\|v\|_V^2 \leq 2a(v, v), \quad \text{for all } v \in V. \]

For this, it suffices to prove that
\[\|v\|_V^2 \leq 2 \int_0^1 (f'(x))^2 dx, \quad \text{for all } v \in V. \]

However, by Cauchy-Schwarz for functions, for every \(x \in [0, 1] \), we have
\[|v(x)| = \left| \int_0^x v'(t) dt \right| \leq \int_0^1 |v'(t)| dt \leq \left(\int_0^1 |v'(t)|^2 dt \right)^{1/2}, \]
and so
\[\|v\|_V^2 = \int_0^1 ((v(x))^2 + (v'(x))^2) dx \leq 2 \int_0^1 (v'(x))^2 dx \leq 2a(v, v), \]
since
\[a(v, v) = \int_0^1 ((v')^2 + cv^2) dx. \]

Next, it is easy to check that
\[J(u + v) - J(u) = a(u, v) - \widetilde{f}(v) + \frac{1}{2}a(v, v), \quad \text{for all } u, v \in V. \]

Then, if \(u \) is a solution of (WF), we deduce that
\[J(u + v) - J(u) = \frac{1}{2}a(v, v) \geq \frac{1}{4}\|v\|_V \geq 0 \quad \text{for all } v \in V. \]

since \(a(u, v) - \widetilde{f}(v) = 0 \) for all \(v \in V \). Therefore, \(J \) achieves a minimum for \(u \).

We also have
\[J(u + \theta v) - J(u) = \theta(a(u, v) - f(v)) + \frac{\theta^2}{2}a(v, v) \quad \text{for all } \theta \in \mathbb{R}, \]
and so \(J(u + \theta v) - J(u) \geq 0 \) for all \(\theta \in \mathbb{R} \). Consequently, if \(J \) achieves a minimum for \(u \), then \(a(u, v) = \widetilde{f}(v) \), which means that \(u \) is a solution of (WF).

Finally, assuming that \(c(x) \geq 0 \), we claim that if \(v \in V \) and \(v \neq 0 \), then \(a(v, v) > 0 \). This is because if \(a(v, v) = 0 \), since
\[\|v\|_V^2 \leq 2a(v, v) \quad \text{for all } v \in V, \]
we would have \(\|v\|_V = 0 \), that is, \(v = 0 \). Then, if \(v \neq 0 \), from
\[J(u + v) - J(u) = \frac{1}{2}a(v, v) \quad \text{for all } v \in V \]
we see that \(J(u + v) > J(u) \), so the minimum \(u \) is unique. \(\square \)
Theorem 15.1 shows that every solution u of our boundary problem (BP) is a solution (in fact, unique) of the equation (WF).

The equation (WF) is called the weak form or variational equation associated with the boundary problem. This idea to derive these equations is due to Ritz and Galerkin.

Now, the natural question is whether the variational equation (WF) has a solution, and whether this solution, if it exists, is also a solution of the boundary problem (it must belong to $C^2([0, 1])$, which is far from obvious). Then, (BP) and (WF) would be equivalent.

Some fancy tools of analysis can be used to prove these assertions. The first difficulty is that the vector space V is not the right space of solutions, because in order for the variational problem to have a solution, it must be complete. So, we must construct a completion of the vector space V. This can be done and we get the Sobolev space $H^1_0(0, 1)$. Then, the question of the regularity of the “weak solution” can also be tackled.

We will not worry about all this. Instead, let us find approximations of the problem (WF). Instead of using the infinite-dimensional vector space V, we consider finite-dimensional subspaces V_a (with dim(V_a) = n) of V, and we consider the discrete problem:

Find a function $u^{(a)} \in V_a$, such that

$$a(u^{(a)}, v) = \tilde{f}(v), \quad \text{for all } v \in V_a.$$ \hspace{1cm} (DWF)

Since V_a is finite dimensional (of dimension n), let us pick a basis of functions (w_1, \ldots, w_n) in V_a, so that every function $u \in V_a$ can be written as

$$u = u_1 w_1 + \cdots + u_n w_n.$$

Then, the equation (DWF) holds iff

$$a(u, w_j) = \tilde{f}(w_j), \quad j = 1, \ldots, n,$$

and by plugging $u_1 w_1 + \cdots + u_n w_n$ for u, we get a system of k linear equations

$$\sum_{i=1}^{n} a(w_i, w_j) u_i = \tilde{f}(w_j), \quad 1 \leq j \leq n.$$

Because $a(v, v) \geq \frac{1}{2} \|v\|_{V_a}$, the bilinear form a is symmetric positive definite, and thus the matrix $(a(w_i, w_j))$ is symmetric positive definite, and thus invertible. Therefore, (DWF) has a solution given by a linear system!

From a practical point of view, we have to compute the integrals

$$a_{ij} = a(w_i, w_j) = \int_0^1 (w_i'w_j' + cw_iw_j)dx,$$

and

$$b_j = \tilde{f}(w_j) = \int_0^1 f(x)w_j(x)dx.$$
However, if the basis functions are simple enough, this can be done “by hand.” Otherwise, numerical integration methods must be used, but there are some good ones.

Let us also remark that the proof of Theorem 15.1 also shows that the unique solution of (DWF) is the unique minimizer of J over all functions in V_a. It is also possible to compare the approximate solution $u^{(a)} \in V_a$ with the exact solution $u \in V$.

Theorem 15.2. Suppose $c(x) \geq 0$ for all $x \in [0,1]$. For every finite-dimensional subspace V_a ($\dim(V_a) = n$) of V, for every basis (w_1, \ldots, w_n) of V_a, the following properties hold:

1. There is a unique function $u^{(a)} \in V_a$ such that

 $$a(u^{(a)}, v) = \tilde{f}(v), \quad \text{for all } v \in V_a,$$

 and if $u^{(a)} = u_1w_1 + \cdots + u_nw_n$, then $u = (u_1, \ldots, u_n)$ is the solution of the linear system

 $$Au = b,$$

 with $A = (a_{ij}) = (a(w_i, w_j))$ and $b_j = \tilde{f}(w_j)$, $1 \leq i, j \leq n$. Furthermore, the matrix $A = (a_{ij})$ is symmetric positive definite.

2. The unique solution $u^{(a)} \in V_a$ of (DWF) is the unique minimizer of J over V_a, that is,

 $$J(u^{(a)}) = \inf_{v \in V_a} J(v),$$

3. There is a constant C independent of V_a and of the unique solution $u \in V$ of (WF), such that

 $$\|u - u^{(a)}\|_V \leq C \inf_{v \in V_a} \|u - v\|_V.$$

We proved (1) and (2), but we will omit the proof of (3) which can be found in Ciarlet [13].

Let us now give examples of the subspaces V_a used in practice. They usually consist of piecewise polynomial functions.

Pick an integer $N \geq 1$ and subdivide $[0,1]$ into $N + 1$ intervals $[x_i, x_{i+1}]$, where

$$x_i = hi, \quad h = \frac{1}{N+1}, \quad i = 0, \ldots, N + 1.$$
There are various ways to prove this. One way is to use the Bernstein basis, because
the kth derivative of a polynomial is given by a formula in terms of its control points. For
example, for $m = 1$, every degree 3 polynomial can be written as

$$P(x) = (1 - x)^3 b_0 + 3(1 - x)^2 x b_1 + 3(1 - x)x^2 b_2 + x^3 b_3,$$

with $b_0, b_1, b_2, b_3 \in \mathbb{R}$, and we showed that

$$P'(0) = 3(b_1 - b_0)$$
$$P'(1) = 3(b_3 - b_2).$$

Given $P(0)$ and $P(1)$, we determine b_0 and b_3, and from $P'(0)$ and $P'(1)$, we determine
b_1 and b_2.

In general, for a polynomial of degree m written as

$$P(x) = \sum_{j=0}^{m} b_j B_j^m(x)$$

in terms of the Bernstein basis $(B_0^m(x), \ldots, B_m^m(x))$ with

$$B_j^m(x) = \binom{m}{j} (1 - x)^{m-j} x^j,$$

it can be shown that the kth derivative of P at zero is given by

$$P^{(k)}(0) = m(m - 1) \cdots (m - k + 1) \left(\sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} b_i \right),$$

and there is a similar formula for $P^{(k)}(1)$.

Actually, we need to use the Bernstein basis of polynomials $B_k^m[r, s]$, where

$$B_j^m[r, s](x) = \binom{m}{j} \left(\frac{s - x}{s - r} \right)^{m-j} \left(\frac{x - r}{s - r} \right)^j,$$

with $r < s$, in which case

$$P^{(k)}(0) = \frac{m(m - 1) \cdots (m - k + 1)}{(s - r)^k} \left(\sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} b_i \right),$$

with a similar formula for $P^{(k)}(1)$. In our case, we set $r = x_i, s = x_{i+1}$.

Now, if the $2m + 2$ values

$$P(0), P(1), \ldots, P^{(m)}(0), P(1), P^{(1)}(1), \ldots, P^{(m)}(1)$$
are given, we obtain a triangular system that determines uniquely the \(2m + 2\) control points \(b_0, \ldots, b_{2m+1}\).

Recall that \(C^m([0,1])\) denotes the set of \(C^m\) functions \(f\) on \([0,1]\), which means that \(f, f^{(1)}, \ldots, f^{(m)}\) exist and are continuous on \([0,1]\).

We define the vector space \(V_N^m\) as the subspace of \(C^m([0,1])\) consisting of all functions \(f\) such that

1. \(f(0) = f(1) = 0\).
2. The restriction of \(f\) to \([x_i, x_{i+1}]\) is a polynomial of degree \(2m + 1\), for \(i = 0, \ldots, N\).

Observe that the functions in \(V_N^0\) are the piecewise affine functions \(f\) with \(f(0) = f(1) = 0\); an example is shown in Figure 15.2.

This space has dimension \(N\), and a basis consists of the “hat functions” \(w_i\), where the only two nonflat parts of the graph of \(w_i\) are the line segments from \((x_{i-1}, 0)\) to \((x_i, 1)\), and from \((x_i, 1)\) to \((x_{i+1}, 0)\), for \(i = 1, \ldots, N\), see Figure 15.3.

The basis functions \(w_i\) have a small support, which is good because in computing the integrals giving \(a(w_i, w_j)\), we find that we get a tridiagonal matrix. They also have the nice property that every function \(v \in V_N^0\) has the following expression on the basis \((w_i)\):

\[
v(x) = \sum_{i=1}^{N} v(ih) w_i(x), \quad x \in [0,1].
\]
In general, it is not hard to see that V^m_N has dimension $mN + 2(m - 1)$.

Going back to our problem (the bending of a beam), assuming that c and f are constant functions, it is not hard to show that the linear system (*) becomes

$$
\begin{pmatrix}
2 + \frac{2c}{3}h^2 & -1 + \frac{c}{6}h^2 \\
-1 + \frac{c}{6}h^2 & 2 + \frac{2c}{3}h^2 & -1 + \frac{c}{6}h^2 \\
\ddots & \ddots & \ddots \\
-1 + \frac{c}{6}h^2 & 2 + \frac{2c}{3}h^2 & -1 + \frac{c}{6}h^2 \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N
\end{pmatrix}
= h
\begin{pmatrix}
f \\ f \\ \vdots \\ f \\ f
\end{pmatrix}
$$

We can also find a basis of $2N + 2$ cubic functions for V^1_N consisting of functions with small support. This basis consists of the N functions w^0_i and of the $N + 2$ functions w^1_i.
uniquely determined by the following conditions:

\[
\begin{align*}
w_i^0(x_j) &= \delta_{ij}, \quad 1 \leq j \leq N, \ 1 \leq i \leq N \\
(w_i^0)'(x_j) &= 0, \quad 0 \leq j \leq N + 1, \ 1 \leq i \leq N \\
w_i^1(x_j) &= 0, \quad 1 \leq j \leq N, \ 0 \leq i \leq N + 1 \\
(w_i^1)'(x_j) &= \delta_{ij}, \quad 0 \leq j \leq N + 1, \ 0 \leq i \leq N + 1
\end{align*}
\]

with \(\delta_{ij} = 1\) iff \(i = j\) and \(\delta_{ij} = 0\) if \(i \neq j\). Some of these functions are displayed in Figure 15.4. The function \(w_i^0\) is given explicitly by

\[
w_i^0(x) = \frac{1}{h^3} (x - (i - 1)h)^2((2i + 1)h - 2x), \quad (i - 1)h \leq x \leq ih,
\]

\[
w_i^0(x) = \frac{1}{h^3} ((i + 1)h - x)^2(2x - (2i - 1)h), \quad ih \leq x \leq (i + 1)h,
\]

for \(i = 1, \ldots, N\). The function \(w_j^1\) is given explicitly by

\[
w_j^1(x) = -\frac{1}{h^2}(ih - x)(x - (i - 1)h)^2, \quad (i - 1)h \leq x \leq ih,
\]

and

\[
w_j^1(x) = \frac{1}{h^2}((i + 1)h - x)^2(x - ih), \quad ih \leq x \leq (i + 1)h,
\]

for \(j = 0, \ldots, N + 1\). Furthermore, for every function \(v \in V_N^1\), we have

\[
v(x) = \sum_{i=1}^{N} v(ih)w_i^0(x) + \sum_{j=0}^{N+1} v'(jih)w_j^1(x), \quad x \in [0, 1].
\]

If we order these basis functions as

\[w_0^1, w_1^0, w_1^1, w_0^1, w_2^0, w_2^1, \ldots, w_N^0, w_N^1, w_{N+1}^1\]

we find that if \(c = 0\), the matrix \(A\) of the system (*) is tridiagonal by blocks, where the blocks are \(2 \times 2\), \(2 \times 1\), or \(1 \times 2\) matrices, and with single entries in the top left and bottom right corner. A different order of the basis vectors would mess up the tridiagonal block structure of \(A\). We leave the details as an exercise.

Let us now take a quick look at a two-dimensional problem, the bending of an elastic membrane.
15.2 A Two-Dimensional Problem: An Elastic Membrane

Consider an elastic membrane attached to a round contour whose projection on the \((x_1, x_2)\)-plane is the boundary \(\Gamma\) of an open, connected, bounded region \(\Omega\) in the \((x_1, x_2)\)-plane, as illustrated in Figure 15.5. In other words, we view the membrane as a surface consisting of the set of points \((x, z)\) given by an equation of the form

\[z = u(x), \]

with \(x = (x_1, x_2) \in \overline{\Omega}\), where \(u: \overline{\Omega} \to \mathbb{R}\) is some sufficiently regular function, and we think of \(u(x)\) as the vertical displacement of this membrane.

We assume that this membrane is under the action of a vertical force \(\tau f(x)dx\) per surface element in the horizontal plane (where \(\tau\) is the tension of the membrane). The problem is
to find the vertical displacement u as a function of x, for $x \in \Omega$. It can be shown (under some assumptions on Ω, Γ, and f), that $u(x)$ is given by a PDE with boundary condition, of the form

$$ -\Delta u(x) = f(x), \quad x \in \Omega $$

$$ u(x) = g(x), \quad x \in \Gamma, $$

where $g: \Gamma \rightarrow \mathbb{R}$ represents the height of the contour of the membrane. We are looking for a function u in $C^2(\Omega) \cap C^1(\Omega)$. The operator Δ is the Laplacian, and it is given by

$$ \Delta u(x) = \frac{\partial^2 u}{\partial x_1^2}(x) + \frac{\partial^2 u}{\partial x_2^2}(x). $$

This is an example of a boundary problem, since the solution u of the PDE must satisfy the condition $u(x) = g(x)$ on the boundary of the domain Ω. The above equation is known as Poisson’s equation, and when $f = 0$ as Laplace’s equation.

It can be proved that if the data f, g and Γ are sufficiently smooth, then the problem has a unique solution.

To get a weak formulation of the problem, first we have to make the boundary condition homogeneous, which means that $g(x) = 0$ on Γ. It turns out that g can be extended to the whole of $\overline{\Omega}$ as some sufficiently smooth function \hat{h}, so we can look for a solution of the form $u - \hat{h}$, but for simplicity, let us assume that the contour of Ω lies in a plane parallel to the
We let \(V \) be the subspace of \(C^2(\Omega) \cap C^1(\overline{\Omega}) \) consisting of functions \(v \) such that \(v = 0 \) on \(\Gamma \).

As before, we multiply the PDE by a test function \(v \in V \), getting

\[
-\Delta u(x)v(x) = f(x)v(x),
\]

and we “integrate by parts.” In this case, this means that we use a version of Stokes formula known as Green’s first identity, which says that

\[
\int_{\Omega} -\Delta u v \, dx = \int_{\Omega} (\text{grad } u) \cdot (\text{grad } v) \, dx - \int_{\Gamma} (\text{grad } u) \cdot n \, v \, d\sigma
\]

(where \(n \) denotes the outward pointing unit normal to the surface). Because \(v = 0 \) on \(\Gamma \), the integral \(\int_{\Gamma} \) drops out, and we get an equation of the form

\[
a(u, v) = \tilde{f}(v) \quad \text{for all } v \in V,
\]

where \(a \) is the bilinear form given by

\[
a(u, v) = \int_{\Omega} \left(\frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} + \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} \right) \, dx
\]

and \(\tilde{f} \) is the linear form given by

\[
\tilde{f}(v) = \int_{\Omega} f v \, dx.
\]

We get the same equation as in section 15.2, but over a set of functions defined on a two-dimensional domain. As before, we can choose a finite-dimensional subspace \(V_a \) of \(V \) and consider the discrete problem with respect to \(V_a \). Again, if we pick a basis \((w_1, \ldots, w_n) \) of \(V_a \), a vector \(u = u_1 w_1 + \cdots + u_n w_n \) is a solution of the Weak Formulation of our problem iff \(u = (u_1, \ldots, u_n) \) is a solution of the linear system

\[
A u = b,
\]

with \(A = (a(w_i, w_j)) \) and \(b = (\tilde{f}(w_j)) \). However, the integrals that give the entries in \(A \) and \(b \) are much more complicated.

An approach to deal with this problem is the method of finite elements. The idea is to also discretize the boundary curve \(\Gamma \). If we assume that \(\Gamma \) is a polygonal line, then we can triangulate the domain \(\Omega \), and then we consider spaces of functions which are piecewise defined on the triangles of the triangulation of \(\Omega \). The simplest functions are piecewise affine and look like tents erected above groups of triangles. Again, we can define base functions with small support, so that the matrix \(A \) is tridiagonal by blocks.

The finite element method is a vast subject and it is presented in many books of various degrees of difficulty and obscurity. Let us simply state three important requirements of the finite element method:
1. “Good” triangulations must be found. This in itself is a vast research topic. Delaunay triangulations are good candidates.

2. “Good” spaces of functions must be found; typically piecewise polynomials and splines.

3. “Good” bases consisting of functions with small support must be found, so that integrals can be easily computed and sparse banded matrices arise.

We now consider boundary problems where the solution varies with time.

15.3 Time-Dependent Boundary Problems: The Wave Equation

Consider a homogeneous string (or rope) of constant cross-section, of length L, and stretched (in a vertical plane) between its two ends which are assumed to be fixed and located along the x-axis at $x = 0$ and at $x = L$.

![Figure 15.6: A vibrating string](image)

The string is subjected to a transverse force $\tau f(x)dx$ per element of length dx (where τ is the tension of the string). We would like to investigate the small displacements of the string in the vertical plane, that is, how it vibrates.

Thus, we seek a function $u(x,t)$ defined for $t \geq 0$ and $x \in [0, L]$, such that $u(x,t)$ represents the vertical deformation of the string at the abscissa x and at time t.

It can be shown that u must satisfy the following PDE

$$
\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \quad 0 < x < L, \ t > 0,
$$

with $c = \sqrt{\tau/\rho}$, where ρ is the linear density of the string, known as the one-dimensional wave equation.
Furthermore, the initial shape of the string is known at \(t = 0 \), as well as the distribution of the initial velocities along the string; in other words, there are two functions \(u_{i,0} \) and \(u_{i,1} \) such that\[u(x, 0) = u_{i,0}(x), \quad 0 \leq x \leq L, \]
\[\frac{\partial u}{\partial t}(x, 0) = u_{i,1}(x), \quad 0 \leq x \leq L. \]

For example, if the string is simply released from its given starting position, we have \(u_{i,1} = 0 \).

Lastly, because the ends of the string are fixed, we must have\[u(0, t) = u(L, t) = 0, \quad t \geq 0. \]

Consequently, we look for a function \(u: \mathbb{R}_+ \times [0, L] \to \mathbb{R} \) satisfying the following conditions:
\[
\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) = f(x, t), \quad 0 < x < L, \quad t > 0,
\]
\[u(0, t) = u(L, t) = 0, \quad t \geq 0 \quad \text{(boundary condition)}, \]
\[u(x, 0) = u_{i,0}(x), \quad 0 \leq x \leq L \quad \text{(initial condition)}, \]
\[\frac{\partial u}{\partial t}(x, 0) = u_{i,1}(x), \quad 0 \leq x \leq L \quad \text{(initial condition)}. \]

This is an example of a \textit{time-dependent boundary-value problem}, with two \textit{initial conditions}.

To simplify the problem, assume that \(f = 0 \), which amounts to neglecting the effect of gravity. In this case, our PDE becomes\[
\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) = 0, \quad 0 < x < L, \quad t > 0,
\]

Let us try our trick of multiplying by a test function \(v \) depending only on \(x \), \(C^1 \) on \([0, L] \), and such that \(v(0) = v(L) = 0 \), and integrate by parts. We get the equation\[
\int_0^L \frac{\partial^2 u}{\partial t^2}(x, t)v(x)dx - c^2 \int_0^L \frac{\partial^2 u}{\partial x^2}(x, t)v(x)dx = 0.
\]

For the first term, we get\[
\int_0^L \frac{\partial^2 u}{\partial t^2}(x, t)v(x)dx = \int_0^L \frac{\partial^2}{\partial t^2}[u(x, t)v(x)]dx
\]
\[= \frac{d^2}{dt^2} \int_0^L u(x, t)v(x)dx
\]
\[= \frac{d^2}{dt^2} \langle u, v \rangle,
\]
where \(\langle u, v \rangle \) is the inner product in \(L^2([0, L]) \). The fact that it is legitimate to move \(\partial^2/\partial t^2 \) outside of the integral needs to be justified rigorously, but we won’t do it here.

For the second term, we get

\[
- \int_0^L \frac{\partial^2 u}{\partial x^2}(x,t)v(x)dx = - \left[\frac{\partial u}{\partial x}(x,t)v(x) \right]_{x=0}^{x=L} + \int_0^L \frac{\partial u}{\partial x}(x,t) \frac{dv}{dx}(x)dx,
\]

and because \(v \in V \), we have \(v(0) = v(L) = 0 \), so we obtain

\[
- \int_0^L \frac{\partial^2 u}{\partial x^2}(x,t)v(x)dx = \int_0^L \frac{\partial u}{\partial x}(x,t) \frac{dv}{dx}(x)dx.
\]

Our integrated equation becomes

\[
\frac{d^2}{dt^2} \langle u, v \rangle + c^2 \int_0^L \frac{\partial u}{\partial x}(x,t) \frac{dv}{dx}(x)dx = 0, \quad \text{for all } v \in V \text{ and all } t \geq 0.
\]

It is natural to introduce the bilinear form \(a : V \times V \to \mathbb{R} \) given by

\[
a(u, v) = \int_0^L \frac{\partial u}{\partial x}(x,t) \frac{\partial v}{\partial x}(x,t)dx,
\]

where, for every \(t \in \mathbb{R}_+ \), the functions \(u(x, t) \) and \((v, t) \) belong to \(V \). Actually, we have to replace \(V \) by the subspace of the Sobolev space \(H^1_0(0, L) \) consisting of the functions such that \(v(0) = v(L) = 0 \). Then, the weak formulation (variational formulation) of our problem is this:

Find a function \(u \in V \) such that

\[
\frac{d^2}{dt^2} \langle u, v \rangle + a(u, v) = 0, \quad \text{for all } v \in V \text{ and all } t \geq 0
\]

\[
u(x, 0) = u_{i,0}(x), \quad 0 \leq x \leq L \quad \text{(initial condition)},
\]

\[
\frac{\partial u}{\partial t}(x, 0) = u_{i,1}(x), \quad 0 \leq x \leq L \quad \text{(initial condition)}.
\]

It can be shown that there is a positive constant \(\alpha > 0 \) such that

\[
a(u, u) \geq \alpha \| u \|_{H^1_0}^2 \quad \text{for all } v \in V
\]

(Poincaré’s inequality), which shows that \(a \) is positive definite on \(V \). The above method is known as the method of Rayleigh-Ritz.

A study of the above equation requires some sophisticated tools of analysis which go far beyond the scope of these notes. Let us just say that there is a countable sequence of solutions with separated variables of the form

\[
u_k^{(1)} = \sin \left(\frac{k\pi x}{L} \right) \cos \left(\frac{k\pi ct}{L} \right), \quad u_k^{(2)} = \sin \left(\frac{k\pi x}{L} \right) \sin \left(\frac{k\pi ct}{L} \right), \quad k \in \mathbb{N}_+,
\]
called *modes* (or *normal modes*). Complete solutions of the problem are series obtained by combining the normal modes, and they are of the form

\[u(x, t) = \sum_{k=1}^{\infty} \sin \left(\frac{k\pi x}{L} \right) \left(A_k \cos \left(\frac{k\pi c t}{L} \right) + B_k \sin \left(\frac{k\pi c t}{L} \right) \right), \]

where the coefficients \(A_k, B_k \) are determined from the Fourier series of \(u_{i,0} \) and \(u_{i,1} \).

We now consider discrete approximations of our problem. As before, consider a finite dimensional subspace \(V_a \) of \(V \) and assume that we have approximations \(u_{a,0} \) and \(u_{a,1} \) of \(u_{i,0} \) and \(u_{i,1} \). If we pick a basis \((w_1, \ldots, w_n)\) of \(V_a \), then we can write our unknown function \(u(x, t) \) as

\[u(x, t) = u_1(t)w_1 + \cdots + u_n(t)w_n, \]

where \(u_1, \ldots, u_n \) are functions of \(t \). Then, if we write \(\mathbf{u} = (u_1, \ldots, u_n) \), the discrete version of our problem is

\[A \frac{d^2 \mathbf{u}}{dt^2} + K \mathbf{u} = 0, \]

\[u(x, 0) = u_{a,0}(x), \quad 0 \leq x \leq L, \]

\[\frac{\partial u}{\partial t}(x, 0) = u_{a,1}(x), \quad 0 \leq x \leq L, \]

where \(A = (\langle w_i, w_j \rangle) \) and \(K = (a(w_i, w_j)) \) are two symmetric matrices, called the *mass matrix* and the *stiffness matrix*, respectively. In fact, because \(a \) and the inner product \(\langle - , - \rangle \) are positive definite, these matrices are also positive definite.

We have made some progress since we now have a system of ODE’s, and we can solve it by analogy with the scalar case. So, we look for solutions of the form \(\mathbf{U} \cos \omega t \) (or \(\mathbf{U} \sin \omega t \)), where \(\mathbf{U} \) is an \(n \)-dimensional vector. We find that we should have

\[(K - \omega^2 A) \mathbf{U} \cos \omega t = 0, \]

which implies that \(\omega \) must be a solution of the equation

\[K \mathbf{U} = \omega^2 A \mathbf{U}. \]

Thus, we have to find some \(\lambda \) such that

\[K \mathbf{U} = \lambda A \mathbf{U}, \]

a problem known as a *generalized eigenvalue problem*, since the ordinary eigenvalue problem for \(K \) is

\[K \mathbf{U} = \lambda \mathbf{U}. \]
Fortunately, because A is SPD, we can reduce this generalized eigenvalue problem to a standard eigenvalue problem. A good way to do so is to use a Cholesky decomposition of A as
\[A = LL^\top, \]
where L is a lower triangular matrix (see Theorem 6.10). Because A is SPD, it is invertible, so L is also invertible, and
\[KU = \lambda AU = \lambda LL^\top U \]
yields
\[L^{-1}KU = \lambda L^\top U, \]
which can also be written as
\[L^{-1}K(L^\top)^{-1}L^\top U = \lambda LL^\top U. \]

Then, if we make the change of variable
\[Y = L^\top U, \]
using the fact $(L^\top)^{-1} = (L^{-1})^\top$, the above equation is equivalent to
\[L^{-1}K(L^{-1})^\top Y = \lambda Y, \]
a standard eigenvalue problem for the matrix $\hat{K} = L^{-1}K(L^{-1})^\top$. Furthermore, we know from Section 6.7 that since K is SPD and L^{-1} is invertible, the matrix $\hat{K} = L^{-1}K(L^{-1})^\top$ is also SPD.

Consequently, \hat{K} has positive real eigenvalues $(\omega_1^2, \ldots, \omega_n^2)$ (not necessarily distinct) and it can be diagonalized with respect to an orthonormal basis of eigenvectors, say Y^1, \ldots, Y^n. Then, since $Y = L^\top U$, the vectors
\[U^i = (L^\top)^{-1}Y^i, \quad i = 1, \ldots, n, \]
are linearly independent and are solutions of the generalized eigenvalue problem; that is,
\[KU^i = \omega_i^2 AU^i, \quad i = 1, \ldots, n. \]

More is true. Because the vectors Y^1, \ldots, Y^n are orthonormal, and because $Y^i = L^\top U^i$, from
\[(Y^i)^\top Y^j = \delta_{ij}, \]
we get
\[(U^i)^\top LL^\top U^j = \delta_{ij}, \quad 1 \leq i, j \leq n, \]
and since $A = LL^\top$, this yields
\[(U^i)^\top AU^j = \delta_{ij}, \quad 1 \leq i, j \leq n. \]
This suggests defining the functions $U^i \in V_a$ by
\[U^i = \sum_{k=1}^{n} U^i_k w_k. \]

Then, it immediate to check that
\[a(U^i, U^j) = (U^i)^\top A U^j = \delta_{ij}, \]
which means that the functions (U^1, \ldots, U^n) form an orthonormal basis of V_a for the inner product a. The functions $U^i \in V_a$ are called modes (or modal vectors).

As a final step, let us look again for a solution of our discrete weak formulation of the problem, this time expressing the unknown solution $u(x, t)$ over the modal basis (U^1, \ldots, U^n), say
\[u = \sum_{j=1}^{n} \tilde{u}_j(t)U^j, \]
where each \tilde{u}_j is a function of t. Because
\[u = \sum_{j=1}^{n} \tilde{u}_j(t)U^j = \sum_{j=1}^{n} \tilde{u}_j(t) \left(\sum_{k=1}^{n} U^i_k w_k \right) = \sum_{k=1}^{n} \left(\sum_{j=1}^{n} \tilde{u}_j(t)U^i_k \right) w_k, \]
if we write $u = (u_1, \ldots, u_n)$ with $u_k = \sum_{j=1}^{n} \tilde{u}_j(t)U^i_k$ for $k = 1, \ldots, n$, we see that
\[u = \sum_{j=1}^{n} \tilde{u}_j U^j, \]
so using the fact that
\[KU^j = \omega_j^2 A U^j, \quad j = 1, \ldots, n, \]
the equation
\[A \frac{d^2 u}{dt^2} + K u = 0 \]
yields
\[\sum_{j=1}^{n} [(\tilde{u}_j)'' + \omega_j^2 \tilde{u}_j] AU^j = 0. \]

Since A is invertible and since (U^1, \ldots, U^n) are linearly independent, the vectors (AU^1, \ldots, AU^n) are linearly independent, and consequently we get the system of n ODEs’
\[(\tilde{u}_j)'' + \omega_j^2 \tilde{u}_j = 0, \quad 1 \leq j \leq n. \]

Each of these equation has a well-known solution of the form
\[\tilde{u}_j = A_j \cos \omega_j t + B_j \sin \omega_j t. \]
15.3. **TIME-DEPENDENT BOUNDARY PROBLEMS**

Therefore, the solution of our approximation problem is given by

\[
u = \sum_{j=1}^{n} (A_j \cos \omega_j t + B_j \sin \omega_j t) U_j,\]

and the constants \(A_j, B_j\) are obtained from the initial conditions

\[
u(x, 0) = u_{a,0}(x), \quad 0 \leq x \leq L,
\]
\[
\frac{\partial \nu}{\partial t}(x, 0) = u_{a,1}(x), \quad 0 \leq x \leq L,
\]

by expressing \(u_{a,0}\) and \(u_{a,1}\) on the modal basis \((U^1, \ldots, U^n)\). Furthermore, the modal functions \((U^1, \ldots, U^n)\) form an orthonormal basis of \(V_a\) for the inner product \(a\).

If we use the vector space \(V_0^N\) of piecewise affine functions, we find that the matrices \(A\) and \(K\) are familiar! Indeed,

\[
A = \frac{1}{h} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
& & \ddots & \ddots & \ddots \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2 \end{pmatrix},
\]

and

\[
K = \frac{h}{6} \begin{pmatrix} 4 & 1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
& & \ddots & \ddots & \ddots \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1 & 4 \end{pmatrix}.
\]

To conclude this section, let us discuss briefly the wave equation for an elastic membrane, as described in Section 15.2. This time, we look for a function \(u: \mathbb{R}_+ \times \Omega \rightarrow \mathbb{R}\) satisfying the following conditions:

\[
\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}(x, t) - \Delta u(x, t) = f(x, t), \quad x \in \Omega, \ t > 0,
\]
\[
u(x, t) = 0, \quad x \in \Gamma, \quad t \geq 0 \quad \text{(boundary condition)},
\]
\[
u(x, 0) = u_{i,0}(x), \quad x \in \Omega \quad \text{(initial condition)},
\]
\[
\frac{\partial \nu}{\partial t}(x, 0) = u_{i,1}(x), \quad x \in \Omega \quad \text{(initial condition)}.
\]

Assuming that \(f = 0\), we look for solutions in the subspace \(V\) of the Sobolev space \(H_0^1(\Omega)\) consisting of functions \(v\) such that \(v = 0\) on \(\Gamma\). Multiplying by a test function \(v \in V\) and using Green’s first identity, we get the weak formulation of our problem:
Find a function $u \in V$ such that
\[
\frac{d^2}{dt^2} \langle u, v \rangle + a(u, v) = 0, \quad \text{for all } v \in V \text{ and all } t \geq 0
\]
\[
u(x, 0) = u_{i,0}(x), \quad x \in \Omega \text{ (initial condition)},
\]
\[
\frac{\partial u}{\partial t}(x, 0) = u_{i,1}(x), \quad x \in \Omega \text{ (initial condition)},
\]
where $a: V \times V \to \mathbb{R}$ is the bilinear form given by
\[
a(u, v) = \int_{\Omega} \left(\frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} + \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} \right) dx,
\]
and
\[
\langle u, v \rangle = \int_{\Omega} uv dx.
\]

As usual, we find approximations of our problem by using finite dimensional subspaces V_a of V. Picking some basis (w_1, \ldots, w_n) of V_a, and triangulating Ω, as before, we obtain the equation
\[
A \frac{d^2 \mathbf{u}}{dt^2} + K \mathbf{u} = 0,
\]
\[
u(x, 0) = u_{a,0}(x), \quad x \in \Gamma,
\]
\[
\frac{\partial u}{\partial t}(x, 0) = u_{a,1}(x), \quad x \in \Gamma,
\]
where $A = (\langle w_i, w_j \rangle)$ and $K = (a(w_i, w_j))$ are two symmetric positive definite matrices.

In principle, the problem is solved, but, it may be difficult to find good spaces V_a, good triangulations of Ω, and good bases of V_a, to be able to compute the matrices A and K, and to ensure that they are sparse.
Chapter 16

Singular Value Decomposition and Polar Form

16.1 Singular Value Decomposition for Square Matrices

In this section, we assume that we are dealing with real Euclidean spaces. Let $f : E \to E$ be any linear map. In general, it may not be possible to diagonalize f. We show that every linear map can be diagonalized if we are willing to use two orthonormal bases. This is the celebrated singular value decomposition (SVD). A close cousin of the SVD is the polar form of a linear map, which shows how a linear map can be decomposed into its purely rotational component (perhaps with a flip) and its purely stretching part.

The key observation is that $f^* \circ f$ is self-adjoint, since

$$<(f^* \circ f)(u), v> = <f(u), f(v)> = <u, (f^* \circ f)(v)>.$$

Similarly, $f \circ f^*$ is self-adjoint.

The fact that $f^* \circ f$ and $f \circ f^*$ are self-adjoint is very important, because it implies that $f^* \circ f$ and $f \circ f^*$ can be diagonalized and that they have real eigenvalues. In fact, these eigenvalues are all nonnegative. Indeed, if u is an eigenvector of $f^* \circ f$ for the eigenvalue λ, then

$$<(f^* \circ f)(u), u> = <f(u), f(u)>$$

and

$$<(f^* \circ f)(u), u> = \lambda <u, u>,$$

and thus

$$\lambda <u, u> = <f(u), f(u>),$$

which implies that $\lambda \geq 0$, since $<-,->$ is positive definite. A similar proof applies to $f \circ f^*$. Thus, the eigenvalues of $f^* \circ f$ are of the form $\sigma_1^2, \ldots, \sigma_r^2$ or 0, where $\sigma_i > 0$, and similarly for $f \circ f^*$.

431
The above considerations also apply to any linear map \(f: E \rightarrow F \) between two Euclidean spaces \((E, \langle \cdot, \cdot \rangle_1)\) and \((F, \langle \cdot, \cdot \rangle_2)\). Recall that the adjoint \(f^*: F \rightarrow E \) of \(f \) is the unique linear map \(f^* \) such that
\[
\langle f(u), v \rangle_2 = \langle u, f^*(v) \rangle_1, \quad \text{for all } u \in E \text{ and all } v \in F.
\]
Then, \(f^* \circ f \) and \(f \circ f^* \) are self-adjoint (the proof is the same as in the previous case), and the eigenvalues of \(f^* \circ f \) and \(f \circ f^* \) are nonnegative. If \(\lambda \) is an eigenvalue of \(f^* \circ f \) and \(u(\neq 0) \) is a corresponding eigenvector, we have
\[
\langle (f^* \circ f)(u), u \rangle_1 = \langle f(u), f(u) \rangle_2,
\]
and also
\[
\langle (f^* \circ f)(u), u \rangle_1 = \lambda \langle u, u \rangle_1,
\]
so
\[
\lambda \langle u, u \rangle_1 = \langle f(u), f(u) \rangle_2,
\]
which implies that \(\lambda \geq 0 \). A similar proof applies to \(f \circ f^* \). The situation is even better, since we will show shortly that \(f^* \circ f \) and \(f \circ f^* \) have the same nonzero eigenvalues.

Remark: Given any two linear maps \(f: E \rightarrow F \) and \(g: F \rightarrow E \), where \(\dim(E) = n \) and \(\dim(F) = m \), it can be shown that
\[
\lambda^m \det(\lambda I_n - g \circ f) = \lambda^n \det(\lambda I_m - f \circ g),
\]
and thus \(g \circ f \) and \(f \circ g \) always have the same nonzero eigenvalues!

Definition 16.1. Given any linear map \(f: E \rightarrow F \), the square roots \(\sigma_i > 0 \) of the positive eigenvalues of \(f^* \circ f \) (and \(f \circ f^* \)) are called the *singular values* of \(f \).

Definition 16.2. A self-adjoint linear map \(f: E \rightarrow E \) whose eigenvalues are nonnegative is called *positive semidefinite* (or *positive*), and if \(f \) is also invertible, \(f \) is said to be *positive definite*. In the latter case, every eigenvalue of \(f \) is strictly positive.

If \(f: E \rightarrow F \) is any linear map, we just showed that \(f^* \circ f \) and \(f \circ f^* \) are positive semidefinite self-adjoint linear maps. This fact has the remarkable consequence that every linear map has two important decompositions:

1. The polar form.
2. The singular value decomposition (SVD).
The wonderful thing about the singular value decomposition is that there exist two orthonormal bases \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_m)\) such that, with respect to these bases, \(f\) is a diagonal matrix consisting of the singular values of \(f\), or 0. Thus, in some sense, \(f\) can always be diagonalized with respect to two orthonormal bases. The SVD is also a useful tool for solving overdetermined linear systems in the least squares sense and for data analysis, as we show later on.

First, we show some useful relationships between the kernels and the images of \(f\), \(f^*\), \(f^* \circ f\), and \(f \circ f^*\). Recall that if \(f: E \to F\) is a linear map, the image \(\text{Im} f\) of \(f\) is the subspace \(f(E)\) of \(F\), and the rank of \(f\) is the dimension \(\dim(\text{Im} f)\) of its image. Also recall that (Theorem 4.6)
\[
\dim(\text{Ker} f) + \dim(\text{Im} f) = \dim(E),
\]
and that (Propositions 10.9 and 12.10) for every subspace \(W\) of \(E\),
\[
\dim(W) + \dim(W^\perp) = \dim(E).
\]

Proposition 16.1. Given any two Euclidean spaces \(E\) and \(F\), where \(E\) has dimension \(n\) and \(F\) has dimension \(m\), for any linear map \(f: E \to F\), we have
\[
\text{Ker} f = \text{Ker} (f^* \circ f),
\]
\[
\text{Ker} f^* = \text{Ker} (f \circ f^*),
\]
\[
\text{Ker} f = (\text{Im} f^*)^\perp,
\]
\[
\text{Ker} f^* = (\text{Im} f)^\perp,
\]
\[
\dim(\text{Im} f) = \dim(\text{Im} f^*),
\]
and \(f\), \(f^*\), \(f^* \circ f\), and \(f \circ f^*\) have the same rank.

Proof. To simplify the notation, we will denote the inner products on \(E\) and \(F\) by the same symbol \(\langle - , - \rangle\) (to avoid subscripts). If \(f(u) = 0\), then \((f^* \circ f)(u) = f^*(f(u)) = f^*(0) = 0\), and so \(\text{Ker} f \subseteq \text{Ker} (f^* \circ f)\). By definition of \(f^*\), we have
\[
\langle f(u), f(u) \rangle = \langle (f^* \circ f)(u), u \rangle
\]
for all \(u \in E\). If \((f^* \circ f)(u) = 0\), since \(\langle - , - \rangle\) is positive definite, we must have \(f(u) = 0\), and so \(\text{Ker} (f^* \circ f) \subseteq \text{Ker} f\). Therefore,
\[
\text{Ker} f = \text{Ker} (f^* \circ f).
\]
The proof that \(\text{Ker} f^* = \text{Ker} (f \circ f^*)\) is similar.

By definition of \(f^*\), we have
\[
\langle f(u), v \rangle = \langle u, f^*(v) \rangle \quad \text{for all } u \in E \text{ and all } v \in F.
\]
\((*)\)
This immediately implies that
\[\text{Ker } f = (\text{Im } f^*)^\perp \quad \text{and} \quad \text{Ker } f^* = (\text{Im } f)^\perp. \]
Let us explain why \(\text{Ker } f = (\text{Im } f^*)^\perp \), the proof of the other equation being similar.

Because the inner product is positive definite, for every \(u \in E \), we have
\[u \in \text{Ker } f \quad \text{iff} \quad f(u) = 0 \]
\[\text{iff} \quad \langle f(u), v \rangle = 0 \text{ for all } v, \]
by \((*)\) \(\text{iff} \quad \langle u, f^*(v) \rangle = 0 \text{ for all } v, \)
\[\text{iff} \quad u \in (\text{Im } f^*)^\perp. \]

Since
\[\dim(\text{Im } f) = n - \dim(\text{Ker } f) \]
and
\[\dim(\text{Im } f^*) = n - \dim((\text{Im } f^*)^\perp), \]
from
\[\text{Ker } f = (\text{Im } f^*)^\perp \]
we also have
\[\dim(\text{Ker } f) = \dim((\text{Im } f^*)^\perp), \]
from which we obtain
\[\dim(\text{Im } f) = \dim(\text{Im } f^*). \]
Since
\[\dim(\text{Ker } (f^* \circ f)) + \dim(\text{Im } (f^* \circ f)) = \dim(E), \]
\(\text{Ker } (f^* \circ f) = \text{Ker } f \quad \text{and} \quad \text{Ker } f = (\text{Im } f^*)^\perp \), we get
\[\dim((\text{Im } f^*)^\perp) + \dim(\text{Im } (f^* \circ f)) = \dim(E). \]
Since
\[\dim((\text{Im } f^*)^\perp) + \dim(\text{Im } f^*) = \dim(E), \]
we deduce that
\[\dim(\text{Im } f^*) = \dim(\text{Im } (f^* \circ f)). \]
A similar proof shows that
\[\dim(\text{Im } f) = \dim(\text{Im } (f \circ f^*)). \]
Consequently, \(f, f^*, f^* \circ f, \text{ and } f \circ f^* \) have the same rank. \(\square \)
We will now prove that every square matrix has an SVD. Stronger results can be obtained if we first consider the polar form and then derive the SVD from it (there are uniqueness properties of the polar decomposition). For our purposes, uniqueness results are not as important so we content ourselves with existence results, whose proofs are simpler. Readers interested in a more general treatment are referred to [22].

The early history of the singular value decomposition is described in a fascinating paper by Stewart [48]. The SVD is due to Beltrami and Camille Jordan independently (1873, 1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823) (but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to rectangular matrices (1936, 1939).

Theorem 16.2. (Singular value decomposition) For every real \(n \times n \) matrix \(A \) there are two orthogonal matrices \(U \) and \(V \) and a diagonal matrix \(D \) such that \(A = VDU^\top \), where \(D \) is of the form

\[
D = \begin{pmatrix}
\sigma_1 & \cdots & \\
& \sigma_2 & \cdots & \\
& & \ddots & \\
& & & \sigma_n
\end{pmatrix},
\]

where \(\sigma_1, \ldots, \sigma_r \) are the singular values of \(f \), i.e., the (positive) square roots of the nonzero eigenvalues of \(A^\top A \) and \(AA^\top \), and \(\sigma_{r+1} = \cdots = \sigma_n = 0 \). The columns of \(U \) are eigenvectors of \(A^\top A \), and the columns of \(V \) are eigenvectors of \(AA^\top \).

Proof. Since \(A^\top A \) is a symmetric matrix, in fact, a positive semidefinite matrix, there exists an orthogonal matrix \(U \) such that

\[
A^\top A = UD^2U^\top,
\]

with \(D = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) \), where \(\sigma_1^2, \ldots, \sigma_r^2 \) are the nonzero eigenvalues of \(A^\top A \), and where \(r \) is the rank of \(A \); that is, \(\sigma_1, \ldots, \sigma_r \) are the singular values of \(A \). It follows that

\[
U^\top A^\top AU = (AU)^\top AU = D^2,
\]

and if we let \(f_j \) be the \(j \)th column of \(AU \) for \(j = 1, \ldots, n \), then we have

\[
\langle f_i, f_j \rangle = \sigma_i^2 \delta_{ij}, \quad 1 \leq i, j \leq r
\]

and

\[
f_j = 0, \quad r + 1 \leq j \leq n.
\]

If we define \((v_1, \ldots, v_r) \) by

\[
v_j = \sigma_j^{-1} f_j, \quad 1 \leq j \leq r,
\]
then we have
\[\langle v_i, v_j \rangle = \delta_{ij}, \quad 1 \leq i, j \leq r, \]
so complete \((v_1, \ldots, v_r)\) into an orthonormal basis \((v_1, \ldots, v_r, v_{r+1}, \ldots, v_n)\) (for example, using Gram–Schmidt). Now, since \(f_j = \sigma_j v_j\) for \(j = 1 \ldots, r\), we have
\[\langle v_i, f_j \rangle = \sigma_j \langle v_i, v_j \rangle = \sigma_j \delta_{i,j}, \quad 1 \leq i \leq n, 1 \leq j \leq r \]
and since \(f_j = 0\) for \(j = r + 1, \ldots, n\),
\[\langle v_i, f_j \rangle = 0 \quad 1 \leq i \leq n, r + 1 \leq j \leq n. \]
If \(V\) is the matrix whose columns are \(v_1, \ldots, v_n\), then \(V\) is orthogonal and the above equations prove that
\[V^\top A U = D, \]
which yields \(A = V D U^\top\), as required.

The equation \(A = V D U^\top\) implies that
\[A^\top A = U D^2 U^\top, \quad A A^\top = V D^2 V^\top, \]
which shows that \(A^\top A\) and \(AA^\top\) have the same eigenvalues, that the columns of \(U\) are eigenvectors of \(A^\top A\), and that the columns of \(V\) are eigenvectors of \(AA^\top\).

Theorem 16.2 suggests the following definition.

Definition 16.3. A triple \((U, D, V)\) such that \(A = V D U^\top\), where \(U\) and \(V\) are orthogonal and \(D\) is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is called a **singular value decomposition (SVD)** of \(A\).

The proof of Theorem 16.2 shows that there are two orthonormal bases \((u_1, \ldots, u_n)\) and \((v_1, \ldots, v_n)\), where \((u_1, \ldots, u_n)\) are eigenvectors of \(A^\top A\) and \((v_1, \ldots, v_n)\) are eigenvectors of \(AA^\top\). Furthermore, \((u_1, \ldots, u_r)\) is an orthonormal basis of \(\text{Im} \ A^\top\), \((u_{r+1}, \ldots, u_n)\) is an orthonormal basis of \(\text{Ker} \ A\), \((v_1, \ldots, v_r)\) is an orthonormal basis of \(\text{Im} \ A\), and \((v_{r+1}, \ldots, v_n)\) is an orthonormal basis of \(\text{Ker} \ A^\top\).

Using a remark made in Chapter 3, if we denote the columns of \(U\) by \(u_1, \ldots, u_n\) and the columns of \(V\) by \(v_1, \ldots, v_n\), then we can write
\[A = V D U^\top = \sigma_1 v_1 u_1^\top + \cdots + \sigma_r v_r u_r^\top. \]
As a consequence, if \(r\) is a lot smaller than \(n\) (we write \(r \ll n\)), we see that \(A\) can be reconstructed from \(U\) and \(V\) using a much smaller number of elements. This idea will be used to provide “low-rank” approximations of a matrix. The idea is to keep only the \(k\) top singular values for some suitable \(k \ll r\) for which \(\sigma_k, \ldots, \sigma_r\) are very small.

Remarks:
(1) In Strang [51] the matrices U, V, D are denoted by $U = Q_2$, $V = Q_1$, and $D = \Sigma$, and an SVD is written as $A = Q_1\Sigma Q_2^T$. This has the advantage that Q_1 comes before Q_2 in $A = Q_1\Sigma Q_2^T$. This has the disadvantage that A maps the columns of Q_2 (eigenvectors of A^TA) to multiples of the columns of Q_1 (eigenvectors of AA^T).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and Van Loan [24], Demmel [15], and Trefethen and Bau [54], where the SVD and its applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex $n \times n$ matrix A, there are two unitary matrices U and V and a diagonal matrix D such that

$$A = V D U^*,$$

where D is a diagonal matrix consisting of real entries $\sigma_1, \ldots, \sigma_n$, where $\sigma_1, \ldots, \sigma_r$ are the singular values of A, i.e., the positive square roots of the nonzero eigenvalues of A^*A and AA^*, and $\sigma_{r+1} = \ldots = \sigma_n = 0$.

A notion closely related to the SVD is the polar form of a matrix.

Definition 16.4. A pair (R, S) such that $A = RS$ with R orthogonal and S symmetric positive semidefinite is called a polar decomposition of A.

Theorem 16.2 implies that for every real $n \times n$ matrix A, there is some orthogonal matrix R and some positive semidefinite symmetric matrix S such that

$$A = RS.$$

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is invertible, but this is harder to prove.

For example, the matrix

$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}$$

is both orthogonal and symmetric, and $A = RS$ with $R = A$ and $S = I$, which implies that some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for every complex $n \times n$ matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix H such that

$$A = UH.$$
It is easy to go from the polar form to the SVD, and conversely.

Given an SVD decomposition \(A = V D U^\top \), let \(R = V U^\top \) and \(S = U D U^\top \). It is clear that \(R \) is orthogonal and that \(S \) is positive semidefinite symmetric, and
\[
RS = V U^\top U D U^\top = V D U^\top = A.
\]

Going the other way, given a polar decomposition \(A = R_1 S \), where \(R_1 \) is orthogonal and \(S \) is positive semidefinite symmetric, there is an orthogonal matrix \(R_2 \) and a positive semidefinite diagonal matrix \(D \) such that \(S = R_2 D R_2^\top \), and thus
\[
A = R_1 R_2 D R_2^\top = V D U^\top,
\]
where \(V = R_1 R_2 \) and \(U = R_2 \) are orthogonal.

The eigenvalues and the singular values of a matrix are typically not related in any obvious way. For example, the \(n \times n \) matrix
\[
A = \begin{pmatrix}
1 & 2 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 2 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 2 \\
0 & 0 & \cdots & 0 & 0 & 0 & 1
\end{pmatrix}
\]
has the eigenvalue 1 with multiplicity \(n \), but its singular values, \(\sigma_1 \geq \cdots \geq \sigma_n \), which are the positive square roots of the eigenvalues of the matrix \(B = A^\top A \) with
\[
B = \begin{pmatrix}
1 & 2 & 0 & 0 & \cdots & 0 & 0 \\
2 & 5 & 2 & 0 & \cdots & 0 & 0 \\
0 & 2 & 5 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 2 & 5 & 2 & 0 \\
0 & 0 & \cdots & 0 & 2 & 5 & 2 \\
0 & 0 & \cdots & 0 & 0 & 2 & 5
\end{pmatrix}
\]
have a wide spread, since
\[
\frac{\sigma_1}{\sigma_n} = \text{cond}_2(A) \geq 2^{n-1}.
\]

If \(A \) is a complex \(n \times n \) matrix, the eigenvalues \(\lambda_1, \ldots, \lambda_n \) and the singular values \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \) of \(A \) are not unrelated, since
\[
\sigma_1^2 \cdots \sigma_n^2 = \det(A^*A) = |\det(A)|^2
\]
and
\[|\lambda_1| \cdots |\lambda_n| = |\det(A)|, \]
so we have
\[|\lambda_1| \cdots |\lambda_n| = \sigma_1 \cdots \sigma_n. \]

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 16.3. *(Weyl’s inequalities, 1949)* For any complex \(n \times n \) matrix, \(A \), if \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \) are the eigenvalues of \(A \) and \(\sigma_1, \ldots, \sigma_n \in \mathbb{R}_+ \) are the singular values of \(A \), listed so that
\[|\lambda_1| \geq \cdots \geq |\lambda_n| \] and \(\sigma_1 \geq \cdots \geq \sigma_n \geq 0 \), then
\[|\lambda_1| \cdots |\lambda_n| = \sigma_1 \cdots \sigma_n \quad \text{and} \quad |\lambda_1| \cdots |\lambda_k| \leq \sigma_1 \cdots \sigma_k, \quad \text{for} \quad k = 1, \ldots, n - 1. \]

A proof of Theorem 16.3 can be found in Horn and Johnson [29], Chapter 3, Section 3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are given.

Theorem 16.2 can be easily extended to rectangular \(m \times n \) matrices, as we show in the next section (for various versions of the SVD for rectangular matrices, see Strang [51] Golub and Van Loan [24], Demmel [15], and Trefethen and Bau [54]).

16.2 Singular Value Decomposition for Rectangular Matrices

Here is the generalization of Theorem 16.2 to rectangular matrices.

Theorem 16.4. *(Singular value decomposition)* For every real \(m \times n \) matrix \(A \), there are two orthogonal matrices \(U \) (\(n \times n \)) and \(V \) (\(m \times m \)) and a diagonal \(m \times n \) matrix \(D \) such that
\[A = VD^\top U, \]
where \(\sigma_1, \ldots, \sigma_r \) are the singular values of \(A \), i.e. the (positive) square roots of the nonzero eigenvalues of \(A^\top A \) and \(AA^\top \), and \(\sigma_{r+1} = \cdots = \sigma_p = 0 \), where \(p = \min(m, n) \). The columns of \(U \) are eigenvectors of \(A^\top A \), and the columns of \(V \) are eigenvectors of \(AA^\top \).
Proof. As in the proof of Theorem 16.2, since $A^\top A$ is symmetric positive semidefinite, there exists an $n \times n$ orthogonal matrix U such that

$$A^\top A = U\Sigma^2 U^\top,$$

with $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)$, where $\sigma_1^2, \ldots, \sigma_r^2$ are the nonzero eigenvalues of $A^\top A$, and where r is the rank of A. Observe that $r \leq \min\{m, n\}$, and AU is an $m \times n$ matrix. It follows that

$$U^\top A^\top AU = (AU)^\top AU = \Sigma^2,$$

and if we let $f_j \in \mathbb{R}^m$ be the jth column of AU for $j = 1, \ldots, n$, then we have

$$\langle f_i, f_j \rangle = \sigma_i^2 \delta_{ij}, \quad 1 \leq i, j \leq r$$

and

$$f_j = 0, \quad r + 1 \leq j \leq n.$$

If we define (v_1, \ldots, v_r) by

$$v_j = \sigma_j^{-1} f_j, \quad 1 \leq j \leq r,$$

then we have

$$\langle v_i, v_j \rangle = \delta_{ij}, \quad 1 \leq i, j \leq r,$$

so complete (v_1, \ldots, v_r) into an orthonormal basis $(v_1, \ldots, v_r, v_{r+1}, \ldots, v_m)$ (for example, using Gram–Schmidt).

Now, since $f_j = \sigma_j v_j$ for $j = 1, \ldots, r$, we have

$$\langle v_i, f_j \rangle = \sigma_j \langle v_i, v_j \rangle = \sigma_j \delta_{i,j}, \quad 1 \leq i \leq m, 1 \leq j \leq r$$

and since $f_j = 0$ for $j = r + 1, \ldots, n$, we have

$$\langle v_i, f_j \rangle = 0, \quad 1 \leq i \leq m, r + 1 \leq j \leq n.$$

If V is the matrix whose columns are v_1, \ldots, v_m, then V is an $m \times m$ orthogonal matrix and if $m \geq n$, we let

$$D = \begin{pmatrix} \Sigma \\ 0_{m-n} \end{pmatrix} = \begin{pmatrix} \sigma_1 & \cdots \\ & \sigma_2 & \cdots \\ & & \ddots & \cdots \\ & & & \cdots & \sigma_n \\ 0 & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \vdots & \ddots & 0 & \vdots \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & \vdots & \ddots & 0 & 0 \end{pmatrix},$$

else if $n \geq m$, then we let

$$D = \begin{pmatrix} \sigma_1 & \cdots & 0 & \cdots & 0 \\ & \sigma_2 & \cdots & 0 & \cdots \\ & & \ddots & \cdots & \vdots \\ & & & \cdots & 0 \\ & & & \cdots & \sigma_m \end{pmatrix}.$$
In either case, the above equations prove that

$$V^\top AU = D,$$

which yields $$A = VDU^\top$$, as required.

The equation $$A = VDU^\top$$ implies that

$$A^\top A = U D^\top D U^\top = U \text{diag}(\sigma_1^2, \ldots, \sigma_r^2, 0, \ldots, 0) U^\top$$

and

$$AA^\top = V D D^\top V^\top = V \text{diag}(\sigma_1^2, \ldots, \sigma_r^2, 0, \ldots, 0) V^\top,$$

which shows that $$A^\top A$$ and $$AA^\top$$ have the same nonzero eigenvalues, that the columns of $$U$$ are eigenvectors of $$A^\top A$$, and that the columns of $$V$$ are eigenvectors of $$AA^\top$$.

A triple $$(U, D, V)$$ such that $$A = VDU^\top$$ is called a *singular value decomposition* (SVD) of $$A$$.

Even though the matrix $$D$$ is an $$m \times n$$ rectangular matrix, since its only nonzero entries are on the descending diagonal, we still say that $$D$$ is a diagonal matrix.

If we view $$A$$ as the representation of a linear map $$f : E \to F$$, where $$\dim(E) = n$$ and $$\dim(F) = m$$, the proof of Theorem 16.4 shows that there are two orthonormal bases $$(u_1, \ldots, u_n)$$ and $$(v_1, \ldots, v_m)$$ for $$E$$ and $$F$$, respectively, where $$(u_1, \ldots, u_r)$$ are eigenvectors of $$f^* \circ f$$ and $$(v_1, \ldots, v_r)$$ are eigenvectors of $$f \circ f^*$$.

Furthermore, $$(u_1, \ldots, u_r)$$ is an orthonormal basis of $$\text{Im} f^*$$, $$(u_{r+1}, \ldots, u_n)$$ is an orthonormal basis of $$\text{Ker} f$$, $$(v_1, \ldots, v_r)$$ is an orthonormal basis of $$\text{Im} f$$, and $$(v_{r+1}, \ldots, v_m)$$ is an orthonormal basis of $$\text{Ker} f^*$$.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix; we will do so in Chapter 17. The reader may also consult Strang [51], Demmel [15], Trefethen and Bau [54], and Golub and Van Loan [24].

One of the spectral theorems states that a symmetric matrix can be diagonalized by an orthogonal matrix. There are several numerical methods to compute the eigenvalues of a symmetric matrix $$A$$. One method consists in *tridiagonalizing* $$A$$, which means that there exists some orthogonal matrix $$P$$ and some symmetric tridiagonal matrix $$T$$ such that $$A = PT P^\top$$. In fact, this can be done using Householder transformations. It is then possible to compute the eigenvalues of $$T$$ using a bisection method based on Sturm sequences. One can also use Jacobi’s method. For details, see Golub and Van Loan [24], Chapter 8, Demmel [15], Trefethen and Bau [54], Lecture 26, or Ciarlet [13]. Computing the SVD of a matrix $$A$$ is more involved. Most methods begin by finding orthogonal matrices $$U$$ and $$V$$ and a *bidiagonal* matrix $$B$$ such that $$A = V B U^\top$$. This can also be done using Householder transformations. Observe that $$B^\top B$$ is symmetric tridiagonal. Thus, in principle, the previous method to diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to compute
The polar form has applications in continuum mechanics. Indeed, in any deformation it is important to separate stretching from rotation. This is exactly what QS achieves. The orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the symmetric matrix S to stretching (or compression). The real eigenvalues $\sigma_1, \ldots, \sigma_r$ of S are the stretch factors (or compression factors) (see Marsden and Hughes [38]). The fact that S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the principal axes.

The SVD has applications to data compression, for instance in image processing. The idea is to retain only singular values whose magnitudes are significant enough. The SVD can also be used to determine the rank of a matrix when other methods such as Gaussian elimination produce very small pivots. One of the main applications of the SVD is the computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various optimization problems, in particular the method of least squares. This topic is discussed in the next chapter (Chapter 17). Applications of the material of this chapter can be found in Strang [51, 50]; Ciarlet [13]; Golub and Van Loan [24], which contains many other references; Demmel [15]; and Trefethen and Bau [54].

16.3 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on matrices which have found recent applications in quantum information theory and in spectral graph theory. Following Horn and Johnson [29] (Section 3.4) we can make the following definitions:

Definition 16.5. For any matrix $A \in M_{m,n}(\mathbb{C})$, let $q = \min\{m, n\}$, and if $\sigma_1 \geq \cdots \geq \sigma_q$ are the singular values of A, for any k with $1 \leq k \leq q$, let

$$N_k(A) = \sigma_1 + \cdots + \sigma_k,$$

called the Ky Fan k-norm of A.

More generally, for any $p \geq 1$ and any k with $1 \leq k \leq q$, let

$$N_{k,p}(A) = (\sigma_1^p + \cdots + \sigma_k^p)^{1/p},$$

called the Ky Fan p-k-norm of A. When $k = q$, $N_{q,p}$ is also called the Schatten p-norm.

Observe that when $k = 1$, $N_1(A) = \sigma_1$, and the Ky Fan norm N_1 is simply the spectral norm from Chapter 7, which is the subordinate matrix norm associated with the Euclidean norm. When $k = q$, the Ky Fan norm N_q is given by

$$N_q(A) = \sigma_1 + \cdots + \sigma_q = \text{tr}((A^*A)^{1/2})$$
and is called the trace norm or nuclear norm. When \(p = 2 \) and \(k = q \), the Ky Fan \(N_{k;2} \) norm is given by

\[
N_{k;2}(A) = (\sigma_1^2 + \cdots + \sigma_q^2)^{1/2} = \sqrt{\text{tr}(A^*A)} = \|A\|_F,
\]

which is the Frobenius norm of \(A \).

It can be shown that \(N_k \) and \(N_{k;p} \) are unitarily invariant norms, and that when \(m = n \), they are matrix norms; see Horn and Johnson [29] (Section 3.4, Corollary 3.4.4 and Problem 3).

16.4 Summary

The main concepts and results of this chapter are listed below:

- For any linear map \(f : E \to E \) on a Euclidean space \(E \), the maps \(f^* \circ f \) and \(f \circ f^* \) are self-adjoint and positive semidefinite.
- The singular values of a linear map.
- Positive semidefinite and positive definite self-adjoint maps.
- Relationships between \(\text{Im} f \), \(\text{Ker} f \), \(\text{Im} f^* \), and \(\text{Ker} f^* \).
- The singular value decomposition theorem for square matrices (Theorem 16.2).
- The SVD of matrix.
- The polar decomposition of a matrix.
- The Weyl inequalities.
- The singular value decomposition theorem for \(m \times n \) matrices (Theorem 16.4).
- Ky Fan \(k \)-norms, Ky Fan \(p \)-\(k \)-norms, Schatten \(p \)-norms.
Chapter 17

Applications of SVD and Pseudo-Inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre qui, empêchant les extrêmes de prévaloir, est très propre à faire connaître l’état du système le plus proche de la vérité.
—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des Comètes

17.1 Least Squares Problems and the Pseudo-Inverse

This chapter presents several applications of SVD. The first one is the pseudo-inverse, which plays a crucial role in solving linear systems by the method of least squares. The second application is data compression. The third application is principal component analysis (PCA), whose purpose is to identify patterns in data and understand the variance–covariance structure of the data. The fourth application is the best affine approximation of a set of data, a problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of linear equations

\[Ax = b, \]

i.e., a system in which \(A \) is a rectangular \(m \times n \) matrix with more equations than unknowns (when \(m > n \)). Historically, the method of least squares was used by Gauss and Legendre to solve problems in astronomy and geodesy. The method was first published by Legendre in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had already used the method of least squares as early as 1801 to determine the orbit of the asteroid
Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas. Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems is that repeated measurements are taken to minimize errors. This produces an overdetermined and often inconsistent system of linear equations. For example, Gauss solved a system of eleven equations in six unknowns to determine the orbit of the asteroid Pallas. As a concrete illustration, suppose that we observed the motion of a small object, assimilated to a point, in the plane. From our observations, we suspect that this point moves along a straight line, say of equation \(y = dx + c \). Suppose that we observed the moving point at three different locations \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\). Then we should have

\[
\begin{align*}
c + dx_1 &= y_1, \\
c + dx_2 &= y_2, \\
c + dx_3 &= y_3.
\end{align*}
\]

If there were no errors in our measurements, these equations would be compatible, and \(c \) and \(d \) would be determined by only two of the equations. However, in the presence of errors, the system may be inconsistent. Yet we would like to find \(c \) and \(d \)!

The idea of the method of least squares is to determine \((c, d)\) such that it minimizes the sum of the squares of the errors, namely,

\[
(c + dx_1 - y_1)^2 + (c + dx_2 - y_2)^2 + (c + dx_3 - y_3)^2.
\]

In general, for an overdetermined \(m \times n \) system \(Ax = b \), what Gauss and Legendre discovered is that there are solutions \(x \) minimizing

\[
\|Ax - b\|_2^2
\]

(where \(\|u\|_2^2 = u_1^2 + \cdots + u_n^2 \), the square of the Euclidean norm of the vector \(u = (u_1, \ldots, u_n) \)), and that these solutions are given by the square \(n \times n \) system

\[
A^\top Ax = A^\top b,
\]

called the normal equations. Furthermore, when the columns of \(A \) are linearly independent, it turns out that \(A^\top A \) is invertible, and so \(x \) is unique and given by

\[
x = (A^\top A)^{-1}A^\top b.
\]

Note that \(A^\top A \) is a symmetric matrix, one of the nice features of the normal equations of a least squares problem. For instance, the normal equations for the above problem are

\[
\begin{pmatrix}
3 & x_1 + x_2 + x_3 \\
x_1 + x_2 + x_3 & x_1^2 + x_2^2 + x_3^2
\end{pmatrix}
\begin{pmatrix}
c \\
d
\end{pmatrix}
= \begin{pmatrix}
(y_1 + y_2 + y_3) \\
x_1 y_1 + x_2 y_2 + x_3 y_3
\end{pmatrix}.
\]

In fact, given any real \(m \times n \) matrix \(A \), there is always a unique \(x^+ \) of minimum norm that minimizes \(\|Ax - b\|_2^2 \), even when the columns of \(A \) are linearly dependent. How do we prove this, and how do we find \(x^+ \)?
17.1. LEAST SQUARES PROBLEMS AND THE PSEUDO-INVERSE

Theorem 17.1. Every linear system $Ax = b$, where A is an $m \times n$ matrix, has a unique least squares solution x^+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x^+. Indeed, we can interpret b as a point in the Euclidean (affine) space \mathbb{R}^m, and the image subspace of A (also called the column space of A) as a subspace U of \mathbb{R}^m (passing through the origin). Then, it is clear that

$$\inf_{x \in \mathbb{R}^n} \|Ax - b\|^2 = \inf_{y \in U} \|y - b\|^2,$$

with $U = \text{Im } A$, and we claim that x minimizes $\|Ax - b\|^2$ iff $Ax = p$, where p the orthogonal projection of b onto the subspace U.

Recall from Section 11.1 that the orthogonal projection $p_U : U \oplus U^\perp \to U$ is the linear map given by

$$p_U(u + v) = u,$$

with $u \in U$ and $v \in U^\perp$. If we let $p = p_U(b) \in U$, then for any point $y \in U$, the vectors $\overrightarrow{py} = y - p \in U$ and $\overrightarrow{bp} = p - b \in U^\perp$ are orthogonal, which implies that

$$\|\overrightarrow{by}\|^2 = \|\overrightarrow{bp}\|^2 + \|\overrightarrow{by}\|^2,$$

where $\overrightarrow{by} = y - b$. Thus, p is indeed the unique point in U that minimizes the distance from b to any point in U.

Thus, the problem has been reduced to proving that there is a unique x^+ of minimum norm such that $Ax^+ = p$, with $p = p_U(b) \in U$, the orthogonal projection of b onto U. We use the fact that

$$\mathbb{R}^n = \text{Ker } A \oplus (\text{Ker } A)^\perp.$$

Consequently, every $x \in \mathbb{R}^n$ can be written uniquely as $x = u + v$, where $u \in \text{Ker } A$ and $v \in (\text{Ker } A)^\perp$, and since u and v are orthogonal,

$$\|x\|^2 = \|u\|^2 + \|v\|^2.$$

Furthermore, since $u \in \text{Ker } A$, we have $Au = 0$, and thus $Ax = p$ iff $Av = p$, which shows that the solutions of $Ax = p$ for which x has minimum norm must belong to $(\text{Ker } A)^\perp$. However, the restriction of A to $(\text{Ker } A)^\perp$ is injective. This is because if $Av_1 = Av_2$, where $v_1, v_2 \in (\text{Ker } A)^\perp$, then $A(v_2 - v_1) = 0$, which implies $v_2 - v_1 \in \text{Ker } A$, and since $v_1, v_2 \in (\text{Ker } A)^\perp$, we also have $v_2 - v_1 \in (\text{Ker } A)^\perp$, and consequently, $v_2 - v_1 = 0$. This shows that there is a unique x^+ of minimum norm such that $Ax^+ = p$, and that x^+ must belong to $(\text{Ker } A)^\perp$. By our previous reasoning, x^+ is the unique vector of minimum norm minimizing $\|Ax - b\|^2$. \qed

The proof also shows that x minimizes $\|Ax - b\|^2$ iff $\overrightarrow{pb} = b - Ax$ is orthogonal to U, which can be expressed by saying that $b - Ax$ is orthogonal to every column of A. However, this is equivalent to

$$A^\top(b - Ax) = 0, \quad \text{i.e.}, \quad A^\top Ax = A^\top b.$$
Finally, it turns out that the minimum norm least squares solution \(x^+ \) can be found in terms of the pseudo-inverse \(A^+ \) of \(A \), which is itself obtained from any SVD of \(A \).

Definition 17.1. Given any nonzero \(m \times n \) matrix \(A \) of rank \(r \), if \(A = VDU^T \) is an SVD of \(A \) such that

\[
D = \begin{pmatrix}
\Lambda & 0_{r,n-r} \\
0_{m-r,r} & 0_{m-r,n-r}
\end{pmatrix},
\]

with

\[
\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_r)
\]

an \(r \times r \) diagonal matrix consisting of the nonzero singular values of \(A \), then if we let \(D^+ \) be the \(n \times m \) matrix

\[
D^+ = \begin{pmatrix}
\Lambda^{-1} & 0_{r,m-r} \\
0_{n-r,r} & 0_{n-r,m-r}
\end{pmatrix},
\]

with

\[
\Lambda^{-1} = \text{diag}(1/\lambda_1, \ldots, 1/\lambda_r),
\]

the pseudo-inverse of \(A \) is defined by

\[
A^+ = UD^+V^T.
\]

If \(A = 0_{m,n} \) is the zero matrix, we set \(A^+ = 0_{n,m} \). Observe that \(D^+ \) is obtained from \(D \) by inverting the nonzero diagonal entries of \(D \), leaving all zeros in place, and then transposing the matrix. The pseudo-inverse of a matrix is also known as the Moore–Penrose pseudo-inverse.

Actually, it seems that \(A^+ \) depends on the specific choice of \(U \) and \(V \) in an SVD \((U, D, V)\) for \(A \), but the next theorem shows that this is not so.

Theorem 17.2. The least squares solution of smallest norm of the linear system \(Ax = b \), where \(A \) is an \(m \times n \) matrix, is given by

\[
x^+ = A^+b = UD^+V^Tb.
\]

Proof. First, assume that \(A \) is a (rectangular) diagonal matrix \(D \), as above. Then, since \(x \) minimizes \(\|Dx - b\|_2 \) iff \(Dx \) is the projection of \(b \) onto the image subspace \(F \) of \(D \), it is fairly obvious that \(x^+ = D^+b \). Otherwise, we can write

\[
A = VDU^T,
\]

where \(U \) and \(V \) are orthogonal. However, since \(V \) is an isometry,

\[
\|Ax - b\|_2 = \|VDU^Tx - b\|_2 = \|DU^Tx - V^Tb\|_2.
\]
Letting $y = U^T x$, we have $\|x\|_2 = \|y\|_2$, since U is an isometry, and since U is surjective, $\|Ax - b\|_2$ is minimized iff $\|Dy - V^T b\|_2$ is minimized, and we have shown that the least solution is

$$y^+ = D^+ V^T b.$$

Since $y = U^T x$, with $\|x\|_2 = \|y\|_2$, we get

$$x^+ = UD^+ V^T b = A^+ b.$$

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.

By Proposition 17.2 and Theorem 17.1, $A^+ b$ is uniquely defined by every b, and thus A^+ depends only on A.

Proposition 17.3. When A has full rank, the pseudo-inverse A^+ can be expressed as $A^+ = (A^T A)^{-1} A^T$ when $m \geq n$, and as $A^+ = A^T (A A^T)^{-1}$ when $n \geq m$. In the first case ($m \geq n$), observe that $A^+ A = I$, so A^+ is a left inverse of A; in the second case ($n \geq m$), we have $A A^+ = I$, so A^+ is a right inverse of A.

Proof. If $m \geq n$ and A has full rank rank n, we have

$$A = V \begin{pmatrix} \Lambda
0_{m-n,n} \end{pmatrix} U^T$$

with Λ an $n \times n$ diagonal invertible matrix (with positive entries), so

$$A^+ = U \begin{pmatrix} \Lambda^{-1} & 0_{n,m-n} \end{pmatrix} V^T.$$

We find that

$$A^T A = U \begin{pmatrix} \Lambda & 0_{n,m-n} \end{pmatrix} V^T V \begin{pmatrix} \Lambda
0_{m-n,n} \end{pmatrix} U^T = U \Lambda^2 U^T,$$

which yields

$$(A^T A)^{-1} A^T = U \Lambda^{-2} U^T U \begin{pmatrix} \Lambda & 0_{n,m-n} \end{pmatrix} V^T V = U \begin{pmatrix} \Lambda^{-1} & 0_{n,m-n} \end{pmatrix} V^T = A^+.$$

Therefore, if $m \geq n$ and A has full rank rank n, then

$$A^+ = (A^T A)^{-1} A^T.$$

If $n \geq m$ and A has full rank rank m, then

$$A = V \begin{pmatrix} \Lambda
0_{m,n-m} \end{pmatrix} U^T$$

with Λ an $m \times m$ diagonal invertible matrix (with positive entries), so

$$A^+ = U \begin{pmatrix} \Lambda^{-1}
0_{n-m,m} \end{pmatrix} V^T.$$
We find that
\[AA^\top = V (\Lambda \ 0_{m,n-m}) U^\top U \begin{pmatrix} \Lambda & 0 \\ 0_{n-m,m} & \end{pmatrix} V^\top = VA^2V^\top, \]
which yields
\[A^\top (AA^\top)^{-1} = U \begin{pmatrix} \Lambda & 0 \\ 0_{n-m,m} & \end{pmatrix} V^\top VA^{-2}V^\top = U \begin{pmatrix} \Lambda^{-1} & 0 \\ 0_{n-m,m} & \end{pmatrix} V^\top = A^+. \]
Therefore, if \(n \geq m \) and \(A \) has full rank \(\text{rank} m \), then \(A^+ = A^\top (AA^\top)^{-1} \). \(\square \)

17.2 Properties of the Pseudo-Inverse

Let \(A = V \Sigma U^\top \) be an SVD for any \(m \times n \) matrix \(A \). It is easy to check that
\[AA^+A = A, \]
\[A^+AA^+ = A^+, \]
and both \(AA^+ \) and \(A^+A \) are symmetric matrices. In fact,
\[AA^+ = V \Sigma U^\top U \Sigma^+ V^\top = V \Sigma \Sigma^+ V^\top = V \begin{pmatrix} I_r & 0 \\ 0 & 0_{m-r} \end{pmatrix} V^\top \]
and
\[A^+A = U \Sigma^+ V^\top U \Sigma U^\top = U \Sigma^+ \Sigma U^\top = U \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} U^\top. \]
We immediately get
\[(AA^+)^2 = AA^+, \]
\[(A^+A)^2 = A^+A, \]
so both \(AA^+ \) and \(A^+A \) are orthogonal projections (since they are both symmetric).

Proposition 17.4. The matrix \(AA^+ \) is the orthogonal projection onto the range of \(A \) and \(A^+A \) is the orthogonal projection onto \(\text{Ker}(A)^\perp = \text{Im}(A^\top) \), the range of \(A^\top \).

Proof. Obviously, we have \(\text{range}(AA^+) \subseteq \text{range}(A) \), and for any \(y = Ax \in \text{range}(A) \), since \(AA^+A = A \), we have
\[AA^+y = AA^+Ax = Ax = y, \]
so the image of \(AA^+ \) is indeed the range of \(A \). It is also clear that \(\text{Ker}(A) \subseteq \text{Ker}(A^+A) \), and since \(AA^+A = A \), we also have \(\text{Ker}(A^+A) \subseteq \text{Ker}(A) \), and so
\[\text{Ker}(A^+A) = \text{Ker}(A). \]
Since \(A^+A \) is symmetric, \(\text{range}(A^+A) = \text{range}((A^+A)^\top) = \text{Ker}(A^+A)^\perp = \text{Ker}(A)^\perp \), as claimed. \(\square \)
Proposition 17.5. The set \(\text{range}(A) = \text{range}(AA^+) \) consists of all vectors \(y \in \mathbb{R}^m \) such that

\[
V^T y = \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix},
\]

with \(z \in \mathbb{R}^r \).

Proof. Indeed, if \(y = Ax \), then

\[
V^T y = V^T Ax = V^T \Sigma U^T x = \Sigma U^T x = \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0_{m-r} \end{pmatrix} U^T x = \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix},
\]

where \(\Sigma_r \) is the \(r \times r \) diagonal matrix \(\text{diag}(\sigma_1, \ldots, \sigma_r) \). Conversely, if \(V^T y = (\tilde{z} \ 0) \), then \(y = V (\tilde{z} \ 0) \), and

\[
AA^+ y = V \begin{pmatrix} I_r & 0 \\ 0 & 0_{m-r} \end{pmatrix} V^T y
= V \begin{pmatrix} I_r & 0 \\ 0 & 0_{m-r} \end{pmatrix} V^T \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix}
= V \begin{pmatrix} I_r & 0 \\ 0 & 0_{m-r} \end{pmatrix} \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix}
= V \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix} = y,
\]

which shows that \(y \) belongs to the range of \(A \).

Similarly, we have the following result.

Proposition 17.6. The set \(\text{range}(A^+A) = \text{Ker}(A^+) \) consists of all vectors \(y \in \mathbb{R}^n \) such that

\[
U^T y = \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix},
\]

with \(z \in \mathbb{R}^r \).

Proof. If \(y = A^+ Au \), then

\[
y = A^+ Au = U \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} U^T u = U \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix},
\]

for some \(z \in \mathbb{R}^r \). Conversely, if \(U^T y = (\tilde{z} \ 0) \), then \(y = U (\tilde{z} \ 0) \), and so

\[
A^+ AU \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix} = U \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} U^T \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix}
= U \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix}
= U \begin{pmatrix} \tilde{z} \\ 0 \end{pmatrix} = y,
\]

which shows that \(y \in \text{range}(A^+A) \).
If A is a symmetric matrix, then in general, there is no SVD $V\Sigma U^\top$ of A with $V = U$. However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and so the nonzero eigenvalues of A are equal to the singular values of A and SVDs of A are of the form

$$A = V\Sigma V^\top.$$

Analogous results hold for complex matrices, but in this case, V and U are unitary matrices and AA^+ and A^+A are Hermitian orthogonal projections.

If A is a normal matrix, which means that $AA^\top = A^\top A$, then there is an intimate relationship between SVD’s of A and block diagonalizations of A. As a consequence, the pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization of A.

If A is a (real) normal matrix, then we know from Theorem 14.16 that A can be block diagonalized with respect to an orthogonal matrix U as

$$A = U\Lambda U^\top,$$

where Λ is the (real) block diagonal matrix

$$\Lambda = \text{diag}(B_1, \ldots, B_n),$$

consisting either of 2×2 blocks of the form

$$B_j = \begin{pmatrix} \lambda_j & -\mu_j \\ \mu_j & \lambda_j \end{pmatrix}$$

with $\mu_j \neq 0$, or of one-dimensional blocks $B_k = (\lambda_k)$. Then we have the following proposition:

Proposition 17.7. For any (real) normal matrix A and any block diagonalization $A = U\Lambda U^\top$ of A as above, the pseudo-inverse of A is given by

$$A^+ = U\Lambda^+ U^\top,$$

where Λ^+ is the pseudo-inverse of Λ. Furthermore, if

$$\Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix},$$

where Λ_r has rank r, then

$$\Lambda^+ = \begin{pmatrix} \Lambda_r^{-1} & 0 \\ 0 & 0 \end{pmatrix}.$$

Proof. Assume that B_1, \ldots, B_p are 2×2 blocks and that $\lambda_{2p+1}, \ldots, \lambda_n$ are the scalar entries. We know that the numbers $\lambda_j \pm i\mu_j$, and the λ_{2p+k} are the eigenvalues of A. Let $\rho_{2j-1} = \ldots$
Properties of the Pseudo-Inverse

\[\rho_{2j} = \sqrt{\lambda_j^2 + \mu_j^2} \text{ for } j = 1, \ldots, p, \rho_{2p+j} = \lambda_j \text{ for } j = 1, \ldots, n-2p, \] and assume that the blocks are ordered so that \(\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n \). Then it is easy to see that

\[UU^T = U^TU = U\Lambda U^T U^T = U\Lambda \Lambda^T U^T, \]

with

\[\Lambda \Lambda^T = \text{diag}(\rho_1^2, \ldots, \rho_n^2), \]

so the singular values \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \) of \(A \), which are the nonnegative square roots of the eigenvalues of \(AA^T \), are such that

\[\sigma_j = \rho_j, \quad 1 \leq j \leq n. \]

We can define the diagonal matrices

\[\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0), \]

where \(r = \text{rank}(A) \), \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \) and

\[\Theta = \text{diag}(\sigma_1^{-1}B_1, \ldots, \sigma_r^{-1}B_p, 1, \ldots, 1), \]

so that \(\Theta \) is an orthogonal matrix and

\[\Lambda = \Theta \Sigma = (B_1, \ldots, B_p, \lambda_{2p+1}, \ldots, \lambda_r, 0, \ldots, 0). \]

But then we can write

\[A = U\Lambda U^T = U\Theta \Sigma U^T, \]

and we if let \(V = U\Theta \), since \(U \) is orthogonal and \(\Theta \) is also orthogonal, \(V \) is also orthogonal and \(A = V\Sigma U^T \) is an SVD for \(A \). Now we get

\[A^+ = U\Sigma^+ V^T = U\Sigma^+ \Theta^T U^T. \]

However, since \(\Theta \) is an orthogonal matrix, \(\Theta^T = \Theta^{-1} \), and a simple calculation shows that

\[\Sigma^+ \Theta^T = \Sigma^+ \Theta^{-1} = \Lambda^+, \]

which yields the formula

\[A^+ = U\Lambda^+ U^T. \]

Also observe that if we write

\[\Lambda_r = (B_1, \ldots, B_p, \lambda_{2p+1}, \ldots, \lambda_r), \]

then \(\Lambda_r \) is invertible and

\[\Lambda^+ = \begin{pmatrix} \Lambda_r^{-1} & 0 \\ 0 & 0 \end{pmatrix}. \]

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block diagonalization of \(A \), as claimed. \(\square \)
The following properties, due to Penrose, characterize the pseudo-inverse of a matrix. We have already proved that the pseudo-inverse satisfies these equations. For a proof of the converse, see Kincaid and Cheney [31].

Proposition 17.8. Given any $m \times n$ matrix A (real or complex), the pseudo-inverse A^+ of A is the unique $n \times m$ matrix satisfying the following properties:

$$AA^+A = A,$$

$$A^+AA^+ = A^+,$$

$$(AA^+)^\top = AA^+,$$

$$(A^+A)^\top = A^+A.$$

If A is an $m \times n$ matrix of rank n (and so $m \geq n$), it is immediately shown that the QR-decomposition in terms of Householder transformations applies as follows:

There are n $m \times m$ matrices H_1, \ldots, H_n, Householder matrices or the identity, and an upper triangular $m \times n$ matrix R of rank n such that

$$A = H_1 \cdots H_n R.$$

Then, because each H_i is an isometry,

$$\|Ax - b\|_2 = \|Rx - H_n \cdots H_1 b\|_2,$$

and the least squares problem $Ax = b$ is equivalent to the system

$$Rx = H_n \cdots H_1 b.$$

Now, the system

$$Rx = H_n \cdots H_1 b$$

is of the form

$$\begin{pmatrix} R_1 \\ 0_{m-n} \end{pmatrix} x = \begin{pmatrix} c \\ d \end{pmatrix},$$

where R_1 is an invertible $n \times n$ matrix (since A has rank n), $c \in \mathbb{R}^n$, and $d \in \mathbb{R}^{m-n}$, and the least squares solution of smallest norm is

$$x^+ = R_1^{-1} c.$$

Since R_1 is a triangular matrix, it is very easy to invert R_1.

The method of least squares is one of the most effective tools of the mathematical sciences. There are entire books devoted to it. Readers are advised to consult Strang [51], Golub and Van Loan [24], Demmel [15], and Trefethen and Bau [54], where extensions and applications of least squares (such as weighted least squares and recursive least squares) are described. Golub and Van Loan [24] also contains a very extensive bibliography, including a list of books on least squares.
17.3 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for images. In order to make precise the notion of closeness of matrices, we use the notion of matrix norm. This concept is defined in Chapter 7 and the reader may want to review it before reading any further.

Given an \(m \times n\) matrix of rank \(r\), we would like to find a best approximation of \(A\) by a matrix \(B\) of rank \(k \leq r\) (actually, \(k < r\)) so that \(\|A - B\|_2\) (or \(\|A - B\|_F\)) is minimized.

Proposition 17.9. Let \(A\) be an \(m \times n\) matrix of rank \(r\) and let \(VDU^\top = A\) be an SVD for \(A\). Write \(u_i\) for the columns of \(U\), \(v_i\) for the columns of \(V\), and \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p\) for the singular values of \(A\) (\(p = \min(m, n)\)). Then a matrix of rank \(k < r\) closest to \(A\) (in the \(\|\cdot\|_2\) norm) is given by

\[
A_k = \sum_{i=1}^{k} \sigma_i v_i u_i^\top = V \text{diag}(\sigma_1, \ldots, \sigma_k) U^\top
\]

and \(\|A - A_k\|_2 = \sigma_{k+1}\).

Proof. By construction, \(A_k\) has rank \(k\), and we have

\[
\|A - A_k\|_2 = \left\| \sum_{i=k+1}^{p} \sigma_i v_i u_i^\top \right\|_2 = \|V \text{diag}(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_p) U^\top\|_2 = \sigma_{k+1}.
\]

It remains to show that \(\|A - B\|_2 \geq \sigma_{k+1}\) for all rank-\(k\) matrices \(B\). Let \(B\) be any rank-\(k\) matrix, so its kernel has dimension \(n - k\). The subspace \(U_{k+1}\) spanned by \((u_1, \ldots, u_{k+1})\) has dimension \(k + 1\), and because the sum of the dimensions of the kernel of \(B\) and of \(U_{k+1}\) is \((n - k) + k + 1 = n + 1\), these two subspaces must intersect in a subspace of dimension at least 1. Pick any unit vector \(h\) in \(\text{Ker}(B) \cap U_{k+1}\). Then since \(Bh = 0\), we have

\[
\|A - B\|_2^2 \geq \|(A - B)h\|_2^2 = \|Ah\|_2^2 = \|VDU^\top h\|_2^2 = \|DU^\top h\|_2^2 \geq \sigma_{k+1}^2 \|U^\top h\|_2^2 = \sigma_{k+1}^2,
\]

which proves our claim.

Note that \(A_k\) can be stored using \((m + n)k\) entries, as opposed to \(mn\) entries. When \(k \ll m\), this is a substantial gain.

A nice example of the use of Proposition 17.9 in image compression is given in Demmel [15], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an SVD. This is a very interesting but tricky subject. Most methods reduce the computation of an SVD to the diagonalization of a well-chosen symmetric matrix (which is not \(A^\top A\)). Interested readers should read Section 5.4 of Demmel’s excellent book [15], which contains an overview of most known methods and an extensive list of references.
17.4 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of \(n \) points \(X_1, \ldots, X_n \), with each \(X_i \in \mathbb{R}^d \) viewed as a row vector.

Think of the \(X_i \)'s as persons, and if \(X_i = (x_{i1}, \ldots, x_{id}) \), each \(x_{ij} \) is the value of some feature (or attribute) of that person. For example, the \(X_i \)'s could be mathematicians, \(d = 2 \), and the first component, \(x_{i1} \), of \(X_i \) could be the year that \(X_i \) was born, and the second component, \(x_{i2} \), the length of the beard of \(X_i \) in centimeters. Here is a small data set:

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Friedrich Gauss</td>
<td>1777</td>
<td>0</td>
</tr>
<tr>
<td>Camille Jordan</td>
<td>1838</td>
<td>12</td>
</tr>
<tr>
<td>Adrien-Marie Legendre</td>
<td>1752</td>
<td>0</td>
</tr>
<tr>
<td>Bernhard Riemann</td>
<td>1826</td>
<td>15</td>
</tr>
<tr>
<td>David Hilbert</td>
<td>1862</td>
<td>2</td>
</tr>
<tr>
<td>Henri Poincaré</td>
<td>1854</td>
<td>5</td>
</tr>
<tr>
<td>Emmy Noether</td>
<td>1882</td>
<td>0</td>
</tr>
<tr>
<td>Karl Weierstrass</td>
<td>1815</td>
<td>0</td>
</tr>
<tr>
<td>Eugenio Beltrami</td>
<td>1835</td>
<td>2</td>
</tr>
<tr>
<td>Hermann Schwarz</td>
<td>1843</td>
<td>20</td>
</tr>
</tbody>
</table>

We usually form the \(n \times d \) matrix \(X \) whose \(i \)th row is \(X_i \), with \(1 \leq i \leq n \). Then the \(j \)th column is denoted by \(C_j \) (\(1 \leq j \leq d \)). It is sometimes called a feature vector, but this terminology is far from being universally accepted. In fact, many people in computer vision call the data points \(X_i \) feature vectors!

The purpose of principal components analysis, for short PCA, is to identify patterns in data and understand the variance–covariance structure of the data. This is useful for the following tasks:

1. Data reduction: Often much of the variability of the data can be accounted for by a smaller number of principal components.

2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \), recall that the mean (or average) \(\bar{x} \) of \(x \) is given by

\[
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}.
\]

We let \(x - \bar{x} \) denote the centered data point

\[
x - \bar{x} = (x_1 - \bar{x}, \ldots, x_n - \bar{x}).
\]
In order to measure the spread of the \(x_i \)'s around the mean, we define the sample variance (for short, variance) \(\text{var}(x) \) (or \(s^2 \)) of the sample \(x \) by

\[
\text{var}(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}.
\]

There is a reason for using \(n - 1 \) instead of \(n \). The above definition makes \(\text{var}(x) \) an unbiased estimator of the variance of the random variable being sampled. However, we don’t need to worry about this. Curious readers will find an explanation of these peculiar definitions in Epstein [19] (Chapter 14, Section 14.5), or in any decent statistics book.

Given two vectors \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \), the sample covariance (for short, covariance) of \(x \) and \(y \) is given by

\[
\text{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n - 1}.
\]

The covariance of \(x \) and \(y \) measures how \(x \) and \(y \) vary from the mean with respect to each other. Obviously, \(\text{cov}(x, y) = \text{cov}(y, x) \) and \(\text{cov}(x, x) = \text{var}(x) \).

Note that

\[
\text{cov}(x, y) = \frac{(x - \overline{x})^\top(y - \overline{y})}{n - 1}.
\]

We say that \(x \) and \(y \) are uncorrelated iff \(\text{cov}(x, y) = 0 \).

Finally, given an \(n \times d \) matrix \(X \) of \(n \) points \(X_i \), for PCA to be meaningful, it will be necessary to translate the origin to the centroid (or center of gravity) \(\mu \) of the \(X_i \)'s, defined by

\[
\mu = \frac{1}{n}(X_1 + \cdots + X_n).
\]

Observe that if \(\mu = (\mu_1, \ldots, \mu_d) \), then \(\mu_j \) is the mean of the vector \(C_j \) (the \(j \)th column of \(X \)).

We let \(X - \mu \) denote the matrix whose \(i \)th row is the centered data point \(X_i - \mu \) (\(1 \leq i \leq n \)). Then, the sample covariance matrix (for short, covariance matrix) of \(X \) is the \(d \times d \) symmetric matrix

\[
\Sigma = \frac{1}{n - 1}(X - \mu)^\top(X - \mu) = \text{cov}(C_i, C_j).
\]

Remark: The factor \(\frac{1}{n - 1} \) is irrelevant for our purposes and can be ignored.

Here is the matrix \(X - \mu \) in the case of our bearded mathematicians: Since

\[
\mu_1 = 1828.4, \quad \mu_2 = 5.6,
\]
we get

<table>
<thead>
<tr>
<th>Name</th>
<th>year</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Friedrich Gauss</td>
<td>−51.4</td>
<td>−5.6</td>
</tr>
<tr>
<td>Camille Jordan</td>
<td>9.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Adrien-Marie Legendre</td>
<td>−76.4</td>
<td>−5.6</td>
</tr>
<tr>
<td>Bernhard Riemann</td>
<td>−2.4</td>
<td>9.4</td>
</tr>
<tr>
<td>David Hilbert</td>
<td>33.6</td>
<td>−3.6</td>
</tr>
<tr>
<td>Henri Poincaré</td>
<td>25.6</td>
<td>−0.6</td>
</tr>
<tr>
<td>Emmy Noether</td>
<td>53.6</td>
<td>−5.6</td>
</tr>
<tr>
<td>Karl Weierstrass</td>
<td>13.4</td>
<td>−5.6</td>
</tr>
<tr>
<td>Eugenio Beltrami</td>
<td>6.6</td>
<td>−3.6</td>
</tr>
<tr>
<td>Hermann Schwarz</td>
<td>14.6</td>
<td>14.4</td>
</tr>
</tbody>
</table>

We can think of the vector C_j as representing the features of X in the direction e_j (the jth canonical basis vector in \mathbb{R}^d, namely $e_j = (0, \ldots, 1, \ldots, 0)$, with a 1 in the jth position).

If $v \in \mathbb{R}^d$ is a unit vector, we wish to consider the projection of the data points X_1, \ldots, X_n onto the line spanned by v. Recall from Euclidean geometry that if $x \in \mathbb{R}^d$ is any vector and $v \in \mathbb{R}^d$ is a unit vector, the projection of x onto the line spanned by v is

$$\langle x, v \rangle v.$$

Thus, with respect to the basis v, the projection of x has coordinate $\langle x, v \rangle$. If x is represented by a row vector and v by a column vector, then

$$\langle x, v \rangle = xv.$$

Therefore, the vector $Y \in \mathbb{R}^n$ consisting of the coordinates of the projections of X_1, \ldots, X_n onto the line spanned by v is given by $Y = XV$, and this is the linear combination

$$Xv = v_1 C_1 + \cdots + v_d C_d$$

of the columns of X (with $v = (v_1, \ldots, v_d)$).

Observe that because μ_j is the mean of the vector C_j (the jth column of X), we get

$$\overline{Y} = \overline{Xv} = v_1 \mu_1 + \cdots + v_d \mu_d,$$

and so the centered point $Y - \overline{Y}$ is given by

$$Y - \overline{Y} = v_1 (C_1 - \mu_1) + \cdots + v_d (C_d - \mu_d) = (X - \mu)v.$$

Furthermore, if $Y = XV$ and $Z = Xw$, then

$$\text{cov}(Y, Z) = \frac{(X - \mu)w}{n - 1}$$

$$= v^\top \frac{1}{n - 1} (X - \mu)^\top (X - \mu)w$$

$$= v^\top \Sigma w,$$
17.4. PRINCIPAL COMPONENTS ANALYSIS (PCA)

where Σ is the covariance matrix of X. Since $Y - \overline{Y}$ has zero mean, we have

$$\text{var}(Y) = \text{var}(Y - \overline{Y}) = v^\top \frac{1}{n-1} (X - \mu)^\top (X - \mu)v.$$

The above suggests that we should move the origin to the centroid μ of the X_i’s and consider the matrix $X - \mu$ of the centered data points $X_i - \mu$.

From now on, beware that we denote the columns of $X - \mu$ by C_1, \ldots, C_d and that Y denotes the centered point $Y = (X - \mu)v = \sum_{j=1}^d v_j C_j$, where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y of the data points X_1, \ldots, X_n onto some directions v (where the v’s are unit vectors) such that $\text{var}(Y)$ is maximal.

This suggests the following definition:

Definition 17.2. Given an $n \times d$ matrix X of data points X_1, \ldots, X_n, if μ is the centroid of the X_i’s, then a *first principal component of X (first PC)* is a centered point $Y_1 = (X - \mu)v_1$, the projection of X_1, \ldots, X_n onto a direction v_1 such that $\text{var}(Y_1)$ is maximized, where v_1 is a unit vector (recall that $Y_1 = (X - \mu)v_1$ is a linear combination of the C_j’s, the columns of $X - \mu$).

More generally, if Y_1, \ldots, Y_k are k principal components of X along some unit vectors v_1, \ldots, v_k, where $1 \leq k < d$, a *$(k+1)$th principal component of X ($(k+1)$th PC)* is a centered point $Y_{k+1} = (X - \mu)v_{k+1}$, the projection of X_1, \ldots, X_n onto some direction v_{k+1} such that $\text{var}(Y_{k+1})$ is maximized, subject to $\text{cov}(Y_h, Y_{k+1}) = 0$ for all h with $1 \leq h \leq k$, and where v_{k+1} is a unit vector (recall that $Y_h = (X - \mu)v_h$ is a linear combination of the C_j’s). The v_h are called principal directions.

The following proposition is the key to the main result about PCA:

Proposition 17.10. If A is a symmetric $d \times d$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and if (u_1, \ldots, u_d) is any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i, then

$$\max_{x \neq 0} \frac{x^\top Ax}{x^\top x} = \lambda_1$$

(with the maximum attained for $x = u_1$) and

$$\max_{x \neq 0, x \in \{u_1, \ldots, u_k\}^\perp} \frac{x^\top Ax}{x^\top x} = \lambda_{k+1}$$

(with the maximum attained for $x = u_{k+1}$), where $1 \leq k \leq d - 1$.
Proof. First, observe that
\[
\max_{x \neq 0} \frac{x^\top Ax}{x^\top x} = \max_x \{x^\top Ax \mid x^\top x = 1\},
\]
and similarly,
\[
\max_{x \neq 0, x \in \{u_1, \ldots, u_k\}^\perp} \frac{x^\top Ax}{x^\top x} = \max_x \{x^\top Ax \mid (x \in \{u_1, \ldots, u_k\}^\perp) \land (x^\top x = 1)\}.
\]
Since \(A\) is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect to an orthonormal basis of eigenvectors, so let \((u_1, \ldots, u_d)\) be such a basis. If we write
\[
x = \sum_{i=1}^d x_i u_i,
\]
a simple computation shows that
\[
x^\top Ax = \sum_{i=1}^d \lambda_i x_i^2.
\]
If \(x^\top x = 1\), then \(\sum_{i=1}^d x_i^2 = 1\), and since we assumed that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d\), we get
\[
x^\top Ax = \sum_{i=1}^d \lambda_i x_i^2 \leq \lambda_1 \left(\sum_{i=1}^d x_i^2 \right) = \lambda_1.
\]
Thus,
\[
\max_x \{x^\top Ax \mid x^\top x = 1\} \leq \lambda_1,
\]
and since this maximum is achieved for \(e_1 = (1, 0, \ldots, 0)\), we conclude that
\[
\max_x \{x^\top Ax \mid x^\top x = 1\} = \lambda_1.
\]
Next, observe that \(x \in \{u_1, \ldots, u_k\}^\perp\) and \(x^\top x = 1\) iff \(x_1 = \cdots = x_k = 0\) and \(\sum_{i=1}^d x_i = 1\). Consequently, for such an \(x\), we have
\[
x^\top Ax = \sum_{i=k+1}^d \lambda_i x_i^2 \leq \lambda_{k+1} \left(\sum_{i=k+1}^d x_i^2 \right) = \lambda_{k+1}.
\]
Thus,
\[
\max_x \{x^\top Ax \mid (x \in \{u_1, \ldots, u_k\}^\perp) \land (x^\top x = 1)\} \leq \lambda_{k+1},
\]
and since this maximum is achieved for \(e_{k+1} = (0, \ldots, 0, 1, 0, \ldots, 0)\) with a 1 in position \(k+1\), we conclude that
\[
\max_x \{x^\top Ax \mid (x \in \{u_1, \ldots, u_k\}^\perp) \land (x^\top x = 1)\} = \lambda_{k+1},
\]
as claimed. \(\square\)
The quantity \(\frac{x^\top Ax}{x^\top x} \) is known as the Rayleigh–Ritz ratio and Proposition 17.10 is often known as part of the Rayleigh–Ritz theorem.

Proposition 17.10 also holds if \(A \) is a Hermitian matrix and if we replace \(x^\top Ax \) by \(x^\ast Ax \) and \(x^\top x \) by \(x^\ast x \). The proof is unchanged, since a Hermitian matrix has real eigenvalues and is diagonalized with respect to an orthonormal basis of eigenvectors (with respect to the Hermitian inner product).

We then have the following fundamental result showing how the SVD of \(X \) yields the PCs:

Theorem 17.11. (SVD yields PCA) Let \(X \) be an \(n \times d \) matrix of data points \(X_1, \ldots, X_n \), and let \(\mu \) be the centroid of the \(X_i \)'s. If \(X - \mu = VDU^\top \) is an SVD decomposition of \(X - \mu \) and if the main diagonal of \(D \) consists of the singular values \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d \), then the centered points \(Y_1, \ldots, Y_d \), where

\[
Y_k = (X - \mu)u_k = \text{kth column of } VD
\]

and \(u_k \) is the \(k \)th column of \(U \), are \(d \) principal components of \(X \). Furthermore,

\[
\text{var}(Y_k) = \frac{\sigma_k^2}{n - 1}
\]

and \(\text{cov}(Y_h, Y_k) = 0 \), whenever \(h \neq k \) and \(1 \leq k, h \leq d \).

Proof. Recall that for any unit vector \(v \), the centered projection of the points \(X_1, \ldots, X_n \) onto the line of direction \(v \) is \(Y = (X - \mu)v \) and that the variance of \(Y \) is given by

\[
\text{var}(Y) = v^\top \frac{1}{n - 1} (X - \mu)^\top (X - \mu)v.
\]

Since \(X - \mu = VDU^\top \), we get

\[
\text{var}(Y) = v^\top \frac{1}{n - 1} (X - \mu)^\top (X - \mu)v = v^\top \frac{1}{n - 1} UDV^\top VDU^\top v = v^\top U \frac{1}{n - 1} D^2 U^\top v.
\]

Similarly, if \(Y = (X - \mu)v \) and \(Z = (X - \mu)w \), then the covariance of \(Y \) and \(Z \) is given by

\[
\text{cov}(Y, Z) = v^\top U \frac{1}{n - 1} D^2 U^\top w.
\]
Obviously, \(U \frac{1}{(n-1)} D^2 U^\top \) is a symmetric matrix whose eigenvalues are \(\frac{\sigma^2_1}{n-1} \geq \cdots \geq \frac{\sigma^2_d}{n-1} \), and the columns of \(U \) form an orthonormal basis of unit eigenvectors.

We proceed by induction on \(k \). For the base case, \(k = 1 \), maximizing \(\text{var}(Y) \) is equivalent to maximizing

\[
v^\top U \frac{1}{(n-1)} D^2 U^\top v,
\]

where \(v \) is a unit vector. By Proposition 17.10, the maximum of the above quantity is the largest eigenvalue of \(U \frac{1}{(n-1)} D^2 U^\top \), namely \(\frac{\sigma^2_1}{n-1} \), and it is achieved for \(u_1 \), the first columnn of \(U \). Now we get

\[
Y_1 = (X - \mu)u_1 = VDU^\top u_1,
\]

and since the columns of \(U \) form an orthonormal basis, \(U^\top u_1 = e_1 = (1, 0, \ldots, 0) \), and so \(Y_1 \) is indeed the first column of \(VD \).

By the induction hypothesis, the centered points \(Y_1, \ldots, Y_k \), where \(Y_h = (X - \mu)u_h \) and \(u_1, \ldots, u_k \) are the first \(k \) columns of \(U \), are \(k \) principal components of \(X \). Because

\[
\text{cov}(Y,Z) = v^\top U \frac{1}{(n-1)} D^2 U^\top w,
\]

where \(Y = (X - \mu)v \) and \(Z = (X - \mu)w \), the condition \(\text{cov}(Y_h,Z) = 0 \) for \(h = 1, \ldots, k \) is equivalent to the fact that \(w \) belongs to the orthogonal complement of the subspace spanned by \(\{u_1, \ldots, u_k\} \), and maximizing \(\text{var}(Z) \) subject to \(\text{cov}(Y_h,Z) = 0 \) for \(h = 1, \ldots, k \) is equivalent to maximizing

\[
w^\top U \frac{1}{(n-1)} D^2 U^\top w,
\]

where \(w \) is a unit vector orthogonal to the subspace spanned by \(\{u_1, \ldots, u_k\} \). By Proposition 17.10, the maximum of the above quantity is the \((k+1)\)th eigenvalue of \(U \frac{1}{(n-1)} D^2 U^\top \), namely \(\frac{\sigma^2_{k+1}}{n-1} \), and it is achieved for \(u_{k+1} \), the \((k+1)\)th columnn of \(U \). Now we get

\[
Y_{k+1} = (X - \mu)u_{k+1} = VDU^\top u_{k+1},
\]

and since the columns of \(U \) form an orthonormal basis, \(U^\top u_{k+1} = e_{k+1} \), and \(Y_{k+1} \) is indeed the \((k+1)\)th column of \(VD \), which completes the proof of the induction step.

The \(d \) columns \(u_1, \ldots, u_d \) of \(U \) are usually called the principal directions of \(X - \mu \) (and \(X \)). We note that not only do we have \(\text{cov}(Y_h,Y_k) = 0 \) whenever \(h \neq k \), but the directions \(u_1, \ldots, u_d \) along which the data are projected are mutually orthogonal. Also, if \(r \) is the rank of the matrix \(X \), then the columns of index \(k \geq r + 1 \) in \(D \) are zero, so the columns of index \(k \geq r + 1 \) in \(VD \) are also zero, and we have \(Y_k = 0 \) for \(k \geq r + 1 \). Thus the principal components \(Y_k \) only yield useful information if \(k \geq r = \text{rank}(X) \).

We know from our study of SVD that \(\sigma^2_1, \ldots, \sigma^2_d \) are the eigenvalues of the symmetric positive semidefinite matrix \((X - \mu)^\top (X - \mu) \) and that \(u_1, \ldots, u_d \) are corresponding eigenvectors. Numerically, it is preferable to use SVD on \(X - \mu \) rather than to compute explicitly
(X − µ) ⊤ (X − µ) and then diagonalize it. Indeed, the explicit computation of A ⊤ A from a matrix A can be numerically quite unstable, and good SVD algorithms avoid computing A ⊤ A explicitly.

In general, since an SVD of X is not unique, the principal directions u1, . . . , ud are not unique. This can happen when a data set has some rotational symmetries, and in such a case, PCA is not a very good method for analyzing the data set.

17.5 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data set of n points X1, . . . , Xn, with Xi ∈ Rd, by a p-dimensional affine subspace A of Rd, with 1 ≤ p ≤ d − 1 (the terminology rank d − p is also used).

First, consider p = d − 1. Then A = A1 is an affine hyperplane (in Rd), and it is given by an equation of the form

\[a_1 x_1 + \cdots + a_d x_d + c = 0. \]

By best approximation, we mean that (a1, . . . , ad, c) solves the homogeneous linear system

\[
\begin{pmatrix}
 x_{11} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nd}
\end{pmatrix}
\begin{pmatrix}
 a_1 \\
 \vdots \\
 a_d \\
 c
\end{pmatrix} =
\begin{pmatrix}
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]

in the least squares sense, subject to the condition that a = (a1, . . . , ad) is a unit vector, that is, a ⊤ a = 1, where X = (x1, . . . , xd).

If we form the symmetric matrix

\[
\begin{pmatrix}
 x_{11} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nd}
\end{pmatrix}
\begin{pmatrix}
 x_{11} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nd}
\end{pmatrix}
\]

involved in the normal equations, we see that the bottom row (and last column) of that matrix is

\[n\mu_1 \cdots n\mu_d n, \]

where nµj = \sum_{i=1}^{n} x_{ij} is n times the mean of the column C_j of X.

Therefore, if (a1, . . . , ad, c) is a least squares solution, that is, a solution of the normal equations, we must have

\[n\mu_1 a_1 + \cdots + n\mu_d a_d + nc = 0, \]

that is,

\[a_1 \mu_1 + \cdots + a_d \mu_d + c = 0, \]
which means that the hyperplane A_1 must pass through the centroid μ of the data points X_1, \ldots, X_n. Then we can rewrite the original system with respect to the centered data $X_i - \mu$, and we find that the variable c drops out and we get the system

$$(X - \mu)a = 0,$$

where $a = (a_1, \ldots, a_d)$.

Thus, we are looking for a unit vector a solving $(X - \mu)a = 0$ in the least squares sense, that is, some a such that $a^\top a = 1$ minimizing

$$a^\top(X - \mu)^\top(X - \mu)a.$$

Compute some SVD VDU^\top of $X - \mu$, where the main diagonal of D consists of the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$ of $X - \mu$ arranged in descending order. Then

$$a^\top(X - \mu)^\top(X - \mu)a = a^\top UD^2U^\top a,$$

where $D^2 = \text{diag}(\sigma_1^2, \ldots, \sigma_d^2)$ is a diagonal matrix, so pick a to be the last column in U (corresponding to the smallest eigenvalue σ_d^2 of $(X - \mu)^\top(X - \mu)$). This is a solution to our best fit problem.

Therefore, if U_{d-1} is the linear hyperplane defined by a, that is,

$$U_{d-1} = \{ u \in \mathbb{R}^d \mid \langle u, a \rangle = 0 \},$$

where a is the last column in U for some SVD VDU^\top of $X - \mu$, we have shown that the affine hyperplane $A_1 = \mu + U_{d-1}$ is a best approximation of the data set X_1, \ldots, X_n in the least squares sense.

It is easy to show that this hyperplane $A_1 = \mu + U_{d-1}$ minimizes the sum of the square distances of each X_i to its orthogonal projection onto A_1. Also, since U_{d-1} is the orthogonal complement of a, the last column of U, we see that U_{d-1} is spanned by the first $d-1$ columns of U, that is, the first $d-1$ principal directions of $X - \mu$.

All this can be generalized to a best $(d-k)$-dimensional affine subspace A_k approximating X_1, \ldots, X_n in the least squares sense $(1 \leq k \leq d-1)$. Such an affine subspace A_k is cut out by k independent hyperplanes H_i (with $1 \leq i \leq k$), each given by some equation

$$a_{i1}x_1 + \cdots + a_{id}x_d + c_i = 0.$$

If we write $a_i = (a_{i1}, \cdots, a_{id})$, to say that the H_i are independent means that a_1, \ldots, a_k are linearly independent. In fact, we may assume that a_1, \ldots, a_k form an orthonormal system.

Then, finding a best $(d-k)$-dimensional affine subspace A_k amounts to solving the homogeneous linear system

$$\begin{pmatrix} X & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & X & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ c_1 \\ \vdots \\ a_k \\ c_k \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$
in the least squares sense, subject to the conditions $a_i^T a_j = \delta_{ij}$, for all i, j with $1 \leq i, j \leq k$, where the matrix of the system is a block diagonal matrix consisting of k diagonal blocks $(X, 1)$, where 1 denotes the column vector $(1, \ldots, 1) \in \mathbb{R}^n$.

Again, it is easy to see that each hyperplane H_i must pass through the centroid μ of X_1, \ldots, X_n, and by switching to the centered data $X_i - \mu$ we get the system

\[
\begin{pmatrix}
X - \mu & 0 & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_k
\end{pmatrix}
= \begin{pmatrix} 0 \\
\vdots \\
0
\end{pmatrix},
\]

with $a_i^T a_j = \delta_{ij}$ for all i, j with $1 \leq i, j \leq k$.

If $VDU^\top = X - \mu$ is an SVD decomposition, it is easy to see that a least squares solution of this system is given by the last k columns of U, assuming that the main diagonal of D consists of the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$ of $X - \mu$ arranged in descending order. But now the $(d - k)$-dimensional subspace U_{d-k} cut out by the hyperplanes defined by a_1, \ldots, a_k is simply the orthogonal complement of (a_1, \ldots, a_k), which is the subspace spanned by the first $d - k$ columns of U.

So the best $(d - k)$-dimensional affine subspace A_k approximating X_1, \ldots, X_n in the least squares sense is

\[A_k = \mu + U_{d-k},\]

where U_{d-k} is the linear subspace spanned by the first $d - k$ principal directions of $X - \mu$, that is, the first $d - k$ columns of U. Consequently, we get the following interesting interpretation of PCA (actually, principal directions):

Theorem 17.12. Let X be an $n \times d$ matrix of data points X_1, \ldots, X_n, and let μ be the centroid of the X_i’s. If $X - \mu = VDU^\top$ is an SVD decomposition of $X - \mu$ and if the main diagonal of D consists of the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$, then a best $(d - k)$-dimensional affine approximation A_k of X_1, \ldots, X_n in the least squares sense is given by

\[A_k = \mu + U_{d-k},\]

where U_{d-k} is the linear subspace spanned by the first $d - k$ columns of U, the first $d - k$ principal directions of $X - \mu$ ($1 \leq k \leq d - 1$).

There are many applications of PCA to data compression, dimension reduction, and pattern analysis. The basic idea is that in many cases, given a data set X_1, \ldots, X_n, with $X_i \in \mathbb{R}^d$, only a “small” subset of $m < d$ of the features is needed to describe the data set accurately.

If u_1, \ldots, u_d are the principal directions of $X - \mu$, then the first m projections of the data (the first m principal components, i.e., the first m columns of VD) onto the first m principal directions represent the data without much loss of information. Thus, instead of using the
original data points X_1, \ldots, X_n, with $X_i \in \mathbb{R}^d$, we can use their projections onto the first m principal directions Y_1, \ldots, Y_m, where $Y_i \in \mathbb{R}^m$ and $m < d$, obtaining a compressed version of the original data set.

For example, PCA is used in computer vision for \textit{face recognition}. Sirovitch and Kirby (1987) seem to be the first to have had the idea of using PCA to compress facial images. They introduced the term \textit{eigenpicture} to refer to the principal directions, u_i. However, an explicit face recognition algorithm was given only later, by Turk and Pentland (1991). They renamed eigenpictures as \textit{eigenfaces}.

For details on the topic of eigenfaces, see Forsyth and Ponce [20] (Chapter 22, Section 22.3.2), where you will also find exact references to Turk and Pentland’s papers.

Another interesting application of PCA is to the \textit{recognition of handwritten digits}. Such an application is described in Hastie, Tibshirani, and Friedman, [27] (Chapter 14, Section 14.5.1).

17.6 Summary

The main concepts and results of this chapter are listed below:

- \textit{Least squares problems}.
- Existence of a least squares solution of smallest norm (Theorem 17.1).
- The \textit{pseudo-inverse} A^+ of a matrix A.
- The least squares solution of smallest norm is given by the pseudo-inverse (Theorem 17.2)
- Projection properties of the pseudo-inverse.
- The \textit{Penrose characterization} of the pseudo-inverse.
- Data compression and SVD.
- Best approximation of rank $< r$ of a matrix.
- \textit{Principal component analysis}.
- Review of basic statistical concepts: mean, variance, covariance, covariance matrix.
- Centered data, centroid.
- The \textit{principal components} (PCA).
17.6. SUMMARY

- The Rayleigh–Ritz theorem (Theorem 17.10).
- The main theorem: SVD yields PCA (Theorem 17.11).
- Best affine approximation.
- SVD yields a best affine approximation (Theorem 17.12).
- Face recognition, eigenfaces.
Chapter 18

Annihilating Polynomials and the Primary Decomposition

18.1 Annihilating Polynomials and the Minimal Polynomial

In Section 5.7, we explained that if $f : E \rightarrow E$ is a linear map on a K-vector space E, then for any polynomial $p(X) = a_0X^d + a_1X^{d-1} + \cdots + a_d$ with coefficients in the field K, we can define the linear map $p(f) : E \rightarrow E$ by

$$p(f) = a_0f^d + a_1f^{d-1} + \cdots + a_d\text{id},$$

where $f^k = f \circ \cdots \circ f$, the k-fold composition of f with itself. Note that

$$p(f)(u) = a_0f^d(u) + a_1f^{d-1}(u) + \cdots + a_du,$$

for every vector $u \in E$. Then, we showed that if E is finite-dimensional and if $\chi_f(X) = \det(XI - f)$ is the characteristic polynomial of f, by the Cayley–Hamilton Theorem, we have

$$\chi_f(f) = 0.$$

This fact suggests looking at the set of all polynomials $p(X)$ such that

$$p(f) = 0.$$

Such polynomials are called annihilating polynomials of f, the set of all these polynomials, denoted Ann(f), is called the annihilator of f, and the Cayley-Hamilton Theorem shows that it is nontrivial, since it contains a polynomial of positive degree. It turns out that Ann(f) contains a polynomial m_f of smallest degree that generates Ann(f), and this polynomial divides the characteristic polynomial. Furthermore, the polynomial m_f encapsulates a lot of information about f, in particular whether f can be diagonalized.

In order to understand the structure of Ann(f), we need to review some basic properties of polynomials. The first crucial notion is that of an ideal.
Definition 18.1. Given a commutative ring A with unit 1, an ideal of A is a nonempty subset \mathfrak{I} of A satisfying the following properties:

(ID1) If $a, b \in \mathfrak{I}$, then $b - a \in \mathfrak{I}$.

(ID2) If $a \in \mathfrak{I}$, then $ax \in \mathfrak{I}$ for all $x \in A$.

An ideal \mathfrak{I} is a principal ideal if there is some $a \in \mathfrak{I}$, called a generator, such that $\mathfrak{I} = \{ax \mid x \in A\}$. In this case, we usually write $\mathfrak{I} = aA$, or $\mathfrak{I} = (a)$. The ideal $\mathfrak{I} = (0) = \{0\}$ is called the null ideal (or zero ideal).

Given a field K, any nonzero polynomial $p(X) \in K[X]$ has some monomial of highest degree a_0X^n with $a_0 \neq 0$, and the integer $n = \deg(p) \geq 0$ is called the degree of p. It is convenient to set the degree of the zero polynomial (denoted by 0) to be $\deg(0) = -\infty$.

A polynomial $p(X)$ such that the coefficient a_0 of its monomial of highest degree is 1 is called a monic polynomial.

The following proposition is a fundamental result about polynomials over a field.

Proposition 18.1. If K is a field, then every polynomial ideal $\mathfrak{I} \subseteq K[X]$ is a principal ideal. As a consequence, if \mathfrak{I} is not the zero ideal, then there is a unique monic polynomial $p(X) = X^n + a_1X^{n-1} + \cdots + a_{n-1}X + a_n$ in \mathfrak{I} such that $\mathfrak{I} = (p)$.

Proof. This result is not hard to prove if we recall that polynomials can divided: Given any two nonzero polynomials $f, g \in K[X]$, there are unique polynomials q, r such that $f = gq + r$, and $\deg(r) < \deg(g)$.

If \mathfrak{I} is not the zero ideal, there is some polynomial of smallest degree in \mathfrak{I}, and since K is a field, by suitable multiplication by a scalar, we can make sure that this polynomial is monic. Thus, let f be a monic polynomial of smallest degree in \mathfrak{I}. By (ID2), it is clear that $(f) \subseteq \mathfrak{I}$. Now, let $g \in \mathfrak{I}$. Using the Euclidean algorithm, there exist unique $q, r \in K[X]$ such that $g = qf + r$ and $\deg(r) < \deg(f)$.

If $r \neq 0$, there is some $\lambda \neq 0$ in K such that λr is a monic polynomial, and since $\lambda r = \lambda g - \lambda qf$, with $f, g \in \mathfrak{I}$, by (ID1) and (ID2), we have $\lambda r \in \mathfrak{I}$, where $\deg(\lambda r) < \deg(f)$ and λr is a monic polynomial, contradicting the minimality of the degree of f. Thus, $r = 0$, and $g \in (f)$. The uniqueness of the monic polynomial f is left as an exercise. □
We will also need to know that the greatest common divisor of polynomials exist. Given any two nonzero polynomials \(f, g \in K[X] \), recall that \(f \) divides \(g \) if \(g = fq \) for some \(q \in K[X] \).

Definition 18.2. Given any two nonzero polynomials \(f, g \in K[X] \), a polynomial \(d \in K[X] \) is a greatest common divisor of \(f \) and \(g \) (for short, a gcd of \(f \) and \(g \)) if \(d \) divides \(f \) and \(g \) and whenever \(h \in K[X] \) divides \(f \) and \(g \), then \(h \) divides \(d \). We say that \(f \) and \(g \) are relatively prime if 1 is a gcd of \(f \) and \(g \).

Note that \(f \) and \(g \) are relatively prime iff all of their gcd’s are constants (scalars in \(K \)), or equivalently, if \(f, g \) have no common divisor \(q \) of degree \(\deg(q) \geq 1 \).

We can characterize gcd’s of polynomials as follows.

Proposition 18.2. Let \(K \) be a field and let \(f, g \in K[X] \) be any two nonzero polynomials. For every polynomial \(d \in K[X] \), the following properties are equivalent:

1. The polynomial \(d \) is a gcd of \(f \) and \(g \).
2. The polynomial \(d \) divides \(f \) and \(g \) and there exist \(u, v \in K[X] \) such that
 \[d = uf + vg. \]
3. The ideals \((f), (g), \) and \((d) \) satisfy the equation
 \[(d) = (f) + (g). \]

In addition, \(d \neq 0 \), and \(d \) is unique up to multiplication by a nonzero scalar in \(K \).

As a consequence of Proposition 18.2, two nonzero polynomials \(f, g \in K[X] \) are relatively prime iff there exist \(u, v \in K[X] \) such that
\[uf + vg = 1. \]

The identity
\[d = uf + vg \]
of part (2) of Lemma 18.2 is often called the *Bezout identity*. An important consequence of the Bezout identity is the following result.

Proposition 18.3. *(Euclid’s proposition)* Let \(K \) be a field and let \(f, g, h \in K[X] \) be any nonzero polynomials. If \(f \) divides \(gh \) and \(f \) is relatively prime to \(g \), then \(f \) divides \(h \).

Proposition 18.3 can be generalized to any number of polynomials.

Proposition 18.4. Let \(K \) be a field and let \(f, g_1, \ldots, g_m \in K[X] \) be some nonzero polynomials. If \(f \) and \(g_i \) are relatively prime for all \(i, 1 \leq i \leq m \), then \(f \) and \(g_1 \cdots g_m \) are relatively prime.
Definition 18.2 is generalized to any finite number of polynomials as follows.

Definition 18.3. Given any nonzero polynomials $f_1, \ldots, f_n \in K[X]$, where $n \geq 2$, a polynomial $d \in K[X]$ is a greatest common divisor of f_1, \ldots, f_n (for short, a gcd of f_1, \ldots, f_n) if d divides each f_i and whenever $h \in K[X]$ divides each f_i, then h divides d. We say that f_1, \ldots, f_n are relatively prime if 1 is a gcd of f_1, \ldots, f_n.

It is easily shown that Proposition 18.2 can be generalized to any finite number of polynomials.

Proposition 18.5. Let K be a field and let $f_1, \ldots, f_n \in K[X]$ be any $n \geq 2$ nonzero polynomials. For every polynomial $d \in K[X]$, the following properties are equivalent:

1. The polynomial d is a gcd of f_1, \ldots, f_n.
2. The polynomial d divides each f_i and there exist $u_1, \ldots, u_n \in K[X]$ such that $d = u_1 f_1 + \cdots + u_n f_n$.
3. The ideals (f_i) and (d) satisfy the equation $(d) = (f_1) + \cdots + (f_n)$.

In addition, $d \neq 0$, and d is unique up to multiplication by a nonzero scalar in K.

As a consequence of Proposition 18.5, any $n \geq 2$ nonzero polynomials $f_1, \ldots, f_n \in K[X]$ are relatively prime iff there exist $u_1, \ldots, u_n \in K[X]$ such that $u_1 f_1 + \cdots + u_n f_n = 1$, the Bezout identity.

We will also need to know that every nonzero polynomial (over a field) can be factored into irreducible polynomials, which are the generalization of the prime numbers to polynomials.

Definition 18.4. Given a field K, a polynomial $p \in K[X]$ is irreducible or indecomposable or prime if $\deg(p) \geq 1$ and if p is not divisible by any polynomial $q \in K[X]$ such that $1 \leq \deg(q) < \deg(p)$. Equivalently, p is irreducible if $\deg(p) \geq 1$ and if $p = q_1 q_2$, then either $q_1 \in K$ or $q_2 \in K$ (and of course, $q_1 \neq 0$, $q_2 \neq 0$).

Every polynomial $aX + b$ of degree 1 is irreducible. Over the field \mathbb{R}, the polynomial $X^2 + 1$ is irreducible (why?), but $X^3 + 1$ is not irreducible, since $X^3 + 1 = (X + 1)(X^2 - X + 1)$.

The polynomial \(X^2 - X + 1 \) is irreducible over \(\mathbb{R} \) (why?). It would seem that \(X^4 + 1 \) is irreducible over \(\mathbb{R} \), but in fact,

\[
X^4 + 1 = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1).
\]

However, in view of the above factorization, \(X^4 + 1 \) is irreducible over \(\mathbb{Q} \).

It can be shown that the irreducible polynomials over \(\mathbb{R} \) are the polynomials of degree 1, or the polynomials of degree 2 of the form \(aX^2 + bX + c \), for which \(b^2 - 4ac < 0 \) (i.e., those having no real roots). This is not easy to prove! Over the complex numbers \(\mathbb{C} \), the only irreducible polynomials are those of degree 1. This is a version of a fact often referred to as the “Fundamental theorem of Algebra.”

Observe that the definition of irreducibility implies that any finite number of distinct irreducible polynomials are relatively prime.

The following fundamental result can be shown

Theorem 18.6. Given any field \(K \), for every nonzero polynomial

\[
f = a_dX^d + a_{d-1}X^{d-1} + \cdots + a_0
\]

of degree \(d = \deg(f) \geq 1 \) in \(K[X] \), there exists a unique set \(\{(p_1, k_1), \ldots, (p_m, k_m)\} \) such that

\[
f = a_dp_1^{k_1} \cdots p_m^{k_m},
\]

where the \(p_i \in K[X] \) are distinct irreducible monic polynomials, the \(k_i \) are (not necessarily distinct) integers, and with \(m \geq 1, k_i \geq 1 \).

We can now return to minimal polynomials. Given a linear map \(f : E \to E \), it is easy to check that the set \(\text{Ann}(f) \) of polynomials that annihilate \(f \) is an ideal. Furthermore, when \(E \) is finite-dimensional, the Cayley-Hamilton Theorem implies that \(\text{Ann}(f) \) is not the zero ideal. Therefore, by Proposition 18.1, there is a unique monic polynomial \(m_f \) that generates \(\text{Ann}(f) \).

Definition 18.5. If \(f : E \to E \) is linear map on a finite-dimensional vector space \(E \), the unique monic polynomial \(m_f(X) \) that generates the ideal \(\text{Ann}(f) \) of polynomials which annihilate \(f \) (the annihilator of \(f \)) is called the **minimal polynomial** of \(f \).

The minimal polynomial \(m_f \) of \(f \) is the monic polynomial of smallest degree that annihilates \(f \). Thus, the minimal polynomial divides the characteristic polynomial \(\chi_f \), and \(\deg(m_f) \geq 1 \). For simplicity of notation, we often write \(m \) instead of \(m_f \).

If \(A \) is any \(n \times n \) matrix, the set \(\text{Ann}(A) \) of polynomials that annihilate \(A \) is the set of polynomials

\[
p(X) = a_0X^d + a_1X^{d-1} + \cdots + a_{d-1}X + a_d
\]

such that

\[
a_0A^d + a_1A^{d-1} + \cdots + a_{d-1}A + a_dI = 0.
\]
It is clear that Ann(A) is a nonzero ideal and its unique monic generator is called the *minimal polynomial* of A. We check immediately that if Q is an invertible matrix, then A and $Q^{-1}AQ$ have the same minimal polynomial. Also, if A is the matrix of f with respect to some basis, then f and A have the same minimal polynomial.

The zeros (in K) of the minimal polynomial of f and the eigenvalues of f (in K) are intimately related.

Proposition 18.7. Let $f : E \to E$ be a linear map on some finite-dimensional vector space E. Then, $\lambda \in K$ is a zero of the minimal polynomial $m_f(X)$ of f iff λ is an eigenvalue of f iff λ is a zero of $\chi_f(X)$. Therefore, the minimal and the characteristic polynomials have the same zeros (in K), except for multiplicities.

Proof. First, assume that $m(\lambda) = 0$ (with $\lambda \in K$, and writing m instead of m_f). If so, using polynomial division, m can be factored as

$$m = (X - \lambda)q,$$

with $\deg(q) < \deg(m)$. Since m is the minimal polynomial, $q(f) \neq 0$, so there is some nonzero vector $v \in E$ such that $u = q(f)(v) \neq 0$. But then, because m is the minimal polynomial,

$$0 = m(f)(v) = (f - \lambda \text{id})(q(f)(v)) = (f - \lambda \text{id})(u),$$

which shows that λ is an eigenvalue of f.

Conversely, assume that $\lambda \in K$ is an eigenvalue of f. This means that for some $u \neq 0$, we have $f(u) = \lambda u$. Now, it is easy to show that

$$m(f)(u) = m(\lambda)u,$$

and since m is the minimal polynomial of f, we have $m(f)(u) = 0$, so $m(\lambda)u = 0$, and since $u \neq 0$, we must have $m(\lambda) = 0$. □

If we assume that f is diagonalizable, then its eigenvalues are all in K, and if $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of f, then by Proposition 18.7, the minimal polynomial m of f must be a product of powers of the polynomials $(X - \lambda_i)$. Actually, we claim that

$$m = (X - \lambda_1) \cdots (X - \lambda_k).$$

For this, we just have to show that m annihilates f. However, for any eigenvector u of f, one of the linear maps $f - \lambda_i \text{id}$ sends u to 0, so

$$m(f)(u) = (f - \lambda_1 \text{id}) \circ \cdots \circ (f - \lambda_k \text{id})(u) = 0.$$
Since E is spanned by the eigenvectors of f, we conclude that
\[m(f) = 0. \]

Therefore, if a linear map is diagonalizable, then its minimal polynomial is a product of distinct factors of degree 1. It turns out that the converse is true, but this will take a little work to establish it.

18.2 Minimal Polynomials of Diagonalizable Linear Maps

In this section, we prove that if the minimal polynomial m_f of a linear map f is of the form
\[m_f = (X - \lambda_1) \cdots (X - \lambda_k) \]
for distinct scalars $\lambda_1, \ldots, \lambda_k \in K$, then f is diagonalizable. This is a powerful result that has a number of implications. We need of few properties of invariant subspaces.

Given a linear map $f: E \to E$, recall that a subspace W of E is invariant under f if $f(u) \in W$ for all $u \in W$.

Proposition 18.8. Let W be a subspace of E invariant under the linear map $f: E \to E$ (where E is finite-dimensional). Then, the minimal polynomial of the restriction $f | W$ of f to W divides the minimal polynomial of f, and the characteristic polynomial of $f | W$ divides the characteristic polynomial of f.

Sketch of proof. The key ingredient is that we can pick a basis (e_1, \ldots, e_n) of E in which (e_1, \ldots, e_k) is a basis of W. Then, the matrix of f over this basis is a block matrix of the form
\[A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}, \]
where B is a $k \times k$ matrix, D is a $(n - k) \times (n - k)$ matrix, and C is a $k \times (n - k)$ matrix. Then
\[\det(X I - A) = \det(X I - B) \det(X I - D), \]
which implies the statement about the characteristic polynomials. Furthermore,
\[A^i = \begin{pmatrix} B^i & C_i \\ 0 & D^i \end{pmatrix}, \]
for some $k \times (n - k)$ matrix C_i. It follows that any polynomial which annihilates A also annihilates B and D. So, the minimal polynomial of B divides the minimal polynomial of A. \qed
For the next step, there are at least two ways to proceed. We can use an old-fashioned argument using Lagrange interpolants, or use a slight generalization of the notion of annihilator. We pick the second method because it illustrates nicely the power of principal ideals.

What we need is the notion of conductor (also called transporter).

Definition 18.6. Let \(f : E \to E \) be a linear map on a finite-dimensional vector space \(E \), let \(W \) be an invariant subspace of \(f \), and let \(u \) be any vector in \(E \). The set \(S_f(u, W) \) consisting of all polynomials \(q \in K[X] \) such that \(q(f)(u) \in W \) is called the \(f \)-conductor of \(u \) into \(W \).

Observe that the minimal polynomial \(m \) of \(f \) always belongs to \(S_f(u, W) \), so this is a nontrivial set. Also, if \(W = (0) \), then \(S_f(u, (0)) \) is just the annihilator of \(f \). The crucial property of \(S_f(u, W) \) is that it is an ideal.

Proposition 18.9. If \(W \) is an invariant subspace for \(f \), then for each \(u \in E \), the \(f \)-conductor \(S_f(u, W) \) is an ideal in \(K[X] \).

We leave the proof as a simple exercise, using the fact that if \(W \) invariant under \(f \), then \(W \) is invariant under every polynomial \(q(f) \) in \(f \).

Since \(S_f(u, W) \) is an ideal, it is generated by a unique monic polynomial \(q \) of smallest degree, and because the minimal polynomial \(m_f \) of \(f \) is in \(S_f(u, W) \), the polynomial \(q \) divides \(m \).

Proposition 18.10. Let \(f : E \to E \) be a linear map on a finite-dimensional space \(E \), and assume that the minimal polynomial \(m \) of \(f \) is of the form

\[
m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},
\]

where the eigenvalues \(\lambda_1, \ldots, \lambda_k \) of \(f \) belong to \(K \). If \(W \) is a proper subspace of \(E \) which is invariant under \(f \), then there is a vector \(u \in E \) with the following properties:

(a) \(u \notin W \);

(b) \((f - \lambda \text{id})(u) \in W\), for some eigenvalue \(\lambda \) of \(f \).

Proof. Observe that (a) and (b) together assert that the \(f \)-conductor of \(u \) into \(W \) is a polynomial of the form \(X - \lambda_i \). Pick any vector \(v \in E \) not in \(W \), and let \(g \) be the conductor of \(v \) into \(W \). Since \(g \) divides \(m \) and \(v \notin W \), the polynomial \(g \) is not a constant, and thus it is of the form

\[
g = (X - \lambda_1)^{s_1} \cdots (X - \lambda_k)^{s_k},
\]

with at least some \(s_i > 0 \). Choose some index \(j \) such that \(s_j > 0 \). Then \(X - \lambda_j \) is a factor of \(g \), so we can write

\[
g = (X - \lambda_j)q.
\]
By definition of g, the vector $u = q(f)(v)$ cannot be in W, since otherwise g would not be of minimal degree. However,

\[(f - \lambda_j \text{id})(u) = (f - \lambda_j \text{id})(q(f)(v)) = g(f)(v)\]

is in W, which concludes the proof.

We can now prove the main result of this section.

Theorem 18.11. Let $f : E \to E$ be a linear map on a finite-dimensional space E. Then f is diagonalizable iff its minimal polynomial m is of the form

\[m = (X - \lambda_1) \cdots (X - \lambda_k),\]

where $\lambda_1, \ldots, \lambda_k$ are distinct elements of K.

Proof. We already showed in Section 18.2 that if f is diagonalizable, then its minimal polynomial is of the above form (where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of f).

For the converse, let W be the subspace spanned by all the eigenvectors of f. If $W \neq E$, since W is invariant under f, by Proposition 18.10, there is some vector $u \notin W$ such that for some λ_j, we have

\[(f - \lambda_j \text{id})(u) \in W.\]

Let $v = (f - \lambda_j \text{id})(u) \in W$. Since $v \in W$, we can write

\[v = w_1 + \cdots + w_k\]

where $f(w_i) = \lambda_i w_i$ (either $w_i = 0$ or w_i is an eigenvector for λ_i), and so, for every polynomial h, we have

\[h(f)(v) = h(\lambda_1)w_1 + \cdots + h(\lambda_k)w_k,\]

which shows that $h(f)(v) \in W$ for every polynomial h. We can write

\[m = (X - \lambda_j)q\]

for some polynomial q, and also

\[q - q(\lambda_j) = p(X - \lambda_j)\]

for some polynomial p. We know that $p(f)(v) \in W$, and since m is the minimal polynomial of f, we have

\[0 = m(f)(u) = (f - \lambda_j \text{id})(q(f)(u)),\]

which implies that $q(f)(u) \in W$ (either $q(f)(u) = 0$, or it is an eigenvector associated with λ_j). However,

\[q(f)(u) - q(\lambda_j)u = p(f)((f - \lambda_j \text{id})(u)) = p(f)(v),\]

and since $p(f)(v) \in W$ and $q(f)(u) \in W$, we conclude that $q(\lambda_j)u \in W$. But, $u \notin W$, which implies that $q(\lambda_j) = 0$, so λ_j is a double root of m, a contradiction. Therefore, we must have $W = E$.

\[\Box\]
Remark: Proposition 18.10 can be used to give a quick proof of Theorem 13.4.

Using Theorem 18.11, we can give a short proof about commuting diagonalizable linear maps. If \(\mathcal{F} \) is a family of linear maps on a vector space \(E \), we say that \(\mathcal{F} \) is a commuting family iff \(f \circ g = g \circ f \) for all \(f, g \in \mathcal{F} \).

Proposition 18.12. Let \(\mathcal{F} \) be a nonempty finite commuting family of diagonalizable linear maps on a finite-dimensional vector space \(E \). There exists a basis of \(E \) such that every linear map in \(\mathcal{F} \) is represented in that basis by a diagonal matrix.

Proof. We proceed by induction on \(n = \dim(E) \). If \(n = 1 \), there is nothing to prove. If \(n > 1 \), there are two cases. If all linear maps in \(\mathcal{F} \) are of the form \(\lambda \text{id} \) for some \(\lambda \in K \), then the proposition holds trivially. In the second case, let \(f \in \mathcal{F} \) be some linear map in \(\mathcal{F} \) which is not a scalar multiple of the identity. In this case, \(f \) has at least two distinct eigenvalues \(\lambda_1, \ldots, \lambda_k \), and because \(f \) is diagonalizable, \(E \) is the direct sum of the corresponding eigenspaces \(E_{\lambda_1}, \ldots, E_{\lambda_k} \). For every index \(i \), the eigenspace \(E_{\lambda_i} \) is invariant under \(f \) and under every other linear map \(g \) in \(\mathcal{F} \), since for any \(g \in \mathcal{F} \) and any \(u \in E_{\lambda_i} \), because \(f \) and \(g \) commute, we have

\[
f(g(u)) = g(f(u)) = g(\lambda_i u) = \lambda_i g(u)
\]

so \(g(u) \in E_{\lambda_i} \). Let \(\mathcal{F}_i \) be the family obtained by restricting each \(f \in \mathcal{F} \) to \(E_{\lambda_i} \). By proposition 18.8, the minimal polynomial of every linear map \(f \mid E_{\lambda_i} \) in \(\mathcal{F}_i \) divides the minimal polynomial \(m_f \) of \(f \), and since \(f \) is diagonalizable, \(m_f \) is a product of distinct linear factors, so the minimal polynomial of \(f \mid E_{\lambda_i} \) is also a product of distinct linear factors. By Theorem 18.11, the linear map \(f \mid E_{\lambda_i} \) is diagonalizable. Since \(k > 1 \), we have \(\dim(E_{\lambda_i}) < \dim(E) \) for \(i = 1, \ldots, k \), and by the induction hypothesis, for each \(i \) there is a basis of \(E_{\lambda_i} \) over which \(f \mid E_{\lambda_i} \) is represented by a diagonal matrix. Since the above argument holds for all \(i \), by combining the bases of the \(E_{\lambda_i} \), we obtain a basis of \(E \) such that the matrix of every linear map \(f \in \mathcal{F} \) is represented by a diagonal matrix.

\(\square \)

Remark: Proposition 18.12 also holds for infinite commuting families \(\mathcal{F} \) of diagonalizable linear maps, because \(E \) being finite dimensional, there is a finite subfamily of linearly independent linear maps in \(\mathcal{F} \) spanning \(\mathcal{F} \).

There is also an analogous result for commuting families of linear maps represented by upper triangular matrices. To prove this, we need the following proposition.

Proposition 18.13. Let \(\mathcal{F} \) be a nonempty finite commuting family of triangulable linear maps on a finite-dimensional vector space \(E \). Let \(W \) be a proper subspace of \(E \) which is invariant under \(\mathcal{F} \). Then there exists a vector \(u \in E \) such that:

1. \(u \notin W \).
2. For every \(f \in \mathcal{F} \), the vector \(f(u) \) belongs to the subspace \(W \oplus Ku \) spanned by \(W \) and \(u \).
18.2. MINIMAL POLYNOMIALS OF DIAGONALIZABLE LINEAR MAPS

Proof. By renaming the elements of F if necessary, we may assume that (f_1, \ldots, f_r) is a basis of the subspace of $\text{End}(E)$ spanned by F. We prove by induction on r that there exists some vector $u \in E$ such that

1. $u \notin W$.
2. $(f_i - \alpha_i \text{id})(u) \in W$ for $i = 1, \ldots, r$, for some scalars $\alpha_i \in K$.

Consider the base case $r = 1$. Since f_1 is triangulable, its eigenvalues all belong to K since they are the diagonal entries of the triangular matrix associated with f_1 (this is the easy direction of Theorem 13.4), so the minimal polynomial of f_1 is of the form

$$m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},$$

where the eigenvalues $\lambda_1, \ldots, \lambda_k$ of f_1 belong to K. We conclude by applying Proposition 18.10.

Next, assume that $r \geq 2$ and that the induction hypothesis holds for f_1, \ldots, f_{r-1}. Thus, there is a vector $u_{r-1} \in E$ such that

1. $u_{r-1} \notin W$.
2. $(f_i - \alpha_i \text{id})(u_{r-1}) \in W$ for $i = 1, \ldots, r-1$, for some scalars $\alpha_i \in K$.

Let

$$V_{r-1} = \{ w \in E \mid (f_i - \alpha_i \text{id})(w) \in W, i = 1, \ldots, r-1 \}.$$

Clearly, $W \subseteq V_{r-1}$ and $u_{r-1} \in V_{r-1}$. We claim that V_{r-1} is invariant under F. This is because, for any $v \in V_{r-1}$ and any $f \in F$, since f and f_i commute, we have

$$(f_i - \alpha_i \text{id})(f(v)) = f(f_i - \alpha_i \text{id})(v)), \quad 1 \leq i \leq r-1.$$

Now, $(f_i - \alpha_i \text{id})(v) \in W$ because $v \in V_{r-1}$, and W is invariant under F so $f(f_i - \alpha_i \text{id})(v)) \in W$, that is, $(f_i - \alpha_i \text{id})(f(v)) \in W$.

Consider the restriction g_r of f_r to V_{r-1}. The minimal polynomial of g_r divides the minimal polynomial of f_r, and since f_r is triangulable, just as we saw for f_1, the minimal polynomial of f_r is of the form

$$m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},$$

where the eigenvalues $\lambda_1, \ldots, \lambda_k$ of f_r belong to K, so the minimal polynomial of g_r is of the same form. By Proposition 18.10, there is some vector $u_r \in V_{r-1}$ such that

1. $u_r \notin W$.
2. $(g_r - \alpha_r \text{id})(u_r) \in W$ for some scalars $\alpha_r \in K$.

CHAPTER 18. ANNIHILATING POLYNOMIALS; PRIMARY DECOMPOSITION

Now, since $u_r \in V_{r-1}$, we have $(f_i - \alpha_i \text{id})(u_r) \in W$ for $i = 1, \ldots, r-1$, so $(f_i - \alpha_i \text{id})(u_r) \in W$ for $i = 1, \ldots, r$ (since g_r is the restriction of f_r), which concludes the proof of the induction step. Finally, since every $f \in \mathcal{F}$ is the linear combination of (f_1, \ldots, f_r), condition (2) of the inductive claim implies condition (2) of the proposition.

We can now prove the following result.

Proposition 18.14. Let \mathcal{F} be a nonempty finite commuting family of triangulable linear maps on a finite-dimensional vector space E. There exists a basis of E such that every linear map in \mathcal{F} is represented in that basis by an upper triangular matrix.

Proof. Let $n = \dim(E)$. We construct inductively a basis (u_1, \ldots, u_n) of E such that if W_i is the subspace spanned by (u_1, \ldots, u_i), then for every $f \in \mathcal{F}$,

$$f(u_i) = a^f_{1i}u_1 + \cdots + a^f_{ii}u_i,$$

for some $a^f_{ij} \in K$; that is, $f(u_i)$ belongs to the subspace W_i.

We begin by applying Proposition 18.13 to the subspace $W_0 = (0)$ to get u_1 so that for all $f \in \mathcal{F}$,

$$f(u_1) = \alpha^f_1 u_1.$$

For the induction step, since W_i invariant under \mathcal{F}, we apply Proposition 18.13 to the subspace W_i, to get $u_{i+1} \in E$ such that

1. $u_{i+1} \notin W_i$.
2. For every $f \in \mathcal{F}$, the vector $f(u_{i+1})$ belong to the subspace spanned by W_i and u_{i+1}.

Condition (1) implies that $(u_1, \ldots, u_i, u_{i+1})$ is linearly independent, and condition (2) means that for every $f \in \mathcal{F}$,

$$f(u_{i+1}) = a^f_{i+1i}u_1 + \cdots + a^f_{i+1i+1}u_{i+1},$$

for some $a^f_{i+1j} \in K$, establishing the induction step. After n steps, each $f \in \mathcal{F}$ is represented by an upper triangular matrix.

Observe that if \mathcal{F} consists of a single linear map f and if the minimal polynomial of f is of the form

$$m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},$$

with all $\lambda_i \in K$, using Proposition 18.10 instead of Proposition 18.13, the proof of Proposition 18.14 yields another proof of Theorem 13.4.
18.3 The Primary Decomposition Theorem

If \(f : E \to E \) is a linear map and \(\lambda \in K \) is an eigenvalue of \(f \), recall that the eigenspace \(E_\lambda \) associated with \(\lambda \) is the kernel of the linear map \(\lambda \text{id} - f \). If all the eigenvalues \(\lambda_1, \ldots, \lambda_k \) of \(f \) are in \(K \), it may happen that

\[
E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k},
\]

but in general there are not enough eigenvectors to span \(E \). What if we generalize the notion of eigenvector and look for (nonzero) vectors \(u \) such that

\[
(\lambda \text{id} - f)^r(u) = 0, \quad \text{for some } r \geq 1?
\]

Then, it turns out that if the minimal polynomial of \(f \) is of the form

\[
m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k},
\]

then \(r = r_i \) does the job for \(\lambda_i \); that is, if we let

\[
W_i = \text{Ker} (\lambda_i \text{id} - f)^{r_i},
\]

then

\[
E = W_1 \oplus \cdots \oplus W_k.
\]

This result is very nice but seems to require that the eigenvalues of \(f \) all belong to \(K \). Actually, it is a special case of a more general result involving the factorization of the minimal polynomial \(m \) into its irreducible monic factors (See Theorem 18.6),

\[
m = p_1^{r_1} \cdots p_k^{r_k},
\]

where the \(p_i \) are distinct irreducible monic polynomials over \(K \).

Theorem 18.15. (Primary Decomposition Theorem) Let \(f : E \to E \) be a linear map on the finite-dimensional vector space \(E \) over the field \(K \). Write the minimal polynomial \(m \) of \(f \) as

\[
m = p_1^{r_1} \cdots p_k^{r_k},
\]

where the \(p_i \) are distinct irreducible monic polynomials over \(K \), and the \(r_i \) are positive integers. Let

\[
W_i = \text{Ker} (p_i^{r_i}(f)), \quad i = 1, \ldots, k.
\]

Then

(a) \(E = W_1 \oplus \cdots \oplus W_k \).

(b) Each \(W_i \) is invariant under \(f \).

(c) The minimal polynomial of the restriction \(f | W_i \) of \(f \) to \(W_i \) is \(p_i^{r_i} \).
Proof. The trick is to construct projections π_i using the polynomials p_r^i so that the range of π_i is equal to W_i. Let

$$g_i = m/p_i = \prod_{j \neq i} p_r^j.$$

Note that

$$p_i^i g_i = m.$$

Since p_1, \ldots, p_k are irreducible and distinct, they are relatively prime. Then, using Proposition 18.4, it is easy to show that g_1, \ldots, g_k are relatively prime. Otherwise, some irreducible polynomial p would divide all of g_1, \ldots, g_k, so by Proposition 18.4 it would be equal to one of the irreducible factors p_i. But, that p_i is missing from g_i, a contradiction. Therefore, by Proposition 18.5, there exist some polynomials h_1, \ldots, h_k such that

$$g_1 h_1 + \cdots + g_k h_k = 1.$$

Let $q_i = g_i h_i$ and let $\pi_i = q_i(f) = g_i(f) h_i(f)$. We have

$$q_1 + \cdots + q_k = 1,$$

and since m divides $q_i q_j$ for $i \neq j$, we get

$$\pi_1 + \cdots + \pi_k = \text{id} \quad \pi_i \pi_j = 0, \quad i \neq j.$$

(We implicitly used the fact that if p, q are two polynomials, the linear maps $p(f) \circ q(f)$ and $q(f) \circ p(f)$ are the same since $p(f)$ and $q(f)$ are polynomials in the powers of f, which commute.) Composing the first equation with π_i and using the second equation, we get

$$\pi_i^2 = \pi_i.$$

Therefore, the π_i are projections, and E is the direct sum of the images of the π_i. Indeed, every $u \in E$ can be expressed as

$$u = \pi_1(u) + \cdots + \pi_k(u).$$

Also, if

$$\pi_1(u) + \cdots + \pi_k(u) = 0,$$

then by applying π_i we get

$$0 = \pi_i^2(u) = \pi_i(u), \quad i = 1, \ldots k.$$

To finish proving (a), we need to show that

$$W_i = \text{Ker} \left(p_{i}^{i}(f) \right) = \pi_i(E).$$
18.3. THE PRIMARY DECOMPOSITION THEOREM

If \(v \in \pi_i(E) \), then \(v = \pi_i(u) \) for some \(u \in E \), so

\[
P_i^r(f)(v) = P_i^r(f)(\pi_i(u))
= P_i^r(f)g_i(f)h_i(f)(u)
= h_i(f)p_i^r(f)g_i(f)(u)
= h_i(f)m(f)(u) = 0,
\]

because \(m \) is the minimal polynomial of \(f \). Therefore, \(v \in W_i \).

Conversely, assume that \(v \in W_i = \text{Ker}(p_i^r(f)) \). If \(j \neq i \), then \(g_jh_j \) is divisible by \(p_i^r \), so

\[
g_j(f)h_j(f)(v) = \pi_j(v) = 0, \quad j \neq i.
\]

Then, since \(\pi_1 + \cdots + \pi_k = \text{id} \), we have \(v = \pi_iv \), which shows that \(v \) is in the range of \(\pi_i \). Therefore, \(W_i = \text{Im}(\pi_i) \), and this finishes the proof of (a).

If \(p_i^r(f)(u) = 0 \), then \(p_i^r(f)(f(u)) = f(p_i^r(f)(u)) = 0 \), so (b) holds.

If we write \(f_i = f|W_i \), then \(p_i^r(f_i) = 0 \), because \(p_i^r(f) = 0 \) on \(W_i \) (its kernel). Therefore, the minimal polynomial of \(f_i \) divides \(p_i^r \). Conversely, let \(q \) be any polynomial such that \(q(f_i) = 0 \) (on \(W_i \)). Since \(m = p_i^r g_i \), the fact that \(m(f)(u) = 0 \) for all \(u \in E \) shows that

\[
p_i^r(f)(g_i(f)(u)) = 0, \quad u \in E;
\]

and thus \(\text{Im}(g_i(f)) \subseteq \text{Ker}(p_i^r(f)) = W_i \). Consequently, since \(q(f) \) is zero on \(W_i \),

\[
q(f)g_i(f) = 0 \quad \text{for all } u \in E.
\]

But then, \(qg_i \) is divisible by the minimal polynomial \(m = p_i^r g_i \) of \(f \), and since \(p_i^r \) and \(g_i \) are relatively prime, by Euclid’s Proposition, \(p_i^r \) must divide \(q \). This finishes the proof that the minimal polynomial of \(f_i \) is \(p_i^r \), which is (c). \(\square \)

If all the eigenvalues of \(f \) belong to the field \(K \), we obtain the following result.

Theorem 18.16. (Primary Decomposition Theorem, Version 2) Let \(f: E \to E \) be a linear map on the finite-dimensional vector space \(E \) over the field \(K \). If all the eigenvalues \(\lambda_1, \ldots, \lambda_k \) of \(f \) belong to \(K \), write

\[
m = (X - \lambda_1)^{r_1} \cdots (X - \lambda_k)^{r_k}
\]

for the minimal polynomial of \(f \),

\[
\chi_f = (X - \lambda_1)^{n_1} \cdots (X - \lambda_k)^{n_k}
\]

for the characteristic polynomial of \(f \), with \(1 \leq r_i \leq n_i \), and let

\[
W_i = \text{Ker}(\lambda_i \text{id} - f)^{r_i}, \quad i = 1, \ldots, k.
\]

Then
(a) $E = W_1 \oplus \cdots \oplus W_k$.

(b) Each W_i is invariant under f.

(c) $\dim(W_i) = n_i$.

(d) The minimal polynomial of the restriction $f \mid W_i$ of f to W_i is $(X - \lambda_i)^{r_i}$.

Proof. Parts (a), (b) and (d) have already been proved in Theorem 18.16, so it remains to prove (c). Since W_i is invariant under f, let f_i be the restriction of f to W_i. The characteristic polynomial χ_{f_i} of f_i divides $\chi(f)$, and since $\chi(f)$ has all its roots in K, so does $\chi_{f_i}(f)$. By Theorem 13.4, there is a basis of W_i in which f_i is represented by an upper triangular matrix, and since $(\lambda_i \text{id} - f)^{r_i} = 0$, the diagonal entries of this matrix are equal to λ_i. Consequently,

$$\chi_{f_i} = (X - \lambda_i)^{\dim(W_i)},$$

and since χ_{f_i} divides $\chi(f)$, we conclude that

$$\dim(W_i) \leq n_i, \quad i = 1, \ldots, k.$$

Because E is the direct sum of the W_i, we have $\dim(W_1) + \cdots + \dim(W_k) = n$, and since $n_1 + \cdots + n_k = n$, we must have

$$\dim(W_i) = n_i, \quad i = 1, \ldots, k,$$

proving (c). \qed

Definition 18.7. If $\lambda \in K$ is an eigenvalue of f, we define a generalized eigenvector of f as a nonzero vector $u \in E$ such that

$$(\lambda \text{id} - f)^r(u) = 0, \quad \text{for some } r \geq 1.$$

The index of λ is defined as the smallest $r \geq 1$ such that

$$\text{Ker } (\lambda \text{id} - f)^r = \text{Ker } (\lambda \text{id} - f)^{r+1}.$$

It is clear that $\text{Ker } (\lambda \text{id} - f)^i \subseteq \text{Ker } (\lambda \text{id} - f)^{i+1}$ for all $i \geq 1$. By Theorem 18.16(d), if $\lambda = \lambda_i$, the index of λ_i is equal to r_i.

Another important consequence of Theorem 18.16 is that f can be written as the sum of a diagonalizable and a nilpotent linear map (which commute). If we write

$$D = \lambda_1 \pi_1 + \cdots + \lambda_k \pi_k,$$

where π_i is the projection from E onto the subspace W_i defined in the proof of Theorem 18.15, since

$$\pi_1 + \cdots + \pi_k = \text{id},$$
we have

\[f = f \pi_1 + \cdots + f \pi_k, \]

and so we get

\[f - D = (f - \lambda_1 \text{id}) \pi_1 + \cdots + (f - \lambda_k \text{id}) \pi_k. \]

Since the \(\pi_i \) are polynomials in \(f \), they commute with \(f \), and if we write \(N = f - D \), using the properties of the \(\pi_i \), we get

\[N^r = (f - \lambda_1 \text{id})^r \pi_1 + \cdots + (f - \lambda_k \text{id})^r \pi_k. \]

Therefore, if \(r = \max\{r_i\} \), we have \((f - \lambda_k \text{id})^r = 0 \) for \(i = 1, \ldots, k \), which implies that

\[N^r = 0. \]

A linear map \(g: E \to E \) is said to be \textit{nilpotent} if there is some positive integer \(r \) such that \(g^r = 0 \).

Since \(N \) is a polynomial in \(f \), it commutes with \(f \), and thus with \(D \). From

\[D = \lambda_1 \pi_1 + \cdots + \lambda_k \pi_k, \]

and

\[\pi_1 + \cdots + \pi_k = \text{id}, \]

we see that

\[D - \lambda_i \text{id} = (\lambda_1 - \lambda_i) \pi_1 + \cdots + (\lambda_{i-1} - \lambda_i) \pi_{i-1} + (\lambda_{i+1} - \lambda_i) \pi_{i+1} + \cdots + (\lambda_k - \lambda_i) \pi_k. \]

Since the projections \(\pi_j \) with \(j \neq i \) vanish on \(W_i \), the above equation implies that \(D - \lambda_i \text{id} \) vanishes on \(W_i \) and that \((D - \lambda_j \text{id})(W_i) \subseteq W_i \), and thus that the minimal polynomial of \(D \) is

\[(X - \lambda_1) \cdots (X - \lambda_k). \]

Since the \(\lambda_i \) are distinct, by Theorem 18.11, the linear map \(D \) is diagonalizable, so we have shown that when all the eigenvalues of \(f \) belong to \(K \), there exist a diagonalizable linear map \(D \) and a nilpotent linear map \(N \), such that

\[f = D + N \]

\[DN = ND, \]

and \(N \) and \(D \) are polynomials in \(f \).

A decomposition of \(f \) as above is called a \textit{Jordan decomposition}. In fact, we can prove more: The maps \(D \) and \(N \) are uniquely determined by \(f \).
Theorem 18.17. (Jordan Decomposition) Let $f : E \to E$ be a linear map on the finite-dimensional vector space E over the field K. If all the eigenvalues $\lambda_1, \ldots, \lambda_k$ of f belong to K, then there exist a diagonalizable linear map D and a nilpotent linear map N such that

$$f = D + N$$
$$DN = ND.$$

Furthermore, D and N are uniquely determined by the above equations and they are polynomials in f.

Proof. We already proved the existence part. Suppose we also have $f = D' + N'$, with $D'N' = N'D'$, where D' is diagonalizable, N' is nilpotent, and both are polynomials in f. We need to prove that $D = D'$ and $N = N'$.

Since D' and N' commute with one another and $f = D' + N'$, we see that D' and N' commute with f. Then, D' and N' commute with any polynomial in f; hence they commute with D and N. From

$$D + N = D' + N',$$

we get

$$D - D' = N' - N,$$

and D, D', N, N' commute with one another. Since D and D' are both diagonalizable and commute, by Proposition 18.12, they are simultaneously diagonalizable, so $D - D'$ is diagonalizable. Since N and N' commute, by the binomial formula, for any $r \geq 1$,

$$(N' - N)^r = \sum_{j=0}^{r} (-1)^j \binom{r}{j} (N')^{r-j} N^j.$$

Since both N and N' are nilpotent, we have $N'^{r_1} = 0$ and $(N')^{r_2} = 0$, for some $r_1, r_2 > 0$, so for $r \geq r_1 + r_2$, the right-hand side of the above expression is zero, which shows that $N' - N$ is nilpotent. (In fact, it is easy that $r_1 = r_2 = n$ works). It follows that $D - D' = N' - N$ is both diagonalizable and nilpotent. Clearly, the minimal polynomial of a nilpotent linear map is of the form X^r for some $r > 0$ (and $r \leq \dim(E)$). But $D - D'$ is diagonalizable, so its minimal polynomial has simple roots, which means that $r = 1$. Therefore, the minimal polynomial of $D - D'$ is X, which says that $D - D' = 0$, and then $N = N'$. \qed

If K is an algebraically closed field, then Theorem 18.17 holds. This is the case when $K = \mathbb{C}$. This theorem reduces the study of linear maps (from E to itself) to the study of nilpotent operators. There is a special normal form for such operators which is discussed in the next section.
18.4 Nilpotent Linear Maps and Jordan Form

This section is devoted to a normal form for nilpotent maps. We follow Godement’s exposition [23]. Let $f: E \rightarrow E$ be a nilpotent linear map on a finite-dimensional vector space over a field K, and assume that f is not the zero map. Then, there is a smallest positive integer $r \geq 1$ such $f^r \neq 0$ and $f^{r+1} = 0$. Clearly, the polynomial X^{r+1} annihilates f, and it is the minimal polynomial of f since $f^r \neq 0$. It follows that $r + 1 \leq n = \dim(E)$. Let us define the subspaces N_i by

$$N_i = \text{Ker}(f^i), \quad i \geq 0.$$

Note that $N_0 = (0)$, $N_1 = \text{Ker}(f)$, and $N_{r+1} = E$. Also, it is obvious that

$$N_i \subseteq N_{i+1}, \quad i \geq 0.$$

Proposition 18.18. Given a nilpotent linear map f with $f^r \neq 0$ and $f^{r+1} = 0$ as above, the inclusions in the following sequence are strict:

$$(0) = N_0 \subset N_1 \subset \cdots \subset N_r \subset N_{r+1} = E.$$

Proof. We proceed by contradiction. Assume that $N_i = N_{i+1}$ for some i with $0 \leq i \leq r$. Since $f^{r+1} = 0$, for every $u \in E$, we have

$$0 = f^{r+1}(u) = f^{i+1}(f^{r-i}(u)),$$

which shows that $f^{r-i}(u) \in N_{i+1}$. Since $N_i = N_{i+1}$, we get $f^{r-i}(u) \in N_i$, and thus $f^r(u) = 0$. Since this holds for all $u \in E$, we see that $f^r = 0$, a contradiction.

Proposition 18.19. Given a nilpotent linear map f with $f^r \neq 0$ and $f^{r+1} = 0$, for any integer i with $1 \leq i \leq r$, for any subspace U of E, if $U \cap N_i = (0)$, then $f(U) \cap N_{i-1} = (0)$, and the restriction of f to U is an isomorphism onto $f(U)$.

Proof. Pick $v \in f(U) \cap N_{i-1}$. We have $v = f(u)$ for some $u \in U$ and $f^{i-1}(v) = 0$, which means that $f^i(u) = 0$. Then, $u \in U \cap N_i$, so $u = 0$ since $U \cap N_i = (0)$, and $v = f(u) = 0$. Therefore, $f(U) \cap N_{i-1} = (0)$. The restriction of f to U is obviously surjective on $f(U)$. Suppose that $f(u) = 0$ for some $u \in U$. Then $u \in U \cap N_1 \subseteq U \cap N_i = (0)$ (since $i \geq 1$), so $u = 0$, which proves that f is also injective on U.

Proposition 18.20. Given a nilpotent linear map f with $f^r \neq 0$ and $f^{r+1} = 0$, there exists a sequence of subspaces U_1, \ldots, U_{r+1} of E with the following properties:

1. $N_i = N_{i-1} \oplus U_i$, for $i = 1, \ldots, r + 1$.

2. We have $f(U_i) \subseteq U_{i-1}$, and the restriction of f to U_i is an injection, for $i = 2, \ldots, r+1$.
Proof. We proceed inductively, by defining the sequence \(U_{r+1}, U_r, \ldots, U_1 \). We pick \(U_{r+1} \) to be any supplement of \(N_r \) in \(N_{r+1} = E \), so that

\[
E = N_{r+1} = N_r \oplus U_{r+1}.
\]

Since \(f^{r+1} = 0 \) and \(N_r = \ker(f^r) \), we have \(f(U_{r+1}) \subseteq N_r \), and by Proposition 18.19, as \(U_{r+1} \cap N_r = (0) \), we have \(f(U_{r+1}) \cap N_{r-1} = (0) \). As a consequence, we can pick a supplement \(U_r \) of \(N_{r-1} \) in \(N_r \) so that \(f(U_{r+1}) \subseteq U_r \). We have

\[
N_r = N_{r-1} \oplus U_r \quad \text{and} \quad f(U_{r+1}) \subseteq U_r.
\]

By Proposition 18.19, \(f \) is an injection from \(U_{r+1} \) to \(U_r \). Assume inductively that \(U_{r+1}, \ldots, U_i \) have been defined for \(i \geq 2 \) and that they satisfy (1) and (2). Since

\[
N_i = N_{i-1} \oplus U_i,
\]

we have \(U_i \subseteq N_i \), so \(f^{i-1}(f(U_i)) = f^i(U_i) = (0) \), which implies that \(f(U_i) \subseteq N_{i-1} \). Also, since \(U_i \cap N_{i-1} = (0) \), by Proposition 18.19, we have \(f(U_i) \cap N_{i-2} = (0) \). It follows that there is a supplement \(U_{i-1} \) of \(N_{i-2} \) in \(N_{i-1} \) that contains \(f(U_i) \). We have

\[
N_{i-1} = N_{i-2} \oplus U_{i-1} \quad \text{and} \quad f(U_i) \subseteq U_{i-1}.
\]

The fact that \(f \) is an injection from \(U_i \) into \(U_{i-1} \) follows from Proposition 18.19. Therefore, the induction step is proved. The construction stops when \(i = 1 \).

Because \(N_0 = (0) \) and \(N_{r+1} = E \), we see that \(E \) is the direct sum of the \(U_i \):

\[
E = U_1 \oplus \cdots \oplus U_{r+1},
\]

with \(f(U_i) \subseteq U_{i-1} \), and \(f \) an injection from \(U_i \) to \(U_{i-1} \), for \(i = r+1, \ldots, 2 \). By a clever choice of bases in the \(U_i \), we obtain the following nice theorem.

Theorem 18.21. For any nilpotent linear map \(f \colon E \to E \) on a finite-dimensional vector space \(E \) of dimension \(n \) over a field \(K \), there is a basis of \(E \) such that the matrix \(N \) of \(f \) is of the form

\[
N = \begin{pmatrix}
0 & \nu_1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \nu_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \nu_n \\
0 & 0 & 0 & \cdots & 0 & 0
\end{pmatrix},
\]

where \(\nu_i = 1 \) or \(\nu_i = 0 \).
Proof. First, apply Proposition 18.20 to obtain a direct sum \(E = \bigoplus_{i=1}^{r+1} U_i \). Then, we define a basis of \(E \) inductively as follows. First, we choose a basis

\[
e_1^{r+1}, \ldots, e_{n_r+1}^{r+1}
\]

of \(U_{r+1} \). Next, for \(i = r + 1, \ldots, 2 \), given the basis

\[
e_1^i, \ldots, e_{n_i}^i
\]

of \(U_i \), since \(f \) is injective on \(U_i \) and \(f(U_i) \subseteq U_{i-1} \), the vectors \(f(e_1^i), \ldots, f(e_{n_i}^i) \) are linearly independent, so we define a basis of \(U_{i-1} \) by completing \(f(e_1^i), \ldots, f(e_{n_i}^i) \) to a basis in \(U_{i-1} \):

\[
e_1^{i-1}, \ldots, e_{n_i}^{i-1}, e_{n_{i+1}}^{i-1}, \ldots, e_{n_{i-1}}^{i-1}
\]

with

\[
e_j^{i-1} = f(e_j^i), \quad j = 1, \ldots, n_i.
\]

Since \(U_1 = N_1 = \ker (f) \), we have

\[
f(e_1^1) = 0, \quad j = 1, \ldots, n_1.
\]

These basis vectors can be arranged as the rows of the following matrix:

\[
\begin{pmatrix}
e_1^{r+1} & \cdots & e_{n_r+1}^{r+1} \\
e_1^r & \cdots & e_{n_r+1}^r & e_{n_{r+1}}^r & \cdots & e_{n_r}^r \\
e_1^{r-1} & \cdots & e_{n_r+1}^{r-1} & e_{n_{r+1}}^{r-1} & \cdots & e_{n_{r-1}}^r & e_{n_r}^{r-1} & \cdots & e_{n_{r-1}}^{r-1} \\
e_1^r & \cdots & e_{n_r+1}^r & e_{n_{r+1}}^r & \cdots & e_{n_r}^r & e_{n_r+1}^r & \cdots & e_{n_{r-1}}^r & \cdots & e_{n_{r-1}}^r \\
\end{pmatrix}
\]

Finally, we define the basis \((e_1, \ldots, e_n)\) by listing each column of the above matrix from the bottom-up, starting with column one, then column two, etc. This means that we list the vectors \(e_j^i \) in the following order:

For \(j = 1, \ldots, n_{r+1} \), list \(e_j^1, \ldots, e_j^{r+1} \);

In general, for \(i = r, \ldots, 1 \),

for \(j = n_{i+1} + 1, \ldots, n_i \), list \(e_j^1, \ldots, e_j^i \).

Then, because \(f(e_j^1) = 0 \) and \(e_j^{i-1} = f(e_j^i) \) for \(i \geq 2 \), either

\[
f(e_i) = 0 \quad \text{or} \quad f(e_i) = e_{i-1},
\]

which proves the theorem. \(\square \)
As an application of Theorem 18.21, we obtain the Jordan form of a linear map.

Definition 18.8. A Jordan block is an \(r \times r \) matrix \(J_r(\lambda) \), of the form

\[
J_r(\lambda) = \begin{pmatrix}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{pmatrix},
\]

where \(\lambda \in K \), with \(J_1(\lambda) = (\lambda) \) if \(r = 1 \). A Jordan matrix, \(J \), is an \(n \times n \) block diagonal matrix of the form

\[
J = \begin{pmatrix}
J_{r_1}(\lambda_1) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & J_{r_m}(\lambda_m)
\end{pmatrix},
\]

where each \(J_{r_k}(\lambda_k) \) is a Jordan block associated with some \(\lambda_k \in K \), and with \(r_1 + \cdots + r_m = n \).

To simplify notation, we often write \(J(\lambda) \) for \(J_r(\lambda) \). Here is an example of a Jordan matrix with four blocks:

\[
J = \begin{pmatrix}
\lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mu & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu
\end{pmatrix}.
\]

Theorem 18.22. (Jordan form) Let \(E \) be a vector space of dimension \(n \) over a field \(K \) and let \(f: E \to E \) be a linear map. The following properties are equivalent:

1. The eigenvalues of \(f \) all belong to \(K \) (i.e. the roots of the characteristic polynomial \(\chi_f \) all belong to \(K \)).

2. There is a basis of \(E \) in which the matrix of \(f \) is a Jordan matrix.

Proof. Assume (1). First we apply Theorem 18.16, and we get a direct sum \(E = \bigoplus_{j=1}^{k} W_j \), such that the restriction of \(g_i = f - \lambda_i \text{id} \) to \(W_i \) is nilpotent. By Theorem 18.21, there is a basis of \(W_i \) such that the matrix of the restriction of \(g_i \) is of the form

\[
G_i = \begin{pmatrix}
0 & \nu_1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \nu_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \nu_{n_i} \\
0 & 0 & 0 & \cdots & 0 & 0
\end{pmatrix},
\]
where $\nu_i = 1$ or $\nu_i = 0$. Furthermore, over any basis, $\lambda_i \text{id}$ is represented by the diagonal matrix D_i with λ_i on the diagonal. Then, it is clear that we can split $D_i + G_i$ into Jordan blocks by forming a Jordan block for every uninterrupted chain of 1s. By putting the bases of the W_i together, we obtain a matrix in Jordan form for f.

Now, assume (2). If f can be represented by a Jordan matrix, it is obvious that the diagonal entries are the eigenvalues of f, so they all belong to K. \square

Observe that Theorem 18.22 applies if $K = \mathbb{C}$. It turns out that there are uniqueness properties of the Jordan blocks, but we will use more powerful machinery to prove this.
Bibliography

