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156 ALGEBRE LINEAIRE § "i' 
a) u est bijectif; 
b) u est injectif; 
c) u est surjectif; 
d) u est inflersible a droite; 
e) U est iMersible a gauche; 
f) u est de rang n. 

Si E est un espace vectoriel de dimension infinie, il y a des endo-
morphismes injectifs (resp. surjectifs) de E qui ne sont pas bijec-
tifs ( exerc. 9). 

Soient K, K' deux corps, cr : K -+ K' un isomorphisme de K 
sur K', E un K-espace vectoriel, E' un K'-espace vectoriel, 
u : E -+ E' une application semi-lineaire relative a cr ( § 1, no 13) ; 
on appelle encore rang de u la dimension du sous-espace u(E) de-
E'. C'est aussi le rang de u considere comme application Iineaire-
de E dans cr*(E') , car toute base de u(E) est aussi une base de-
cr*( u(E) ). 

5. Dual d'un espace vectoriel. 

THEOREME 4. - La dimension du dual E* d'un espace 'recto-
riel E est au moins egale a la dimension de E. Pour que E* soit 
de dimension finie, il faut et ·il suffit que E le soit, et on a alors-
dimE* = dim E. 

Si K est Ie corps des scalaires de E, E est isomorphe a_ 
un espace et par suite E* est isomorphe a ( § 2, no 6,. 
prop. 10). Comme est un sous-espace de on a dimE = 
Card( I) dimE* (n° 2, cor. 4 du th. 3); en outre, si I est fini, 
on a = (cf. exerc. 34)). 

CoROLLAIRE. - Pour espace flectoriel E, les relations· 
E = I 0 I et E* = 10 ! sont equifJalentes. 

THEOREME 5. - Etant donnees deux suites exactes d'espaces: 
flectoriels (sur un meme corps K) .et d' applications lineaires . 

0 -+ E' -+ E -+ E" -+ 0 
0 -+ F' -+ F -+ F" -+ 0 

.I 

.et deux espaces fJector 

0 -+ Hom(E", C 
0 -+ Hom(H, F' 

.sont exactes et scindees 
Cela resulte de C€ 

direct (n° 3, prop. 4) et 

COROLLAIRE. - p 

0 
d' espaces fJectoriels sur 
la suite 

est exacte et scindee. 

On en deduit en PI 
riel M de E, l'homomor 
le sous-espace de E* ort 

THEOREME 6. - 1 
l' application canonique 
pour qu' elle so it bijectiCJI 
finie. 

- La premiere asser 
finie cE est bijective, son 
Supposons E de dimem 
ser que E = Kr->, ou 
E* = Soit l 
famille correspondante 1 
le sous-espace vectoriel 
la somme directe F' = 
traine F' =1= E *. II exist 
F' (n° 3, prop. 8), et co1 
de meme de son dual (c< 
H" de H' dans E** (§ 2, 
est contenu dans l'imag 

Figure 2: Page 156 from Bourbaki, Fascicule VI, Livre II, Algèbre, 1962



4



Contents

1 Introduction 13

I Linear Algebra 21

2 Vector Spaces, Bases, Linear Maps 23
2.1 Motivations: Linear Combinations, Linear Independence, Rank . . . . . . . 23
2.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Indexed Families; the Sum Notation

∑
i∈I ai . . . . . . . . . . . . . . . . . . 34

2.4 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8 Linear Forms and the Dual Space . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Matrices and Linear Maps 67
3.1 Representation of Linear Maps by Matrices . . . . . . . . . . . . . . . . . . 67
3.2 Change of Basis Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 80
3.4 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 97
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Direct Sums, Affine Maps 103
4.1 Direct Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Sums and Direct Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 The Rank-Nullity Theorem; Grassmann’s Relation . . . . . . . . . . . . . . 109
4.4 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Determinants 123
5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 123
5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5



6 CONTENTS

5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 138
5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 141
5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.10 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Gaussian Elimination, LU, Cholesky, Echelon Form 153
6.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 153
6.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3 Elementary Matrices and Row Operations . . . . . . . . . . . . . . . . . . . 161
6.4 LU -Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5 PA = LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.6 Dealing with Roundoff Errors; Pivoting Strategies . . . . . . . . . . . . . . . 182
6.7 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 184
6.8 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 186
6.9 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.10 Solving Linear Systems Using RREF . . . . . . . . . . . . . . . . . . . . . . 202
6.11 Elementary Matrices and Columns Operations . . . . . . . . . . . . . . . . 208
6.12 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7 Vector Norms and Matrix Norms 217
7.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 246
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8 Iterative Methods for Solving Linear Systems 251
8.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 251
8.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 254
8.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 256
8.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9 The Dual Space and Duality 269
9.1 The Dual Space E∗ and Linear Forms . . . . . . . . . . . . . . . . . . . . . 269
9.2 Pairing and Duality Between E and E∗ . . . . . . . . . . . . . . . . . . . . 274
9.3 The Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.4 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.5 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 286



CONTENTS 7

9.6 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 293
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10 Euclidean Spaces 297
10.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 297
10.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 305
10.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 318
10.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 321
10.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 323
10.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 327
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

11 QR-Decomposition for Arbitrary Matrices 331
11.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
11.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 335
11.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

12 Hermitian Spaces 341
12.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 341
12.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 350
12.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 355
12.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 357
12.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 360
12.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

13 Eigenvectors and Eigenvalues 371
13.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 371
13.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 378
13.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

14 Spectral Theorems 387
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 396
14.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 403
14.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 406
14.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 409
14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

15 Introduction to The Finite Elements Method 419
15.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 419



8 CONTENTS

15.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 430
15.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 433

16 Singular Value Decomposition and Polar Form 441
16.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 441
16.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 449
16.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 452
16.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

17 Applications of SVD and Pseudo-Inverses 455
17.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 455
17.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 460
17.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
17.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 466
17.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
17.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

18 Annihilating Polynomials; Primary Decomposition 479
18.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 479
18.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 485
18.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 491
18.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 497

II Preliminaries for Optimization Theory 503

19 Topology 505
19.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 505
19.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
19.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 520
19.4 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 529
19.5 Complete Metric Spaces and Banach Spaces . . . . . . . . . . . . . . . . . . 534
19.6 Completion of a Metric Space . . . . . . . . . . . . . . . . . . . . . . . . . . 535
19.7 Completion of a Normed Vector Space . . . . . . . . . . . . . . . . . . . . . 542
19.8 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 543
19.9 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
19.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

20 Differential Calculus 547
20.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 547
20.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
20.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 568
20.4 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 573



CONTENTS 9
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Chapter 1

Introduction

In recent years, computer vision, robotics, machine learning, and data science have been
some of the key areas that have contributed to major advances in technology. Anyone who
looks at papers or books in the above areas will be baffled by a strange jargon involving exotic
terms such as kernel PCA, ridge regression, lasso regression, support vector machines (SVM),
Lagrange multipliers, KKT conditions, etc. Do support vector machines chase cattle to catch
them with some kind of super lasso? No! But one will quickly discover that behind the jargon
which always comes with a new field (perhaps to keep the outsiders out of the club), lies a
lot of “classical” linear algebra and techniques from optimization theory. And there comes
the main challenge: in order to understand and use tools from machine learning, computer
vision, and so on, one needs to have a firm background in linear algebra and optimization
theory. To be honest, some probablity theory and statistics should also be included, but we
already have enough to contend with.

Many books on machine learning struggle with the above problem. How can one under-
stand what are the dual variables of a ridge regression problem if one doesn’t know about the
Lagrangian duality framework? Similarly, how is it possible to discuss the dual formulation
of SVM without a firm understanding of the Lagrangian framework?

The easy way out is to sweep these difficulties under the rug. If one is just a consumer
of the techniques we mentioned above, the cookbook recipe approach is probably adequate.
But this approach doesn’t work for someone who really wants to do serious research and
make significant contributions. To do so, we believe that one must have a solid background
in linear algebra and optimization theory.

This is a problem because it means investing a great deal of time and energy studying
these fields, but we believe that perseverance will be amply rewarded.

The main goal of this book is to present fundamentals of linear algebra and optimization
theory, keeping in mind applications to machine learning, robotics, and computer vision.
The book really consists of two volumes (the first one being linear algebra, the second one
optimization theory and applications), and is divided in six parts:

(1) Linear Algebra.

13
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(2) Preliminaries of Optimization Theory.

(3) Linear Optimization.

(4) Nonlinear Optimization.

(5) Applications to Machine Learning.

(6) An appendix on Hilbert Bases and the Riesz–Fischer Theorem.

Part I covers “classical” linear algebra, up to and including the primary decomposition
and the Jordan form. Besides covering the standard topics, we discuss a few topics that are
important for applications. These include:

1. Affine maps (see Section 4.4). These are usually ignored or treated in a somewhat
obscure fashion. Yet they play an important role in computer vision and robotics.
There is a clean and elegant way to define affine maps. One simply has to define affine
combinations . Linear maps preserve linear combinations, and similarly affine maps
preserve affine combinations.

2. Norms and matrix norms (Chapter 7). These are used extensively in optimization
theory.

3. An introduction to the finite elements method (Chapter 15).

4. Applications of SVD and pseudo-inverses, in particular, principal component analysis,
for short PCA (Chapter 17).

Three topics are covered in more detail than usual. These are

1. Duality (Chapter 9).

2. Dual norms (Section 12.6).

3. The spectral theorems (Chapter 14).

At the most basic level, duality corresponds to transposition. But duality is really the
bijection between subspaces of a vector space E (say finite-dimensional) and subspaces of
linear forms (subspaces of the dual space E∗) established by two maps: the first map assigns
to a subspace V of E the subspace V 0 of linear forms that vanish on V ; the second map assigns
to a subspace U of linear forms the subspace U0 consisting of the vectors in E on which all
linear forms in U vanish. The above maps define a bijection such that dim(V ) + dim(V 0) =
dim(E), dim(U) + dim(U0) = dim(E), V 00 = V , and U00 = U .

Another important fact is that if E is a finite-dimensional space with an inner product
u, v 7→ 〈u, v〉 (or a Hermitian inner product if E is a complex vector space), then there is a
canonical isomorphism between E and its dual E∗. This means that every linear form f ∈ E∗
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is uniquely represented by some vector u ∈ E, in the sense that f(v) = 〈v, u〉 for all v ∈ E.
As a consequence, every linear map f has an adjoint f ∗ such that 〈f(u), v〉 = 〈u, f ∗(v)〉 for
all u, v ∈ E.

Dual norms show up in convex optimization; see Boyd and Vandenberghe [22].

Because of their importance in robotics and computer vision, we discuss in some detail
the groups of isometries O(E) and SO(E) of a vector space with an inner product. The
isometries in O(E) are the linear maps such that f ◦ f ∗ = f ∗ ◦ f = id, and the direct
isometries in SO(E), also called rotations, are the isometries in O(E) whose determinant is
equal to +1. We also discuss the hermitian counterparts U(E) and SU(E).

We prove the spectral theorems not only for real symmetric matrices, but also for real
and complex normal matrices.

We stress the importance of linear maps. Matrices are of course invaluable for computing
and one needs to develop skills for manipulating them. But matrices are used to represent
a linear map over a basis (or two bases), and the same linear map has different matrix
representations. In fact, we can view the various normal forms of a matrix (Schur, SVD,
Jordan) as a suitably convenient choice of bases.

Part II is devoted to some preliminaries of optimization theory. The goal of most opti-
mization problems is to minimize (or maximize) some objective function J subject to equality
or inequality constraints. Therefore it is important to understand when a function J has a
minimum or a maximum (an optimum). If the function J is sufficiently differentiable, then
a necessary condition for a function to have an optimum typically involves the derivative of
the function J , and if J is real-valued, its gradient ∇J .

Thus it is desirable to review some basic notions of topology and calculus, in particular,
to have a firm grasp of the notion of derivative of a function between normed vector spaces.
Partial derivatives ∂f/∂A of functions whose range and domain are spaces of matrices tend
to be used casually, even though in most cases a correct definition is never provided. It is
possible, and simple, to define rigorously derivatives, gradients, and directional derivatives
of functions defined on matrices and to avoid these nonsensical partial derivatives.

Chapter 19 contains a review of basic topological notions used in analysis. We pay
particular attention to complete metric spaces and complete normed vector spaces. In fact,
we provide a detailed construction of the completion of a metric space (and of a normed vector
space) using equivalence classes of Cauchy sequences. Chapter 20 is devoted to some notions
of differential calculus, in particular, directional derivatives, total derivatives, gradients,
Hessians, and the inverse function theorem.

Chapter 21 deals with extrema of real-valued functions. In most optimization problems,
we need to find necessary conditions for a function J : Ω→ R to have a local extremum with
respect to a subset U of Ω (where Ω is open). This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},
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where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

In (1), the equations ϕi(x) = 0 are called equality constraints , and in (2), the inequalities
ϕi(x) ≤ 0 are called inequality constraints . The case of equality constraints is much easier
to deal with and is treated in Chapter 21.

If the functions ϕi are convex and Ω is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ϕi are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Ax ≤ b, for some
m× n matrix A and some vector b ∈ Rm. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers . In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush–Kuhn–Tucker conditions. This will be discussed in
Chapter 31.

In Chapter 22 we discuss Newton’s method and some of its generalizations (the Newton–
Kantorovich theorem). These are methods to find the zeros of a function.

Chapter 23 covers the special case of determining when a quadratic function has a mini-
mum, subject to affine equality constraints. A complete answer is provided in terms of the
notion of symmetric positive semidefinite matrices.

The Schur complement is introduced in Chapter 24. We give a complete proof of a
criterion for a matrix to be positive definite (or positive semidefinite) stated in Boyd and
Vandenberghe [22] (Appendix B).

Part III deals with the special case where the objective function is a linear form and the
constraints are affine inequality and equality constraints. This subject is known as linear
programming, and the next four chapters give an introduction to the subject. Although
linear programming has been supplanted by convex programming and its variants, it is still
a great workhorse. It is also a great warm up for the general treatment of Lagrangian duality.
We pay particular attention to versions of Farkas’ lemma, which is at the heart of duality in
linear programming.

Part IV is devoted to nonlinear optimization, which is the case where the objective
function J is not linear and the constaints are inequality constraints. Since it is practically
impossible to say anything interesting if the constraints are not convex, we quickly consider
the convex case.
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In optimization theory one often deals with function spaces of infinite dimension. Typ-
ically, these spaces either are Hilbert spaces or can be completed as Hilbert spaces. Thus
it is important to have some minimum knowledge about Hilbert spaces, and we feel that
this minimum knowledge includes the projection lemma, the fact that a closed subset has
an orthogonal complement, the Riesz representation theorem, and a version of the Farkas–
Minkowski lemma. Chapter 29 covers these topics. A more detailed introduction to Hilbert
spaces is given in Appendix A.

Chapter 30 is devoted to some general results of optimization theory. A main theme is
to find sufficient conditions that ensure that an objective function has a minimum which
is achieved. We define the notion of a coercive function. The most general result is The-
orem 30.2, which applies to a coercive convex function on a convex subset of a separable
Hilbert space. In the special case of a coercive quadratic functional, we obtain the Lions–
Stampacchia theorem (Theorem 30.5), and the Lax–Milgram theorem (Theorem 30.6). We
define elliptic functionals, which generalize quadratic functions defined by symmetric posi-
tive definite matrices. We define gradient descent methods, and discuss their convergence.
We also present the method of conjugate gradients and prove its correctness. We briefly
discuss the method of gradient projection and the penalty method in the case of constrained
optima.

Chapter 31 contains the most important results of nonlinear optimization theory. We
begin by defining the cone of feasible directions and then state a necessary condition for a
function to have local minimum on a set U that is not necessarily convex in terms of the
cone of feasible directions. The cone of feasible directions is not always convex, but it is if
the constraints are inequality constraints. An inequality constraint ϕ(u) ≤ 0 is said to be
active is ϕ(u) = 0. One can also define the notion of qualified constraint . Theorem 31.5
gives necessary conditions for a function J to have a minimum on a subset U defined by
qualified inequality constraints in terms of the Karush–Kuhn–Tucker conditions (for short
KKT conditions), which involve nonnegative Lagrange multipliers. The proof relies on a
version of the Farkas–Minkowski lemma. Some of the KTT conditions assert that λiϕi(u) =
0, where λi ≥ 0 is the Lagrange multiplier associated with the constraint ϕi ≤ 0. To some
extent, this implies that active constaints are more important than inactive constraints,
since if ϕi(u) < 0 is an inactive constraint, then λi = 0. In general, the KKT conditions
are useless unlesss the constraints are convex. In this case, there is a manageable notion of
qualified constraint given by Slater’s conditions. Theorem 31.6 gives necessary conditions
for a function J to have a minimum on a subset U defined by convex inequality constraints
in terms of the Karush–Kuhn–Tucker conditions. Furthermore, if J is also convex and if the
KKT conditions hold, then J has a global minimum.

We illustrate the KKT conditions on an interesting example, the so-called hard margin
support vector machine; see Sections 31.3 and 31.4. The problem is a classification problem,
or more accurately a separation problem. Suppose we have two nonempty disjoint finite sets
of p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn. Our goal is to find a hyperplane H

of equation w>x − b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R), such that all the
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blue points ui are in one of the two open half-spaces determined by H, and all the red points
vj are in the other open half-space determined by H.

If the two sets are indeed separable, then in general there are infinitely many hyperplanes
separating them. Vapnik had the idea to find a hyperplane that maximizes the smallest
distance between the points and the hyperplane. Such a hyperplane is indeed unique and
is called a maximal hard margin hyperplane, or hard margin support vector machine. The
support vectors are those for which the constraints are active.

Section 31.5 contains the most important results of the chapter. The notion of Lagrangian
duality is presented. Given a primal optimization problem (P ) consisting in minimizing an
objective function J(v) with respect to some inequality constraints ϕi(v) ≤ 0, i = 1, . . . ,m,
we define the dual function G(µ) as the result of minimizing the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v)

with respect to v, with µ ∈ Rm
+ . The dual program (D) is then to maximize G(µ) with

respect to µ ∈ Rm
+ . It turns out that G is a concave function, and the dual program is an

unconstrained maximization. This is actually a misleading statement because G is generally
a partial function, so maximizing G(µ) is equivalent to a constrained maximization problem
in which the constraints specify the domain of G, but in many cases, we obtain a dual
program simpler than the primal program. If d∗ is the optimal value of the dual program
and if p∗ is the optimal value of the primal program, we always have

d∗ ≤ p∗,

which is known as weak duality . Under certain conditions, d∗ = p∗, that is, the duality gap
is zero, in which case we say that strong duality holds. Also, under certain conditions, a
solution of the dual yields a solution of the primal, and if the primal has an optimal solution,
then the dual has an optimal solution, but beware that the converse is generally false (see
Theorem 31.14). We also show how to deal with equality constraints, and discuss the use of
conjugate functions to find the dual function. Our coverage of Lagrangian duality is quite
thorough, but we do not discuss more general orderings such as the semidefinite ordering.
For these topics which belong to convex optimization, the reader is referred to Boyd and
Vandenberghe [22].

The next three chapters constitute Part V, which covers some applications of optimization
theory (in particular Lagrangian duality) to machine learning.

In Chapter 32, we discuss linear regression. This problem can be cast as a learning
problem. We observe a sequence of pairs ((x1, y1), . . . , (xm, ym)) called a set of training
data, where xi ∈ Rn and yi ∈ R, viewed as input-output pairs of some unknown function f
that we are trying to infer. The simplest kind of function is a linear function f(x) = x>w,
where w ∈ Rn is a vector of coefficients usually called a weight vector . Since the problem
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is overdetermined and since our observations may be subject to errors, we can’t solve for w
exactly as the solution of the system Xw = y, so instead we solve the least-squares problem
of minimizing ‖Xw − y‖2

2. In general, there are still infinitely many solutions so we add a
regularizing term. If we add the term K ‖w‖2

2 to the objective function J(w) = ‖Xw − y‖2
2,

then we have ridge regression. This problem is discussed in Section 32.1.

We derive the dual program. The dual has a unique solution which yields a solution of the
primal. However, the solution of the dual is given in terms of the matrix XX> (whereas the
solution of the primal is given in terms of X>X), and since our data points xi are represented
by the rows of the matrix X, we see that this solution only involves inner products of the
xi. This observation is the core of the idea of kernel functions, which we introduce. We also
explain how to solve the problem of learning an affine function f(x) = x>w + b.

In general, the vectors w produced by ridge regression have few zero entries. In practice, it
is highly desirable to obtain sparse solutions, that is, vectors w with many components equal
to zero. This can be achieved by replacing the regularizing term K ‖w‖2

2 by the regularizing
term K ‖w‖1; see Section 32.2. This method has the exotic name of lasso regression. This
time, there is no closed-form solution, but this is a convex optimization problem and there
are efficient iterative methods to solve it, although we do not discuss such methods here.

Chapter 33 is an introduction to positive definite kernels and the use of kernel functions
in machine learning.

Let X be a nonempty set. If the set X represents a set of highly nonlinear data, it
may be advantageous to map X into a space F of much higher dimension called the feature
space, using a function ϕ : X → F called a feature map. This idea is that ϕ “unwinds” the
description of the objects in F in an attempt to make it linear. The space F is usually a
vector space equipped with an inner product 〈−,−〉. If F is infinite dimensional, then we
assume that it is a Hilbert space.

Many algorithms that analyze or classify data make use of the inner products 〈ϕ(x), ϕ(y)〉,
where x, y ∈ X. These algorithms make use of the function κ : X ×X → C given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X,

called a kernel function.

The kernel trick is to pretend that we have a feature embedding ϕ : X → F (actuallly
unknown), but to only use inner products 〈ϕ(x), ϕ(y)〉 that can be evaluated using the
original data through the known kernel function κ. It turns out that the functions of the
form κ as above can be defined in terms of a condition which is reminiscent of positive
semidefinite matrices (see Definition 33.2). Furthermore, every function satisfying Definition
33.2 arises from a suitable feature map into a Hilbert space; see Theorem 33.8.

We illustrate the kernel methods on two examples: (1) kernel PCA (see Section 33.3),
and (2) ν-SV Regression, which is a variant of linear regression in which certain points are
allowed to be “misclassified” (see Section 33.4).
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In Chapter 34 we return to the problem of separating two disjoint sets of points, {ui}pi=1

and {vj}qj=1, but this time we do not assume that these two sets are separable. To cope with
nonseparability, we allow points to invade the safety zone around the separating hyperplane,
and even points on the wrong side of the hyperplane. Such a mehod is called soft margin
support vector machine. We discuss variations of this method, including ν-SV classification.
In each case, we present a careful derivation of the dual.

Except for a few exceptions we provide complete proofs. We did so to make this book
self-contained, but also because we believe that no deep knowledge of this material can be
acquired without working out some proofs. However, our advice is to skip some of the proofs
upon first reading, especially if they are long and intricate.
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Chapter 2

Vector Spaces, Bases, Linear Maps

2.1 Motivations: Linear Combinations, Linear Inde-

pendence and Rank

In linear optimization problems, we encounter systems of linear equations. For example,
consider the problem of solving the following system of three linear equations in the three
variables x1, x2, x3 ∈ R:

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3.

One way to approach this problem is introduce the “vectors” u, v, w, and b, given by

u =

1
2
1

 v =

 2
1
−2

 w =

−1
1
−2

 b =

1
2
3


and to write our linear system as

x1u+ x2v + x3w = b.

In the above equation, we used implicitly the fact that a vector z can be multiplied by a
scalar λ ∈ R, where

λz = λ

z1

z2

z3

 =

λz1

λz2

λz3

 ,

and two vectors y and and z can be added, where

y + z =

y1

y2

y3

+

z1

z2

z3

 =

y1 + z1

y2 + z2

y3 + z3

 .
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The set of all vectors with three components is denoted by R3×1. The reason for using
the notation R3×1 rather than the more conventional notation R3 is that the elements of
R3×1 are column vectors ; they consist of three rows and a single column, which explains the
superscript 3 × 1. On the other hand, R3 = R × R × R consists of all triples of the form
(x1, x2, x3), with x1, x2, x3 ∈ R, and these are row vectors . However, there is an obvious
bijection between R3×1 and R3 and they are usually identifed. For the sake of clarity, in this
introduction, we will denote the set of column vectors with n components by Rn×1.

An expression such as
x1u+ x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is called a linear combination. Using
this notion, the problem of solving our linear system

x1u+ x2v + x3w = b.

is equivalent to determining whether b can be expressed as a linear combination of u, v, w.

Now, if the vectors u, v, w are linearly independent , which means that there is no triple
(x1, x2, x3) 6= (0, 0, 0) such that

x1u+ x2v + x3w = 03,

it can be shown that every vector in R3×1 can be written as a linear combination of u, v, w.
Here, 03 is the zero vector

03 =

0
0
0

 .

It is customary to abuse notation and to write 0 instead of 03. This rarely causes a problem
because in most cases, whether 0 denotes the scalar zero or the zero vector can be inferred
from the context.

In fact, every vector z ∈ R3×1 can be written in a unique way as a linear combination

z = x1u+ x2v + x3w.

This is because if
z = x1u+ x2v + x3w = y1u+ y2v + y3w,

then by using our (linear!) operations on vectors, we get

(y1 − x1)u+ (y2 − x2)v + (y3 − x3)w = 0,

which implies that
y1 − x1 = y2 − x2 = y3 − x3 = 0,

by linear independence. Thus,

y1 = x1, y2 = x2, y3 = x3,
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which shows that z has a unique expression as a linear combination, as claimed. Then, our
equation

x1u+ x2v + x3w = b

has a unique solution, and indeed, we can check that

x1 = 1.4

x2 = −0.4

x3 = −0.4

is the solution.

But then, how do we determine that some vectors are linearly independent?

One answer is to compute the determinant det(u, v, w), and to check that it is nonzero.
In our case,

det(u, v, w) =

∣∣∣∣∣∣
1 2 −1
2 1 1
1 −2 −2

∣∣∣∣∣∣ = 15,

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition or a QR-decomposition, or an
SVD of the matrix consisting of the three columns u, v, w,

A =
(
u v w

)
=

1 2 −1
2 1 1
1 −2 −2

 .

If we form the vector of unknowns

x =

x1

x2

x3

 ,

then our linear combination x1u+ x2v + x3w can be written in matrix form as

x1u+ x2v + x3w =

1 2 −1
2 1 1
1 −2 −2

x1

x2

x3

 ,

so our linear system is expressed by1 2 −1
2 1 1
1 −2 −2

x1

x2

x3

 =

1
2
3

 ,

or more concisely as
Ax = b.
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Now, what if the vectors u, v, w are linearly dependent? For example, if we consider the
vectors

u =

1
2
1

 v =

 2
1
−1

 w =

−1
1
2

 ,

we see that
u− v = w,

a nontrivial linear dependence. It can be verified that u and v are still linearly independent.
Now, for our problem

x1u+ x2v + x3w = b

to have a solution, it must be the case that b can be expressed as linear combination of u and
v. However, it turns out that u, v, b are linearly independent (because det(u, v, b) = −6),
so b cannot be expressed as a linear combination of u and v and thus, our system has no
solution.

If we change the vector b to

b =

3
3
0

 ,

then
b = u+ v,

and so the system
x1u+ x2v + x3w = b

has the solution
x1 = 1, x2 = 1, x3 = 0.

Actually, since w = u− v, the above system is equivalent to

(x1 + x3)u+ (x2 − x3)v = b,

and because u and v are linearly independent, the unique solution in x1 + x3 and x2 − x3 is

x1 + x3 = 1

x2 − x3 = 1,

which yields an infinite number of solutions parameterized by x3, namely

x1 = 1− x3

x2 = 1 + x3.

In summary, a 3× 3 linear system may have a unique solution, no solution, or an infinite
number of solutions, depending on the linear independence (and dependence) or the vectors
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u, v, w, b. This situation can be generalized to any n × n system, and even to any n × m
system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Ax = b stresses
the fact that the map x 7→ Ax is a linear transformation. This means that

A(λx) = λ(Ax)

for all x ∈ R3×1 and all λ ∈ R and that

A(u+ v) = Au+ Av,

for all u, v ∈ R3×1. We can view the matrix A as a way of expressing a linear map from R3×1

to R3×1 and solving the system Ax = b amounts to determining whether b belongs to the
image of this linear map.

Yet another fruitful way of interpreting the resolution of the system Ax = b is to view
this problem as an intersection problem. Indeed, each of the equations

x1 + 2x2 − x3 = 1

2x1 + x2 + x3 = 2

x1 − 2x2 − 2x3 = 3

defines a subset of R3 which is actually a plane. The first equation

x1 + 2x2 − x3 = 1

defines the plane H1 passing through the three points (1, 0, 0), (0, 1/2, 0), (0, 0,−1), on the
coordinate axes, the second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points (1, 0, 0), (0, 2, 0), (0, 0, 2), on the coor-
dinate axes, and the third equation

x1 − 2x2 − 2x3 = 3

defines the plane H3 passing through the three points (3, 0, 0), (0,−3/2, 0), (0, 0,−3/2), on
the coordinate axes. The intersection Hi ∩ Hj of any two distinct planes Hi and Hj is
a line, and the intersection H1 ∩ H2 ∩ H3 of the three planes consists of the single point
(1.4,−0.4,−0.4). Under this interpretation, observe that we are focusing on the rows of the
matrix A, rather than on its columns , as in the previous interpretations.

Another great example of a real-world problem where linear algebra proves to be very
effective is the problem of data compression, that is, of representing a very large data set
using a much smaller amount of storage.
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Typically the data set is represented as an m× n matrix A where each row corresponds
to an n-dimensional data point and typically, m ≥ n. In most applications, the data are not
independent so the rank of A is a lot smaller than min{m,n}, and the the goal of low-rank
decomposition is to factor A as the product of two matrices B and C, where B is a m × k
matrix and C is a k×n matrix, with k � min{m,n} (here,� means “much smaller than”):

A
m× n


=


B

m× k


 C

k × n



Now, it is generally too costly to find an exact factorization as above, so we look for a
low-rank matrix A′ which is a “good” approximation of A. In order to make this statement
precise, we need to define a mechanism to determine how close two matrices are. This can
be done using matrix norms , a notion discussed in Chapter 7. The norm of a matrix A is a
nonnegative real number ‖A‖ which behaves a lot like the absolute value |x| of a real number
x. Then, our goal is to find some low-rank matrix A′ that minimizes the norm

‖A− A′‖2
,

over all matrices A′ of rank at most k, for some given k � min{m,n}.
Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely, k(m + n) instead of mn. Thus
less storage and fewer operations are needed to reconstruct A.

2. Often, the process for obtaining the decomposition exposes the underlying structure of
the data. Thus, it may turn out that “most” of the significant data are concentrated
along some directions called principal directions .

Low-rank decompositions of a set of data have a multitude of applications in engineering,
including computer science (especially computer vision), statistics, and machine learning.
As we will see later in Chapter 17, the singular value decomposition (SVD) provides a very
satisfactory solution to the low-rank approximation problem. Still, in many cases, the data
sets are so large that another ingredient is needed: randomization. However, as a first step,
linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed on vectors. In
the early 1900, the notion of a vector space emerged as a convenient and unifying framework
for working with “linear” objects and we will discuss this notion in the next few sections.
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2.2 Vector Spaces

A (real) vector space is a set E together with two operations, +: E×E → E and · : R×E →
E, called addition and scalar multiplication, that satisfy some simple properties. First of all,
E under addition has to be a commutative (or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just algebraic
objects; they are also geometric objects.

Definition 2.1. A group is a set G equipped with a binary operation · : G × G → G that
associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following
properties: · is associative, has an identity element e ∈ G, and every element in G is invertible
(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).

A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

A set M together with an operation · : M ×M → M and an element e satisfying only
conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n, . . .} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .} of integers is a group under addition,
with identity element 0. However, Z∗ = Z− {0} is not a group under multiplication.

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q 6= 0) is a group
under addition, with identity element 0. The set Q∗ = Q− {0} is also a group under
multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of complex numbers are groups under
addition (with identity element 0), and R∗ = R − {0} and C∗ = C − {0} are groups
under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are abelian.
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5. Given any nonempty set S, the set of bijections f : S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n× n matrices with real (or complex) coefficients is a group under addition
of matrices, with identity element the null matrix. It is denoted by Mn(R) (or Mn(C)).

7. The set R[X] of all polynomials in one variable X with real coefficients,

P (X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0,

(with ai ∈ R), is a group under addition of polynomials.

8. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
In. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

10. The set of n× n invertible matrices with real coefficients such that RR> = R>R = In
and of determinant +1 is a group called the special orthogonal group and is usually
denoted by SO(n) (where R> is the transpose of the matrix R, i.e., the rows of R> are
the columns of R). It corresponds to the rotations in Rn.

11. Given an open interval (a, b), the set C(a, b) of continuous functions f : (a, b)→ R is a
group under the operation f + g defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈ (a, b).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a−1 of an element a ∈ G is denoted by −a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation · : M ×M → M is associative and if e′ ∈ M is a left identity
and e′′ ∈M is a right identity, which means that

e′ · a = a for all a ∈M (G2l)

and
a · e′′ = a for all a ∈M, (G2r)

then e′ = e′′.
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Proof. If we let a = e′′ in equation (G2l), we get

e′ · e′′ = e′′,

and if we let a = e′ in equation (G2r), we get

e′ · e′′ = e′,

and thus
e′ = e′ · e′′ = e′′,

as claimed.

Fact 1 implies that the identity element of a monoid is unique, and since every group is
a monoid, the identity element of a group is unique. Furthermore, every element in a group
has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a ∈M has some left inverse
a′ ∈M and some right inverse a′′ ∈M , which means that

a′ · a = e (G3l)

and
a · a′′ = e, (G3r)

then a′ = a′′.

Proof. Using (G3l) and the fact that e is an identity element, we have

(a′ · a) · a′′ = e · a′′ = a′′.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a′ · (a · a′′) = a′ · e = a′.

However, since M is monoid, the operation · is associative, so

a′ = a′ · (a · a′′) = (a′ · a) · a′′ = a′′,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Vector spaces are defined as follows.
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Definition 2.2. A real vector space is a set E (of vectors) together with two operations
+: E × E → E (called vector addition)1 and · : R × E → E (called scalar multiplication)
satisfying the following conditions for all α, β ∈ R and all u, v ∈ E;

(V0) E is an abelian group w.r.t. +, with identity element 0;2

(V1) α · (u+ v) = (α · u) + (α · v);

(V2) (α + β) · u = (α · u) + (β · u);

(V3) (α ∗ β) · u = α · (β · u);

(V4) 1 · u = u.

In (V3), ∗ denotes multiplication in R.

Given α ∈ R and v ∈ E, the element α · v is also denoted by αv. The field R is often
called the field of scalars.

In Definition 2.2, the field R may be replaced by the field of complex numbers C, in
which case we have a complex vector space. It is even possible to replace R by the field of
rational numbers Q or by any other field K (for example Z/pZ, where p is a prime number),
in which case we have a K-vector space (in (V3), ∗ denotes multiplication in the field K).
In most cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector 0, and thus is nonempty.
From (V1), we get α · 0 = 0, and α · (−v) = −(α · v). From (V2), we get 0 · v = 0, and
(−α) · v = −(α · v).

Another important consequence of the axioms is the following fact: For any u ∈ E and
any λ ∈ R, if λ 6= 0 and λ · u = 0, then u = 0.

Indeed, since λ 6= 0, it has a multiplicative inverse λ−1, so from λ · u = 0, we get

λ−1 · (λ · u) = λ−1 · 0.
However, we just observed that λ−1 · 0 = 0, and from (V3) and (V4), we have

λ−1 · (λ · u) = (λ−1λ) · u = 1 · u = u,

and we deduce that u = 0.

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from
the other axioms? The answer is no. For example, one can take E = Rn and define
· : R× Rn → Rn by

λ · (x1, . . . , xn) = (0, . . . , 0)

1The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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for all (x1, . . . , xn) ∈ Rn and all λ ∈ R. Axioms (V0)–(V3) are all satisfied, but (V4) fails.
Less trivial examples can be given using the notion of a basis, which has not been defined
yet.

The field R itself can be viewed as a vector space over itself, addition of vectors being
addition in the field, and multiplication by a scalar being multiplication in the field.

Example 2.2.

1. The fields R and C are vector spaces over R.

2. The groups Rn and Cn are vector spaces over R, with salar multiplication given by

λ(x1, . . . , xn) = (λx1, . . . , λxn),

for any λ ∈ R and with (x1, . . . , xn) ∈ Rn or (x1, . . . , xn) ∈ Cn, and Cn is a vector
space over C with scalar multiplication as above, but with λ ∈ C.

3. The ring R[X]n of polynomials of degree at most n with real coefficients is a vector
space over R, and the ring C[X]n of polynomials of degree at most n with complex
coefficients is a vector space over C, with scalar multiplication λ ·P (X) of a polynomial

P (X) = amX
m + am−1X

m−1 + · · ·+ a1X + a0

(with ai ∈ R or ai ∈ C) by the scalar λ (in R or C), with m ≤ n, given by

λ · P (X) = λamX
m + λam−1X

m−1 + · · ·+ λa1X + λa0.

4. The ring R[X] of all polynomials with real coefficients is a vector space over R, and the
ring C[X] of all polynomials with complex coefficients is a vector space over C, with
the same scalar multiplication as above.

5. The ring of n× n matrices Mn(R) is a vector space over R.

6. The ring of m× n matrices Mm,n(R) is a vector space over R.

7. The ring C(a, b) of continuous functions f : (a, b) → R is a vector space over R, with
the scalar multiplication λf of a function f : (a, b)→ R by a scalar λ ∈ R given by

(λf)(x) = λf(x), for all x ∈ (a, b).

Let E be a vector space. We would like to define the important notions of linear combi-
nation and linear independence.

Before defining these notions, we need to discuss a strategic choice which, depending
how it is settled, may reduce or increase headackes in dealing with notions such as linear
combinations and linear dependence (or independence). The issue has to do with using sets
of vectors versus sequences of vectors.
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2.3 Indexed Families; the Sum Notation
∑

i∈I ai

Our experience tells us that it is preferable to use sequences of vectors ; even better, indexed
families of vectors. (We are not alone in having opted for sequences over sets, and we are in
good company; for example, Artin [6], Axler [8], and Lang [63] use sequences. Nevertheless,
some prominent authors such as Lax [67] use sets. We leave it to the reader to conduct a
survey on this issue.)

Given a set A, recall that a sequence is an ordered n-tuple (a1, . . . , an) ∈ An of elements
from A, for some natural number n. The elements of a sequence need not be distinct and
the order is important. For example, (a1, a2, a1) and (a2, a1, a1) are two distinct sequences
in A3. Their underlying set is {a1, a2}.

What we just defined are finite sequences, which can also be viewed as functions from
{1, 2, . . . , n} to the set A; the ith element of the sequence (a1, . . . , an) is the image of i under
the function. This viewpoint is fruitful, because it allows us to define (countably) infinite
sequences as functions s : N → A. But then, why limit ourselves to ordered sets such as
{1, . . . , n} or N as index sets?

The main role of the index set is to tag each element uniquely, and the order of the
tags is not crucial, although convenient. Thus, it is natural to define an I-indexed family of
elements of A, for short a family , as a function a : I → A where I is any set viewed as an
index set. Since the function a is determined by its graph

{(i, a(i)) | i ∈ I},

the family a can be viewed as the set of pairs a = {(i, a(i)) | i ∈ I}. For notational
simplicity, we write ai instead of a(i), and denote the family a = {(i, a(i)) | i ∈ I} by (ai)i∈I .
For example, if I = {r, g, b, y} and A = N, the set of pairs

a = {(r, 2), (g, 3), (b, 2), (y, 11)}

is an indexed family. The element 2 appears twice in the family with the two distinct tags
r and b.

When the indexed set I is totally ordered, a family (ai)i∈I often called an I-sequence.
Interestingly, sets can be viewed as special cases of families. Indeed, a set A can be viewed
as the A-indexed family {(a, a) | a ∈ I} corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given any set A, a
multiset is a similar to a set, except that elements of A may occur more than once. For
example, if A = {a, b, c, d}, then {a, a, a, b, c, c, d, d} is a multiset. Each element appears
with a certain multiplicity, but the order of the elements does not matter. For example, a
has multiplicity 3. Formally, a multiset is a function s : A→ N, or equivalently a set of pairs
{(a, i) | a ∈ A}. Thus, a multiset is an A-indexed family of elements from N, but not a
N-indexed family, since distinct elements may have the same multiplicity (such as c an d in
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the example above). An indexed family is a generalization of a sequence, but a multiset is a
generalization of a set.

We also need to take care of an annoying technicality, which is to define sums of the
form

∑
i∈I ai, where I is any finite index set and (ai)i∈I is a family of elements in some set

A equiped with a binary operation +: A × A → A which is associative (axiom (G1)) and
commutative. This will come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute a1 + a2 for two
elements of A, but it does not tell us what is the sum of three of more elements. For example,
how should a1 + a2 + a3 be defined?

What we have to do is to define a1+a2+a3 by using a sequence of steps each involving two
elements, and there are two possible ways to do this: a1 + (a2 +a3) and (a1 +a2) +a3. If our
operation + is not associative, these are different values. If it associative, then a1+(a2+a3) =
(a1 + a2) + a3, but then there are still six possible permutations of the indices 1, 2, 3, and if
+ is not commutative, these values are generally different. If our operation is commutative,
then all six permutations have the same value. Thus, if + is associative and commutative,
it seems intuitively clear that a sum of the form

∑
i∈I ai does not depend on the order of the

operations used to compute it.

This is indeed the case, but a rigorous proof requires induction, and such a proof is
surprisingly involved. Readers may accept without proof the fact that sums of the form∑

i∈I ai are indeed well defined, and jump directly to Definition 2.3. For those who want to
see the gory details, here we go.

First, we define sums
∑

i∈I ai, where I is a finite sequence of distinct natural numbers,
say I = (i1, . . . , im). If I = (i1, . . . , im) with m ≥ 2, we denote the sequence (i2, . . . , im) by
I − {i1}. We proceed by induction on the size m of I. Let∑

i∈I
ai = ai1 , if m = 1,

∑
i∈I

ai = ai1 +

( ∑
i∈I−{i1}

ai

)
, if m > 1.

For example, if I = (1, 2, 3, 4), we have∑
i∈I

ai = a1 + (a2 + (a3 + a4)).

If the operation + is not associative, the grouping of the terms matters. For instance, in
general

a1 + (a2 + (a3 + a4)) 6= (a1 + a2) + (a3 + a4).

However, if the operation + is associative, the sum
∑

i∈I ai should not depend on the grouping
of the elements in I, as long as their order is preserved. For example, if I = (1, 2, 3, 4, 5),
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J1 = (1, 2), and J2 = (3, 4, 5), we expect that∑
i∈I

ai =

(∑
j∈J1

aj

)
+

(∑
j∈J2

aj

)
.

This indeed the case, as we have the following proposition.

Proposition 2.1. Given any nonempty set A equipped with an associative binary operation
+: A × A → A, for any nonempty finite sequence I of distinct natural numbers and for
any partition of I into p nonempty sequences Ik1 , . . . , Ikp, for some nonempty sequence K =
(k1, . . . , kp) of distinct natural numbers such that ki < kj implies that α < β for all α ∈ Iki
and all β ∈ Ikj , for every sequence (ai)i∈I of elements in A, we have∑

α∈I
aα =

∑
k∈K

(∑
α∈Ik

aα

)
.

Proof. We proceed by induction on the size n of I.

If n = 1, then we must have p = 1 and Ik1 = I, so the proposition holds trivially.

Next, assume n > 1. If p = 1, then Ik1 = I and the formula is trivial, so assume that
p ≥ 2 and write J = (k2, . . . , kp). There are two cases.

Case 1. The sequence Ik1 has a single element, say β, which is the first element of I.
In this case, write C for the sequence obtained from I by deleting its first element β. By
definition, ∑

α∈I
aα = aβ +

(∑
α∈C

aα

)
,

and ∑
k∈K

(∑
α∈Ik

aα

)
= aβ +

(∑
j∈J

(∑
α∈Ij

aα

))
.

Since |C| = n− 1, by the induction hypothesis, we have(∑
α∈C

aα

)
=
∑
j∈J

(∑
α∈Ij

aα

)
,

which yields our identity.

Case 2. The sequence Ik1 has at least two elements. In this case, let β be the first element
of I (and thus of Ik1), let I ′ be the sequence obtained from I by deleting its first element β,
let I ′k1 be the sequence obtained from Ik1 by deleting its first element β, and let I ′ki = Iki for
i = 2, . . . , p. Recall that J = (k2, . . . , kp) and K = (k1, . . . , kp). The sequence I ′ has n − 1
elements, so by the induction hypothesis applied to I ′ and the I ′ki , we get∑

α∈I′
aα =

∑
k∈K

(∑
α∈I′k

aα

)
=

(∑
α∈I′k1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

))
.
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If we add the lefthand side to aβ, by definition we get∑
α∈I

aα.

If we add the righthand side to aβ, using associativity and the definition of an indexed sum,
we get

aβ +

((∑
α∈I′k1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

)))
=

(
aβ +

(∑
α∈I′k1

aα

))
+

(∑
j∈J

(∑
α∈Ij

aα

))

=

(∑
α∈Ik1

aα

)
+

(∑
j∈J

(∑
α∈Ij

aα

))

=
∑
k∈K

(∑
α∈Ik

aα

)
,

as claimed.

If I = (1, . . . , n), we also write
∑n

i=1 ai instead of
∑

i∈I ai. Since + is associative, Propo-
sition 2.1 shows that the sum

∑n
i=1 ai is independent of the grouping of its elements, which

justifies the use the notation a1 + · · ·+ an (without any parentheses).

If we also assume that our associative binary operation on A is commutative, then we
can show that the sum

∑
i∈I ai does not depend on the ordering of the index set I.

Proposition 2.2. Given any nonempty set A equipped with an associative and commutative
binary operation +: A× A→ A, for any two nonempty finite sequences I and J of distinct
natural numbers such that J is a permutation of I (in other words, the unlerlying sets of I
and J are identical), for every sequence (ai)i∈I of elements in A, we have∑

α∈I
aα =

∑
α∈J

aα.

Proof. We proceed by induction on the number p of elements in I. If p = 1, we have I = J
and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1, . . . , p) and that J is a permutation
(i1, . . . , ip) of I. First, assume that 2 ≤ i1 ≤ p−1, let J ′ be the sequence obtained from J by
deleting i1, I ′ be the sequence obtained from I by deleting i1, and let P = (1, 2, . . . , i1−1) and
Q = (i1 + 1, . . . , p−1, p). Observe that the sequence I ′ is the concatenation of the sequences
P and Q. By the induction hypothesis applied to J ′ and I ′, and then by Proposition 2.1
applied to I ′ and its partition (P,Q), we have

∑
α∈J ′

aα =
∑
α∈I′

aα =

(i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

)
.
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If we add the lefthand side to ai1 , by definition we get∑
α∈J

aα.

If we add the righthand side to ai1 , we get

ai1 +

((i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

))
.

Using associativity, we get

ai1 +

((i1−1∑
i=1

ai

)
+

( p∑
i=i1+1

ai

))
=

(
ai1 +

(i1−1∑
i=1

ai

))
+

( p∑
i=i1+1

ai

)
,

then using associativity and commutativity several times (more rigorously, using induction
on i1 − 1), we get(

ai1 +

(i1−1∑
i=1

ai

))
+

( p∑
i=i1+1

ai

)
=

(i1−1∑
i=1

ai

)
+ ai1 +

( p∑
i=i1+1

ai

)

=

p∑
i=1

ai,

as claimed.

The cases where i1 = 1 or i1 = p are treated similarly, but in a simpler manner since
either P = () or Q = () (where () denotes the empty sequence).

Having done all this, we can now make sense of sums of the form
∑

i∈I ai, for any finite
indexed set I and any family a = (ai)i∈I of elements in A, where A is a set equipped with a
binary operation + which is associative and commutative.

Indeed, since I is finite, it is in bijection with the set {1, . . . , n} for some n ∈ N, and any
total ordering � on I corresponds to a permutation I� of {1, . . . , n} (where we identify a
permutation with its image). For any total ordering � on I, we define

∑
i∈I,� ai as∑

i∈I,�
ai =

∑
j∈I�

aj.

Then, for any other total ordering �′ on I, we have∑
i∈I,�′

ai =
∑
j∈I�′

aj,
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and since I� and I�′ are different permutations of {1, . . . , n}, by Proposition 2.2, we have∑
j∈I�

aj =
∑
j∈I�′

aj.

Therefore, the sum
∑

i∈I,� ai does not depend on the total ordering on I. We define the sum∑
i∈I ai as the common value

∑
i∈I,� ai for all total orderings � of I.

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that there possess bases. What this
means is that in every vector space, E, there is some set of vectors, {e1, . . . , en}, such that
every vector v ∈ E can be written as a linear combination,

v = λ1e1 + · · ·+ λnen,

of the ei, for some scalars, λ1, . . . , λn ∈ R. Furthermore, the n-tuple, (λ1, . . . , λn), as above
is unique.

This description is fine when E has a finite basis, {e1, . . . , en}, but this is not always the
case! For example, the vector space of real polynomials, R[X], does not have a finite basis
but instead it has an infinite basis, namely

1, X, X2, . . . , Xn, . . .

For simplicity, in this chapter, we will restrict our attention to vector spaces that have a
finite basis (we say that they are finite-dimensional).

Given a set A, recall that an I-indexed family (ai)i∈I of elements of A (for short, a family)
is a function a : I → A, or equivalently a set of pairs {(i, ai) | i ∈ I}. We agree that when
I = ∅, (ai)i∈I = ∅. A family (ai)i∈I is finite if I is finite.

Remark: When considering a family (ai)i∈I , there is no reason to assume that I is ordered.
The crucial point is that every element of the family is uniquely indexed by an element of
I. Thus, unless specified otherwise, we do not assume that the elements of an index set are
ordered.

Given two disjoint sets I and J , the union of two families (ui)i∈I and (vj)j∈J , denoted as
(ui)i∈I ∪ (vj)j∈J , is the family (wk)k∈(I∪J) defined such that wk = uk if k ∈ I, and wk = vk
if k ∈ J . Given a family (ui)i∈I and any element v, we denote by (ui)i∈I ∪k (v) the family
(wi)i∈I∪{k} defined such that, wi = ui if i ∈ I, and wk = v, where k is any index such that
k /∈ I. Given a family (ui)i∈I , a subfamily of (ui)i∈I is a family (uj)j∈J where J is any subset
of I.

In this chapter, unless specified otherwise, it is assumed that all families of scalars are
finite (i.e., their index set is finite).
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Definition 2.3. Let E be a vector space. A vector v ∈ E is a linear combination of a family
(ui)i∈I of elements of E iff there is a family (λi)i∈I of scalars in R such that

v =
∑
i∈I

λiui.

When I = ∅, we stipulate that v = 0. (By Proposition 2.2, sums of the form
∑

i∈I λiui are
well defined.) We say that a family (ui)i∈I is linearly independent iff for every family (λi)i∈I
of scalars in R, ∑

i∈I
λiui = 0 implies that λi = 0 for all i ∈ I.

Equivalently, a family (ui)i∈I is linearly dependent iff there is some family (λi)i∈I of scalars
in R such that ∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I.

We agree that when I = ∅, the family ∅ is linearly independent.

Observe that defining linear combinations for families of vectors rather than for sets of
vectors has the advantage that the vectors being combined need not be distinct. For example,
for I = {1, 2, 3} and the families (u, v, u) and (λ1, λ2, λ1), the linear combination∑

i∈I
λiui = λ1u+ λ2v + λ1u

makes sense. Using sets of vectors in the definition of a linear combination does not allow
such linear combinations; this is too restrictive.

Unravelling Definition 2.3, a family (ui)i∈I is linearly dependent iff either I consists of a
single element, say i, and ui = 0, or |I| ≥ 2 and some uj in the family can be expressed as
a linear combination of the other vectors in the family. Indeed, in the second case, there is
some family (λi)i∈I of scalars in R such that∑

i∈I
λiui = 0 and λj 6= 0 for some j ∈ I,

and since |I| ≥ 2, the set I − {j} is nonempty and we get

uj =
∑

i∈(I−{j})
−λ−1

j λiui.

Observe that one of the reasons for defining linear dependence for families of vectors
rather than for sets of vectors is that our definition allows multiple occurrences of a vector.
This is important because a matrix may contain identical columns, and we would like to say
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that these columns are linearly dependent. The definition of linear dependence for sets does
not allow us to do that.

The above also shows that a family (ui)i∈I is linearly independent iff either I = ∅, or I
consists of a single element i and ui 6= 0, or |I| ≥ 2 and no vector uj in the family can be
expressed as a linear combination of the other vectors in the family.

When I is nonempty, if the family (ui)i∈I is linearly independent, note that ui 6= 0 for
all i ∈ I. Otherwise, if ui = 0 for some i ∈ I, then we get a nontrivial linear dependence∑

i∈I λiui = 0 by picking any nonzero λi and letting λk = 0 for all k ∈ I with k 6= i, since
λi0 = 0. If |I| ≥ 2, we must also have ui 6= uj for all i, j ∈ I with i 6= j, since otherwise we
get a nontrivial linear dependence by picking λi = λ and λj = −λ for any nonzero λ, and
letting λk = 0 for all k ∈ I with k 6= i, j.

Thus, the definition of linear independence implies that a nontrivial linearly independent
family is actually a set. This explains why certain authors choose to define linear indepen-
dence for sets of vectors. The problem with this approach is that linear dependence, which
is the logical negation of linear independence, is then only defined for sets of vectors. How-
ever, as we pointed out earlier, it is really desirable to define linear dependence for families
allowing multiple occurrences of the same vector.

Example 2.3.

1. Any two distinct scalars λ, µ 6= 0 in R are linearly dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly independent.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are linearly indepen-
dent.

4. In R2, the vectors u = (1, 1), v = (0, 1) and w = (2, 3) are linearly dependent, since

w = 2u+ v.

When I is finite, we often assume that it is the set I = {1, 2, . . . , n}. In this case, we
denote the family (ui)i∈I as (u1, . . . , un).

The notion of a subspace of a vector space is defined as follows.

Definition 2.4. Given a vector space E, a subset F of E is a linear subspace (or subspace)
of E iff F is nonempty and λu+ µv ∈ F for all u, v ∈ F , and all λ, µ ∈ R.

It is easy to see that a subspace F of E is indeed a vector space, since the restriction
of +: E × E → E to F × F is indeed a function +: F × F → F , and the restriction of
· : R× E → E to R× F is indeed a function · : R× F → F .

It is also easy to see that any intersection of subspaces is a subspace.
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Since F is nonempty, if we pick any vector u ∈ F and if we let λ = µ = 0, then
λu + µu = 0u + 0u = 0, so every subspace contains the vector 0. For any nonempty finite
index set I, one can show by induction on the cardinality of I that if (ui)i∈I is any family of
vectors ui ∈ F and (λi)i∈I is any family of scalars, then

∑
i∈I λiui ∈ F .

The subspace {0} will be denoted by (0), or even 0 (with a mild abuse of notation).

Example 2.4.

1. In R2, the set of vectors u = (x, y) such that

x+ y = 0

is a subspace.

2. In R3, the set of vectors u = (x, y, z) such that

x+ y + z = 0

is a subspace.

3. For any n ≥ 0, the set of polynomials f(X) ∈ R[X] of degree at most n is a subspace
of R[X].

4. The set of upper triangular n×n matrices is a subspace of the space of n×n matrices.

Proposition 2.3. Given any vector space E, if S is any nonempty subset of E, then the
smallest subspace 〈S〉 (or Span(S)) of E containing S is the set of all (finite) linear combi-
nations of elements from S.

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace
of E, leaving as an exercise the verification that every subspace containing S also contains
Span(S).

First, Span(S) is nonempty since it contains S (which is nonempty). If u =
∑

i∈I λiui
and v =

∑
j∈J µjvj are any two linear combinations in Span(S), for any two scalars λ, µ ∈ R,

λu+ µv = λ
∑
i∈I

λiui + µ
∑
j∈J

µjvj

=
∑
i∈I

λλiui +
∑
j∈J

µµjvj

=
∑
i∈I−J

λλiui +
∑
i∈I∩J

(λλi + µµi)ui +
∑
j∈J−I

µµjvj,

which is a linear combination with index set I ∪ J , and thus λu + µv ∈ Span(S), which
proves that Span(S) is a subspace.
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One might wonder what happens if we add extra conditions to the coefficients involved
in forming linear combinations. Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are finite):

(1) Consider combinations
∑

i∈I λiui for which∑
i∈I

λi = 1.

These are called affine combinations . One should realize that every linear combination∑
i∈I λiui can be viewed as an affine combination. For example, if k is an index not

in I, if we let J = I ∪ {k}, uk = 0, and λk = 1−∑i∈I λi, then
∑

j∈J λjuj is an affine
combination and ∑

i∈I
λiui =

∑
j∈J

λjuj.

However, we get new spaces. For example, in R3, the set of all affine combinations of
the three vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the plane passing
through these three points. Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.

(2) Consider combinations
∑

i∈I λiui for which

λi ≥ 0, for all i ∈ I.

These are called positive (or conic) combinations . It turns out that positive combina-
tions of families of vectors are cones . They show up naturally in convex optimization.

(3) Consider combinations
∑

i∈I λiui for which we require (1) and (2), that is∑
i∈I

λi = 1, and λi ≥ 0 for all i ∈ I.

These are called convex combinations . Given any finite family of vectors, the set of all
convex combinations of these vectors is a convex polyhedron. Convex polyhedra play a
very important role in convex optimization.

2.5 Bases of a Vector Space

Given a vector space E, given a family (vi)i∈I , the subset V of E consisting of the null vector
0 and of all linear combinations of (vi)i∈I is easily seen to be a subspace of E. The family
(vi)i∈I is an economical way of representing the entire subspace V , but such a family would
be even nicer if it was not redundant. Subspaces having such an “efficient” generating family
(called a basis) play an important role, and motivate the following definition.
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Definition 2.5. Given a vector space E and a subspace V of E, a family (vi)i∈I of vectors
vi ∈ V spans V or generates V iff for every v ∈ V , there is some family (λi)i∈I of scalars in
R such that

v =
∑
i∈I

λivi.

We also say that the elements of (vi)i∈I are generators of V and that V is spanned by (vi)i∈I ,
or generated by (vi)i∈I . If a subspace V of E is generated by a finite family (vi)i∈I , we say
that V is finitely generated . A family (ui)i∈I that spans V and is linearly independent is
called a basis of V .

Example 2.5.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form a basis.

2. The vectors (1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 0, 0), (0, 0, 1,−1) form a basis of R4 known
as the Haar basis . This basis and its generalization to dimension 2n are crucial in
wavelet theory.

3. In the subspace of polynomials in R[X] of degree at most n, the polynomials 1, X,X2,
. . . , Xn form a basis.

4. The Bernstein polynomials

(
n
k

)
(1 − X)n−kXk for k = 0, . . . , n, also form a basis of

that space. These polynomials play a major role in the theory of spline curves .

The first key result of linear algebra that every vector space E has a basis. We begin
with a crucial lemma which formalizes the mechanism for building a basis incrementally.

Lemma 2.4. Given a linearly independent family (ui)i∈I of elements of a vector space E, if
v ∈ E is not a linear combination of (ui)i∈I , then the family (ui)i∈I ∪k (v) obtained by adding
v to the family (ui)i∈I is linearly independent (where k /∈ I).

Proof. Assume that µv+
∑

i∈I λiui = 0, for any family (λi)i∈I of scalars in R. If µ 6= 0, then
µ has an inverse (because R is a field), and thus we have v = −∑i∈I(µ

−1λi)ui, showing that
v is a linear combination of (ui)i∈I and contradicting the hypothesis. Thus, µ = 0. But then,
we have

∑
i∈I λiui = 0, and since the family (ui)i∈I is linearly independent, we have λi = 0

for all i ∈ I.

The next theorem holds in general, but the proof is more sophisticated for vector spaces
that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem
for finitely generated vector spaces.

Theorem 2.5. Given any finite family S = (ui)i∈I generating a vector space E and any
linearly independent subfamily L = (uj)j∈J of S (where J ⊆ I), there is a basis B of E such
that L ⊆ B ⊆ S.
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Proof. Consider the set of linearly independent families B such that L ⊆ B ⊆ S. Since this
set is nonempty and finite, it has some maximal element (that is, a subfamily B = (uh)h∈H
of S with H ⊆ I of maximum cardinality), say B = (uh)h∈H . We claim that B generates E.
Indeed, if B does not generate E, then there is some up ∈ S that is not a linear combination
of vectors in B (since S generates E), with p /∈ H. Then, by Lemma 2.4, the family
B′ = (uh)h∈H∪{p} is linearly independent, and since L ⊆ B ⊂ B′ ⊆ S, this contradicts the
maximality of B. Thus, B is a basis of E such that L ⊆ B ⊆ S.

Remark: Theorem 2.5 also holds for vector spaces that are not finitely generated. In this
case, the problem is to guarantee the existence of a maximal linearly independent family B
such that L ⊆ B ⊆ S. The existence of such a maximal family can be shown using Zorn’s
lemma. A situation where the full generality of Theorem 2.5 is needed is the case of the vector
space R over the field of coefficients Q. The numbers 1 and

√
2 are linearly independent

over Q, so according to Theorem 2.5, the linearly independent family L = (1,
√

2) can be
extended to a basis B of R. Since R is uncountable and Q is countable, such a basis must
be uncountable!

The notion of a basis can also be defined in terms of the notion of maximal linearly
independent family, and minimal generating family.

Definition 2.6. Let (vi)i∈I be a family of vectors in a vector space E. We say that (vi)i∈I a
maximal linearly independent family of E if it is linearly independent, and if for any vector
w ∈ E, the family (vi)i∈I ∪k {w} obtained by adding w to the family (vi)i∈I is linearly
dependent. We say that (vi)i∈I a minimal generating family of E if it spans E, and if for
any index p ∈ I, the family (vi)i∈I−{p} obtained by removing vp from the family (vi)i∈I does
not span E.

The following proposition giving useful properties characterizing a basis is an immediate
consequence of Lemma 2.4.

Proposition 2.6. Given a vector space E, for any family B = (vi)i∈I of vectors of E, the
following properties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

Proof. Assume (1). Since B is a basis, it is a linearly independent family. We claim that
B is a maximal linearly independent family. If B is not a maximal linearly independent
family, then there is some vector w ∈ E such that the family B′ obtained by adding w to B
is linearly independent. However, since B is a basis of E, the vector w can be expressed as
a linear combination of vectors in B, contradicting the fact that B′ is linearly independent.
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Conversely, assume (2). We claim that B spans E. If B does not span E, then there is
some vector w ∈ E which is not a linear combination of vectors in B. By Lemma 2.4, the
family B′ obtained by adding w to B is linearly independent. Since B is a proper subfamily
of B′, this contradicts the assumption that B is a maximal linearly independent family.
Therefore, B must span E, and since B is also linearly independent, it is a basis of E.

Again, assume (1). Since B is a basis, it is a generating family of E. We claim that
B is a minimal generating family. If B is not a minimal generating family, then there is a
proper subfamily B′ of B that spans E. Then, every w ∈ B−B′ can be expressed as a linear
combination of vectors from B′, contradicting the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B is not linearly
independent, then some vector w ∈ B can be expressed as a linear combination of vectors
in B′ = B − {w}. Since B generates E, the family B′ also generates E, but B′ is a
proper subfamily of B, contradicting the minimality of B. Since B spans E and is linearly
independent, it is a basis of E.

The second key result of linear algebra that for any two bases (ui)i∈I and (vj)j∈J of a
vector space E, the index sets I and J have the same cardinality. In particular, if E has a
finite basis of n elements, every basis of E has n elements, and the integer n is called the
dimension of the vector space E.

To prove the second key result, we can use the following replacement lemma due to
Steinitz. This result shows the relationship between finite linearly independent families and
finite families of generators of a vector space. We begin with a version of the lemma which is
a bit informal, but easier to understand than the precise and more formal formulation given
in Proposition 2.8. The technical difficulty has to do with the fact that some of the indices
need to be renamed.

Proposition 2.7. (Replacement lemma, version 1) Given a vector space E, let (u1, . . . , um)
be any finite linearly independent family in E, and let (v1, . . . , vn) be any finite family such
that every ui is a linear combination of (v1, . . . , vn). Then, we must have m ≤ n, and there
is a replacement of m of the vectors vj by (u1, . . . , um), such that after renaming some of the
indices of the vjs, the families (u1, . . . , um, vm+1, . . . , vn) and (v1, . . . , vn) generate the same
subspace of E.

Proof. We proceed by induction on m. When m = 0, the family (u1, . . . , um) is empty, and
the proposition holds trivially. For the induction step, we have a linearly independent family
(u1, . . . , um, um+1). Consider the linearly independent family (u1, . . . , um). By the induction
hypothesis, m ≤ n, and there is a replacement of m of the vectors vj by (u1, . . . , um), such
that after renaming some of the indices of the vs, the families (u1, . . . , um, vm+1, . . . , vn) and
(v1, . . . , vn) generate the same subspace of E. The vector um+1 can also be expressed as a lin-
ear combination of (v1, . . . , vn), and since (u1, . . . , um, vm+1, . . . , vn) and (v1, . . . , vn) generate
the same subspace, um+1 can be expressed as a linear combination of (u1, . . . , um, vm+1, . . .,
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vn), say

um+1 =
m∑
i=1

λiui +
n∑

j=m+1

λjvj.

We claim that λj 6= 0 for some j with m+ 1 ≤ j ≤ n, which implies that m+ 1 ≤ n.

Otherwise, we would have

um+1 =
m∑
i=1

λiui,

a nontrivial linear dependence of the ui, which is impossible since (u1, . . . , um+1) are linearly
independent.

Therefore m + 1 ≤ n, and after renaming indices if necessary, we may assume that
λm+1 6= 0, so we get

vm+1 = −
m∑
i=1

(λ−1
m+1λi)ui − λ−1

m+1um+1 −
n∑

j=m+2

(λ−1
m+1λj)vj.

Observe that the families (u1, . . . , um, vm+1, . . . , vn) and (u1, . . . , um+1, vm+2, . . . , vn) generate
the same subspace, since um+1 is a linear combination of (u1, . . . , um, vm+1, . . . , vn) and vm+1

is a linear combination of (u1, . . . , um+1, vm+2, . . . , vn). Since (u1, . . . , um, vm+1, . . . , vn) and
(v1, . . . , vn) generate the same subspace, we conclude that (u1, . . . , um+1, vm+2, . . . , vn) and
and (v1, . . . , vn) generate the same subspace, which concludes the induction hypothesis.

Here is an example illustrating the replacement lemma. Consider the sequences (u1, u2, u3)
and (v1, v2, v3, v4, v5) where (u1, u2, u3) is a linearly independent family and with the uis ex-
pressed in terms of the vjs as follows:

u1 = v4 + v5

u2 = v3 + v4 − v5

u3 = v1 + v2 + v3.

From the first equation we get
v4 = u1 − v5,

and by substituting in the second equation we have

u2 = v3 + v4 − v5 = v3 + u1 − v5 − v5 = u1 + v3 − 2v5.

From the above equation we get

v3 = −u1 + u2 + 2v5,

and so
u3 = v1 + v2 + v3 = v1 + v2 − u1 + u2 + 2v5.
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Finally, we get
v1 = u1 − u2 + u3 − v2 − 2v5

Therefore we have

v1 = u1 − u2 + u3 − v2 − 2v5

v3 = −u1 + u2 + 2v5

v4 = u1 − v5,

which shows that (u1, u2, u3, v2, v5) spans the same subspace as (v1, v2, v3, v4, v5). The vectors
(v1, v3, v4) have been replaced by (u1, u2, u3), and the vectors left over are (v2, v5). We can
rename them (v4, v5).

For the sake of completeness, here is a more formal statement of the replacement lemma
(and its proof).

Proposition 2.8. (Replacement lemma, version 2) Given a vector space E, let (ui)i∈I be any
finite linearly independent family in E, where |I| = m, and let (vj)j∈J be any finite family
such that every ui is a linear combination of (vj)j∈J , where |J | = n. Then, there exists a set
L and an injection ρ : L→ J (a relabeling function) such that L ∩ I = ∅, |L| = n−m, and
the families (ui)i∈I ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace of E. In particular,
m ≤ n.

Proof. We proceed by induction on |I| = m. When m = 0, the family (ui)i∈I is empty, and
the proposition holds trivially with L = J (ρ is the identity). Assume |I| = m+ 1. Consider
the linearly independent family (ui)i∈(I−{p}), where p is any member of I. By the induction
hypothesis, there exists a set L and an injection ρ : L → J such that L ∩ (I − {p}) = ∅,
|L| = n−m, and the families (ui)i∈(I−{p})∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace
of E. If p ∈ L, we can replace L by (L− {p}) ∪ {p′} where p′ does not belong to I ∪ L, and
replace ρ by the injection ρ′ which agrees with ρ on L − {p} and such that ρ′(p′) = ρ(p).
Thus, we can always assume that L ∩ I = ∅. Since up is a linear combination of (vj)j∈J
and the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (vj)j∈J generate the same subspace of E, up is
a linear combination of (ui)i∈(I−{p}) ∪ (vρ(l))l∈L. Let

up =
∑

i∈(I−{p})
λiui +

∑
l∈L

λlvρ(l). (1)

If λl = 0 for all l ∈ L, we have ∑
i∈(I−{p})

λiui − up = 0,

contradicting the fact that (ui)i∈I is linearly independent. Thus, λl 6= 0 for some l ∈ L, say
l = q. Since λq 6= 0, we have

vρ(q) =
∑

i∈(I−{p})
(−λ−1

q λi)ui + λ−1
q up +

∑
l∈(L−{q})

(−λ−1
q λl)vρ(l). (2)
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We claim that the families (ui)i∈(I−{p}) ∪ (vρ(l))l∈L and (ui)i∈I ∪ (vρ(l))l∈(L−{q}) generate the
same subset of E. Indeed, the second family is obtained from the first by replacing vρ(q) by up,
and vice-versa, and up is a linear combination of (ui)i∈(I−{p})∪ (vρ(l))l∈L, by (1), and vρ(q) is a
linear combination of (ui)i∈I∪(vρ(l))l∈(L−{q}), by (2). Thus, the families (ui)i∈I∪(vρ(l))l∈(L−{q})
and (vj)j∈J generate the same subspace of E, and the proposition holds for L−{q} and the
restriction of the injection ρ : L→ J to L−{q}, since L∩ I = ∅ and |L| = n−m imply that
(L− {q}) ∩ I = ∅ and |L− {q}| = n− (m+ 1).

The idea is that m of the vectors vj can be replaced by the linearly independent ui’s in
such a way that the same subspace is still generated. The purpose of the function ρ : L→ J
is to pick n −m elements j1, . . . , jn−m of J and to relabel them l1, . . . , ln−m in such a way
that these new indices do not clash with the indices in I; this way, the vectors vj1 , . . . , vjn−m
who “survive” (i.e. are not replaced) are relabeled vl1 , . . . , vln−m , and the other m vectors vj
with j ∈ J −{j1, . . . , jn−m} are replaced by the ui. The index set of this new family is I ∪L.

Actually, one can prove that Proposition 2.8 implies Theorem 2.5 when the vector space
is finitely generated. Putting Theorem 2.5 and Proposition 2.8 together, we obtain the
following fundamental theorem.

Theorem 2.9. Let E be a finitely generated vector space. Any family (ui)i∈I generating E
contains a subfamily (uj)j∈J which is a basis of E. Any linearly independent family (ui)i∈I
can be extended to a family (uj)j∈J which is a basis of E (with I ⊆ J). Furthermore, for
every two bases (ui)i∈I and (vj)j∈J of E, we have |I| = |J | = n for some fixed integer n ≥ 0.

Proof. The first part follows immediately by applying Theorem 2.5 with L = ∅ and S =
(ui)i∈I . For the second part, consider the family S ′ = (ui)i∈I ∪ (vh)h∈H , where (vh)h∈H is
any finitely generated family generating E, and with I ∩H = ∅. Then, apply Theorem 2.5
to L = (ui)i∈I and to S ′. For the last statement, assume that (ui)i∈I and (vj)j∈J are bases
of E. Since (ui)i∈I is linearly independent and (vj)j∈J spans E, Proposition 2.8 implies that
|I| ≤ |J |. A symmetric argument yields |J | ≤ |I|.

Remark: Theorem 2.9 also holds for vector spaces that are not finitely generated.

Definition 2.7. When a vector space E is not finitely generated, we say that E is of infinite
dimension. The dimension of a finitely generated vector space E is the common dimension
n of all of its bases and is denoted by dim(E).

Clearly, if the field R itself is viewed as a vector space, then every family (a) where a ∈ R
and a 6= 0 is a basis. Thus dim(R) = 1. Note that dim({0}) = 0.

Definition 2.8. If E is a vector space of dimension n ≥ 1, for any subspace U of E, if
dim(U) = 1, then U is called a line; if dim(U) = 2, then U is called a plane; if dim(U) = n−1,
then U is called a hyperplane. If dim(U) = k, then U is sometimes called a k-plane.
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Let (ui)i∈I be a basis of a vector space E. For any vector v ∈ E, since the family (ui)i∈I
generates E, there is a family (λi)i∈I of scalars in R, such that

v =
∑
i∈I

λiui.

A very important fact is that the family (λi)i∈I is unique.

Proposition 2.10. Given a vector space E, let (ui)i∈I be a family of vectors in E. Let v ∈ E,
and assume that v =

∑
i∈I λiui. Then, the family (λi)i∈I of scalars such that v =

∑
i∈I λiui

is unique iff (ui)i∈I is linearly independent.

Proof. First, assume that (ui)i∈I is linearly independent. If (µi)i∈I is another family of scalars
in R such that v =

∑
i∈I µiui, then we have∑

i∈I
(λi − µi)ui = 0,

and since (ui)i∈I is linearly independent, we must have λi−µi = 0 for all i ∈ I, that is, λi = µi
for all i ∈ I. The converse is shown by contradiction. If (ui)i∈I was linearly dependent, there
would be a family (µi)i∈I of scalars not all null such that∑

i∈I
µiui = 0

and µj 6= 0 for some j ∈ I. But then,

v =
∑
i∈I

λiui + 0 =
∑
i∈I

λiui +
∑
i∈I

µiui =
∑
i∈I

(λi + µi)ui,

with λj 6= λj+µj since µj 6= 0, contradicting the assumption that (λi)i∈I is the unique family
such that v =

∑
i∈I λiui.

Definition 2.9. If (ui)i∈I is a basis of a vector space E, for any vector v ∈ E, if (xi)i∈I is
the unique family of scalars in R such that

v =
∑
i∈I

xiui,

each xi is called the component (or coordinate) of index i of v with respect to the basis (ui)i∈I .

Many interesting mathematical structures are vector spaces. A very important example
is the set of linear maps between two vector spaces to be defined in the next section. Here
is an example that will prepare us for the vector space of linear maps.
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Example 2.6. Let X be any nonempty set and let E be a vector space. The set of all
functions f : X → E can be made into a vector space as follows: Given any two functions
f : X → E and g : X → E, let (f + g) : X → E be defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈ X, and for every λ ∈ R, let λf : X → E be defined such that

(λf)(x) = λf(x)

for all x ∈ X. The axioms of a vector space are easily verified. Now, let E = R, and let I
be the set of all nonempty subsets of X. For every S ∈ I, let fS : X → E be the function
such that fS(x) = 1 iff x ∈ S, and fS(x) = 0 iff x /∈ S. We leave as an exercise to show that
(fS)S∈I is linearly independent.

2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this section we define
matrices precisely, and also introduce some operations on matrices. It turns out that matri-
ces form a vector space equipped with a multiplication operation which is associative, but
noncommutative. We will explain in Section 3.1 how matrices can be used to represent linear
maps, defined in the next section.

Definition 2.10. If K = R or K = C, an m×n-matrix over K is a family (ai j)1≤i≤m, 1≤j≤n
of scalars in K, represented by an array

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


In the special case where m = 1, we have a row vector , represented by

(a1 1 · · · a1n)

and in the special case where n = 1, we have a column vector , represented bya1 1
...

am 1

 .

In these last two cases, we usually omit the constant index 1 (first index in case of a row,
second index in case of a column). The set of all m × n-matrices is denoted by Mm,n(K)
or Mm,n. An n × n-matrix is called a square matrix of dimension n. The set of all square
matrices of dimension n is denoted by Mn(K), or Mn.
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Remark: As defined, a matrix A = (ai j)1≤i≤m, 1≤j≤n is a family , that is, a function from
{1, 2, . . . ,m} × {1, 2, . . . , n} to K. As such, there is no reason to assume an ordering on
the indices. Thus, the matrix A can be represented in many different ways as an array, by
adopting different orders for the rows or the columns. However, it is customary (and usually
convenient) to assume the natural ordering on the sets {1, 2, . . . ,m} and {1, 2, . . . , n}, and
to represent A as an array according to this ordering of the rows and columns.

We define some operations on matrices as follows.

Definition 2.11. Given two m × n matrices A = (ai j) and B = (bi j), we define their sum
A+B as the matrix C = (ci j) such that ci j = ai j + bi j; that is,

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn

+


b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bm 1 bm 2 . . . bmn



=


a1 1 + b1 1 a1 2 + b1 2 . . . a1n + b1n

a2 1 + b2 1 a2 2 + b2 2 . . . a2n + b2n
...

...
. . .

...
am 1 + bm 1 am 2 + bm 2 . . . amn + bmn

 .

For any matrix A = (ai j), we let −A be the matrix (−ai j). Given a scalar λ ∈ K, we define
the matrix λA as the matrix C = (ci j) such that ci j = λai j; that is

λ


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn

 =


λa1 1 λa1 2 . . . λa1n

λa2 1 λa2 2 . . . λa2n
...

...
. . .

...
λam 1 λam 2 . . . λamn

 .

Given an m×n matrices A = (ai k) and an n× p matrices B = (bk j), we define their product
AB as the m× p matrix C = (ci j) such that

ci j =
n∑
k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p. In the product AB = C shown below
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn



b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
...

...
. . .

...
bn 1 bn 2 . . . bn p

 =


c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
...

...
. . .

...
cm 1 cm 2 . . . cmp

 ,
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note that the entry of index i and j of the matrix AB obtained by multiplying the matrices
A and B can be identified with the product of the row matrix corresponding to the i-th row
of A with the column matrix corresponding to the j-column of B:

(ai 1 · · · ai n)

b1 j
...
bn j

 =
n∑
k=1

ai kbk j.

Definition 2.12. The square matrix In of dimension n containing 1 on the diagonal and 0
everywhere else is called the identity matrix . It is denoted by

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Definition 2.13. Given an m × n matrix A = (ai j), its transpose A> = (a>j i), is the
n×m-matrix such that a>j i = ai j, for all i, 1 ≤ i ≤ m, and all j, 1 ≤ j ≤ n.

The transpose of a matrix A is sometimes denoted by At, or even by tA. Note that the
transpose A> of a matrix A has the property that the j-th row of A> is the j-th column of
A. In other words, transposition exchanges the rows and the columns of a matrix.

The following observation will be useful later on when we discuss the SVD. Given any
m× n matrix A and any n× p matrix B, if we denote the columns of A by A1, . . . , An and
the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · ·+ AnBn.

For every square matrix A of dimension n, it is immediately verified that AIn = InA = A.

Definition 2.14. For any square matrix A of dimension n, if a matrix B such that AB =
BA = In exists, then it is unique, and it is called the inverse of A. The matrix B is also
denoted by A−1. An invertible matrix is also called a nonsingular matrix, and a matrix that
is not invertible is called a singular matrix.

Using Proposition 2.15 and the fact that matrices represent linear maps, it can be shown
that if a square matrix A has a left inverse, that is a matrix B such that BA = I, or a right
inverse, that is a matrix C such that AC = I, then A is actually invertible; so B = A−1 and
C = A−1. These facts also follow from Proposition 4.9.

It is immediately verified that the set Mm,n(K) of m×n matrices is a vector space under
addition of matrices and multiplication of a matrix by a scalar. Consider the m×n-matrices



54 CHAPTER 2. VECTOR SPACES, BASES, LINEAR MAPS

Ei,j = (eh k), defined such that ei j = 1, and eh k = 0, if h 6= i or k 6= j. It is clear that every
matrix A = (ai j) ∈ Mm,n(K) can be written in a unique way as

A =
m∑
i=1

n∑
j=1

ai jEi,j.

Thus, the family (Ei,j)1≤i≤m,1≤j≤n is a basis of the vector space Mm,n(K), which has dimen-
sion mn.

Remark: Definition 2.10 and Definition 2.11 also make perfect sense when K is a (com-
mutative) ring rather than a field. In this more general setting, the framework of vector
spaces is too narrow, but we can consider structures over a commutative ring A satisfying
all the axioms of Definition 2.2. Such structures are called modules . The theory of modules
is (much) more complicated than that of vector spaces. For example, modules do not always
have a basis, and other properties holding for vector spaces usually fail for modules. When
a module has a basis, it is called a free module. For example, when A is a commutative
ring, the structure An is a module such that the vectors ei, with (ei)i = 1 and (ei)j = 0 for
j 6= i, form a basis of An. Many properties of vector spaces still hold for An. Thus, An is a
free module. As another example, when A is a commutative ring, Mm,n(A) is a free module
with basis (Ei,j)1≤i≤m,1≤j≤n. Polynomials over a commutative ring also form a free module
of infinite dimension.

The properties listed in Proposition 2.11 are easily verified, although some of the com-
putations are a bit tedious. A more conceptual proof is given in Proposition 3.1.

Proposition 2.11. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K),
we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication · : Mm,n(K)×Mn,p(K)→ Mm,p(K) is bilinear.

The properties of Proposition 2.11 together with the fact that AIn = InA = A for all
square n×n matrices show that Mn(K) is a ring with unit In (in fact, an associative algebra).
This is a noncommutative ring with zero divisors, as shown by the following Example.
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Example 2.7. For example, letting A,B be the 2× 2-matrices

A =

(
1 0
0 0

)
, B =

(
0 0
1 0

)
,

then

AB =

(
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
,

and

BA =

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
.

Thus AB 6= BA, and AB = 0, even though both A,B 6= 0.

2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would like to be able
to transform one vector space E into another vector space F . A function between two vector
spaces that preserves the vector space structure is called a homomorphism of vector spaces,
or linear map. Linear maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are transformations of
space, are usually far more important than the spaces

themselves.

In the rest of this section, we assume that all vector spaces are real vector spaces.

Definition 2.15. Given two vector spaces E and F , a linear map between E and F is a
function f : E → F satisfying the following two conditions:

f(x+ y) = f(x) + f(y) for all x, y ∈ E;

f(λx) = λf(x) for all λ ∈ R, x ∈ E.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic property of linear
maps is that they transform linear combinations into linear combinations. Given any finite
family (ui)i∈I of vectors in E, given any family (λi)i∈I of scalars in R, we have

f(
∑
i∈I

λiui) =
∑
i∈I

λif(ui).

The above identity is shown by induction on |I| using the properties of Definition 2.15.

Example 2.8.
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1. The map f : R2 → R2 defined such that

x′ = x− y
y′ = x+ y

is a linear map. The reader should check that it is the composition of a rotation by
π/4 with a magnification of ratio

√
2.

2. For any vector space E, the identity map id : E → E given by

id(u) = u for all u ∈ E

is a linear map. When we want to be more precise, we write idE instead of id.

3. The map D : R[X]→ R[X] defined such that

D(f(X)) = f ′(X),

where f ′(X) is the derivative of the polynomial f(X), is a linear map.

4. The map Φ: C([a, b])→ R given by

Φ(f) =

∫ b

a

f(t)dt,

where C([a, b]) is the set of continuous functions defined on the interval [a, b], is a linear
map.

5. The function 〈−,−〉 : C([a, b])× C([a, b])→ R given by

〈f, g〉 =

∫ b

a

f(t)g(t)dt,

is linear in each of the variable f , g. It also satisfies the properties 〈f, g〉 = 〈g, f〉 and
〈f, f〉 = 0 iff f = 0. It is an example of an inner product .

Definition 2.16. Given a linear map f : E → F , we define its image (or range) Im f = f(E),
as the set

Im f = {y ∈ F | (∃x ∈ E)(y = f(x))},

and its Kernel (or nullspace) Ker f = f−1(0), as the set

Ker f = {x ∈ E | f(x) = 0}.
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The derivative map D : R[X] → R[X] from Example 2.8(3) has kernel the constant
polynomials, so KerD = R. If we consider the second derivative D ◦D : R[X]→ R[X], then
the kernel of D ◦D consists of all polynomials of degree ≤ 1. The image of D : R[X]→ R[X]
is actually R[X] itself, because every polynomial P (X) = a0X

n + · · ·+ an−1X + an of degree
n is the derivative of the polynomial Q(X) of degree n+ 1 given by

Q(X) = a0
Xn+1

n+ 1
+ · · ·+ an−1

X2

2
+ anX.

On the other hand, if we consider the restriction of D to the vector space R[X]n of polyno-
mials of degree ≤ n, then the kernel of D is still R, but the image of D is the R[X]n−1, the
vector space of polynomials of degree ≤ n− 1.

Proposition 2.12. Given a linear map f : E → F , the set Im f is a subspace of F and the
set Ker f is a subspace of E. The linear map f : E → F is injective iff Ker f = (0) (where
(0) is the trivial subspace {0}).

Proof. Given any x, y ∈ Im f , there are some u, v ∈ E such that x = f(u) and y = f(v),
and for all λ, µ ∈ R, we have

f(λu+ µv) = λf(u) + µf(v) = λx+ µy,

and thus, λx+ µy ∈ Im f , showing that Im f is a subspace of F .

Given any x, y ∈ Ker f , we have f(x) = 0 and f(y) = 0, and thus,

f(λx+ µy) = λf(x) + µf(y) = 0,

that is, λx+ µy ∈ Ker f , showing that Ker f is a subspace of E.

First, assume that Ker f = (0). We need to prove that f(x) = f(y) implies that x = y.
However, if f(x) = f(y), then f(x) − f(y) = 0, and by linearity of f we get f(x − y) = 0.
Because Ker f = (0), we must have x − y = 0, that is x = y, so f is injective. Conversely,
assume that f is injective. If x ∈ Ker f , that is f(x) = 0, since f(0) = 0 we have f(x) = f(0),
and by injectivity, x = 0, which proves that Ker f = (0). Therefore, f is injective iff
Ker f = (0).

Since by Proposition 2.12, the image Im f of a linear map f is a subspace of F , we can
define the rank rk(f) of f as the dimension of Im f .

Definition 2.17. Given a linear mapf : E → F , the rank rk(f) of f is the dimension of the
image Im f of f .

A fundamental property of bases in a vector space is that they allow the definition of
linear maps as unique homomorphic extensions, as shown in the following proposition.
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Proposition 2.13. Given any two vector spaces E and F , given any basis (ui)i∈I of E,
given any other family of vectors (vi)i∈I in F , there is a unique linear map f : E → F such
that f(ui) = vi for all i ∈ I. Furthermore, f is injective iff (vi)i∈I is linearly independent,
and f is surjective iff (vi)i∈I generates F .

Proof. If such a linear map f : E → F exists, since (ui)i∈I is a basis of E, every vector x ∈ E
can written uniquely as a linear combination

x =
∑
i∈I

xiui,

and by linearity, we must have

f(x) =
∑
i∈I

xif(ui) =
∑
i∈I

xivi.

Define the function f : E → F , by letting

f(x) =
∑
i∈I

xivi

for every x =
∑

i∈I xiui. It is easy to verify that f is indeed linear, it is unique by the
previous reasoning, and obviously, f(ui) = vi.

Now, assume that f is injective. Let (λi)i∈I be any family of scalars, and assume that∑
i∈I

λivi = 0.

Since vi = f(ui) for every i ∈ I, we have

f(
∑
i∈I

λiui) =
∑
i∈I

λif(ui) =
∑
i∈I

λivi = 0.

Since f is injective iff Ker f = (0), we have∑
i∈I

λiui = 0,

and since (ui)i∈I is a basis, we have λi = 0 for all i ∈ I, which shows that (vi)i∈I is linearly
independent. Conversely, assume that (vi)i∈I is linearly independent. Since (ui)i∈I is a basis
of E, every vector x ∈ E is a linear combination x =

∑
i∈I λiui of (ui)i∈I . If

f(x) = f(
∑
i∈I

λiui) = 0,

then ∑
i∈I

λivi =
∑
i∈I

λif(ui) = f(
∑
i∈I

λiui) = 0,

and λi = 0 for all i ∈ I because (vi)i∈I is linearly independent, which means that x = 0.
Therefore, Ker f = (0), which implies that f is injective. The part where f is surjective is
left as a simple exercise.
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By the second part of Proposition 2.13, an injective linear map f : E → F sends a basis
(ui)i∈I to a linearly independent family (f(ui))i∈I of F , which is also a basis when f is
bijective. Also, when E and F have the same finite dimension n, (ui)i∈I is a basis of E, and
f : E → F is injective, then (f(ui))i∈I is a basis of F (by Proposition 2.6).

The following simple proposition is also useful.

Proposition 2.14. Given any two vector spaces E and F , with F nontrivial, given any
family (ui)i∈I of vectors in E, the following properties hold:

(1) The family (ui)i∈I generates E iff for every family of vectors (vi)i∈I in F , there is at
most one linear map f : E → F such that f(ui) = vi for all i ∈ I.

(2) The family (ui)i∈I is linearly independent iff for every family of vectors (vi)i∈I in F ,
there is some linear map f : E → F such that f(ui) = vi for all i ∈ I.

Proof. (1) If there is any linear map f : E → F such that f(ui) = vi for all i ∈ I, since
(ui)i∈I generates E, every vector x ∈ E can be written as some linear combination

x =
∑
i∈I

xiui,

and by linearity, we must have

f(x) =
∑
i∈I

xif(ui) =
∑
i∈I

xivi.

This shows that f is unique if it exists. Conversely, assume that (ui)i∈I does not generate E.
Since F is nontrivial, there is some some vector y ∈ F such that y 6= 0. Since (ui)i∈I does
not generate E, there is some vector w ∈ E that is not in the subspace generated by (ui)i∈I .
By Theorem 2.9, there is a linearly independent subfamily (ui)i∈I0 of (ui)i∈I generating the
same subspace. Since by hypothesis, w ∈ E is not in the subspace generated by (ui)i∈I0 , by
Lemma 2.4 and by Theorem 2.9 again, there is a basis (ej)j∈I0∪J of E, such that ei = ui for
all i ∈ I0, and w = ej0 for some j0 ∈ J . Letting (vi)i∈I be the family in F such that vi = 0
for all i ∈ I, defining f : E → F to be the constant linear map with value 0, we have a linear
map such that f(ui) = 0 for all i ∈ I. By Proposition 2.13, there is a unique linear map
g : E → F such that g(w) = y, and g(ej) = 0 for all j ∈ (I0 ∪ J)−{j0}. By definition of the
basis (ej)j∈I0∪J of E, we have g(ui) = 0 for all i ∈ I, and since f 6= g, this contradicts the
fact that there is at most one such map.

(2) If the family (ui)i∈I is linearly independent, then by Theorem 2.9, (ui)i∈I can be
extended to a basis of E, and the conclusion follows by Proposition 2.13. Conversely, assume
that (ui)i∈I is linearly dependent. Then, there is some family (λi)i∈I of scalars (not all zero)
such that ∑

i∈I
λiui = 0.
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By the assumption, for any nonzero vector y ∈ F , for every i ∈ I, there is some linear map
fi : E → F , such that fi(ui) = y, and fi(uj) = 0, for j ∈ I − {i}. Then, we would get

0 = fi(
∑
i∈I

λiui) =
∑
i∈I

λifi(ui) = λiy,

and since y 6= 0, this implies λi = 0 for every i ∈ I. Thus, (ui)i∈I is linearly independent.

Given vector spaces E, F , and G, and linear maps f : E → F and g : F → G, it is easily
verified that the composition g ◦ f : E → G of f and g is a linear map.

Definition 2.18. A linear map f : E → F is an isomorphism iff there is a linear map
g : F → E, such that

g ◦ f = idE and f ◦ g = idF . (∗)

The map g in Definition 2.18 is unique. This is because if g and h both satisfy g◦f = idE,
f ◦ g = idF , h ◦ f = idE, and f ◦ h = idF , then

g = g ◦ idF = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idE ◦ h = h.

The map g satisfying (∗) above is called the inverse of f and it is also denoted by f−1.

Observe that Proposition 2.13 shows that if F = Rn, then we get an isomorphism between
any vector space E of dimension |J | = n and Rn. Proposition 2.13 also implies that if E
and F are two vector spaces, (ui)i∈I is a basis of E, and f : E → F is a linear map which is
an isomorphism, then the family (f(ui))i∈I is a basis of F .

One can verify that if f : E → F is a bijective linear map, then its inverse f−1 : F → E,
as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 2.13 is this:

Proposition 2.15. Let E be a vector space of finite dimension n ≥ 1 and let f : E → E be
any linear map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear map such that g ◦ f = id, then f is an
isomorphism and f−1 = g.

(2) If f has a right inverse h, that is, if h is a linear map such that f ◦ h = id, then f is
an isomorphism and f−1 = h.

Proof. (1) The equation g ◦ f = id implies that f is injective; this is a standard result
about functions (if f(x) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since
g ◦ f = id). Let (u1, . . . , un) be any basis of E. By Proposition 2.13, since f is injective,
(f(u1), . . . , f(un)) is linearly independent, and since E has dimension n, it is a basis of
E (if (f(u1), . . . , f(un)) doesn’t span E, then it can be extended to a basis of dimension
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strictly greater than n, contradicting Theorem 2.9). Then, f is bijective, and by a previous
observation its inverse is a linear map. We also have

g = g ◦ id = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 = id ◦ f−1 = f−1.

(2) The equation f ◦ h = id implies that f is surjective; this is a standard result about
functions (for any y ∈ E, we have f(h(y)) = y). Let (u1, . . . , un) be any basis of E. By
Proposition 2.13, since f is surjective, (f(u1), . . . , f(un)) spans E, and since E has dimension
n, it is a basis of E (if (f(u1), . . . , f(un)) is not linearly independent, then because it spans E,
it contains a basis of dimension strictly smaller than n, contradicting Theorem 2.9). Then,
f is bijective, and by a previous observation its inverse is a linear map. We also have

h = id ◦ h = (f−1 ◦ f) ◦ h = f−1 ◦ (f ◦ h) = f−1 ◦ id = f−1.

This completes the proof.

Definition 2.19. The set of all linear maps between two vector spaces E and F is denoted by
Hom(E,F ) or by L(E;F ) (the notation L(E;F ) is usually reserved to the set of continuous
linear maps, where E and F are normed vector spaces). When we wish to be more precise and
specify the field K over which the vector spaces E and F are defined we write HomK(E,F ).

The set Hom(E,F ) is a vector space under the operations defined in Example 2.6, namely

(f + g)(x) = f(x) + g(x)

for all x ∈ E, and
(λf)(x) = λf(x)

for all x ∈ E. The point worth checking carefully is that λf is indeed a linear map, which
uses the commutativity of ∗ in the field K (typically, K = R or K = C). Indeed, we have

(λf)(µx) = λf(µx) = λµf(x) = µλf(x) = µ(λf)(x).

When E and F have finite dimensions, the vector space Hom(E,F ) also has finite di-
mension, as we shall see shortly.

Definition 2.20. When E = F , a linear map f : E → E is also called an endomorphism.
The space Hom(E,E) is also denoted by End(E).

It is also important to note that composition confers to Hom(E,E) a ring structure.
Indeed, composition is an operation ◦ : Hom(E,E) × Hom(E,E) → Hom(E,E), which is
associative and has an identity idE, and the distributivity properties hold:

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f ;

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2.

The ring Hom(E,E) is an example of a noncommutative ring.

It is easily seen that the set of bijective linear maps f : E → E is a group under compo-
sition.
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Definition 2.21. Bijective linear maps f : E → E are also called automorphisms . The
group of automorphisms of E is called the general linear group (of E), and it is denoted by
GL(E), or by Aut(E), or when E = Rn, by GL(n,R), or even by GL(n).

2.8 Linear Forms and the Dual Space

We already observed that the field K itself (K = R or K = C) is a vector space (over itself).
The vector space Hom(E,K) of linear maps from E to the field K, the linear forms, plays
a particular role. In this section, we only define linear forms and show that every finite-
dimensional vector space has a dual basis. A more advanced presentation of dual spaces and
duality is given in Chapter 9.

Definition 2.22. Given a vector space E, the vector space Hom(E,K) of linear maps from
E to the field K is called the dual space (or dual) of E. The space Hom(E,K) is also denoted
by E∗, and the linear maps in E∗ are called the linear forms , or covectors . The dual space
E∗∗ of the space E∗ is called the bidual of E.

As a matter of notation, linear forms f : E → K will also be denoted by starred symbol,
such as u∗, x∗, etc.

If E is a vector space of finite dimension n and (u1, . . . , un) is a basis of E, for any linear
form f ∗ ∈ E∗, for every x = x1u1 + · · ·+ xnun ∈ E, by linearity we have

f ∗(x) = f ∗(u1)x1 + · · ·+ f ∗(un)xn

= λ1x1 + · · ·+ λnxn,

with λi = f ∗(ui) ∈ K for every i, 1 ≤ i ≤ n. Thus, with respect to the basis (u1, . . . , un),
the linear form f ∗ is represented by the row vector

(λ1 · · · λn),

we have

f ∗(x) =
(
λ1 · · · λn

)x1
...
xn

 ,

a linear combination of the coordinates of x, and we can view the linear form f ∗ as a linear
equation. If we decide to use a column vector of coefficients

c =

c1
...
cn


instead of a row vector, then the linear form f ∗ is defined by

f ∗(x) = c>x.

The above notation is often used in machine learning.
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Example 2.9. Given any differentiable function f : Rn → R, by definition, for any x ∈ Rn,
the total derivative dfx of f at x is the linear form dfx : Rn → R defined so that for all
u = (u1, . . . , un) ∈ Rn,

dfx(u) =

(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)u1
...
un

 =
n∑
i=1

∂f

∂xi
(x)ui.

Example 2.10. Let C([0, 1]) be the vector space of continuous functions f : [0, 1]→ R. The
map I : C([0, 1])→ R given by

I(f) =

∫ 1

0

f(x)dx for any f ∈ C([0, 1])

is a linear form (integration).

Example 2.11. Consider the vector space Mn(R) of real n×n matrices. Let tr : Mn(R)→ R
be the function given by

tr(A) = a11 + a22 + · · ·+ ann,

called the trace of A. It is a linear form. Let s : Mn(R)→ R be the function given by

s(A) =
n∑

i,j=1

aij,

where A = (aij). It is immediately verified that s is a linear form.

Given a vector space E and any basis (ui)i∈I for E, we can associate to each ui a linear
form u∗i ∈ E∗, and the u∗i have some remarkable properties.

Definition 2.23. Given a vector space E and any basis (ui)i∈I for E, by Proposition 2.13,
for every i ∈ I, there is a unique linear form u∗i such that

u∗i (uj) =

{
1 if i = j
0 if i 6= j,

for every j ∈ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis
(ui)i∈I .

Remark: Given an index set I, authors often define the so called “Kronecker symbol” δi j
such that

δi j =

{
1 if i = j
0 if i 6= j,

for all i, j ∈ I. Then, u∗i (uj) = δi j.
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The reason for the terminology coordinate form is as follows: If E has finite dimension
and if (u1, . . . , un) is a basis of E, for any vector

v = λ1u1 + · · ·+ λnun,

we have

u∗i (v) = u∗i (λ1u1 + · · ·+ λnun)

= λ1u
∗
i (u1) + · · ·+ λiu

∗
i (ui) + · · ·+ λnu

∗
i (un)

= λi,

since u∗i (uj) = δi j. Therefore, u∗i is the linear function that returns the ith coordinate of a
vector expressed over the basis (u1, . . . , un).

The following theorem shows that in finite-dimension, every basis (u1, . . . , un) of a vector
space E yields a basis (u∗1, . . . , u

∗
n) of the dual space E∗, called a dual basis .

Theorem 2.16. (Existence of dual bases) Let E be a vector space of dimension n. The
following properties hold: For every basis (u1, . . . , un) of E, the family of coordinate forms
(u∗1, . . . , u

∗
n) is a basis of E∗ (called the dual basis of (u1, . . . , un)).

Proof. (a) If v∗ ∈ E∗ is any linear form, consider the linear form

f ∗ = v∗(u1)u∗1 + · · ·+ v∗(un)u∗n.

Observe that because u∗i (uj) = δi j,

f ∗(ui) = (v∗(u1)u∗1 + · · ·+ v∗(un)u∗n)(ui)

= v∗(u1)u∗1(ui) + · · ·+ v∗(ui)u
∗
i (ui) + · · ·+ v∗(un)u∗n(ui)

= v∗(ui),

and so f ∗ and v∗ agree on the basis (u1, . . . , un), which implies that

v∗ = f ∗ = v∗(u1)u∗1 + · · ·+ v∗(un)u∗n.

Therefore, (u∗1, . . . , u
∗
n) spans E∗. We claim that the covectors u∗1, . . . , u

∗
n are linearly inde-

pendent. If not, we have a nontrivial linear dependence

λ1u
∗
1 + · · ·+ λnu

∗
n = 0,

and if we apply the above linear form to each ui, using a familar computation, we get

0 = λiu
∗
i (ui) = λi,

proving that u∗1, . . . , u
∗
n are indeed linearly independent. Therefore, (u∗1, . . . , u

∗
n) is a basis of

E∗.

In particular, Theorem 2.16 shows a finite-dimensional vector space and its dual E∗ have
the same dimension.
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2.9 Summary

The main concepts and results of this chapter are listed below:

• The notion of a vector space.

• Families of vectors.

• Linear combinations of vectors; linear dependence and linear independence of a family
of vectors.

• Linear subspaces .

• Spanning (or generating) family; generators , finitely generated subspace; basis of a
subspace.

• Every linearly independent family can be extended to a basis (Theorem 2.5).

• A family B of vectors is a basis iff it is a maximal linearly independent family iff it is
a minimal generating family (Proposition 2.6).

• The replacement lemma (Proposition 2.8).

• Any two bases in a finitely generated vector space E have the same number of elements ;
this is the dimension of E (Theorem 2.9).

• Hyperplanes .

• Every vector has a unique representation over a basis (in terms of its coordinates).

• matrices

• Column vectors , row vectors .

• Matrix operations : addition, scalar multiplication, multiplication.

• The vector space Mm,n(K) of m × n matrices over the field K; The ring Mn(K) of
n× n matrices over the field K.

• The notion of a linear map.

• The image Im f (or range) of a linear map f .

• The kernel Ker f (or nullspace) of a linear map f .

• The rank rk(f) of a linear map f .

• The image and the kernel of a linear map are subspaces. A linear map is injective iff
its kernel is the trivial space (0) (Proposition 2.12).
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• The unique homomorphic extension property of linear maps with respect to bases
(Proposition 2.13 ).

• Linear forms (covectors) and the dual space E∗.

• Coordinate forms.

• The existence of dual bases (in finite dimension).



Chapter 3

Matrices and Linear Maps

3.1 Representation of Linear Maps by Matrices

Proposition 2.13 shows that given two vector spaces E and F and a basis (uj)j∈J of E, every
linear map f : E → F is uniquely determined by the family (f(uj))j∈J of the images under
f of the vectors in the basis (uj)j∈J .

If we also have a basis (vi)i∈I of F , then every vector f(uj) can be written in a unique
way as

f(uj) =
∑
i∈I

ai jvi,

where j ∈ J , for a family of scalars (ai j)i∈I . Thus, with respect to the two bases (uj)j∈J
of E and (vi)i∈I of F , the linear map f is completely determined by a “I × J-matrix”
M(f) = (ai j)i∈I, j∈J .

Remark: Note that we intentionally assigned the index set J to the basis (uj)j∈J of E, and
the index set I to the basis (vi)i∈I of F , so that the rows of the matrix M(f) associated
with f : E → F are indexed by I, and the columns of the matrix M(f) are indexed by J .
Obviously, this causes a mildly unpleasant reversal. If we had considered the bases (ui)i∈I of
E and (vj)j∈J of F , we would obtain a J × I-matrix M(f) = (aj i)j∈J, i∈I . No matter what
we do, there will be a reversal! We decided to stick to the bases (uj)j∈J of E and (vi)i∈I of
F , so that we get an I × J-matrix M(f), knowing that we may occasionally suffer from this
decision!

When I and J are finite, and say, when |I| = m and |J | = n, the linear map f is
determined by the matrix M(f) whose entries in the j-th column are the components of the
vector f(uj) over the basis (v1, . . . , vm), that is, the matrix

M(f) =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn


67
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whose entry on row i and column j is ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

We will now show that when E and F have finite dimension, linear maps can be very
conveniently represented by matrices, and that composition of linear maps corresponds to
matrix multiplication. We will follow rather closely an elegant presentation method due to
Emil Artin.

Let E and F be two vector spaces, and assume that E has a finite basis (u1, . . . , un) and
that F has a finite basis (v1, . . . , vm). Recall that we have shown that every vector x ∈ E
can be written in a unique way as

x = x1u1 + · · ·+ xnun,

and similarly every vector y ∈ F can be written in a unique way as

y = y1v1 + · · ·+ ymvm.

Let f : E → F be a linear map between E and F . Then, for every x = x1u1 + · · ·+ xnun in
E, by linearity, we have

f(x) = x1f(u1) + · · ·+ xnf(un).

Let
f(uj) = a1 jv1 + · · ·+ amjvm,

or more concisely,

f(uj) =
m∑
i=1

ai jvi,

for every j, 1 ≤ j ≤ n. This can be expressed by writing the coefficients a1j, a2j, . . . , amj of
f(uj) over the basis (v1, . . . , vm), as the jth column of a matrix, as shown below:

f(u1) f(u2) . . . f(un)

v1

v2
...
vm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Then, substituting the right-hand side of each f(uj) into the expression for f(x), we get

f(x) = x1(
m∑
i=1

ai 1vi) + · · ·+ xn(
m∑
i=1

ai nvi),

which, by regrouping terms to obtain a linear combination of the vi, yields

f(x) = (
n∑
j=1

a1 jxj)v1 + · · ·+ (
n∑
j=1

amjxj)vm.
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Thus, letting f(x) = y = y1v1 + · · ·+ ymvm, we have

yi =
n∑
j=1

ai jxj (1)

for all i, 1 ≤ i ≤ m.

To make things more concrete, let us treat the case where n = 3 and m = 2. In this case,

f(u1) = a11v1 + a21v2

f(u2) = a12v1 + a22v2

f(u3) = a13v1 + a23v2,

which in matrix form is expressed by

f(u1) f(u2) f(u3)

v1

v2

(
a11 a12 a13

a21 a22 a23

)
,

and for any x = x1u1 + x2u2 + x3u3, we have

f(x) = f(x1u1 + x2u2 + x3u3)

= x1f(u1) + x2f(u2) + x3f(u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2) + x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1 + (a21x1 + a22x2 + a23x3)v2.

Consequently, since

y = y1v1 + y2v2,

we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3.

This agrees with the matrix equation

(
y1

y2

)
=

(
a11 a12 a13

a21 a22 a23

)x1

x2

x3

 .

We now formalize the representation of linear maps by matrices.
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Definition 3.1. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for E,
and (v1, . . . , vm) be a basis for F . Each vector x ∈ E expressed in the basis (u1, . . . , un) as
x = x1u1 + · · ·+ xnun is represented by the column matrix

M(x) =

x1
...
xn


and similarly for each vector y ∈ F expressed in the basis (v1, . . . , vm).

Every linear map f : E → F is represented by the matrix M(f) = (ai j), where ai j is the
i-th component of the vector f(uj) over the basis (v1, . . . , vm), i.e., where

f(uj) =
m∑
i=1

ai jvi, for every j, 1 ≤ j ≤ n.

The coefficients a1j, a2j, . . . , amj of f(uj) over the basis (v1, . . . , vm) form the jth column of
the matrix M(f) shown below:

f(u1) f(u2) . . . f(un)

v1

v2
...
vm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

The matrix M(f) associated with the linear map f : E → F is called the matrix of f with
respect to the bases (u1, . . . , un) and (v1, . . . , vm). When E = F and the basis (v1, . . . , vm)
is identical to the basis (u1, . . . , un) of E, the matrix M(f) associated with f : E → E (as
above) is called the matrix of f with respect to the basis (u1, . . . , un).

Remark: As in the remark after Definition 2.10, there is no reason to assume that the
vectors in the bases (u1, . . . , un) and (v1, . . . , vm) are ordered in any particular way. However,
it is often convenient to assume the natural ordering. When this is so, authors sometimes
refer to the matrix M(f) as the matrix of f with respect to the ordered bases (u1, . . . , un)
and (v1, . . . , vm).

Let us now consider how the composition of linear maps is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respective bases (u1, . . . , up) for E,
(v1, . . . , vn) for F , and (w1, . . . , wm) for G. Let g : E → F and f : F → G be linear maps.
As explained earlier, g : E → F is determined by the images of the basis vectors uj, and
f : F → G is determined by the images of the basis vectors vk. We would like to understand
how f ◦ g : E → G is determined by the images of the basis vectors uj.
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Remark: Note that we are considering linear maps g : E → F and f : F → G, instead
of f : E → F and g : F → G, which yields the composition f ◦ g : E → G instead of
g ◦ f : E → G. Our perhaps unusual choice is motivated by the fact that if f is represented
by a matrix M(f) = (ai k) and g is represented by a matrix M(g) = (bk j), then f ◦g : E → G
is represented by the product AB of the matrices A and B. If we had adopted the other
choice where f : E → F and g : F → G, then g ◦ f : E → G would be represented by the
product BA. Personally, we find it easier to remember the formula for the entry in row i and
column of j of the product of two matrices when this product is written by AB, rather than
BA. Obviously, this is a matter of taste! We will have to live with our perhaps unorthodox
choice.

Thus, let

f(vk) =
m∑
i=1

ai kwi,

for every k, 1 ≤ k ≤ n, and let

g(uj) =
n∑
k=1

bk jvk,

for every j, 1 ≤ j ≤ p; in matrix form, we have

f(v1) f(v2) . . . f(vn)

w1

w2
...
wm


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


and

g(u1) g(u2) . . . g(up)

v1

v2
...
vn


b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
. . .

...
bn1 bn2 . . . bnp


By previous considerations, for every

x = x1u1 + · · ·+ xpup,

letting g(x) = y = y1v1 + · · ·+ ynvn, we have

yk =

p∑
j=1

bk jxj (2)
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for all k, 1 ≤ k ≤ n, and for every

y = y1v1 + · · ·+ ynvn,

letting f(y) = z = z1w1 + · · ·+ zmwm, we have

zi =
n∑
k=1

ai kyk (3)

for all i, 1 ≤ i ≤ m. Then, if y = g(x) and z = f(y), we have z = f(g(x)), and in view of
(2) and (3), we have

zi =
n∑
k=1

ai k(

p∑
j=1

bk jxj)

=
n∑
k=1

p∑
j=1

ai kbk jxj

=

p∑
j=1

n∑
k=1

ai kbk jxj

=

p∑
j=1

(
n∑
k=1

ai kbk j)xj.

Thus, defining ci j such that

ci j =
n∑
k=1

ai kbk j,

for 1 ≤ i ≤ m, and 1 ≤ j ≤ p, we have

zi =

p∑
j=1

ci jxj (4)

Identity (4) shows that the composition of linear maps corresponds to the product of
matrices.

Then, given a linear map f : E → F represented by the matrix M(f) = (ai j) w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm), by equations (1), namely

yi =
n∑
j=1

ai jxj 1 ≤ i ≤ m,
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and the definition of matrix multiplication, the equation y = f(x) corresponds to the matrix
equation M(y) = M(f)M(x), that is,y1

...
ym

 =

a1 1 . . . a1n
...

. . .
...

am 1 . . . amn


x1

...
xn

 .

Recall that
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
am 1 am 2 . . . amn



x1

x2
...
xn

 = x1


a1 1

a2 1
...

am 1

+ x2


a1 2

a2 2
...

am 2

+ · · ·+ xn


a1n

a2n
...

amn

 .

Sometimes, it is necessary to incoporate the bases (u1, . . . , un) and (v1, . . . , vm) in the
notation for the matrix M(f) expressing f with respect to these bases. This turns out to be
a messy enterprise!

We propose the following course of action:

Definition 3.2. Write U = (u1, . . . , un) and V = (v1, . . . , vm) for the bases of E and F , and
denote by MU ,V(f) the matrix of f with respect to the bases U and V . Furthermore, write
xU for the coordinates M(x) = (x1, . . . , xn) of x ∈ E w.r.t. the basis U and write yV for the
coordinates M(y) = (y1, . . . , ym) of y ∈ F w.r.t. the basis V . Then,

y = f(x)

is expressed in matrix form by
yV = MU ,V(f)xU .

When U = V , we abbreviate MU ,V(f) as MU(f).

The above notation seems reasonable, but it has the slight disadvantage that in the
expression MU ,V(f)xU , the input argument xU which is fed to the matrix MU ,V(f) does not
appear next to the subscript U in MU ,V(f). We could have used the notation MV,U(f), and
some people do that. But then, we find a bit confusing that V comes before U when f maps
from the space E with the basis U to the space F with the basis V . So, we prefer to use the
notation MU ,V(f).

Be aware that other authors such as Meyer [75] use the notation [f ]U ,V , and others such
as Dummit and Foote [38] use the notation MV

U (f), instead of MU ,V(f). This gets worse!
You may find the notation MU

V (f) (as in Lang [63]), or U [f ]V , or other strange notations.

Let us illustrate the representation of a linear map by a matrix in a concrete situation.
Let E be the vector space R[X]4 of polynomials of degree at most 4, let F be the vector
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space R[X]3 of polynomials of degree at most 3, and let the linear map be the derivative
map d: that is,

d(P +Q) = dP + dQ

d(λP ) = λdP,

with λ ∈ R. We choose (1, x, x2, x3, x4) as a basis of E and (1, x, x2, x3) as a basis of F .
Then, the 4 × 5 matrix D associated with d is obtained by expressing the derivative dxi of
each basis vector xi for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3). We find

D =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 .

Then, if P denotes the polynomial

P = 3x4 − 5x3 + x2 − 7x+ 5,

we have
dP = 12x3 − 15x2 + 2x− 7,

the polynomial P is represented by the vector (5,−7, 1,−5, 3) and dP is represented by the
vector (−7, 2,−15, 12), and we have

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




5
−7
1
−5
3

 =


−7
2
−15
12

 ,

as expected! The kernel (nullspace) of d consists of the polynomials of degree 0, that is, the
constant polynomials. Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 4.6), we get dim(Im d) = 4 (since dim(E) = 5).

For fun, let us figure out the linear map from the vector space R[X]3 to the vector space
R[X]4 given by integration (finding the primitive, or anti-derivative) of xi, for i = 0, 1, 2, 3).
The 5× 4 matrix S representing

∫
with respect to the same bases as before is

S =


0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

 .
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We verify that DS = I4,
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

as it should! The equation DS = I4 show that S is injective and has D as a left inverse.
However, SD 6= I5, and instead

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

because constant polynomials (polynomials of degree 0) belong to the kernel of D.

The function that associates to a linear map f : E → F the matrix M(f) w.r.t. the bases
(u1, . . . , un) and (v1, . . . , vm) has the property that matrix multiplication corresponds to
composition of linear maps. This allows us to transfer properties of linear maps to matrices.
Here is an illustration of this technique:

Proposition 3.1. (1) Given any matrices A ∈ Mm,n(K), B ∈ Mn,p(K), and C ∈ Mp,q(K),
we have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A,B ∈ Mm,n(K), and C,D ∈ Mn,p(K), for all λ ∈ K, we have

(A+B)C = AC +BC

A(C +D) = AC + AD

(λA)C = λ(AC)

A(λC) = λ(AC),

so that matrix multiplication · : Mm,n(K)×Mn,p(K)→ Mm,p(K) is bilinear.

Proof. (1) Every m× n matrix A = (ai j) defines the function fA : Kn → Km given by

fA(x) = Ax,

for all x ∈ Kn. It is immediately verified that fA is linear and that the matrix M(fA)
representing fA over the canonical bases in Kn and Km is equal to A. Then, formula (4)
proves that

M(fA ◦ fB) = M(fA)M(fB) = AB,
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so we get
M((fA ◦ fB) ◦ fC) = M(fA ◦ fB)M(fC) = (AB)C

and
M(fA ◦ (fB ◦ fC)) = M(fA)M(fB ◦ fC) = A(BC),

and since composition of functions is associative, we have (fA ◦ fB) ◦ fC = fA ◦ (fB ◦ fC),
which implies that

(AB)C = A(BC).

(2) It is immediately verified that if f1, f2 ∈ HomK(E,F ), A,B ∈ Mm,n(K), (u1, . . . , un) is
any basis of E, and (v1, . . . , vm) is any basis of F , then

M(f1 + f2) = M(f1) +M(f2)

fA+B = fA + fB.

Then we have

(A+B)C = M(fA+B)M(fC)

= M(fA+B ◦ fC)

= M((fA + fB) ◦ fC))

= M((fA ◦ fC) + (fB ◦ fC))

= M(fA ◦ fC) +M(fB ◦ fC)

= M(fA)M(fC) +M(fB)M(fC)

= AC +BC.

The equation A(C + D) = AC + AD is proved in a similar fashion, and the last two
equations are easily verified. We could also have verified all the identities by making matrix
computations.

Note that Proposition 3.1 implies that the vector space Mn(K) of square matrices is a
(noncommutative) ring with unit In. (It even shows that Mn(K) is an associative algebra.)

The following proposition states the main properties of the mapping f 7→M(f) between
Hom(E,F ) and Mm,n. In short, it is an isomorphism of vector spaces.

Proposition 3.2. Given three vector spaces E, F , G, with respective bases (u1, . . . , up),
(v1, . . . , vn), and (w1, . . . , wm), the mapping M : Hom(E,F )→ Mn,p that associates the ma-
trix M(g) to a linear map g : E → F satisfies the following properties for all x ∈ E, all
g, h : E → F , and all f : F → G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) +M(h)

M(λg) = λM(g)

M(f ◦ g) = M(f)M(g),
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where M(x) is the column vector associated with the vector x and M(g(x)) is the column
vector associated with g(x), as explained in Definition 3.1.

Thus, M : Hom(E,F ) → Mn,p is an isomorphism of vector spaces, and when p = n
and the basis (v1, . . . , vn) is identical to the basis (u1, . . . , up), M : Hom(E,E) → Mn is an
isomorphism of rings.

Proof. That M(g(x)) = M(g)M(x) was shown just before stating the proposition, using
identity (1). The identities M(g + h) = M(g) +M(h) and M(λg) = λM(g) are straightfor-
ward, and M(f ◦g) = M(f)M(g) follows from (4) and the definition of matrix multiplication.
The mapping M : Hom(E,F ) → Mn,p is clearly injective, and since every matrix defines a
linear map (see Proposition 3.1), it is also surjective, and thus bijective. In view of the above
identities, it is an isomorphism (and similarly for M : Hom(E,E)→ Mn, where Proposition
3.1 is used to show that Mn is a ring).

In view of Proposition 3.2, it seems preferable to represent vectors from a vector space
of finite dimension as column vectors rather than row vectors. Thus, from now on, we will
denote vectors of Rn (or more generally, of Kn) as columm vectors.

3.2 Change of Basis Matrix

It is important to observe that the isomorphism M : Hom(E,F )→ Mn,p given by Proposition
3.2 depends on the choice of the bases (u1, . . . , up) and (v1, . . . , vn), and similarly for the
isomorphism M : Hom(E,E) → Mn, which depends on the choice of the basis (u1, . . . , un).
Thus, it would be useful to know how a change of basis affects the representation of a linear
map f : E → F as a matrix. The following simple proposition is needed.

Proposition 3.3. Let E be a vector space, and let (u1, . . . , un) be a basis of E. For every
family (v1, . . . , vn), let P = (ai j) be the matrix defined such that vj =

∑n
i=1 ai jui. The matrix

P is invertible iff (v1, . . . , vn) is a basis of E.

Proof. Note that we have P = M(f), the matrix associated with the unique linear map
f : E → E such that f(ui) = vi. By Proposition 2.13, f is bijective iff (v1, . . . , vn) is a basis
of E. Furthermore, it is obvious that the identity matrix In is the matrix associated with the
identity id : E → E w.r.t. any basis. If f is an isomorphism, then f ◦f−1 = f−1◦f = id, and
by Proposition 3.2, we get M(f)M(f−1) = M(f−1)M(f) = In, showing that P is invertible
and that M(f−1) = P−1.

Proposition 3.3 suggests the following definition.

Definition 3.3. Given a vector space E of dimension n, for any two bases (u1, . . . , un) and
(v1, . . . , vn) of E, let P = (ai j) be the invertible matrix defined such that

vj =
n∑
i=1

ai jui,
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which is also the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), in that order . Indeed, we express each id(vj) = vj over the basis (u1, . . . , un).
The coefficients a1j, a2j, . . . , anj of vj over the basis (u1, . . . , un) form the jth column of the
matrix P shown below:

v1 v2 . . . vn

u1

u2
...
un


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

The matrix P is called the change of basis matrix from (u1, . . . , un) to (v1, . . . , vn).

Clearly, the change of basis matrix from (v1, . . . , vn) to (u1, . . . , un) is P−1. Since P =
(ai j) is the matrix of the identity id : E → E with respect to the bases (v1, . . . , vn) and
(u1, . . . , un), given any vector x ∈ E, if x = x1u1 + · · ·+xnun over the basis (u1, . . . , un) and
x = x′1v1 + · · ·+ x′nvn over the basis (v1, . . . , vn), from Proposition 3.2, we havex1

...
xn

 =

a1 1 . . . a1n
...

. . .
...

an 1 . . . ann


x

′
1
...
x′n

 ,

showing that the old coordinates (xi) of x (over (u1, . . . , un)) are expressed in terms of the
new coordinates (x′i) of x (over (v1, . . . , vn)).

Now we face the painful task of assigning a “good” notation incorporating the bases
U = (u1, . . . , un) and V = (v1, . . . , vn) into the notation for the change of basis matrix from
U to V . Because the change of basis matrix from U to V is the matrix of the identity map
idE with respect to the bases V and U in that order , we could denote it by MV,U(id) (Meyer
[75] uses the notation [I]V,U). We prefer to use an abbreviation for MV,U(id).

Definition 3.4. The change of basis matrix from U to V is denoted

PV,U .

Note that
PU ,V = P−1

V,U .

Then, if we write xU = (x1, . . . , xn) for the old coordinates of x with respect to the basis U
and xV = (x′1, . . . , x

′
n) for the new coordinates of x with respect to the basis V , we have

xU = PV,U xV , xV = P−1
V,U xU .

The above may look backward, but remember that the matrix MU ,V(f) takes input
expressed over the basis U to output expressed over the basis V . Consequently, PV,U takes
input expressed over the basis V to output expressed over the basis U , and xU = PV,U xV
matches this point of view!
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� Beware that some authors (such as Artin [6]) define the change of basis matrix from U
to V as PU ,V = P−1

V,U . Under this point of view, the old basis U is expressed in terms of
the new basis V . We find this a bit unnatural. Also, in practice, it seems that the new basis
is often expressed in terms of the old basis, rather than the other way around.

Since the matrix P = PV,U expresses the new basis (v1, . . . , vn) in terms of the old basis
(u1, . . ., un), we observe that the coordinates (xi) of a vector x vary in the opposite direction
of the change of basis. For this reason, vectors are sometimes said to be contravariant .
However, this expression does not make sense! Indeed, a vector in an intrinsic quantity that
does not depend on a specific basis. What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 3.1. Let E = F = R2, with u1 = (1, 0), u2 = (0, 1), v1 = (1, 1) and v2 = (−1, 1).
The change of basis matrix P from the basis U = (u1, u2) to the basis V = (v1, v2) is

P =

(
1 −1
1 1

)
and its inverse is

P−1 =

(
1/2 1/2
−1/2 1/2

)
.

The old coordinates (x1, x2) with respect to (u1, u2) are expressed in terms of the new
coordinates (x′1, x

′
2) with respect to (v1, v2) by(

x1

x2

)
=

(
1 −1
1 1

)(
x′1
x′2

)
,

and the new coordinates (x′1, x
′
2) with respect to (v1, v2) are expressed in terms of the old

coordinates (x1, x2) with respect to (u1, u2) by(
x′1
x′2

)
=

(
1/2 1/2
−1/2 1/2

)(
x1

x2

)
.

Example 3.2. Let E = F = R[X]3 be the set of polynomials of degree at most 3,
and consider the bases U = (1, x, x2, x3) and V = (B3

0(x), B3
1(x), B3

2(x), B3
3(x)), where

B3
0(x), B3

1(x), B3
2(x), B3

3(x) are the Bernstein polynomials of degree 3, given by

B3
0(x) = (1− x)3 B3

1(x) = 3(1− x)2x B3
2(x) = 3(1− x)x2 B3

3(x) = x3.

By expanding the Bernstein polynomials, we find that the change of basis matrix PV,U is
given by

PV,U =


1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

 .
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We also find that the inverse of PV,U is

P−1
V,U =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

 .

Therefore, the coordinates of the polynomial 2x3 − x+ 1 over the basis V are
1

2/3
1/3
2

 =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1




1
−1
0
2

 ,

and so

2x3 − x+ 1 = B3
0(x) +

2

3
B3

1(x) +
1

3
B3

2(x) + 2B3
3(x).

Our next example is the Haar wavelets, a fundamental tool in signal processing.

3.3 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in R4. Wavelets play an important role in audio
and video signal processing, especially for compressing long signals into much smaller ones
than still retain enough information so that when they are played, we can’t see or hear any
difference.

Consider the four vectors w1, w2, w3, w4 given by

w1 =


1
1
1
1

 w2 =


1
1
−1
−1

 w3 =


1
−1
0
0

 w4 =


0
0
1
−1

 .

Note that these vectors are pairwise orthogonal, so they are indeed linearly independent
(we will see this in a later chapter). Let W = {w1, w2, w3, w4} be the Haar basis , and let
U = {e1, e2, e3, e4} be the canonical basis of R4. The change of basis matrix W = PW,U from
U to W is given by

W =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,

and we easily find that the inverse of W is given by

W−1 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 .
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So, the vector v = (6, 4, 5, 1) over the basis U becomes c = (c1, c2, c3, c4) over the Haar basis
W , with 

c1

c2

c3

c4

 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1




6
4
5
1

 =


4
1
1
2

 .

Given a signal v = (v1, v2, v3, v4), we first transform v into its coefficients c = (c1, c2, c3, c4)
over the Haar basis by computing c = W−1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coefficient c1 corresponds to the background
of the image (or of the sound). Then, c2 gives the coarse details of v, whereas, c3 gives the
details in the first part of v, and c4 gives the details in the second half of v.

Reconstruction of the signal consists in computing v = Wc. The trick for good compres-
sion is to throw away some of the coefficients of c (set them to zero), obtaining a compressed
signal ĉ, and still retain enough crucial information so that the reconstructed signal v̂ = Wĉ
looks almost as good as the original signal v. Thus, the steps are:

input v −→ coefficients c = W−1v −→ compressed ĉ −→ compressed v̂ = Wĉ.

This kind of compression scheme makes modern video conferencing possible.

It turns out that there is a faster way to find c = W−1v, without actually using W−1.
This has to do with the multiscale nature of Haar wavelets.

Given the original signal v = (6, 4, 5, 1) shown in Figure 3.1, we compute averages and
half differences obtaining Figure 3.2. We get the coefficients c3 = 1 and c4 = 2. Then,

6 4 5 1

Figure 3.1: The original signal v

again we compute averages and half differences obtaining Figure 3.3. We get the coefficients
c1 = 4 and c2 = 1. Note that the original signal v can be reconstruced from the two signals
in Figure 3.2, and the signal on the left of Figure 3.2 can be reconstructed from the two
signals in Figure 3.3.
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5 5 3 3

1

−1

2

−2

Figure 3.2: First averages and first half differences

4 4 4 4
1 1

−1 −1

Figure 3.3: Second averages and second half differences

This method can be generalized to signals of any length 2n. The previous case corresponds
to n = 2. Let us consider the case n = 3. The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is
given by the matrix

W =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


.

The columns of this matrix are orthogonal, and it is easy to see that

W−1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is beginning to emerge. It looks like the second Haar basis vector w2 is the
“mother” of all the other basis vectors, except the first, whose purpose is to perform aver-
aging. Indeed, in general, given

w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸
2n

,

the other Haar basis vectors are obtained by a “scaling and shifting process.” Starting from
w2, the scaling process generates the vectors

w3, w5, w9, . . . , w2j+1, . . . , w2n−1+1,
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such that w2j+1+1 is obtained from w2j+1 by forming two consecutive blocks of 1 and −1
of half the size of the blocks in w2j+1, and setting all other entries to zero. Observe that
w2j+1 has 2j blocks of 2n−j elements. The shifting process consists in shifting the blocks of
1 and −1 in w2j+1 to the right by inserting a block of (k − 1)2n−j zeros from the left, with
0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Thus, we obtain the following formula for w2j+k:

w2j+k(i) =


0 1 ≤ i ≤ (k − 1)2n−j

1 (k − 1)2n−j + 1 ≤ i ≤ (k − 1)2n−j + 2n−j−1

−1 (k − 1)2n−j + 2n−j−1 + 1 ≤ i ≤ k2n−j

0 k2n−j + 1 ≤ i ≤ 2n,

with 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ 2j. Of course

w1 = (1, . . . , 1)︸ ︷︷ ︸
2n

.

The above formulae look a little better if we change our indexing slightly by letting k vary
from 0 to 2j − 1, and using the index j instead of 2j.

Definition 3.5. The vectors of the Haar basis of dimension 2n are denoted by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n−1
2n−1−1,

where

hjk(i) =


0 1 ≤ i ≤ k2n−j

1 k2n−j + 1 ≤ i ≤ k2n−j + 2n−j−1

−1 k2n−j + 2n−j−1 + 1 ≤ i ≤ (k + 1)2n−j

0 (k + 1)2n−j + 1 ≤ i ≤ 2n,

with 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ 2j − 1. The 2n × 2n matrix whose columns are the vectors

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n−1
2n−1−1,

(in that order), is called the Haar matrix of dimension 2n, and is denoted by Wn.

It turns out that there is a way to understand these formulae better if we interpret a
vector u = (u1, . . . , um) as a piecewise linear function over the interval [0, 1).

Definition 3.6. Given a vector u = (u1, . . . , um), the piecewise linear function plf(u) is
defined such that

plf(u)(x) = ui,
i− 1

m
≤ x <

i

m
, 1 ≤ i ≤ m.

In words, the function plf(u) has the value u1 on the interval [0, 1/m), the value u2 on
[1/m, 2/m), etc., and the value um on the interval [(m− 1)/m, 1).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

Figure 3.4: The piecewise linear function plf(u)

For example, the piecewise linear function associated with the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3)

is shown in Figure 3.4.
Then, each basis vector hjk corresponds to the function

ψjk = plf(hjk).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1,−1, . . . ,−1)︸ ︷︷ ︸

2n

yield the same piecewise linear function ψ given by

ψ(x) =


1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 otherwise,

whose graph is shown in Figure 3.5. Then, it is easy to see that ψjk is given by the simple
expression

ψjk(x) = ψ(2jx− k), 0 ≤ j ≤ n− 1, 0 ≤ k ≤ 2j − 1.

The above formula makes it clear that ψjk is obtained from ψ by scaling and shifting.

Definition 3.7. The function φ0
0 = plf(w1) is the piecewise linear function with the constant

value 1 on [0, 1), and the functions ψjk = plf(hjk) together with φ0
0 are known as the Haar

wavelets .

Rather than using W−1 to convert a vector u to a vector c of coefficients over the Haar
basis, and the matrix W to reconstruct the vector u from its Haar coefficients c, we can use
faster algorithms that use averaging and differencing.
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Figure 3.5: The Haar wavelet ψ

If c is a vector of Haar coefficients of dimension 2n, we compute the sequence of vectors
u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i− 1) = uj(i) + uj(2j + i)

uj+1(2i) = uj(i)− uj(2j + i),

for j = 0, . . . , n− 1 and i = 1, . . . , 2j. The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence of vectors cn, cn−1, . . . , c0 as
follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i− 1) + cj+1(2i))/2

cj(2j + i) = (cj+1(2i− 1)− cj+1(2i))/2,

for j = n− 1, . . . , 0 and i = 1, . . . , 2j. The vector over the Haar basis is c = c0.

We leave it as an exercise to implement the above programs in Matlab using two variables
u and c, and by building iteratively 2j. Here is an example of the conversion of a vector to
its Haar coefficients for n = 3.

Given the sequence u = (31, 29, 23, 17,−6,−8,−2,−4), we get the sequence

c3 = (31, 29, 23, 17,−6,−8,−2,−4)

c2 = (30, 20,−7,−3, 1, 3, 1, 1)

c1 = (25,−5, 5,−2, 1, 3, 1, 1)

c0 = (10, 15, 5,−2, 1, 3, 1, 1),
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so c = (10, 15, 5,−2, 1, 3, 1, 1). Conversely, given c = (10, 15, 5,−2, 1, 3, 1, 1), we get the
sequence

u0 = (10, 15, 5,−2, 1, 3, 1, 1)

u1 = (25,−5, 5,−2, 1, 3, 1, 1)

u2 = (30, 20,−7,−3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17,−6,−8,−2,−4),

which gives back u = (31, 29, 23, 17,−6,−8,−2,−4).

There is another recursive method for constucting the Haar matrix Wn of dimension 2n

that makes it clearer why the columns of Wn are pairwise orthogonal, and why the above
algorithms are indeed correct (which nobody seems to prove!). If we split Wn into two
2n × 2n−1 matrices, then the second matrix containing the last 2n−1 columns of Wn has a
very simple structure: it consists of the vector

(1,−1, 0, . . . , 0)︸ ︷︷ ︸
2n

and 2n−1 − 1 shifted copies of it, as illustrated below for n = 3:

1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1


.

Observe that this matrix can be obtained from the identity matrix I2n−1 , in our example

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

by forming the 2n × 2n−1 matrix obtained by replacing each 1 by the column vector(
1
−1

)
and each zero by the column vector (

0
0

)
.
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Now, the first half of Wn, that is the matrix consisting of the first 2n−1 columns of Wn, can
be obtained from Wn−1 by forming the 2n× 2n−1 matrix obtained by replacing each 1 by the
column vector (

1
1

)
,

each −1 by the column vector (
−1
−1

)
,

and each zero by the column vector (
0
0

)
.

For n = 3, the first half of W3 is the matrix

1 1 1 0
1 1 1 0
1 1 −1 0
1 1 −1 0
1 −1 0 1
1 −1 0 1
1 −1 0 −1
1 −1 0 −1


which is indeed obtained from

W2 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


using the process that we just described.

These matrix manipulations can be described conveniently using a product operation on
matrices known as the Kronecker product.

Definition 3.8. Given a m×n matrix A = (aij) and a p×q matrix B = (bij), the Kronecker
product (or tensor product) A⊗B of A and B is the mp× nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
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It can be shown that ⊗ is associative and that

(A⊗B)(C ⊗D) = AC ⊗BD
(A⊗B)> = A> ⊗B>,

whenever AC and BD are well defined. Then, it is immediately verified that Wn is given by
the following neat recursive equations:

Wn =

(
Wn−1 ⊗

(
1
1

)
I2n−1 ⊗

(
1
−1

))
,

with W0 = (1). If we let

B1 = 2

(
1 0
0 1

)
=

(
2 0
0 2

)
and for n ≥ 1,

Bn+1 = 2

(
Bn 0
0 I2n

)
,

then it is not hard to obtain a rigorous proof of the equation

W>
n Wn = Bn, for all n ≥ 1.

The above equation offers a clean justification of the fact that the columns of Wn are pairwise
orthogonal.

Observe that the right block (of size 2n × 2n−1) shows clearly how the detail coefficients
in the second half of the vector c are added and subtracted to the entries in the first half of
the partially reconstructed vector after n− 1 steps.

An important and attractive feature of the Haar basis is that it provides a multiresolu-
tion analysis of a signal. Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector of its
Haar coefficients, the coefficients with low index give coarse information about u, and the
coefficients with high index represent fine information. For example, if u is an audio signal
corresponding to a Mozart concerto played by an orchestra, c1 corresponds to the “back-
ground noise,” c2 to the bass, c3 to the first cello, c4 to the second cello, c5, c6, c7, c7 to the
violas, then the violins, etc. This multiresolution feature of wavelets can be exploited to
compress a signal, that is, to use fewer coefficients to represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8,−1.1,−1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).
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The piecewise-linear curves corresponding to u and c are shown in Figure 3.6. Since some of
the coefficients in c are small (smaller than or equal to 0.2) we can compress c by replacing
them by 0. We get

c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3,−1,−1).

The piecewise-linear curves corresponding to u2 and c2 are shown in Figure 3.7.
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Figure 3.6: A signal and its Haar transform
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Figure 3.7: A compressed signal and its compressed Haar transform

An interesting (and amusing) application of the Haar wavelets is to the compression of
audio signals. It turns out that if your type load handel in Matlab an audio file will be
loaded in a vector denoted by y, and if you type sound(y), the computer will play this
piece of music. You can convert y to its vector of Haar coefficients c. The length of y is
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Figure 3.8: The signal “handel” and its Haar transform

73113, so first tuncate the tail of y to get a vector of length 65536 = 216. A plot of the
signals corresponding to y and c is shown in Figure 3.8. Then, run a program that sets all
coefficients of c whose absolute value is less that 0.05 to zero. This sets 37272 coefficients
to 0. The resulting vector c2 is converted to a signal y2. A plot of the signals corresponding
to y2 and c2 is shown in Figure 3.9. When you type sound(y2), you find that the music
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Figure 3.9: The compressed signal “handel” and its Haar transform

doesn’t differ much from the original, although it sounds less crisp. You should play with
other numbers greater than or less than 0.05. You should hear what happens when you type
sound(c). It plays the music corresponding to the Haar transform c of y, and it is quite
funny.

Another neat property of the Haar transform is that it can be instantly generalized to
matrices (even rectangular) without any extra effort! This allows for the compression of
digital images. But first, we address the issue of normalization of the Haar coefficients. As
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we observed earlier, the 2n × 2n matrix Wn of Haar basis vectors has orthogonal columns,
but its columns do not have unit length. As a consequence, W>

n is not the inverse of Wn,
but rather the matrix

W−1
n = DnW

>
n

with Dn = diag
(

2−n, 2−n︸︷︷︸
20

, 2−(n−1), 2−(n−1)︸ ︷︷ ︸
21

, 2−(n−2), . . . , 2−(n−2)︸ ︷︷ ︸
22

, . . . , 2−1, . . . , 2−1︸ ︷︷ ︸
2n−1

)
.

Definition 3.9. The orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors, with

D
1
2
n = diag

(
2−

n
2 , 2−

n
2︸︷︷︸

20

, 2−
n−1
2 , 2−

n−1
2︸ ︷︷ ︸

21

, 2−
n−2
2 , . . . , 2−

n−2
2︸ ︷︷ ︸

22

, . . . , 2−
1
2 , . . . , 2−

1
2︸ ︷︷ ︸

2n−1

)
is called the normalized Haar transform matrix. Given a vector (signal) u, we call c = H>n u
the normalized Haar coefficients of u.

Because Hn is orthogonal, H−1
n = H>n .

Then, a moment of reflexion shows that we have to slightly modify the algorithms to
compute H>n u and Hnc as follows: When computing the sequence of ujs, use

uj+1(2i− 1) = (uj(i) + uj(2j + i))/
√

2

uj+1(2i) = (uj(i)− uj(2j + i))/
√

2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i− 1) + cj+1(2i))/
√

2

cj(2j + i) = (cj+1(2i− 1)− cj+1(2i))/
√

2.

Note that things are now more symmetric, at the expense of a division by
√

2. However, for
long vectors, it turns out that these algorithms are numerically more stable.

Remark: Some authors (for example, Stollnitz, Derose and Salesin [101]) rescale c by 1/
√

2n

and u by
√

2n. This is because the norm of the basis functions ψjk is not equal to 1 (under

the inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt). The normalized basis functions are the functions√

2jψjk.

Let us now explain the 2D version of the Haar transform. We describe the version using
the matrix Wn, the method using Hn being identical (except that H−1

n = H>n , but this does
not hold for W−1

n ). Given a 2m × 2n matrix A, we can first convert the rows of A to their
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Haar coefficients using the Haar transform W−1
n , obtaining a matrix B, and then convert the

columns of B to their Haar coefficients, using the matrix W−1
m . Because columns and rows

are exchanged in the first step,

B = A(W−1
n )>,

and in the second step C = W−1
m B, thus, we have

C = W−1
m A(W−1

n )> = DmW
>
mAWnDn.

In the other direction, given a matrix C of Haar coefficients, we reconstruct the matrix A
(the image) by first applying Wm to the columns of C, obtaining B, and then W>

n to the
rows of B. Therefore

A = WmCW
>
n .

Of course, we dont actually have to invert Wm and Wn and perform matrix multiplications.
We just have to use our algorithms using averaging and differencing. Here is an example.

If the data matrix (the image) is the 8× 8 matrix

A =



64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1


,

then applying our algorithms, we find that

C =



32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0.5 0.5 27 −25 23 −21
0 0 −0.5 −0.5 −11 9 −7 5
0 0 0.5 0.5 −5 7 −9 11
0 0 −0.5 −0.5 21 −23 25 −27


.

As we can see, C has more zero entries than A; it is a compressed version of A. We can
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further compress C by setting to 0 all entries of absolute value at most 0.5. Then, we get

C2 =



32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 −4 4 −4
0 0 0 0 4 −4 4 −4
0 0 0 0 27 −25 23 −21
0 0 0 0 −11 9 −7 5
0 0 0 0 −5 7 −9 11
0 0 0 0 21 −23 25 −27


.

We find that the reconstructed image is

A2 =



63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5


,

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command, image(X) (also imagesc(X), which
often does a better job), which displays the matrix X has an image in which each entry
is shown as a little square whose gray level is proportional to the numerical value of that
entry (lighter if the value is higher, darker if the value is closer to zero; negative values are
treated as zero). The images corresponding to A and C are shown in Figure 3.10. The

Figure 3.10: An image and its Haar transform

compressed images corresponding to A2 and C2 are shown in Figure 3.11. The compressed
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Figure 3.11: Compressed image and its Haar transform

versions appear to be indistinguishable from the originals!

If we use the normalized matrices Hm and Hn, then the equations relating the image
matrix A and its normalized Haar transform C are

C = H>mAHn

A = HmCH
>
n .

The Haar transform can also be used to send large images progressively over the internet.
Indeed, we can start sending the Haar coefficients of the matrix C starting from the coarsest
coefficients (the first column from top down, then the second column, etc.), and at the
receiving end we can start reconstructing the image as soon as we have received enough
data.

Observe that instead of performing all rounds of averaging and differencing on each row
and each column, we can perform partial encoding (and decoding). For example, we can
perform a single round of averaging and differencing for each row and each column. The
result is an image consisting of four subimages, where the top left quarter is a coarser version
of the original, and the rest (consisting of three pieces) contain the finest detail coefficients.
We can also perform two rounds of averaging and differencing, or three rounds, etc. The
second round of averaging and differencing is applied to the top left quarter of the image.
Generally, the kth round is applied to the 2m+1−k × 2n+1−k submatrix consisting of the first
2m+1−k rows and the first 2n+1−k columns (1 ≤ k ≤ n) of the matrix obtained at the end of
the previous round. This process is illustrated on the image shown in Figure 3.12. The result
of performing one round, two rounds, three rounds, and nine rounds of averaging is shown in
Figure 3.13. Since our images have size 512× 512, nine rounds of averaging yields the Haar
transform, displayed as the image on the bottom right. The original image has completely
disappeared! We leave it as a fun exercise to modify the algorithms involving averaging and
differencing to perform k rounds of averaging/differencing. The reconstruction algorithm is
a little tricky.
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Figure 3.12: Original drawing by Durer

A nice and easily accessible account of wavelets and their uses in image processing and
computer graphics can be found in Stollnitz, Derose and Salesin [101]. A very detailed
account is given in Strang and and Nguyen [104], but this book assumes a fair amount of
background in signal processing.

We can find easily a basis of 2n × 2n = 22n vectors wij (2n × 2n matrices) for the linear
map that reconstructs an image from its Haar coefficients, in the sense that for any matrix
C of Haar coefficients, the image matrix A is given by

A =
2n∑
i=1

2n∑
j=1

cijwij.

Indeed, the matrix wij is given by the so-called outer product

wij = wi(wj)
>.

Similarly, there is a basis of 2n × 2n = 22n vectors hij (2n × 2n matrices) for the 2D Haar
transform, in the sense that for any matrix A, its matrix C of Haar coefficients is given by

C =
2n∑
i=1

2n∑
j=1

aijhij.
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Figure 3.13: Haar tranforms after one, two, three, and nine rounds of averaging
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If the columns of W−1 are w′1, . . . , w
′
2n , then

hij = w′i(w
′
j)
>.

We leave it as exercise to compute the bases (wij) and (hij) for n = 2, and to display the
corresponding images using the command imagesc.

3.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the
following proposition.

Proposition 3.4. Let E and F be vector spaces, let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n)

be two bases of E, and let V = (v1, . . . , vm) and V ′ = (v′1, . . . , v
′
m) be two bases of F . Let

P = PU ′,U be the change of basis matrix from U to U ′, and let Q = PV ′,V be the change of
basis matrix from V to V ′. For any linear map f : E → F , let M(f) = MU ,V(f) be the matrix
associated to f w.r.t. the bases U and V, and let M ′(f) = MU ′,V ′(f) be the matrix associated
to f w.r.t. the bases U ′ and V ′. We have

M ′(f) = Q−1M(f)P,

or more explicitly

MU ′,V ′(f) = P−1
V ′,VMU ,V(f)PU ′,U = PV,V ′MU ,V(f)PU ′,U .

Proof. Since f : E → F can be written as f = idF ◦ f ◦ idE, since P is the matrix of idE
w.r.t. the bases (u′1, . . . , u

′
n) and (u1, . . . , un), and Q−1 is the matrix of idF w.r.t. the bases

(v1, . . . , vm) and (v′1, . . . , v
′
m), by Proposition 3.2, we have M ′(f) = Q−1M(f)P .

As a corollary, we get the following result.

Corollary 3.5. Let E be a vector space, and let U = (u1, . . . , un) and U ′ = (u′1, . . . , u
′
n) be

two bases of E. Let P = PU ′,U be the change of basis matrix from U to U ′. For any linear
map f : E → E, let M(f) = MU(f) be the matrix associated to f w.r.t. the basis U , and let
M ′(f) = MU ′(f) be the matrix associated to f w.r.t. the basis U ′. We have

M ′(f) = P−1M(f)P,

or more explicitly,

MU ′(f) = P−1
U ′,UMU(f)PU ′,U = PU ,U ′MU(f)PU ′,U .
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Example 3.3. Let E = R2, U = (e1, e2) where e1 = (1, 0) and e2 = (0, 1) are the canonical
basis vectors, let V = (v1, v2) = (e1, e1 − e2), and let

A =

(
2 1
0 1

)
.

The change of basis matrix P = PV,U from U to V is

P =

(
1 1
0 −1

)
,

and we check that
P−1 = P.

Therefore, in the basis V , the matrix representing the linear map f defined by A is

A′ = P−1AP = PAP =

(
1 1
0 −1

)(
2 1
0 1

)(
1 1
0 −1

)
=

(
2 0
0 1

)
= D,

a diagonal matrix. In the basis V , it is clear what the action of f is: it is a stretch by a
factor of 2 in the v1 direction and it is the identity in the v2 direction. Observe that v1 and
v2 are not orthogonal.

What happened is that we diagonalized the matrix A. The diagonal entries 2 and 1 are
the eigenvalues of A (and f), and v1 and v2 are corresponding eigenvectors . We will come
back to eigenvalues and eigenvectors later on.

The above example showed that the same linear map can be represented by different
matrices. This suggests making the following definition:

Definition 3.10. Two n × n matrices A and B are said to be similar iff there is some
invertible matrix P such that

B = P−1AP.

It is easily checked that similarity is an equivalence relation. From our previous consid-
erations, two n×n matrices A and B are similar iff they represent the same linear map with
respect to two different bases. The following surprising fact can be shown: Every square
matrix A is similar to its transpose A>. The proof requires advanced concepts (the Jordan
form, or similarity invariants).

If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of E, the change of basis matrix

P = PV,U =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann
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from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth column consists of the coordinates
of vj over the basis (u1, . . . , un), which means that

vj =
n∑
i=1

aijui.

It is natural to extend the matrix notation and to express the vector

v1
...
vn

 in En as the

product of a matrix times the vector

u1
...
un

 in En, namely as


v1

v2
...
vn

 =


a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann



u1

u2
...
un

 ,

but notice that the matrix involved is not P , but its transpose P>.

This observation has the following consequence: if U = (u1, . . . , un) and V = (v1, . . . , vn)
are two bases of E and if v1

...
vn

 = A

u1
...
un

 ,

that is,

vi =
n∑
j=1

aijuj,

for any vector w ∈ E, if

w =
n∑
i=1

xiui =
n∑
k=1

ykvk,

then x1
...
xn

 = A>

y1
...
yn

 ,

and so y1
...
yn

 = (A>)−1

x1
...
xn

 .
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It is easy to see that (A>)−1 = (A−1)>. Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and
W = (w1, . . . , wn) are three bases of E, and if the change of basis matrix from U to V is
P = PV,U and the change of basis matrix from V to W is Q = PW,V , thenv1

...
vn

 = P>

u1
...
un

 ,

w1
...
wn

 = Q>

v1
...
vn

 ,

so w1
...
wn

 = Q>P>

u1
...
un

 = (PQ)>

u1
...
un

 ,

which means that the change of basis matrix PW,U from U to W is PQ. This proves that

PW,U = PV,UPW,V .

Even though matrices are indispensable since they are the major tool in applications of
linear algebra, one should not lose track of the fact that

linear maps are more fundamental, because they are intrinsic
objects that do not depend on the choice of bases.

Consequently, we advise the reader to try to think in terms of
linear maps rather than reduce everthing to matrices.

In our experience, this is particularly effective when it comes to proving results about
linear maps and matrices, where proofs involving linear maps are often more “conceptual.”
These proofs are usually more general because they do not depend on the fact that the
dimension is finite. Also, instead of thinking of a matrix decomposition as a purely algebraic
operation, it is often illuminating to view it as a geometric decomposition. This is the case of
the SVD, which in geometric term says that every linear map can be factored as a rotation,
followed by a rescaling along orthogonal axes, and then another rotation.

After all, a

a matrix is a representation of a linear map
and most decompositions of a matrix reflect the fact that with a suitable choice of a basis
(or bases), the linear map is a represented by a matrix having a special shape. The problem
is then to find such bases.

Still, for the beginner, matrices have a certain irresistible appeal, and we confess that
it takes a certain amount of practice to reach the point where it becomes more natural to
deal with linear maps. We still recommend it! For example, try to translate a result stated
in terms of matrices into a result stated in terms of linear maps. Whenever we tried this
exercise, we learned something.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on space.
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3.5 Summary

The main concepts and results of this chapter are listed below:

• The representation of linear maps by matrices .

• The vector space of linear maps HomK(E,F ).

• The matrix representation mapping M : Hom(E,F ) → Mn,p and the representation
isomorphism (Proposition 3.2).

• Haar basis vectors and a glimpse at Haar wavelets .

• Kronecker product (or tensor product) of matrices.

• Change of basis matrix and Proposition 3.4.
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Chapter 4

Direct Sums, Affine Maps

4.1 Direct Products

There are some useful ways of forming new vector spaces from older ones.

Definition 4.1. Given p ≥ 2 vector spaces E1, . . . , Ep, the product F = E1 × · · · × Ep can
be made into a vector space by defining addition and scalar multiplication as follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

λ(u1, . . . , up) = (λu1, . . . , λup),

for all ui, vi ∈ Ei and all λ ∈ R. The zero vector of E1 × · · · × Ep is the p-tuple

( 0, . . . , 0︸ ︷︷ ︸
p

),

where the ith zero is the zero vector of Ei.

With the above addition and multiplication, the vector space F = E1× · · ·×Ep is called
the direct product of the vector spaces E1, . . . , Ep.

As a special case, when E1 = · · · = Ep = R, we find again the vector space F = Rp. The
projection maps pri : E1 × · · · × Ep → Ei given by

pri(u1, . . . , up) = ui

are clearly linear. Similarly, the maps ini : Ei → E1 × · · · × Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

103
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are injective and linear. If dim(Ei) = ni and if (ei1, . . . , e
i
ni

) is a basis of Ei for i = 1, . . . , p,
then it is easy to see that the n1 + · · ·+ np vectors

(e1
1, 0, . . . , 0), . . . , (e1

n1
, 0, . . . , 0),

...
...

...
(0, . . . , 0, ei1, 0, . . . , 0), . . . , (0, . . . , 0, eini , 0, . . . , 0),

...
...

...
(0, . . . , 0, ep1), . . . , (0, . . . , 0, epnp)

form a basis of E1 × · · · × Ep, and so

dim(E1 × · · · × Ep) = dim(E1) + · · ·+ dim(Ep).

4.2 Sums and Direct Sums

Let us now consider a vector space E and p subspaces U1, . . . , Up of E. We have a map

a : U1 × · · · × Up → E

given by
a(u1, . . . , up) = u1 + · · ·+ up,

with ui ∈ Ui for i = 1, . . . , p. It is clear that this map is linear, and so its image is a subspace
of E denoted by

U1 + · · ·+ Up

and called the sum of the subspaces U1, . . . , Up. By definition,

U1 + · · ·+ Up = {u1 + · · ·+ up | ui ∈ Ui, 1 ≤ i ≤ p},

and it is immediately verified that U1 + · · · + Up is the smallest subspace of E containing
U1, . . . , Up. This also implies that U1 + · · ·+ Up does not depend on the order of the factors
Ui; in particular,

U1 + U2 = U2 + U1.

If the map a is injective, then by Proposition 2.12 we have Ker a = {( 0, . . . , 0︸ ︷︷ ︸
p

)} where

each 0 is the zero vector of E, which means that if ui ∈ Ui for i = 1, . . . , p and if

u1 + · · ·+ up = 0,

then (u1, . . . , up) = (0, . . . , 0), that is, u1 = 0, . . . , up = 0. In this case, every u ∈ U1 +· · ·+Up
has a unique expression as a sum

u = u1 + · · ·+ up,
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with ui ∈ Ui, for i = 1, . . . , p. Indeed, if

u = v1 + · · ·+ vp = w1 + · · ·+ wp,

with vi, wi ∈ Ui, for i = 1, . . . , p, then we have

w1 − v1 + · · ·+ wp − vp = 0,

and since vi, wi ∈ Ui and each Ui is a subspace, wi−vi ∈ Ui. The injectivity of a implies that
wi−vi = 0, that is, wi = vi for i = 1, . . . , p, which shows the uniqueness of the decomposition
of u.

It is also clear that any p nonzero vectors u1, . . . , up with ui ∈ Ui are linearly independent.
To see this, assume that

λ1u1 + · · ·+ λpup = 0

for some λi ∈ R. Since ui ∈ Ui and Ui is a subspace, λiui ∈ Ui, and the injectivity of a
implies that λiui = 0, for i = 1, . . . , p. Since ui 6= 0, we must have λi = 0 for i = 1, . . . , p;
that is, u1, . . . , up with ui ∈ Ui and ui 6= 0 are linearly independent.

Observe that if a is injective, then we must have Ui ∩Uj = (0) whenever i 6= j. However,
this condition is generally not sufficient if p ≥ 3. For example, if E = R2 and U1 the line
spanned by e1 = (1, 0), U2 is the line spanned by d = (1, 1), and U3 is the line spanned by
e2 = (0, 1), then U1∩U2 = U1∩U3 = U2∩U3 = {(0, 0)}, but U1+U2 = U1+U3 = U2+U3 = R2,
so U1 + U2 + U3 is not a direct sum. For example, d is expressed in two different ways as

d = (1, 1) = (1, 0) + (0, 1) = e1 + e2.

Definition 4.2. For any vector space E and any p ≥ 2 subspaces U1, . . . , Up of E, if the
map a defined above is injective, then the sum U1 + · · ·+ Up is called a direct sum and it is
denoted by

U1 ⊕ · · · ⊕ Up.
The space E is the direct sum of the subspaces Ui if

E = U1 ⊕ · · · ⊕ Up.

As in the case of a sum, U1 ⊕ U2 = U2 ⊕ U1. Observe that when the map a is injective,
then it is a linear isomorphism between U1 × · · · × Up and U1 ⊕ · · · ⊕ Up. The difference is
that U1 × · · · × Up is defined even if the spaces Ui are not assumed to be subspaces of some
common space.

If E is a direct sum E = U1⊕· · ·⊕Up, since any p nonzero vectors u1, . . . , up with ui ∈ Ui
are linearly independent, if we pick a basis (uk)k∈Ij in Uj for j = 1, . . . , p, then (ui)i∈I with
I = I1 ∪ · · · ∪ Ip is a basis of E. Intuitively, E is split into p independent subspaces.
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Conversely, given a basis (ui)i∈I of E, if we partition the index set I as I = I1 ∪ · · · ∪ Ip,
then each subfamily (uk)k∈Ij spans some subspace Uj of E, and it is immediately verified
that we have a direct sum

E = U1 ⊕ · · · ⊕ Up.

Let f : E → E be a linear map. If f(Uj) ⊆ Uj we say that Uj is invariant under f .
Assume that E is finite-dimensional, a direct sum E = U1 ⊕ · · · ⊕ Up, and that each Uj is
invariant under f . If we pick a basis (ui)i∈I as above with I = I1 ∪ · · · ∪ Ip and with each
(uk)k∈Ij a basis of Uj, since each Uj is invariant under f , the image f(uk) of every basis
vector uk with k ∈ Ij belongs to Uj, so the matrix A representing f over the basis (ui)i∈I is
a block diagonal matrix of the form

A =


A1

A2

. . .

Ap

 ,

with each block Aj a dj × dj-matrix with dj = dim(Uj) and all other entries equal to 0. If
dj = 1 for j = 1, . . . , p, the matrix A is a diagonal matrix.

There are natural injections from each Ui to E denoted by ini : Ui → E.

Now, if p = 2, it is easy to determine the kernel of the map a : U1 × U2 → E. We have

a(u1, u2) = u1 + u2 = 0 iff u1 = −u2, u1 ∈ U1, u2 ∈ U2,

which implies that
Ker a = {(u,−u) | u ∈ U1 ∩ U2}.

Now, U1 ∩ U2 is a subspace of E and the linear map u 7→ (u,−u) is clearly an isomorphism
between U1 ∩U2 and Ker a, so Ker a is isomorphic to U1 ∩U2. As a consequence, we get the
following result:

Proposition 4.1. Given any vector space E and any two subspaces U1 and U2, the sum
U1 + U2 is a direct sum iff U1 ∩ U2 = (0).

An interesting illustration of the notion of direct sum is the decomposition of a square
matrix into its symmetric part and its skew-symmetric part. Recall that an n × n matrix
A ∈ Mn is symmetric if A> = A, skew -symmetric if A> = −A. It is clear that

S(n) = {A ∈ Mn | A> = A} and Skew(n) = {A ∈ Mn | A> = −A}

are subspaces of Mn, and that S(n)∩Skew(n) = (0). Observe that for any matrix A ∈ Mn,
the matrix H(A) = (A + A>)/2 is symmetric and the matrix S(A) = (A − A>)/2 is skew-
symmetric. Since

A = H(A) + S(A) =
A+ A>

2
+
A− A>

2
,
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we see that Mn = S(n) + Skew(n), and since S(n)∩Skew(n) = (0), we have the direct sum

Mn = S(n)⊕ Skew(n).

Remark: The vector space Skew(n) of skew-symmetric matrices is also denoted by so(n).
It is the Lie algebra of the group SO(n).

Proposition 4.1 can be generalized to any p ≥ 2 subspaces at the expense of notation.
The proof of the following proposition is left as an exercise.

Proposition 4.2. Given any vector space E and any p ≥ 2 subspaces U1, . . . , Up, the fol-
lowing properties are equivalent:

(1) The sum U1 + · · ·+ Up is a direct sum.

(2) We have

Ui ∩
( p∑
j=1,j 6=i

Uj

)
= (0), i = 1, . . . , p.

(3) We have

Ui ∩
( i−1∑

j=1

Uj

)
= (0), i = 2, . . . , p.

Because of the isomorphism

U1 × · · · × Up ≈ U1 ⊕ · · · ⊕ Up,

we have

Proposition 4.3. If E is any vector space, for any (finite-dimensional) subspaces U1, . . .,
Up of E, we have

dim(U1 ⊕ · · · ⊕ Up) = dim(U1) + · · ·+ dim(Up).

If E is a direct sum

E = U1 ⊕ · · · ⊕ Up,
since every u ∈ E can be written in a unique way as

u = u1 + · · ·+ up

with ui ∈ Ui for i = 1 . . . , p, we can define the maps πi : E → Ui, called projections , by

πi(u) = πi(u1 + · · ·+ up) = ui.
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It is easy to check that these maps are linear and satisfy the following properties:

πj ◦ πi =

{
πi if i = j

0 if i 6= j,

π1 + · · ·+ πp = idE.

For example, in the case of the direct sum

Mn = S(n)⊕ Skew(n),

the projection onto S(n) is given by

π1(A) = H(A) =
A+ A>

2
,

and the projection onto Skew(n) is given by

π2(A) = S(A) =
A− A>

2
.

Clearly, H(A)+S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and H(S(A)) = S(H(A)) =
0.

A function f such that f ◦ f = f is said to be idempotent . Thus, the projections πi are
idempotent. Conversely, the following proposition can be shown:

Proposition 4.4. Let E be a vector space. For any p ≥ 2 linear maps fi : E → E, if

fj ◦ fi =

{
fi if i = j

0 if i 6= j,

f1 + · · ·+ fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 ⊕ · · · ⊕ Up.

We also have the following proposition characterizing idempotent linear maps whose proof
is also left as an exercise.

Proposition 4.5. For every vector space E, if f : E → E is an idempotent linear map, i.e.,
f ◦ f = f , then we have a direct sum

E = Ker f ⊕ Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating the rank and the dimension of
the kernel of a linear map.
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4.3 The Rank-Nullity Theorem; Grassmann’s Relation

We begin with the following theorem which shows that given a linear map f : E → F , its
domain E is the direct sum of its kernel Ker f with some isomorphic copy of its image Im f .

Theorem 4.6. (Rank-nullity theorem) Let f : E → F be a linear map. For any choice of
a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur) be any vectors in E such that fi = f(ui), for
i = 1, . . . , r. If s : Im f → E is the unique linear map defined by s(fi) = ui, for i = 1, . . . , r,
then s is injective, f ◦ s = id, and we have a direct sum

E = Ker f ⊕ Im s

as illustrated by the following diagram:

Ker f // E = Ker f ⊕ Im s
f //

Im f ⊆ F.
s

oo

See Figure 4.1. As a consequence,

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f).

u = (0,1,1)

2

u = (1,0,1)
1

Ker f

f  = f(u  ) = (1,0)11

f  =  f(u  ) = (0, 1)2 2 f(u) = (1,1)

f(x,y,z) = (x,y)

s(x,y) = (x,y,x+y)

u = (1,1,1)

s (f(u)) = (1,1,2)

h = (0,0,-1)

Figure 4.1: Let f : E → F be the linear map from R3 to R2 given by f(x, y, z) = (x, y).
Then s : R2 → R3 is given by s(x, y) = (x, y, x + y) and maps the pink R2 isomorphically
onto the slanted pink plane of R3 whose equation is −x − y + z = 0. Theorem 4.6 shows
that R3 is the direct sum of the plane −x− y + z = 0 and the kernel of f which the orange
z-axis.

Proof. The vectors u1, . . . , ur must be linearly independent since otherwise we would have a
nontrivial linear dependence

λ1u1 + · · ·+ λrur = 0,
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and by applying f , we would get the nontrivial linear dependence

0 = λ1f(u1) + · · ·+ λrf(ur) = λ1f1 + · · ·+ λrfr,

contradicting the fact that (f1, . . . , fr) is a basis. Therefore, the unique linear map s given by
s(fi) = ui, for i = 1, . . . , r, is a linear isomorphism between Im f and its image, the subspace
spanned by (u1, . . . , ur). It is also clear by definition that f ◦ s = id. For any u ∈ E, let

h = u− (s ◦ f)(u).

Since f ◦ s = id, we have

f(h) = f(u− (s ◦ f)(u)) = f(u)− (f ◦ s ◦ f)(u) = f(u)− (id ◦ f)(u) = f(u)− f(u) = 0,

which shows that h ∈ Ker f . Since h = u− (s ◦ f)(u), it follows that

u = h+ s(f(u)),

with h ∈ Ker f and s(f(u)) ∈ Im s, which proves that

E = Ker f + Im s.

Now, if u ∈ Ker f ∩ Im s, then u = s(v) for some v ∈ F and f(u) = 0 since u ∈ Ker f . Since
u = s(v) and f ◦ s = id, we get

0 = f(u) = f(s(v)) = v,

and so u = s(v) = s(0) = 0. Thus, Ker f ∩ Im s = (0), which proves that we have a direct
sum

E = Ker f ⊕ Im s.

The equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

is an immediate consequence of the fact that the dimension is an additive property for
direct sums, that by definition the rank of f is the dimension of the image of f , and that
dim(Im s) = dim(Im f), because s is an isomorphism between Im f and Im s.

Remark: The dimension dim(Ker f) of the kernel of a linear map f is often called the
nullity of f .

We now derive some important results using Theorem 4.6.

Proposition 4.7. Given a vector space E, if U and V are any two subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ),

an equation known as Grassmann’s relation.
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Proof. Recall that U + V is the image of the linear map

a : U × V → E

given by
a(u, v) = u+ v,

and that we proved earlier that the kernel Ker a of a is isomorphic to U ∩ V . By Theorem
4.6,

dim(U × V ) = dim(Ker a) + dim(Im a),

but dim(U × V ) = dim(U) + dim(V ), dim(Ker a) = dim(U ∩ V ), and Im a = U + V , so the
Grassmann relation holds.

The Grassmann relation can be very useful to figure out whether two subspace have a
nontrivial intersection in spaces of dimension > 3. For example, it is easy to see that in R5,
there are subspaces U and V with dim(U) = 3 and dim(V ) = 2 such that U ∩ V = (0); for
example, let U be generated by the vectors (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), and V be
generated by the vectors (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). However, we claim that if dim(U) = 3
and dim(V ) = 3, then dim(U ∩ V ) ≥ 1. Indeed, by the Grassmann relation, we have

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ),

namely
3 + 3 = 6 = dim(U + V ) + dim(U ∩ V ),

and since U + V is a subspace of R5, dim(U + V ) ≤ 5, which implies

6 ≤ 5 + dim(U ∩ V ),

that is 1 ≤ dim(U ∩ V ).

As another consequence of Proposition 4.7, if U and V are two hyperplanes in a vector
space of dimension n, so that dim(U) = n− 1 and dim(V ) = n− 1, the reader should show
that

dim(U ∩ V ) ≥ n− 2,

and so, if U 6= V , then
dim(U ∩ V ) = n− 2.

Here is a characterization of direct sums that follows directly from Theorem 4.6.

Proposition 4.8. If U1, . . . , Up are any subspaces of a finite dimensional vector space E,
then

dim(U1 + · · ·+ Up) ≤ dim(U1) + · · ·+ dim(Up),

and
dim(U1 + · · ·+ Up) = dim(U1) + · · ·+ dim(Up)

iff the Uis form a direct sum U1 ⊕ · · · ⊕ Up.
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Proof. If we apply Theorem 4.6 to the linear map

a : U1 × · · · × Up → U1 + · · ·+ Up

given by a(u1, . . . , up) = u1 + · · ·+ up, we get

dim(U1 + · · ·+ Up) = dim(U1 × · · · × Up)− dim(Ker a)

= dim(U1) + · · ·+ dim(Up)− dim(Ker a),

so the inequality follows. Since a is injective iff Ker a = (0), the Uis form a direct sum iff
the second equation holds.

Another important corollary of Theorem 4.6 is the following result:

Proposition 4.9. Let E and F be two vector spaces with the same finite dimension dim(E) =
dim(F ) = n. For every linear map f : E → F , the following properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = (0).

Proof. Obviously, (a) implies (b).

If f is surjective, then Im f = F , and so dim(Im f) = n. By Theorem 4.6,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(E) = n and dim(Im f) = n, we get dim(Ker f) = 0, which means that
Ker f = (0), and so f is injective (see Proposition 2.12). This proves that (b) implies (c).

If f is injective, then by Proposition 2.12, Ker f = (0), so (c) implies (d).

Finally, assume that Ker f = (0), so that dim(Ker f) = 0 and f is injective (by Proposi-
tion 2.12). By Theorem 4.6,

dim(E) = dim(Ker f) + dim(Im f),

and since dim(Ker f) = 0, we get

dim(Im f) = dim(E) = dim(F ),

which proves that f is also surjective, and thus bijective. This proves that (d) implies (a)
and concludes the proof.
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One should be warned that Proposition 4.9 fails in infinite dimension.

Here are a few applications of Proposition 4.9. Let A be an n × n matrix and assume
that A some right inverse B, which means that B is an n× n matrix such that

AB = I.

The linear map associated with A is surjective, since for every u ∈ Rn, we have A(Bu) = u.
By Proposition 4.9, this map is bijective so B is actually the inverse of A; in particular
BA = I.

Similarly, assume that A has a left inverse B, so that

BA = I.

This time, the linear map associated with A is injective, because if Au = 0, then BAu =
B0 = 0, and since BA = I we get u = 0. Again, By Proposition 4.9, this map is bijective so
B is actually the inverse of A; in particular AB = I.

Now, assume that the linear system Ax = b has some solution for every b. Then the
linear map associated with A is surjective and by Proposition 4.9, A is invertible.

Finally, assume that the linear system Ax = b has at most one solution for every b. Then
the linear map associated with A is injective and by Proposition 4.9, A is invertible.

We also have the following basic proposition about injective or surjective linear maps.

Proposition 4.10. Let E and F be vector spaces, and let f : E → F be a linear map. If
f : E → F is injective, then there is a surjective linear map r : F → E called a retraction,
such that r ◦ f = idE. If f : E → F is surjective, then there is an injective linear map
s : F → E called a section, such that f ◦ s = idF .

Proof. Let (ui)i∈I be a basis of E. Since f : E → F is an injective linear map, by Proposition
2.13, (f(ui))i∈I is linearly independent in F . By Theorem 2.5, there is a basis (vj)j∈J of F ,
where I ⊆ J , and where vi = f(ui), for all i ∈ I. By Proposition 2.13, a linear map r : F → E
can be defined such that r(vi) = ui, for all i ∈ I, and r(vj) = w for all j ∈ (J − I), where w
is any given vector in E, say w = 0. Since r(f(ui)) = ui for all i ∈ I, by Proposition 2.13,
we have r ◦ f = idE.

Now, assume that f : E → F is surjective. Let (vj)j∈J be a basis of F . Since f : E → F
is surjective, for every vj ∈ F , there is some uj ∈ E such that f(uj) = vj. Since (vj)j∈J is a
basis of F , by Proposition 2.13, there is a unique linear map s : F → E such that s(vj) = uj.
Also, since f(s(vj)) = vj, by Proposition 2.13 (again), we must have f ◦ s = idF .

The converse of Proposition 4.10 is obvious.

The notion of rank of a linear map or of a matrix important, both theoretically and
practically, since it is the key to the solvability of linear equations. We have the following
simple proposition.
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Proposition 4.11. Given a linear map f : E → F , the following properties hold:

(i) rk(f) + dim(Ker f) = dim(E).

(ii) rk(f) ≤ min(dim(E), dim(F )).

Proof. Property (i) follows from Proposition 4.6. As for (ii), since Im f is a subspace of F , we
have rk(f) ≤ dim(F ), and since rk(f)+dim(Ker f) = dim(E), we have rk(f) ≤ dim(E).

The rank of a matrix is defined as follows.

Definition 4.3. Given a m × n-matrix A = (ai j), the rank rk(A) of the matrix A is the
maximum number of linearly independent columns of A (viewed as vectors in Rm).

In view of Proposition 2.6, the rank of a matrix A is the dimension of the subspace of
Rm generated by the columns of A. Let E and F be two vector spaces, and let (u1, . . . , un)
be a basis of E, and (v1, . . . , vm) a basis of F . Let f : E → F be a linear map, and let M(f)
be its matrix w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm). Since the rank rk(f) of f is the
dimension of Im f , which is generated by (f(u1), . . . , f(un)), the rank of f is the maximum
number of linearly independent vectors in (f(u1), . . . , f(un)), which is equal to the number
of linearly independent columns of M(f), since F and Rm are isomorphic. Thus, we have
rk(f) = rk(M(f)), for every matrix representing f .

We will see later, using duality, that the rank of a matrix A is also equal to the maximal
number of linearly independent rows of A.

4.4 Affine Maps

We showed in Section 2.7 that every linear map f must send the zero vector to the zero
vector; that is,

f(0) = 0.

Yet, for any fixed nonzero vector u ∈ E (where E is any vector space), the function tu given
by

tu(x) = x+ u, for all x ∈ E
shows up in pratice (for example, in robotics). Functions of this type are called translations .
They are not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and translations occur naturally in many
applications (robotics, computer vision, etc.), so it is necessary to understand some basic
properties of these functions. For this, the notion of affine combination turns out to play a
key role.
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Recall from Section 2.7 that for any vector space E, given any family (ui)i∈I of vectors
ui ∈ E, an affine combination of the family (ui)i∈I is an expression of the form∑

i∈I
λiui with

∑
i∈I

λi = 1,

where (λi)i∈I is a family of scalars.

A linear combination places no restriction on the scalars involved, but an affine com-
bination is a linear combination with the restriction that the scalars λi must add up to 1.
Nevertheless, a linear combination can always be viewed as an affine combination using the
following trick involving 0. For any family (ui)i∈I of vectors in E and for any family of
scalars (λi)i∈I , we can write the linear combination

∑
i∈I λiui as an affine combination as

follows: ∑
i∈I

λiui =
∑
i∈I

λiui +

(
1−

∑
i∈I

λi

)
0.

Affine combinations are also called barycentric combinations .

Although this is not obvious at first glance, the condition that the scalars λi add up to
1 ensures that affine combinations are preserved under translations. To make this precise,
consider functions f : E → F , where E and F are two vector spaces, such that there is some
linear map h : E → F and some fixed vector b ∈ F (a translation vector), such that

f(x) = h(x) + b, for all x ∈ E.

The map f given by (
x1

x2

)
7→
(

8/5 −6/5
3/10 2/5

)(
x1

x2

)
+

(
1
1

)
is an example of the composition of a linear map with a translation.

We claim that functions of this type preserve affine combinations.

Proposition 4.12. For any two vector spaces E and F , given any function f : E → F
defined such that

f(x) = h(x) + b, for all x ∈ E,
where h : E → F is a linear map and b is some fixed vector in F , for every affine combination∑

i∈I λiui (with
∑

i∈I λi = 1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

In other words, f preserves affine combinations.
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Proof. By definition of f , using the fact that h is linear and the fact that
∑

i∈I λi = 1, we
have

f

(∑
i∈
λiui

)
= h

(∑
i∈I

λiui

)
+ b

=
∑
i∈I

λih(ui) + 1b

=
∑
i∈I

λih(ui) +

(∑
i∈I

λi

)
b

=
∑
i∈I

λi(h(ui) + b)

=
∑
i∈I

λif(ui),

as claimed.

Observe how the fact that
∑

i∈I λi = 1 was used in a crucial way in line 3. Surprisingly,
the converse of Proposition 4.12 also holds.

Proposition 4.13. For any two vector spaces E and F , let f : E → F be any function that
preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with

∑
i∈I λi =

1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

Then, for any a ∈ E, the function h : E → F given by

h(x) = f(a+ x)− f(a)

is a linear map independent of a, and

f(a+ x) = h(x) + f(a), for all x ∈ E.
In particular, for a = 0, if we let c = f(0), then

f(x) = h(x) + c, for all x ∈ E.
Proof. First, let us check that h is linear. Since f preserves affine combinations and since
a+ u+ v = (a+ u) + (a+ v)− a is an affine combination (1 + 1− 1 = 1), we have

h(u+ v) = f(a+ u+ v)− f(a)

= f((a+ u) + (a+ v)− a)− f(a)

= f(a+ u) + f(a+ v)− f(a)− f(a)

= f(a+ u)− f(a) + f(a+ v)− f(a)

= h(u) + h(v).
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This proves that
h(u+ v) = h(u) + h(v), u, v ∈ E.

Observe that a+ λu = λ(a+ u) + (1− λ)a is also an affine combination (λ+ 1− λ = 1), so
we have

h(λu) = f(a+ λu)− f(a)

= f(λ(a+ u) + (1− λ)a)− f(a)

= λf(a+ u) + (1− λ)f(a)− f(a)

= λ(f(a+ u)− f(a))

= λh(u).

This proves that
h(λu) = λh(u), u ∈ E, λ ∈ R.

Therefore, h is indeed linear.

For any b ∈ E, since b+ u = (a+ u)− a+ b is an affine combination (1− 1 + 1 = 1), we
have

f(b+ u)− f(b) = f((a+ u)− a+ b)− f(b)

= f(a+ u)− f(a) + f(b)− f(b)

= f(a+ u)− f(a),

which proves that for all a, b ∈ E,

f(b+ u)− f(b) = f(a+ u)− f(a), u ∈ E.

Therefore h(x) = f(a + u)− f(a) does not depend on a, and it is obvious by the definition
of h that

f(a+ x) = h(x) + f(a), for all x ∈ E.
For a = 0, we obtain the last part of our proposition.

We should think of a as a chosen origin in E. The function f maps the origin a in E to
the origin f(a) in F . Proposition 4.13 shows that the definition of h does not depend on the
origin chosen in E. Also, since

f(x) = h(x) + c, for all x ∈ E

for some fixed vector c ∈ F , we see that f is the composition of the linear map h with the
translation tc (in F ).

The unique linear map h as above is called the linear map associated with f and it is

sometimes denoted by
−→
f .

In view of Propositions 4.12 and 4.13, it is natural to make the following definition.
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Definition 4.4. For any two vector spaces E and F , a function f : E → F is an affine
map if f preserves affine combinations, i.e., for every affine combination

∑
i∈I λiui (with∑

i∈I λi = 1), we have

f

(∑
i∈I

λiui

)
=
∑
i∈I

λif(ui).

Equivalently, a function f : E → F is an affine map if there is some linear map h : E → F

(also denoted by
−→
f ) and some fixed vector c ∈ F such that

f(x) = h(x) + c, for all x ∈ E.

Note that a linear map always maps the standard origin 0 in E to the standard origin
0 in F . However an affine map usually maps 0 to a nonzero vector c = f(0). This is the
“translation component” of the affine map.

When we deal with affine maps, it is often fruitful to think of the elements of E and F
not only as vectors but also as points . In this point of view, points can only be combined
using affine combinations , but vectors can be combined in an unrestricted fashion using
linear combinations. We can also think of u + v as the result of translating the point u by
the translation tv. These ideas lead to the definition of affine spaces .

The idea is that instead of a single space E, an affine space consists of two sets E and
−→
E , where E is just an unstructured set of points, and

−→
E is a vector space. Furthermore, the

vector space
−→
E acts on E. We can think of

−→
E as a set of translations specified by vectors,

and given any point a ∈ E and any vector (translation) u ∈ −→E , the result of translating a
by u is the point (not vector) a+ u. Formally, we have the following definition.

Definition 4.5. An affine space is either the degenerate space reduced to the empty set, or

a triple
〈
E,
−→
E ,+

〉
consisting of a nonempty set E (of points), a vector space

−→
E (of trans-

lations , or free vectors), and an action +: E ×−→E → E, satisfying the following conditions.

(A1) a+ 0 = a, for every a ∈ E.

(A2) (a+ u) + v = a+ (u+ v), for every a ∈ E, and every u, v ∈ −→E .

(A3) For any two points a, b ∈ E, there is a unique u ∈ −→E such that a+ u = b.

The unique vector u ∈ −→E such that a+ u = b is denoted by
−→
ab, or sometimes by ab, or

even by b− a. Thus, we also write

b = a+
−→
ab

(or b = a+ ab, or even b = a+ (b− a)).
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It is important to note that adding or rescaling points does not make sense! However,

using the fact that
−→
E acts on E is a special way (this action is transitive and faithful), it is

possible to define rigorously the notion of affine combinations of points and to define affine
spaces, affine maps, etc. However, this would lead us to far afield, and for our purposes it is
enough to stick to vector spaces. Still, one should be aware that affine combinations really
apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces with dim(E) = n and dim(F ) = m,
then it is useful to represent an affine map with respect to bases in E in F . However, the
translation part c of the affine map must be somewhow incorporated. There is a standard
trick to do this which amounts to viewing an affine map as a linear map between spaces of
dimension n+ 1 and m+ 1. We also have the extra flexibility of choosing origins a ∈ E and
b ∈ F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis of F , and let a ∈ E and b ∈ F be
any two fixed vectors viewed as origins . Our affine map f has the property that if v = f(u),
then

v − b = f(a+ u− a)− b = f(a)− b+ h(u− a).

So, if we let y = v − b, x = u− a, and d = f(a)− b, then

y = h(x) + d, x ∈ E.

Over the basis U = (u1, . . . , un), we write

x = x1u1 + · · ·+ xnun,

and over the basis V = (v1, . . . , vm), we write

y = y1v1 + · · ·+ ymvm,

d = d1v1 + · · ·+ dmvm.

Then, since
y = h(x) + d,

if we let A be the m× n matrix representing the linear map h, that is, the jth column of A
consists of the coordinates of h(uj) over the basis (v1, . . . , vm), then we can write

yV = AxU + dV .

where xU = (x1, . . . , xn)>, yV = (y1, . . . , ym)>, and dV = (d1, . . . , dm)>. The above is the ma-
trix representation of our affine map f with respect to (a, (u1, . . . , un)) and (b, (v1, . . . , vm)).

The reason for using the origins a and b is that it gives us more flexibility. In particular,
we can choose b = f(a), and then f behaves like a linear map with respect to the origins a
and b = f(a).
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When E = F , if there is some a ∈ E such that f(a) = a (a is a fixed point of f), then
we can pick b = a. Then, because f(a) = a, we get

v = f(u) = f(a+ u− a) = f(a) + h(u− a) = a+ h(u− a),

that is

v − a = h(u− a).

With respect to the new origin a, if we define x and y by

x = u− a
y = v − a,

then we get

y = h(x).

Therefore, f really behaves like a linear map, but with respect to the new origin a (not the
standard origin 0). This is the case of a rotation around an axis that does not pass through
the origin.

Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is a basis of E and a is an origin chosen
in E is called an affine frame.

We now describe the trick which allows us to incorporate the translation part d into the
matrix A. We define the (m + 1) × (n + 1) matrix A′ obtained by first adding d as the
(n+ 1)th column, and then (0, . . . , 0︸ ︷︷ ︸

n

, 1) as the (m+ 1)th row:

A′ =

(
A d
0n 1

)
.

Then, it is clear that (
y
1

)
=

(
A d
0n 1

)(
x
1

)
iff

y = Ax+ d.

This amounts to considering a point x ∈ Rn as a point (x, 1) in the (affine) hyperplane Hn+1

in Rn+1 of equation xn+1 = 1. Then, an affine map is the restriction to the hyperplane Hn+1

of the linear map f̂ from Rn+1 to Rm+1 corresponding to the matrix A′ which maps Hn+1

into Hm+1 (f̂(Hn+1) ⊆ Hm+1). Figure 4.2 illustrates this process for n = 2.

For example, the map (
x1

x2

)
7→
(

1 1
1 3

)(
x1

x2

)
+

(
3
0

)
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x1

x2

x3

(x1, x2, 1)

H3 : x3 = 1

x = (x1, x2)

Figure 4.2: Viewing Rn as a hyperplane in Rn+1 (n = 2)

defines an affine map f which is represented in R3 byx1

x2

1

 7→
1 1 3

1 3 0
0 0 1

x1

x2

1

 .

It is easy to check that the point a = (6,−3) is fixed by f , which means that f(a) = a, so by
translating the coordinate frame to the origin a, the affine map behaves like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can be used to define projective
maps .

4.5 Summary

The main concepts and results of this chapter are listed below:

• Direct products, sums, direct sums .

• Projections .

• The fundamental equation

dim(E) = dim(Ker f) + dim(Im f) = dim(Ker f) + rk(f)

(Proposition 4.6).

• Grassmann’s relation

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ).
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• Characterizations of a bijective linear map f : E → F .

• Rank of a matrix.

• Affine Maps.



Chapter 5

Determinants

5.1 Permutations, Signature of a Permutation

This chapter contains a review of determinants and their use in linear algebra. We begin
with permutations and the signature of a permutation. Next, we define multilinear maps
and alternating multilinear maps. Determinants are introduced as alternating multilinear
maps taking the value 1 on the unit matrix (following Emil Artin). It is then shown how
to compute a determinant using the Laplace expansion formula, and the connection with
the usual definition is made. It is shown how determinants can be used to invert matrices
and to solve (at least in theory!) systems of linear equations (the Cramer formulae). The
determinant of a linear map is defined. We conclude by defining the characteristic polynomial
of a matrix (and of a linear map) and by proving the celebrated Cayley–Hamilton theorem
which states that every matrix is a “zero” of its characteristic polynomial (we give two proofs;
one computational, the other one more conceptual).

Determinants can be defined in several ways. For example, determinants can be defined
in a fancy way in terms of the exterior algebra (or alternating algebra) of a vector space.
We will follow a more algorithmic approach due to Emil Artin. No matter which approach
is followed, we need a few preliminaries about permutations on a finite set. We need to
show that every permutation on n elements is a product of transpositions, and that the
parity of the number of transpositions involved is an invariant of the permutation. Let
[n] = {1, 2 . . . , n}, where n ∈ N, and n > 0.

Definition 5.1. A permutation on n elements is a bijection π : [n]→ [n]. When n = 1, the
only function from [1] to [1] is the constant map: 1 7→ 1. Thus, we will assume that n ≥ 2.
A transposition is a permutation τ : [n]→ [n] such that, for some i < j (with 1 ≤ i < j ≤ n),
τ(i) = j, τ(j) = i, and τ(k) = k, for all k ∈ [n] − {i, j}. In other words, a transposition
exchanges two distinct elements i, j ∈ [n].

If τ is a transposition, clearly, τ ◦ τ = id. We will also use the terminology product of
permutations (or transpositions), as a synonym for composition of permutations. A per-
mutation σ on n elements, say σ(i) = ki for i = 1, . . . , n, can be represented in functional

123
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notation by the 2× n array (
1 · · · i · · · n
k1 · · · ki · · · kn

)
known as Cauchy two-line notation. For example, we have the permutation σ denoted by(

1 2 3 4 5 6
2 4 3 6 5 1

)
.

A more concise notation often used in computer science and in combinatorics is to rep-
resent a permutation by its image, namely by the sequence

σ(1) σ(2) · · · σ(n)

written as a row vector without commas separating the entries. The above is known as
the one-line notation. For example, in the one-line notation, our previous permutation σ is
represented by

2 4 3 6 5 1.

The reason for not enclosing the above sequence within parentheses is avoid confusion with
the notation for cycles, for which is it customary to include parentheses.

Clearly, the composition of two permutations is a permutation and every permutation
has an inverse which is also a permutation. Therefore, the set of permutations on [n] is a
group often denoted Sn and called the symmetric group on n elements.

It is easy to show by induction that the group Sn has n! elements. The following propo-
sition shows the importance of transpositions.

Proposition 5.1. For every n ≥ 2, every permutation π : [n] → [n] can be written as a
nonempty composition of transpositions.

Proof. We proceed by induction on n. If n = 2, there are exactly two permutations on [2],
the transposition τ exchanging 1 and 2, and the identity. However, id2 = τ 2. Now, let n ≥ 3.
If π(n) = n, since by the induction hypothesis, the restriction of π to [n− 1] can be written
as a product of transpositions, π itself can be written as a product of transpositions. If
π(n) = k 6= n, letting τ be the transposition such that τ(n) = k and τ(k) = n, it is clear
that τ ◦ π leaves n invariant, and by the induction hypothesis, we have τ ◦ π = τm ◦ . . . ◦ τ1

for some transpositions, and thus

π = τ ◦ τm ◦ . . . ◦ τ1,

a product of transpositions (since τ ◦ τ = idn).

Remark: When π = idn is the identity permutation, we can agree that the composition of
0 transpositions is the identity. Proposition 5.1 shows that the transpositions generate the
group of permutations Sn.
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A transposition τ that exchanges two consecutive elements k and k + 1 of [n] (1 ≤ k ≤
n−1) may be called a basic transposition. We leave it as a simple exercise to prove that every
transposition can be written as a product of basic transpositions. In fact, the transposition
that exchanges k and k+p (1 ≤ p ≤ n−k) can be realized using 2p−1 basic transpositions.
Therefore, the group of permutations Sn is also generated by the basic transpositions.

Given a permutation written as a product of transpositions, we now show that the parity
of the number of transpositions is an invariant. For this, we introduce the following function.

Definition 5.2. For every n ≥ 2, let ∆: Zn → Z be the function given by

∆(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj).

More generally, for any permutation σ ∈ Sn, define ∆(xσ(1), . . . , xσ(n)) by

∆(xσ(1), . . . , xσ(n)) =
∏

1≤i<j≤n
(xσ(i) − xσ(j)).

The expression ∆(x1, . . . , xn) is often called the discriminant of (x1, . . . , xn).

It is clear that if the xi are pairwise distinct, then ∆(x1, . . . , xn) 6= 0.

Proposition 5.2. For every basic transposition τ of [n] (n ≥ 2), we have

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).

The above also holds for every transposition, and more generally, for every composition of
transpositions σ = τp ◦ · · · ◦ τ1, we have

∆(xσ(1), . . . , xσ(n)) = (−1)p∆(x1, . . . , xn).

Consequently, for every permutation σ of [n], the parity of the number p of transpositions
involved in any decomposition of σ as σ = τp ◦ · · · ◦ τ1 is an invariant (only depends on σ).

Proof. Suppose τ exchanges xk and xk+1. The terms xi− xj that are affected correspond to
i = k, or i = k + 1, or j = k, or j = k + 1. The contribution of these terms in ∆(x1, . . . , xn)
is

(xk − xk+1)[(xk − xk+2) · · · (xk − xn)][(xk+1 − xk+2) · · · (xk+1 − xn)]

[(x1 − xk) · · · (xk−1 − xk)][(x1 − xk+1) · · · (xk−1 − xk+1)].

When we exchange xk and xk+1, the first factor is multiplied by −1, the second and the
third factor are exchanged, and the fourth and the fifth factor are exchanged, so the whole
product ∆(x1, . . . , xn) is is indeed multiplied by −1, that is,

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).
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For the second statement, first we observe that since every transposition τ can be written
as the composition of an odd number of basic transpositions (see the the remark following
Proposition 5.1), we also have

∆(xτ(1), . . . , xτ(n)) = −∆(x1, . . . , xn).

Next, we proceed by induction on the number p of transpositions involved in the decompo-
sition of a permutation σ.

The base case p = 1 has just been proved. If p ≥ 2, if we write ω = τp−1 ◦ · · · ◦ τ1, then
σ = τp ◦ ω and

∆(xσ(1), . . . , xσ(n)) = ∆(xτp(ω(1)), . . . , xτp(ω(n)))

= −∆(xω(1), . . . , xω(n))

= −(−1)p−1∆(x1, . . . , xn)

= (−1)p∆(x1, . . . , xn),

where we used the induction hypothesis from the second to the third line, establishing the
induction hypothesis. Since ∆(xσ(1), . . . , xσ(n)) only depends on σ, the equation

∆(xσ(1), . . . , xσ(n)) = (−1)p∆(x1, . . . , xn).

shows that the parity (−1)p of the number of transpositions in any decomposition of σ is an
invariant.

In view of Proposition 5.2, the following definition makes sense:

Definition 5.3. For every permutation σ of [n], the parity ε(σ) (or sgn(σ)) of the number
of transpositions involved in any decomposition of σ is called the signature (or sign) of σ.

Obviously ε(τ) = −1 for every transposition τ (since (−1)1 = −1).

A simple way to compute the signature of a permutation is to count its number of
inversions.

Definition 5.4. Given any permutation σ on n elements, we say that a pair (i, j) of indices
i, j ∈ {1, . . . , n} such that i < j and σ(i) > σ(j) is an inversion of the permutation σ.

For example, the permutation σ given by(
1 2 3 4 5 6
2 4 3 6 5 1

)
has seven inversions

(1, 6), (2, 3), (2, 6), (3, 6), (4, 5), (4, 6), (5, 6).
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Proposition 5.3. The signature ε(σ) of any permutation σ is equal to the parity (−1)I(σ)

of the number I(σ) of inversions in σ.

Proof. In the product

∆(xσ(1), . . . , xσ(n)) =
∏

1≤i<j≤n
(xσ(i) − xσ(j)),

the terms xσ(i) − xσ(j) for which σ(i) < σ(j) occur in ∆(x1, . . . , xn), whereas the terms
xσ(i) − xσ(j) for which σ(i) > σ(j) occur in ∆(x1, . . . , xn) with a minus sign. Therefore, the
number ν of terms in ∆(xσ(1), . . . , xσ(n)) whose sign is the opposite of a term in ∆(x1, . . . , xn),
is equal to the number I(σ) of inversions in σ, which implies that

∆(xσ(1), . . . , xσ(n)) = (−1)I(σ)∆(x1, . . . , xn).

By Proposition 5.2, the sign of (−1)I(σ) is equal to the signature of σ.

For example, the permutation (
1 2 3 4 5 6
2 4 3 6 5 1

)
has odd signature since it has seven inversions and (−1)7 = −1.

Remark: When π = idn is the identity permutation, since we agreed that the composition of
0 transpositions is the identity, it it still correct that (−1)0 = ε(id) = +1. From proposition
5.2, it is immediate that ε(π′ ◦ π) = ε(π′)ε(π). In particular, since π−1 ◦ π = idn, we get
ε(π−1) = ε(π).

We can now proceed with the definition of determinants.

5.2 Alternating Multilinear Maps

First, we define multilinear maps, symmetric multilinear maps, and alternating multilinear
maps.

Remark: Most of the definitions and results presented in this section also hold when K is
a commutative ring, and when we consider modules over K (free modules, when bases are
needed).

Let E1, . . . , En, and F , be vector spaces over a field K, where n ≥ 1.

Definition 5.5. A function f : E1 × . . . × En → F is a multilinear map (or an n-linear
map) if it is linear in each argument, holding the others fixed. More explicitly, for every i,
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1 ≤ i ≤ n, for all x1 ∈ E1 . . ., xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . ., xn ∈ En, for all x, y ∈ Ei, for all
λ ∈ K,

f(x1, . . . , xi−1, x+ y, xi+1, . . . , xn) = f(x1, . . . , xi−1, x, xi+1, . . . , xn)

+ f(x1, . . . , xi−1, y, xi+1, . . . , xn),

f(x1, . . . , xi−1, λx, xi+1, . . . , xn) = λf(x1, . . . , xi−1, x, xi+1, . . . , xn).

When F = K, we call f an n-linear form (or multilinear form). If n ≥ 2 and E1 =
E2 = . . . = En, an n-linear map f : E × . . .×E → F is called symmetric, if f(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)), for every permutation π on {1, . . . , n}. An n-linear map f : E× . . .×E →
F is called alternating , if f(x1, . . . , xn) = 0 whenever xi = xi+1, for some i, 1 ≤ i ≤ n− 1 (in
other words, when two adjacent arguments are equal). It does not harm to agree that when
n = 1, a linear map is considered to be both symmetric and alternating, and we will do so.

When n = 2, a 2-linear map f : E1 × E2 → F is called a bilinear map. We have already
seen several examples of bilinear maps. Multiplication · : K × K → K is a bilinear map,
treating K as a vector space over itself.

The operation 〈−,−〉 : E∗×E → K applying a linear form to a vector is a bilinear map.

Symmetric bilinear maps (and multilinear maps) play an important role in geometry
(inner products, quadratic forms), and in differential calculus (partial derivatives).

A bilinear map is symmetric if f(u, v) = f(v, u), for all u, v ∈ E.

Alternating multilinear maps satisfy the following simple but crucial properties.

Proposition 5.4. Let f : E× . . .×E → F be an n-linear alternating map, with n ≥ 2. The
following properties hold:

(1)
f(. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .)

(2)
f(. . . , xi, . . . , xj, . . .) = 0,

where xi = xj, and 1 ≤ i < j ≤ n.

(3)
f(. . . , xi, . . . , xj, . . .) = −f(. . . , xj, . . . , xi, . . .),

where 1 ≤ i < j ≤ n.

(4)
f(. . . , xi, . . .) = f(. . . , xi + λxj, . . .),

for any λ ∈ K, and where i 6= j.
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Proof. (1) By multilinearity applied twice, we have

f(. . . , xi + xi+1, xi + xi+1, . . .) = f(. . . , xi, xi, . . .) + f(. . . , xi, xi+1, . . .)

+ f(. . . , xi+1, xi, . . .) + f(. . . , xi+1, xi+1, . . .),

and since f is alternating, this yields

0 = f(. . . , xi, xi+1, . . .) + f(. . . , xi+1, xi, . . .),

that is, f(. . . , xi, xi+1, . . .) = −f(. . . , xi+1, xi, . . .).

(2) If xi = xj and i and j are not adjacent, we can interchange xi and xi+1, and then xi
and xi+2, etc, until xi and xj become adjacent. By (1),

f(. . . , xi, . . . , xj, . . .) = εf(. . . , xi, xj, . . .),

where ε = +1 or −1, but f(. . . , xi, xj, . . .) = 0, since xi = xj, and (2) holds.

(3) follows from (2) as in (1). (4) is an immediate consequence of (2).

Proposition 5.4 will now be used to show a fundamental property of alternating multilin-
ear maps. First, we need to extend the matrix notation a little bit. Let E be a vector space
over K. Given an n× n matrix A = (ai j) over K, we can define a map L(A) : En → En as
follows:

L(A)1(u) = a1 1u1 + · · ·+ a1nun,

. . .

L(A)n(u) = an 1u1 + · · ·+ annun,

for all u1, . . . , un ∈ E and with u = (u1, . . . , un). It is immediately verified that L(A) is
linear. Then, given two n×n matrice A = (ai j) and B = (bi j), by repeating the calculations
establishing the product of matrices (just before Definition 2.10), we can show that

L(AB) = L(A) ◦ L(B).

It is then convenient to use the matrix notation to describe the effect of the linear map L(A),
as 

L(A)1(u)
L(A)2(u)

...
L(A)n(u)

 =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann



u1

u2
...
un

 .

Lemma 5.5. Let f : E × . . .×E → F be an n-linear alternating map. Let (u1, . . . , un) and
(v1, . . . , vn) be two families of n vectors, such that,

v1 = a1 1u1 + · · ·+ an 1un,

. . .

vn = a1nu1 + · · ·+ annun.
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Equivalently, letting

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann


assume that we have 

v1

v2
...
vn

 = A>


u1

u2
...
un

 .

Then,

f(v1, . . . , vn) =
(∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

)
f(u1, . . . , un),

where the sum ranges over all permutations π on {1, . . . , n}.

Proof. Expanding f(v1, . . . , vn) by multilinearity, we get a sum of terms of the form

aπ(1) 1 · · · aπ(n)nf(uπ(1), . . . , uπ(n)),

for all possible functions π : {1, . . . , n} → {1, . . . , n}. However, because f is alternating, only
the terms for which π is a permutation are nonzero. By Proposition 5.1, every permutation
π is a product of transpositions, and by Proposition 5.2, the parity ε(π) of the number of
transpositions only depends on π. Then, applying Proposition 5.4 (3) to each transposition
in π, we get

aπ(1) 1 · · · aπ(n)nf(uπ(1), . . . , uπ(n)) = ε(π)aπ(1) 1 · · · aπ(n)nf(u1, . . . , un).

Thus, we get the expression of the lemma.

The quantity

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

is in fact the value of the determinant of A (which, as we shall see shortly, is also equal to the
determinant of A>). However, working directly with the above definition is quite ackward,
and we will proceed via a slightly indirect route

Remark: The reader might have been puzzled by the fact that it is the transpose matrix
A> rather than A itself that appears in Lemma 5.5. The reason is that if we want the generic
term in the determinant to be

ε(π)aπ(1) 1 · · · aπ(n)n,
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where the permutation applies to the first index, then we have to express the vjs in terms
of the uis in terms of A> as we did. Furthermore, since

vj = a1 ju1 + · · ·+ ai jui + · · ·+ an jun,

we see that vj corresponds to the jth column of the matrix A, and so the determinant is
viewed as a function of the columns of A.

The literature is split on this point. Some authors prefer to define a determinant as we
did. Others use A itself, which amounts to viewing det as a function of the rows, in which
case we get the expression ∑

σ∈Sn
ε(σ)a1σ(1) · · · anσ(n).

Corollary 5.8 show that these two expressions are equal, so it doesn’t matter which is chosen.
This is a matter of taste.

5.3 Definition of a Determinant

Recall that the set of all square n × n-matrices with coefficients in a field K is denoted by
Mn(K).

Definition 5.6. A determinant is defined as any map

D : Mn(K)→ K,

which, when viewed as a map on (Kn)n, i.e., a map of the n columns of a matrix, is n-linear
alternating and such that D(In) = 1 for the identity matrix In. Equivalently, we can consider
a vector space E of dimension n, some fixed basis (e1, . . . , en), and define

D : En → K

as an n-linear alternating map such that D(e1, . . . , en) = 1.

First, we will show that such maps D exist, using an inductive definition that also gives
a recursive method for computing determinants. Actually, we will define a family (Dn)n≥1

of (finite) sets of maps D : Mn(K)→ K. Second, we will show that determinants are in fact
uniquely defined, that is, we will show that each Dn consists of a single map. This will show
the equivalence of the direct definition det(A) of Lemma 5.5 with the inductive definition
D(A). Finally, we will prove some basic properties of determinants, using the uniqueness
theorem.

Given a matrix A ∈ Mn(K), we denote its n columns by A1, . . . , An. In order to describe
the recursive process to define a determinant we need the notion of a minor.
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Definition 5.7. Given any n×n matrix with n ≥ 2, for any two indices i, j with 1 ≤ i, j ≤ n,
let Aij be the (n − 1) × (n − 1) matrix obtained by deleting row i and colummn j from A
and called a minor :

Aij =



×
×

× × × × × × ×
×
×
×
×


For example, if

A =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2


then

A2 3 =


2 −1 0 0
0 −1 −1 0
0 0 2 −1
0 0 −1 2

 .

Definition 5.8. For every n ≥ 1, we define a finite set Dn of maps D : Mn(K) → K
inductively as follows:

When n = 1, D1 consists of the single map D such that, D(A) = a, where A = (a), with
a ∈ K.

Assume that Dn−1 has been defined, where n ≥ 2. Then, Dn consists of all the maps D
such that, for some i, 1 ≤ i ≤ n,

D(A) = (−1)i+1ai 1D(Ai 1) + · · ·+ (−1)i+nai nD(Ai n),

where for every j, 1 ≤ j ≤ n, D(Ai j) is the result of applying any D in Dn−1 to the minor
Ai j.

� We confess that the use of the same letter D for the member of Dn being defined, and
for members of Dn−1, may be slightly confusing. We considered using subscripts to

distinguish, but this seems to complicate things unnecessarily. One should not worry too
much anyway, since it will turn out that each Dn contains just one map.

Each (−1)i+jD(Ai j) is called the cofactor of ai j, and the inductive expression for D(A)
is called a Laplace expansion of D according to the i-th row . Given a matrix A ∈ Mn(K),
each D(A) is called a determinant of A.
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We can think of each member of Dn as an algorithm to evaluate “the” determinant of A.
The main point is that these algorithms, which recursively evaluate a determinant using all
possible Laplace row expansions, all yield the same result, det(A).

We will prove shortly that D(A) is uniquely defined (at the moment, it is not clear that
Dn consists of a single map). Assuming this fact, given a n× n-matrix A = (ai j),

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann


its determinant is denoted by D(A) or det(A), or more explicitly by

det(A) =

∣∣∣∣∣∣∣∣∣
a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann

∣∣∣∣∣∣∣∣∣
First, let us first consider some examples.

Example 5.1.

1. When n = 2, if

A =

(
a b
c d

)
expanding according to any row, we have

D(A) = ad− bc.

2. When n = 3, if

A =

a1 1 a1 2 a1 3

a2 1 a2 2 a2 3

a3 1 a3 2 a3 3


expanding according to the first row, we have

D(A) = a1 1

∣∣∣∣a2 2 a2 3

a3 2 a3 3

∣∣∣∣− a1 2

∣∣∣∣a2 1 a2 3

a3 1 a3 3

∣∣∣∣+ a1 3

∣∣∣∣a2 1 a2 2

a3 1 a3 2

∣∣∣∣
that is,

D(A) = a1 1(a2 2a3 3 − a3 2a2 3)− a1 2(a2 1a3 3 − a3 1a2 3) + a1 3(a2 1a3 2 − a3 1a2 2),

which gives the explicit formula

D(A) = a1 1a2 2a3 3 + a2 1a3 2a1 3 + a3 1a1 2a2 3 − a1 1a3 2a2 3 − a2 1a1 2a3 3 − a3 1a2 2a1 3.
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We now show that each D ∈ Dn is a determinant (map).

Lemma 5.6. For every n ≥ 1, for every D ∈ Dn as defined in Definition 5.8, D is an
alternating multilinear map such that D(In) = 1.

Proof. By induction on n, it is obvious that D(In) = 1. Let us now prove that D is
multilinear. Let us show that D is linear in each column. Consider any column k. Since

D(A) = (−1)i+1ai 1D(Ai 1) + · · ·+ (−1)i+jai jD(Ai j) + · · ·+ (−1)i+nai nD(Ai n),

if j 6= k, then by induction, D(Ai j) is linear in column k, and ai j does not belong to column
k, so (−1)i+jai jD(Ai j) is linear in column k. If j = k, then D(Ai j) does not depend on
column k = j, since Ai j is obtained from A by deleting row i and column j = k, and ai j
belongs to column j = k. Thus, (−1)i+jai jD(Ai j) is linear in column k. Consequently, in
all cases, (−1)i+jai jD(Ai j) is linear in column k, and thus, D(A) is linear in column k.

Let us now prove that D is alternating. Assume that two adjacent columns of A are
equal, say Ak = Ak+1. First, let j 6= k and j 6= k+1. Then, the matrix Ai j has two identical
adjacent columns, and by the induction hypothesis, D(Ai j) = 0. The remaining terms of
D(A) are

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1).

However, the two matrices Ai k and Ai k+1 are equal, since we are assuming that columns k
and k+ 1 of A are identical, and since Ai k is obtained from A by deleting row i and column
k, and Ai k+1 is obtained from A by deleting row i and column k+ 1. Similarly, ai k = ai k+1,
since columns k and k + 1 of A are equal. But then,

(−1)i+kai kD(Ai k) + (−1)i+k+1ai k+1D(Ai k+1) = (−1)i+kai kD(Ai k)− (−1)i+kai kD(Ai k) = 0.

This shows that D is alternating, and completes the proof.

Lemma 5.6 shows the existence of determinants. We now prove their uniqueness.

Theorem 5.7. For every n ≥ 1, for every D ∈ Dn, for every matrix A ∈ Mn(K), we have

D(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}. As a consequence, Dn consists
of a single map for every n ≥ 1, and this map is given by the above explicit formula.

Proof. Consider the standard basis (e1, . . . , en) of Kn, where (ei)i = 1 and (ei)j = 0, for
j 6= i. Then, each column Aj of A corresponds to a vector vj whose coordinates over the
basis (e1, . . . , en) are the components of Aj, that is, we can write

v1 = a1 1e1 + · · ·+ an 1en,

. . .

vn = a1ne1 + · · ·+ annen.
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Since by Lemma 5.6, each D is a multilinear alternating map, by applying Lemma 5.5, we
get

D(A) = D(v1, . . . , vn) =
(∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n

)
D(e1, . . . , en),

where the sum ranges over all permutations π on {1, . . . , n}. But D(e1, . . . , en) = D(In),
and by Lemma 5.6, we have D(In) = 1. Thus,

D(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}.
From now on, we will favor the notation det(A) over D(A) for the determinant of a square

matrix.

Remark: There is a geometric interpretation of determinants which we find quite illumi-
nating. Given n linearly independent vectors (u1, . . . , un) in Rn, the set

Pn = {λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}
is called a parallelotope. If n = 2, then P2 is a parallelogram and if n = 3, then P3 is
a parallelepiped , a skew box having u1, u2, u3 as three of its corner sides. Then, it turns
out that det(u1, . . . , un) is the signed volume of the parallelotope Pn (where volume means
n-dimensional volume). The sign of this volume accounts for the orientation of Pn in Rn.

We can now prove some properties of determinants.

Corollary 5.8. For every matrix A ∈ Mn(K), we have det(A) = det(A>).

Proof. By Theorem 5.7, we have

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n,

where the sum ranges over all permutations π on {1, . . . , n}. Since a permutation is invertible,
every product

aπ(1) 1 · · · aπ(n)n

can be rewritten as
a1π−1(1) · · · anπ−1(n),

and since ε(π−1) = ε(π) and the sum is taken over all permutations on {1, . . . , n}, we have∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n =
∑
σ∈Sn

ε(σ)a1σ(1) · · · anσ(n),

where π and σ range over all permutations. But it is immediately verified that

det(A>) =
∑
σ∈Sn

ε(σ)a1σ(1) · · · anσ(n).
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A useful consequence of Corollary 5.8 is that the determinant of a matrix is also a multi-
linear alternating map of its rows. This fact, combined with the fact that the determinant of
a matrix is a multilinear alternating map of its columns is often useful for finding short-cuts
in computing determinants. We illustrate this point on the following example which shows
up in polynomial interpolation.

Example 5.2. Consider the so-called Vandermonde determinant

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...
xn−1

1 xn−1
2 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
.

We claim that
V (x1, . . . , xn) =

∏
1≤i<j≤n

(xj − xi),

with V (x1, . . . , xn) = 1, when n = 1. We prove it by induction on n ≥ 1. The case n = 1 is
obvious. Assume n ≥ 2. We proceed as follows: multiply row n − 1 by x1 and substract it
from row n (the last row), then multiply row n − 2 by x1 and subtract it from row n − 1,
etc, multiply row i − 1 by x1 and subtract it from row i, until we reach row 1. We obtain
the following determinant:

V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
0 x2 − x1 . . . xn − x1

0 x2(x2 − x1) . . . xn(xn − x1)
...

...
. . .

...
0 xn−2

2 (x2 − x1) . . . xn−2
n (xn − x1)

∣∣∣∣∣∣∣∣∣∣∣
Now, expanding this determinant according to the first column and using multilinearity,

we can factor (xi − x1) from the column of index i − 1 of the matrix obtained by deleting
the first row and the first column, and thus

V (x1, . . . , xn) = (x2 − x1)(x3 − x1) · · · (xn − x1)V (x2, . . . , xn),

which establishes the induction step.

Remark: Observe that
∆(x1, . . . , xn) = V (xn, . . . , x1),

where ∆(x1, . . . , xn) is the discriminant of (x1, . . . , xn) introduced in Definition 5.2.

Lemma 5.5 can be reformulated nicely as follows.
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Proposition 5.9. Let f : E × . . .×E → F be an n-linear alternating map. Let (u1, . . . , un)
and (v1, . . . , vn) be two families of n vectors, such that

v1 = a1 1u1 + · · ·+ a1nun,

. . .

vn = an 1u1 + · · ·+ annun.

Equivalently, letting

A =


a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann


assume that we have 

v1

v2
...
vn

 = A


u1

u2
...
un

 .

Then,
f(v1, . . . , vn) = det(A)f(u1, . . . , un).

Proof. The only difference with Lemma 5.5 is that here, we are using A> instead of A. Thus,
by Lemma 5.5 and Corollary 5.8, we get the desired result.

As a consequence, we get the very useful property that the determinant of a product of
matrices is the product of the determinants of these matrices.

Proposition 5.10. For any two n×n-matrices A and B, we have det(AB) = det(A) det(B).

Proof. We use Proposition 5.9 as follows: let (e1, . . . , en) be the standard basis of Kn, and
let 

w1

w2
...
wn

 = AB


e1

e2
...
en

 .

Then, we get
det(w1, . . . , wn) = det(AB) det(e1, . . . , en) = det(AB),

since det(e1, . . . , en) = 1. Now, letting
v1

v2
...
vn

 = B


e1

e2
...
en

 ,
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we get

det(v1, . . . , vn) = det(B),

and since 
w1

w2
...
wn

 = A


v1

v2
...
vn

 ,

we get

det(w1, . . . , wn) = det(A) det(v1, . . . , vn) = det(A) det(B).

It should be noted that all the results of this section, up to now, also hold when K is a
commutative ring, and not necessarily a field. We can now characterize when an n×n-matrix
A is invertible in terms of its determinant det(A).

5.4 Inverse Matrices and Determinants

In the next two sections, K is a commutative ring, and when needed a field.

Definition 5.9. Let K be a commutative ring. Given a matrix A ∈ Mn(K), let Ã = (bi j)
be the matrix defined such that

bi j = (−1)i+j det(Aj i),

the cofactor of aj i. The matrix Ã is called the adjugate of A, and each matrix Aj i is called
a minor of the matrix A.

� Note the reversal of the indices in

bi j = (−1)i+j det(Aj i).

Thus, Ã is the transpose of the matrix of cofactors of elements of A.

We have the following proposition.

Proposition 5.11. Let K be a commutative ring. For every matrix A ∈ Mn(K), we have

AÃ = ÃA = det(A)In.

As a consequence, A is invertible iff det(A) is invertible, and if so, A−1 = (det(A))−1Ã.



5.4. INVERSE MATRICES AND DETERMINANTS 139

Proof. If Ã = (bi j) and AÃ = (ci j), we know that the entry ci j in row i and column j of AÃ
is

ci j = ai 1b1 j + · · ·+ ai kbk j + · · ·+ ai nbn j,

which is equal to

ai 1(−1)j+1 det(Aj 1) + · · ·+ ai n(−1)j+n det(Aj n).

If j = i, then we recognize the expression of the expansion of det(A) according to the i-th
row:

ci i = det(A) = ai 1(−1)i+1 det(Ai 1) + · · ·+ ai n(−1)i+n det(Ai n).

If j 6= i, we can form the matrix A′ by replacing the j-th row of A by the i-th row of A.
Now, the matrix Aj k obtained by deleting row j and column k from A is equal to the matrix
A′j k obtained by deleting row j and column k from A′, since A and A′ only differ by the j-th
row. Thus,

det(Aj k) = det(A′j k),

and we have

ci j = ai 1(−1)j+1 det(A′j 1) + · · ·+ ai n(−1)j+n det(A′j n).

However, this is the expansion of det(A′) according to the j-th row, since the j-th row of A′

is equal to the i-th row of A, and since A′ has two identical rows i and j, because det is an
alternating map of the rows (see an earlier remark), we have det(A′) = 0. Thus, we have
shown that ci i = det(A), and ci j = 0, when j 6= i, and so

AÃ = det(A)In.

It is also obvious from the definition of Ã, that

Ã> = Ã>.

Then, applying the first part of the argument to A>, we have

A>Ã> = det(A>)In,

and since, det(A>) = det(A), Ã> = Ã>, and (ÃA)> = A>Ã>, we get

det(A)In = A>Ã> = A>Ã> = (ÃA)>,

that is,

(ÃA)> = det(A)In,

which yields

ÃA = det(A)In,
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since I>n = In. This proves that

AÃ = ÃA = det(A)In.

As a consequence, if det(A) is invertible, we have A−1 = (det(A))−1Ã. Conversely, if A is
invertible, from AA−1 = In, by Proposition 5.10, we have det(A) det(A−1) = 1, and det(A)
is invertible.

When K is a field, an element a ∈ K is invertible iff a 6= 0. In this case, the second part
of the proposition can be stated as A is invertible iff det(A) 6= 0. Note in passing that this
method of computing the inverse of a matrix is usually not practical.

We now consider some applications of determinants to linear independence and to solving
systems of linear equations. Although these results hold for matrices over certain rings, their
proofs require more sophisticated methods. Therefore, we assume again that K is a field
(usually, K = R or K = C).

Let A be an n×n-matrix, x a column vectors of variables, and b another column vector,
and let A1, . . . , An denote the columns of A. Observe that the system of equation Ax = b,

a1 1 a1 2 . . . a1n

a2 1 a2 2 . . . a2n
...

...
. . .

...
an 1 an 2 . . . ann



x1

x2
...
xn

 =


b1

b2
...
bn


is equivalent to

x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n = b,

since the equation corresponding to the i-th row is in both cases

ai 1x1 + · · ·+ ai jxj + · · ·+ ai nxn = bi.

First, we characterize linear independence of the column vectors of a matrix A in terms
of its determinant.

Proposition 5.12. Given an n × n-matrix A over a field K, the columns A1, . . . , An of
A are linearly dependent iff det(A) = det(A1, . . . , An) = 0. Equivalently, A has rank n iff
det(A) 6= 0.

Proof. First, assume that the columns A1, . . . , An of A are linearly dependent. Then, there
are x1, . . . , xn ∈ K, such that

x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n = 0,

where xj 6= 0 for some j. If we compute

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = det(A1, . . . , 0, . . . , An) = 0,
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where 0 occurs in the j-th position, by multilinearity, all terms containing two identical
columns Ak for k 6= j vanish, and we get

xj det(A1, . . . , An) = 0.

Since xj 6= 0 and K is a field, we must have det(A1, . . . , An) = 0.

Conversely, we show that if the columns A1, . . . , An of A are linearly independent, then
det(A1, . . . , An) 6= 0. If the columns A1, . . . , An of A are linearly independent, then they
form a basis of Kn, and we can express the standard basis (e1, . . . , en) of Kn in terms of
A1, . . . , An. Thus, we have

e1

e2
...
en

 =


b1 1 b1 2 . . . b1n

b2 1 b2 2 . . . b2n
...

...
. . .

...
bn 1 bn 2 . . . bnn



A1

A2

...
An

 ,

for some matrix B = (bi j), and by Proposition 5.9, we get

det(e1, . . . , en) = det(B) det(A1, . . . , An),

and since det(e1, . . . , en) = 1, this implies that det(A1, . . . , An) 6= 0 (and det(B) 6= 0). For
the second assertion, recall that the rank of a matrix is equal to the maximum number of
linearly independent columns, and the conclusion is clear.

If we combine Proposition 5.12 with Proposition 9.12, we obtain the following criterion
for finding the rank of a matrix.

Proposition 5.13. Given any m×n matrix A over a field K (typically K = R or K = C),
the rank of A is the maximum natural number r such that there is an r × r submatrix B of
A obtained by selecting r rows and r columns of A, and such that det(B) 6= 0.

5.5 Systems of Linear Equations and Determinants

We now characterize when a system of linear equations of the form Ax = b has a unique
solution.

Proposition 5.14. Given an n× n-matrix A over a field K, the following properties hold:

(1) For every column vector b, there is a unique column vector x such that Ax = b iff the
only solution to Ax = 0 is the trivial vector x = 0, iff det(A) 6= 0.

(2) If det(A) 6= 0, the unique solution of Ax = b is given by the expressions

xj =
det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)
,

known as Cramer’s rules.
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(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0.

Proof. Assume that Ax = b has a single solution x0, and assume that Ay = 0 with y 6= 0.
Then,

A(x0 + y) = Ax0 + Ay = Ax0 + 0 = b,

and x0 + y 6= x0 is another solution of Ax = b, contadicting the hypothesis that Ax = b has
a single solution x0. Thus, Ax = 0 only has the trivial solution. Now, assume that Ax = 0
only has the trivial solution. This means that the columns A1, . . . , An of A are linearly
independent, and by Proposition 5.12, we have det(A) 6= 0. Finally, if det(A) 6= 0, by
Proposition 5.11, this means that A is invertible, and then, for every b, Ax = b is equivalent
to x = A−1b, which shows that Ax = b has a single solution.

(2) Assume that Ax = b. If we compute

det(A1, . . . , x1A
1 + · · ·+ xjA

j + · · ·+ xnA
n, . . . , An) = det(A1, . . . , b, . . . , An),

where b occurs in the j-th position, by multilinearity, all terms containing two identical
columns Ak for k 6= j vanish, and we get

xj det(A1, . . . , An) = det(A1, . . . , Aj−1, b, Aj+1, . . . , An),

for every j, 1 ≤ j ≤ n. Since we assumed that det(A) = det(A1, . . . , An) 6= 0, we get the
desired expression.

(3) Note that Ax = 0 has a nonzero solution iff A1, . . . , An are linearly dependent (as
observed in the proof of Proposition 5.12), which, by Proposition 5.12, is equivalent to
det(A) = 0.

As pleasing as Cramer’s rules are, it is usually impractical to solve systems of linear
equations using the above expressions. However, these formula imply an interesting fact,
which is that the solution of the system Ax = b are continuous in A and b. If we assume that
the entries in A are continuous functions aij(t) and the entries in b are are also continuous
functions bj(t) of a real parameter t, since determinants are polynomial functions of their
entries, the expressions

xj(t) =
det(A1, . . . , Aj−1, b, Aj+1, . . . , An)

det(A1, . . . , Aj−1, Aj, Aj+1, . . . , An)

are ratios of polynomials, and thus are also continuous as long as det(A(t)) is nonzero.
Similarly, if the functions aij(t) and bj(t) are differentiable, so are the xj(t).

5.6 Determinant of a Linear Map

We close this chapter with the notion of determinant of a linear map f : E → E.
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Given a vector space E of finite dimension n, given a basis (u1, . . . , un) of E, for every
linear map f : E → E, if M(f) is the matrix of f w.r.t. the basis (u1, . . . , un), we can define
det(f) = det(M(f)). If (v1, . . . , vn) is any other basis of E, and if P is the change of basis
matrix, by Corollary 3.5, the matrix of f with respect to the basis (v1, . . . , vn) is P−1M(f)P .
Now, by proposition 5.10, we have

det(P−1M(f)P ) = det(P−1) det(M(f)) det(P ) = det(P−1) det(P ) det(M(f)) = det(M(f)).

Thus, det(f) is indeed independent of the basis of E.

Definition 5.10. Given a vector space E of finite dimension, for any linear map f : E → E,
we define the determinant det(f) of f as the determinant det(M(f)) of the matrix of f in
any basis (since, from the discussion just before this definition, this determinant does not
depend on the basis).

Then, we have the following proposition.

Proposition 5.15. Given any vector space E of finite dimension n, a linear map f : E → E
is invertible iff det(f) 6= 0.

Proof. The linear map f : E → E is invertible iff its matrix M(f) in any basis is invertible
(by Proposition 3.2), iff det(M(f)) 6= 0, by Proposition 5.11.

Given a vector space of finite dimension n, it is easily seen that the set of bijective linear
maps f : E → E such that det(f) = 1 is a group under composition. This group is a
subgroup of the general linear group GL(E). It is called the special linear group (of E), and
it is denoted by SL(E), or when E = Kn, by SL(n,K), or even by SL(n).

5.7 The Cayley–Hamilton Theorem

We conclude this chapter with an interesting and important application of Proposition 5.11,
the Cayley–Hamilton theorem. The results of this section apply to matrices over any com-
mutative ring K. First, we need the concept of the characteristic polynomial of a matrix.

Definition 5.11. If K is any commutative ring, for every n × n matrix A ∈ Mn(K), the
characteristic polynomial PA(X) of A is the determinant

PA(X) = det(XI − A).

The characteristic polynomial PA(X) is a polynomial in K[X], the ring of polynomials
in the indeterminate X with coefficients in the ring K. For example, when n = 2, if

A =

(
a b
c d

)
,
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then

PA(X) =

∣∣∣∣X − a −b
−c X − d

∣∣∣∣ = X2 − (a+ d)X + ad− bc.

We can substitute the matrix A for the variable X in the polynomial PA(X), obtaining a
matrix PA. If we write

PA(X) = Xn + c1X
n−1 + · · ·+ cn,

then

PA = An + c1A
n−1 + · · ·+ cnI.

We have the following remarkable theorem.

Theorem 5.16. (Cayley–Hamilton) If K is any commutative ring, for every n × n matrix
A ∈ Mn(K), if we let

PA(X) = Xn + c1X
n−1 + · · ·+ cn

be the characteristic polynomial of A, then

PA = An + c1A
n−1 + · · ·+ cnI = 0.

Proof. We can view the matrix B = XI −A as a matrix with coefficients in the polynomial
ring K[X], and then we can form the matrix B̃ which is the transpose of the matrix of

cofactors of elements of B. Each entry in B̃ is an (n− 1)× (n− 1) determinant, and thus a

polynomial of degree a most n− 1, so we can write B̃ as

B̃ = Xn−1B0 +Xn−2B1 + · · ·+Bn−1,

for some matrices B0, . . . , Bn−1 with coefficients in K. For example, when n = 2, we have

B =

(
X − a −b
−c X − d

)
, B̃ =

(
X − d b
c X − a

)
= X

(
1 0
0 1

)
+

(
−d b
c −a

)
.

By Proposition 5.11, we have

BB̃ = det(B)I = PA(X)I.

On the other hand, we have

BB̃ = (XI − A)(Xn−1B0 +Xn−2B1 + · · ·+Xn−j−1Bj + · · ·+Bn−1),

and by multiplying out the right-hand side, we get

BB̃ = XnD0 +Xn−1D1 + · · ·+Xn−jDj + · · ·+Dn,
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with

D0 = B0

D1 = B1 − AB0

...

Dj = Bj − ABj−1

...

Dn−1 = Bn−1 − ABn−2

Dn = −ABn−1.

Since
PA(X)I = (Xn + c1X

n−1 + · · ·+ cn)I,

the equality
XnD0 +Xn−1D1 + · · ·+Dn = (Xn + c1X

n−1 + · · ·+ cn)I

is an equality between two matrices, so it requires that all corresponding entries are equal,
and since these are polynomials, the coefficients of these polynomials must be identical,
which is equivalent to the set of equations

I = B0

c1I = B1 − AB0

...

cjI = Bj − ABj−1

...

cn−1I = Bn−1 − ABn−2

cnI = −ABn−1,

for all j, with 1 ≤ j ≤ n − 1. If we multiply the first equation by An, the last by I, and
generally the (j + 1)th by An−j, when we add up all these new equations, we see that the
right-hand side adds up to 0, and we get our desired equation

An + c1A
n−1 + · · ·+ cnI = 0,

as claimed.

As a concrete example, when n = 2, the matrix

A =

(
a b
c d

)
satisfies the equation

A2 − (a+ d)A+ (ad− bc)I = 0.
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Most readers will probably find the proof of Theorem 5.16 rather clever but very myste-
rious and unmotivated. The conceptual difficulty is that we really need to understand how
polynomials in one variable “act” on vectors, in terms of the matrix A. This can be done
and yields a more “natural” proof. Actually, the reasoning is simpler and more general if we
free ourselves from matrices and instead consider a finite-dimensional vector space E and
some given linear map f : E → E. Given any polynomial p(X) = a0X

n + a1X
n−1 + · · ·+ an

with coefficients in the field K, we define the linear map p(f) : E → E by

p(f) = a0f
n + a1f

n−1 + · · ·+ anid,

where fk = f ◦ · · · ◦ f , the k-fold composition of f with itself. Note that

p(f)(u) = a0f
n(u) + a1f

n−1(u) + · · ·+ anu,

for every vector u ∈ E. Then, we define a new kind of scalar multiplication · : K[X]×E → E
by polynomials as follows: for every polynomial p(X) ∈ K[X], for every u ∈ E,

p(X) · u = p(f)(u).

It is easy to verify that this is a “good action,” which means that

p · (u+ v) = p · u+ p · v
(p+ q) · u = p · u+ q · u

(pq) · u = p · (q · u)

1 · u = u,

for all p, q ∈ K[X] and all u, v ∈ E. With this new scalar multiplication, E is a K[X]-module.

If p = λ is just a scalar in K (a polynomial of degree 0), then

λ · u = (λid)(u) = λu,

which means that K acts on E by scalar multiplication as before. If p(X) = X (the monomial
X), then

X · u = f(u).

Now, if we pick a basis (e1, . . . , en), if a polynomial p(X) ∈ K[X] has the property that

p(X) · ei = 0, i = 1, . . . , n,

then this means that p(f)(ei) = 0 for i = 1, . . . , n, which means that the linear map p(f)
vanishes on E. We can also check, as we did in Section 5.2, that if A and B are two n× n
matrices and if (u1, . . . , un) are any n vectors, then

A ·

B ·
u1

...
un


 = (AB) ·

u1
...
un

 .
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This suggests the plan of attack for our second proof of the Cayley–Hamilton theorem.
For simplicity, we prove the theorem for vector spaces over a field. The proof goes through
for a free module over a commutative ring.

Theorem 5.17. (Cayley–Hamilton) For every finite-dimensional vector space over a field
K, for every linear map f : E → E, for every basis (e1, . . . , en), if A is the matrix over f
over the basis (e1, . . . , en) and if

PA(X) = Xn + c1X
n−1 + · · ·+ cn

is the characteristic polynomial of A, then

PA(f) = fn + c1f
n−1 + · · ·+ cnid = 0.

Proof. Since the columns of A consist of the vector f(ej) expressed over the basis (e1, . . . , en),
we have

f(ej) =
n∑
i=1

ai jei, 1 ≤ j ≤ n.

Using our action of K[X] on E, the above equations can be expressed as

X · ej =
n∑
i=1

ai j · ei, 1 ≤ j ≤ n,

which yields

j−1∑
i=1

−ai j · ei + (X − aj j) · ej +
n∑

i=j+1

−ai j · ei = 0, 1 ≤ j ≤ n.

Observe that the transpose of the characteristic polynomial shows up, so the above system
can be written as

X − a1 1 −a2 1 · · · −an 1

−a1 2 X − a2 2 · · · −an 2
...

...
...

...
−a1n −a2n · · · X − ann

 ·

e1

e2
...
en

 =


0
0
...
0

 .

If we let B = XI −A>, then as in the previous proof, if B̃ is the transpose of the matrix of
cofactors of B, we have

B̃B = det(B)I = det(XI − A>)I = det(XI − A)I = PAI.

But then, since

B ·


e1

e2
...
en

 =


0
0
...
0

 ,
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and since B̃ is matrix whose entries are polynomials in K[X], it makes sense to multiply on

the left by B̃ and we get

B̃ ·B ·


e1

e2
...
en

 = (B̃B) ·


e1

e2
...
en

 = PAI ·


e1

e2
...
en

 = B̃ ·


0
0
...
0

 =


0
0
...
0

 ;

that is,
PA · ej = 0, j = 1, . . . , n,

which proves that PA(f) = 0, as claimed.

IfK is a field, then the characteristic polynomial of a linear map f : E → E is independent
of the basis (e1, . . . , en) chosen in E. To prove this, observe that the matrix of f over another
basis will be of the form P−1AP , for some inverible matrix P , and then

det(XI − P−1AP ) = det(XP−1IP − P−1AP )

= det(P−1(XI − A)P )

= det(P−1) det(XI − A) det(P )

= det(XI − A).

Therefore, the characteristic polynomial of a linear map is intrinsic to f , and it is denoted
by Pf .

The zeros (roots) of the characteristic polynomial of a linear map f are called the eigen-
values of f . They play an important role in theory and applications. We will come back to
this topic later on.

5.8 Permanents

Recall that the explicit formula for the determinant of an n× n matrix is

det(A) =
∑
π∈Sn

ε(π)aπ(1) 1 · · · aπ(n)n.

If we drop the sign ε(π) of every permutation from the above formula, we obtain a quantity
known as the permanent :

per(A) =
∑
π∈Sn

aπ(1) 1 · · · aπ(n)n.

Permanents and determinants were investigated as early as 1812 by Cauchy. It is clear from
the above definition that the permanent is a multilinear and symmetric form. We also have

per(A) = per(A>),
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and the following unsigned version of the Laplace expansion formula:

per(A) = ai 1per(Ai 1) + · · ·+ ai jper(Ai j) + · · ·+ ai nper(Ai n),

for i = 1, . . . , n. However, unlike determinants which have a clear geometric interpretation as
signed volumes, permanents do not have any natural geometric interpretation. Furthermore,
determinants can be evaluated efficiently, for example using the conversion to row reduced
echelon form, but computing the permanent is hard.

Permanents turn out to have various combinatorial interpretations. One of these is in
terms of perfect matchings of bipartite graphs which we now discuss.

Recall that a bipartite (undirected) graph G = (V,E) is a graph whose set of nodes V can
be partionned into two nonempty disjoint subsets V1 and V2, such that every edge e ∈ E has
one endpoint in V1 and one endpoint in V2. An example of a bipatite graph with 14 nodes
is shown in Figure 5.1; its nodes are partitioned into the two sets {x1, x2, x3, x4, x5, x6, x7}
and {y1, y2, y3, y4, y5, y6, y7}.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 5.1: A bipartite graph G.

A matching in a graph G = (V,E) (bipartite or not) is a set M of pairwise non-adjacent
edges, which means that no two edges in M share a common vertex. A perfect matching is
a matching such that every node in V is incident to some edge in the matching M (every
node in V is an endpoint of some edge in M). Figure 5.2 shows a perfect matching (in red)
in the bipartite graph G.

Obviously, a perfect matching in a bipartite graph can exist only if its set of nodes has
a partition in two blocks of equal size, say {x1, . . . , xm} and {y1, . . . , ym}. Then, there is
a bijection between perfect matchings and bijections π : {x1, . . . , xm} → {y1, . . . , ym} such
that π(xi) = yj iff there is an edge between xi and yj.

Now, every bipartite graph G with a partition of its nodes into two sets of equal size as
above is represented by an m × m matrix A = (aij) such that aij = 1 iff there is an edge
between xi and yj, and aij = 0 otherwise. Using the interpretation of perfect machings as
bijections π : {x1, . . . , xm} → {y1, . . . , ym}, we see that the permanent per(A) of the (0, 1)-
matrix A representing the bipartite graph G counts the number of perfect matchings in G.
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x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Figure 5.2: A perfect matching in the bipartite graph G.

In a famous paper published in 1979, Leslie Valiant proves that computing the permanent
is a #P-complete problem. Such problems are suspected to be intractable. It is known that
if a polynomial-time algorithm existed to solve a #P-complete problem, then we would have
P = NP , which is believed to be very unlikely.

Another combinatorial interpretation of the permanent can be given in terms of systems
of distinct representatives. Given a finite set S, let (A1, . . . , An) be any sequence of nonempty
subsets of S (not necessarily distinct). A system of distinct representatives (for short SDR)
of the sets A1, . . . , An is a sequence of n distinct elements (a1, . . . , an), with ai ∈ Ai for i =
1, . . . , n. The number of SDR’s of a sequence of sets plays an important role in combinatorics.
Now, if S = {1, 2, . . . , n} and if we associate to any sequence (A1, . . . , An) of nonempty
subsets of S the matrix A = (aij) defined such that aij = 1 if j ∈ Ai and aij = 0 otherwise,
then the permanent per(A) counts the number of SDR’s of the set A1, . . . , An.

This interpretation of permanents in terms of SDR’s can be used to prove bounds for the
permanents of various classes of matrices. Interested readers are referred to van Lint and
Wilson [109] (Chapters 11 and 12). In particular, a proof of a theorem known as Van der
Waerden conjecture is given in Chapter 12. This theorem states that for any n × n matrix
A with nonnegative entries in which all row-sums and column-sums are 1 (doubly stochastic
matrices), we have

per(A) ≥ n!

nn
,

with equality for the matrix in which all entries are equal to 1/n.

5.9 Summary

The main concepts and results of this chapter are listed below:

• permutations , transpositions , basics transpositions .

• Every permutation can be written as a composition of permutations.
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• The parity of the number of transpositions involved in any decomposition of a permu-
tation σ is an invariant; it is the signature ε(σ) of the permutation σ.

• Multilinear maps (also called n-linear maps); bilinear maps .

• Symmetric and alternating multilinear maps.

• A basic property of alternating multilinear maps (Lemma 5.5) and the introduction of
the formula expressing a determinant.

• Definition of a determinant as a multlinear alternating map D : Mn(K)→ K such that
D(I) = 1.

• We define the set of algorithms Dn, to compute the determinant of an n× n matrix.

• Laplace expansion according to the ith row ; cofactors .

• We prove that the algorithms in Dn compute determinants (Lemma 5.6).

• We prove that all algorithms in Dn compute the same determinant (Theorem 5.7).

• We give an interpretation of determinants as signed volumes .

• We prove that det(A) = det(A>).

• We prove that det(AB) = det(A) det(B).

• The adjugate Ã of a matrix A.

• Formula for the inverse in terms of the adjugate.

• A matrix A is invertible iff det(A) 6= 0.

• Solving linear equations using Cramer’s rules .

• Determinant of a linear map.

• The characteristic polynomial of a matrix.

• The Cayley–Hamilton theorem.

• The action of the polynomial ring induced by a linear map on a vector space.

• Permanents .

• Permanents count the number of perfect matchings in bipartite graphs.

• Computing the permanent is a #P-perfect problem (L. Valiant).

• Permanents count the number of SDRs of sequences of subsets of a given set.
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5.10 Further Readings

Thorough expositions of the material covered in Chapter 2–4 and 5 can be found in Strang
[103, 102], Lax [67], Lang [63], Artin [6], Mac Lane and Birkhoff [71], Hoffman and Kunze
[59], Dummit and Foote [38], Bourbaki [19, 20], Van Der Waerden [108], Serre [96], Horn
and Johnson [56], and Bertin [12]. These notions of linear algebra are nicely put to use in
classical geometry, see Berger [9, 10], Tisseron [105] and Dieudonné [34].



Chapter 6

Gaussian Elimination,
LU-Factorization, Cholesky
Factorization, Reduced Row Echelon
Form

6.1 Motivating Example: Curve Interpolation

Curve interpolation is a problem that arises frequently in computer graphics and in robotics
(path planning). There are many ways of tackling this problem and in this section we will
describe a solution using cubic splines . Such splines consist of cubic Bézier curves. They
are often used because they are cheap to implement and give more flexibility than quadratic
Bézier curves.

A cubic Bézier curve C(t) (in R2 or R3) is specified by a list of four control points
(b0, b2, b2, b3) and is given parametrically by the equation

C(t) = (1− t)3 b0 + 3(1− t)2t b1 + 3(1− t)t2 b2 + t3 b3.

Clearly, C(0) = b0, C(1) = b3, and for t ∈ [0, 1], the point C(t) belongs to the convex hull of
the control points b0, b1, b2, b3. The polynomials

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3

are the Bernstein polynomials of degree 3.

Typically, we are only interested in the curve segment corresponding to the values of t in
the interval [0, 1]. Still, the placement of the control points drastically affects the shape of the
curve segment, which can even have a self-intersection; See Figures 6.1, 6.2, 6.3 illustrating
various configuations.

153
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b0

b1

b2

b3

Figure 6.1: A “standard” Bézier curve

b0

b1

b2

b3

Figure 6.2: A Bézier curve with an inflexion point
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b0

b1b2

b3

Figure 6.3: A self-intersecting Bézier curve

Interpolation problems require finding curves passing through some given data points and
possibly satisfying some extra constraints.

A Bézier spline curve F is a curve which is made up of curve segments which are Bézier
curves, say C1, . . . , Cm (m ≥ 2). We will assume that F defined on [0,m], so that for
i = 1, . . . ,m,

F (t) = Ci(t− i+ 1), i− 1 ≤ t ≤ i.

Typically, some smoothness is required between any two junction points, that is, between
any two points Ci(1) and Ci+1(0), for i = 1, . . . ,m − 1. We require that Ci(1) = Ci+1(0)
(C0-continuity), and typically that the derivatives of Ci at 1 and of Ci+1 at 0 agree up to
second order derivatives. This is called C2-continuity , and it ensures that the tangents agree
as well as the curvatures.

There are a number of interpolation problems, and we consider one of the most common
problems which can be stated as follows:

Problem: Given N + 1 data points x0, . . . , xN , find a C2 cubic spline curve F such that
F (i) = xi for all i, 0 ≤ i ≤ N (N ≥ 2).

A way to solve this problem is to find N + 3 auxiliary points d−1, . . . , dN+1, called de
Boor control points , from which N Bézier curves can be found. Actually,

d−1 = x0 and dN+1 = xN
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so we only need to find N + 1 points d0, . . . , dN .

It turns out that the C2-continuity constraints on the N Bézier curves yield only N − 1
equations, so d0 and dN can be chosen arbitrarily. In practice, d0 and dN are chosen according
to various end conditions, such as prescribed velocities at x0 and xN . For the time being, we
will assume that d0 and dN are given.

Figure 6.4 illustrates an interpolation problem involving N + 1 = 7 + 1 = 8 data points.
The control points d0 and d7 were chosen arbitrarily.

x0 = d−1

x1

x2

x3

x4

x5

x6

x7 = d8

d0

d1

d2

d3

d4

d5

d6

d7

Figure 6.4: A C2 cubic interpolation spline curve passing through the points x0, x1, x2, x3,
x4, x5, x6, x7

It can be shown that d1, . . . , dN−1 are given by the linear system
7
2

1
1 4 1 0

. . . . . . . . .

0 1 4 1
1 7

2




d1

d2
...

dN−2

dN−1

 =


6x1 − 3

2
d0

6x2
...

6xN−2

6xN−1 − 3
2
dN

 .

We will show later that the above matrix is invertible because it is strictly diagonally
dominant.
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Once the above system is solved, the Bézier cubics C1, . . ., CN are determined as follows
(we assume N ≥ 2): For 2 ≤ i ≤ N − 1, the control points (bi0, b

i
1, b

i
2, b

i
3) of Ci are given by

bi0 = xi−1

bi1 =
2

3
di−1 +

1

3
di

bi2 =
1

3
di−1 +

2

3
di

bi3 = xi.

The control points (b1
0, b

1
1, b

1
2, b

1
3) of C1 are given by

b1
0 = x0

b1
1 = d0

b1
2 =

1

2
d0 +

1

2
d1

b1
3 = x1,

and the control points (bN0 , b
N
1 , b

N
2 , b

N
3 ) of CN are given by

bN0 = xN−1

bN1 =
1

2
dN−1 +

1

2
dN

bN2 = dN

bN3 = xN .

We will now describe various methods for solving linear systems. Since the matrix of the
above system is tridiagonal, there are specialized methods which are more efficient than the
general methods. We will discuss a few of these methods.

6.2 Gaussian Elimination

Let A be an n × n matrix, let b ∈ Rn be an n-dimensional vector and assume that A is
invertible. Our goal is to solve the system Ax = b. Since A is assumed to be invertible,
we know that this system has a unique solution x = A−1b. Experience shows that two
counter-intuitive facts are revealed:

(1) One should avoid computing the inverse A−1 of A explicitly. This is because this
would amount to solving the n linear systems Au(j) = ej for j = 1, . . . , n, where
ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector of Rn (with a 1 is the jth slot).
By doing so, we would replace the resolution of a single system by the resolution of n
systems, and we would still have to multiply A−1 by b.
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(2) One does not solve (large) linear systems by computing determinants (using Cramer’s
formulae). This is because this method requires a number of additions (resp. multipli-
cations) proportional to (n+ 1)! (resp. (n+ 2)!).

The key idea on which most direct methods (as opposed to iterative methods, that look
for an approximation of the solution) are based is that if A is an upper-triangular matrix,
which means that aij = 0 for 1 ≤ j < i ≤ n (resp. lower-triangular, which means that
aij = 0 for 1 ≤ i < j ≤ n), then computing the solution x is trivial. Indeed, say A is an
upper-triangular matrix

A =



a1 1 a1 2 · · · a1n−2 a1n−1 a1n

0 a2 2 · · · a2n−2 a2n−1 a2n

0 0
. . .

...
...

...
. . .

...
...

0 0 · · · 0 an−1n−1 an−1n

0 0 · · · 0 0 ann


.

Then, det(A) = a1 1a2 2 · · · ann 6= 0, which implies that ai i 6= 0 for i = 1, . . . , n, and we can
solve the system Ax = b from bottom-up by back-substitution. That is, first we compute
xn from the last equation, next plug this value of xn into the next to the last equation and
compute xn−1 from it, etc. This yields

xn = a−1
nnbn

xn−1 = a−1
n−1n−1(bn−1 − an−1nxn)

...

x1 = a−1
1 1 (b1 − a1 2x2 − · · · − a1nxn).

Note that the use of determinants can be avoided to prove that if A is invertible then
ai i 6= 0 for i = 1, . . . , n. Indeed, it can be shown directly (by induction) that an upper (or
lower) triangular matrix is invertible iff all its diagonal entries are nonzero.

If A is lower-triangular, we solve the system from top-down by forward-substitution.

Thus, what we need is a method for transforming a matrix to an equivalent one in upper-
triangular form. This can be done by elimination. Let us illustrate this method on the
following example:

2x + y + z = 5
4x − 6y = −2
−2x + 7y + 2z = 9.

We can eliminate the variable x from the second and the third equation as follows: Subtract
twice the first equation from the second and add the first equation to the third. We get the
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new system

2x + y + z = 5
− 8y − 2z = −12

8y + 3z = 14.

This time, we can eliminate the variable y from the third equation by adding the second
equation to the third:

2x + y + z = 5
− 8y − 2z = −12

z = 2.

This last system is upper-triangular. Using back-substitution, we find the solution: z = 2,
y = 1, x = 1.

Observe that we have performed only row operations. The general method is to iteratively
eliminate variables using simple row operations (namely, adding or subtracting a multiple of
a row to another row of the matrix) while simultaneously applying these operations to the
vector b, to obtain a system, MAx = Mb, where MA is upper-triangular. Such a method is
called Gaussian elimination. However, one extra twist is needed for the method to work in
all cases: It may be necessary to permute rows, as illustrated by the following example:

x + y + z = 1
x + y + 3z = 1
2x + 5y + 8z = 1.

In order to eliminate x from the second and third row, we subtract the first row from the
second and we subtract twice the first row from the third:

x + y + z = 1
2z = 0

3y + 6z = −1.

Now, the trouble is that y does not occur in the second row; so, we can’t eliminate y from
the third row by adding or subtracting a multiple of the second row to it. The remedy is
simple: Permute the second and the third row! We get the system:

x + y + z = 1
3y + 6z = −1

2z = 0,

which is already in triangular form. Another example where some permutations are needed
is:

z = 1
−2x + 7y + 2z = 1
4x − 6y = −1.
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First, we permute the first and the second row, obtaining

−2x + 7y + 2z = 1
z = 1

4x − 6y = −1,

and then, we add twice the first row to the third, obtaining:

−2x + 7y + 2z = 1
z = 1

8y + 4z = 1.

Again, we permute the second and the third row, getting

−2x + 7y + 2z = 1
8y + 4z = 1

z = 1,

an upper-triangular system. Of course, in this example, z is already solved and we could
have eliminated it first, but for the general method, we need to proceed in a systematic
fashion.

We now describe the method of Gaussian Elimination applied to a linear system Ax = b,
where A is assumed to be invertible. We use the variable k to keep track of the stages of
elimination. Initially, k = 1.

(1) The first step is to pick some nonzero entry ai 1 in the first column of A. Such an
entry must exist, since A is invertible (otherwise, the first column of A would be the
zero vector, and the columns of A would not be linearly independent. Equivalently, we
would have det(A) = 0). The actual choice of such an element has some impact on the
numerical stability of the method, but this will be examined later. For the time being,
we assume that some arbitrary choice is made. This chosen element is called the pivot
of the elimination step and is denoted π1 (so, in this first step, π1 = ai 1).

(2) Next, we permute the row (i) corresponding to the pivot with the first row. Such a
step is called pivoting . So, after this permutation, the first element of the first row is
nonzero.

(3) We now eliminate the variable x1 from all rows except the first by adding suitable
multiples of the first row to these rows. More precisely we add −ai 1/π1 times the first
row to the ith row for i = 2, . . . , n. At the end of this step, all entries in the first
column are zero except the first.

(4) Increment k by 1. If k = n, stop. Otherwise, k < n, and then iteratively repeat steps
(1), (2), (3) on the (n− k + 1)× (n− k + 1) subsystem obtained by deleting the first
k − 1 rows and k − 1 columns from the current system.
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If we let A1 = A and Ak = (a
(k)
i j ) be the matrix obtained after k − 1 elimination steps

(2 ≤ k ≤ n), then the kth elimination step is applied to the matrix Ak of the form

Ak =



a
(k)
1 1 a

(k)
1 2 · · · · · · · · · a

(k)
1n

a
(k)
2 2 · · · · · · · · · a

(k)
2n

. . .
...

...

a
(k)
k k · · · a

(k)
k n

...
...

a
(k)
nk · · · a

(k)
nn


.

Actually, note that

a
(k)
i j = a

(i)
i j

for all i, j with 1 ≤ i ≤ k − 2 and i ≤ j ≤ n, since the first k − 1 rows remain unchanged
after the (k − 1)th step.

We will prove later that det(Ak) = ± det(A). Consequently, Ak is invertible. The fact
that Ak is invertible iff A is invertible can also be shown without determinants from the fact
that there is some invertible matrix Mk such that Ak = MkA, as we will see shortly.

Since Ak is invertible, some entry a
(k)
i k with k ≤ i ≤ n is nonzero. Otherwise, the last

n − k + 1 entries in the first k columns of Ak would be zero, and the first k columns of
Ak would yield k vectors in Rk−1. But then, the first k columns of Ak would be linearly
dependent and Ak would not be invertible, a contradiction.

So, one the entries a
(k)
i k with k ≤ i ≤ n can be chosen as pivot, and we permute the kth

row with the ith row, obtaining the matrix α(k) = (α
(k)
j l ). The new pivot is πk = α

(k)
k k , and

we zero the entries i = k + 1, . . . , n in column k by adding −α(k)
i k /πk times row k to row i.

At the end of this step, we have Ak+1. Observe that the first k − 1 rows of Ak are identical
to the first k − 1 rows of Ak+1.

The process of Gaussian elimination is illustrated in schematic form below:
× × × ×
× × × ×
× × × ×
× × × ×

 =⇒


× × × ×
0 × × ×
0 × × ×
0 × × ×

 =⇒


× × × ×
0 × × ×
0 0 × ×
0 0 × ×

 =⇒


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 .

6.3 Elementary Matrices and Row Operations

It is easy to figure out what kind of matrices perform the elementary row operations used
during Gaussian elimination. The key point is that if A = PB, where A,B are m × n
matrices and P is a square matrix of dimension m, if (as usual) we denote the rows of A and
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B by A1, . . . , Am and B1, . . . , Bm, then the formula

aij =
m∑
k=1

pikbkj

giving the (i, j)th entry in A shows that the ith row of A is a linear combination of the rows
of B:

Ai = pi1B1 + · · ·+ pimBm.

Therefore, multiplication of a matrix on the left by a square matrix performs row opera-
tions . Similarly, multiplication of a matrix on the right by a square matrix performs column
operations

The permutation of the kth row with the ith row is achieved by multiplying A on the left
by the transposition matrix P (i, k), which is the matrix obtained from the identity matrix
by permuting rows i and k, i.e.,

P (i, k) =



1
1

0 1
1

. . .

1
1 0

1
1


.

Observe that det(P (i, k)) = −1. Furthermore, P (i, k) is symmetric (P (i, k)> = P (i, k)), and

P (i, k)−1 = P (i, k).

During the permutation step (2), if row k and row i need to be permuted, the matrix A
is multiplied on the left by the matrix Pk such that Pk = P (i, k), else we set Pk = I.

Adding β times row j to row i (with i 6= j) is achieved by multiplying A on the left by
the elementary matrix ,

Ei,j;β = I + βei j,

where

(ei j)k l =

{
1 if k = i and l = j
0 if k 6= i or l 6= j,
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i.e.,

Ei,j;β =



1
1

1
1

. . .

1
β 1

1
1


or Ei,j;β =



1
1

1 β
1

. . .

1
1

1
1


.

On the left, i > j, and on the right, i < j. Observe that the inverse of Ei,j;β = I + βei j is
Ei,j;−β = I − βei j and that det(Ei,j;β) = 1. Therefore, during step 3 (the elimination step),
the matrix A is multiplied on the left by a product Ek of matrices of the form Ei,k;βi,k , with
i > k.

Consequently, we see that
Ak+1 = EkPkAk,

and then
Ak = Ek−1Pk−1 · · ·E1P1A.

This justifies the claim made earlier that Ak = MkA for some invertible matrix Mk; we can
pick

Mk = Ek−1Pk−1 · · ·E1P1,

a product of invertible matrices.

The fact that det(P (i, k)) = −1 and that det(Ei,j;β) = 1 implies immediately the fact
claimed above: We always have

det(Ak) = ± det(A).

Furthermore, since
Ak = Ek−1Pk−1 · · ·E1P1A

and since Gaussian elimination stops for k = n, the matrix

An = En−1Pn−1 · · ·E2P2E1P1A

is upper-triangular. Also note that if we letM = En−1Pn−1 · · ·E2P2E1P1, then det(M) = ±1,
and

det(A) = ± det(An).

The matrices P (i, k) and Ei,j;β are called elementary matrices . We can summarize the
above discussion in the following theorem:
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Theorem 6.1. (Gaussian Elimination) Let A be an n× n matrix (invertible or not). Then
there is some invertible matrix M so that U = MA is upper-triangular. The pivots are all
nonzero iff A is invertible.

Proof. We already proved the theorem when A is invertible, as well as the last assertion.
Now, A is singular iff some pivot is zero, say at stage k of the elimination. If so, we must
have a

(k)
i k = 0 for i = k, . . . , n; but in this case, Ak+1 = Ak and we may pick Pk = Ek = I.

Remark: Obviously, the matrix M can be computed as

M = En−1Pn−1 · · ·E2P2E1P1,

but this expression is of no use. Indeed, what we need is M−1; when no permutations are
needed, it turns out that M−1 can be obtained immediately from the matrices Ek’s, in fact,
from their inverses, and no multiplications are necessary.

Remark: Instead of looking for an invertible matrix M so that MA is upper-triangular, we
can look for an invertible matrix M so that MA is a diagonal matrix. Only a simple change
to Gaussian elimination is needed. At every stage, k, after the pivot has been found and
pivoting been performed, if necessary, in addition to adding suitable multiples of the kth
row to the rows below row k in order to zero the entries in column k for i = k + 1, . . . , n,
also add suitable multiples of the kth row to the rows above row k in order to zero the
entries in column k for i = 1, . . . , k − 1. Such steps are also achieved by multiplying on
the left by elementary matrices Ei,k;βi,k , except that i < k, so that these matrices are not
lower-triangular matrices. Nevertheless, at the end of the process, we find that An = MA,
is a diagonal matrix.

This method is called the Gauss-Jordan factorization. Because it is more expensive than
Gaussian elimination, this method is not used much in practice. However, Gauss-Jordan
factorization can be used to compute the inverse of a matrix A. Indeed, we find the jth
column of A−1 by solving the system Ax(j) = ej (where ej is the jth canonical basis vector
of Rn). By applying Gauss-Jordan, we are led to a system of the form Djx

(j) = Mjej, where
Dj is a diagonal matrix, and we can immediately compute x(j).

It remains to discuss the choice of the pivot, and also conditions that guarantee that no
permutations are needed during the Gaussian elimination process. We begin by stating a
necessary and sufficient condition for an invertible matrix to have an LU -factorization (i.e.,
Gaussian elimination does not require pivoting).

6.4 LU-Factorization

We say that an invertible matrix A has an LU-factorization if it can be written as A = LU ,
where U is upper-triangular invertible and L is lower-triangular, with Li i = 1 for i = 1, . . . , n.
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A lower-triangular matrix with diagonal entries equal to 1 is called a unit lower-triangular
matrix. Given an n× n matrix A = (ai j), for any k with 1 ≤ k ≤ n, let A[1..k, 1..k] denote
the submatrix of A whose entries are ai j, where 1 ≤ i, j ≤ k.

Proposition 6.2. Let A be an invertible n × n-matrix. Then, A has an LU-factorization
A = LU iff every matrix A[1..k, 1..k] is invertible for k = 1, . . . , n. Furthermore, when A
has an LU-factorization, we have

det(A[1..k, 1..k]) = π1π2 · · · πk, k = 1, . . . , n,

where πk is the pivot obtained after k− 1 elimination steps. Therefore, the kth pivot is given
by

πk =

a11 = det(A[1..1, 1..1]) if k = 1
det(A[1..k, 1..k])

det(A[1..k − 1, 1..k − 1])
if k = 2, . . . , n.

Proof. First, assume that A = LU is an LU -factorization of A. We can write

A =

(
A[1..k, 1..k] A2

A3 A4

)
=

(
L1 0
L3 L4

)(
U1 U2

0 U4

)
=

(
L1U1 L1U2

L3U1 L3U2 + L4U4

)
,

where L1, L4 are unit lower-triangular and U1, U4 are upper-triangular. Thus,

A[1..k, 1..k] = L1U1,

and since U is invertible, U1 is also invertible (the determinant of U is the product of the
diagonal entries in U , which is the product of the diagonal entries in U1 and U4). As L1 is
invertible (since its diagonal entries are equal to 1), we see that A[1..k, 1..k] is invertible for
k = 1, . . . , n.

Conversely, assume that A[1..k, 1..k] is invertible for k = 1, . . . , n. We just need to show
that Gaussian elimination does not need pivoting. We prove by induction on k that the kth
step does not need pivoting.

This holds for k = 1, since A[1..1, 1..1] = (a1 1), so a1 1 6= 0. Assume that no pivoting was
necessary for the first k − 1 steps (2 ≤ k ≤ n− 1). In this case, we have

Ek−1 · · ·E2E1A = Ak,

where L = Ek−1 · · ·E2E1 is a unit lower-triangular matrix and Ak[1..k, 1..k] is upper-
triangular, so that LA = Ak can be written as(

L1 0
L3 L4

)(
A[1..k, 1..k] A2

A3 A4

)
=

(
U1 B2

0 B4

)
,

where L1 is unit lower-triangular and U1 is upper-triangular. But then,

L1A[1..k, 1..k]) = U1,
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where L1 is invertible (in fact, det(L1) = 1), and since by hypothesis A[1..k, 1..k] is invertible,
U1 is also invertible, which implies that (U1)kk 6= 0, since U1 is upper-triangular. Therefore,
no pivoting is needed in step k, establishing the induction step. Since det(L1) = 1, we also
have

det(U1) = det(L1A[1..k, 1..k]) = det(L1) det(A[1..k, 1..k]) = det(A[1..k, 1..k]),

and since U1 is upper-triangular and has the pivots π1, . . . , πk on its diagonal, we get

det(A[1..k, 1..k]) = π1π2 · · · πk, k = 1, . . . , n,

as claimed.

Remark: The use of determinants in the first part of the proof of Proposition 6.2 can be
avoided if we use the fact that a triangular matrix is invertible iff all its diagonal entries are
nonzero.

Corollary 6.3. (LU-Factorization) Let A be an invertible n × n-matrix. If every matrix
A[1..k, 1..k] is invertible for k = 1, . . . , n, then Gaussian elimination requires no pivoting
and yields an LU-factorization A = LU .

Proof. We proved in Proposition 6.2 that in this case Gaussian elimination requires no
pivoting. Then, since every elementary matrix Ei,k;β is lower-triangular (since we always
arrange that the pivot πk occurs above the rows that it operates on), since E−1

i,k;β = Ei,k;−β
and the E ′ks are products of Ei,k;βi,k ’s, from

En−1 · · ·E2E1A = U,

where U is an upper-triangular matrix, we get

A = LU,

where L = E−1
1 E−1

2 · · ·E−1
n−1 is a lower-triangular matrix. Furthermore, as the diagonal

entries of each Ei,k;β are 1, the diagonal entries of each Ek are also 1.

The reader should verify that the example below is indeed an LU -factorization.
2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


1 0 0 0
2 1 0 0
4 3 1 0
3 4 1 1




2 1 1 0
0 1 1 1
0 0 2 2
0 0 0 2

 .

One of the main reasons why the existence of an LU -factorization for a matrix A is
interesting is that if we need to solve several linear systems Ax = b corresponding to the
same matrix A, we can do this cheaply by solving the two triangular systems

Lw = b, and Ux = w.
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There is a certain asymmetry in the LU -decomposition A = LU of an invertible matrix A.
Indeed, the diagonal entries of L are all 1, but this is generally false for U . This asymmetry
can be eliminated as follows: if

D = diag(u11, u22, . . . , unn)

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then we if let
U ′ = D−1U , we can write

A = LDU ′,

where L is lower- triangular, U ′ is upper-triangular, all diagonal entries of both L and U ′ are
1, and D is a diagonal matrix of pivots. Such a decomposition is called an LDU-factorization.
We will see shortly than if A is symmetric, then U ′ = L>.

As we will see a bit later, symmetric positive definite matrices satisfy the condition of
Proposition 6.2. Therefore, linear systems involving symmetric positive definite matrices can
be solved by Gaussian elimination without pivoting. Actually, it is possible to do better:
This is the Cholesky factorization.

If a square invertible matrix A has an LU -factorization, then it is possible to find L and U
while performing Gaussian elimination. Recall that at step k, we pick a pivot πk = a

(k)
ik 6= 0

in the portion consisting of the entries of index j ≥ k of the k-th column of the matrix Ak
obtained so far, we swap rows i and k if necessary (the pivoting step), and then we zero the
entries of index j = k + 1, . . . , n in column k. Schematically, we have the following steps:

× × × × ×
0 × × × ×
0 × × × ×
0 a

(k)
ik × × ×

0 × × × ×

 pivot
=⇒


× × × × ×
0 a

(k)
ik × × ×

0 × × × ×
0 × × × ×
0 × × × ×

 elim
=⇒


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 × × ×

 .

More precisely, after permuting row k and row i (the pivoting step), if the entries in column
k below row k are αk+1k, . . . , αnk, then we add −αjk/πk times row k to row j; this process
is illustrated below: 

a
(k)
kk

a
(k)
k+1k
...

a
(k)
ik
...

a
(k)
nk


pivot
=⇒



a
(k)
ik

a
(k)
k+1k
...

a
(k)
kk
...

a
(k)
nk


=



πk
αk+1k

...
αik
...
αnk


elim
=⇒



πk
0
...
0
...
0


.
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Then, if we write `jk = αjk/πk for j = k + 1, . . . , n, the kth column of L is

0
...
0
1

`k+1k
...
`nk


.

Observe that the signs of the multipliers −αjk/πk have been flipped. Thus, we obtain the
unit lower triangular matrix

L =


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

 .

It is easy to see (and this is proved in Theorem 6.5) that the inverse of L is obtained from
L by flipping the signs of the `ij:

L−1 =


1 0 0 · · · 0
−`21 1 0 · · · 0
−`31 −`32 1 · · · 0

...
...

...
. . . 0

−`n1 −`n2 −`n3 · · · 1

 .

Furthermore, if the result of Gaussian elimination (without pivoting) is U = En−1 · · ·E1A,
then

Ek =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · −`nk 0 · · · 1


and E−1

k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1


,

so the kth column of Ek is the kth column of L−1.

Here is an example illustrating the method. Given

A = A1 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 ,
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we have the following sequence of steps: The first pivot is π1 = 1 in row 1, and we substract
row 1 from rows 2, 3, and 4. We get

A2 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 −2 −1 −1

 L1 =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 .

The next pivot is π2 = −2 in row 2, and we subtract row 2 from row 4 (and add 0 times row
2 to row 3). We get

A3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 L2 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 .

The next pivot is π3 = −2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get

A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 L3 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 .

The procedure is finished, and we have

L = L3 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 U = A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 .

It is easy to check that indeed

LU =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1




1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 = A.

We now show how to extend the above method to deal with pivoting efficiently. This is
the PA = LU factorization.

6.5 PA = LU Factorization

The following easy proposition shows that, in principle, A can be premultiplied by some
permutation matrix P , so that PA can be converted to upper-triangular form without using
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any pivoting. Permutations are discussed in some detail in Section 5.1, but for now we
just need their definition. A permutation matrix is a square matrix that has a single 1
in every row and every column and zeros everywhere else. It is shown in Section 5.1 that
every permutation matrix is a product of transposition matrices (the P (i, k)s), and that P
is invertible with inverse P>.

Proposition 6.4. Let A be an invertible n × n-matrix. Then, there is some permutation
matrix P so that (PA)[1..k, 1..k] is invertible for k = 1, . . . , n.

Proof. The case n = 1 is trivial, and so is the case n = 2 (we swap the rows if necessary). If
n ≥ 3, we proceed by induction. Since A is invertible, its columns are linearly independent;
in particular, its first n− 1 columns are also linearly independent. Delete the last column of
A. Since the remaining n− 1 columns are linearly independent, there are also n− 1 linearly
independent rows in the corresponding n × (n − 1) matrix. Thus, there is a permutation
of these n rows so that the (n − 1) × (n − 1) matrix consisting of the first n − 1 rows is
invertible. But, then, there is a corresponding permutation matrix P1, so that the first n− 1
rows and columns of P1A form an invertible matrix A′. Applying the induction hypothesis
to the (n− 1)× (n− 1) matrix A′, we see that there some permutation matrix P2 (leaving
the nth row fixed), so that P2P1A[1..k, 1..k] is invertible, for k = 1, . . . , n − 1. Since A is
invertible in the first place and P1 and P2 are invertible, P1P2A is also invertible, and we are
done.

Remark: One can also prove Proposition 6.4 using a clever reordering of the Gaussian
elimination steps suggested by Trefethen and Bau [106] (Lecture 21). Indeed, we know that
if A is invertible, then there are permutation matrices Pi and products of elementary matrices
Ei, so that

An = En−1Pn−1 · · ·E2P2E1P1A,

where U = An is upper-triangular. For example, when n = 4, we have E3P3E2P2E1P1A = U .
We can define new matrices E ′1, E

′
2, E

′
3 which are still products of elementary matrices so

that we have
E ′3E

′
2E
′
1P3P2P1A = U.

Indeed, if we let E ′3 = E3, E ′2 = P3E2P
−1
3 , and E ′1 = P3P2E1P

−1
2 P−1

3 , we easily verify that
each E ′k is a product of elementary matrices and that

E ′3E
′
2E
′
1P3P2P1 = E3(P3E2P

−1
3 )(P3P2E1P

−1
2 P−1

3 )P3P2P1 = E3P3E2P2E1P1.

It can also be proved that E ′1, E
′
2, E

′
3 are lower triangular (see Theorem 6.5).

In general, we let
E ′k = Pn−1 · · ·Pk+1EkP

−1
k+1 · · ·P−1

n−1,

and we have
E ′n−1 · · ·E ′1Pn−1 · · ·P1A = U,
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where each E ′j is a lower triangular matrix (see Theorem 6.5).

It is remarkable that if pivoting steps are necessary during Gaussian elimination, a very
simple modification of the algorithm for finding an LU -factorization yields the matrices L,U ,
and P , such that PA = LU . To describe this new method, since the diagonal entries of L
are 1s, it is convenient to write

L = I + Λ.

Then, in assembling the matrix Λ while performing Gaussian elimination with pivoting, we
make the same transposition on the rows of Λ (really Λk−1) that we make on the rows of A
(really Ak) during a pivoting step involving row k and row i. We also assemble P by starting
with the identity matrix and applying to P the same row transpositions that we apply to A
and Λ. Here is an example illustrating this method. Given

A = A1 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 ,

we have the following sequence of steps: We initialize Λ0 = 0 and P0 = I4. The first pivot is
π1 = 1 in row 1, and we substract row 1 from rows 2, 3, and 4. We get

A2 =


1 1 1 0
0 0 −2 0
0 −2 −1 1
0 −2 −1 −1

 Λ1 =


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 P1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The next pivot is π2 = −2 in row 3, so we permute row 2 and 3; we also apply this permutation
to Λ and P :

A′3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 −2 −1 −1

 Λ′2 =


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 P2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Next, we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We get

A3 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 Λ2 =


0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

 P2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The next pivot is π3 = −2 in row 3, and since the fourth entry in column 3 is already a zero,
we add 0 times row 3 to row 4. We get

A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 Λ3 =


0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0

 P3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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The procedure is finished, and we have

L = Λ3 + I =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

 U = A4 =


1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 P = P3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

It is easy to check that indeed

LU =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1




1 1 1 0
0 −2 −1 1
0 0 −2 0
0 0 0 −2

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1


and

PA =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 .

Using the idea in the remark before the above example, we can prove the theorem below
which shows the correctness of the algorithm for computing P,L and U using a simple
adaptation of Gaussian elimination.

We are not aware of a detailed proof of Theorem 6.5 in the standard texts. Although
Golub and Van Loan [49] state a version of this theorem as their Theorem 3.1.4, they say
that “The proof is a messy subscripting argument.” Meyer [75] also provides a sketch of
proof (see the end of Section 3.10). In view of this situation, we offer a complete proof.
It does involve a lot of subscripts and superscripts, but in our opinion, it contains some
interesting techniques that go far beyond symbol manipulation.

Theorem 6.5. For every invertible n× n-matrix A, the following hold:

(1) There is some permutation matrix P , some upper-triangular matrix U , and some unit
lower-triangular matrix L, so that PA = LU (recall, Li i = 1 for i = 1, . . . , n). Fur-
thermore, if P = I, then L and U are unique and they are produced as a result of
Gaussian elimination without pivoting.

(2) If En−1 . . . E1A = U is the result of Gaussian elimination without pivoting, write as

usual Ak = Ek−1 . . . E1A (with Ak = (a
(k)
ij )), and let `ik = a

(k)
ik /a

(k)
kk , with 1 ≤ k ≤ n− 1

and k + 1 ≤ i ≤ n. Then

L =


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . . 0
`n1 `n2 `n3 · · · 1

 ,
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where the kth column of L is the kth column of E−1
k , for k = 1, . . . , n− 1.

(3) If En−1Pn−1 · · ·E1P1A = U is the result of Gaussian elimination with some pivoting,
write Ak = Ek−1Pk−1 · · ·E1P1A, and define Ek

j , with 1 ≤ j ≤ n− 1 and j ≤ k ≤ n− 1,
such that, for j = 1, . . . , n− 2,

Ej
j = Ej

Ek
j = PkE

k−1
j Pk, for k = j + 1, . . . , n− 1,

and
En−1
n−1 = En−1.

Then,

Ek
j = PkPk−1 · · ·Pj+1EjPj+1 · · ·Pk−1Pk

U = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,

and if we set

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1,

then
PA = LU.

Furthermore,
(Ek

j )−1 = I + Ekj , 1 ≤ j ≤ n− 1, j ≤ k ≤ n− 1,

where Ekj is a lower triangular matrix of the form

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


,

we have
Ek
j = I − Ekj ,

and
Ekj = PkEk−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

where Pk = I or else Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n; if Pk 6= I, this
means that (Ek

j )−1 is obtained from (Ek−1
j )−1 by permuting the entries on row i and
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k in column j. Because the matrices (Ek
j )−1 are all lower triangular, the matrix L is

also lower triangular.

In order to find L, define lower triangular matrices Λk of the form

Λk =



0 0 0 0 0 · · · · · · 0

λ
(k)
21 0 0 0 0

...
... 0

λ
(k)
31 λ

(k)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
(k)
k+11 λ

(k)
k+12 · · · λ

(k)
k+1k 0 · · · · · · 0

λ
(k)
k+21 λ

(k)
k+22 · · · λ

(k)
k+2k 0

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
(k)
n1 λ

(k)
n2 · · · λ

(k)
nk 0 · · · · · · 0


to assemble the columns of L iteratively as follows: let

(−`(k)
k+1k, . . . ,−`

(k)
nk )

be the last n−k elements of the kth column of Ek, and define Λk inductively by setting

Λ1 =


0 0 · · · 0

`
(1)
21 0 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 0

 ,

then for k = 2, . . . , n− 1, define

Λ′k = PkΛk−1,

and

Λk = (I + Λ′k)E
−1
k − I =



0 0 0 0 0 · · · · · · 0

λ
′(k−1)
21 0 0 0 0

...
... 0

λ
′(k−1)
31 λ

′(k−1)
32

. . . 0 0
...

... 0
...

...
. . . 0 0

...
...

...

λ
′(k−1)
k1 λ

′(k−1)
k2 · · · λ

′(k−1)
k (k−1) 0 · · · · · · 0

λ
′(k−1)
k+11 λ

′(k−1)
k+12 · · · λ

′(k−1)
k+1 (k−1) `

(k)
k+1k

. . . · · · 0
...

...
. . .

...
...

...
. . .

...

λ
′(k−1)
n1 λ

′(k−1)
n2 · · · λ

′(k−1)
nk−1 `

(k)
nk · · · · · · 0


,
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with Pk = I or Pk = P (k, i) for some i > k. This means that in assembling L, row k
and row i of Λk−1 need to be permuted when a pivoting step permuting row k and row
i of Ak is required. Then

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 · · · Ekk ,

for k = 1, . . . , n− 1, and therefore

L = I + Λn−1.

Proof. (1) The only part that has not been proved is the uniqueness part (when P = I).
Assume that A is invertible and that A = L1U1 = L2U2, with L1, L2 unit lower-triangular
and U1, U2 upper-triangular. Then, we have

L−1
2 L1 = U2U

−1
1 .

However, it is obvious that L−1
2 is lower-triangular and that U−1

1 is upper-triangular, and so
L−1

2 L1 is lower-triangular and U2U
−1
1 is upper-triangular. Since the diagonal entries of L1

and L2 are 1, the above equality is only possible if U2U
−1
1 = I, that is, U1 = U2, and so

L1 = L2.

(2) When P = I, we have L = E−1
1 E−1

2 · · ·E−1
n−1, where Ek is the product of n − k

elementary matrices of the form Ei,k;−`i , where Ei,k;−`i subtracts `i times row k from row i,

with `ik = a
(k)
ik /a

(k)
kk , 1 ≤ k ≤ n− 1, and k + 1 ≤ i ≤ n. Then, it is immediately verified that

Ek =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −`k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · −`nk 0 · · · 1


,

and that

E−1
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · `k+1k 1 · · · 0
...

...
...

...
. . .

...
0 · · · `nk 0 · · · 1


.
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If we define Lk by

Lk =



1 0 0 0 0
... 0

`21 1 0 0 0
... 0

`31 `32
. . . 0 0

... 0
...

...
. . . 1 0

... 0
`k+11 `k+12 · · · `k+1k 1 · · · 0

...
...

. . .
... 0

... 0
`n1 `n2 · · · `nk 0 · · · 1


for k = 1, . . . , n− 1, we easily check that L1 = E−1

1 , and that

Lk = Lk−1E
−1
k , 2 ≤ k ≤ n− 1,

because multiplication on the right by E−1
k adds `i times column i to column k (of the matrix

Lk−1) with i > k, and column i of Lk−1 has only the nonzero entry 1 as its ith element.
Since

Lk = E−1
1 · · ·E−1

k , 1 ≤ k ≤ n− 1,

we conclude that L = Ln−1, proving our claim about the shape of L.

(3) First, we prove by induction on k that

Ak+1 = Ek
k · · ·Ek

1Pk · · ·P1A, k = 1, . . . , n− 2.

For k = 1, we have A2 = E1P1A = E1
1P1A, since E1

1 = E1, so our assertion holds trivially.

Now, if k ≥ 2,
Ak+1 = EkPkAk,

and by the induction hypothesis,

Ak = Ek−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A.

Because Pk is either the identity or a transposition, P 2
k = I, so by inserting occurrences of

PkPk as indicated below we can write

Ak+1 = EkPkAk

= EkPkE
k−1
k−1 · · ·Ek−1

2 Ek−1
1 Pk−1 · · ·P1A

= EkPkE
k−1
k−1(PkPk) · · · (PkPk)Ek−1

2 (PkPk)E
k−1
1 (PkPk)Pk−1 · · ·P1A

= Ek(PkE
k−1
k−1Pk) · · · (PkEk−1

2 Pk)(PkE
k−1
1 Pk)PkPk−1 · · ·P1A.

Observe that Pk has been “moved” to the right of the elimination steps. However, by
definition,

Ek
j = PkE

k−1
j Pk, j = 1, . . . , k − 1

Ek
k = Ek,
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so we get
Ak+1 = Ek

kE
k
k−1 · · ·Ek

2E
k
1Pk · · ·P1A,

establishing the induction hypothesis. For k = n− 2, we get

U = An−1 = En−1
n−1 · · ·En−1

1 Pn−1 · · ·P1A,

as claimed, and the factorization PA = LU with

P = Pn−1 · · ·P1

L = (En−1
1 )−1 · · · (En−1

n−1)−1

is clear,

Since for j = 1, . . . , n− 2, we have Ej
j = Ej,

Ek
j = PkE

k−1
j Pk, k = j + 1, . . . , n− 1,

since En−1
n−1 = En−1 and P−1

k = Pk, we get (Ej
j )
−1 = E−1

j for j = 1, . . . , n − 1, and for
j = 1, . . . , n− 2, we have

(Ek
j )−1 = Pk(E

k−1
j )−1Pk, k = j + 1, . . . , n− 1.

Since
(Ek−1

j )−1 = I + Ek−1
j

and Pk = P (k, i) is a transposition, P 2
k = I, so we get

(Ek
j )−1 = Pk(E

k−1
j )−1Pk = Pk(I + Ek−1

j )Pk = P 2
k + Pk Ek−1

j Pk = I + Pk Ek−1
j Pk.

Therfore, we have

(Ek
j )−1 = I + Pk Ek−1

j Pk, 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1.

We prove for j = 1, . . . , n− 1, that for k = j, . . . , n− 1, each Ekj is a lower triangular matrix
of the form

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


,

and that
Ekj = Pk Ek−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

with Pk = I or Pk = P (k, i) for some i such that k + 1 ≤ i ≤ n.
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For each j (1 ≤ j ≤ n− 1) we proceed by induction on k = j, . . . , n− 1. Since (Ej
j )
−1 =

E−1
j and since E−1

j is of the above form, the base case holds.

For the induction step, we only need to consider the case where Pk = P (k, i) is a trans-
position, since the case where Pk = I is trivial. We have to figure out what Pk Ek−1

j Pk =

P (k, i) Ek−1
j P (k, i) is. However, since

Ek−1
j =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k−1)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k−1)
nj 0 · · · 0


,

and because k + 1 ≤ i ≤ n and j ≤ k − 1, multiplying Ek−1
j on the right by P (k, i) will

permute columns i and k, which are columns of zeros, so

P (k, i) Ek−1
j P (k, i) = P (k, i) Ek−1

j ,

and thus,

(Ek
j )−1 = I + P (k, i) Ek−1

j ,

which shows that

Ekj = P (k, i) Ek−1
j .

We also know that multiplying (Ek−1
j )−1 on the left by P (k, i) will permute rows i and

k, which shows that Ekj has the desired form, as claimed. Since all Ekj are strictly lower
triangular, all (Ek

j )−1 = I + Ekj are lower triangular, so the product

L = (En−1
1 )−1 · · · (En−1

n−1)−1

is also lower triangular.

From the beginning of part (3), we know that

L = (En−1
1 )−1 · · · (En−1

n−1)−1.

We prove by induction on k that

I + Λk = (Ek
1 )−1 · · · (Ek

k )−1

Λk = Ek1 · · · Ekk ,

for k = 1, . . . , n− 1.
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If k = 1, we have E1
1 = E1 and

E1 =


1 0 · · · 0

−`(1)
21 1 · · · 0
...

...
. . .

...

−`(1)
n1 0 · · · 1

 .

We get

(E−1
1 )−1 =


1 0 · · · 0

`
(1)
21 1 · · · 0
...

...
. . .

...

`
(1)
n1 0 · · · 1

 = I + Λ1,

Since (E−1
1 )−1 = I + E1

1 , we also get Λ1 = E1
1 , and the base step holds.

Since (Ek
j )−1 = I + Ekj with

Ekj =



0 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 0 0 · · · 0

0 · · · `
(k)
j+1j 0 · · · 0

...
...

...
...

. . .
...

0 · · · `
(k)
nj 0 · · · 0


,

as in part (2) for the computation involving the products of Lk’s, we get

(Ek−1
1 )−1 · · · (Ek−1

k−1)−1 = I + Ek−1
1 · · · Ek−1

k−1 , 2 ≤ k ≤ n. (∗)

Similarly, from the fact that Ek−1
j P (k, i) = Ek−1

j if i ≥ k + 1 and j ≤ k − 1 and since

(Ek
j )−1 = I + PkEk−1

j , 1 ≤ j ≤ n− 2, j + 1 ≤ k ≤ n− 1,

we get
(Ek

1 )−1 · · · (Ek
k−1)−1 = I + PkEk−1

1 · · · Ek−1
k−1 , 2 ≤ k ≤ n− 1. (∗∗)

By the induction hypothesis,

I + Λk−1 = (Ek−1
1 )−1 · · · (Ek−1

k−1)−1,

and from (∗), we get
Λk−1 = Ek−1

1 · · · Ek−1
k−1 .

Using (∗∗), we deduce that

(Ek
1 )−1 · · · (Ek

k−1)−1 = I + PkΛk−1.
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Since Ek
k = Ek, we obtain

(Ek
1 )−1 · · · (Ek

k−1)−1(Ek
k )−1 = (I + PkΛk−1)E−1

k .

However, by definition
I + Λk = (I + PkΛk−1)E−1

k ,

which proves that
I + Λk = (Ek

1 )−1 · · · (Ek
k−1)−1(Ek

k )−1, (†)
and finishes the induction step for the proof of this formula.

If we apply equation (∗) again with k + 1 in place of k, we have

(Ek
1 )−1 · · · (Ek

k )−1 = I + Ek1 · · · Ekk ,
and together with (†), we obtain,

Λk = Ek1 · · · Ekk ,
also finishing the induction step for the proof of this formula. For k = n−1 in (†), we obtain
the desired equation: L = I + Λn−1.

We emphasize again that part (3) of Theorem 6.5 shows the remarkable fact that in
assembling the matrix L while performing Gaussian elimination with pivoting, the only
change to the algorithm is to make the same transposition on the rows of Λk−1 that we
make on the rows of A (really Ak) during a pivoting step involving row k and row i. We
can also assemble P by starting with the identity matrix and applying to P the same row
transpositions that we apply to A and Λ. Here is an example illustrating this method.

Consider the matrix

A =


1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

 .

We set P0 = I4, and we can also set Λ0 = 0. The first step is to permute row 1 and row 2,
using the pivot 4. We also apply this permutation to P0:

A′1 =


4 8 12 −8
1 2 −3 4
2 3 2 1
−3 −1 1 −4

 P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

Next, we subtract 1/4 times row 1 from row 2, 1/2 times row 1 from row 3, and add 3/4
times row 1 to row 4, and start assembling Λ:

A2 =


4 8 12 −8
0 0 −6 6
0 −1 −4 5
0 5 10 −10

 Λ1 =


0 0 0 0

1/4 0 0 0
1/2 0 0 0
−3/4 0 0 0

 P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .
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Next we permute row 2 and row 4, using the pivot 5. We also apply this permutation to Λ
and P :

A′3 =


4 8 12 −8
0 5 10 −10
0 −1 −4 5
0 0 −6 6

 Λ′2 =


0 0 0 0
−3/4 0 0 0
1/2 0 0 0
1/4 0 0 0

 P2 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

Next we add 1/5 times row 2 to row 3, and update Λ′2:

A3 =


4 8 12 −8
0 5 10 −10
0 0 −2 3
0 0 −6 6

 Λ2 =


0 0 0 0
−3/4 0 0 0
1/2 −1/5 0 0
1/4 0 0 0

 P2 =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 .

Next we permute row 3 and row 4, using the pivot −6. We also apply this permutation to
Λ and P :

A′4 =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 −2 3

 Λ′3 =


0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 0 0

 P3 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Finally, we subtract 1/3 times row 3 from row 4, and update Λ′3:

A4 =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 Λ3 =


0 0 0 0
−3/4 0 0 0
1/4 0 0 0
1/2 −1/5 1/3 0

 P3 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

Consequently, adding the identity to Λ3, we obtain

L =


1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1

 , U =


4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 , P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .

We check that

PA =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




1 2 −3 4
4 8 12 −8
2 3 2 1
−3 −1 1 −4

 =


4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1

 ,

and that

LU =


1 0 0 0
−3/4 1 0 0
1/4 0 1 0
1/2 −1/5 1/3 1




4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

 =


4 8 12 −8
−3 −1 1 −4
1 2 −3 4
2 3 2 1

 = PA.
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Note that if one willing to overwrite the lower triangular part of the evolving matrix A,
one can store the evolving Λ there, since these entries will eventually be zero anyway! There
is also no need to save explicitly the permutation matrix P . One could instead record the
permutation steps in an extra column (record the vector (π(1), . . . , π(n)) corresponding to
the permutation π applied to the rows). We let the reader write such a bold and space-
efficient version of LU -decomposition!

As a corollary of Theorem 6.5(1), we can show the following result.

Proposition 6.6. If an invertible symmetric matrix A has an LU-decomposition, then A
has a factorization of the form

A = LDL>,

where L is a lower-triangular matrix whose diagonal entries are equal to 1, and where D
consists of the pivots. Furthermore, such a decomposition is unique.

Proof. If A has an LU -factorization, then it has an LDU factorization

A = LDU,

where L is lower-triangular, U is upper-triangular, and the diagonal entries of both L and
U are equal to 1. Since A is symmetric, we have

LDU = A = A> = U>DL>,

with U> lower-triangular and DL> upper-triangular. By the uniqueness of LU -factorization
(part (1) of Theorem 6.5), we must have L = U> (and DU = DL>), thus U = L>, as
claimed.

Remark: It can be shown that Gaussian elimination + back-substitution requires n3/3 +
O(n2) additions, n3/3 +O(n2) multiplications and n2/2 +O(n) divisions.

6.6 Dealing with Roundoff Errors; Pivoting Strategies

Let us now briefly comment on the choice of a pivot. Although theoretically, any pivot can
be chosen, the possibility of roundoff errors implies that it is not a good idea to pick very
small pivots. The following example illustrates this point. Consider the linear system

10−4x + y = 1
x + y = 2.

Since 10−4 is nonzero, it can be taken as pivot, and we get

10−4x + y = 1
(1− 104)y = 2− 104.
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Thus, the exact solution is

x =
104

104 − 1
, y =

104 − 2

104 − 1
.

However, if roundoff takes place on the fourth digit, then 104− 1 = 9999 and 104− 2 = 9998
will be rounded off both to 9990, and then the solution is x = 0 and y = 1, very far from the
exact solution where x ≈ 1 and y ≈ 1. The problem is that we picked a very small pivot. If
instead we permute the equations, the pivot is 1, and after elimination, we get the system

x + y = 2
(1− 10−4)y = 1− 2× 10−4.

This time, 1 − 10−4 = 0.9999 and 1 − 2 × 10−4 = 0.9998 are rounded off to 0.999 and the
solution is x = 1, y = 1, much closer to the exact solution.

To remedy this problem, one may use the strategy of partial pivoting . This consists of
choosing during step k (1 ≤ k ≤ n− 1) one of the entries a

(k)
i k such that

|a(k)
i k | = max

k≤p≤n
|a(k)
p k |.

By maximizing the value of the pivot, we avoid dividing by undesirably small pivots.

Remark: A matrix, A, is called strictly column diagonally dominant iff

|aj j| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n

(resp. strictly row diagonally dominant iff

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n.)

It has been known for a long time (before 1900, say by Hadamard) that if a matrix A
is strictly column diagonally dominant (resp. strictly row diagonally dominant), then it is
invertible. (This is a good exercise, try it!) It can also be shown that if A is strictly column
diagonally dominant, then Gaussian elimination with partial pivoting does not actually re-
quire pivoting (See Problem 21.6 in Trefethen and Bau [106], or Question 2.19 in Demmel
[33]).

Another strategy, called complete pivoting , consists in choosing some entry a
(k)
i j , where

k ≤ i, j ≤ n, such that
|a(k)
i j | = max

k≤p,q≤n
|a(k)
p q |.

However, in this method, if the chosen pivot is not in column k, it is also necessary to
permute columns. This is achieved by multiplying on the right by a permutation matrix.
However, complete pivoting tends to be too expensive in practice, and partial pivoting is the
method of choice.

A special case where the LU -factorization is particularly efficient is the case of tridiagonal
matrices, which we now consider.
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6.7 Gaussian Elimination of Tridiagonal Matrices

Consider the tridiagonal matrix

A =



b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . .

an−2 bn−2 cn−2

an−1 bn−1 cn−1

an bn


.

Define the sequence

δ0 = 1, δ1 = b1, δk = bkδk−1 − akck−1δk−2, 2 ≤ k ≤ n.

Proposition 6.7. If A is the tridiagonal matrix above, then δk = det(A[1..k, 1..k]) for
k = 1, . . . , n.

Proof. By expanding det(A[1..k, 1..k]) with respect to its last row, the proposition follows
by induction on k.

Theorem 6.8. If A is the tridiagonal matrix above and δk 6= 0 for k = 1, . . . , n, then A has
the following LU-factorization:

A =



1

a2
δ0

δ1

1

a3
δ1

δ2

1

. . . . . .

an−1
δn−3

δn−2

1

an
δn−2

δn−1

1





δ1

δ0

c1

δ2

δ1

c2

δ3

δ2

c3

. . . . . .
δn−1

δn−2

cn−1

δn
δn−1


.

Proof. Since δk = det(A[1..k, 1..k]) 6= 0 for k = 1, . . . , n, by Theorem 6.5 (and Proposition
6.2), we know that A has a unique LU -factorization. Therefore, it suffices to check that the
proposed factorization works. We easily check that

(LU)k k+1 = ck, 1 ≤ k ≤ n− 1

(LU)k k−1 = ak, 2 ≤ k ≤ n

(LU)k l = 0, |k − l| ≥ 2

(LU)1 1 =
δ1

δ0

= b1

(LU)k k =
akck−1δk−2 + δk

δk−1

= bk, 2 ≤ k ≤ n,
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since δk = bkδk−1 − akck−1δk−2.

It follows that there is a simple method to solve a linear system Ax = d where A is
tridiagonal (and δk 6= 0 for k = 1, . . . , n). For this, it is convenient to “squeeze” the diagonal
matrix ∆ defined such that ∆k k = δk/δk−1 into the factorization so that A = (L∆)(∆−1U),
and if we let

z1 =
c1

b1

, zk = ck
δk−1

δk
, 2 ≤ k ≤ n− 1, zn =

δn
δn−1

= bn − anzn−1,

A = (L∆)(∆−1U) is written as

A =



c1

z1

a2
c2

z2

a3
c3

z3
. . . . . .

an−1
cn−1

zn−1

an zn





1 z1

1 z2

1 z3

. . . . . .

1 zn−2

1 zn−1

1



.

As a consequence, the system Ax = d can be solved by constructing three sequences: First,
the sequence

z1 =
c1

b1

, zk =
ck

bk − akzk−1

, k = 2, . . . , n− 1, zn = bn − anzn−1,

corresponding to the recurrence δk = bkδk−1 − akck−1δk−2 and obtained by dividing both
sides of this equation by δk−1, next

w1 =
d1

b1

, wk =
dk − akwk−1

bk − akzk−1

, k = 2, . . . , n,

corresponding to solving the system L∆w = d, and finally

xn = wn, xk = wk − zkxk+1, k = n− 1, n− 2, . . . , 1,

corresponding to solving the system ∆−1Ux = w.

Remark: It can be verified that this requires 3(n − 1) additions, 3(n − 1) multiplications,
and 2n divisions, a total of 8n−6 operations, which is much less that the O(2n3/3) required
by Gaussian elimination in general.

We now consider the special case of symmetric positive definite matrices (SPD matrices).
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6.8 SPD Matrices and the Cholesky Decomposition

Recall that an n× n symmetric matrix A is positive definite iff

x>Ax > 0 for all x ∈ Rn with x 6= 0.

Equivalently, A is symmetric positive definite iff all its eigenvalues are strictly positive. The
following facts about a symmetric positive definite matrice A are easily established (some
left as an exercise):

(1) The matrix A is invertible. (Indeed, if Ax = 0, then x>Ax = 0, which implies x = 0.)

(2) We have ai i > 0 for i = 1, . . . , n. (Just observe that for x = ei, the ith canonical basis
vector of Rn, we have e>i Aei = ai i > 0.)

(3) For every n × n invertible matrix Z, the matrix Z>AZ is symmetric positive definite
iff A is symmetric positive definite.

(4) The set of n× n symmetric positive definite matrices is convex. This means that if A
and B are two n × n symmetric positive definite matrices, then for any λ such that
0 ≤ λ ≤ 1, the matrix (1− λ)A+ λB is also symmetric positive definite. Clearly since
A and B are symmetric, (1 − λ)A + λB is also symmetric. For any nonzero x ∈ Rn,
we have x>Ax > 0 and x>Bx > 0, so

x>((1− λ)A+ λB)x = (1− λ)x>Ax+ λx>Bx > 0,

because 0 ≤ λ ≤ 1, so 1−λ ≥ 0 and λ ≥ 0, and 1−λ and λ can’t be zero simultaneously.

(5) The set of n× n symmetric positive definite matrices is a cone. This means that if A
is symmetric positive definite and if λ > 0 is any real, then λA is symmetric positive
definite. Clearly λA is symmetric, and for nonzero x ∈ Rn, we have x>Ax > 0, and
since λ > 0, we have x>λAx = λx>Ax > 0.

It is instructive to characterize when a 2 × 2 symmetric matrix A is positive definite.
Write

A =

(
a c
c b

)
.

Then we have (
x y

)(a c
c b

)(
x
y

)
= ax2 + 2cxy + by2.

If the above expression is stritcly positive for all nonzero vectors
(
x
y

)
, then for x = 1, y = 0

we get a > 0 and for x = 0, y = 1 we get b > 0. Then we can write

ax2 + 2cxy + by2 =

(√
ax+

c√
a
y

)2

+ by2 − c2

a
y2

=

(√
ax+

c√
a
y

)2

+
1

a

(
ab− c2

)
y2.
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Since a > 0, if ab− c2 ≤ 0, then we can choose y > 0 so that the second term is negative or
zero, and we can set x = −(c/a)y to make the first term zero, in which case ax2+2cxy+by2 ≤
0, so we must have ab− c2 > 0.

Conversely, if a > 0, b > 0 and ab > c2, then for any (x, y) 6= (0, 0), if y = 0 then x 6= 0
and the first term is positive, and if y 6= 0 then the second term is positive. Therefore, the
symmetric matrix A is positive definite iff

a > 0, b > 0, ab > c2. (∗)

Note that ab− c2 = det(A), so the third condition says that det(A) > 0.

Observe that the condition b > 0 is redundant, since if a > 0 and ab > c2, then we must
have b > 0 (and similarly b > 0 and ab > c2 implies that a > 0).

We can try to visualize the space of 2 × 2 symmetric positive definite matrices in R3,
by viewing (a, b, c) as the coordinates along the x, y, z axes. Then the locus determined by
the strict inequalities in (∗) corresponds to the region on the side of the cone of equation
xy = z2 that does not contain the origin and for which x > 0 and y > 0. For z = δ fixed,
the equation xy = δ2 define a hyperbola in the plane z = δ. The cone of equation xy = z2

consists of the lines through the origin that touch the hyperbola xy = 1 in the plane z = 1.
We only consider the branch of this hyperbola for which x > 0 and y > 0.

It is not hard to show that the inverse of a symmetric positive definite matrix is also
symmetric positive definite, but the product of two symmetric positive definite matrices
may not be symmetric positive definite, as the following example shows:(

1 1
1 2

)(
1/
√

2 −1
√

2

−1/
√

2 3/
√

2

)
=

(
0 2/

√
2

−1/
√

2 5/
√

2

)
.

According to the above criterion, the two matrices on the left-hand side are symmetric
positive definite, but the matrix on the right-hand side is not even symmetric, and

(
−6 1

)( 0 2/
√

2

−1/
√

2 5/
√

2

)(
−6
1

)
=
(
−6 1

)( 2/
√

2

11/
√

2

)
= −1/

√
5,

even though its eigenvalues are both real and positive.

Next, we prove that a symmetric positive definite matrix has a special LU -factorization
of the form A = BB>, where B is a lower-triangular matrix whose diagonal elements are
strictly positive. This is the Cholesky factorization.

First, we note that a symmetric positive definite matrix satisfies the condition of Propo-
sition 6.2.

Proposition 6.9. If A is a symmetric positive definite matrix, then A[1..k, 1..k] is symmetric
positive definite, and thus invertible for k = 1, . . . , n.
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Proof. Since A is symmetric, each A[1..k, 1..k] is also symmetric. If w ∈ Rk, with 1 ≤ k ≤ n,
we let x ∈ Rn be the vector with xi = wi for i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n.
Now, since A is symmetric positive definite, we have x>Ax > 0 for all x ∈ Rn with x 6= 0.
This holds in particular for all vectors x obtained from nonzero vectors w ∈ Rk as defined
earlier, and clearly

x>Ax = w>A[1..k, 1..k]w,

which implies that A[1..k, 1..k] is positive definite. Thus, A[1..k, 1..k] is also invertible.

Proposition 6.9 can be strengthened as follows: A symmetric matrix A is positive definite
iff det(A[1..k, 1..k]) > 0 for k = 1, . . . , n.

The above fact is known as Sylvester’s criterion. We will prove it after establishing the
Cholesky factorization.

Let A be an n× n symmetric positive definite matrix and write

A =

(
a1 1 W>

W C

)
,

where C is an (n− 1)× (n− 1) symmetric matrix and W is an (n− 1)× 1 matrix. Since A
is symmetric positive definite, a1 1 > 0, and we can compute α =

√
a1 1. The trick is that we

can factor A uniquely as

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
,

i.e., as A = B1A1B
>
1 , where B1 is lower-triangular with positive diagonal entries. Thus, B1

is invertible, and by fact (3) above, A1 is also symmetric positive definite.

Remark: The matrix C−WW>/a1 1 is known as the Schur complement of the matrix (a11).

Theorem 6.10. (Cholesky Factorization) Let A be a symmetric positive definite matrix.
Then, there is some lower-triangular matrix B so that A = BB>. Furthermore, B can be
chosen so that its diagonal elements are strictly positive, in which case B is unique.

Proof. We proceed by induction on the dimension n of A. For n = 1, we must have a1 1 > 0,
and if we let α =

√
a1 1 and B = (α), the theorem holds trivially. If n ≥ 2, as we explained

above, again we must have a1 1 > 0, and we can write

A =

(
a1 1 W>

W C

)
=

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
= B1A1B

>
1 ,

where α =
√
a1 1, the matrix B1 is invertible and

A1 =

(
1 0
0 C −WW>/a1 1

)
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is symmetric positive definite. However, this implies that C −WW>/a1 1 is also symmetric
positive definite (consider x>A1x for every x ∈ Rn with x 6= 0 and x1 = 0). Thus, we can
apply the induction hypothesis to C −WW>/a1 1 (which is an (n − 1) × (n − 1) matrix),
and we find a unique lower-triangular matrix L with positive diagonal entries so that

C −WW>/a1 1 = LL>.

But then, we get

A =

(
α 0

W/α I

)(
1 0
0 C −WW>/a1 1

)(
α W>/α
0 I

)
=

(
α 0

W/α I

)(
1 0
0 LL>

)(
α W>/α
0 I

)
=

(
α 0

W/α I

)(
1 0
0 L

)(
1 0
0 L>

)(
α W>/α
0 I

)
=

(
α 0

W/α L

)(
α W>/α
0 L>

)
.

Therefore, if we let

B =

(
α 0

W/α L

)
,

we have a unique lower-triangular matrix with positive diagonal entries and A = BB>.

The uniqueness of the Cholesky decomposition can also be established using the unique-
ness of an LU -decomposition. Indeed, if A = B1B

>
1 = B2B

>
2 where B1 and B2 are lower

triangular with positive diagonal entries, if we let ∆1 (resp. ∆2) be the diagonal matrix
consisting of the diagonal entries of B1 (resp. B2) so that (∆k)ii = (Bk)ii for k = 1, 2, then
we have two LU -decompositions

A = (B1∆−1
1 )(∆1B

>
1 ) = (B2∆−1

2 )(∆2B
>
2 )

with B1∆−1
1 , B2∆−1

2 unit lower triangular, and ∆1B
>
1 ,∆2B

>
2 upper triangular. By uniquenes

of LU -factorization (Theorem 6.5(1)), we have

B1∆−1
1 = B2∆−1

2 , ∆1B
>
1 = ∆2B

>
2 ,

and the second equation yields
B1∆1 = B2∆2. (∗)

The diagonal entries of B1∆1 are (B1)2
ii and similarly the diagonal entries of B2∆2 are (B2)2

ii,
so the above equation implies that

(B1)2
ii = (B2)2

ii, i = 1, . . . , n.

Since the diagonal entries of both B1 and B2 are assumed to be positive, we must have

(B1)ii = (B2)ii, i = 1, . . . , n;

that is, ∆1 = ∆2, and since both are invertible, we conclude from (∗) that B1 = B2.
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The proof of Theorem 6.10 immediately yields an algorithm to compute B from A by
solving for a lower triangular matrix B such that A = BB>. For j = 1, . . . , n,

bj j =

(
aj j −

j−1∑
k=1

b2
j k

)1/2

,

and for i = j + 1, . . . , n (and j = 1, . . . , n− 1)

bi j =

(
ai j −

j−1∑
k=1

bi kbj k

)
/bj j.

The above formulae are used to compute the jth column of B from top-down, using the first
j − 1 columns of B previously computed, and the matrix A.

For example, if

A =


1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

 ,

we find that

B =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

 .

The Cholesky factorization can be used to solve linear systems Ax = b where A is
symmetric positive definite: Solve the two systems Bw = b and B>x = w.

Remark: It can be shown that this methods requires n3/6 +O(n2) additions, n3/6 +O(n2)
multiplications, n2/2+O(n) divisions, and O(n) square root extractions. Thus, the Cholesky
method requires half of the number of operations required by Gaussian elimination (since
Gaussian elimination requires n3/3 + O(n2) additions, n3/3 + O(n2) multiplications, and
n2/2 + O(n) divisions). It also requires half of the space (only B is needed, as opposed to
both L and U). Furthermore, it can be shown that Cholesky’s method is numerically stable
(see Trefethen and Bau [106], Lecture 23).

Remark: If A = BB>, where B is any invertible matrix, then A is symmetric positive
definite.
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Proof. Obviously, BB> is symmetric, and since B is invertible, B> is invertible, and from

x>Ax = x>BB>x = (B>x)>B>x,

it is clear that x>Ax > 0 if x 6= 0.

We now give three more criteria for a symmetric matrix to be positive definite.

Proposition 6.11. Let A be any n × n symmetric matrix. The following conditions are
equivalent:

(a) A is positive definite.

(b) All principal minors of A are positive; that is: det(A[1..k, 1..k]) > 0 for k = 1, . . . , n
(Sylvester’s criterion).

(c) A has an LU-factorization and all pivots are positive.

(d) A has an LDL>-factorization and all pivots in D are positive.

Proof. By Proposition 6.9, if A is symmetric positive definite, then each matrix A[1..k, 1..k] is
symmetric positive definite for k = 1, . . . , n. By the Cholsesky decomposition, A[1..k, 1..k] =
Q>Q for some invertible matrix Q, so det(A[1..k, 1..k]) = det(Q)2 > 0. This shows that (a)
implies (b).

If det(A[1..k, 1..k]) > 0 for k = 1, . . . , n, then each A[1..k, 1..k] is invertible. By Proposi-
tion 6.2, the matrix A has an LU -factorization, and since the pivots πk are given by

πk =

a11 = det(A[1..1, 1..1]) if k = 1
det(A[1..k, 1..k])

det(A[1..k − 1, 1..k − 1])
if k = 2, . . . , n,

we see that πk > 0 for k = 1, . . . , n. Thus (b) implies (c).

Assume A has an LU -factorization and that the pivots are all positive. Since A is
symmetric, this implies that A has a factorization of the form

A = LDL>,

with L lower-triangular with 1’s on its diagonal, and where D is a diagonal matrix with
positive entries on the diagonal (the pivots). This shows that (c) implies (d).

Given a factorization A = LDL> with all pivots in D positive, if we form the diagonal
matrix √

D = diag(
√
π1, . . . ,

√
πn)

and if we let B = L
√
D, then we have

A = BB>,

with B lower-triangular and invertible. By the remark before Proposition 6.11, A is positive
definite. Hence, (d) implies (a).
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Criterion (c) yields a simple computational test to check whether a symmetric matrix is
positive definite. There is one more criterion for a symmetric matrix to be positive definite:
its eigenvalues must be positive. We will have to learn about the spectral theorem for
symmetric matrices to establish this criterion.

For more on the stability analysis and efficient implementation methods of Gaussian
elimination, LU -factoring and Cholesky factoring, see Demmel [33], Trefethen and Bau [106],
Ciarlet [30], Golub and Van Loan [49], Meyer [75], Strang [102, 103], and Kincaid and Cheney
[60].

6.9 Reduced Row Echelon Form (RREF)

Gaussian elimination described in Section 6.2 can also be applied to rectangular matrices.
This yields a method for determining whether a system Ax = b is solvable, and a description
of all the solutions when the system is solvable, for any rectangular m× n matrix A.

It turns out that the discussion is simpler if we rescale all pivots to be 1, and for this we
need a third kind of elementary matrix. For any λ 6= 0, let Ei,λ be the n×n diagonal matrix

Ei,λ =



1
. . .

1
λ

1
. . .

1


,

with (Ei,λ)ii = λ (1 ≤ i ≤ n). Note that Ei,λ is also given by

Ei,λ = I + (λ− 1)ei i,

and that Ei,λ is invertible with
E−1
i,λ = Ei,λ−1 .

Now, after k − 1 elimination steps, if the bottom portion

(a
(k)
kk , a

(k)
k+1k, . . . , a

(k)
mk)

of the kth column of the current matrix Ak is nonzero so that a pivot πk can be chosen,
after a permutation of rows if necessary, we also divide row k by πk to obtain the pivot 1,
and not only do we zero all the entries i = k + 1, . . . ,m in column k, but also all the entries
i = 1, . . . , k − 1, so that the only nonzero entry in column k is a 1 in row k. These row
operations are achieved by multiplication on the left by elementary matrices.

If a
(k)
kk = a

(k)
k+1k = · · · = a

(k)
mk = 0, we move on to column k + 1.
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When the kth column contains a pivot, the kth stage of the procedure for converting a
matrix to rref consists of the following three steps illustrated below:



1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 a

(k)
ik × × ×

0 0 0 × × × ×


pivot
=⇒



1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 a

(k)
ik × × ×

0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×


rescale

=⇒


1 × 0 × × × ×
0 0 1 × × × ×
0 0 0 1 × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 × × × ×


elim
=⇒


1 × 0 0 × × ×
0 0 1 0 × × ×
0 0 0 1 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×
0 0 0 0 × × ×

 .

If the kth column does not contain a pivot, we simply move on to the next column.

The result is that after performing such elimination steps, we obtain a matrix that has a
special shape known as a reduced row echelon matrix , for short rref.

Here is an example illustrating this process: Starting from the matrix

A1 =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12


we perform the following steps

A1 −→ A2 =

1 0 2 1 5
0 1 3 1 2
0 2 6 3 7

 ,

by subtracting row 1 from row 2 and row 3;

A2 −→

1 0 2 1 5
0 2 6 3 7
0 1 3 1 2

 −→
1 0 2 1 5

0 1 3 3/2 7/2
0 1 3 1 2

 −→ A3 =

1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 −1/2 −3/2

 ,

after choosing the pivot 2 and permuting row 2 and row 3, dividing row 2 by 2, and sub-
tracting row 2 from row 3;

A3 −→

1 0 2 1 5
0 1 3 3/2 7/2
0 0 0 1 3

 −→ A4 =

1 0 2 0 2
0 1 3 0 −1
0 0 0 1 3

 ,
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after dividing row 3 by −1/2, subtracting row 3 from row 1, and subtracting (3/2)× row 3
from row 2.

It is clear that columns 1, 2 and 4 are linearly independent, that column 3 is a linear
combination of columns 1 and 2, and that column 5 is a linear combinations of columns
1, 2, 4.

In general, the sequence of steps leading to a reduced echelon matrix is not unique. For
example, we could have chosen 1 instead of 2 as the second pivot in matrix A2. Nevertherless,
the reduced row echelon matrix obtained from any given matrix is unique; that is, it does
not depend on the the sequence of steps that are followed during the reduction process. This
fact is not so easy to prove rigorously, but we will do it later.

If we want to solve a linear system of equations of the form Ax = b, we apply elementary
row operations to both the matrix A and the right-hand side b. To do this conveniently, we
form the augmented matrix (A, b), which is the m× (n+ 1) matrix obtained by adding b as
an extra column to the matrix A. For example if

A =

1 0 2 1
1 1 5 2
1 2 8 4

 and b =

 5
7
12

 ,

then the augmented matrix is

(A, b) =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12

 .

Now, for any matrix M , since
M(A, b) = (MA,Mb),

performing elementary row operations on (A, b) is equivalent to simultaneously performing
operations on both A and b. For example, consider the system

x1 + 2x3 + x4 = 5
x1 + x2 + 5x3 + 2x4 = 7
x1 + 2x2 + 8x3 + 4x4 = 12.

Its augmented matrix is the matrix

(A, b) =

1 0 2 1 5
1 1 5 2 7
1 2 8 4 12


considered above, so the reduction steps applied to this matrix yield the system

x1 + 2x3 = 2
x2 + 3x3 = −1

x4 = 3.
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This reduced system has the same set of solutions as the original, and obviously x3 can be
chosen arbitrarily. Therefore, our system has infinitely many solutions given by

x1 = 2− 2x3, x2 = −1− 3x3, x4 = 3,

where x3 is arbitrary.

The following proposition shows that the set of solutions of a system Ax = b is preserved
by any sequence of row operations.

Proposition 6.12. Given any m × n matrix A and any vector b ∈ Rm, for any sequence
of elementary row operations E1, . . . , Ek, if P = Ek · · ·E1 and (A′, b′) = P (A, b), then the
solutions of Ax = b are the same as the solutions of A′x = b′.

Proof. Since each elementary row operation Ei is invertible, so is P , and since (A′, b′) =
P (A, b), then A′ = PA and b′ = Pb. If x is a solution of the original system Ax = b, then
multiplying both sides by P we get PAx = Pb; that is, A′x = b′, so x is a solution of the
new system. Conversely, assume that x is a solution of the new system, that is A′x = b′.
Then, because A′ = PA, b′ = PB, and P is invertible, we get

Ax = P−1A′x = P−1b′ = b,

so x is a solution of the original system Ax = b.

Another important fact is this:

Proposition 6.13. Given a m×n matrix A, for any sequence of row operations E1, . . . , Ek,
if P = Ek · · ·E1 and B = PA, then the subspaces spanned by the rows of A and the rows of
B are identical. Therefore, A and B have the same row rank. Furthermore, the matrices A
and B also have the same (column) rank.

Proof. Since B = PA, from a previous observation, the rows of B are linear combinations
of the rows of A, so the span of the rows of B is a subspace of the span of the rows of A.
Since P is invertible, A = P−1B, so by the same reasoning the span of the rows of A is a
subspace of the span of the rows of B. Therefore, the subspaces spanned by the rows of A
and the rows of B are identical, which implies that A and B have the same row rank.

Proposition 6.12 implies that the systems Ax = 0 and Bx = 0 have the same solutions.
Since Ax is a linear combinations of the columns of A and Bx is a linear combinations of
the columns of B, the maximum number of linearly independent columns in A is equal to
the maximum number of linearly independent columns in B; that is, A and B have the same
rank.

Remark: The subspaces spanned by the columns of A and B can be different! However,
their dimension must be the same.

Of course, we know from Proposition 9.11 that the row rank is equal to the column rank.
We will see that the reduction to row echelon form provides another proof of this important
fact. Let us now define precisely what is a reduced row echelon matrix.
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Definition 6.1. A m×n matrix A is a reduced row echelon matrix iff the following conditions
hold:

(a) The first nonzero entry in every row is 1. This entry is called a pivot .

(b) The first nonzero entry of row i+ 1 is to the right of the first nonzero entry of row i.

(c) The entries above a pivot are zero.

If a matrix satisfies the above conditions, we also say that it is in reduced row echelon form,
for short rref .

Note that condition (b) implies that the entries below a pivot are also zero. For example,
the matrix

A =

1 6 0 1
0 0 1 2
0 0 0 0


is a reduced row echelon matrix. In general, a matrix in rref has the following shape:

1 0 0 × × 0 0 ×
0 1 0 × × 0 0 ×
0 0 1 × × 0 0 ×
0 0 0 0 0 1 0 ×
0 0 0 0 0 0 1 ×
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


if the last row consists of zeros, or

1 0 0 × × 0 0 × 0 ×
0 1 0 × × 0 0 × 0 ×
0 0 1 × × 0 0 × 0 ×
0 0 0 0 0 1 0 × 0 ×
0 0 0 0 0 0 1 × × 0
0 0 0 0 0 0 0 0 1 ×


if the last row contains a pivot.

The following proposition shows that every matrix can be converted to a reduced row
echelon form using row operations.

Proposition 6.14. Given any m × n matrix A, there is a sequence of row operations
E1, . . . , Ek such that if P = Ek · · ·E1, then U = PA is a reduced row echelon matrix.
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Proof. We proceed by induction on m. If m = 1, then either all entries on this row are zero,
so A = 0, or if aj is the first nonzero entry in A, let P = (a−1

j ) (a 1× 1 matrix); clearly, PA
is a reduced row echelon matrix.

Let us now assume that m ≥ 2. If A = 0 we are done, so let us assume that A 6= 0. Since
A 6= 0, there is a leftmost column j which is nonzero, so pick any pivot π = aij in the jth
column, permute row i and row 1 if necessary, multiply the new first row by π−1, and clear
out the other entries in column j by subtracting suitable multiples of row 1. At the end of
this process, we have a matrix A1 that has the following shape:

A1 =


0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗

 ,

where ∗ stands for an arbitrary scalar, or more concisely

A1 =

(
0 1 B
0 0 D

)
,

where D is a (m− 1)× (n− j) matrix. If j = n, we are done. Otherwise, by the induction
hypothesis applied to D, there is a sequence of row operations that converts D to a reduced
row echelon matrix R′, and these row operations do not affect the first row of A1, which
means that A1 is reduced to a matrix of the form

R =

(
0 1 B
0 0 R′

)
.

Because R′ is a reduced row echelon matrix, the matrix R satisfies conditions (a) and (b) of
the reduced row echelon form. Finally, the entries above all pivots in R′ can be cleared out
by subtracting suitable multiples of the rows of R′ containing a pivot. The resulting matrix
also satisfies condition (c), and the induction step is complete.

Remark: There is a Matlab function named rref that converts any matrix to its reduced
row echelon form.

If A is any matrix and if R is a reduced row echelon form of A, the second part of
Proposition 6.13 can be sharpened a little. Namely, the rank of A is equal to the number of
pivots in R.

This is because the structure of a reduced row echelon matrix makes it clear that its rank
is equal to the number of pivots.

Given a system of the form Ax = b, we can apply the reduction procedure to the aug-
mented matrix (A, b) to obtain a reduced row echelon matrix (A′, b′) such that the system
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A′x = b′ has the same solutions as the original system Ax = b. The advantage of the reduced
system A′x = b′ is that there is a simple test to check whether this system is solvable, and
to find its solutions if it is solvable.

Indeed, if any row of the matrix A′ is zero and if the corresponding entry in b′ is nonzero,
then it is a pivot and we have the “equation”

0 = 1,

which means that the system A′x = b′ has no solution. On the other hand, if there is no
pivot in b′, then for every row i in which b′i 6= 0, there is some column j in A′ where the
entry on row i is 1 (a pivot). Consequently, we can assign arbitrary values to the variable
xk if column k does not contain a pivot, and then solve for the pivot variables.

For example, if we consider the reduced row echelon matrix

(A′, b′) =

1 6 0 1 0
0 0 1 2 0
0 0 0 0 1

 ,

there is no solution to A′x = b′ because the third equation is 0 = 1. On the other hand, the
reduced system

(A′, b′) =

1 6 0 1 1
0 0 1 2 3
0 0 0 0 0


has solutions. We can pick the variables x2, x4 corresponding to nonpivot columns arbitrarily,
and then solve for x3 (using the second equation) and x1 (using the first equation).

The above reasoning proved the following theorem:

Theorem 6.15. Given any system Ax = b where A is a m × n matrix, if the augmented
matrix (A, b) is a reduced row echelon matrix, then the system Ax = b has a solution iff there
is no pivot in b. In that case, an arbitrary value can be assigned to the variable xj if column
j does not contain a pivot.

Nonpivot variables are often called free variables .

Putting Proposition 6.14 and Theorem 6.15 together we obtain a criterion to decide
whether a system Ax = b has a solution: Convert the augmented system (A, b) to a row
reduced echelon matrix (A′, b′) and check whether b′ has no pivot.

Remark: When writing a program implementing row reduction, we may stop when the last
column of the matrix A is reached. In this case, the test whether the system Ax = b is
solvable is that the row-reduced matrix A′ has no zero row of index i > r such that b′i 6= 0
(where r is the number of pivots, and b′ is the row-reduced right-hand side).

If we have a homogeneous system Ax = 0, which means that b = 0, of course x = 0 is
always a solution, but Theorem 6.15 implies that if the system Ax = 0 has more variables
than equations, then it has some nonzero solution (we call it a nontrivial solution).
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Proposition 6.16. Given any homogeneous system Ax = 0 of m equations in n variables,
if m < n, then there is a nonzero vector x ∈ Rn such that Ax = 0.

Proof. Convert the matrix A to a reduced row echelon matrix A′. We know that Ax = 0 iff
A′x = 0. If r is the number of pivots of A′, we must have r ≤ m, so by Theorem 6.15 we may
assign arbitrary values to n− r > 0 nonpivot variables and we get nontrivial solutions.

Theorem 6.15 can also be used to characterize when a square matrix is invertible. First,
note the following simple but important fact:

If a square n× n matrix A is a row reduced echelon matrix, then either A is the identity
or the bottom row of A is zero.

Proposition 6.17. Let A be a square matrix of dimension n. The following conditions are
equivalent:

(a) The matrix A can be reduced to the identity by a sequence of elementary row operations.

(b) The matrix A is a product of elementary matrices.

(c) The matrix A is invertible.

(d) The system of homogeneous equations Ax = 0 has only the trivial solution x = 0.

Proof. First, we prove that (a) implies (b). If (a) can be reduced to the identity by a sequence
of row operations E1, . . . , Ep, this means that Ep · · ·E1A = I. Since each Ei is invertible,
we get

A = E−1
1 · · ·E−1

p ,

where each E−1
i is also an elementary row operation, so (b) holds. Now if (b) holds, since

elementary row operations are invertible, A is invertible, and (c) holds. If A is invertible, we
already observed that the homogeneous system Ax = 0 has only the trivial solution x = 0,
because from Ax = 0, we get A−1Ax = A−10; that is, x = 0. It remains to prove that (d)
implies (a), and for this we prove the contrapositive: if (a) does not hold, then (d) does not
hold.

Using our basic observation about reducing square matrices, if A does not reduce to the
identity, then A reduces to a row echelon matrix A′ whose bottom row is zero. Say A′ = PA,
where P is a product of elementary row operations. Because the bottom row of A′ is zero,
the system A′x = 0 has at most n − 1 nontrivial equations, and by Proposition 6.16, this
system has a nontrivial solution x. But then, Ax = P−1A′x = 0 with x 6= 0, contradicting
the fact that the system Ax = 0 is assumed to have only the trivial solution. Therefore, (d)
implies (a) and the proof is complete.
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Proposition 6.17 yields a method for computing the inverse of an invertible matrix A:
reduce A to the identity using elementary row operations, obtaining

Ep · · ·E1A = I.

Multiplying both sides by A−1 we get

A−1 = Ep · · ·E1.

From a practical point of view, we can build up the product Ep · · ·E1 by reducing to row
echelon form the augmented n× 2n matrix (A, In) obtained by adding the n columns of the
identity matrix to A. This is just another way of performing the Gauss–Jordan procedure.

Here is an example: let us find the inverse of the matrix

A =

(
5 4
6 5

)
.

We form the 2× 4 block matrix

(A, I) =

(
5 4 1 0
6 5 0 1

)
and apply elementary row operations to reduce A to the identity. For example:

(A, I) =

(
5 4 1 0
6 5 0 1

)
−→

(
5 4 1 0
1 1 −1 1

)
by subtracting row 1 from row 2,(

5 4 1 0
1 1 −1 1

)
−→

(
1 0 5 −4
1 1 −1 1

)
by subtracting 4× row 2 from row 1,(

1 0 5 −4
1 1 −1 1

)
−→

(
1 0 5 −4
0 1 −6 5

)
= (I, A−1),

by subtracting row 1 from row 2. Thus

A−1 =

(
5 −4
−6 5

)
.

Proposition 6.17 can also be used to give an elementary proof of the fact that if a square
matrix A has a left inverse B (resp. a right inverse B), so that BA = I (resp. AB = I),
then A is invertible and A−1 = B. This is an interesting exercise, try it!

For the sake of completeness, we prove that the reduced row echelon form of a matrix is
unique. The neat proof given below is borrowed and adapted from W. Kahan.
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Proposition 6.18. Let A be any m × n matrix. If U and V are two reduced row echelon
matrices obtained from A by applying two sequences of elementary row operations E1, . . . , Ep
and F1, . . . , Fq, so that

U = Ep · · ·E1A and V = Fq · · ·F1A,

then U = V and Ep · · ·E1 = Fq · · ·F1. In other words, the reduced row echelon form of any
matrix is unique.

Proof. Let

C = Ep · · ·E1F
−1
1 · · ·F−1

q

so that

U = CV and V = C−1U.

We prove by induction on n that U = V (and C = I).

Let `j denote the jth column of the identity matrix In, and let uj = U`j, vj = V `j,
cj = C`j, and aj = A`j, be the jth column of U , V , C, and A respectively.

First, I claim that uj = 0 iff vj = 0, iff aj = 0.

Indeed, if vj = 0, then (because U = CV ) uj = Cvj = 0, and if uj = 0, then vj =
C−1uj = 0. Since A = Ep · · ·E1U , we also get aj = 0 iff uj = 0.

Therefore, we may simplify our task by striking out columns of zeros from U, V , and A,
since they will have corresponding indices. We still use n to denote the number of columns of
A. Observe that because U and V are reduced row echelon matrices with no zero columns,
we must have u1 = v1 = `1.

Claim. If U and V are reduced row echelon matrices without zero columns such that
U = CV , for all k ≥ 1, if k ≤ n, then `k occurs in U iff `k occurs in V , and if `k does occurs
in U , then

1. `k occurs for the same index jk in both U and V ;

2. the first jk columns of U and V match;

3. the subsequent columns in U and V (of index > jk) whose elements beyond the kth
all vanish also match;

4. the first k columns of C match the first k columns of In.

We prove this claim by induction on k.

For the base case k = 1, we already know that u1 = v1 = `1. We also have

c1 = C`1 = Cv1 = u1 = `1.
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If vj = λ`1 for some µ ∈ R, then

uj = U`1 = CV `1 = Cvj = λC`1 = λ`1 = vj.

A similar argument using C−1 shows that if uj = λ`1, then vj = uj. Therefore, all the
columns of U and V proportional to `1 match, which establishes the base case. Observe that
if `2 appears in U , then it must appear in both U and V for the same index, and if not then
U = V .

Next us now prove the induction step; this is only necessary if `k+1 appears in both U ,
in wich case, by (3) of the induction hypothesis, it appears in both U and V for the same
index, say jk+1. Thus ujk+1

= vjk+1
= `k+1. It follows that

ck+1 = C`k+1 = Cvjk+1
= ujk+1

= `k+1,

so the first k + 1 columns of C match the first k + 1 columns of In.

Consider any subsequent column vj (with j > jk+1) whose elements beyond the (k+ 1)th
all vanish. Then, vj is a linear combination of columns of V to the left of vj, so

uj = Cvj = vj.

because the first k+ 1 columns of C match the first column of In. Similarly, any subsequent
column uj (with j > jk+1) whose elements beyond the (k + 1)th all vanish is equal to vj.
Therefore, all the subsequent columns in U and V (of index > jk+1) whose elements beyond
the (k + 1)th all vanish also match, which completes the induction hypothesis.

We can now prove that U = V (recall that we may assume that U and V have no zero
columns). We noted earlier that u1 = v1 = `1, so there is a largest k ≤ n such that `k occurs
in U . Then, the previous claim implies that all the columns of U and V match, which means
that U = V .

The reduction to row echelon form also provides a method to describe the set of solutions
of a linear system of the form Ax = b.

6.10 Solving Linear Systems Using RREF

First, we have the following simple result.

Proposition 6.19. Let A be any m× n matrix and let b ∈ Rm be any vector. If the system
Ax = b has a solution, then the set Z of all solutions of this system is the set

Z = x0 + Ker (A) = {x0 + x | Ax = 0},

where x0 ∈ Rn is any solution of the system Ax = b, which means that Ax0 = b (x0 is called
a special solution), and where Ker (A) = {x ∈ Rn | Ax = 0}, the set of solutions of the
homogeneous system associated with Ax = b.
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Proof. Assume that the system Ax = b is solvable and let x0 and x1 be any two solutions so
that Ax0 = b and Ax1 = b. Subtracting the first equation from the second, we get

A(x1 − x0) = 0,

which means that x1 − x0 ∈ Ker (A). Therefore, Z ⊆ x0 + Ker (A), where x0 is a special
solution of Ax = b. Conversely, if Ax0 = b, then for any z ∈ Ker (A), we have Az = 0, and
so

A(x0 + z) = Ax0 + Az = b+ 0 = b,

which shows that x0 + Ker (A) ⊆ Z. Therefore, Z = x0 + Ker (A).

Given a linear system Ax = b, reduce the augmented matrix (A, b) to its row echelon
form (A′, b′). As we showed before, the system Ax = b has a solution iff b′ contains no pivot.
Assume that this is the case. Then, if (A′, b′) has r pivots, which means that A′ has r pivots
since b′ has no pivot, we know that the first r columns of Im appear in A′.

We can permute the columns of A′ and renumber the variables in x correspondingly so
that the first r columns of Im match the first r columns of A′, and then our reduced echelon
matrix is of the form (R, b′) with

R =

(
Ir F

0m−r,r 0m−r,n−r

)
and

b′ =

(
d

0m−r

)
,

where F is a r × (n− r) matrix and d ∈ Rr. Note that R has m− r zero rows.

Then, because (
Ir F

0m−r,r 0m−r,n−r

)(
d

0n−r

)
=

(
d

0m−r

)
= b′,

we see that

x0 =

(
d

0n−r

)
is a special solution of Rx = b′, and thus to Ax = b. In other words, we get a special solution
by assigning the first r components of b′ to the pivot variables and setting the nonpivot
variables (the free variables) to zero.

We can also find a basis of the kernel (nullspace) of A using F . If x = (u, v) is in the
kernel of A, with u ∈ Rr and v ∈ Rn−r, then x is also in the kernel of R, which means that
Rx = 0; that is, (

Ir F
0m−r,r 0m−r,n−r

)(
u
v

)
=

(
u+ Fv
0m−r

)
=

(
0r

0m−r

)
.
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Therefore, u = −Fv, and Ker (A) consists of all vectors of the form

(
−Fv
v

)
=

(
−F
In−r

)
v,

for any arbitrary v ∈ Rn−r. It follows that the n− r columns of the matrix

N =

(
−F
In−r

)

form a basis of the kernel of A. This is because N contains the identity matrix In−r as a
submatrix, so the columns of N are linearly independent. In summary, if N1, . . . , Nn−r are
the columns of N , then the general solution of the equation Ax = b is given by

x =

(
d

0n−r

)
+ xr+1N

1 + · · ·+ xnN
n−r,

where xr+1, . . . , xn are the free variables; that is, the nonpivot variables.

In the general case where the columns corresponding to pivots are mixed with the columns
corresponding to free variables, we find the special solution as follows. Let i1 < · · · < ir be
the indices of the columns corresponding to pivots. Then, assign b′k to the pivot variable
xik for k = 1, . . . , r, and set all other variables to 0. To find a basis of the kernel, we
form the n − r vectors Nk obtained as follows. Let j1 < · · · < jn−r be the indices of the
columns corresponding to free variables. For every column jk corresponding to a free variable
(1 ≤ k ≤ n− r), form the vector Nk defined so that the entries Nk

i1
, . . . , Nk

ir are equal to the
negatives of the first r entries in column jk (flip the sign of these entries); let Nk

jk
= 1, and

set all other entries to zero. Schematically, if the column of index jk (corresponding to the
free variable xjk) is



α1
...
αr
0
...
0


,
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then the vector Nk is given by

1
...

i1 − 1
i1

i1 + 1
...

ir − 1
ir

ir + 1
...

jk − 1
jk

jk + 1
...
n



0
...
0
−α1

0
...
0
−αr

0
...
0
1
0
...
0



.

The presence of the 1 in position jk guarantees that N1, . . . , Nn−r are linearly indepen-
dent.

An illustration of the above method, consider the problem of finding a basis of the
subspace V of n× n matrices A ∈ Mn(R) satisfying the following properties:

1. The sum of the entries in every row has the same value (say c1);

2. The sum of the entries in every column has the same value (say c2).

It turns out that c1 = c2 and that the 2n−2 equations corresponding to the above conditions
are linearly independent. We leave the proof of these facts as an interesting exercise. By the
duality theorem, the dimension of the space V of matrices satisying the above equations is
n2 − (2n− 2). Let us consider the case n = 4. There are 6 equations, and the space V has
dimension 10. The equations are

a11 + a12 + a13 + a14 − a21 − a22 − a23 − a24 = 0

a21 + a22 + a23 + a24 − a31 − a32 − a33 − a34 = 0

a31 + a32 + a33 + a34 − a41 − a42 − a43 − a44 = 0

a11 + a21 + a31 + a41 − a12 − a22 − a32 − a42 = 0

a12 + a22 + a32 + a42 − a13 − a23 − a33 − a43 = 0

a13 + a23 + a33 + a43 − a14 − a24 − a34 − a44 = 0,
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and the corresponding matrix is

A =


1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0
0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1 0
0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 −1

 .

The result of performing the reduction to row echelon form yields the following matrix
in rref:

U =


1 0 0 0 0 −1 −1 −1 0 −1 −1 −1 2 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 −1 0 −1 −1
0 0 1 0 0 0 1 0 0 0 1 0 −1 −1 0 −1
0 0 0 1 0 0 0 1 0 0 0 1 −1 −1 −1 0
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1


The list pivlist of indices of the pivot variables and the list freelist of indices of the free

variables is given by

pivlist = (1, 2, 3, 4, 5, 9),

freelist = (6, 7, 8, 10, 11, 12, 13, 14, 15, 16).

After applying the algorithm to find a basis of the kernel of U , we find the following 16× 10
matrix

BK =



1 1 1 1 1 1 −2 −1 −1 −1
−1 0 0 −1 0 0 1 0 1 1
0 −1 0 0 −1 0 1 1 0 1
0 0 −1 0 0 −1 1 1 1 0
−1 −1 −1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 1 1 1 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



.

The reader should check that that in each column j of BK, the lowest 1 belongs to the
row whose index is the jth element in freelist , and that in each column j of BK, the signs of
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the entries whose indices belong to pivlist are the fipped signs of the 6 entries in the column
U corresponding to the jth index in freelist . We can now read off from BK the 4×4 matrices
that form a basis of V : every column of BK corresponds to a matrix whose rows have been
concatenated. We get the following 10 matrices:

M1 =


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 , M2 =


1 0 −1 0
−1 0 1 0
0 0 0 0
0 0 0 0

 , M3 =


1 0 0 −1
−1 0 0 1
0 0 0 0
0 0 0 0

 ,

M4 =


1 −1 0 0
0 0 0 0
−1 1 0 0
0 0 0 0

 , M5 =


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 , M6 =


1 0 0 −1
0 0 0 0
−1 0 0 1
0 0 0 0

 ,

M7 =


−2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 , M8 =


−1 0 1 1
1 0 0 0
1 0 0 0
0 1 0 0

 , M9 =


−1 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0

 ,

M10 =


−1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 1

 .

Recall that a magic square is a square matrix that satisfies the two conditions about
the sum of the entries in each row and in each column to be the same number, and also
the additional two constraints that the main descending and the main ascending diagonals
add up to this common number. Furthermore, the entries are also required to be positive
integers. For n = 4, the additional two equations are

a22 + a33 + a44 − a12 − a13 − a14 = 0

a41 + a32 + a23 − a11 − a12 − a13 = 0,

and the 8 equations stating that a matrix is a magic square are linearly independent. Again,
by running row elimination, we get a basis of the “generalized magic squares” whose entries
are not restricted to be positive integers. We find a basis of 8 matrices. For n = 3, we find
a basis of 3 matrices.

A magic square is said to be normal if its entries are precisely the integers 1, 2 . . . , n2.
Then, since the sum of these entries is

1 + 2 + 3 + · · ·+ n2 =
n2(n2 + 1)

2
,
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and since each row (and column) sums to the same number, this common value (the magic
sum) is

n(n2 + 1)

2
.

It is easy to see that there are no normal magic squares for n = 2. For n = 3, the magic sum
is 15, for n = 4, it is 34, and for n = 5, it is 65.

In the case n = 3, we have the additional condition that the rows and columns add up
to 15, so we end up with a solution parametrized by two numbers x1, x2; namely, x1 + x2 − 5 10− x2 10− x1

20− 2x1 − x2 5 2x1 + x2 − 10
x1 x2 15− x1 − x2

 .

Thus, in order to find a normal magic square, we have the additional inequality constraints

x1 + x2 > 5

x1 < 10

x2 < 10

2x1 + x2 < 20

2x1 + x2 > 10

x1 > 0

x2 > 0

x1 + x2 < 15,

and all 9 entries in the matrix must be distinct. After a tedious case analysis, we discover the
remarkable fact that there is a unique normal magic square (up to rotations and reflections):2 7 6

9 5 1
4 3 8

 .

It turns out that there are 880 different normal magic squares for n = 4, and 275, 305, 224
normal magic squares for n = 5 (up to rotations and reflections). Even for n = 4, it takes a
fair amount of work to enumerate them all! Finding the number of magic squares for n > 5
is an open problem!

6.11 Elementary Matrices and Columns Operations

Instead of performing elementary row operations on a matrix A, we can perform elementary
columns operations, which means that we multiply A by elementary matrices on the right.
As elementary row and column operations, P (i, k), Ei,j;β, Ei,λ perform the following actions:
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1. As a row operation, P (i, k) permutes row i and row k.

2. As a column operation, P (i, k) permutes column i and column k.

3. The inverse of P (i, k) is P (i, k) itself.

4. As a row operation, Ei,j;β adds β times row j to row i.

5. As a column operation, Ei,j;β adds β times column i to column j (note the switch in
the indices).

6. The inverse of Ei,j;β is Ei,j;−β.

7. As a row operation, Ei,λ multiplies row i by λ.

8. As a column operation, Ei,λ multiplies column i by λ.

9. The inverse of Ei,λ is Ei,λ−1 .

We can define the notion of a reduced column echelon matrix and show that every matrix
can be reduced to a unique reduced column echelon form. Now, given any m× n matrix A,
if we first convert A to its reduced row echelon form R, it is easy to see that we can apply
elementary column operations that will reduce R to a matrix of the form(

Ir 0r,n−r
0m−r,r 0m−r,n−r

)
,

where r is the number of pivots (obtained during the row reduction). Therefore, for every
m×n matrix A, there exist two sequences of elementary matrices E1, . . . , Ep and F1, . . . , Fq,
such that

Ep · · ·E1AF1 · · ·Fq =

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
.

The matrix on the right-hand side is called the rank normal form of A. Clearly, r is the
rank of A. It is easy to see that the rank normal form also yields a proof of the fact that A
and its transpose A> have the same rank.

6.12 Transvections and Dilatations

In this section, we characterize the linear isomorphisms of a vector space E that leave every
vector in some hyperplane fixed. These maps turn out to be the linear maps that are
represented in some suitable basis by elementary matrices of the form Ei,j;β (transvections)
or Ei,λ (dilatations). Furthermore, the transvections generate the group SL(E), and the
dilatations generate the group GL(E).
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Let H be any hyperplane in E, and pick some (nonzero) vector v ∈ E such that v /∈ H,
so that

E = H ⊕Kv.
Assume that f : E → E is a linear isomorphism such that f(u) = u for all u ∈ H, and that
f is not the identity. We have

f(v) = h+ αv, for some h ∈ H and some α ∈ K,

with α 6= 0, because otherwise we would have f(v) = h = f(h) since h ∈ H, contradicting
the injectivity of f (v 6= h since v /∈ H). For any x ∈ E, if we write

x = y + tv, for some y ∈ H and some t ∈ K,

then
f(x) = f(y) + f(tv) = y + tf(v) = y + th+ tαv,

and since αx = αy + tαv, we get

f(x)− αx = (1− α)y + th

f(x)− x = t(h+ (α− 1)v).

Observe that if E is finite-dimensional, by picking a basis of E consisting of v and basis
vectors of H, then the matrix of f is a lower triangular matrix whose diagonal entries are
all 1 except the first entry which is equal to α. Therefore, det(f) = α.

Case 1 . α 6= 1.

We have f(x) = αx iff (1− α)y + th = 0 iff

y =
t

α− 1
h.

Then, if we let w = h+ (α− 1)v, for y = (t/(α− 1))h, we have

x = y + tv =
t

α− 1
h+ tv =

t

α− 1
(h+ (α− 1)v) =

t

α− 1
w,

which shows that f(x) = αx iff x ∈ Kw. Note that w /∈ H, since α 6= 1 and v /∈ H.
Therefore,

E = H ⊕Kw,
and f is the identity on H and a magnification by α on the line D = Kw.

Definition 6.2. Given a vector space E, for any hyperplane H in E, any nonzero vector
u ∈ E such that u 6∈ H, and any scalar α 6= 0, 1, a linear map f such that f(x) = x for all
x ∈ H and f(x) = αx for every x ∈ D = Ku is called a dilatation of hyperplane H, direction
D, and scale factor α.
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If πH and πD are the projections of E onto H and D, then we have

f(x) = πH(x) + απD(x).

The inverse of f is given by

f−1(x) = πH(x) + α−1πD(x).

When α = −1, we have f 2 = id, and f is a symmetry about the hyperplane H in the
direction D.

Case 2 . α = 1.

In this case,
f(x)− x = th,

that is, f(x)− x ∈ Kh for all x ∈ E. Assume that the hyperplane H is given as the kernel
of some linear form ϕ, and let a = ϕ(v). We have a 6= 0, since v /∈ H. For any x ∈ E, we
have

ϕ(x− a−1ϕ(x)v) = ϕ(x)− a−1ϕ(x)ϕ(v) = ϕ(x)− ϕ(x) = 0,

which shows that x− a−1ϕ(x)v ∈ H for all x ∈ E. Since every vector in H is fixed by f , we
get

x− a−1ϕ(x)v = f(x− a−1ϕ(x)v)

= f(x)− a−1ϕ(x)f(v),

so
f(x) = x+ ϕ(x)(f(a−1v)− a−1v).

Since f(z) − z ∈ Kh for all z ∈ E, we conclude that u = f(a−1v) − a−1v = βh for some
β ∈ K, so ϕ(u) = 0, and we have

f(x) = x+ ϕ(x)u, ϕ(u) = 0. (∗)
A linear map defined as above is denoted by τϕ,u.

Conversely for any linear map f = τϕ,u given by equation (∗), where ϕ is a nonzero linear
form and u is some vector u ∈ E such that ϕ(u) = 0, if u = 0 then f is the identity, so
assume that u 6= 0. If so, we have f(x) = x iff ϕ(x) = 0, that is, iff x ∈ H. We also claim
that the inverse of f is obtained by changing u to −u. Actually, we check the slightly more
general fact that

τϕ,u ◦ τϕ,v = τϕ,u+v.

Indeed, using the fact that ϕ(v) = 0, we have

τϕ,u(τϕ,v(x)) = τϕ,v(x) + ϕ(τϕ,v(v))u

= τϕ,v(x) + (ϕ(x) + ϕ(x)ϕ(v))u

= τϕ,v(x) + ϕ(x)u

= x+ ϕ(x)v + ϕ(x)u

= x+ ϕ(x)(u+ v).
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For v = −u, we have τϕ,u+v = ϕϕ,0 = id, so τ−1
ϕ,u = τϕ,−u, as claimed.

Therefore, we proved that every linear isomorphism of E that leaves every vector in some
hyperplane H fixed and has the property that f(x)− x ∈ H for all x ∈ E is given by a map
τϕ,u as defined by equation (∗), where ϕ is some nonzero linear form defining H and u is
some vector in H. We have τϕ,u = id iff u = 0.

Definition 6.3. Given any hyperplane H in E, for any nonzero nonlinear form ϕ ∈ E∗

defining H (which means that H = Ker (ϕ)) and any nonzero vector u ∈ H, the linear map
τϕ,u given by

τϕ,u(x) = x+ ϕ(x)u, ϕ(u) = 0,

for all x ∈ E is called a transvection of hyperplane H and direction u. The map τϕ,u leaves
every vector in H fixed, and f(x)− x ∈ Ku for all x ∈ E.

The above arguments show the following result.

Proposition 6.20. Let f : E → E be a bijective linear map and assume that f 6= id and
that f(x) = x for all x ∈ H, where H is some hyperplane in E. If there is some nonzero
vector u ∈ E such that u /∈ H and f(u)− u ∈ H, then f is a transvection of hyperplane H;
otherwise, f is a dilatation of hyperplane H.

Proof. Using the notation as above, for some v /∈ H, we have f(v) = h + αv with α 6= 0,
and write u = y + tv with y ∈ H and t 6= 0 since u /∈ H. If f(u)− u ∈ H, from

f(u)− u = t(h+ (α− 1)v),

we get (α − 1)v ∈ H, and since v /∈ H, we must have α = 1, and we proved that f is a
transvection. Otherwise, α 6= 0, 1, and we proved that f is a dilatation.

If E is finite-dimensional, then α = det(f), so we also have the following result.

Proposition 6.21. Let f : E → E be a bijective linear map of a finite-dimensional vector
space E and assume that f 6= id and that f(x) = x for all x ∈ H, where H is some hyperplane
in E. If det(f) = 1, then f is a transvection of hyperplane H; otherwise, f is a dilatation
of hyperplane H.

Suppose that f is a dilatation of hyperplane H and direction u, and say det(f) = α 6= 0, 1.
Pick a basis (u, e2, . . . , en) of E where (e2, . . . , en) is a basis of H. Then, the matrix of f is
of the form 

α 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 ,



6.12. TRANSVECTIONS AND DILATATIONS 213

which is an elementary matrix of the form E1,α. Conversely, it is clear that every elementary
matrix of the form Ei,α with α 6= 0, 1 is a dilatation.

Now, assume that f is a transvection of hyperplane H and direction u ∈ H. Pick some
v /∈ H, and pick some basis (u, e3, . . . , en) of H, so that (v, u, e3, . . . , en) is a basis of E. Since
f(v)− v ∈ Ku, the matrix of f is of the form

1 0 · · · 0
α 1 0
...

. . .
...

0 0 · · · 1

 ,

which is an elementary matrix of the form E2,1;α. Conversely, it is clear that every elementary
matrix of the form Ei,j;α (α 6= 0) is a transvection.

The following proposition is an interesting exercise that requires good mastery of the
elementary row operations Ei,j;β.

Proposition 6.22. Given any invertible n× n matrix A, there is a matrix S such that

SA =

(
In−1 0

0 α

)
= En,α,

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β; that
is, S is a composition of transvections.

Surprisingly, every transvection is the composition of two dilatations!

Proposition 6.23. If the field K is not of charateristic 2, then every transvection f of
hyperplane H can be written as f = d2 ◦ d1, where d1, d2 are dilatations of hyperplane H,
where the direction of d1 can be chosen arbitrarily.

Proof. Pick some dilalation d1 of hyperplane H and scale factor α 6= 0, 1. Then, d2 = f ◦d−1
1

leaves every vector in H fixed, and det(d2) = α−1 6= 1. By Proposition 6.21, the linear map
d2 is a dilatation of hyperplane H, and we have f = d2 ◦ d1, as claimed.

Observe that in Proposition 6.23, we can pick α = −1; that is, every transvection of
hyperplane H is the compositions of two symmetries about the hyperplane H, one of which
can be picked arbitrarily.

Remark: Proposition 6.23 holds as long as K 6= {0, 1}.
The following important result is now obtained.

Theorem 6.24. Let E be any finite-dimensional vector space over a field K of characteristic
not equal to 2. Then, the group SL(E) is generated by the transvections, and the group
GL(E) is generated by the dilatations.
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Proof. Consider any f ∈ SL(E), and let A be its matrix in any basis. By Proposition 6.22,
there is a matrix S such that

SA =

(
In−1 0

0 α

)
= En,α,

with α = det(A), and where S is a product of elementary matrices of the form Ei,j;β. Since
det(A) = 1, we have α = 1, and the result is proved. Otherwise, En,α is a dilatation, S is a
product of transvections, and by Proposition 6.23, every transvection is the composition of
two dilatations, so the second result is also proved.

We conclude this section by proving that any two transvections are conjugate in GL(E).
Let τϕ,u (u 6= 0) be a transvection and let g ∈ GL(E) be any invertible linear map. We have

(g ◦ τϕ,u ◦ g−1)(x) = g(g−1(x) + ϕ(g−1(x))u)

= x+ ϕ(g−1(x))g(u).

Let us find the hyperplane determined by the linear form x 7→ ϕ(g−1(x)). This is the set of
vectors x ∈ E such that ϕ(g−1(x)) = 0, which holds iff g−1(x) ∈ H iff x ∈ g(H). Therefore,
Ker (ϕ◦g−1) = g(H) = H ′, and we have g(u) ∈ g(H) = H ′, so g◦τϕ,u◦g−1 is the transvection
of hyperplane H ′ = g(H) and direction u′ = g(u) (with u′ ∈ H ′).

Conversely, let τψ,u′ be some transvection (u′ 6= 0). Pick some vector v, v′ such that
ϕ(v) = ψ(v′) = 1, so that

E = H ⊕Kv = H ′ ⊕ v′.
There is a linear map g ∈ GL(E) such that g(u) = u′, g(v) = v′, and g(H) = H ′. To
define g, pick a basis (v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H and pick a
basis (v′, u′, e′2, . . . , e

′
n−1) where (u′, e′2, . . . , e

′
n−1) is a basis of H ′; then g is defined so that

g(v) = v′, g(u) = u′, and g(ei) = g(e′i), for i = 2, . . . , n − 1. If n = 2, then ei and e′i are
missing. Then, we have

(g ◦ τϕ,u ◦ g−1)(x) = x+ ϕ(g−1(x))u′.

Now, ϕ ◦ g−1 also determines the hyperplane H ′ = g(H), so we have ϕ ◦ g−1 = λψ for some
nonzero λ in K. Since v′ = g(v), we get

ϕ(v) = ϕ ◦ g−1(v′) = λψ(v′),

and since ϕ(v) = ψ(v′) = 1, we must have λ = 1. It follows that

(g ◦ τϕ,u ◦ g−1)(x) = x+ ψ(x)u′ = τψ,u′(x).

In summary, we proved almost all parts the following result.
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Proposition 6.25. Let E be any finite-dimensional vector space. For every transvection
τϕ,u (u 6= 0) and every linear map g ∈ GL(E), the map g ◦ τϕ,u ◦ g−1 is the transvection
of hyperplane g(H) and direction g(u) (that is, g ◦ τϕ,u ◦ g−1 = τϕ◦g−1,g(u)). For every other
transvection τψ,u′ (u′ 6= 0), there is some g ∈ GL(E) such τψ,u′ = g ◦ τϕ,u ◦ g−1; in other
words any two transvections (6= id) are conjugate in GL(E). Moreover, if n ≥ 3, then the
linear isomorphim g as above can be chosen so that g ∈ SL(E).

Proof. We just need to prove that if n ≥ 3, then for any two transvections τϕ,u and τψ,u′
(u, u′ 6= 0), there is some g ∈ SL(E) such that τψ,u′ = g◦τϕ,u◦g−1. As before, we pick a basis
(v, u, e2, . . . , en−1) where (u, e2, . . . , en−1) is a basis of H, we pick a basis (v′, u′, e′2, . . . , e

′
n−1)

where (u′, e′2, . . . , e
′
n−1) is a basis of H ′, and we define g as the unique linear map such that

g(v) = v′, g(u) = u′, and g(ei) = e′i, for i = 1, . . . , n − 1. But, in this case, both H and
H ′ = g(H) have dimension at least 2, so in any basis of H ′ including u′, there is some basis
vector e′2 independent of u′, and we can rescale e′2 in such a way that the matrix of g over
the two bases has determinant +1.

6.13 Summary

The main concepts and results of this chapter are listed below:

• One does not solve (large) linear systems by computing determinants.

• Upper-triangular (lower-triangular) matrices.

• Solving by back-substitution (forward-substitution).

• Gaussian elimination.

• Permuting rows.

• The pivot of an elimination step; pivoting .

• Transposition matrix ; elementary matrix .

• The Gaussian elimination theorem (Theorem 6.1).

• Gauss-Jordan factorization.

• LU-factorization; Necessary and sufficient condition for the existence of an
LU -factorization (Proposition 6.2).

• LDU-factorization.

• “PA = LU theorem” (Theorem 6.5).

• LDL>-factorization of a symmetric matrix.
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• Avoiding small pivots: partial pivoting ; complete pivoting .

• Gaussian elimination of tridiagonal matrices.

• LU -factorization of tridiagonal matrices.

• Symmetric positive definite matrices (SPD matrices).

• Cholesky factorization (Theorem 6.10).

• Criteria for a symmetric matrix to be positive definite; Sylvester’s criterion.

• Reduced row echelon form.

• Reduction of a rectangular matrix to its row echelon form.

• Using the reduction to row echelon form to decide whether a system Ax = b is solvable,
and to find its solutions, using a special solution and a basis of the homogeneous system
Ax = 0.

• Magic squares .

• transvections and dilatations.



Chapter 7

Vector Norms and Matrix Norms

7.1 Normed Vector Spaces

In order to define how close two vectors or two matrices are, and in order to define the
convergence of sequences of vectors or matrices, we can use the notion of a norm. Recall
that R+ = {x ∈ R | x ≥ 0}. Also recall that if z = a + ib ∈ C is a complex number, with
a, b ∈ R, then z = a− ib and |z| =

√
zz =

√
a2 + b2 (|z| is the modulus of z).

Definition 7.1. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+, assigning
a nonnegative real number ‖u‖ to any vector u ∈ E, and satisfying the following conditions
for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (homogeneity (or scaling))

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

By (N2), setting λ = −1, we obtain

‖−x‖ = ‖(−1)x‖ = | − 1| ‖x‖ = ‖x‖ ;

that is, ‖−x‖ = ‖x‖. From (N3), we have

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖ ,

which implies that
‖x‖ − ‖y‖ ≤ ‖x− y‖ .

By exchanging x and y and using the fact that by (N2),

‖y − x‖ = ‖−(x− y)‖ = ‖x− y‖ ,

217
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we also have
‖y‖ − ‖x‖ ≤ ‖x− y‖ .

Therefore,
|‖x‖ − ‖y‖| ≤ ‖x− y‖, for all x, y ∈ E. (∗)

Observe that setting λ = 0 in (N2), we deduce that ‖0‖ = 0 without assuming (N1).
Then, by setting y = 0 in (∗), we obtain

|‖x‖| ≤ ‖x‖ , for all x ∈ E.

Therefore, the condition ‖x‖ ≥ 0 in (N1) follows from (N2) and (N3), and (N1) can be
replaced by the weaker condition

(N1’) For all x ∈ E, if ‖x‖ = 0 then x = 0,

A function ‖ ‖ : E → R satisfying axioms (N2) and (N3) is called a seminorm. From the
above discussion, a seminorm also has the properties

‖x‖ ≥ 0 for all x ∈ E, and ‖0‖ = 0.

However, there may be nonzero vectors x ∈ E such that ‖x‖ = 0. Let us give some
examples of normed vector spaces.

Example 7.1.

1. Let E = R, and ‖x‖ = |x|, the absolute value of x.

2. Let E = C, and ‖z‖ = |z|, the modulus of z.

3. Let E = Rn (or E = Cn). There are three standard norms. For every (x1, . . . , xn) ∈ E,
we have the norm ‖x‖1, defined such that,

‖x‖1 = |x1|+ · · ·+ |xn|,

we have the Euclidean norm ‖x‖2, defined such that,

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that,

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

More generally, we define the `p-norm (for p ≥ 1) by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p.

There are other norms besides the `p-norms. Here are some examples.
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1. For E = R2,
‖(u1, u2)‖ = |u1|+ 2|u2|.

2. For E = R2,

‖(u1, u2)‖ =
(
(u1 + u2)2 + u2

1

)1/2
.

3. For E = C2,
‖(u1, u2)‖ = |u1 + iu2|+ |u1 − iu2|.

The reader should check that they satisfy all the axioms of a norm.

Some work is required to show the triangle inequality for the `p-norm.

Proposition 7.1. If E is a finite-dimensional vector space over R or C, for every real
number p ≥ 1, the `p-norm is indeed a norm.

Proof. The cases p = 1 and p = ∞ are easy and left to the reader. If p > 1, then let q > 1
such that

1

p
+

1

q
= 1.

We will make use of the following fact: for all α, β ∈ R, if α, β ≥ 0, then

αβ ≤ αp

p
+
βq

q
. (∗)

To prove the above inequality, we use the fact that the exponential function t 7→ et satisfies
the following convexity inequality:

eθx+(1−θ)y ≤ θex + (1− θ)ey,

for all x, y ∈ R and all θ with 0 ≤ θ ≤ 1.

Since the case αβ = 0 is trivial, let us assume that α > 0 and β > 0. If we replace θ by
1/p, x by p logα and y by q log β, then we get

e
1
p
p logα+ 1

q
q log β ≤ 1

p
ep logα +

1

q
eq log β,

which simplifies to

αβ ≤ αp

p
+
βq

q
,

as claimed.

We will now prove that for any two vectors u, v ∈ E, we have

n∑
i=1

|uivi| ≤ ‖u‖p ‖v‖q . (∗∗)
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Since the above is trivial if u = 0 or v = 0, let us assume that u 6= 0 and v 6= 0. Then, the
inequality (∗) with α = |ui|/ ‖u‖p and β = |vi|/ ‖v‖q yields

|uivi|
‖u‖p ‖v‖q

≤ |ui|p
p ‖u‖pp

+
|vi|q
q ‖u‖qq

,

for i = 1, . . . , n, and by summing up these inequalities, we get

n∑
i=1

|uivi| ≤ ‖u‖p ‖v‖q ,

as claimed. To finish the proof, we simply have to prove that property (N3) holds, since
(N1) and (N2) are clear. Now, for i = 1, . . . , n, we can write

(|ui|+ |vi|)p = |ui|(|ui|+ |vi|)p−1 + |vi|(|ui|+ |vi|)p−1,

so that by summing up these equations we get

n∑
i=1

(|ui|+ |vi|)p =
n∑
i=1

|ui|(|ui|+ |vi|)p−1 +
n∑
i=1

|vi|(|ui|+ |vi|)p−1,

and using the inequality (∗∗), we get

n∑
i=1

(|ui|+ |vi|)p ≤ (‖u‖p + ‖v‖p)
( n∑

i=1

(|ui|+ |vi|)(p−1)q

)1/q

.

However, 1/p+ 1/q = 1 implies pq = p+ q, that is, (p− 1)q = p, so we have

n∑
i=1

(|ui|+ |vi|)p ≤ (‖u‖p + ‖v‖p)
( n∑

i=1

(|ui|+ |vi|)p
)1/q

,

which yields ( n∑
i=1

(|ui|+ |vi|)p
)1/p

≤ ‖u‖p + ‖v‖p .

Since |ui + vi| ≤ |ui|+ |vi|, the above implies the triangle inequality ‖u+ v‖p ≤ ‖u‖p + ‖v‖p,
as claimed.

For p > 1 and 1/p+ 1/q = 1, the inequality

n∑
i=1

|uivi| ≤
( n∑

i=1

|ui|p
)1/p( n∑

i=1

|vi|q
)1/q

is known as Hölder’s inequality . For p = 2, it is the Cauchy–Schwarz inequality .
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Actually, if we define the Hermitian inner product 〈−,−〉 on Cn by

〈u, v〉 =
n∑
i=1

uivi,

where u = (u1, . . . , un) and v = (v1, . . . , vn), then

|〈u, v〉| ≤
n∑
i=1

|uivi| =
n∑
i=1

|uivi|,

so Hölder’s inequality implies the following inequality.

Corollary 7.2. (Hölder’s inequality) For any real numbers p, q, such that p, q ≥ 1 and

1

p
+

1

q
= 1,

(with q = +∞ if p = 1 and p = +∞ if q = 1), we have the inequality

|〈u, v〉| ≤ ‖u‖p ‖v‖q , u, v ∈ Cn.

For p = 2, this is the standard Cauchy–Schwarz inequality. The triangle inequality for
the `p-norm, ( n∑

i=1

(|ui + vi|)p
)1/p

≤
( n∑

i=1

|ui|p
)1/p

+

( n∑
i=1

|vi|q
)1/q

,

is known as Minkowski’s inequality .

When we restrict the Hermitian inner product to real vectors, u, v ∈ Rn, we get the
Euclidean inner product

〈u, v〉 =
n∑
i=1

uivi.

It is very useful to observe that if we represent (as usual) u = (u1, . . . , un) and v = (v1, . . . , vn)
(in Rn) by column vectors, then their Euclidean inner product is given by

〈u, v〉 = u>v = v>u,

and when u, v ∈ Cn, their Hermitian inner product is given by

〈u, v〉 = v∗u = u∗v.

In particular, when u = v, in the complex case we get

‖u‖2
2 = u∗u,
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and in the real case, this becomes
‖u‖2

2 = u>u.

As convenient as these notations are, we still recommend that you do not abuse them; the
notation 〈u, v〉 is more intrinsic and still “works” when our vector space is infinite dimen-
sional.

Remark: If 0 < p < 1, then x 7→ ‖x‖p is not a norm because the triangle inequality
fails. For example, consider x = (2, 0) and y = (0, 2). Then x + y = (2, 2), and we have
‖x‖p = (2p + 0p)1/p = 2, ‖y‖p = (0p + 2p)1/p = 2, and ‖x+ y‖p = (2p + 2p)1/p = 2(p+1)/p.
Thus

‖x+ y‖p = 2(p+1)/p, ‖x‖p + ‖y‖p = 4 = 22.

Since 0 < p < 1, we have 2p < p + 1, that is, (p + 1)/p > 2, so 2(p+1)/p > 22 = 4, and the
triangle inequality ‖x+ y‖p ≤ ‖x‖p + ‖y‖p fails.

Observe that

‖(1/2)x‖p = (1/2) ‖x‖p = ‖(1/2)y‖p = (1/2) ‖y‖p = 1, ‖(1/2)(x+ y)‖p = 21/p,

and since p < 1, we have 21/p > 2, so

‖(1/2)(x+ y)‖p = 21/p > 2 = (1/2) ‖x‖p + (1/2) ‖y‖p ,

and the map x 7→ ‖x‖p is not convex.

For p = 0, for any x ∈ Rn, we have

‖x‖0 = |{i ∈ {1, . . . , n} | xi 6= 0}|,

the number of nonzero components of x. The map x 7→ ‖x‖0 is not a norm, this time because
axiom (N2) fails. For example

‖(1, 0)‖0 = ‖(10, 0)‖0 = 1 6= 10 = 10 ‖(1, 0)‖0 .

The map x 7→ ‖x‖0 is also not convex. For example,

‖(1/2)(2, 2)‖0 = ‖(1, 1)‖0 = 2,

and
‖(2, 0)‖0 = ‖(0, 2)‖0 = 1,

but
‖(1/2)(2, 2)‖0 = 2 > 1 = (1/2) ‖(2, 0)‖0 + (1/2) ‖(0, 2)‖0 .

Nevertheless, the “zero-norm” x 7→ ‖x‖0 is used in machine learning as a regularizing
term which encourages sparsity, namely increases the number of zero components of the
vector x.

The following proposition is easy to show.
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Proposition 7.3. The following inequalities hold for all x ∈ Rn (or x ∈ Cn):

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞,
‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞,

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2.

Proposition 7.3 is actually a special case of a very important result: in a finite-dimensional
vector space, any two norms are equivalent.

Definition 7.2. Given any (real or complex) vector space E, two norms ‖ ‖a and ‖ ‖b are
equivalent iff there exists some positive reals C1, C2 > 0, such that

‖u‖a ≤ C1 ‖u‖b and ‖u‖b ≤ C2 ‖u‖a , for all u ∈ E.

Given any norm ‖ ‖ on a vector space of dimension n, for any basis (e1, . . . , en) of E,
observe that for any vector x = x1e1 + · · ·+ xnen, we have

‖x‖ = ‖x1e1 + · · ·+ xnen‖ ≤ |x1| ‖e1‖+ · · ·+ |xn| ‖en‖ ≤ C(|x1|+ · · ·+ |xn|) = C ‖x‖1 ,

with C = max1≤i≤n ‖ei‖ and

‖x‖1 = ‖x1e1 + · · ·+ xnen‖ = |x1|+ · · ·+ |xn|.

The above implies that

| ‖u‖ − ‖v‖ | ≤ ‖u− v‖ ≤ C ‖u− v‖1 ,

which means that the map u 7→ ‖u‖ is continuous with respect to the norm ‖ ‖1.

Let Sn−1
1 be the unit sphere with respect to the norm ‖ ‖1, namely

Sn−1
1 = {x ∈ E | ‖x‖1 = 1}.

Now, Sn−1
1 is a closed and bounded subset of a finite-dimensional vector space, so by Heine–

Borel (or equivalently, by Bolzano–Weiertrass), Sn−1
1 is compact. On the other hand, it

is a well known result of analysis that any continuous real-valued function on a nonempty
compact set has a minimum and a maximum, and that they are achieved. Using these facts,
we can prove the following important theorem:

Theorem 7.4. If E is any real or complex vector space of finite dimension, then any two
norms on E are equivalent.

Proof. It is enough to prove that any norm ‖ ‖ is equivalent to the 1-norm. We already proved
that the function x 7→ ‖x‖ is continuous with respect to the norm ‖ ‖1 and we observed that
the unit sphere Sn−1

1 is compact. Now, we just recalled that because the function f : x 7→ ‖x‖
is continuous and because Sn−1

1 is compact, the function f has a minimum m and a maximum
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M , and because ‖x‖ is never zero on Sn−1
1 , we must have m > 0. Consequently, we just

proved that if ‖x‖1 = 1, then

0 < m ≤ ‖x‖ ≤M,

so for any x ∈ E with x 6= 0, we get

m ≤ ‖x/ ‖x‖1‖ ≤M,

which implies

m ‖x‖1 ≤ ‖x‖ ≤M ‖x‖1 .

Since the above inequality holds trivially if x = 0, we just proved that ‖ ‖ and ‖ ‖1 are
equivalent, as claimed.

Remark: Let P be a n × n symmetric positive definite matrix. It is immediately verified
that the map x 7→ ‖x‖P given by

‖x‖P = (x>Px)1/2

is a norm on Rn called a quadratic norm. Using some convex analysis (the Löwner–John
ellipsoid), it can be shown that any norm ‖ ‖ on Rn can be approximated by a quadratic
norm in the sense that there is a quadratic norm ‖ ‖P such that

‖x‖P ≤ ‖x‖ ≤
√
n ‖x‖P for all x ∈ Rn;

see Boyd and Vandenberghe [22], Section 8.4.1.

Next, we will consider norms on matrices.

7.2 Matrix Norms

For simplicity of exposition, we will consider the vector spaces Mn(R) and Mn(C) of square
n × n matrices. Most results also hold for the spaces Mm,n(R) and Mm,n(C) of rectangular
m × n matrices. Since n × n matrices can be multiplied, the idea behind matrix norms is
that they should behave “well” with respect to matrix multiplication.

Definition 7.3. A matrix norm ‖ ‖ on the space of square n× n matrices in Mn(K), with
K = R or K = C, is a norm on the vector space Mn(K), with the additional property called
submultiplicativity that

‖AB‖ ≤ ‖A‖ ‖B‖ ,
for all A,B ∈ Mn(K). A norm on matrices satisfying the above property is often called a
submultiplicative matrix norm.
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Since I2 = I, from ‖I‖ = ‖I2‖ ≤ ‖I‖2, we get ‖I‖ ≥ 1, for every matrix norm.

Before giving examples of matrix norms, we need to review some basic definitions about
matrices. Given any matrix A = (aij) ∈ Mm,n(C), the conjugate A of A is the matrix such
that

Aij = aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The transpose of A is the n×m matrix A> such that

A>ij = aji, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The adjoint of A is the n×m matrix A∗ such that

A∗ = (A>) = (A)>.

When A is a real matrix, A∗ = A>. A matrix A ∈ Mn(C) is Hermitian if

A∗ = A.

If A is a real matrix (A ∈ Mn(R)), we say that A is symmetric if

A> = A.

A matrix A ∈ Mn(C) is normal if
AA∗ = A∗A,

and if A is a real matrix, it is normal if

AA> = A>A.

A matrix U ∈ Mn(C) is unitary if

UU∗ = U∗U = I.

A real matrix Q ∈ Mn(R) is orthogonal if

QQ> = Q>Q = I.

Given any matrix A = (aij) ∈ Mn(C), the trace tr(A) of A is the sum of its diagonal
elements

tr(A) = a11 + · · ·+ ann.

It is easy to show that the trace is a linear map, so that

tr(λA) = λtr(A)

and
tr(A+B) = tr(A) + tr(B).

Moreover, if A is an m× n matrix and B is an n×m matrix, it is not hard to show that

tr(AB) = tr(BA).

We also review eigenvalues and eigenvectors. We content ourselves with definition in-
volving matrices. A more general treatment will be given later on (see Chapter 13).
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Definition 7.4. Given any square matrix A ∈ Mn(C), a complex number λ ∈ C is an
eigenvalue of A if there is some nonzero vector u ∈ Cn, such that

Au = λu.

If λ is an eigenvalue of A, then the nonzero vectors u ∈ Cn such that Au = λu are called
eigenvectors of A associated with λ; together with the zero vector, these eigenvectors form a
subspace of Cn denoted by Eλ(A), and called the eigenspace associated with λ.

Remark: Note that Definition 7.4 requires an eigenvector to be nonzero. A somewhat
unfortunate consequence of this requirement is that the set of eigenvectors is not a subspace,
since the zero vector is missing! On the positive side, whenever eigenvectors are involved,
there is no need to say that they are nonzero. The fact that eigenvectors are nonzero is
implicitly used in all the arguments involving them, so it seems safer (but perhaps not as
elegant) to stituplate that eigenvectors should be nonzero.

If A is a square real matrix A ∈ Mn(R), then we restrict Definition 7.4 to real eigenvalues
λ ∈ R and real eigenvectors. However, it should be noted that although every complex
matrix always has at least some complex eigenvalue, a real matrix may not have any real
eigenvalues. For example, the matrix

A =

(
0 −1
1 0

)
has the complex eigenvalues i and −i, but no real eigenvalues. Thus, typically, even for real
matrices, we consider complex eigenvalues.

Observe that λ ∈ C is an eigenvalue of A
iff Au = λu for some nonzero vector u ∈ Cn

iff (λI − A)u = 0
iff the matrix λI − A defines a linear map which has a nonzero kernel, that is,
iff λI − A not invertible.

However, from Proposition 5.11, λI − A is not invertible iff

det(λI − A) = 0.

Now, det(λI − A) is a polynomial of degree n in the indeterminate λ, in fact, of the form

λn − tr(A)λn−1 + · · ·+ (−1)n det(A).

Thus, we see that the eigenvalues of A are the zeros (also called roots) of the above polyno-
mial. Since every complex polynomial of degree n has exactly n roots, counted with their
multiplicity, we have the following definition:
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Definition 7.5. Given any square n× n matrix A ∈ Mn(C), the polynomial

det(λI − A) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A)

is called the characteristic polynomial of A. The n (not necessarily distinct) roots λ1, . . . , λn
of the characteristic polynomial are all the eigenvalues of A and constitute the spectrum of
A. We let

ρ(A) = max
1≤i≤n

|λi|

be the largest modulus of the eigenvalues of A, called the spectral radius of A.

Since the eigenvalue λ1, . . . , λn of A are the zeros of the polynomial

det(λI − A) = λn − tr(A)λn−1 + · · ·+ (−1)n det(A),

we deduce (see Section 13.1 for details) that

tr(A) = λ1 + · · ·+ λn

det(A) = λ1 · · ·λn.

Proposition 7.5. For any matrix norm ‖ ‖ on Mn(C) and for any square n × n matrix
A ∈ Mn(C), we have

ρ(A) ≤ ‖A‖ .

Proof. Let λ be some eigenvalue of A for which |λ| is maximum, that is, such that |λ| = ρ(A).
If u ( 6= 0) is any eigenvector associated with λ and if U is the n× n matrix whose columns
are all u, then Au = λu implies

AU = λU,

and since

|λ| ‖U‖ = ‖λU‖ = ‖AU‖ ≤ ‖A‖ ‖U‖
and U 6= 0, we have ‖U‖ 6= 0, and get

ρ(A) = |λ| ≤ ‖A‖ ,

as claimed.

Proposition 7.5 also holds for any real matrix norm ‖ ‖ on Mn(R) but the proof is more
subtle and requires the notion of induced norm. We prove it after giving Definition 7.7.

Now, it turns out that if A is a real n × n symmetric matrix, then the eigenvalues of A
are all real and there is some orthogonal matrix Q such that

A = Qdiag(λ1, . . . , λn)Q>,
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where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A. Similarly, if A is a complex n × n Hermitian
matrix, then the eigenvalues of A are all real and there is some unitary matrix U such that

A = Udiag(λ1, . . . , λn)U∗,

where diag(λ1, . . . , λn) denotes the matrix whose only nonzero entries (if any) are its diagonal
entries, which are the (real) eigenvalues of A.

We now return to matrix norms. We begin with the so-called Frobenius norm, which is
just the norm ‖ ‖2 on Cn2

, where the n × n matrix A is viewed as the vector obtained by
concatenating together the rows (or the columns) of A. The reader should check that for
any n× n complex matrix A = (aij),( n∑

i,j=1

|aij|2
)1/2

=
√

tr(A∗A) =
√

tr(AA∗).

Definition 7.6. The Frobenius norm ‖ ‖F is defined so that for every square n× n matrix
A ∈ Mn(C),

‖A‖F =

( n∑
i,j=1

|aij|2
)1/2

=
√

tr(AA∗) =
√

tr(A∗A).

The following proposition show that the Frobenius norm is a matrix norm satisfying other
nice properties.

Proposition 7.6. The Frobenius norm ‖ ‖F on Mn(C) satisfies the following properties:

(1) It is a matrix norm; that is, ‖AB‖F ≤ ‖A‖F ‖B‖F , for all A,B ∈ Mn(C).

(2) It is unitarily invariant, which means that for all unitary matrices U, V , we have

‖A‖F = ‖UA‖F = ‖AV ‖F = ‖UAV ‖F .

(3)
√
ρ(A∗A) ≤ ‖A‖F ≤

√
n
√
ρ(A∗A), for all A ∈ Mn(C).

Proof. (1) The only property that requires a proof is the fact ‖AB‖F ≤ ‖A‖F ‖B‖F . This
follows from the Cauchy–Schwarz inequality:

‖AB‖2
F =

n∑
i,j=1

∣∣∣∣ n∑
k=1

aikbkj

∣∣∣∣2
≤

n∑
i,j=1

( n∑
h=1

|aih|2
)( n∑

k=1

|bkj|2
)

=

( n∑
i,h=1

|aih|2
)( n∑

k,j=1

|bkj|2
)

= ‖A‖2
F ‖B‖

2
F .
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(2) We have

‖A‖2
F = tr(A∗A) = tr(V V ∗A∗A) = tr(V ∗A∗AV ) = ‖AV ‖2

F ,

and
‖A‖2

F = tr(A∗A) = tr(A∗U∗UA) = ‖UA‖2
F .

The identity
‖A‖F = ‖UAV ‖F

follows from the previous two.

(3) It is well known that the trace of a matrix is equal to the sum of its eigenvalues.
Furthermore, A∗A is symmetric positive semidefinite (which means that its eigenvalues are
nonnegative), so ρ(A∗A) is the largest eigenvalue of A∗A and

ρ(A∗A) ≤ tr(A∗A) ≤ nρ(A∗A),

which yields (3) by taking square roots.

Remark: The Frobenius norm is also known as the Hilbert-Schmidt norm or the Schur
norm. So many famous names associated with such a simple thing!

We now give another method for obtaining matrix norms using subordinate norms. First,
we need a proposition that shows that in a finite-dimensional space, the linear map induced
by a matrix is bounded, and thus continuous.

Proposition 7.7. For every norm ‖ ‖ on Cn (or Rn), for every matrix A ∈ Mn(C) (or
A ∈ Mn(R)), there is a real constant CA ≥ 0, such that

‖Au‖ ≤ CA ‖u‖ ,

for every vector u ∈ Cn (or u ∈ Rn if A is real).

Proof. For every basis (e1, . . . , en) of Cn (or Rn), for every vector u = u1e1 + · · ·+ unen, we
have

‖Au‖ = ‖u1A(e1) + · · ·+ unA(en)‖
≤ |u1| ‖A(e1)‖+ · · ·+ |un| ‖A(en)‖
≤ C1(|u1|+ · · ·+ |un|) = C1 ‖u‖1 ,

where C1 = max1≤i≤n ‖A(ei)‖. By Theorem 7.4, the norms ‖ ‖ and ‖ ‖1 are equivalent, so
there is some constant C2 > 0 so that ‖u‖1 ≤ C2 ‖u‖ for all u, which implies that

‖Au‖ ≤ CA ‖u‖ ,

where CA = C1C2.
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Proposition 7.7 says that every linear map on a finite-dimensional space is bounded . This
implies that every linear map on a finite-dimensional space is continuous. Actually, it is not
hard to show that a linear map on a normed vector space E is bounded iff it is continuous,
regardless of the dimension of E.

Proposition 7.7 implies that for every matrix A ∈ Mn(C) (or A ∈ Mn(R)),

sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ ≤ CA.

Now, since ‖λu‖ = |λ| ‖u‖, for every nonzero vector x, we have

‖Ax‖
‖x‖ =

‖x‖ ‖A(x/ ‖x‖)‖
‖x‖ = ‖A(x/ ‖x‖)‖ ,

which implies that

sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Cn
‖x‖=1

‖Ax‖ .

Similarly

sup
x∈Rn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Rn
‖x‖=1

‖Ax‖ .

The above considerations justify the following definition.

Definition 7.7. If ‖ ‖ is any norm on Cn, we define the function ‖ ‖ on Mn(C) by

‖A‖ = sup
x∈Cn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Cn
‖x‖=1

‖Ax‖ .

The function A 7→ ‖A‖ is called the subordinate matrix norm or operator norm induced
by the norm ‖ ‖.

It is easy to check that the function A 7→ ‖A‖ is indeed a norm, and by definition, it
satisfies the property

‖Ax‖ ≤ ‖A‖ ‖x‖ , for all x ∈ Cn.

A norm ‖ ‖ on Mn(C) satisfying the above property is said to be subordinate to the vector
norm ‖ ‖ on Cn. As a consequence of the above inequality, we have

‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖ ,

for all x ∈ Cn, which implies that

‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ Mn(C),
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showing that A 7→ ‖A‖ is a matrix norm (it is submultiplicative).

Observe that the operator norm is also defined by

‖A‖ = inf{λ ∈ R | ‖Ax‖ ≤ λ ‖x‖ , for all x ∈ Cn}.

Since the function x 7→ ‖Ax‖ is continuous (because | ‖Ay‖ − ‖Ax‖ | ≤ ‖Ay − Ax‖ ≤
CA ‖x− y‖) and the unit sphere Sn−1 = {x ∈ Cn | ‖x‖ = 1} is compact, there is some
x ∈ Cn such that ‖x‖ = 1 and

‖Ax‖ = ‖A‖ .
Equivalently, there is some x ∈ Cn such that x 6= 0 and

‖Ax‖ = ‖A‖ ‖x‖ .

The definition of an operator norm also implies that

‖I‖ = 1.

The above shows that the Frobenius norm is not a subordinate matrix norm (why?). The
notion of subordinate norm can be slightly generalized.

Definition 7.8. If K = R or K = C, for any norm ‖ ‖ on Mm,n(K), and for any two norms
‖ ‖a on Kn and ‖ ‖b on Km, we say that the norm ‖ ‖ is subordinate to the norms ‖ ‖a and
‖ ‖b if

‖Ax‖b ≤ ‖A‖ ‖x‖a for all A ∈ Mm,n(K) and all x ∈ Kn.

Remark: For any norm ‖ ‖ on Cn, we can define the function ‖ ‖R on Mn(R) by

‖A‖R = sup
x∈Rn
x 6=0

‖Ax‖
‖x‖ = sup

x∈Rn
‖x‖=1

‖Ax‖ .

The function A 7→ ‖A‖R is a matrix norm on Mn(R), and

‖A‖R ≤ ‖A‖ ,

for all real matrices A ∈ Mn(R). However, it is possible to construct vector norms ‖ ‖ on Cn

and real matrices A such that
‖A‖R < ‖A‖ .

In order to avoid this kind of difficulties, we define subordinate matrix norms over Mn(C).
Luckily, it turns out that ‖A‖R = ‖A‖ for the vector norms, ‖ ‖1 , ‖ ‖2, and ‖ ‖∞.

We now prove Proposition 7.5 for real matrix norms.

Proposition 7.8. For any matrix norm ‖ ‖ on Mn(R) and for any square n × n matrix
A ∈ Mn(R), we have

ρ(A) ≤ ‖A‖ .
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Proof. We follow the proof in Denis Serre’s book [96]. If A is a real matrix, the problem is
that the eigenvectors associated with the eigenvalue of maximum modulus may be complex.
We use a trick based on the fact that for every matrix A (real or complex),

ρ(Ak) = (ρ(A))k,

which is left as an exercise (use Proposition 13.5 which shows that if (λ1, . . . , λn) are the
(not necessarily distinct) eigenvalues of A, then (λk1, . . . , λ

k
n) are the eigenvalues of Ak, for

k ≥ 1).

Pick any complex matrix norm ‖ ‖c on Cn (for example, the Frobenius norm, or any
subordinate matrix norm induced by a norm on Cn). The restriction of ‖ ‖c to real matrices
is a real norm that we also denote by ‖ ‖c. Now, by Theorem 7.4, since Mn(R) has finite
dimension n2, there is some constant C > 0 so that

‖B‖c ≤ C ‖B‖ , for all B ∈ Mn(R).

Furthermore, for every k ≥ 1 and for every real n×n matrix A, by Proposition 7.5, ρ(Ak) ≤∥∥Ak∥∥
c
, and because ‖ ‖ is a matrix norm,

∥∥Ak∥∥ ≤ ‖A‖k, so we have

(ρ(A))k = ρ(Ak) ≤
∥∥Ak∥∥

c
≤ C

∥∥Ak∥∥ ≤ C ‖A‖k ,

for all k ≥ 1. It follows that

ρ(A) ≤ C1/k ‖A‖ , for all k ≥ 1.

However because C > 0, we have limk 7→∞C1/k = 1 (we have limk 7→∞
1
k

log(C) = 0). There-
fore, we conclude that

ρ(A) ≤ ‖A‖ ,
as desired.

We now determine explicitly what are the subordinate matrix norms associated with the
vector norms ‖ ‖1 , ‖ ‖2, and ‖ ‖∞.

Proposition 7.9. For every square matrix A = (aij) ∈ Mn(C), we have

‖A‖1 = sup
x∈Cn
‖x‖1=1

‖Ax‖1 = max
j

n∑
i=1

|aij|

‖A‖∞ = sup
x∈Cn
‖x‖∞=1

‖Ax‖∞ = max
i

n∑
j=1

|aij|

‖A‖2 = sup
x∈Cn
‖x‖2=1

‖Ax‖2 =
√
ρ(A∗A) =

√
ρ(AA∗).
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Furthermore, ‖A∗‖2 = ‖A‖2, the norm ‖ ‖2 is unitarily invariant, which means that

‖A‖2 = ‖UAV ‖2

for all unitary matrices U, V , and if A is a normal matrix, then ‖A‖2 = ρ(A).

Proof. For every vector u, we have

‖Au‖1 =
∑
i

∣∣∣∣∑
j

aijuj

∣∣∣∣ ≤∑
j

|uj|
∑
i

|aij| ≤
(

max
j

∑
i

|aij|
)
‖u‖1 ,

which implies that

‖A‖1 ≤ max
j

n∑
i=1

|aij|.

It remains to show that equality can be achieved. For this let j0 be some index such that

max
j

∑
i

|aij| =
∑
i

|aij0 |,

and let ui = 0 for all i 6= j0 and uj0 = 1.

In a similar way, we have

‖Au‖∞ = max
i

∣∣∣∣∑
j

aijuj

∣∣∣∣ ≤ (max
i

∑
j

|aij|
)
‖u‖∞ ,

which implies that

‖A‖∞ ≤ max
i

n∑
j=1

|aij|.

To achieve equality, let i0 be some index such that

max
i

∑
j

|aij| =
∑
j

|ai0j|.

The reader should check that the vector given by

uj =

{
ai0j
|ai0j |

if ai0j 6= 0

1 if ai0j = 0

works.

We have
‖A‖2

2 = sup
x∈Cn
x∗x=1

‖Ax‖2
2 = sup

x∈Cn
x∗x=1

x∗A∗Ax.
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Since the matrix A∗A is symmetric, it has real eigenvalues and it can be diagonalized with
respect to an orthogonal matrix. These facts can be used to prove that the function x 7→
x∗A∗Ax has a maximum on the sphere x∗x = 1 equal to the largest eigenvalue of A∗A,
namely, ρ(A∗A). We postpone the proof until we discuss optimizing quadratic functions.
Therefore,

‖A‖2 =
√
ρ(A∗A).

Let use now prove that ρ(A∗A) = ρ(AA∗). First, assume that ρ(A∗A) > 0. In this case,
there is some eigenvector u ( 6= 0) such that

A∗Au = ρ(A∗A)u,

and since ρ(A∗A) > 0, we must have Au 6= 0. Since Au 6= 0,

AA∗(Au) = ρ(A∗A)Au

which means that ρ(A∗A) is an eigenvalue of AA∗, and thus

ρ(A∗A) ≤ ρ(AA∗).

Because (A∗)∗ = A, by replacing A by A∗, we get

ρ(AA∗) ≤ ρ(A∗A),

and so ρ(A∗A) = ρ(AA∗).

If ρ(A∗A) = 0, then we must have ρ(AA∗) = 0, since otherwise by the previous reasoning
we would have ρ(A∗A) = ρ(AA∗) > 0. Hence, in all case

‖A‖2
2 = ρ(A∗A) = ρ(AA∗) = ‖A∗‖2

2 .

For any unitary matrices U and V , it is an easy exercise to prove that V ∗A∗AV and A∗A
have the same eigenvalues, so

‖A‖2
2 = ρ(A∗A) = ρ(V ∗A∗AV ) = ‖AV ‖2

2 ,

and also
‖A‖2

2 = ρ(A∗A) = ρ(A∗U∗UA) = ‖UA‖2
2 .

Finally, if A is a normal matrix (AA∗ = A∗A), it can be shown that there is some unitary
matrix U so that

A = UDU∗,

where D = diag(λ1, . . . , λn) is a diagonal matrix consisting of the eigenvalues of A, and thus

A∗A = (UDU∗)∗UDU∗ = UD∗U∗UDU∗ = UD∗DU∗.

However, D∗D = diag(|λ1|2, . . . , |λn|2), which proves that

ρ(A∗A) = ρ(D∗D) = max
i
|λi|2 = (ρ(A))2,

so that ‖A‖2 = ρ(A).
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The norm ‖A‖2 is often called the spectral norm. Observe that property (3) of proposition
7.6 says that

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ,

which shows that the Frobenius norm is an upper bound on the spectral norm. The Frobenius
norm is much easier to compute than the spectal norm.

The reader will check that the above proof still holds if the matrix A is real, confirming
the fact that ‖A‖R = ‖A‖ for the vector norms ‖ ‖1 , ‖ ‖2, and ‖ ‖∞. It is also easy to verify
that the proof goes through for rectangular matrices, with the same formulae. Similarly,
the Frobenius norm is also a norm on rectangular matrices. For these norms, whenever AB
makes sense, we have

‖AB‖ ≤ ‖A‖ ‖B‖ .

Remark: It can be shown that for any two real numbers p, q ≥ 1 such that
1

p
+

1

q
= 1, we

have

‖A∗‖q = ‖A‖p = sup{<(y∗Ax) | ‖x‖p = 1, ‖y‖q = 1} = sup{|〈Ax, y〉| | ‖x‖p = 1, ‖y‖q = 1},

where ‖A∗‖q and ‖A‖p are the operator norms.

Remark: Let (E, ‖ ‖) and (F, ‖ ‖) be two normed vector spaces (for simplicity of notation,
we use the same symbol ‖ ‖ for the norms on E and F ; this should not cause any confusion).
Recall that a function f : E → F is continuous if for every a ∈ E, for every ε > 0, there is
some η > 0 such that for all x ∈ E,

if ‖x− a‖ ≤ η then ‖f(x)− f(a)‖ ≤ ε.

It is not hard to show that a linear map f : E → F is continuous iff there is some constant
C ≥ 0 such that

‖f(x)‖ ≤ C ‖x‖ for all x ∈ E.
If so, we say that f is bounded (or a linear bounded operator). We let L(E;F ) denote the
set of all continuous (equivalently, bounded) linear maps from E to F . Then we can define
the operator norm (or subordinate norm) ‖ ‖ on L(E;F ) as follows: for every f ∈ L(E;F ),

‖f‖ = sup
x∈E
x 6=0

‖f(x)‖
‖x‖ = sup

x∈E
‖x‖=1

‖f(x)‖ ,

or equivalently by

‖f‖ = inf{λ ∈ R | ‖f(x)‖ ≤ λ ‖x‖ , for all x ∈ E}.

It is not hard to show that the map f 7→ ‖f‖ is a norm on L(E;F ) satisfying the property

‖f(x)‖ ≤ ‖f‖ ‖x‖
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for all x ∈ E, and that if f ∈ L(E;F ) and g ∈ L(F ;G), then

‖g ◦ f‖ ≤ ‖g‖ ‖f‖ .

Operator norms play an important role in functional analysis, especially when the spaces E
and F are complete.

The following proposition will be needed when we deal with the condition number of a
matrix.

Proposition 7.10. Let ‖ ‖ be any matrix norm and let B be a matrix such that ‖B‖ < 1.

(1) If ‖ ‖ is a subordinate matrix norm, then the matrix I +B is invertible and∥∥(I +B)−1
∥∥ ≤ 1

1− ‖B‖ .

(2) If a matrix of the form I + B is singular, then ‖B‖ ≥ 1 for every matrix norm (not
necessarily subordinate).

Proof. (1) Observe that (I +B)u = 0 implies Bu = −u, so

‖u‖ = ‖Bu‖ .

Recall that
‖Bu‖ ≤ ‖B‖ ‖u‖

for every subordinate norm. Since ‖B‖ < 1, if u 6= 0, then

‖Bu‖ < ‖u‖ ,

which contradicts ‖u‖ = ‖Bu‖. Therefore, we must have u = 0, which proves that I + B is
injective, and thus bijective, i.e., invertible. Then, we have

(I +B)−1 +B(I +B)−1 = (I +B)(I +B)−1 = I,

so we get
(I +B)−1 = I −B(I +B)−1,

which yields ∥∥(I +B)−1
∥∥ ≤ 1 + ‖B‖

∥∥(I +B)−1
∥∥ ,

and finally, ∥∥(I +B)−1
∥∥ ≤ 1

1− ‖B‖ .

(2) If I + B is singular, then −1 is an eigenvalue of B, and by Proposition 7.5, we get
ρ(B) ≤ ‖B‖, which implies 1 ≤ ρ(B) ≤ ‖B‖.
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The following result is needed to deal with the convergence of sequences of powers of
matrices.

Proposition 7.11. For every matrix A ∈ Mn(C) and for every ε > 0, there is some subor-
dinate matrix norm ‖ ‖ such that

‖A‖ ≤ ρ(A) + ε.

Proof. By Theorem 13.4, there exists some invertible matrix U and some upper triangular
matrix T such that

A = UTU−1,

and say that

T =


λ1 t12 t13 · · · t1n
0 λ2 t23 · · · t2n
...

...
. . .

...
...

0 0 · · · λn−1 tn−1n

0 0 · · · 0 λn

 ,

where λ1, . . . , λn are the eigenvalues of A. For every δ 6= 0, define the diagonal matrix

Dδ = diag(1, δ, δ2, . . . , δn−1),

and consider the matrix

(UDδ)
−1A(UDδ) = D−1

δ TDδ =


λ1 δt12 δ2t13 · · · δn−1t1n
0 λ2 δt23 · · · δn−2t2n
...

...
. . .

...
...

0 0 · · · λn−1 δtn−1n

0 0 · · · 0 λn

 .

Now, define the function ‖ ‖ : Mn(C)→ R by

‖B‖ =
∥∥(UDδ)

−1B(UDδ)
∥∥
∞ ,

for every B ∈ Mn(C). Then it is easy to verify that the above function is the matrix norm
subordinate to the vector norm

v 7→
∥∥(UDδ)

−1v
∥∥
∞ .

Furthermore, for every ε > 0, we can pick δ so that

n∑
j=i+1

|δj−itij| ≤ ε, 1 ≤ i ≤ n− 1,

and by definition of the norm ‖ ‖∞, we get

‖A‖ ≤ ρ(A) + ε,

which shows that the norm that we have constructed satisfies the required properties.
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Note that equality is generally not possible; consider the matrix

A =

(
0 1
0 0

)
,

for which ρ(A) = 0 < ‖A‖, since A 6= 0.

7.3 Condition Numbers of Matrices

Unfortunately, there exist linear systems Ax = b whose solutions are not stable under small
perturbations of either b or A. For example, consider the system

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1

x2

x3

x4

 =


32
23
33
31

 .

The reader should check that it has the solution x = (1, 1, 1, 1). If we perturb slightly the
right-hand side, obtaining the new system

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



x1 + ∆x1

x2 + ∆x2

x3 + ∆x3

x4 + ∆x4

 =


32.1
22.9
33.1
30.9

 ,

the new solutions turns out to be x = (9.2,−12.6, 4.5,−1.1). In other words, a relative error
of the order 1/200 in the data (here, b) produces a relative error of the order 10/1 in the
solution, which represents an amplification of the relative error of the order 2000.

Now, let us perturb the matrix slightly, obtaining the new system
10 7 8.1 7.2

7.08 5.04 6 5
8 5.98 9.98 9

6.99 4.99 9 9.98



x1 + ∆x1

x2 + ∆x2

x3 + ∆x3

x4 + ∆x4

 =


32
23
33
31

 .

This time, the solution is x = (−81, 137,−34, 22). Again, a small change in the data alters
the result rather drastically. Yet, the original system is symmetric, has determinant 1, and
has integer entries. The problem is that the matrix of the system is badly conditioned, a
concept that we will now explain.

Given an invertible matrix A, first, assume that we perturb b to b+δb, and let us analyze
the change between the two exact solutions x and x+ δx of the two systems

Ax = b

A(x+ δx) = b+ δb.
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We also assume that we have some norm ‖ ‖ and we use the subordinate matrix norm on
matrices. From

Ax = b

Ax+ Aδx = b+ δb,

we get
δx = A−1δb,

and we conclude that

‖δx‖ ≤
∥∥A−1

∥∥ ‖δb‖
‖b‖ ≤ ‖A‖ ‖x‖ .

Consequently, the relative error in the result ‖δx‖ / ‖x‖ is bounded in terms of the relative
error ‖δb‖ / ‖b‖ in the data as follows:

‖δx‖
‖x‖ ≤

(
‖A‖

∥∥A−1
∥∥ )‖δb‖
‖b‖ .

Now let us assume that A is perturbed to A+ δA, and let us analyze the change between
the exact solutions of the two systems

Ax = b

(A+ ∆A)(x+ ∆x) = b.

The second equation yields Ax + A∆x + ∆A(x + ∆x) = b, and by subtracting the first
equation we get

∆x = −A−1∆A(x+ ∆x).

It follows that
‖∆x‖ ≤

∥∥A−1
∥∥ ‖∆A‖ ‖x+ ∆x‖ ,

which can be rewritten as

‖∆x‖
‖x+ ∆x‖ ≤

(
‖A‖

∥∥A−1
∥∥ )‖∆A‖
‖A‖ .

Observe that the above reasoning is valid even if the matrix A+ ∆A is singular, as long
as x + ∆x is a solution of the second system. Furthermore, if ‖∆A‖ is small enough, it is
not unreasonable to expect that the ratio ‖∆x‖ / ‖x+ ∆x‖ is close to ‖∆x‖ / ‖x‖. This will
be made more precise later.

In summary, for each of the two perturbations, we see that the relative error in the result
is bounded by the relative error in the data, multiplied the number ‖A‖ ‖A−1‖. In fact, this
factor turns out to be optimal and this suggests the following definition:



240 CHAPTER 7. VECTOR NORMS AND MATRIX NORMS

Definition 7.9. For any subordinate matrix norm ‖ ‖, for any invertible matrix A, the
number

cond(A) = ‖A‖
∥∥A−1

∥∥
is called the condition number of A relative to ‖ ‖.

The condition number cond(A) measures the sensitivity of the linear system Ax = b to
variations in the data b and A; a feature referred to as the condition of the system. Thus,
when we says that a linear system is ill-conditioned , we mean that the condition number of
its matrix is large. We can sharpen the preceding analysis as follows:

Proposition 7.12. Let A be an invertible matrix and let x and x + δx be the solutions of
the linear systems

Ax = b

A(x+ δx) = b+ δb.

If b 6= 0, then the inequality
‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖

holds and is the best possible. This means that for a given matrix A, there exist some vectors
b 6= 0 and δb 6= 0 for which equality holds.

Proof. We already proved the inequality. Now, because ‖ ‖ is a subordinate matrix norm,
there exist some vectors x 6= 0 and δb 6= 0 for which∥∥A−1δb

∥∥ =
∥∥A−1

∥∥ ‖δb‖ and ‖Ax‖ = ‖A‖ ‖x‖ .

Proposition 7.13. Let A be an invertible matrix and let x and x + ∆x be the solutions of
the two systems

Ax = b

(A+ ∆A)(x+ ∆x) = b.

If b 6= 0, then the inequality

‖∆x‖
‖x+ ∆x‖ ≤ cond(A)

‖∆A‖
‖A‖

holds and is the best possible. This means that given a matrix A, there exist a vector b 6= 0
and a matrix ∆A 6= 0 for which equality holds. Furthermore, if ‖∆A‖ is small enough (for
instance, if ‖∆A‖ < 1/ ‖A−1‖), we have

‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖ (1 +O(‖∆A‖));

in fact, we have
‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖

(
1

1− ‖A−1‖ ‖∆A‖

)
.
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Proof. The first inequality has already been proved. To show that equality can be achieved,
let w be any vector such that w 6= 0 and∥∥A−1w

∥∥ =
∥∥A−1

∥∥ ‖w‖ ,
and let β 6= 0 be any real number. Now, the vectors

∆x = −βA−1w

x+ ∆x = w

b = (A+ βI)w

and the matrix
∆A = βI

sastisfy the equations

Ax = b

(A+ ∆A)(x+ ∆x) = b

‖∆x‖ = |β|
∥∥A−1w

∥∥ = ‖∆A‖
∥∥A−1

∥∥ ‖x+ ∆x‖ .

Finally, we can pick β so that −β is not equal to any of the eigenvalues of A, so that
A+ ∆A = A+ βI is invertible and b is is nonzero.

If ‖∆A‖ < 1/ ‖A−1‖, then ∥∥A−1∆A
∥∥ ≤ ∥∥A−1

∥∥ ‖∆A‖ < 1,

so by Proposition 7.10, the matrix I + A−1∆A is invertible and∥∥(I + A−1∆A)−1
∥∥ ≤ 1

1− ‖A−1∆A‖ ≤
1

1− ‖A−1‖ ‖∆A‖ .

Recall that we proved earlier that

∆x = −A−1∆A(x+ ∆x),

and by adding x to both sides and moving the right-hand side to the left-hand side yields

(I + A−1∆A)(x+ ∆x) = x,

and thus
x+ ∆x = (I + A−1∆A)−1x,

which yields

∆x = ((I + A−1∆A)−1 − I)x = (I + A−1∆A)−1(I − (I + A−1∆A))x

= −(I + A−1∆A)−1A−1(∆A)x.
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From this and ∥∥(I + A−1∆A)−1
∥∥ ≤ 1

1− ‖A−1‖ ‖∆A‖ ,

we get

‖∆x‖ ≤ ‖A−1‖ ‖∆A‖
1− ‖A−1‖ ‖∆A‖ ‖x‖ ,

which can be written as

‖∆x‖
‖x‖ ≤ cond(A)

‖∆A‖
‖A‖

(
1

1− ‖A−1‖ ‖∆A‖

)
,

which is the kind of inequality that we were seeking.

Remark: If A and b are perturbed simultaneously, so that we get the “perturbed” system

(A+ ∆A)(x+ δx) = b+ δb,

it can be shown that if ‖∆A‖ < 1/ ‖A−1‖ (and b 6= 0), then

‖∆x‖
‖x‖ ≤

cond(A)

1− ‖A−1‖ ‖∆A‖

(‖∆A‖
‖A‖ +

‖δb‖
‖b‖

)
;

see Demmel [33], Section 2.2 and Horn and Johnson [56], Section 5.8.

We now list some properties of condition numbers and figure out what cond(A) is in the
case of the spectral norm (the matrix norm induced by ‖ ‖2). First, we need to introduce a
very important factorization of matrices, the singular value decomposition, for short, SVD .

It can be shown that given any n×n matrix A ∈ Mn(C), there exist two unitary matrices
U and V , and a real diagonal matrix Σ = diag(σ1, . . . , σn), with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,
such that

A = V ΣU∗.

The nonnegative numbers σ1, . . . , σn are called the singular values of A.

If A is a real matrix, the matrices U and V are orthogonal matrices. The factorization
A = V ΣU∗ implies that

A∗A = UΣ2U∗ and AA∗ = V Σ2V ∗,

which shows that σ2
1, . . . , σ

2
n are the eigenvalues of both A∗A and AA∗, that the columns

of U are corresponding eivenvectors for A∗A, and that the columns of V are correspond-
ing eivenvectors for AA∗. Since σ2

1 is the largest eigenvalue of A∗A (and AA∗), note that√
ρ(A∗A) =

√
ρ(AA∗) = σ1; that is, the spectral norm ‖A‖2 of a matrix A is equal to the
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largest singular value of A. Equivalently, the spectral norm ‖A‖2 of a matrix A is equal to
the `∞-norm of its vector of singular values,

‖A‖2 = max
1≤i≤n

σi = ‖(σ1, . . . , σn)‖∞ .

Since the Frobenius norm of a matrix A is defined by ‖A‖F =
√

tr(A∗A) and since

tr(A∗A) = σ2
1 + · · ·+ σ2

n

where σ2
1, . . . , σ

2
n are the eigenvalues of A∗A, we see that

‖A‖F = (σ2
1 + · · ·+ σ2

n)1/2 = ‖(σ1, . . . , σn)‖2 .

This shows that the Frobenius norm of a matrix is given by the `2-norm of its vector of
singular values .

In the case of a normal matrix if λ1, . . . , λn are the (complex) eigenvalues of A, then

σi = |λi|, 1 ≤ i ≤ n.

Proposition 7.14. For every invertible matrix A ∈ Mn(C), the following properties hold:

(1)

cond(A) ≥ 1,

cond(A) = cond(A−1)

cond(αA) = cond(A) for all α ∈ C− {0}.

(2) If cond2(A) denotes the condition number of A with respect to the spectral norm, then

cond2(A) =
σ1

σn
,

where σ1 ≥ · · · ≥ σn are the singular values of A.

(3) If the matrix A is normal, then

cond2(A) =
|λ1|
|λn|

,

where λ1, . . . , λn are the eigenvalues of A sorted so that |λ1| ≥ · · · ≥ |λn|.

(4) If A is a unitary or an orthogonal matrix, then

cond2(A) = 1.
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(5) The condition number cond2(A) is invariant under unitary transformations, which
means that

cond2(A) = cond2(UA) = cond2(AV ),

for all unitary matrices U and V .

Proof. The properties in (1) are immediate consequences of the properties of subordinate
matrix norms. In particular, AA−1 = I implies

1 = ‖I‖ ≤ ‖A‖
∥∥A−1

∥∥ = cond(A).

(2) We showed earlier that ‖A‖2
2 = ρ(A∗A), which is the square of the modulus of the largest

eigenvalue of A∗A. Since we just saw that the eigenvalues of A∗A are σ2
1 ≥ · · · ≥ σ2

n, where
σ1, . . . , σn are the singular values of A, we have

‖A‖2 = σ1.

Now, if A is invertible, then σ1 ≥ · · · ≥ σn > 0, and it is easy to show that the eigenvalues
of (A∗A)−1 are σ−2

n ≥ · · · ≥ σ−2
1 , which shows that∥∥A−1

∥∥
2

= σ−1
n ,

and thus
cond2(A) =

σ1

σn
.

(3) This follows from the fact that ‖A‖2 = ρ(A) for a normal matrix.

(4) If A is a unitary matrix, then A∗A = AA∗ = I, so ρ(A∗A) = 1, and ‖A‖2 =√
ρ(A∗A) = 1. We also have ‖A−1‖2 = ‖A∗‖2 =

√
ρ(AA∗) = 1, and thus cond(A) = 1.

(5) This follows immediately from the unitary invariance of the spectral norm.

Proposition 7.14 (4) shows that unitary and orthogonal transformations are very well-
conditioned, and part (5) shows that unitary transformations preserve the condition number.

In order to compute cond2(A), we need to compute the top and bottom singular values
of A, which may be hard. The inequality

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ,

may be useful in getting an approximation of cond2(A) = ‖A‖2 ‖A−1‖2, if A−1 can be
determined.

Remark: There is an interesting geometric characterization of cond2(A). If θ(A) denotes
the least angle between the vectors Au and Av as u and v range over all pairs of orthonormal
vectors, then it can be shown that

cond2(A) = cot(θ(A)/2)).
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Thus, if A is nearly singular, then there will be some orthonormal pair u, v such that Au
and Av are nearly parallel; the angle θ(A) will the be small and cot(θ(A)/2)) will be large.
For more details, see Horn and Johnson [56] (Section 5.8 and Section 7.4).

It should be noted that in general (if A is not a normal matrix) a matrix could have
a very large condition number even if all its eigenvalues are identical! For example, if we
consider the n× n matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


,

it turns out that cond2(A) ≥ 2n−1.

A classical example of matrix with a very large condition number is the Hilbert matrix
H(n), the n× n matrix with

H
(n)
ij =

(
1

i+ j − 1

)
.

For example, when n = 5,

H(5) =



1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

 .

It can be shown that
cond2(H(5)) ≈ 4.77× 105.

Hilbert introduced these matrices in 1894 while studying a problem in approximation
theory. The Hilbert matrix H(n) is symmetric positive definite. A closed-form formula can
be given for its determinant (it is a special form of the so-called Cauchy determinant). The
inverse of H(n) can also be computed explicitly! It can be shown that

cond2(H(n)) = O((1 +
√

2)4n/
√
n).

Going back to our matrix

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 ,
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which is a symmetric, positive, definite, matrix, it can be shown that its eigenvalues, which
in this case are also its singular values because A is SPD, are

λ1 ≈ 30.2887 > λ2 ≈ 3.858 > λ3 ≈ 0.8431 > λ4 ≈ 0.01015,

so that

cond2(A) =
λ1

λ4

≈ 2984.

The reader should check that for the perturbation of the right-hand side b used earlier, the
relative errors ‖δx‖ /‖x‖ and ‖δx‖ /‖x‖ satisfy the inequality

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖

and comes close to equality.

7.4 An Application of Norms: Solving Inconsistent

Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises in practice. This
is a system where b does not belong to the column space of A, usually with more equations
than variables. Thus, such a system has no solution. Yet, we would still like to “solve” such
a system, at least approximately.

Such systems often arise when trying to fit some data. For example, we may have a set
of 3D data points

{p1, . . . , pn},
and we have reason to believe that these points are nearly coplanar. We would like to find
a plane that best fits our data points. Recall that the equation of a plane is

αx+ βy + γz + δ = 0,

with (α, β, γ) 6= (0, 0, 0). Thus, every plane is either not parallel to the x-axis (α 6= 0) or not
parallel to the y-axis (β 6= 0) or not parallel to the z-axis (γ 6= 0).

Say we have reasons to believe that the plane we are looking for is not parallel to the
z-axis. If we are wrong, in the least squares solution, one of the coefficients, α, β, will be
very large. If γ 6= 0, then we may assume that our plane is given by an equation of the form

z = ax+ by + d,

and we would like this equation to be satisfied for all the pi’s, which leads to a system of n
equations in 3 unknowns a, b, d, with pi = (xi, yi, zi);

ax1 + by1 + d = z1

...
...

axn + byn + d = zn.
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However, if n is larger than 3, such a system generally has no solution. Since the above
system can’t be solved exactly, we can try to find a solution (a, b, d) that minimizes the
least-squares error

n∑
i=1

(axi + byi + d− zi)2.

This is what Legendre and Gauss figured out in the early 1800’s!

In general, given a linear system

Ax = b,

we solve the least squares problem: minimize ‖Ax− b‖2
2.

Fortunately, every n×m-matrix A can be written as

A = V DU>

where U and V are orthogonal and D is a rectangular diagonal matrix with non-negative
entries (singular value decomposition, or SVD); see Chapter 16.

The SVD can be used to solve an inconsistent system. It is shown in Chapter 17 that
there is a vector x of smallest norm minimizing ‖Ax− b‖2. It is given by the (Penrose)
pseudo-inverse of A (itself given by the SVD).

It has been observed that solving in the least-squares sense may give too much weight to
“outliers,” that is, points clearly outside the best-fit plane. In this case, it is preferable to
minimize (the `1-norm)

n∑
i=1

|axi + byi + d− zi|.

This does not appear to be a linear problem, but we can use a trick to convert this
minimization problem into a linear program (which means a problem involving linear con-
straints).

Note that |x| = max{x,−x}. So, by introducing new variables e1, . . . , en, our minimiza-
tion problem is equivalent to the linear program (LP):

minimize e1 + · · ·+ en

subject to axi + byi + d− zi ≤ ei

−(axi + byi + d− zi) ≤ ei

1 ≤ i ≤ n.

Observe that the constraints are equivalent to

ei ≥ |axi + byi + d− zi|, 1 ≤ i ≤ n.
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For an optimal solution, we must have equality, since otherwise we could decrease some ei
and get an even better solution. Of course, we are no longer dealing with “pure” linear
algebra, since our constraints are inequalities.

We prefer not getting into linear programming right now, but the above example provides
a good reason to learn more about linear programming!

7.5 Summary

The main concepts and results of this chapter are listed below:

• Norms and normed vector spaces .

• The triangle inequality .

• The Euclidean norm; the `p-norms .

• Hölder’s inequality ; the Cauchy–Schwarz inequality ; Minkowski’s inequality .

• Hermitian inner product and Euclidean inner product .

• Equivalent norms.

• All norms on a finite-dimensional vector space are equivalent (Theorem 7.4).

• Matrix norms .

• Hermitian, symmetric and normal matrices. Orthogonal and unitary matrices.

• The trace of a matrix.

• Eigenvalues and eigenvectors of a matrix.

• The characteristic polynomial of a matrix.

• The spectral radius ρ(A) of a matrix A.

• The Frobenius norm.

• The Frobenius norm is a unitarily invariant matrix norm.

• Bounded linear maps.

• Subordinate matrix norms .

• Characterization of the subordinate matrix norms for the vector norms ‖ ‖1 , ‖ ‖2, and
‖ ‖∞.
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• The spectral norm.

• For every matrix A ∈ Mn(C) and for every ε > 0, there is some subordinate matrix
norm ‖ ‖ such that ‖A‖ ≤ ρ(A) + ε.

• Condition numbers of matrices.

• Perturbation analysis of linear systems.

• The singular value decomposition (SVD).

• Properties of conditions numbers. Characterization of cond2(A) in terms of the largest
and smallest singular values of A.

• The Hilbert matrix : a very badly conditioned matrix.

• Solving inconsistent linear systems by the method of least-squares ; linear programming .
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Chapter 8

Iterative Methods for Solving Linear
Systems

8.1 Convergence of Sequences of Vectors and Matrices

In Chapter 6 we have discussed some of the main methods for solving systems of linear
equations. These methods are direct methods , in the sense that they yield exact solutions
(assuming infinite precision!).

Another class of methods for solving linear systems consists in approximating solutions
using iterative methods . The basic idea is this: Given a linear system Ax = b (with A a
square invertible matrix), find another matrix B and a vector c, such that

1. The matrix I −B is invertible

2. The unique solution x̃ of the system Ax = b is identical to the unique solution ũ of the
system

u = Bu+ c,

and then, starting from any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, k ∈ N.

Under certain conditions (to be clarified soon), the sequence (uk) converges to a limit ũ
which is the unique solution of u = Bu+ c, and thus of Ax = b.

Consequently, it is important to find conditions that ensure the convergence of the above
sequences and to have tools to compare the “rate” of convergence of these sequences. Thus,
we begin with some general results about the convergence of sequences of vectors and ma-
trices.

Let (E, ‖ ‖) be a normed vector space. Recall that a sequence (uk) of vectors uk ∈ E
converges to a limit u ∈ E, if for every ε > 0, there some natural number N such that

‖uk − u‖ ≤ ε, for all k ≥ N.

251
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We write
u = lim

k 7→∞
uk.

If E is a finite-dimensional vector space and dim(E) = n, we know from Theorem 7.4 that
any two norms are equivalent, and if we choose the norm ‖ ‖∞, we see that the convergence
of the sequence of vectors uk is equivalent to the convergence of the n sequences of scalars
formed by the components of these vectors (over any basis). The same property applies to
the finite-dimensional vector space Mm,n(K) of m × n matrices (with K = R or K = C),

which means that the convergence of a sequence of matrices Ak = (a
(k)
ij ) is equivalent to the

convergence of the m× n sequences of scalars (a
(k)
ij ), with i, j fixed (1 ≤ i ≤ m, 1 ≤ j ≤ n).

The first theorem below gives a necessary and sufficient condition for the sequence (Bk)
of powers of a matrix B to converge to the zero matrix. Recall that the spectral radius ρ(B)
of a matrix B is the maximum of the moduli |λi| of the eigenvalues of B.

Theorem 8.1. For any square matrix B, the following conditions are equivalent:

(1) limk 7→∞Bk = 0,

(2) limk 7→∞Bkv = 0, for all vectors v,

(3) ρ(B) < 1,

(4) ‖B‖ < 1, for some subordinate matrix norm ‖ ‖.

Proof. Assume (1) and let ‖ ‖ be a vector norm on E and ‖ ‖ be the corresponding matrix
norm. For every vector v ∈ E, because ‖ ‖ is a matrix norm, we have

‖Bkv‖ ≤ ‖Bk‖‖v‖,

and since limk 7→∞Bk = 0 means that limk 7→∞ ‖Bk‖ = 0, we conclude that limk 7→∞ ‖Bkv‖ = 0,
that is, limk 7→∞Bkv = 0. This proves that (1) implies (2).

Assume (2). If We had ρ(B) ≥ 1, then there would be some eigenvector u ( 6= 0) and
some eigenvalue λ such that

Bu = λu, |λ| = ρ(B) ≥ 1,

but then the sequence (Bku) would not converge to 0, because Bku = λku and |λk| = |λ|k ≥
1. It follows that (2) implies (3).

Assume that (3) holds, that is, ρ(B) < 1. By Proposition 7.11, we can find ε > 0 small
enough that ρ(B) + ε < 1, and a subordinate matrix norm ‖ ‖ such that

‖B‖ ≤ ρ(B) + ε,

which is (4).
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Finally, assume (4). Because ‖ ‖ is a matrix norm,

‖Bk‖ ≤ ‖B‖k,

and since ‖B‖ < 1, we deduce that (1) holds.

The following proposition is needed to study the rate of convergence of iterative methods.

Proposition 8.2. For every square matrix B and every matrix norm ‖ ‖, we have

lim
k 7→∞
‖Bk‖1/k = ρ(B).

Proof. We know from Proposition 7.5 that ρ(B) ≤ ‖B‖, and since ρ(B) = (ρ(Bk))1/k, we
deduce that

ρ(B) ≤ ‖Bk‖1/k for all k ≥ 1,

and so
ρ(B) ≤ lim

k 7→∞
‖Bk‖1/k.

Now, let us prove that for every ε > 0, there is some integer N(ε) such that

‖Bk‖1/k ≤ ρ(B) + ε for all k ≥ N(ε),

which proves that
lim
k 7→∞
‖Bk‖1/k ≤ ρ(B),

and our proposition.

For any given ε > 0, let Bε be the matrix

Bε =
B

ρ(B) + ε
.

Since ‖Bε‖ < 1, Theorem 8.1 implies that limk 7→∞Bk
ε = 0. Consequently, there is some

integer N(ε) such that for all k ≥ N(ε), we have

‖Bk‖ =
‖Bk‖

(ρ(B) + ε)k
≤ 1,

which implies that
‖Bk‖1/k ≤ ρ(B) + ε,

as claimed.

We now apply the above results to the convergence of iterative methods.
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8.2 Convergence of Iterative Methods

Recall that iterative methods for solving a linear system Ax = b (with A invertible) consists
in finding some matrix B and some vector c, such that I − B is invertible, and the unique
solution x̃ of Ax = b is equal to the unique solution ũ of u = Bu + c. Then, starting from
any vector u0, compute the sequence (uk) given by

uk+1 = Buk + c, k ∈ N,

and say that the iterative method is convergent iff

lim
k 7→∞

uk = ũ,

for every initial vector u0.

Here is a fundamental criterion for the convergence of any iterative methods based on a
matrix B, called the matrix of the iterative method .

Theorem 8.3. Given a system u = Bu+ c as above, where I−B is invertible, the following
statements are equivalent:

(1) The iterative method is convergent.

(2) ρ(B) < 1.

(3) ‖B‖ < 1, for some subordinate matrix norm ‖ ‖.
Proof. Define the vector ek (error vector) by

ek = uk − ũ,
where ũ is the unique solution of the system u = Bu + c. Clearly, the iterative method is
convergent iff

lim
k 7→∞

ek = 0.

We claim that
ek = Bke0, k ≥ 0,

where e0 = u0 − ũ.

This is proved by induction on k. The base case k = 0 is trivial. By the induction
hypothesis, ek = Bke0, and since uk+1 = Buk + c, we get

uk+1 − ũ = Buk + c− ũ,
and because ũ = Bũ+ c and ek = Bke0 (by the induction hypothesis), we obtain

uk+1 − ũ = Buk −Bũ = B(uk − ũ) = Bek = BBke0 = Bk+1e0,

proving the induction step. Thus, the iterative method converges iff

lim
k 7→∞

Bke0 = 0.

Consequently, our theorem follows by Theorem 8.1.
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The next proposition is needed to compare the rate of convergence of iterative methods.
It shows that asymptotically, the error vector ek = Bke0 behaves at worst like (ρ(B))k.

Proposition 8.4. Let ‖‖ be any vector norm, let B be a matrix such that I−B is invertible,
and let ũ be the unique solution of u = Bu+ c.

(1) If (uk) is any sequence defined iteratively by

uk+1 = Buk + c, k ∈ N,

then

lim
k 7→∞

[
sup

‖u0−ũ‖=1

‖uk − ũ‖1/k

]
= ρ(B).

(2) Let B1 and B2 be two matrices such that I − B1 and I − B2 are invertibe, assume
that both u = B1u+ c1 and u = B2u+ c2 have the same unique solution ũ, and consider any
two sequences (uk) and (vk) defined inductively by

uk+1 = B1uk + c1

vk+1 = B2vk + c2,

with u0 = v0. If ρ(B1) < ρ(B2), then for any ε > 0, there is some integer N(ε), such that
for all k ≥ N(ε), we have

sup
‖u0−ũ‖=1

[‖vk − ũ‖
‖uk − ũ‖

]1/k

≥ ρ(B2)

ρ(B1) + ε
.

Proof. Let ‖ ‖ be the subordinate matrix norm. Recall that

uk − ũ = Bke0,

with e0 = u0 − ũ. For every k ∈ N, we have

(ρ(B1))k = ρ(Bk
1 ) ≤ ‖Bk

1‖ = sup
‖e0‖=1

‖Bk
1e0‖,

which implies
ρ(B1) = sup

‖e0‖=1

‖Bk
1e0‖1/k = ‖Bk

1‖1/k,

and statement (1) follows from Proposition 8.2.

Because u0 = v0, we have

uk − ũ = Bk
1e0

vk − ũ = Bk
2e0,
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with e0 = u0 − ũ = v0 − ũ. Again, by Proposition 8.2, for every ε > 0, there is some natural
number N(ε) such that if k ≥ N(ε), then

sup
‖e0‖=1

‖Bk
1e0‖1/k ≤ ρ(B1) + ε.

Furthermore, for all k ≥ N(ε), there exists a vector e0 = e0(k) such that

‖e0‖ = 1 and ‖Bk
2e0‖1/k = ‖Bk

2‖1/k ≥ ρ(B2),

which implies statement (2).

In light of the above, we see that when we investigate new iterative methods, we have to
deal with the following two problems:

1. Given an iterative method with matrix B, determine whether the method is conver-
gent. This involves determining whether ρ(B) < 1, or equivalently whether there is a
subordinate matrix norm such that ‖B‖ < 1. By Proposition 7.10, this implies that
I −B is invertible (since ‖ −B‖ = ‖B‖, Proposition 7.10 applies).

2. Given two convergent iterative methods, compare them. The iterative method which
is faster is that whose matrix has the smaller spectral radius.

We now discuss three iterative methods for solving linear systems:

1. Jacobi’s method

2. Gauss-Seidel’s method

3. The relaxation method.

8.3 Description of the Methods of Jacobi,

Gauss-Seidel, and Relaxation

The methods described in this section are instances of the following scheme: Given a linear
system Ax = b, with A invertible, suppose we can write A in the form

A = M −N,

with M invertible, and “easy to invert,” which means that M is close to being a diagonal or
a triangular matrix (perhaps by blocks). Then, Au = b is equivalent to

Mu = Nu+ b,

that is,
u = M−1Nu+M−1b.
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Therefore, we are in the situation described in the previous sections with B = M−1N and
c = M−1b. In fact, since A = M −N , we have

B = M−1N = M−1(M − A) = I −M−1A,

which shows that I − B = M−1A is invertible. The iterative method associated with the
matrix B = M−1N is given by

uk+1 = M−1Nuk +M−1b, k ≥ 0,

starting from any arbitrary vector u0. From a practical point of view, we do not invert M ,
and instead we solve iteratively the systems

Muk+1 = Nuk + b, k ≥ 0.

Various methods correspond to various ways of choosing M and N from A. The first two
methods choose M and N as disjoint submatrices of A, but the relaxation method allows
some overlapping of M and N .

To describe the various choices of M and N , it is convenient to write A in terms of three
submatrices D,E, F , as

A = D − E − F,
where the only nonzero entries in D are the diagonal entries in A, the only nonzero entries
in E are entries in A below the the diagonal, and the only nonzero entries in F are entries
in A above the diagonal. More explicitly, if

A =



a11 a12 a13 · · · a1n−1 a1n

a21 a22 a23 · · · a2n−1 a2n

a31 a32 a33 · · · a3n−1 a3n

...
...

...
. . .

...
...

an−1 1 an−1 2 an−1 3 · · · an−1n−1 an−1n

an 1 an 2 an 3 · · · ann−1 ann


,

then

D =



a11 0 0 · · · 0 0

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1n−1 0

0 0 0 · · · 0 ann


,
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−E =



0 0 0 · · · 0 0

a21 0 0 · · · 0 0

a31 a32 0 · · · 0 0

...
...

. . . . . .
...

...

an−1 1 an−1 2 an−1 3
. . . 0 0

an 1 an 2 an 3 · · · ann−1 0


, −F =



0 a12 a13 · · · a1n−1 a1n

0 0 a23 · · · a2n−1 a2n

0 0 0
. . . a3n−1 a3n

...
...

...
. . . . . .

...

0 0 0 · · · 0 an−1n

0 0 0 · · · 0 0


.

In Jacobi’s method , we assume that all diagonal entries in A are nonzero, and we pick

M = D

N = E + F,

so that
B = M−1N = D−1(E + F ) = I −D−1A.

As a matter of notation, we let

J = I −D−1A = D−1(E + F ),

which is called Jacobi’s matrix . The corresponding method, Jacobi’s iterative method , com-
putes the sequence (uk) using the recurrence

uk+1 = D−1(E + F )uk +D−1b, k ≥ 0.

In practice, we iteratively solve the systems

Duk+1 = (E + F )uk + b, k ≥ 0.

If we write uk = (uk1, . . . , u
k
n), we solve iteratively the following system:

a11u
k+1
1 = −a12u

k
2 −a13u

k
3 · · · −a1nu

k
n + b1

a22u
k+1
2 = −a21u

k
1 −a23u

k
3 · · · −a2nu

k
n + b2

...
...

...
an−1n−1u

k+1
n−1 = −an−1 1u

k
1 · · · −an−1n−2u

k
n−2 −an−1nu

k
n + bn−1

annu
k+1
n = −an 1u

k
1 −an 2u

k
2 · · · −ann−1u

k
n−1 + bn

.

Observe that we can try to “speed up” the method by using the new value uk+1
1 instead

of uk1 in solving for uk+2
2 using the second equations, and more generally, use uk+1

1 , . . . , uk+1
i−1

instead of uk1, . . . , u
k
i−1 in solving for uk+1

i in the ith equation. This observation leads to the
system

a11u
k+1
1 = −a12u

k
2 −a13u

k
3 · · · −a1nu

k
n + b1

a22u
k+1
2 = −a21u

k+1
1 −a23u

k
3 · · · −a2nu

k
n + b2

...
...

...
an−1n−1u

k+1
n−1 = −an−1 1u

k+1
1 · · · −an−1n−2u

k+1
n−2 −an−1nu

k
n + bn−1

annu
k+1
n = −an 1u

k+1
1 −an 2u

k+1
2 · · · −ann−1u

k+1
n−1 + bn,
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which, in matrix form, is written

Duk+1 = Euk+1 + Fuk + b.

Because D is invertible and E is lower triangular, the matrix D − E is invertible, so the
above equation is equivalent to

uk+1 = (D − E)−1Fuk + (D − E)−1b, k ≥ 0.

The above corresponds to choosing M and N to be

M = D − E
N = F,

and the matrix B is given by

B = M−1N = (D − E)−1F.

Since M = D − E is invertible, we know that I −B = M−1A is also invertible.

The method that we just described is the iterative method of Gauss-Seidel , and the
matrix B is called the matrix of Gauss-Seidel and denoted by L1, with

L1 = (D − E)−1F.

One of the advantages of the method of Gauss-Seidel is that is requires only half of the
memory used by Jacobi’s method, since we only need

uk+1
1 , . . . , uk+1

i−1 , u
k
i+1, . . . , u

k
n

to compute uk+1
i . We also show that in certain important cases (for example, if A is a

tridiagonal matrix), the method of Gauss-Seidel converges faster than Jacobi’s method (in
this case, they both converge or diverge simultaneously).

The new ingredient in the relaxation method is to incorporate part of the matrix D into
N : we define M and N by

M =
D

ω
− E

N =
1− ω
ω

D + F,

where ω 6= 0 is a real parameter to be suitably chosen. Actually, we show in Section 8.4 that
for the relaxation method to converge, we must have ω ∈ (0, 2). Note that the case ω = 1
corresponds to the method of Gauss-Seidel.
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If we assume that all diagonal entries of D are nonzero, the matrix M is invertible. The
matrix B is denoted by Lω and called the matrix of relaxation, with

Lω =

(
D

ω
− E

)−1(
1− ω
ω

D + F

)
= (D − ωE)−1((1− ω)D + ωF ).

The number ω is called the parameter of relaxation. When ω > 1, the relaxation method is
known as successive overrelaxation, abbreviated as SOR.

At first glance, the relaxation matrix Lω seems at lot more complicated than the Gauss-
Seidel matrix L1, but the iterative system associated with the relaxation method is very
similar to the method of Gauss-Seidel, and is quite simple. Indeed, the system associated
with the relaxation method is given by(

D

ω
− E

)
uk+1 =

(
1− ω
ω

D + F

)
uk + b,

which is equivalent to

(D − ωE)uk+1 = ((1− ω)D + ωF )uk + ωb,

and can be written

Duk+1 = Duk − ω(Duk − Euk+1 − Fuk − b).

Explicitly, this is the system

a11u
k+1
1 = a11u

k
1 − ω(a11u

k
1 + a12u

k
2 + a13u

k
3 + · · ·+ a1n−2u

k
n−2 + a1n−1u

k
n−1 + a1nu

k
n − b1)

a22u
k+1
2 = a22u

k
2 − ω(a21u

k+1
1 + a22u

k
2 + a23u

k
3 + · · ·+ a2n−2u

k
n−2 + a2n−1u

k
n−1 + a2nu

k
n − b2)

...

annu
k+1
n = annu

k
n − ω(an 1u

k+1
1 + an 2u

k+1
2 + · · ·+ ann−2u

k+1
n−2 + ann−1u

k+1
n−1 + annu

k
n − bn).

What remains to be done is to find conditions that ensure the convergence of the relax-
ation method (and the Gauss-Seidel method), that is:

1. Find conditions on ω, namely some interval I ⊆ R so that ω ∈ I implies ρ(Lω) < 1;
we will prove that ω ∈ (0, 2) is a necessary condition.

2. Find if there exist some optimal value ω0 of ω ∈ I, so that

ρ(Lω0) = inf
ω∈I

ρ(Lω).

We will give partial answers to the above questions in the next section.

It is also possible to extend the methods of this section by using block decompositions of
the form A = D − E − F , where D,E, and F consist of blocks, and with D an invertible
block-diagonal matrix.
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8.4 Convergence of the Methods of Jacobi,

Gauss-Seidel, and Relaxation

We begin with a general criterion for the convergence of an iterative method associated with
a (complex) Hermitian, positive, definite matrix, A = M −N . Next, we apply this result to
the relaxation method.

Proposition 8.5. Let A be any Hermitian, positive, definite matrix, written as

A = M −N,

with M invertible. Then, M∗ +N is Hermitian, and if it is positive, definite, then

ρ(M−1N) < 1,

so that the iterative method converges.

Proof. Since M = A+N and A is Hermitian, A∗ = A, so we get

M∗ +N = A∗ +N∗ +N = A+N +N∗ = M +N∗ = (M∗ +N)∗,

which shows that M∗ +N is indeed Hermitian.

Because A is symmetric, positive, definite, the function

v 7→ (v∗Av)1/2

from Cn to R is a vector norm ‖ ‖, and let ‖ ‖ also denote its subordinate matrix norm. We
prove that

‖M−1N‖ < 1,

which, by Theorem 8.1 proves that ρ(M−1N) < 1. By definition

‖M−1N‖ = ‖I −M−1A‖ = sup
‖v‖=1

‖v −M−1Av‖,

which leads us to evaluate ‖v −M−1Av‖ when ‖v‖ = 1. If we write w = M−1Av, using the
facts that ‖v‖ = 1, v = A−1Mw, A∗ = A, and A = M −N , we have

‖v − w‖2 = (v − w)∗A(v − w)

= ‖v‖2 − v∗Aw − w∗Av + w∗Aw

= 1− w∗M∗w − w∗Mw + w∗Aw

= 1− w∗(M∗ +N)w.

Now, since we assumed that M∗ +N is positive definite, if w 6= 0, then w∗(M∗ +N)w > 0,
and we conclude that

if ‖v‖ = 1 then ‖v −M−1Av‖ < 1.
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Finally, the function

v 7→ ‖v −M−1Av‖
is continuous as a composition of continuous functions, therefore it achieves its maximum
on the compact subset {v ∈ Cn | ‖v‖ = 1}, which proves that

sup
‖v‖=1

‖v −M−1Av‖ < 1,

and completes the proof.

Now, as in the previous sections, we assume that A is written as A = D − E − F ,
with D invertible, possibly in block form. The next theorem provides a sufficient condition
(which turns out to be also necessary) for the relaxation method to converge (and thus, for
the method of Gauss-Seidel to converge). This theorem is known as the Ostrowski-Reich
theorem.

Theorem 8.6. If A = D − E − F is Hermitian, positive, definite, and if 0 < ω < 2, then
the relaxation method converges. This also holds for a block decomposition of A.

Proof. Recall that for the relaxation method, A = M −N with

M =
D

ω
− E

N =
1− ω
ω

D + F,

and because D∗ = D, E∗ = F (since A is Hermitian) and ω 6= 0 is real, we have

M∗ +N =
D∗

ω
− E∗ +

1− ω
ω

D + F =
2− ω
ω

D.

If D consists of the diagonal entries of A, then we know from Section 6.7 that these entries
are all positive, and since ω ∈ (0, 2), we see that the matrix ((2−ω)/ω)D is positive definite.
If D consists of diagonal blocks of A, because A is positive, definite, by choosing vectors z
obtained by picking a nonzero vector for each block of D and padding with zeros, we see
that each block of D is positive, definite, and thus D itself is positive definite. Therefore, in
all cases, M∗ +N is positive, definite, and we conclude by using Proposition 8.5.

Remark: What if we allow the parameter ω to be a nonzero complex number ω ∈ C? In
this case, we get

M∗ +N =
D∗

ω
− E∗ +

1− ω
ω

D + F =

(
1

ω
+

1

ω
− 1

)
D.
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But,
1

ω
+

1

ω
− 1 =

ω + ω − ωω
ωω

=
1− (ω − 1)(ω − 1)

|ω|2 =
1− |ω − 1|2
|ω|2 ,

so the relaxation method also converges for ω ∈ C, provided that

|ω − 1| < 1.

This condition reduces to 0 < ω < 2 if ω is real.

Unfortunately, Theorem 8.6 does not apply to Jacobi’s method, but in special cases,
Proposition 8.5 can be used to prove its convergence. On the positive side, if a matrix
is strictly column (or row) diagonally dominant, then it can be shown that the method of
Jacobi and the method of Gauss-Seidel both converge. The relaxation method also converges
if ω ∈ (0, 1], but this is not a very useful result because the speed-up of convergence usually
occurs for ω > 1.

We now prove that, without any assumption on A = D − E − F , other than the fact
that A and D are invertible, in order for the relaxation method to converge, we must have
ω ∈ (0, 2).

Proposition 8.7. Given any matrix A = D − E − F , with A and D invertible, for any
ω 6= 0, we have

ρ(Lω) ≥ |ω − 1|.
Therefore, the relaxation method (possibly by blocks) does not converge unless ω ∈ (0, 2). If
we allow ω to be complex, then we must have

|ω − 1| < 1

for the relaxation method to converge.

Proof. Observe that the product λ1 · · ·λn of the eigenvalues of Lω, which is equal to det(Lω),
is given by

λ1 · · ·λn = det(Lω) =

det

(
1− ω
ω

D + F

)
det

(
D

ω
− E

) = (1− ω)n.

It follows that
ρ(Lω) ≥ |λ1 · · ·λn|1/n = |ω − 1|.

The proof is the same if ω ∈ C.

We now consider the case where A is a tridiagonal matrix , possibly by blocks. In this
case, we obtain precise results about the spectral radius of J and Lω, and as a consequence,
about the convergence of these methods. We also obtain some information about the rate of
convergence of these methods. We begin with the case ω = 1, which is technically easier to
deal with. The following proposition gives us the precise relationship between the spectral
radii ρ(J) and ρ(L1) of the Jacobi matrix and the Gauss-Seidel matrix.
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Proposition 8.8. Let A be a tridiagonal matrix (possibly by blocks). If ρ(J) is the spectral
radius of the Jacobi matrix and ρ(L1) is the spectral radius of the Gauss-Seidel matrix, then
we have

ρ(L1) = (ρ(J))2.

Consequently, the method of Jacobi and the method of Gauss-Seidel both converge or both
diverge simultaneously (even when A is tridiagonal by blocks); when they converge, the method
of Gauss-Seidel converges faster than Jacobi’s method.

Proof. We begin with a preliminary result. Let A(µ) with a tridiagonal matrix by block of
the form

A(µ) =



A1 µ−1C1 0 0 · · · 0
µB1 A2 µ−1C2 0 · · · 0

0
. . . . . . . . . · · · ...

... · · · . . . . . . . . . 0
0 · · · 0 µBp−2 Ap−1 µ−1Cp−1

0 · · · · · · 0 µBp−1 Ap


,

then
det(A(µ)) = det(A(1)), µ 6= 0.

To prove this fact, form the block diagonal matrix

P (µ) = diag(µI1, µ
2I2, . . . , µ

pIp),

where Ij is the identity matrix of the same dimension as the block Aj. Then, it is easy to
see that

A(µ) = P (µ)A(1)P (µ)−1,

and thus,
det(A(µ)) = det(P (µ)A(1)P (µ)−1) = det(A(1)).

Since the Jacobi matrix is J = D−1(E + F ), the eigenvalues of J are the zeros of the
characteristic polynomial

pJ(λ) = det(λI −D−1(E + F )),

and thus, they are also the zeros of the polynomial

qJ(λ) = det(λD − E − F ) = det(D)pJ(λ).

Similarly, since the Gauss-Seidel matrix is L1 = (D−E)−1F , the zeros of the characteristic
polynomial

pL1(λ) = det(λI − (D − E)−1F )

are also the zeros of the polynomial

qL1(λ) = det(λD − λE − F ) = det(D − E)pL1(λ).
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Since A is tridiagonal (or tridiagonal by blocks), using our preliminary result with µ = λ 6= 0,
we get

qL1(λ
2) = det(λ2D − λ2E − F ) = det(λ2D − λE − λF ) = λnqJ(λ).

By continuity, the above equation also holds for λ = 0. But then, we deduce that:

1. For any β 6= 0, if β is an eigenvalue of L1, then β1/2 and −β1/2 are both eigenvalues of
J , where β1/2 is one of the complex square roots of β.

2. For any α 6= 0, if α and −α are both eigenvalues of J , then α2 is an eigenvalue of L1.

The above immediately implies that ρ(L1) = (ρ(J))2.

We now consider the more general situation where ω is any real in (0, 2).

Proposition 8.9. Let A be a tridiagonal matrix (possibly by blocks), and assume that the
eigenvalues of the Jacobi matrix are all real. If ω ∈ (0, 2), then the method of Jacobi and the
method of relaxation both converge or both diverge simultaneously (even when A is tridiagonal
by blocks). When they converge, the function ω 7→ ρ(Lω) (for ω ∈ (0, 2)) has a unique
minimum equal to ω0 − 1 for

ω0 =
2

1 +
√

1− (ρ(J))2
,

where 1 < ω0 < 2 if ρ(J) > 0. We also have ρ(L1) = (ρ(J))2, as before.

Proof. The proof is very technical and can be found in Serre [96] and Ciarlet [30]. As in the
proof of the previous proposition, we begin by showing that the eigenvalues of the matrix
Lω are the zeros of the polynomnial

qLω(λ) = det

(
λ+ ω − 1

ω
D − λE − F

)
= det

(
D

ω
− E

)
pLω(λ),

where pLω(λ) is the characteristic polynomial of Lω. Then, using the preliminary fact from
Proposition 8.8, it is easy to show that

qLω(λ2) = λnqJ

(
λ2 + ω − 1

λω

)
,

for all λ ∈ C, with λ 6= 0. This time, we cannot extend the above equation to λ = 0. This
leads us to consider the equation

λ2 + ω − 1

λω
= α,

which is equivalent to
λ2 − αωλ+ ω − 1 = 0,

for all λ 6= 0. Since λ 6= 0, the above equivalence does not hold for ω = 1, but this is not a
problem since the case ω = 1 has already been considered in the previous proposition. Then,
we can show the following:
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1. For any β 6= 0, if β is an eigenvalue of Lω, then

β + ω − 1

β1/2ω
, −β + ω − 1

β1/2ω

are eigenvalues of J .

2. For every α 6= 0, if α and −α are eigenvalues of J , then µ+(α, ω) and µ−(α, ω) are
eigenvalues of Lω, where µ+(α, ω) and µ−(α, ω) are the squares of the roots of the
equation

λ2 − αωλ+ ω − 1 = 0.

It follows that
ρ(Lω) = max

λ | pJ (λ)=0
{max(|µ+(α, ω)|, |µ−(α, ω)|)},

and since we are assuming that J has real roots, we are led to study the function

M(α, ω) = max{|µ+(α, ω)|, |µ−(α, ω)|},

where α ∈ R and ω ∈ (0, 2). Actually, because M(−α, ω) = M(α, ω), it is only necessary to
consider the case where α ≥ 0.

Note that for α 6= 0, the roots of the equation

λ2 − αωλ+ ω − 1 = 0.

are
αω ±

√
α2ω2 − 4ω + 4

2
.

In turn, this leads to consider the roots of the equation

ω2α2 − 4ω + 4 = 0,

which are
2(1±

√
1− α2)

α2
,

for α 6= 0. Since we have

2(1 +
√

1− α2)

α2
=

2(1 +
√

1− α2)(1−
√

1− α2)

α2(1−
√

1− α2)
=

2

1−
√

1− α2

and
2(1−

√
1− α2)

α2
=

2(1 +
√

1− α2)(1−
√

1− α2)

α2(1 +
√

1− α2)
=

2

1 +
√

1− α2
,

these roots are

ω0(α) =
2

1 +
√

1− α2
, ω1(α) =

2

1−
√

1− α2
.
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Observe that the expression for ω0(α) is exactly the expression in the statement of our
proposition! The rest of the proof consists in analyzing the variations of the function M(α, ω)
by considering various cases for α. In the end, we find that the minimum of ρ(Lω) is obtained
for ω0(ρ(J)). The details are tedious and we omit them. The reader will find complete proofs
in Serre [96] and Ciarlet [30].

Combining the results of Theorem 8.6 and Proposition 8.9, we obtain the following result
which gives precise information about the spectral radii of the matrices J , L1, and Lω.

Proposition 8.10. Let A be a tridiagonal matrix (possibly by blocks) which is Hermitian,
positive, definite. Then, the methods of Jacobi, Gauss-Seidel, and relaxation, all converge
for ω ∈ (0, 2). There is a unique optimal relaxation parameter

ω0 =
2

1 +
√

1− (ρ(J))2
,

such that
ρ(Lω0) = inf

0<ω<2
ρ(Lω) = ω0 − 1.

Furthermore, if ρ(J) > 0, then

ρ(Lω0) < ρ(L1) = (ρ(J))2 < ρ(J),

and if ρ(J) = 0, then ω0 = 1 and ρ(L1) = ρ(J) = 0.

Proof. In order to apply Proposition 8.9, we have to check that J = D−1(E + F ) has real
eigenvalues. However, if α is any eigenvalue of J and if u is any corresponding eigenvector,
then

D−1(E + F )u = αu

implies that
(E + F )u = αDu,

and since A = D − E − F , the above shows that (D − A)u = αDu, that is,

Au = (1− α)Du.

Consequently,
u∗Au = (1− α)u∗Du,

and since A and D are hermitian, positive, definite, we have u∗Au > 0 and u∗Du > 0 if
u 6= 0, which proves that α ∈ R. The rest follows from Theorem 8.6 and Proposition 8.9.

Remark: It is preferable to overestimate rather than underestimate the relaxation param-
eter when the optimum relaxation parameter is not known exactly.
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8.5 Summary

The main concepts and results of this chapter are listed below:

• Iterative methods. Splitting A as A = M −N .

• Convergence of a sequence of vectors or matrices .

• A criterion for the convergence of the sequence (Bk) of powers of a matrix B to zero
in terms of the spectral radius ρ(B).

• A characterization of the spectral radius ρ(B) as the limit of the sequence (‖Bk‖1/k).

• A criterion of the convergence of iterative methods.

• Asymptotic behavior of iterative methods.

• Splitting A as A = D−E−F , and the methods of Jacobi , Gauss-Seidel , and relaxation
(and SOR).

• The Jacobi matrix, J = D−1(E + F ).

• The Gauss-Seidel matrix , L2 = (D − E)−1F .

• The matrix of relaxation, Lω = (D − ωE)−1((1− ω)D + ωF ).

• Convergence of iterative methods: a general result when A = M − N is Hermitian,
positive, definite.

• A sufficient condition for the convergence of the methods of Jacobi, Gauss-Seidel, and
relaxation. The Ostrowski-Reich Theorem: A is symmetric, positive, definite, and
ω ∈ (0, 2).

• A necessary condition for the convergence of the methods of Jacobi , Gauss-Seidel, and
relaxation: ω ∈ (0, 2).

• The case of tridiagonal matrices (possibly by blocks). Simultaneous convergence or di-
vergence of Jacobi’s method and Gauss-Seidel’s method, and comparison of the spectral
radii of ρ(J) and ρ(L1): ρ(L1) = (ρ(J))2.

• The case of tridiagonal, Hermitian, positive, definite matrices (possibly by blocks).
The methods of Jacobi, Gauss-Seidel, and relaxation, all converge.

• In the above case, there is a unique optimal relaxation parameter for which ρ(Lω0) <
ρ(L1) = (ρ(J))2 < ρ(J) (if ρ(J) 6= 0).



Chapter 9

The Dual Space and Duality

9.1 The Dual Space E∗ and Linear Forms

In Section 2.8 we defined linear forms, the dual space E∗ = Hom(E,K) of a vector space E,
and showed the existence of dual bases for vector spaces of finite dimension.

In this chapter, we take a deeper look at the connection between a space E and its dual
space E∗. As we will see shortly, every linear map f : E → F gives rise to a linear map
f> : F ∗ → E∗, and it turns out that in a suitable basis, the matrix of f> is the transpose
of the matrix of f . Thus, the notion of dual space provides a conceptual explanation of the
phenomena associated with transposition.

But it does more, because it allows us to view a linear equation as an element of the
dual space E∗, and thus to view subspaces of E as solutions of sets of linear equations and
vice-versa. The relationship between subspaces and sets of linear forms is the essence of
duality , a term which is often used loosely, but can be made precise as a bijection between
the set of subspaces of a given vector space E and the set of subspaces of its dual E∗. In
this correspondence, a subspace V of E yields the subspace V 0 of E∗ consisting of all linear
forms that vanish on V (that is, have the value zero for all input in V ).

Consider the following set of two “linear equations” in R3,

x− y + z = 0

x− y − z = 0,

and let us find out what is their set V of common solutions (x, y, z) ∈ R3. By subtracting
the second equation from the first, we get 2z = 0, and by adding the two equations, we find
that 2(x− y) = 0, so the set V of solutions is given by

y = x

z = 0.

This is a one dimensional subspace of R3. Geometrically, this is the line of equation y = x
in the plane z = 0.

269
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Now, why did we say that the above equations are linear? This is because, as functions
of (x, y, z), both maps f1 : (x, y, z) 7→ x− y + z and f2 : (x, y, z) 7→ x− y− z are linear. The
set of all such linear functions from R3 to R is a vector space; we used this fact to form linear
combinations of the “equations” f1 and f2. Observe that the dimension of the subspace V
is 1. The ambient space has dimension n = 3 and there are two “independent” equations
f1, f2, so it appears that the dimension dim(V ) of the subspace V defined by m independent
equations is

dim(V ) = n−m,
which is indeed a general fact (proved in Theorem 9.1).

More generally, in Rn, a linear equation is determined by an n-tuple (a1, . . . , an) ∈ Rn,
and the solutions of this linear equation are given by the n-tuples (x1, . . . , xn) ∈ Rn such
that

a1x1 + · · ·+ anxn = 0;

these solutions constitute the kernel of the linear map (x1, . . . , xn) 7→ a1x1 + · · · + anxn.
The above considerations assume that we are working in the canonical basis (e1, . . . , en) of
Rn, but we can define “linear equations” independently of bases and in any dimension, by
viewing them as elements of the vector space Hom(E,K) of linear maps from E to the field
K.

Definition 9.1. Given a vector space E, the vector space Hom(E,K) of linear maps from E
to the field K is called the dual space (or dual) of E. The space Hom(E,K) is also denoted
by E∗, and the linear maps in E∗ are called the linear forms , or covectors . The dual space
E∗∗ of the space E∗ is called the bidual of E.

As a matter of notation, linear forms f : E → K will also be denoted by starred symbol,
such as u∗, x∗, etc.

Given a vector space E and any basis (ui)i∈I for E, we can associate to each ui a linear
form u∗i ∈ E∗, and the u∗i have some remarkable properties.

Definition 9.2. Given a vector space E and any basis (ui)i∈I for E, by Proposition 2.13,
for every i ∈ I, there is a unique linear form u∗i such that

u∗i (uj) =

{
1 if i = j
0 if i 6= j,

for every j ∈ I. The linear form u∗i is called the coordinate form of index i w.r.t. the basis
(ui)i∈I .

The reason for the terminology coordinate form was explained in Section 2.8.

We proved in Theorem 2.16 that if (u1, . . . , un) is a basis of E, then (u∗1, . . . , u
∗
n) is a basis

of E∗ called the dual basis .



9.1. THE DUAL SPACE E∗ AND LINEAR FORMS 271

If (u1, . . . , un) is a basis of Rn (more generally Kn), it is possible to find explicitly the
dual basis (u∗1, . . . , u

∗
n), where each u∗i is represented by a row vector. For example, consider

the columns of the Bézier matrix

B4 =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 .

Since the form u∗1 is defined by the conditions u∗1(u1) = 1, u∗1(u2) = 0, u∗1(u3) = 0, u∗1(u4) = 0,
it is represented by a row vector (λ1 λ2 λ3 λ4) such that

(
λ1 λ2 λ3 λ4

)
1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

 =
(
1 0 0 0

)
.

This implies that u∗1 is the first row of the inverse of B4. Since

B−1
4 =


1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

 ,

the linear forms (u∗1, u
∗
2, u
∗
3, u
∗
4) correspond to the rows of B−1

4 . In particular, u∗1 is represented
by (1 1 1 1).

The above method works for any n. Given any basis (u1, . . . , un) of Rn, if P is the n× n
matrix whose jth column is uj, then the dual form u∗i is given by the ith row of the matrix
P−1.

When E is of finite dimension n and (u1, . . . , un) is a basis of E, by Theorem 9.1 (1),
the family (u∗1, . . . , u

∗
n) is a basis of the dual space E∗. Let us see how the coordinates of a

linear form ϕ∗ ∈ E∗ over the dual basis (u∗1, . . . , u
∗
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and let P = (ai j) be the change of
basis matrix from (u1, . . . , un) to (v1, . . . , vn), so that

vj =
n∑
i=1

ai jui,

and let P−1 = (bi j) be the inverse of P , so that

ui =
n∑
j=1

bj ivj.
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Since u∗i (uj) = δi j and v∗i (vj) = δi j, we get

v∗j (ui) = v∗j (
n∑
k=1

bk ivk) = bj i,

and thus

v∗j =
n∑
i=1

bj iu
∗
i ,

and

u∗i =
n∑
j=1

ai jv
∗
j .

This means that the change of basis from the dual basis (u∗1, . . . , u
∗
n) to the dual basis

(v∗1, . . . , v
∗
n) is (P−1)>. Since

ϕ∗ =
n∑
i=1

ϕiu
∗
i =

n∑
i=1

ϕ′iv
∗
i ,

we get

ϕ′j =
n∑
i=1

ai jϕi,

so the new coordinates ϕ′j are expressed in terms of the old coordinates ϕi using the matrix
P>. If we use the row vectors (ϕ1, . . . , ϕn) and (ϕ′1, . . . , ϕ

′
n), we have

(ϕ′1, . . . , ϕ
′
n) = (ϕ1, . . . , ϕn)P.

Comparing with the change of basis

vj =
n∑
i=1

ai jui,

we note that this time, the coordinates (ϕi) of the linear form ϕ∗ change in the same direction
as the change of basis. For this reason, we say that the coordinates of linear forms are
covariant . By abuse of language, it is often said that linear forms are covariant , which
explains why the term covector is also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space E, then, as a linear map from
E to K, every linear form f ∈ E∗ is represented by a 1× n matrix, that is, by a row vector

(λ1 · · · λn),

with respect to the basis (e1, . . . , en) of E, and 1 of K, where f(ei) = λi. A vector u =∑n
i=1 uiei ∈ E is represented by a n× 1 matrix, that is, by a column vectoru1

...
un

 ,
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and the action of f on u, namely f(u), is represented by the matrix product

(
λ1 · · · λn

)u1
...
un

 = λ1u1 + · · ·+ λnun.

On the other hand, with respect to the dual basis (e∗1, . . . , e
∗
n) of E∗, the linear form f is

represented by the column vector λ1
...
λn

 .

Remark: In many texts using tensors, vectors are often indexed with lower indices. If so, it
is more convenient to write the coordinates of a vector x over the basis (u1, . . . , un) as (xi),
using an upper index, so that

x =
n∑
i=1

xiui,

and in a change of basis, we have

vj =
n∑
i=1

aijui

and

xi =
n∑
j=1

aijx
′j.

Dually, linear forms are indexed with upper indices. Then, it is more convenient to write the
coordinates of a covector ϕ∗ over the dual basis (u∗1, . . . , u∗n) as (ϕi), using a lower index,
so that

ϕ∗ =
n∑
i=1

ϕiu
∗i

and in a change of basis, we have

u∗i =
n∑
j=1

aijv
∗j

and

ϕ′j =
n∑
i=1

aijϕi.

With these conventions, the index of summation appears once in upper position and once in
lower position, and the summation sign can be safely omitted, a trick due to Einstein. For
example, we can write

ϕ′j = aijϕi
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as an abbreviation for

ϕ′j =
n∑
i=1

aijϕi.

For another example of the use of Einstein’s notation, if the vectors (v1, . . . , vn) are linear
combinations of the vectors (u1, . . . , un), with

vi =
n∑
j=1

aijuj, 1 ≤ i ≤ n,

then the above equations are witten as

vi = ajiuj, 1 ≤ i ≤ n.

Thus, in Einstein’s notation, the n× n matrix (aij) is denoted by (aji ), a (1, 1)-tensor .

� Beware that some authors view a matrix as a mapping between coordinates , in which
case the matrix (aij) is denoted by (aij).

9.2 Pairing and Duality Between E and E∗

Given a linear form u∗ ∈ E∗ and a vector v ∈ E, the result u∗(v) of applying u∗ to v is
also denoted by 〈u∗, v〉. This defines a binary operation 〈−,−〉 : E∗ ×E → K satisfying the
following properties:

〈u∗1 + u∗2, v〉 = 〈u∗1, v〉+ 〈u∗2, v〉
〈u∗, v1 + v2〉 = 〈u∗, v1〉+ 〈u∗, v2〉
〈λu∗, v〉 = λ〈u∗, v〉
〈u∗, λv〉 = λ〈u∗, v〉.

The above identities mean that 〈−,−〉 is a bilinear map, since it is linear in each argument.
It is often called the canonical pairing between E∗ and E. In view of the above identities,
given any fixed vector v ∈ E, the map evalv : E∗ → K (evaluation at v) defined such that

evalv(u
∗) = 〈u∗, v〉 = u∗(v) for every u∗ ∈ E∗

is a linear map from E∗ to K, that is, evalv is a linear form in E∗∗. Again, from the above
identities, the map evalE : E → E∗∗, defined such that

evalE(v) = evalv for every v ∈ E,

is a linear map. Observe that

evalE(v)(u∗) = 〈u∗, v〉 = u∗(v), for all v ∈ E and all u∗ ∈ E∗.
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We shall see that the map evalE is injective, and that it is an isomorphism when E has finite
dimension.

We now formalize the notion of the set V 0 of linear equations vanishing on all vectors in
a given subspace V ⊆ E, and the notion of the set U0 of common solutions of a given set
U ⊆ E∗ of linear equations. The duality theorem (Theorem 9.1) shows that the dimensions
of V and V 0, and the dimensions of U and U0, are related in a crucial way. It also shows that,
in finite dimension, the maps V 7→ V 0 and U 7→ U0 are inverse bijections from subspaces of
E to subspaces of E∗.

Definition 9.3. Given a vector space E and its dual E∗, we say that a vector v ∈ E and a
linear form u∗ ∈ E∗ are orthogonal iff 〈u∗, v〉 = 0. Given a subspace V of E and a subspace
U of E∗, we say that V and U are orthogonal iff 〈u∗, v〉 = 0 for every u∗ ∈ U and every
v ∈ V . Given a subset V of E (resp. a subset U of E∗), the orthogonal V 0 of V is the
subspace V 0 of E∗ defined such that

V 0 = {u∗ ∈ E∗ | 〈u∗, v〉 = 0, for every v ∈ V }

(resp. the orthogonal U0 of U is the subspace U0 of E defined such that

U0 = {v ∈ E | 〈u∗, v〉 = 0, for every u∗ ∈ U}).

The subspace V 0 ⊆ E∗ is also called the annihilator of V . The subspace U0 ⊆ E
annihilated by U ⊆ E∗ does not have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish on V , and U0 is the set of common
zeros of all linear equations in U . We can also define V 0 by

V 0 = {u∗ ∈ E∗ | V ⊆ Keru∗}

and U0 by

U0 =
⋂
u∗∈U

Keru∗.

Observe that E0 = {0} = (0), and {0}0 = E∗. Furthermore, if V1 ⊆ V2 ⊆ E, then
V 0

2 ⊆ V 0
1 ⊆ E∗, and if U1 ⊆ U2 ⊆ E∗, then U0

2 ⊆ U0
1 ⊆ E.

Proof. Indeed, if V1 ⊆ V2 ⊆ E, then for any f ∗ ∈ V 0
2 we have f ∗(v) = 0 for all v ∈ V2, and

thus f ∗(v) = 0 for all v ∈ V1, so f ∗ ∈ V 0
1 . Similarly, if U1 ⊆ U2 ⊆ E∗, then for any v ∈ U0

2 ,
we have f ∗(v) = 0 for all f ∗ ∈ U2, so f ∗(v) = 0 for all f ∗ ∈ U1, which means that v ∈ U0

1 .

Here are some examples. Let E = M2(R), the space of real 2× 2 matrices, and let V be
the subspace of M2(R) spanned by the matrices(

0 1
1 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
.



276 CHAPTER 9. THE DUAL SPACE AND DUALITY

We check immediately that the subspace V consists of all matrices of the form(
b a
a c

)
,

that is, all symmetric matrices. The matrices(
a11 a12

a21 a22

)
in V satisfy the equation

a12 − a21 = 0,

and all scalar multiples of these equations, so V 0 is the subspace of E∗ spanned by the linear
form given by u∗(a11, a12, a21, a22) = a12 − a21. By the duality theorem (Theorem 9.1) we
have

dim(V 0) = dim(E)− dim(V ) = 4− 3 = 1.

The above example generalizes to E = Mn(R) for any n ≥ 1, but this time, consider the
space U of linear forms asserting that a matrix A is symmetric; these are the linear forms
spanned by the n(n− 1)/2 equations

aij − aji = 0, 1 ≤ i < j ≤ n;

Note there are no constraints on diagonal entries, and half of the equations

aij − aji = 0, 1 ≤ i 6= j ≤ n

are redundant. It is easy to check that the equations (linear forms) for which i < j are
linearly independent. To be more precise, let U be the space of linear forms in E∗ spanned
by the linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij − aji, 1 ≤ i < j ≤ n.

The dimension of U is n(n− 1)/2. Then, the set U0 of common solutions of these equations
is the space S(n) of symmetric matrices. By the duality theorem (Theorem 9.1), this space
has dimension

n(n+ 1)

2
= n2 − n(n− 1)

2
.

We leave it as an exercise to find a basis of S(n).

If E = Mn(R), consider the subspace U of linear forms in E∗ spanned by the linear forms

u∗ij(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aij + aji, 1 ≤ i < j ≤ n

u∗ii(a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) = aii, 1 ≤ i ≤ n.
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It is easy to see that these linear forms are linearly independent, so dim(U) = n(n + 1)/2.
The space U0 of matrices A ∈ Mn(R) satifying all of the above equations is clearly the space
Skew(n) of skew-symmetric matrices. By the duality theorem (Theorem 9.1), the dimension
of U0 is

n(n− 1)

2
= n2 − n(n+ 1)

2
.

We leave it as an exercise to find a basis of Skew(n).

For yet another example with E = Mn(R), for any A ∈ Mn(R), consider the linear form
in E∗ given by

tr(A) = a11 + a22 + · · ·+ ann,

called the trace of A. The subspace U0 of E consisting of all matrices A such that tr(A) = 0
is a space of dimension n2 − 1. We leave it as an exercise to find a basis of this space.

The dimension equations

dim(V ) + dim(V 0) = dim(E)

dim(U) + dim(U0) = dim(E)

are always true (if E is finite-dimensional). This is part of the duality theorem (Theorem
9.1).

In contrast with the previous examples, given a matrix A ∈ Mn(R), the equations assert-
ing that A>A = I are not linear constraints. For example, for n = 2, we have

a2
11 + a2

21 = 1

a2
21 + a2

22 = 1

a11a12 + a21a22 = 0.

Remarks:

(1) The notation V 0 (resp. U0) for the orthogonal of a subspace V of E (resp. a subspace
U of E∗) is not universal. Other authors use the notation V ⊥ (resp. U⊥). However,
the notation V ⊥ is also used to denote the orthogonal complement of a subspace V
with respect to an inner product on a space E, in which case V ⊥ is a subspace of E
and not a subspace of E∗ (see Chapter 10). To avoid confusion, we prefer using the
notation V 0.

(2) Since linear forms can be viewed as linear equations (at least in finite dimension), given
a subspace (or even a subset) U of E∗, we can define the set Z(U) of common zeros of
the equations in U by

Z(U) = {v ∈ E | u∗(v) = 0, for all u∗ ∈ U}.
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Of course Z(U) = U0, but the notion Z(U) can be generalized to more general kinds
of equations, namely polynomial equations. In this more general setting, U is a set of
polynomials in n variables with coefficients in a field K (where n = dim(E)). Sets of
the form Z(U) are called algebraic varieties . Linear forms correspond to the special
case where homogeneous polynomials of degree 1 are considered.

If V is a subset of E, it is natural to associate with V the set of polynomials in
K[X1, . . . , Xn] that vanish on V . This set, usually denoted I(V ), has some special
properties that make it an ideal . If V is a linear subspace of E, it is natural to restrict
our attention to the space V 0 of linear forms that vanish on V , and in this case we
identify I(V ) and V 0 (although technically, I(V ) is no longer an ideal).

For any arbitrary set of polynomials U ⊆ K[X1, . . . , Xn] (resp. subset V ⊆ E), the
relationship between I(Z(U)) and U (resp. Z(I(V )) and V ) is generally not simple,
even though we always have

U ⊆ I(Z(U)) (resp. V ⊆ Z(I(V ))).

However, when the field K is algebraically closed, then I(Z(U)) is equal to the radical
of the ideal U , a famous result due to Hilbert known as the Nullstellensatz (see Lang
[63] or Dummit and Foote [38]). The study of algebraic varieties is the main subject
of algebraic geometry , a beautiful but formidable subject. For a taste of algebraic
geometry, see Lang [63] or Dummit and Foote [38].

The duality theorem (Theorem 9.1) shows that the situation is much simpler if we
restrict our attention to linear subspaces; in this case

U = I(Z(U)) and V = Z(I(V )).

We claim that V ⊆ V 00 for every subspace V of E, and that U ⊆ U00 for every subspace
U of E∗.

Proof. Indeed, for any v ∈ V , to show that v ∈ V 00 we need to prove that u∗(v) = 0 for all
u∗ ∈ V 0. However, V 0 consists of all linear forms u∗ such that u∗(y) = 0 for all y ∈ V ; in
particular, for a fixed v ∈ V , we have u∗(v) = 0 for all u∗ ∈ V 0, as required.

Similarly, for any u∗ ∈ U , to show that u∗ ∈ U00 we need to prove that u∗(v) = 0 for
all v ∈ U0. However, U0 consists of all vectors v such that f ∗(v) = 0 for all f ∗ ∈ U ; in
particular, for a fixed u∗ ∈ U , we have u∗(v) = 0 for all v ∈ U0, as required.

We will see shortly that in finite dimension, we have V = V 00 and U = U00.
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9.3 The Duality Theorem

Given a vector space E of dimension n ≥ 1 and a subspace U of E, by Theorem 2.9, every
basis (u1, . . . , um) of U can be extended to a basis (u1, . . . , un) of E. We have the following
important theorem adapted from E. Artin [5] (Chapter 1).

Theorem 9.1. (Duality theorem) Let E be a vector space of dimension n. The following
properties hold:

(a) For every basis (u1, . . . , un) of E, the family of coordinate forms (u∗1, . . . , u
∗
n) is a basis

of E∗ (called the dual basis of (u1, . . . , un)).

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such that E = V ⊕W , with V of dimen-
sion m, for every basis (u1, . . . , un) of E such that (u1, . . . , um) is a basis of V and
(um+1, . . . , un) is a basis of W , the family (u∗1, . . . , u

∗
m) is a basis of the orthogonal W 0

of W in E∗, so that

dim(W ) + dim(W 0) = dim(E).

Furthermore, we have W 00 = W .

(d) For every subspace U of E∗, we have

dim(U) + dim(U0) = dim(E),

where U0 is the orthogonal of U in E, and U00 = U .

Proof. (a) This part was proved in Theorem 2.16.

(b) Clearly, we have V ⊆ V 00. If V 6= V 00, then let (u1, . . . , up) be a basis of V 00 such
that (u1, . . . , um) is a basis of V , with m < p. Since um+1 ∈ V 00, um+1 is orthogonal to every
linear form in V 0. Now, we have u∗m+1(ui) = 0 for all i = 1, . . . ,m, and thus u∗m+1 ∈ V 0.
However, u∗m+1(um+1) = 1, contradicting the fact that um+1 is orthogonal to every linear
form in V 0. Thus, V = V 00.

(c) Every linear form f ∗ ∈ W 0 is orthogonal to every uj for j = m + 1, . . . , n, and thus,
f ∗(uj) = 0 for j = m+ 1, . . . , n. For such a linear form f ∗ ∈ W 0, let

g∗ = f ∗(u1)u∗1 + · · ·+ f ∗(um)u∗m.

We have g∗(ui) = f ∗(ui), for every i, 1 ≤ i ≤ m. Furthermore, by definition, g∗ vanishes on
all uj with j = m+1, . . . , n. Thus, f ∗ and g∗ agree on the basis (u1, . . . , un) of E, and so g∗ =
f ∗. This shows that (u∗1, . . . , u

∗
m) generates W 0, and since it is also a linearly independent

family, (u∗1, . . . , u
∗
m) is a basis of W 0. It is then obvious that dim(W ) + dim(W 0) = dim(E),

and by part (b), we have W 00 = W .
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(d) Let (f ∗1 , . . . , f
∗
m) be a basis of U . Note that the map h : E → Km defined such that

h(v) = (f ∗1 (v), . . . , f ∗m(v))

for every v ∈ E is a linear map, and that its kernel Kerh is precisely U0. Then, by Proposition
4.6,

n = dim(E) = dim(Kerh) + dim(Imh) ≤ dim(U0) +m,

since dim(Imh) ≤ m. Thus, n − dim(U0) ≤ m. By (c), we have dim(U0) + dim(U00) =
dim(E) = n, so we get dim(U00) ≤ m. However, it is clear that U ⊆ U00, which implies
m = dim(U) ≤ dim(U00), so dim(U) = dim(U00) = m, and we must have U = U00.

Part (a) of Theorem 9.1 shows that

dim(E) = dim(E∗),

and if (u1, . . . , un) is a basis of E, then (u∗1, . . . , u
∗
n) is a basis of the dual space E∗ called the

dual basis of (u1, . . . , un).

Define the function E (E for equations) from subspaces of E to subspaces of E∗ and the
function Z (Z for zeros) from subspaces of E∗ to subspaces of E by

E(V ) = V 0, V ⊆ E

Z(U) = U0, U ⊆ E∗.

By part (c) and (d) of theorem 9.1,

(Z ◦ E)(V ) = V 00 = V

(E ◦ Z)(U) = U00 = U,

so Z ◦ E = id and E ◦ Z = id, and the maps E and V are inverse bijections. These maps
set up a duality between subspaces of E and subspaces of E∗. In particular, every subspace
V ⊆ E of dimension m is the set of common zeros of the space of linear forms (equations)
V 0, which has dimension n −m. This confirms the claim we made about the dimension of
the subpsace defined by a set of linear equations.

� One should be careful that this bijection does not hold if E has infinite dimension. Some
restrictions on the dimensions of U and V are needed.

However, even if E is infinite-dimensional, the identity V = V 00 holds for every subspace
V of E. The proof is basically the same but uses an infinite basis of V 00 extending a basis
of V .

Suppose that V is a subspace of Rn of dimension m and that (v1, . . . , vm) is a basis of V .
To find a basis of V 0, we first extend (v1, . . . , vm) to a basis (v1, . . . , vn) of Rn, and then by
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part (c) of Theorem 9.1, we know that (v∗m+1, . . . , v
∗
n) is a basis of V 0. For example, suppose

that V is the subspace of R4 spanned by the two linearly independent vectors

v1 =


1
1
1
1

 v2 =


1
1
−1
−1

 ,

the first two vectors of the Haar basis in R4. The four columns of the Haar matrix

W =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


form a basis of R4, and the inverse of W is given by

W−1 =


1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 =


1/4 1/4 1/4 1/4
1/4 1/4 −1/4 −1/4
1/2 −1/2 0 0
0 0 1/2 −1/2

 .

Since the dual basis (v∗1, v
∗
2, v
∗
3, v
∗
4) is given by the row of W−1, the last two rows of W−1,(

1/2 −1/2 0 0
0 0 1/2 −1/2

)
,

form a basis of V 0. We also obtain a basis by rescaling by the factor 1/2, so the linear forms
given by the row vectors (

1 −1 0 0
0 0 1 −1

)
form a basis of V 0, the space of linear forms (linear equations) that vanish on the subspace
V .

The method that we described to find V 0 requires first extending a basis of V and then
inverting a matrix, but there is a more direct method. Indeed, let A be the n ×m matrix
whose columns are the basis vectors (v1, . . . , vm) of V . Then, a linear form u represented by
a row vector belongs to V 0 iff uvi = 0 for i = 1, . . . ,m iff

uA = 0

iff
A>u> = 0.

Therefore, all we need to do is to find a basis of the nullspace of A>. This can be done quite
effectively using the reduction of a matrix to reduced row echelon form (rref); see Section
6.9.
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Let us now consider the problem of finding a basis of the hyperplane H in Rn defined by
the equation

c1x1 + · · ·+ cnxn = 0.

More precisely, if u∗(x1, . . . , xn) is the linear form in (Rn)∗ given by u∗(x1, . . . , xn) = c1x1 +
· · · + cnxn, then the hyperplane H is the kernel of u∗. Of course we assume that some cj is
nonzero, in which case the linear form u∗ spans a one-dimensional subspace U of (Rn)∗, and
U0 = H has dimension n− 1.

Since u∗ is not the linear form which is identically zero, there is a smallest positive index
j ≤ n such that cj 6= 0, so our linear form is really u∗(x1, . . . , xn) = cjxj + · · · + cnxn. We
claim that the following n− 1 vectors (in Rn) form a basis of H:

1 2 . . . j − 1 j j + 1 . . . n− 1

1
2
...

j − 1
j

j + 1
j + 2

...
n



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 −cj+1/cj −cj+2/cj . . . −cn/cj
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


.

Observe that the (n−1)×(n−1) matrix obtained by deleting row j is the identity matrix, so
the columns of the above matrix are linearly independent. A simple calculation also shows
that the linear form u∗(x1, . . . , xn) = cjxj + · · ·+cnxn vanishes on every column of the above
matrix. For a concrete example in R6, if u∗(x1, . . . , x6) = x3 + 2x4 + 3x5 + 4x6, we obtain
the basis for the hyperplane H of equation

x3 + 2x4 + 3x5 + 4x6 = 0

given by the following matrix: 
1 0 0 0 0
0 1 0 0 0
0 0 −2 −3 −4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Conversely, given a hyperplane H in Rn given as the span of n − 1 linearly vectors
(u1, . . . , un−1), it is possible using determinants to find a linear form (λ1, . . . , λn) that vanishes
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on H. In the case n = 2, we are looking for a row vector (λ1, λ2, λ3) such that if

u =

u1

u2

u3

 and v =

v1

v2

v3


are two linearly independent vectors, then

(
u1 u2 u2

v1 v2 v2

)λ1

λ2

λ3

 =

(
0
0

)
,

and the cross-product u× v of u and v given by

u× v =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


is a solution.

Here is another example illustrating the power of Theorem 9.1. Let E = Mn(R), and
consider the equations asserting that the sum of the entries in every row of a matrix A ∈
Mn(R) is equal to the same number. We have n− 1 equations

n∑
j=1

(aij − ai+1j) = 0, 1 ≤ i ≤ n− 1,

and it is easy to see that they are linearly independent. Therefore, the space U of linear
forms in E∗ spanned by the above linear forms (equations) has dimension n − 1, and the
space U0 of matrices sastisfying all these equations has dimension n2 − n + 1. It is not so
obvious to find a basis for this space.

We will now pin down the relationship between a vector space E and its bidual E∗∗.

Proposition 9.2. Let E be a vector space. The following properties hold:

(a) The linear map evalE : E → E∗∗ defined such that

evalE(v) = evalv for all v ∈ E,

that is, evalE(v)(u∗) = 〈u∗, v〉 = u∗(v) for every u∗ ∈ E∗, is injective.

(b) When E is of finite dimension n, the linear map evalE : E → E∗∗ is an isomorphism
(called the canonical isomorphism).
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Proof. (a) Let (ui)i∈I be a basis of E, and let v =
∑

i∈I viui. If evalE(v) = 0, then in
particular evalE(v)(u∗i ) = 0 for all u∗i , and since

evalE(v)(u∗i ) = 〈u∗i , v〉 = vi,

we have vi = 0 for all i ∈ I, that is, v = 0, showing that evalE : E → E∗∗ is injective.

If E is of finite dimension n, by Theorem 9.1, for every basis (u1, . . . , un), the family
(u∗1, . . . , u

∗
n) is a basis of the dual space E∗, and thus the family (u∗∗1 , . . . , u

∗∗
n ) is a basis

of the bidual E∗∗. This shows that dim(E) = dim(E∗∗) = n, and since by part (a), we
know that evalE : E → E∗∗ is injective, in fact, evalE : E → E∗∗ is bijective (by Proposition
4.9).

When E is of finite dimension and (u1, . . . , un) is a basis of E, in view of the canon-
ical isomorphism evalE : E → E∗∗, the basis (u∗∗1 , . . . , u

∗∗
n ) of the bidual is identified with

(u1, . . . , un).

Proposition 9.2 can be reformulated very fruitfully in terms of pairings, a remarkably
useful concept discovered by Pontrjagin in 1931 (adapted from E. Artin [5], Chapter 1).
Given two vector spaces E and F over a field K, we say that a function ϕ : E × F → K
is bilinear if for every v ∈ V , the map u 7→ ϕ(u, v) (from E to K) is linear, and for every
u ∈ E, the map v 7→ ϕ(u, v) (from F to K) is linear.

Definition 9.4. Given two vector spaces E and F over K, a pairing between E and F is a
bilinear map ϕ : E × F → K. Such a pairing is nondegenerate iff

(1) for every u ∈ E, if ϕ(u, v) = 0 for all v ∈ F , then u = 0, and

(2) for every v ∈ F , if ϕ(u, v) = 0 for all u ∈ E, then v = 0.

A pairing ϕ : E × F → K is often denoted by 〈−,−〉 : E × F → K. For example, the
map 〈−,−〉 : E∗×E → K defined earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 9.2). If E = F and K = R, any inner product on E is a nondegenerate pairing
(because an inner product is positive definite); see Chapter 10.

Given a pairing ϕ : E × F → K, we can define two maps lϕ : E → F ∗ and rϕ : F → E∗

as follows: For every u ∈ E, we define the linear form lϕ(u) in F ∗ such that

lϕ(u)(y) = ϕ(u, y) for every y ∈ F ,

and for every v ∈ F , we define the linear form rϕ(v) in E∗ such that

rϕ(v)(x) = ϕ(x, v) for every x ∈ E.

We have the following useful proposition.
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Proposition 9.3. Given two vector spaces E and F over K, for every nondegenerate pairing
ϕ : E × F → K between E and F , the maps lϕ : E → F ∗ and rϕ : F → E∗ are linear and
injective. Furthermore, if E and F have finite dimension, then this dimension is the same
and lϕ : E → F ∗ and rϕ : F → E∗ are bijections.

Proof. The maps lϕ : E → F ∗ and rϕ : F → E∗ are linear because a pairing is bilinear. If
lϕ(u) = 0 (the null form), then

lϕ(u)(v) = ϕ(u, v) = 0 for every v ∈ F ,

and since ϕ is nondegenerate, u = 0. Thus, lϕ : E → F ∗ is injective. Similarly, rϕ : F → E∗

is injective. When F has finite dimension n, we have seen that F and F ∗ have the same
dimension. Since lϕ : E → F ∗ is injective, we have m = dim(E) ≤ dim(F ) = n. The same
argument applies to E, and thus n = dim(F ) ≤ dim(E) = m. But then, dim(E) = dim(F ),
and lϕ : E → F ∗ and rϕ : F → E∗ are bijections.

When E has finite dimension, the nondegenerate pairing 〈−,−〉 : E∗ × E → K yields
another proof of the existence of a natural isomorphism between E and E∗∗. When E = F ,
the nondegenerate pairing induced by an inner product on E yields a natural isomorphism
between E and E∗ (see Section 10.2).

Interesting nondegenerate pairings arise in exterior algebra and differential geometry. We
now show the relationship between hyperplanes and linear forms.

9.4 Hyperplanes and Linear Forms

Actually, Proposition 9.4 below follows from parts (c) and (d) of Theorem 9.1, but we feel
that it is also interesting to give a more direct proof.

Proposition 9.4. Let E be a vector space. The following properties hold:

(a) Given any nonnull linear form f ∗ ∈ E∗, its kernel H = Ker f ∗ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull) linear form f ∗ ∈ E∗ such that H =
Ker f ∗.

(c) Given any hyperplane H in E and any (nonnull) linear form f ∗ ∈ E∗ such that H =
Ker f ∗, for every linear form g∗ ∈ E∗, H = Ker g∗ iff g∗ = λf ∗ for some λ 6= 0 in K.

Proof. (a) If f ∗ ∈ E∗ is nonnull, there is some vector v0 ∈ E such that f ∗(v0) 6= 0. Let
H = Ker f ∗. For every v ∈ E, we have

f ∗
(
v − f ∗(v)

f ∗(v0)
v0

)
= f ∗(v)− f ∗(v)

f ∗(v0)
f ∗(v0) = f ∗(v)− f ∗(v) = 0.
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Thus,

v − f ∗(v)

f ∗(v0)
v0 = h ∈ H,

and

v = h+
f ∗(v)

f ∗(v0)
v0,

that is, E = H +Kv0. Also, since f ∗(v0) 6= 0, we have v0 /∈ H, that is, H ∩Kv0 = 0. Thus,
E = H ⊕Kv0, and H is a hyperplane.

(b) If H is a hyperplane, E = H ⊕ Kv0 for some v0 /∈ H. Then, every v ∈ E can be
written in a unique way as v = h + λv0. Thus, there is a well-defined function f ∗ : E → K,
such that, f ∗(v) = λ, for every v = h + λv0. We leave as a simple exercise the verification
that f ∗ is a linear form. Since f ∗(v0) = 1, the linear form f ∗ is nonnull. Also, by definition,
it is clear that λ = 0 iff v ∈ H, that is, Ker f ∗ = H.

(c) Let H be a hyperplane in E, and let f ∗ ∈ E∗ be any (nonnull) linear form such that
H = Ker f ∗. Clearly, if g∗ = λf ∗ for some λ 6= 0, then H = Ker g∗. Conversely, assume that
H = Ker g∗ for some nonnull linear form g∗. From (a), we have E = H ⊕Kv0, for some v0

such that f ∗(v0) 6= 0 and g∗(v0) 6= 0. Then, observe that

g∗ − g∗(v0)

f ∗(v0)
f ∗

is a linear form that vanishes on H, since both f ∗ and g∗ vanish on H, but also vanishes on
Kv0. Thus, g∗ = λf ∗, with

λ =
g∗(v0)

f ∗(v0)
.

We leave as an exercise the fact that every subspace V 6= E of a vector space E is the
intersection of all hyperplanes that contain V . We now consider the notion of transpose of
a linear map and of a matrix.

9.5 Transpose of a Linear Map and of a Matrix

Given a linear map f : E → F , it is possible to define a map f> : F ∗ → E∗ which has some
interesting properties.

Definition 9.5. Given a linear map f : E → F , the transpose f> : F ∗ → E∗ of f is the
linear map defined such that

f>(v∗) = v∗ ◦ f, for every v∗ ∈ F ∗,
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as shown in the diagram below:

E
f //

f>(v∗)   BBBBBBBB F

v∗

��
K.

Equivalently, the linear map f> : F ∗ → E∗ is defined such that

〈v∗, f(u)〉 = 〈f>(v∗), u〉,
for all u ∈ E and all v∗ ∈ F ∗.

It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g ◦ f)> = f> ◦ g>

id>E = idE∗ .

� Note the reversal of composition on the right-hand side of (g ◦ f)> = f> ◦ g>.

The equation (g ◦ f)> = f> ◦ g> implies the following useful proposition.

Proposition 9.5. If f : E → F is any linear map, then the following properties hold:

(1) If f is injective, then f> is surjective.

(2) If f is surjective, then f> is injective.

Proof. If f : E → F is injective, then it has a retraction r : F → E such that r ◦ f = idE,
and if f : E → F is surjective, then it has a section s : F → E such that f ◦ s = idF . Now,
if f : E → F is injective, then we have

(r ◦ f)> = f> ◦ r> = idE∗ ,

which implies that f> is surjective, and if f is surjective, then we have

(f ◦ s)> = s> ◦ f> = idF ∗ ,

which implies that f> is injective.

We also have the following property showing the naturality of the eval map.

Proposition 9.6. For any linear map f : E → F , we have

f>> ◦ evalE = evalF ◦ f,
or equivalently the following diagram commutes:

E∗∗
f>> // F ∗∗

E

evalE

OO

f
// F.

evalF

OO
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Proof. For every u ∈ E and every ϕ ∈ F ∗, we have

(f>> ◦ evalE)(u)(ϕ) = 〈f>>(evalE(u)), ϕ〉
= 〈evalE(u), f>(ϕ)〉
= 〈f>(ϕ), u〉
= 〈ϕ, f(u)〉
= 〈evalF (f(u)), ϕ〉
= 〈(evalF ◦ f)(u), ϕ〉
= (evalF ◦ f)(u)(ϕ),

which proves that f>> ◦ evalE = evalF ◦ f , as claimed.

If E and F are finite-dimensional, then evalE and evalF are isomorphisms, so Proposition
9.6 shows that

f>> = eval−1
F ◦ f ◦ evalE. (∗)

The above equation is often interpreted as follows: if we identify E with its bidual E∗∗ and
F with its bidual F ∗∗, then f>> = f . This is an abuse of notation; the rigorous statement
is (∗).

As a corollary of Proposition 9.6, if dim(E) is finite, then we have

Ker (f>>) = evalE(Ker (f)).

Proof. Indeed, if E is finite-dimensional, the map evalE : E → E∗∗ is an isomorphism, so
every ϕ ∈ E∗∗ is of the form ϕ = evalE(u) for some u ∈ E, the map evalF : F → F ∗∗ is
injective, and we have

f>>(ϕ) = 0 iff f>>(evalE(u)) = 0

iff evalF (f(u)) = 0

iff f(u) = 0

iff u ∈ Ker (f)

iff ϕ ∈ evalE(Ker (f)),

which proves that Ker (f>>) = evalE(Ker (f)).

The following proposition shows the relationship between orthogonality and transposi-
tion.

Proposition 9.7. Given a linear map f : E → F , for any subspace V of E, we have

f(V )0 = (f>)−1(V 0) = {w∗ ∈ F ∗ | f>(w∗) ∈ V 0}.

As a consequence,
Ker f> = (Im f)0 and Ker f = (Im f>)0.
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Proof. We have
〈w∗, f(v)〉 = 〈f>(w∗), v〉,

for all v ∈ E and all w∗ ∈ F ∗, and thus, we have 〈w∗, f(v)〉 = 0 for every v ∈ V , i.e.
w∗ ∈ f(V )0 iff 〈f>(w∗), v〉 = 0 for every v ∈ V iff f>(w∗) ∈ V 0, i.e. w∗ ∈ (f>)−1(V 0),
proving that

f(V )0 = (f>)−1(V 0).

Since we already observed that E0 = (0), letting V = E in the above identity we obtain
that

Ker f> = (Im f)0.

From the equation
〈w∗, f(v)〉 = 〈f>(w∗), v〉,

we deduce that v ∈ (Im f>)0 iff 〈f>(w∗), v〉 = 0 for all w∗ ∈ F ∗ iff 〈w∗, f(v)〉 = 0 for all
w∗ ∈ F ∗. Assume that v ∈ (Im f>)0. If we pick a basis (wi)i∈I of F , then we have the linear
forms w∗i : F → K such that w∗i (wj) = δij, and since we must have 〈w∗i , f(v)〉 = 0 for all
i ∈ I and (wi)i∈I is a basis of F , we conclude that f(v) = 0, and thus v ∈ Ker f (this is
because 〈w∗i , f(v)〉 is the coefficient of f(v) associated with the basis vector wi). Conversely,
if v ∈ Ker f , then 〈w∗, f(v)〉 = 0 for all w∗ ∈ F ∗, so we conclude that v ∈ (Im f>)0.
Therefore, v ∈ (Im f>)0 iff v ∈ Ker f ; that is,

Ker f = (Im f>)0,

as claimed.

The following theorem shows the relationship between the rank of f and the rank of f>.

Theorem 9.8. Given a linear map f : E → F , the following properties hold.

(a) The dual (Im f)∗ of Im f is isomorphic to Im f> = f>(F ∗); that is,

(Im f)∗ ≈ Im f>.

(b) If F is finite dimensional, then rk(f) = rk(f>).

Proof. (a) Consider the linear maps

E
p−→ Im f

j−→ F,

where E
p−→ Im f is the surjective map induced by E

f−→ F , and Im f
j−→ F is the

injective inclusion map of Im f into F . By definition, f = j ◦ p. To simplify the notation,

let I = Im f . By Proposition 9.5, since E
p−→ I is surjective, I∗

p>−→ E∗ is injective, and

since Im f
j−→ F is injective, F ∗

j>−→ I∗ is surjective. Since f = j ◦ p, we also have

f> = (j ◦ p)> = p> ◦ j>,
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and since F ∗
j>−→ I∗ is surjective, and I∗

p>−→ E∗ is injective, we have an isomorphism
between (Im f)∗ and f>(F ∗).

(b) We already noted that part (a) of Theorem 9.1 shows that dim(F ) = dim(F ∗), for
every vector space F of finite dimension. Consequently, dim(Im f) = dim((Im f)∗), and thus,
by part (a) we have rk(f) = rk(f>).

When both E and F are finite-dimensional, there is also a simple proof of (b) that doesn’t
use the result of part (a). By Theorem 9.1(c)

dim(Im f) + dim((Im f)0) = dim(F ),

and by Theorem 4.6
dim(Ker f>) + dim(Im f>) = dim(F ∗).

Furthermore, by Proposition 9.7, we have

Ker f> = (Im f)0,

and since F is finite-dimensional dim(F ) = dim(F ∗), so we deduce

dim(Im f) + dim((Im f)0) = dim((Im f)0) + dim(Im f>),

which yields dim(Im f) = dim(Im f>); that is, rk(f) = rk(f>).

Remarks:

1. If dim(E) is finite, following an argument of Dan Guralnik, we can also prove that
rk(f) = rk(f>) as follows.

We know from Proposition 9.7 applied to f> : F ∗ → E∗ that

Ker (f>>) = (Im f>)0,

and we showed as a consequence of Proposition 9.6 that

Ker (f>>) = evalE(Ker (f)).

It follows (since evalE is an isomorphism) that

dim((Im f>)0) = dim(Ker (f>>)) = dim(Ker (f)) = dim(E)− dim(Im f),

and since
dim(Im f>) + dim((Im f>)0) = dim(E),

we get
dim(Im f>) = dim(Im f).
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2. As indicated by Dan Guralnik, if dim(E) is finite, the above result can be used to prove
that

Im f> = (Ker (f))0.

From

〈f>(ϕ), u〉 = 〈ϕ, f(u)〉
for all ϕ ∈ F ∗ and all u ∈ E, we see that if u ∈ Ker (f), then 〈f>(ϕ), u〉 = 〈ϕ, 0〉 = 0,
which means that f>(ϕ) ∈ (Ker (f))0, and thus, Im f> ⊆ (Ker (f))0. For the converse,
since dim(E) is finite, we have

dim((Ker (f))0) = dim(E)− dim(Ker (f)) = dim(Im f),

but we just proved that dim(Im f>) = dim(Im f), so we get

dim((Ker (f))0) = dim(Im f>),

and since Im f> ⊆ (Ker (f))0, we obtain

Im f> = (Ker (f))0,

as claimed. Now, since (Ker (f))00 = Ker (f), the above equation yields another proof
of the fact that

Ker (f) = (Im f>)0,

when E is finite-dimensional.

3. The equation

Im f> = (Ker (f))0

is actually valid even if when E if infinite-dimensional, but we will not prove this here.

The following proposition can be shown, but it requires a generalization of the duality
theorem, so is proof is omitted.

Proposition 9.9. If f : E → F is any linear map, then the following identities hold:

Im f> = (Ker (f))0

Ker (f>) = (Im f)0

Im f = (Ker (f>)0

Ker (f) = (Im f>)0.

The following proposition shows the relationship between the matrix representing a linear
map f : E → F and the matrix representing its transpose f> : F ∗ → E∗.
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Proposition 9.10. Let E and F be two vector spaces, and let (u1, . . . , un) be a basis for
E and (v1, . . . , vm) be a basis for F . Given any linear map f : E → F , if M(f) is the
m× n-matrix representing f w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm) the n×m-matrix
M(f>) representing f> : F ∗ → E∗ w.r.t. the dual bases (v∗1, . . . , v

∗
m) and (u∗1, . . . , u

∗
n) is the

transpose M(f)> of M(f).

Proof. Recall that the entry ai j in row i and column j of M(f) is the i-th coordinate of
f(uj) over the basis (v1, . . . , vm). By definition of v∗i , we have 〈v∗i , f(uj)〉 = ai j. The entry
a>j i in row j and column i of M(f>) is the j-th coordinate of

f>(v∗i ) = a>1 iu
∗
1 + · · ·+ a>j iu

∗
j + · · ·+ a>n iu

∗
n

over the basis (u∗1, . . . , u
∗
n), which is just a>j i = f>(v∗i )(uj) = 〈f>(v∗i ), uj〉. Since

〈v∗i , f(uj)〉 = 〈f>(v∗i ), uj〉,

we have ai j = a>j i, proving that M(f>) = M(f)>.

We now can give a very short proof of the fact that the rank of a matrix is equal to the
rank of its transpose.

Proposition 9.11. Given a m× n matrix A over a field K, we have rk(A) = rk(A>).

Proof. The matrix A corresponds to a linear map f : Kn → Km, and by Theorem 9.8,
rk(f) = rk(f>). By Proposition 9.10, the linear map f> corresponds to A>. Since rk(A) =
rk(f), and rk(A>) = rk(f>), we conclude that rk(A) = rk(A>).

Thus, given an m×n-matrix A, the maximum number of linearly independent columns is
equal to the maximum number of linearly independent rows. There are other ways of proving
this fact that do not involve the dual space, but instead some elementary transformations
on rows and columns.

Proposition 9.11 immediately yields the following criterion for determining the rank of a
matrix:

Proposition 9.12. Given any m×n matrix A over a field K (typically K = R or K = C),
the rank of A is the maximum natural number r such that there is an invertible r×r submatrix
of A obtained by selecting r rows and r columns of A.

For example, the 3× 2 matrix

A =

a11 a12

a21 a22

a31 a32
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has rank 2 iff one of the three 2× 2 matrices(
a11 a12

a21 a22

) (
a11 a12

a31 a32

) (
a21 a22

a31 a32

)
is invertible. We saw in Chapter 5 that this is equivalent to the fact the determinant of one
of the above matrices is nonzero. This is not a very efficient way of finding the rank of a
matrix. We will see that there are better ways using various decompositions such as LU,
QR, or SVD.

9.6 The Four Fundamental Subspaces

Given a linear map f : E → F (where E and F are finite-dimensional), Proposition 9.7
revealed that the four spaces

Im f, Im f>, Ker f, Ker f>

play a special role. They are often called the fundamental subspaces associated with f . These
spaces are related in an intimate manner, since Proposition 9.7 shows that

Ker f = (Im f>)0

Ker f> = (Im f)0,

and Theorem 9.8 shows that
rk(f) = rk(f>).

It is instructive to translate these relations in terms of matrices (actually, certain linear
algebra books make a big deal about this!). If dim(E) = n and dim(F ) = m, given any basis
(u1, . . . , un) of E and a basis (v1, . . . , vm) of F , we know that f is represented by an m× n
matrix A = (ai j), where the jth column of A is equal to f(uj) over the basis (v1, . . . , vm).
Furthermore, the transpose map f> is represented by the n×m matrix A> (with respect to
the dual bases). Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to

(1) The column space of A, denoted by ImA or R(A); this is the subspace of Rm spanned
by the columns of A, which corresponds to the image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or N (A); this is the subspace of Rn

consisting of all vectors x ∈ Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>); this is the subspace of Rn spanned
by the rows of A, or equivalently, spanned by the columns of A>, which corresponds
to the image Im f> of f>.
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(4) The left kernel or left nullspace of A denoted by KerA> or N (A>); this is the kernel
(nullspace) of A>, the subspace of Rm consisting of all vectors y ∈ Rm such that
A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal to the dimension of the column
space ImA = R(A), is the rank of A (and f). Then, some our previous results can be
reformulated as follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n− r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m− r.

The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part I (see Strang [103]).

The two statements

Ker f = (Im f>)0

Ker f> = (Im f)0

translate to

(1) The nullspace of A is the orthogonal of the row space of A.

(2) The left nullspace of A is the orthogonal of the column space of A.

The above statements constitute what Strang calls the Fundamental Theorem of Linear
Algebra, Part II (see Strang [103]).

Since vectors are represented by column vectors and linear forms by row vectors (over a
basis in E or F ), a vector x ∈ Rn is orthogonal to a linear form y iff

yx = 0.

Then, a vector x ∈ Rn is orthogonal to the row space of A iff x is orthogonal to every row
of A, namely Ax = 0, which is equivalent to the fact that x belong to the nullspace of A.
Similarly, the column vector y ∈ Rm (representing a linear form over the dual basis of F ∗)
belongs to the nullspace of A> iff A>y = 0, iff y>A = 0, which means that the linear form
given by y> (over the basis in F ) is orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space of A is equal to the orthogonal
of the left nullspace of A, we get the following criterion for the solvability of an equation of
the form Ax = b:
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The equation Ax = b has a solution iff for all y ∈ Rm, if A>y = 0, then y>b = 0.

Indeed, the condition on the right-hand side says that b is orthogonal to the left nullspace
of A; that is, b belongs to the column space of A.

This criterion can be cheaper to check that checking directly that b is spanned by the
columns of A. For example, if we consider the system

x1 − x2 = b1

x2 − x3 = b2

x3 − x1 = b3

which, in matrix form, is written Ax = b as below: 1 −1 0
0 1 −1
−1 0 1

x1

x2

x3

 =

b1

b2

b3

 ,

we see that the rows of the matrix A add up to 0. In fact, it is easy to convince ourselves that
the left nullspace of A is spanned by y = (1, 1, 1), and so the system is solvable iff y>b = 0,
namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively as follows:

The equation Ax = b has no solution iff there is some y ∈ Rm such that A>y = 0 and
y>b 6= 0.

Since A>y = 0 iff y>A = 0, we can view y> as a row vector representing a linear form,
and y>A = 0 asserts that the linear form y> vanishes on the columns A1, . . . , An of A but
does not vanish on b. Since the linear form y> defines the hyperplane H of equation y>z = 0
(with z ∈ Rm), geometrically the equation Ax = b has no solution iff there is a hyperplane
H containing A1, . . . , An and not containing b.

9.7 Summary

The main concepts and results of this chapter are listed below:

• The dual space E∗ and linear forms (covector). The bidual E∗∗.

• The bilinear pairing 〈−,−〉 : E∗ × E → K (the canonical pairing).

• Evaluation at v: evalv : E∗ → K.

• The map evalE : E → E∗∗.

• Othogonality between a subspace V of E and a subspace U of E∗; the orthogonal V 0

and the orthogonal U0.
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• Coordinate forms .

• The Duality theorem (Theorem 9.1).

• The dual basis of a basis.

• The isomorphism evalE : E → E∗∗ when dim(E) is finite.

• Pairing between two vector spaces; nondegenerate pairing ; Proposition 9.3.

• Hyperplanes and linear forms.

• The transpose f> : F ∗ → E∗ of a linear map f : E → F .

• The fundamental identities:

Ker f> = (Im f)0 and Ker f = (Im f>)0

(Proposition 9.7).

• If F is finite-dimensional, then

rk(f) = rk(f>).

(Theorem 9.8).

• The matrix of the transpose map f> is equal to the transpose of the matrix of the map
f (Proposition 9.10).

• For any m× n matrix A,
rk(A) = rk(A>).

• Characterization of the rank of a matrix in terms of a maximal invertible submatrix
(Proposition 9.12).

• The four fundamental subspaces :

Im f, Im f>, Ker f, Ker f>.

• The column space, the nullspace, the row space, and the left nullspace (of a matrix).

• Criterion for the solvability of an equation of the form Ax = b in terms of the left
nullspace.



Chapter 10

Euclidean Spaces

Rien n’est beau que le vrai.

—Hermann Minkowski

10.1 Inner Products, Euclidean Spaces

So far, the framework of vector spaces allows us to deal with ratios of vectors and linear
combinations, but there is no way to express the notion of length of a line segment or to talk
about orthogonality of vectors. A Euclidean structure allows us to deal with metric notions
such as orthogonality and length (or distance).

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of Euclidean
geometry are investigated in Chapter 11. One of our main goals is to give the basic properties
of the transformations that preserve the Euclidean structure, rotations and reflections, since
they play an important role in practice. Euclidean geometry is the study of properties
invariant under certain affine maps called rigid motions . Rigid motions are the maps that
preserve the distance between points.

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz in-
equality and the Minkowski inequality are shown. We define orthogonality of vectors and of
subspaces, orthogonal bases, and orthonormal bases. We prove that every finite-dimensional
Euclidean space has orthonormal bases. The first proof uses duality, and the second one
the Gram–Schmidt orthogonalization procedure. The QR-decomposition for invertible ma-
trices is shown as an application of the Gram–Schmidt procedure. Linear isometries (also
called orthogonal transformations) are defined and studied briefly. We conclude with a short
section in which some applications of Euclidean geometry are sketched. One of the most
important applications, the method of least squares, is discussed in Chapter 17.

For a more detailed treatment of Euclidean geometry, see Berger [9, 10], Snapper and
Troyer [98], or any other book on geometry, such as Pedoe [81], Coxeter [32], Fresnel [43],
Tisseron [105], or Cagnac, Ramis, and Commeau [25]. Serious readers should consult Emil

297
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Artin’s famous book [5], which contains an in-depth study of the orthogonal group, as well
as other groups arising in geometry. It is still worth consulting some of the older classics,
such as Hadamard [51, 52] and Rouché and de Comberousse [82]. The first edition of [51]
was published in 1898, and finally reached its thirteenth edition in 1947! In this chapter it is
assumed that all vector spaces are defined over the field R of real numbers unless specified
otherwise (in a few cases, over the complex numbers C).

First, we define a Euclidean structure on a vector space. Technically, a Euclidean struc-
ture over a vector space E is provided by a symmetric bilinear form on the vector space
satisfying some extra properties. Recall that a bilinear form ϕ : E ×E → R is definite if for
every u ∈ E, u 6= 0 implies that ϕ(u, u) 6= 0, and positive if for every u ∈ E, ϕ(u, u) ≥ 0.

Definition 10.1. A Euclidean space is a real vector space E equipped with a symmetric
bilinear form ϕ : E×E → R that is positive definite. More explicitly, ϕ : E×E → R satisfies
the following axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u 6= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product (or scalar product) of u and v. We
also define the quadratic form associated with ϕ as the function Φ: E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is positive definite, we have the
stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is, Φ(u) = 0 iff u = 0.

Given an inner product ϕ : E × E → R on a vector space E, we also denote ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 10.1. The standard example of a Euclidean space is Rn, under the inner product
· defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn.

This Euclidean space is denoted by En.
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There are other examples.

Example 10.2. For instance, let E be a vector space of dimension 2, and let (e1, e2) be a
basis of E. If a > 0 and b2 − ac < 0, the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1) + cy1y2

yields a Euclidean structure on E. In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.

Example 10.3. Let C[a, b] denote the set of continuous functions f : [a, b] → R. It is
easily checked that C[a, b] is a vector space of infinite dimension. Given any two functions
f, g ∈ C[a, b], let

〈f, g〉 =

∫ b

a

f(t)g(t)dt.

We leave as an easy exercise that 〈−,−〉 is indeed an inner product on C[a, b]. In the case
where a = −π and b = π (or a = 0 and b = 2π, this makes basically no difference), one
should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉, and 〈cos px, cos qx〉,
for all natural numbers p, q ≥ 1. The outcome of these calculations is what makes Fourier
analysis possible!

Example 10.4. Let E = Mn(R) be the vector space of real n × n matrices. If we view
a matrix A ∈ Mn(R) as a “long” column vector obtained by concatenating together its
columns, we can define the inner product of two matrices A,B ∈ Mn(R) as

〈A,B〉 =
n∑

i,j=1

aijbij,

which can be conveniently written as

〈A,B〉 = tr(A>B) = tr(B>A).

Since this can be viewed as the Euclidean product on Rn2
, it is an inner product on Mn(R).

The corresponding norm
‖A‖F =

√
tr(A>A)

is the Frobenius norm (see Section 7.2).

Let us observe that ϕ can be recovered from Φ. Indeed, by bilinearity and symmetry, we
have

Φ(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u+ v) + ϕ(v, u+ v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).
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Thus, we have

ϕ(u, v) =
1

2
[Φ(u+ v)− Φ(u)− Φ(v)].

We also say that ϕ is the polar form of Φ.

If E is finite-dimensional and if ϕ : E × E → R is a bilinear form on E, given any basis
(e1, . . . , en) of E, we can write x =

∑n
i=1 xiei and y =

∑n
j=1 yjej, and we have

ϕ(x, y) = ϕ

( n∑
i=1

xiei,
n∑
j=1

yjej

)
=

n∑
i,j=1

xiyjϕ(ei, ej).

If we let G be the matrix G = (ϕ(ei, ej)), and if x and y are the column vectors associated
with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x>Gy = y>G>x.

Note that we are committing an abuse of notation, since x =
∑n

i=1 xiei is a vector in E, but
the column vector associated with (x1, . . . , xn) belongs to Rn. To avoid this minor abuse, we
could denote the column vector associated with (x1, . . . , xn) by x (and similarly y for the
column vector associated with (y1, . . . , yn)), in wich case the “correct” expression for ϕ(x, y)
is

ϕ(x, y) = x>Gy.

However, in view of the isomorphism between E and Rn, to keep notation as simple as
possible, we will use x and y instead of x and y.

Also observe that ϕ is symmetric iff G = G>, and ϕ is positive definite iff the matrix G
is positive definite, that is,

x>Gx > 0 for all x ∈ Rn, x 6= 0.

The matrix G associated with an inner product is called the Gram matrix of the inner
product with respect to the basis (e1, . . . , en).

Conversely, if A is a symmetric positive definite n×n matrix, it is easy to check that the
bilinear form

〈x, y〉 = x>Ay

is an inner product. If we make a change of basis from the basis (e1, . . . , en) to the basis
(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of
the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x′ and y′

over the basis (f1, . . . , fn), we have

x>Gy = x′>P>GPy′,

so the matrix of our inner product over the basis (f1, . . . , fn) is P>GP . We summarize these
facts in the following proposition.
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Proposition 10.1. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis
of E.

1. For any inner product 〈−,−〉 on E, if G = (〈ei, ej〉) is the Gram matrix of the inner
product 〈−,−〉 w.r.t. the basis (e1, . . . , en), then G is symmetric positive definite.

2. For any change of basis matrix P , the Gram matrix of 〈−,−〉 with respect to the new
basis is P>GP .

3. If A is any n× n symmetric positive definite matrix, then

〈x, y〉 = x>Ay

is an inner product on E.

We will see later that a symmetric matrix is positive definite iff its eigenvalues are all
positive.

One of the very important properties of an inner product ϕ is that the map u 7→
√

Φ(u)
is a norm.

Proposition 10.2. Let E be a Euclidean space with inner product ϕ, and let Φ be the
corresponding quadratic form. For all u, v ∈ E, we have the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v),

the equality holding iff u and v are linearly dependent, where in addition if u 6= 0 and v 6= 0,
then u = λv for some λ > 0.

Proof. For any vectors u, v ∈ E, we define the function T : R→ R such that

T (λ) = Φ(u+ λv),

for all λ ∈ R. Using bilinearity and symmetry, we have

Φ(u+ λv) = ϕ(u+ λv, u+ λv)

= ϕ(u, u+ λv) + λϕ(v, u+ λv)

= ϕ(u, u) + 2λϕ(u, v) + λ2ϕ(v, v)

= Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, Φ is nonnegative, and thus T (λ) ≥ 0 for all λ ∈ R. If Φ(v) = 0,
then v = 0, and we also have ϕ(u, v) = 0. In this case, the Cauchy–Schwarz inequality is
trivial, and v = 0 and u are linearly dependent.
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Now, assume Φ(v) > 0. Since T (λ) ≥ 0, the quadratic equation

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

cannot have distinct real roots, which means that its discriminant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is null or negative, which is precisely the Cauchy–Schwarz inequality

ϕ(u, v)2 ≤ Φ(u)Φ(v).

If
ϕ(u, v)2 = Φ(u)Φ(v)

then there are two cases. If Φ(v) = 0, then v = 0 and u and v are linearly dependent. If
Φ(v) 6= 0, then the above quadratic equation has a double root λ0, and we have Φ(u+λ0v) =
0. Since ϕ is positive definite, Φ(u+ λ0v) = 0 implies that u+ λ0v = 0, which shows that u
and v are linearly dependent. Conversely, it is easy to check that we have equality when u
and v are linearly dependent.

The Minkowski inequality √
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

is equivalent to
Φ(u+ v) ≤ Φ(u) + Φ(v) + 2

√
Φ(u)Φ(v).

However, we have shown that

2ϕ(u, v) = Φ(u+ v)− Φ(u)− Φ(v),

and so the above inequality is equivalent to

ϕ(u, v) ≤
√

Φ(u)Φ(v),

which is trivial when ϕ(u, v) ≤ 0, and follows from the Cauchy–Schwarz inequality when
ϕ(u, v) ≥ 0. Thus, the Minkowski inequality holds. Finally, assume that u 6= 0 and v 6= 0,
and that √

Φ(u+ v) =
√

Φ(u) +
√

Φ(v).

When this is the case, we have

ϕ(u, v) =
√

Φ(u)Φ(v),

and we know from the discussion of the Cauchy–Schwarz inequality that the equality holds
iff u and v are linearly dependent. The Minkowski inequality is an equality when u or v is
null. Otherwise, if u 6= 0 and v 6= 0, then u = λv for some λ 6= 0, and since

ϕ(u, v) = λϕ(v, v) =
√

Φ(u)Φ(v),

by positivity, we must have λ > 0.
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Note that the Cauchy–Schwarz inequality can also be written as

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequalities still
hold for a symmetric bilinear form that is positive, but not necessarily definite (i.e., ϕ(u, v) ≥
0 for all u, v ∈ E). However, u and v need not be linearly dependent when the equality holds.

The Minkowski inequality √
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) satisfies the convexity inequality (also known as triangle
inequality), condition (N3) of Definition 7.1, and since ϕ is bilinear and positive definite, it
also satisfies conditions (N1) and (N2) of Definition 7.1, and thus it is a norm on E. The
norm induced by ϕ is called the Euclidean norm induced by ϕ.

Note that the Cauchy–Schwarz inequality can be written as

|u · v| ≤ ‖u‖‖v‖,

and the Minkowski inequality as

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Remark: One might wonder if every norm on a vector space is induced by some Euclidean
inner product. In general, this is false, but remarkably, there is a simple necessary and
sufficient condition, which is that the norm must satisfy the parallelogram law :

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

If 〈−,−〉 is an inner product, then we have

‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2〈u, v〉
‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u, v〉,

and by adding and subtracting these identities, we get the parallelogram law and the equation

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2),

which allows us to recover 〈−,−〉 from the norm.
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Conversely, if ‖ ‖ is a norm satisfying the parallelogram law, and if it comes from an
inner product, then this inner product must be given by

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2).

We need to prove that the above form is indeed symmetric and bilinear.

Symmetry holds because ‖u− v‖ = ‖−(u− v)‖ = ‖v − u‖. Let us prove additivity in
the variable u. By the parallelogram law, we have

2(‖x+ z‖2 + ‖y‖2) = ‖x+ y + z‖2 + ‖x− y + z‖2

which yields

‖x+ y + z‖2 = 2(‖x+ z‖2 + ‖y‖2)− ‖x− y + z‖2

‖x+ y + z‖2 = 2(‖y + z‖2 + ‖x‖2)− ‖y − x+ z‖2 ,

where the second formula is obtained by swapping x and y. Then by adding up these
equations, we get

‖x+ y + z‖2 = ‖x‖2 + ‖y‖2 + ‖x+ z‖2 + ‖y + z‖2 − 1

2
‖x− y + z‖2 − 1

2
‖y − x+ z‖2 .

Replacing z by −z in the above equation, we get

‖x+ y − z‖2 = ‖x‖2 + ‖y‖2 + ‖x− z‖2 + ‖y − z‖2 − 1

2
‖x− y − z‖2 − 1

2
‖y − x− z‖2 ,

Since ‖x− y + z‖ = ‖−(x− y + z)‖ = ‖y − x− z‖ and ‖y − x+ z‖ = ‖−(y − x+ z)‖ =
‖x− y − z‖, by subtracting the last two equations, we get

〈x+ y, z〉 =
1

4
(‖x+ y + z‖2 − ‖x+ y − z‖2)

=
1

4
(‖x+ z‖2 − ‖x− z‖2) +

1

4
(‖y + z‖2 − ‖y − z‖2)

= 〈x, z〉+ 〈y, z〉,
as desired.

Proving that
〈λx, y〉 = λ〈x, y〉 for all λ ∈ R

is a little tricky. The strategy is to prove the identity for λ ∈ Z, then to promote it to Q,
and then to R by continuity.

Since

〈−u, v〉 =
1

4
(‖−u+ v‖2 − ‖−u− v‖2)

=
1

4
(‖u− v‖2 − ‖u+ v‖2)

= −〈u, v〉,
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the property holds for λ = −1. By linearity and by induction, for any n ∈ N with n ≥ 1,
writing n = n− 1 + 1, we get

〈λx, y〉 = λ〈x, y〉 for all λ ∈ N,

and since the above also holds for λ = −1, it holds for all λ ∈ Z. For λ = p/q with p, q ∈ Z
and q 6= 0, we have

q〈(p/q)u, v〉 = 〈pu, v〉 = p〈u, v〉,
which shows that

〈(p/q)u, v〉 = (p/q)〈u, v〉,
and thus

〈λx, y〉 = λ〈x, y〉 for all λ ∈ Q.

To finish the proof, we use the fact that a norm is a continuous map x 7→ ‖x‖. Then, the
continuous function t 7→ 1

t
〈tu, v〉 defined on R − {0} agrees with 〈u, v〉 on Q − {0}, so it is

equal to 〈u, v〉 on R− {0}. The case λ = 0 is trivial, so we are done.

We now define orthogonality.

10.2 Orthogonality, Duality, Adjoint of a Linear Map

An inner product on a vector space gives the ability to define the notion of orthogonality.
Families of nonnull pairwise orthogonal vectors must be linearly independent. They are
called orthogonal families. In a vector space of finite dimension it is always possible to find
orthogonal bases. This is very useful theoretically and practically. Indeed, in an orthogonal
basis, finding the coordinates of a vector is very cheap: It takes an inner product. Fourier
series make crucial use of this fact. When E has finite dimension, we prove that the inner
product on E induces a natural isomorphism between E and its dual space E∗. This allows
us to define the adjoint of a linear map in an intrinsic fashion (i.e., independently of bases).
It is also possible to orthonormalize any basis (certainly when the dimension is finite). We
give two proofs, one using duality, the other more constructive using the Gram–Schmidt
orthonormalization procedure.

Definition 10.2. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal, or
perpendicular , if u · v = 0. Given a family (ui)i∈I of vectors in E, we say that (ui)i∈I is
orthogonal if ui · uj = 0 for all i, j ∈ I, where i 6= j. We say that the family (ui)i∈I is
orthonormal if ui · uj = 0 for all i, j ∈ I, where i 6= j, and ‖ui‖ = ui · ui = 1, for all i ∈ I.
For any subset F of E, the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},

of all vectors orthogonal to all vectors in F , is called the orthogonal complement of F .
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Since inner products are positive definite, observe that for any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement F⊥ of F is a subspace of E.

Example 10.5. Going back to Example 10.3 and to the inner product

〈f, g〉 =

∫ π

−π
f(t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1,

〈cos px, cos qx〉 =

{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0,

and
〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course, 〈1, 1〉 =
∫ π
−π dx = 2π.

As a consequence, the family (sin px)p≥1∪(cos qx)q≥0 is orthogonal. It is not orthonormal,
but becomes so if we divide every trigonometric function by

√
π, and 1 by

√
2π.

Proposition 10.3. Given a Euclidean space E, for any family (ui)i∈I of nonnull vectors in
E, if (ui)i∈I is orthogonal, then it is linearly independent.

Proof. Assume there is a linear dependence∑
j∈J

λjuj = 0

for some λj ∈ R and some finite subset J of I. By taking the inner product with ui for
any i ∈ J , and using the the bilinearity of the inner product and the fact that ui · uj = 0
whenever i 6= j, we get

0 = ui · 0 = ui ·
(∑
j∈J

λjuj

)
=
∑
j∈J

λj(ui · uj) = λi(ui · ui),

so
λi(ui · ui) = 0, for all i ∈ J,

and since ui 6= 0 and an inner product is positive definite, ui · ui 6= 0, so we obtain

λi = 0, for all i ∈ J,
which shows that the family (ui)i∈I is linearly independent.



10.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP 307

We leave the following simple result as an exercise.

Proposition 10.4. Given a Euclidean space E, any two vectors u, v ∈ E are orthogonal iff

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

One of the most useful features of orthonormal bases is that they afford a very simple
method for computing the coordinates of a vector over any basis vector. Indeed, assume
that (e1, . . . , em) is an orthonormal basis. For any vector

x = x1e1 + · · ·+ xmem,

if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · ·+ xiei · ei + · · ·+ xmem · ei = xi,

since

ei · ej =

{
1 if i = j,
0 if i 6= j

is the property characterizing an orthonormal family. Thus,

xi = x · ei,

which means that xiei = (x · ei)ei is the orthogonal projection of x onto the subspace
generated by the basis vector ei. If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei
ei · ei

=
x · ei
‖ei‖2

.

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i∈I .

� However, remember that every vector x is expressed as a linear combination

x =
∑
i∈I

xiei

where the family of scalars (xi)i∈I has finite support, which means that xi = 0 for all
i ∈ I − J , where J is a finite set. Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0 is
orthogonal (it is not orthonormal, but becomes so if we divide every trigonometric function by√
π, and 1 by

√
2π; we won’t because it looks messy!), the fact that a function f ∈ C0[−π, π]

can be written as a Fourier series as

f(x) = a0 +
∞∑
k=1

(ak cos kx+ bk sin kx)
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does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis of this vector space of functions,
because in general, the families (ak) and (bk) do not have finite support! In order for this
infinite linear combination to make sense, it is necessary to prove that the partial sums

a0 +
n∑
k=1

(ak cos kx+ bk sin kx)

of the series converge to a limit when n goes to infinity. This requires a topology on the
space.

A very important property of Euclidean spaces of finite dimension is that the inner
product induces a canonical bijection (i.e., independent of the choice of bases) between the
vector space E and its dual E∗. The reason is that an inner product · : E × E → R defines
a nondegenerate pairing, as defined in Definition 9.4. Indeed, if u · v = 0 for all v ∈ E then
u = 0, and similarly if u · v = 0 for all u ∈ E then v = 0 (since an inner product is positive
definite and symmetric). By Proposition 9.3, there is a canonical isomorphism between E
and E∗. We feel that the reader will appreciate if we exhibit this mapping explicitly and
reprove that it is an isomorphism.

The mapping from E to E∗ is defined as follows. For any vector u ∈ E, let ϕu : E → R
be the map defined such that

ϕu(v) = u · v, for all v ∈ E.

Since the inner product is bilinear, the map ϕu is a linear form in E∗. Thus, we have a map
[ : E → E∗, defined such that

[(u) = ϕu.

Theorem 10.5. Given a Euclidean space E, the map [ : E → E∗ defined such that

[(u) = ϕu

is linear and injective. When E is also of finite dimension, the map [ : E → E∗ is a canonical
isomorphism.

Proof. That [ : E → E∗ is a linear map follows immediately from the fact that the inner
product is bilinear. If ϕu = ϕv, then ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu
means that u · w = v · w for all w ∈ E, which by bilinearity is equivalent to

(v − u) · w = 0

for all w ∈ E, which implies that u = v, since the inner product is positive definite. Thus,
[ : E → E∗ is injective. Finally, when E is of finite dimension n, we know that E∗ is also of
dimension n, and then [ : E → E∗ is bijective.
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The inverse of the isomorphism [ : E → E∗ is denoted by ] : E∗ → E.

As a consequence of Theorem 10.5, if E is a Euclidean space of finite dimension, every
linear form f ∈ E∗ corresponds to a unique u ∈ E such that

f(v) = u · v,

for every v ∈ E. In particular, if f is not the null form, the kernel of f , which is a hyperplane
H, is precisely the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map” [ : E → E∗ is not surjective when E has infinite dimension. The
result can be salvaged by restricting our attention to continuous linear maps, and by
assuming that the vector space E is a Hilbert space (i.e., E is a complete normed vector
space w.r.t. the Euclidean norm). This is the famous “little” Riesz theorem (or Riesz
representation theorem).

(2) Theorem 10.5 still holds if the inner product on E is replaced by a nondegenerate
symmetric bilinear form ϕ. We say that a symmetric bilinear form ϕ : E × E → R is
nondegenerate if for every u ∈ E,

if ϕ(u, v) = 0 for all v ∈ E, then u = 0.

For example, the symmetric bilinear form on R4 (the Lorentz form) defined such that

ϕ((x1, x2, x3, x4), (y1, y2, y3, y4)) = x1y1 + x2y2 + x3y3 − x4y4

is nondegenerate. However, there are nonnull vectors u ∈ R4 such that ϕ(u, u) = 0,
which is impossible in a Euclidean space. Such vectors are called isotropic.

Example 10.6. Consider Rn with its usual Euclidean inner product. Given any differen-
tiable function f : U → R, where U is some open subset of Rn, by definition, for any x ∈ U ,
the total derivative dfx of f at x is the linear form defined so that for all u = (u1, . . . , un) ∈ Rn,

dfx(u) =

(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)u1
...
un

 =
n∑
i=1

∂f

∂xi
(x)ui.

The unique vector v ∈ Rn such that

v · u = dfx(u) for all u ∈ Rn

is the transpose of the Jacobian matrix of f at x, the 1× n matrix(
∂f

∂x1

(x) · · · ∂f

∂xn
(x)

)
.
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This is the gradient grad(f)x of f at x, given by

grad(f)x =


∂f

∂x1

(x)

...
∂f

∂xn
(x)

 .

Example 10.7. Given any two vectors u, v ∈ R3, let c(u, v) be the linear form given by

c(u, v)(w) = det(u, v, w) for all w ∈ R3.

Since

det(u, v, w) =

∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ = w1

∣∣∣∣u2 v2

u3 v3

∣∣∣∣− w2

∣∣∣∣u1 v1

u3 v3

∣∣∣∣+ w3

∣∣∣∣u1 v1

u2 v2

∣∣∣∣
= w1(u2v3 − u3v2) + w2(u3v1 − u1v3) + w3(u1v2 − u2v1),

we see that the unique vector z ∈ R3 such that

z · w = c(u, v)(w) = det(u, v, w) for all w ∈ R3

is the vector

z =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

This is just the cross-product u × v of u and v. Since det(u, v, u) = det(u, v, v) = 0, we see
that u×v is orthogonal to both u and v. The above allows us to generalize the cross-product
to Rn. Given any n − 1 vectors u1, . . . , un−1 ∈ Rn, the cross-product u1 × · · · × un−1 is the
unique vector in Rn such that

(u1 × · · · × un−1) · w = det(u1, . . . , un−1, w) for all w ∈ Rn.

Example 10.8. Consider the vector space Mn(R) of real n × n matrices with the inner
product

〈A,B〉 = tr(A>B).

Let s : Mn(R)→ R be the function given by

s(A) =
n∑

i,j=1

aij,

where A = (aij). It is immediately verified that s is a linear form. It is easy to check that
the unique matrix Z such that

〈Z,A〉 = s(A) for all A ∈ Mn(R)

is the matrix Z = ones(n, n) whose entries are all equal to 1.
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The existence of the isomorphism [ : E → E∗ is crucial to the existence of adjoint maps.
The importance of adjoint maps stems from the fact that the linear maps arising in physical
problems are often self-adjoint, which means that f = f ∗. Moreover, self-adjoint maps can
be diagonalized over orthonormal bases of eigenvectors. This is the key to the solution of
many problems in mechanics, and engineering in general (see Strang [102]).

Let E be a Euclidean space of finite dimension n, and let f : E → E be a linear map.
For every u ∈ E, the map

v 7→ u · f(v)

is clearly a linear form in E∗, and by Theorem 10.5, there is a unique vector in E denoted
by f ∗(u) such that

f ∗(u) · v = u · f(v),

for every v ∈ E. The following simple proposition shows that the map f ∗ is linear.

Proposition 10.6. Given a Euclidean space E of finite dimension, for every linear map
f : E → E, there is a unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v),

for all u, v ∈ E. The map f ∗ is called the adjoint of f (w.r.t. to the inner product).

Proof. Given u1, u2 ∈ E, since the inner product is bilinear, we have

(u1 + u2) · f(v) = u1 · f(v) + u2 · f(v),

for all v ∈ E, and
(f ∗(u1) + f ∗(u2)) · v = f ∗(u1) · v + f ∗(u2) · v,

for all v ∈ E, and since by assumption,

f ∗(u1) · v = u1 · f(v) and f ∗(u2) · v = u2 · f(v),

for all v ∈ E, we get
(f ∗(u1) + f ∗(u2)) · v = (u1 + u2) · f(v),

for all v ∈ E. Since [ is bijective, this implies that

f ∗(u1 + u2) = f ∗(u1) + f ∗(u2).

Similarly,
(λu) · f(v) = λ(u · f(v)),

for all v ∈ E, and
(λf ∗(u)) · v = λ(f ∗(u) · v),

for all v ∈ E, and since by assumption,

f ∗(u) · v = u · f(v),
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for all v ∈ E, we get

(λf ∗(u)) · v = λ(u · f(v)) = (λu) · f(v)

for all v ∈ E. Since [ is bijective, this implies that

f ∗(λu) = λf ∗(u).

Thus, f ∗ is indeed a linear map, and it is unique, since [ is a bijection.

Linear maps f : E → E such that f = f ∗ are called self-adjoint maps. They play a very
important role because they have real eigenvalues, and because orthonormal bases arise from
their eigenvectors. Furthermore, many physical problems lead to self-adjoint linear maps (in
the form of symmetric matrices).

Remark: Proposition 10.6 still holds if the inner product on E is replaced by a nondegen-
erate symmetric bilinear form ϕ.

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are linear isometries , or isometries . Rotations are special
kinds of isometries. Another important class of linear maps are the linear maps satisfying
the property

f ∗ ◦ f = f ◦ f ∗,
called normal linear maps . We will see later on that normal maps can always be diagonalized
over orthonormal bases of eigenvectors, but this will require using a Hermitian inner product
(over C).

Given two Euclidean spaces E and F , where the inner product on E is denoted by 〈−,−〉1
and the inner product on F is denoted by 〈−,−〉2, given any linear map f : E → F , it is
immediately verified that the proof of Proposition 10.6 can be adapted to show that there
is a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

The following properties immediately follow from the definition of the adjoint map:

(1) For any linear map f : E → F , we have

f ∗∗ = f.
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(2) For any two linear maps f, g : E → F and any scalar λ ∈ R:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗.

(3) If E,F,G are Euclidean spaces with respective inner products 〈−,−〉1, 〈−,−〉2, and
〈−,−〉3, and if f : E → F and g : F → G are two linear maps, then

(g ◦ f)∗ = f ∗ ◦ g∗.

Remark: Given any basis for E and any basis for F , it is possible to characterize the matrix
of the adjoint f ∗ of f in terms of the matrix of f , and the symmetric matrices defining the
inner products. We will do so with respect to orthonormal bases. Also, since inner products
are symmetric, the adjoint f ∗ of f is also characterized by

f(u) · v = u · f ∗(v),

for all u, v ∈ E.

We can also use Theorem 10.5 to show that any Euclidean space of finite dimension has
an orthonormal basis.

Proposition 10.7. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, there
is an orthonormal basis (u1, . . . , un) for E.

Proof. We proceed by induction on n. When n = 1, take any nonnull vector v ∈ E, which
exists, since we assumed E nontrivial, and let

u =
v

‖v‖ .

If n ≥ 2, again take any nonnull vector v ∈ E, and let

u1 =
v

‖v‖ .

Consider the linear form ϕu1 associated with u1. Since u1 6= 0, by Theorem 10.5, the linear
form ϕu1 is nonnull, and its kernel is a hyperplane H. Since ϕu1(w) = 0 iff u1 · w = 0,
the hyperplane H is the orthogonal complement of {u1}. Furthermore, since u1 6= 0 and
the inner product is positive definite, u1 · u1 6= 0, and thus, u1 /∈ H, which implies that
E = H ⊕ Ru1. However, since E is of finite dimension n, the hyperplane H has dimension
n− 1, and by the induction hypothesis, we can find an orthonormal basis (u2, . . . , un) for H.
Now, because H and the one dimensional space Ru1 are orthogonal and E = H ⊕Ru1, it is
clear that (u1, . . . , un) is an orthonormal basis for E.
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There is a more constructive way of proving Proposition 10.7, using a procedure known as
the Gram–Schmidt orthonormalization procedure. Among other things, the Gram–Schmidt
orthonormalization procedure yields the QR-decomposition for matrices , an important tool
in numerical methods.

Proposition 10.8. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, from
any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E, with
the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate
the same subspace.

Proof. We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖
.

For n ≥ 2, we also let

u1 =
e1

‖e1‖
,

and assuming that (u1, . . . , uk) is an orthonormal system that generates the same subspace
as (e1, . . . , ek), for every k with 1 ≤ k < n, we note that the vector

u′k+1 = ek+1 −
k∑
i=1

(ek+1 · ui)ui

is nonnull, since otherwise, because (u1, . . . , uk) and (e1, . . . , ek) generate the same subspace,
(e1, . . . , ek+1) would be linearly dependent, which is absurd, since (e1, . . ., en) is a basis.
Thus, the norm of the vector u′k+1 being nonzero, we use the following construction of the
vectors uk and u′k:

u′1 = e1, u1 =
u′1
‖u′1‖

,

and for the inductive step

u′k+1 = ek+1 −
k∑
i=1

(ek+1 · ui)ui, uk+1 =
u′k+1

‖u′k+1‖
,

where 1 ≤ k ≤ n − 1. It is clear that ‖uk+1‖ = 1, and since (u1, . . . , uk) is an orthonormal
system, we have

u′k+1 · ui = ek+1 · ui − (ek+1 · ui)ui · ui = ek+1 · ui − ek+1 · ui = 0,

for all i with 1 ≤ i ≤ k. This shows that the family (u1, . . . , uk+1) is orthonormal, and since
(u1, . . . , uk) and (e1, . . . , ek) generates the same subspace, it is clear from the definition of
uk+1 that (u1, . . . , uk+1) and (e1, . . . , ek+1) generate the same subspace. This completes the
induction step and the proof of the proposition.



10.2. ORTHOGONALITY, DUALITY, ADJOINT OF A LINEAR MAP 315

Note that u′k+1 is obtained by subtracting from ek+1 the projection of ek+1 itself onto the
orthonormal vectors u1, . . . , uk that have already been computed. Then, u′k+1 is normalized.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this until
Section 10.4.

(2) We could compute u′k+1 using the formula

u′k+1 = ek+1 −
k∑
i=1

(
ek+1 · u′i
‖u′i‖2

)
u′i,

and normalize the vectors u′k at the end. This time, we are subtracting from ek+1

the projection of ek+1 itself onto the orthogonal vectors u′1, . . . , u
′
k. This might be

preferable when writing a computer program.

(3) The proof of Proposition 10.8 also works for a countably infinite basis for E, producing
a countably infinite orthonormal basis.

Example 10.9. If we consider polynomials and the inner product

〈f, g〉 =

∫ 1

−1

f(t)g(t)dt,

applying the Gram–Schmidt orthonormalization procedure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynomials in one variable with real coefficients, we get a family
of orthonormal polynomials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice properties. They are orthogonal, but
their norm is not always 1. The Legendre polynomials Pn(x) can be defined as follows.
Letting fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f
(n)
n is the nth derivative of fn.
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They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)− n

n+ 1
Pn−1(x).

Here is an explicit summation fo Pn(x) (thanks to Jocelyn Qaintance for telling me about
this formula):

Pn(x) =
1

2n

bn/2c∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k.

The polynomials Qn are related to the Legendre polynomials Pn as follows:

Qn(x) =

√
2n+ 1

2
Pn(x).

Example 10.10. Consider polynomials over [−1, 1], with the symmetric bilinear form

〈f, g〉 =

∫ 1

−1

1√
1− t2

f(t)g(t)dt.

We leave it as an exercise to prove that the above defines an inner product. It can be shown
that the polynomials Tn(x) given by

Tn(x) = cos(n arccosx), n ≥ 0,

(equivalently, with x = cos θ, we have Tn(cos θ) = cos(nθ)) are orthogonal with respect to
the above inner product. These polynomials are the Chebyshev polynomials. Their norm is
not equal to 1. Instead, we have

〈Tn, Tn〉 =

{
π
2

if n > 0,

π if n = 0.

Using the identity (cos θ + i sin θ)n = cosnθ + i sinnθ and the binomial formula, we obtain
the following expression for Tn(x):

Tn(x) =

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k.

The Chebyshev polynomials are defined inductively as follows:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.
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Using these recurrence equations, we can show that

Tn(x) =
(x−

√
x2 − 1)n + (x+

√
x2 − 1)n

2
.

The polynomial Tn has n distinct roots in the interval [−1, 1]. The Chebyshev polynomials
play an important role in approximation theory. They are used as an approximation to a
best polynomial approximation of a continuous function under the sup-norm (∞-norm).

The inner products of the last two examples are special cases of an inner product of the
form

〈f, g〉 =

∫ 1

−1

W (t)f(t)g(t)dt,

where W (t) is a weight function. If W is a nonzero continuous function such that W (x) ≥ 0
on (−1, 1), then the above bilinear form is indeed positive definite. Families of orthogonal
polynomials used in approximation theory and in physics arise by a suitable choice of the
weight function W . Besides the previous two examples, the Hermite polynomials correspond
to W (x) = e−x

2
, the Laguerre polynomials to W (x) = e−x, and the Jacobi polynomials

to W (x) = (1 − x)α(1 + x)β, with α, β > −1. Comprehensive treatments of orthogonal
polynomials can be found in Lebedev [68], Sansone [85], and Andrews, Askey and Roy [2].

As a consequence of Proposition 10.7 (or Proposition 10.8), given any Euclidean space
of finite dimension n, if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · ·+ unen and v = v1e1 + · · ·+ vnen, the inner product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑
i=1

u2
i

)1/2

.

The fact that a Euclidean space always has an orthonormal basis implies that any Gram
matrix G can be written as

G = Q>Q,

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram
matrix G becomes G′ = P>GP . If the basis corresponding to G′ is orthonormal, then G′ = I,
so G = (P−1)>P−1.

We can also prove the following proposition regarding orthogonal spaces.

Proposition 10.9. Given any nontrivial Euclidean space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥. Furthermore, we have F⊥⊥ = F .
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Proof. From Proposition 10.7, the subspace F has some orthonormal basis (u1, . . . , uk). This
linearly independent family (u1, . . . , uk) can be extended to a basis (u1, . . . , uk, vk+1, . . . , vn),
and by Proposition 10.8, it can be converted to an orthonormal basis (u1, . . . , un), which
contains (u1, . . . , uk) as an orthonormal basis of F . Now, any vector w = w1u1 + · · ·+wnun ∈
E is orthogonal to F iff w · ui = 0, for every i, where 1 ≤ i ≤ k, iff wi = 0 for every i, where
1 ≤ i ≤ k. Clearly, this shows that (uk+1, . . . , un) is a basis of F⊥, and thus E = F⊕F⊥, and
F⊥ has dimension n− k. Similarly, any vector w = w1u1 + · · ·+ wnun ∈ E is orthogonal to
F⊥ iff w ·ui = 0, for every i, where k+ 1 ≤ i ≤ n, iff wi = 0 for every i, where k+ 1 ≤ i ≤ n.
Thus, (u1, . . . , uk) is a basis of F⊥⊥, and F⊥⊥ = F .

10.3 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the Euclidean
norm. These transformations, sometimes called rigid motions , play an important role in
geometry.

Definition 10.3. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, a function f : E → F is an orthogonal transformation, or a linear isometry , if
it is linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.
Remarks:

(1) A linear isometry is often defined as a linear map such that

‖f(v)− f(u)‖ = ‖v − u‖,

for all u, v ∈ E. Since the map f is linear, the two definitions are equivalent. The
second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 10.3 is called a metric
map, and a linear isometry is defined as a bijective metric map.

An isometry (without the word linear) is sometimes defined as a function f : E → F (not
necessarily linear) such that

‖f(v)− f(u)‖ = ‖v − u‖,
for all u, v ∈ E, i.e., as a function that preserves the distance. This requirement turns out to
be very strong. Indeed, the next proposition shows that all these definitions are equivalent
when E and F are of finite dimension, and for functions such that f(0) = 0.

Proposition 10.10. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;



10.3. LINEAR ISOMETRIES (ORTHOGONAL TRANSFORMATIONS) 319

(2) ‖f(v)− f(u)‖ = ‖v − u‖, for all u, v ∈ E, and f(0) = 0;

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove that
if

‖f(v)− f(u)‖ = ‖v − u‖
for all u, v ∈ E, then for any vector τ ∈ E, the function g : E → F defined such that

g(u) = f(τ + u)− f(τ)

for all u ∈ E is a linear map such that g(0) = 0 and (3) holds. Clearly, g(0) = f(τ)−f(τ) = 0.

Note that from the hypothesis

‖f(v)− f(u)‖ = ‖v − u‖

for all u, v ∈ E, we conclude that

‖g(v)− g(u)‖ = ‖f(τ + v)− f(τ)− (f(τ + u)− f(τ))‖,
= ‖f(τ + v)− f(τ + u)‖,
= ‖τ + v − (τ + u)‖,
= ‖v − u‖,

for all u, v ∈ E. Since g(0) = 0, by setting u = 0 in

‖g(v)− g(u)‖ = ‖v − u‖,

we get
‖g(v)‖ = ‖v‖

for all v ∈ E. In other words, g preserves both the distance and the norm.

To prove that g preserves the inner product, we use the simple fact that

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2

for all u, v ∈ E. Then, since g preserves distance and norm, we have

2g(u) · g(v) = ‖g(u)‖2 + ‖g(v)‖2 − ‖g(u)− g(v)‖2

= ‖u‖2 + ‖v‖2 − ‖u− v‖2

= 2u · v,
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and thus g(u) ·g(v) = u ·v, for all u, v ∈ E, which is (3). In particular, if f(0) = 0, by letting
τ = 0, we have g = f , and f preserves the scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick an orthonor-
mal basis (e1, . . . , en) for E. Since f preserves inner products, (f(e1), . . ., f(en)) is also
orthonormal, and since F also has dimension n, it is a basis of F . Then note that for any
u = u1e1 + · · ·+ unen, we have

ui = u · ei,
for all i, 1 ≤ i ≤ n. Thus, we have

f(u) =
n∑
i=1

(f(u) · f(ei))f(ei),

and since f preserves inner products, this shows that

f(u) =
n∑
i=1

(u · ei)f(ei) =
n∑
i=1

uif(ei),

which shows that f is linear. Obviously, f preserves the Euclidean norm, and (3) implies
(1).

Finally, if f(u) = f(v), then by linearity f(v− u) = 0, so that ‖f(v− u)‖ = 0, and since
f preserves norms, we must have ‖v − u‖ = 0, and thus u = v. Thus, f is injective, and
since E and F have the same finite dimension, f is bijective.

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when f is not
known to be linear, and to prove that f is surjective, but the proof shows that (1)
implies that f is injective.

(ii) The implication that (3) implies (1) holds if we also assume that f is surjective, even
if E has infinite dimension.

In (2), when f does not satisfy the condition f(0) = 0, the proof shows that f is an affine
map. Indeed, taking any vector τ as an origin, the map g is linear, and

f(τ + u) = f(τ) + g(u) for all u ∈ E.

By Proposition 4.13, this shows that f is affine with associated linear map g.

This fact is worth recording as the following proposition.
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Proposition 10.11. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f : E → F , if

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E,

then f is an affine map, and its associated linear map g is an isometry.

In view of Proposition 10.10, we usually abbreviate “linear isometry” as “isometry,”
unless we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries f : E → E of a Euclidean space
of finite dimension.

10.4 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and of
orthogonal matrices.

Proposition 10.12. Let E be any Euclidean space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix
of f ∗ is the transpose A> of A, and f is an isometry iff A satisfies the identities

AA> = A>A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of Rn, iff the rows of A form an orthonormal basis of Rn.

Proof. (1) The linear map f : E → E is an isometry iff

f(u) · f(v) = u · v,

for all u, v ∈ E, iff
f ∗(f(u)) · v = f(u) · f(v) = u · v

for all u, v ∈ E, which implies
(f ∗(f(u))− u) · v = 0
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for all u, v ∈ E. Since the inner product is positive definite, we must have

f ∗(f(u))− u = 0

for all u ∈ E, that is,
f ∗ ◦ f = f ◦ f ∗ = id.

The converse is established by doing the above steps backward.

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let
B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · · + wnen we have wk = w · ek for all k,
1 ≤ k ≤ n, letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A>. Now, if X and Y are arbitrary matrices over
the basis (e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a
simple calculation shows that

X>Y = (X i · Y j)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then

A>A = AA> = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that
(2) is clear (also because the rows of A are the columns of A>).

Proposition 10.12 shows that the inverse of an isometry f is its adjoint f ∗. Recall that
the set of all real n× n matrices is denoted by Mn(R). Proposition 10.12 also motivates the
following definition.

Definition 10.4. A real n× n matrix is an orthogonal matrix if

AA> = A>A = In.

Remark: It is easy to show that the conditions AA> = In, A>A = In, and A−1 = A>, are
equivalent. Given any two orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change
of basis matrix from (u1, . . . , un) to (v1, . . . , vn), since the columns of P are the coordinates
of the vectors vj with respect to the basis (u1, . . . , un), and since (v1, . . . , vn) is orthonormal,
the columns of P are orthonormal, and by Proposition 10.12 (2), the matrix P is orthogonal.
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The proof of Proposition 10.10 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis. Students often ask why orthogonal
matrices are not called orthonormal matrices, since their columns (and rows) are orthonormal
bases! I have no good answer, but isometries do preserve orthogonality, and orthogonal
matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f : E → E is independent of the
choice of a basis in E. Also, for every matrix A ∈ Mn(R), we have det(A) = det(A>), and
for any two n × n matrices A and B, we have det(AB) = det(A) det(B). Then, if f is an
isometry, and A is its matrix with respect to any orthonormal basis, AA> = A>A = In
implies that det(A)2 = 1, that is, either det(A) = 1, or det(A) = −1. It is also clear that
the isometries of a Euclidean space of dimension n form a group, and that the isometries of
determinant +1 form a subgroup. This leads to the following definition.

Definition 10.5. Given a Euclidean space E of dimension n, the set of isometries f : E → E
forms a subgroup of GL(E) denoted by O(E), or O(n) when E = Rn, called the orthogonal
group (of E). For every isometry f , we have det(f) = ±1, where det(f) denotes the deter-
minant of f . The isometries such that det(f) = 1 are called rotations, or proper isometries,
or proper orthogonal transformations , and they form a subgroup of the special linear group
SL(E) (and of O(E)), denoted by SO(E), or SO(n) when E = Rn, called the special or-
thogonal group (of E). The isometries such that det(f) = −1 are called improper isometries,
or improper orthogonal transformations, or flip transformations .

As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices.

10.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-
ces.

Proposition 10.13. Given any real n × n matrix A, if A is invertible, then there is an
orthogonal matrix Q and an upper triangular matrix R with positive diagonal entries such
that A = QR.

Proof. We can view the columns of A as vectors A1, . . . , An in En. If A is invertible, then they
are linearly independent, and we can apply Proposition 10.8 to produce an orthonormal basis
using the Gram–Schmidt orthonormalization procedure. Recall that we construct vectors
Qk and Q

′k as follows:

Q
′1 = A1, Q1 =

Q
′1

‖Q′1‖ ,
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and for the inductive step

Q
′k+1 = Ak+1 −

k∑
i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q
′k+1

‖Q′k+1‖ ,

where 1 ≤ k ≤ n − 1. If we express the vectors Ak in terms of the Qi and Q
′i, we get the

triangular system

A1 = ‖Q′1‖Q1,
...

Aj = (Aj ·Q1)Q1 + · · ·+ (Aj ·Qi)Qi + · · ·+ ‖Q′j‖Qj,
...

An = (An ·Q1)Q1 + · · ·+ (An ·Qn−1)Qn−1 + ‖Q′n‖Qn.

Letting rk k = ‖Q′k‖, and ri j = Aj ·Qi (the reversal of i and j on the right-hand side is
intentional!), where 1 ≤ k ≤ n, 2 ≤ j ≤ n, and 1 ≤ i ≤ j − 1, and letting qi j be the ith
component of Qj, we note that ai j, the ith component of Aj, is given by

ai j = r1 jqi 1 + · · ·+ ri jqi i + · · ·+ rj jqi j = qi 1r1 j + · · ·+ qi iri j + · · ·+ qi jrj j.

If we let Q = (qi j), the matrix whose columns are the components of the Qj, and R = (ri j),
the above equations show that A = QR, where R is upper triangular. The diagonal entries
rk k = ‖Q′k‖ = Ak ·Qk are indeed positive.

The reader should try the above procedure on some concrete examples for 2×2 and 3×3
matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are
unique.

(2) The QR-decomposition holds even when A is not invertible. In this case, R has some
zero on the diagonal. However, a different proof is needed. We will give a nice proof
using Householder matrices (see Proposition 11.3, and also Strang [102, 103], Golub
and Van Loan [49], Trefethen and Bau [106], Demmel [33], Kincaid and Cheney [60],
or Ciarlet [30]).

Example 10.11. Consider the matrix

A =

0 0 5
0 4 1
1 1 1

 .



10.5. QR-DECOMPOSITION FOR INVERTIBLE MATRICES 325

We leave as an exercise to show that A = QR, with

Q =

0 0 1
0 1 0
1 0 0

 and R =

1 1 1
0 4 1
0 0 5

 .

Example 10.12. Another example of QR-decomposition is

A =

1 1 2
0 0 1
1 0 0

 =

1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0

√2 1/
√

2
√

2

0 1/
√

2
√

2
0 0 1

 .

The QR-decomposition yields a rather efficient and numerically stable method for solving
systems of linear equations. Indeed, given a system Ax = b, where A is an n× n invertible
matrix, writing A = QR, since Q is orthogonal, we get

Rx = Q>b,

and since R is upper triangular, we can solve it by Gaussian elimination, by solving for the
last variable xn first, substituting its value into the system, then solving for xn−1, etc. The
QR-decomposition is also very useful in solving least squares problems (we will come back
to this later on), and for finding eigenvalues. It can be easily adapted to the case where A is
a rectangular m× n matrix with independent columns (thus, n ≤ m). In this case, Q is not
quite orthogonal. It is an m×n matrix whose columns are orthogonal, and R is an invertible
n × n upper triangular matrix with positive diagonal entries. For more on QR, see Strang
[102, 103], Golub and Van Loan [49], Demmel [33], Trefethen and Bau [106], or Serre [96].

It should also be said that the Gram–Schmidt orthonormalization procedure that we have
presented is not very stable numerically, and instead, one should use the modified Gram–
Schmidt method . To compute Q

′k+1, instead of projecting Ak+1 onto Q1, . . . , Qk in a single
step, it is better to perform k projections. We compute Qk+1

1 , Qk+1
2 , . . . , Qk+1

k as follows:

Qk+1
1 = Ak+1 − (Ak+1 ·Q1)Q1,

Qk+1
i+1 = Qk+1

i − (Qk+1
i ·Qi+1)Qi+1,

where 1 ≤ i ≤ k − 1. It is easily shown that Q
′k+1 = Qk+1

k . The reader is urged to code this
method.

A somewhat surprising consequence of the QR-decomposition is a famous determinantal
inequality due to Hadamard.

Proposition 10.14. (Hadamard) For any real n× n matrix A = (aij), we have

| det(A)| ≤
n∏
i=1

( n∑
j=1

a2
ij

)1/2

and | det(A)| ≤
n∏
j=1

( n∑
i=1

a2
ij

)1/2

.

Moreover, equality holds iff either A has a zero column in the left inequality or a zero row in
the right inequality, or A is orthogonal.
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Proof. If det(A) = 0, then the inequality is trivial. In addition, if the righthand side is also
0, then either some column or some row is zero. If det(A) 6= 0, then we can factor A as
A = QR, with Q is orthogonal and R = (rij) upper triangular with positive diagonal entries.
Then, since Q is orthogonal det(Q) = ±1, so

| det(A)| = | det(Q)| | det(R)| =
∏
j=1

rjj.

Now, as Q is orthogonal, it preserves the Euclidean norm, so

n∑
i=1

a2
ij =

∥∥Aj∥∥2

2
=
∥∥QRj

∥∥2

2
=
∥∥Rj

∥∥2

2
=

n∑
i=1

r2
ij ≥ r2

jj,

which implies that

| det(A)| =
n∏
j=1

rjj ≤
n∏
j=1

∥∥Rj
∥∥

2
=

n∏
j=1

( n∑
i=1

a2
ij

)1/2

.

The other inequality is obtained by replacing A by A>. Finally, if det(A) 6= 0 and equality
holds, then we must have

rjj =
∥∥Aj∥∥

2
, 1 ≤ j ≤ n,

which can only occur is R is orthogonal.

Another version of Hadamard’s inequality applies to symmetric positive semidefinite
matrices.

Proposition 10.15. (Hadamard) For any real n × n matrix A = (aij), if A is symmetric
positive semidefinite, then we have

det(A) ≤
n∏
i=1

aii.

Moreover, if A is positive definite, then equality holds iff A is a diagonal matrix.

Proof. If det(A) = 0, the inequality is trivial. Otherwise, A is positive definite, and by
Theorem 6.10 (the Cholesky Factorization), there is a unique upper triangular matrix B
with positive diagonal entries such that

A = B>B.

Thus, det(A) = det(B>B) = det(B>) det(B) = det(B)2. If we apply the Hadamard inequal-
ity (Proposition 10.15) to B, we obtain

det(B) ≤
n∏
j=1

( n∑
i=1

b2
ij

)1/2

. (∗)
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However, the diagonal entries ajj of A = B>B are precisely the square norms ‖Bj‖2
2 =∑n

i=1 b
2
ij, so by squaring (∗), we obtain

det(A) = det(B)2 ≤
n∏
j=1

( n∑
i=1

b2
ij

)
=

n∏
j=1

ajj.

If det(A) 6= 0 and equality holds, then B must be orthogonal, which implies that B is a
diagonal matrix, and so is A.

We derived the second Hadamard inequality (Proposition 10.15) from the first (Proposi-
tion 10.14). We leave it as an exercise to prove that the first Hadamard inequality can be
deduced from the second Hadamard inequality.

10.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voronoi dia-
grams and Delaunay triangulations. In turn, Voronoi diagrams have applications in motion
planning (see O’Rourke [79]).

Euclidean geometry also has applications to matrix analysis. Recall that a real n × n
matrix A is symmetric if it is equal to its transpose A>. One of the most important properties
of symmetric matrices is that they have real eigenvalues and that they can be diagonalized
by an orthogonal matrix (see Chapter 14). This means that for every symmetric matrix A,
there is a diagonal matrix D and an orthogonal matrix P such that

A = PDP>.

Even though it is not always possible to diagonalize an arbitrary matrix, there are various
decompositions involving orthogonal matrices that are of great practical interest. For exam-
ple, for every real matrix A, there is the QR-decomposition, which says that a real matrix
A can be expressed as

A = QR,

where Q is orthogonal and R is an upper triangular matrix. This can be obtained from the
Gram–Schmidt orthonormalization procedure, as we saw in Section 10.5, or better, using
Householder matrices, as shown in Section 11.2. There is also the polar decomposition,
which says that a real matrix A can be expressed as

A = QS,

where Q is orthogonal and S is symmetric positive semidefinite (which means that the eigen-
values of S are nonnegative). Such a decomposition is important in continuum mechanics
and in robotics, since it separates stretching from rotation. Finally, there is the wonderful
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singular value decomposition, abbreviated as SVD, which says that a real matrix A can be
expressed as

A = V DU>,

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries (see
Chapter 16). This decomposition leads to the notion of pseudo-inverse, which has many
applications in engineering (least squares solutions, etc). For an excellent presentation of all
these notions, we highly recommend Strang [103, 102], Golub and Van Loan [49], Demmel
[33], Serre [96], and Trefethen and Bau [106].

The method of least squares, invented by Gauss and Legendre around 1800, is another
great application of Euclidean geometry. Roughly speaking, the method is used to solve
inconsistent linear systems Ax = b, where the number of equations is greater than the
number of variables. Since this is generally impossible, the method of least squares consists
in finding a solution x minimizing the Euclidean norm ‖Ax − b‖2, that is, the sum of the
squares of the “errors.” It turns out that there is always a unique solution x+ of smallest
norm minimizing ‖Ax− b‖2, and that it is a solution of the square system

A>Ax = A>b,

called the system of normal equations . The solution x+ can be found either by using the QR-
decomposition in terms of Householder transformations, or by using the notion of pseudo-
inverse of a matrix. The pseudo-inverse can be computed using the SVD decomposition.
Least squares methods are used extensively in computer vision More details on the method
of least squares and pseudo-inverses can be found in Chapter 17.

10.7 Summary

The main concepts and results of this chapter are listed below:

• Bilinear forms; positive definite bilinear forms.

• inner products , scalar products , Euclidean spaces .

• quadratic form associated with a bilinear form.

• The Euclidean space En.

• The polar form of a quadratic form.

• Gram matrix associated with an inner product.

• The Cauchy–Schwarz inequality ; the Minkowski inequality .

• The parallelogram law .
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• Orthogonality , orthogonal complement F⊥; orthonormal family .

• The musical isomorphisms [ : E → E∗ and ] : E∗ → E (when E is finite-dimensional);
Theorem 10.5.

• The adjoint of a linear map (with respect to an inner product).

• Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition
10.7).

• The Gram–Schmidt orthonormalization procedure (Proposition 10.8).

• The Legendre and the Chebyshev polynomials.

• Linear isometries (orthogonal transformations , rigid motions).

• The orthogonal group, orthogonal matrices .

• The matrix representing the adjoint f ∗ of a linear map f is the transpose of the matrix
representing f .

• The orthogonal group O(n) and the special orthogonal group SO(n).

• QR-decomposition for invertible matrices.

• The Hadamard inequality for arbitrary real matrices.

• The Hadamard inequality for symmetric positive semidefinite matrices.
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Chapter 11

QR-Decomposition for Arbitrary
Matrices

11.1 Orthogonal Reflections

Hyperplane reflections are represented by matrices called Householder matrices. These ma-
trices play an important role in numerical methods, for instance for solving systems of linear
equations, solving least squares problems, for computing eigenvalues, and for transforming a
symmetric matrix into a tridiagonal matrix. We prove a simple geometric lemma that imme-
diately yields the QR-decomposition of arbitrary matrices in terms of Householder matrices.

Orthogonal symmetries are a very important example of isometries. First let us review
the definition of projections. Given a vector space E, let F and G be subspaces of E that
form a direct sum E = F ⊕ G. Since every u ∈ E can be written uniquely as u = v + w,
where v ∈ F and w ∈ G, we can define the two projections pF : E → F and pG : E → G such
that pF (u) = v and pG(u) = w. It is immediately verified that pG and pF are linear maps,
and that p2

F = pF , p2
G = pG, pF ◦ pG = pG ◦ pF = 0, and pF + pG = id.

Definition 11.1. Given a vector space E, for any two subspaces F and G that form a direct
sum E = F ⊕ G, the symmetry (or reflection) with respect to F and parallel to G is the
linear map s : E → E defined such that

s(u) = 2pF (u)− u,

for every u ∈ E.

Because pF + pG = id, note that we also have

s(u) = pF (u)− pG(u)

and
s(u) = u− 2pG(u),

331
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s2 = id, s is the identity on F , and s = −id on G. We now assume that E is a Euclidean
space of finite dimension.

Definition 11.2. Let E be a Euclidean space of finite dimension n. For any two subspaces
F and G, if F and G form a direct sum E = F ⊕ G and F and G are orthogonal, i.e.,
F = G⊥, the orthogonal symmetry (or reflection) with respect to F and parallel to G is the
linear map s : E → E defined such that

s(u) = 2pF (u)− u,

for every u ∈ E. When F is a hyperplane, we call s a hyperplane symmetry with respect to
F (or reflection about F ), and when G is a plane (and thus dim(F ) = n − 2), we call s a
flip about F .

A reflection about a hyperplane F is shown in Figure 11.1.

u

s(u)

pG (u)

− pG (u)

pF (u)

F

G

Figure 11.1: A reflection about the peach hyperplane F . Note that u is purple, pF (u) is blue
and pG(u) is red.

For any two vectors u, v ∈ E, it is easily verified using the bilinearity of the inner product
that

‖u+ v‖2 − ‖u− v‖2 = 4(u · v).

Then, since
u = pF (u) + pG(u)

and
s(u) = pF (u)− pG(u),

since F and G are orthogonal, it follows that

pF (u) · pG(v) = 0,
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and thus,
‖s(u)‖ = ‖u‖,

so that s is an isometry.

Using Proposition 10.8, it is possible to find an orthonormal basis (e1, . . . , en) of E con-
sisting of an orthonormal basis of F and an orthonormal basis of G. Assume that F has di-
mension p, so that G has dimension n−p. With respect to the orthonormal basis (e1, . . . , en),
the symmetry s has a matrix of the form(

Ip 0
0 −In−p

)
.

Thus, det(s) = (−1)n−p, and s is a rotation iff n − p is even. In particular, when F is

a hyperplane H, we have p = n − 1 and n − p = 1, so that s is an improper orthogonal
transformation. When F = {0}, we have s = −id, which is called the symmetry with respect
to the origin. The symmetry with respect to the origin is a rotation iff n is even, and an
improper orthogonal transformation iff n is odd. When n is odd, we observe that every
improper orthogonal transformation is the composition of a rotation with the symmetry
with respect to the origin. When G is a plane, p = n− 2, and det(s) = (−1)2 = 1, so that a
flip about F is a rotation. In particular, when n = 3, F is a line, and a flip about the line
F is indeed a rotation of measure π.

Remark: Given any two orthogonal subspaces F,G forming a direct sum E = F ⊕ G, let
f be the symmetry with respect to F and parallel to G, and let g be the symmetry with
respect to G and parallel to F . We leave as an exercise to show that

f ◦ g = g ◦ f = −id.

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms of any
nonnull vector w orthogonal to H. Indeed, from

u = pH(u) + pG(u),

since pG(u) ∈ G and G is spanned by w, which is orthogonal to H, we have

pG(u) = λw

for some λ ∈ R, and we get
u · w = λ‖w‖2,

and thus

pG(u) =
(u · w)

‖w‖2
w.
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Since
s(u) = u− 2pG(u),

we get

s(u) = u− 2
(u · w)

‖w‖2
w.

Such reflections are represented by matrices called Householder matrices , and they play
an important role in numerical matrix analysis (see Kincaid and Cheney [60] or Ciarlet
[30]). Householder matrices are symmetric and orthogonal. It is easily checked that over an
orthonormal basis (e1, . . . , en), a hyperplane reflection about a hyperplane H orthogonal to
a nonnull vector w is represented by the matrix

H = In − 2
WW>

‖W‖2
= In − 2

WW>

W>W
,

where W is the column vector of the coordinates of w over the basis (e1, . . . , en), and In is
the identity n× n matrix. Since

pG(u) =
(u · w)

‖w‖2
w,

the matrix representing pG is
WW>

W>W
,

and since pH + pG = id, the matrix representing pH is

In −
WW>

W>W
.

These formulae can be used to derive a formula for a rotation of R3, given the direction w
of its axis of rotation and given the angle θ of rotation.

The following fact is the key to the proof that every isometry can be decomposed as a
product of reflections.

Proposition 11.1. Let E be any nontrivial Euclidean space. For any two vectors u, v ∈ E,
if ‖u‖ = ‖v‖, then there is a hyperplane H such that the reflection s about H maps u to v,
and if u 6= v, then this reflection is unique.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise, we must have
H = {v − u}⊥, and by the above formula,

s(u) = u− 2
(u · (v − u))

‖(v − u)‖2
(v − u) = u+

2‖u‖2 − 2u · v
‖(v − u)‖2

(v − u),

and since
‖(v − u)‖2 = ‖u‖2 + ‖v‖2 − 2u · v
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and ‖u‖ = ‖v‖, we have

‖(v − u)‖2 = 2‖u‖2 − 2u · v,
and thus, s(u) = v.

� If E is a complex vector space and the inner product is Hermitian, Proposition 11.1
is false. The problem is that the vector v−u does not work unless the inner product

u ·v is real! The proposition can be salvaged enough to yield the QR-decomposition in terms
of Householder transformations; see Gallier [44].

We now show that hyperplane reflections can be used to obtain another proof of the
QR-decomposition.

11.2 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder matrices,
we obtain the fact advertised earlier that every matrix (not necessarily invertible) has a
QR-decomposition.

Proposition 11.2. Let E be a nontrivial Euclidean space of dimension n. For any orthonor-
mal basis (e1, . . ., en) and for any n-tuple of vectors (v1, . . ., vn), there is a sequence of n
isometries h1, . . . , hn such that hi is a hyperplane reflection or the identity, and if (r1, . . . , rn)
are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Equivalently, the
matrix R whose columns are the components of the rj over the basis (e1, . . . , en) is an upper
triangular matrix. Furthermore, the hi can be chosen so that the diagonal entries of R are
nonnegative.

Proof. We proceed by induction on n. For n = 1, we have v1 = λe1 for some λ ∈ R. If
λ ≥ 0, we let h1 = id, else if λ < 0, we let h1 = −id, the reflection about the origin.

For n ≥ 2, we first have to find h1. Let

r1,1 = ‖v1‖.

If v1 = r1,1e1, we let h1 = id. Otherwise, there is a unique hyperplane reflection h1 such that

h1(v1) = r1,1 e1,

defined such that

h1(u) = u− 2
(u · w1)

‖w1‖2
w1
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for all u ∈ E, where
w1 = r1,1 e1 − v1.

The map h1 is the reflection about the hyperplane H1 orthogonal to the vector w1 = r1,1 e1−
v1. Letting

r1 = h1(v1) = r1,1 e1,

it is obvious that r1 belongs to the subspace spanned by e1, and r1,1 = ‖v1‖ is nonnegative.

Next, assume that we have found k linear maps h1, . . . , hk, hyperplane reflections or the
identity, where 1 ≤ k ≤ n− 1, such that if (r1, . . . , rk) are the vectors given by

rj = hk ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ k. The vectors
(e1, . . . , ek) form a basis for the subspace denoted by U ′k, the vectors (ek+1, . . . , en) form
a basis for the subspace denoted by U ′′k , the subspaces U ′k and U ′′k are orthogonal, and
E = U ′k ⊕ U ′′k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write
uk+1 = u′k+1 + u′′k+1,

where u′k+1 ∈ U ′k and u′′k+1 ∈ U ′′k . Let

rk+1,k+1 = ‖u′′k+1‖.

If u′′k+1 = rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, there is a unique hyperplane reflection
hk+1 such that

hk+1(u′′k+1) = rk+1,k+1 ek+1,

defined such that

hk+1(u) = u− 2
(u · wk+1)

‖wk+1‖2
wk+1

for all u ∈ E, where
wk+1 = rk+1,k+1 ek+1 − u′′k+1.

The map hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector wk+1 =
rk+1,k+1 ek+1−u′′k+1. However, since u′′k+1, ek+1 ∈ U ′′k and U ′k is orthogonal to U ′′k , the subspace
U ′k is contained in Hk+1, and thus, the vectors (r1, . . . , rk) and u′k+1, which belong to U ′k, are
invariant under hk+1. This proves that

hk+1(uk+1) = hk+1(u′k+1) + hk+1(u′′k+1) = u′k+1 + rk+1,k+1 ek+1

is a linear combination of (e1, . . . , ek+1). Letting

rk+1 = hk+1(uk+1) = u′k+1 + rk+1,k+1 ek+1,
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since uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), the vector

rk+1 = hk+1 ◦ · · · ◦ h2 ◦ h1(vk+1)

is a linear combination of (e1, . . . , ek+1). The coefficient of rk+1 over ek+1 is rk+1,k+1 = ‖u′′k+1‖,
which is nonnegative. This concludes the induction step, and thus the proof.

Remarks:

(1) Since every hi is a hyperplane reflection or the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry hn may be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek − u′′k,

where 1 ≤ k ≤ n, it might be preferable to pick rk,k = −‖u′′k‖ if this makes ‖wk‖2

larger, in which case
wk = rk,k ek + u′′k.

Indeed, since the definition of hk involves division by ‖wk‖2, it is desirable to avoid
division by very small numbers.

(4) The method also applies to any m-tuple of vectors (v1, . . . , vm), where m is not neces-
sarily equal to n (the dimension of E). In this case, R is an upper triangular n ×m
matrix we leave the minor adjustments to the method as an exercise to the reader (if
m > n, the last m− n vectors are unchanged).

Proposition 11.2 directly yields the QR-decomposition in terms of Householder transfor-
mations (see Strang [102, 103], Golub and Van Loan [49], Trefethen and Bau [106], Kincaid
and Cheney [60], or Ciarlet [30]).

Theorem 11.3. For every real n× n matrix A, there is a sequence H1, . . ., Hn of matrices,
where each Hi is either a Householder matrix or the identity, and an upper triangular matrix
R such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where Q is orthogonal and R is upper
triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can be chosen
so that its diagonal entries are nonnegative.
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Proof. The jth column of A can be viewed as a vector vj over the canonical basis (e1, . . . , en)
of En (where (ej)i = 1 if i = j, and 0 otherwise, 1 ≤ i, j ≤ n). Applying Proposition 11.2
to (v1, . . . , vn), there is a sequence of n isometries h1, . . . , hn such that hi is a hyperplane
reflection or the identity, and if (r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), 1 ≤ j ≤ n. Letting R be the
matrix whose columns are the vectors rj, and Hi the matrix associated with hi, it is clear
that

R = Hn · · ·H2H1A,

where R is upper triangular and every Hi is either a Householder matrix or the identity.
However, hi ◦ hi = id for all i, 1 ≤ i ≤ n, and so

vj = h1 ◦ h2 ◦ · · · ◦ hn(rj)

for all j, 1 ≤ j ≤ n. But ρ = h1 ◦ h2 ◦ · · · ◦ hn is an isometry represented by the orthogonal
matrix Q = H1H2 · · ·Hn. It is clear that A = QR, where R is upper triangular. As we noted
in Proposition 11.2, the diagonal entries of R can be chosen to be nonnegative.

Remarks:

(1) Letting
Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of Proposition 11.2 can be interpreted in terms of
the computation of the sequence of matrices A1, . . . , An+1 = R. The matrix Ak+1 has
the shape

Ak+1 =



× × × uk+1
1 × × × ×

0 × ...
...

...
...

...
...

0 0 × uk+1
k × × × ×

0 0 0 uk+1
k+1 × × × ×

0 0 0 uk+1
k+2 × × × ×

...
...

...
...

...
...

...
...

0 0 0 uk+1
n−1 × × × ×

0 0 0 uk+1
n × × × ×


,

where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),

and thus
u′k+1 =

(
uk+1

1 , . . . , uk+1
k

)
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and
u′′k+1 =

(
uk+1
k+1, u

k+1
k+2, . . . , u

k+1
n

)
.

If the last n− k− 1 entries in column k+ 1 are all zero, there is nothing to do, and we
let Hk+1 = I. Otherwise, we kill these n − k − 1 entries by multiplying Ak+1 on the
left by the Householder matrix Hk+1 sending(

0, . . . , 0, uk+1
k+1, . . . , u

k+1
n

)
to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),

where rk+1,k+1 = ‖(uk+1
k+1, . . . , u

k+1
n )‖.

(2) If A is invertible and the diagonal entries of R are positive, it can be shown that Q
and R are unique.

(3) If we allow negative diagonal entries in R, the matrix Hn may be omitted (Hn = I).

(4) The method allows the computation of the determinant of A. We have

det(A) = (−1)mr1,1 · · · rn,n,

where m is the number of Householder matrices (not the identity) among the Hi.

(5) The “condition number” of the matrix A is preserved (see Strang [103], Golub and Van
Loan [49], Trefethen and Bau [106], Kincaid and Cheney [60], or Ciarlet [30]). This is
very good for numerical stability.

(6) The method also applies to a rectangular m × n matrix. In this case, R is also an
m× n matrix (and it is upper triangular).

11.3 Summary

The main concepts and results of this chapter are listed below:

• Symmetry (or reflection) with respect to F and parallel to G.

• Orthogonal symmetry (or reflection) with respect to F and parallel to G; reflections ,
flips .

• Hyperplane reflections and Householder matrices .

• A key fact about reflections (Proposition 11.1).

• QR-decomposition in terms of Householder transformations (Theorem 11.3).
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Chapter 12

Hermitian Spaces

12.1 Sesquilinear and Hermitian Forms, Pre-Hilbert

Spaces and Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in Chapter
10 to vector spaces over the complex numbers. Such a generalization is inevitable, and not
simply a luxury. For example, linear maps may not have real eigenvalues, but they always
have complex eigenvalues. Furthermore, some very important classes of linear maps can
be diagonalized if they are extended to the complexification of a real vector space. This
is the case for orthogonal matrices, and, more generally, normal matrices. Also, complex
vector spaces are often the natural framework in physics or engineering, and they are more
convenient for dealing with Fourier series. However, some complications arise due to complex
conjugation.

Recall that for any complex number z ∈ C, if z = x+ iy where x, y ∈ R, we let <z = x,
the real part of z, and =z = y, the imaginary part of z. We also denote the conjugate of
z = x+ iy by z = x− iy, and the absolute value (or length, or modulus) of z by |z|. Recall
that |z|2 = zz = x2 + y2.

There are many natural situations where a map ϕ : E × E → C is linear in its first
argument and only semilinear in its second argument, which means that ϕ(u, µv) = µϕ(u, v),
as opposed to ϕ(u, µv) = µϕ(u, v). For example, the natural inner product to deal with
functions f : R→ C, especially Fourier series, is

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

which is semilinear (but not linear) in g. Thus, when generalizing a result from the real case
of a Euclidean space to the complex case, we always have to check very carefully that our
proofs do not rely on linearity in the second argument. Otherwise, we need to revise our
proofs, and sometimes the result is simply wrong!

341
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Before defining the natural generalization of an inner product, it is convenient to define
semilinear maps.

Definition 12.1. Given two vector spaces E and F over the complex field C, a function
f : E → F is semilinear if

f(u+ v) = f(u) + f(v),

f(λu) = λf(u),

for all u, v ∈ E and all λ ∈ C.

Remark: Instead of defining semilinear maps, we could have defined the vector space E as
the vector space with the same carrier set E whose addition is the same as that of E, but
whose multiplication by a complex number is given by

(λ, u) 7→ λu.

Then it is easy to check that a function f : E → C is semilinear iff f : E → C is linear.

We can now define sesquilinear forms and Hermitian forms.

Definition 12.2. Given a complex vector space E, a function ϕ : E×E → C is a sesquilinear
form if it is linear in its first argument and semilinear in its second argument, which means
that

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, µv) = µϕ(u, v),

for all u, v, u1, u2, v1, v2 ∈ E, and all λ, µ ∈ C. A function ϕ : E × E → C is a Hermitian
form if it is sesquilinear and if

ϕ(v, u) = ϕ(u, v)

for all all u, v ∈ E.

Obviously, ϕ(0, v) = ϕ(u, 0) = 0. Also note that if ϕ : E × E → C is sesquilinear, we
have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + λµϕ(u, v) + λµϕ(v, u) + |µ|2ϕ(v, v),

and if ϕ : E × E → C is Hermitian, we have

ϕ(λu+ µv, λu+ µv) = |λ|2ϕ(u, u) + 2<(λµϕ(u, v)) + |µ|2ϕ(v, v).
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Note that restricted to real coefficients, a sesquilinear form is bilinear (we sometimes say
R-bilinear). The function Φ: E → C defined such that Φ(u) = ϕ(u, u) for all u ∈ E is called
the quadratic form associated with ϕ.

The standard example of a Hermitian form on Cn is the map ϕ defined such that

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with these issues, we show the following
useful proposition.

Proposition 12.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ϕ : E×E → C is a Hermitian form iff ϕ(u, u) ∈ R for all u ∈ E.

(2) If ϕ : E × E → C is a sesquilinear form, then

4ϕ(u, v) = ϕ(u+ v, u+ v)− ϕ(u− v, u− v)

+ iϕ(u+ iv, u+ iv)− iϕ(u− iv, u− iv),

and

2ϕ(u, v) = (1 + i)(ϕ(u, u) + ϕ(v, v))− ϕ(u− v, u− v)− iϕ(u− iv, u− iv).

These are called polarization identities.

Proof. (1) If ϕ is a Hermitian form, then

ϕ(v, u) = ϕ(u, v)

implies that
ϕ(u, u) = ϕ(u, u),

and thus ϕ(u, u) ∈ R. If ϕ is sesquilinear and ϕ(u, u) ∈ R for all u ∈ E, then

ϕ(u+ v, u+ v) = ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v),

which proves that
ϕ(u, v) + ϕ(v, u) = α,

where α is real, and changing u to iu, we have

i(ϕ(u, v)− ϕ(v, u)) = β,

where β is real, and thus

ϕ(u, v) =
α− iβ

2
and ϕ(v, u) =

α + iβ

2
,

proving that ϕ is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave them as
an exercise.
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Proposition 12.1 shows that a sesquilinear form is completely determined by the quadratic
form Φ(u) = ϕ(u, u), even if ϕ is not Hermitian. This is false for a real bilinear form, unless
it is symmetric. For example, the bilinear form ϕ : R2 × R2 → R defined such that

ϕ((x1, y1), (x2, y2)) = x1y2 − x2y1

is not identically zero, and yet it is null on the diagonal. However, a real symmetric bilinear
form is indeed determined by its values on the diagonal, as we saw in Chapter 10.

As in the Euclidean case, Hermitian forms for which ϕ(u, u) ≥ 0 play an important role.

Definition 12.3. Given a complex vector space E, a Hermitian form ϕ : E × E → C is
positive if ϕ(u, u) ≥ 0 for all u ∈ E, and positive definite if ϕ(u, u) > 0 for all u 6= 0. A
pair 〈E,ϕ〉 where E is a complex vector space and ϕ is a Hermitian form on E is called a
pre-Hilbert space if ϕ is positive, and a Hermitian (or unitary) space if ϕ is positive definite.

We warn our readers that some authors, such as Lang [65], define a pre-Hilbert space as
what we define as a Hermitian space. We prefer following the terminology used in Schwartz
[91] and Bourbaki [21]. The quantity ϕ(u, v) is usually called the Hermitian product of u
and v. We will occasionally call it the inner product of u and v.

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Euclidean space, we also denote
ϕ(u, v) by

u · v or 〈u, v〉 or (u|v),

and
√

Φ(u) by ‖u‖.

Example 12.1. The complex vector space Cn under the Hermitian form

ϕ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn

is a Hermitian space.

Example 12.2. Let l2 denote the set of all countably infinite sequences x = (xi)i∈N of
complex numbers such that

∑∞
i=0 |xi|2 is defined (i.e., the sequence

∑n
i=0 |xi|2 converges as

n→ ∞). It can be shown that the map ϕ : l2 × l2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑
i=0

xiyi

is well defined, and l2 is a Hermitian space under ϕ. Actually, l2 is even a Hilbert space.

Example 12.3. Let Cpiece[a, b] be the set of piecewise bounded continuous functions
f : [a, b]→ C under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite. Thus, under
this Hermitian form, Cpiece[a, b] is only a pre-Hilbert space.
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Example 12.4. Let C[a, b] be the set of complex-valued continuous functions f : [a, b]→ C
under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus, C[a, b] is a Hermitian
space.

Example 12.5. Let E = Mn(C) be the vector space of complex n × n matrices. If we
view a matrix A ∈ Mn(C) as a “long” column vector obtained by concatenating together its
columns, we can define the Hermitian product of two matrices A,B ∈ Mn(C) as

〈A,B〉 =
n∑

i,j=1

aijbij,

which can be conveniently written as

〈A,B〉 = tr(A>B) = tr(B∗A).

Since this can be viewed as the standard Hermitian product on Cn2
, it is a Hermitian product

on Mn(C). The corresponding norm

‖A‖F =
√

tr(A∗A)

is the Frobenius norm (see Section 7.2).

If E is finite-dimensional and if ϕ : E × E → R is a sequilinear form on E, given any
basis (e1, . . . , en) of E, we can write x =

∑n
i=1 xiei and y =

∑n
j=1 yjej, and we have

ϕ(x, y) = ϕ

( n∑
i=1

xiei,
n∑
j=1

yjej

)
=

n∑
i,j=1

xiyjϕ(ei, ej).

If we let G = (gij) be the matrix given by gij = ϕ(ej, ei), and if x and y are the column
vectors associated with (x1, . . . , xn) and (y1, . . . , yn), then we can write

ϕ(x, y) = x>G> y = y∗Gx,

where y corresponds to (y1, . . . , yn). As in Section 10.1, we are committing the slight abuse of
notation of letting x denote both the vector x =

∑n
i=1 xiei and the column vector associated

with (x1, . . . , xn) (and similarly for y). The “correct” expression for ϕ(x, y) is

ϕ(x, y) = y∗Gx = x>G>y.

� Observe that in ϕ(x, y) = y∗Gx, the matrix involved is the transpose of the matrix
(ϕ(ei, ej)). The reason for this is that we want G to be positive definite when ϕ is

positive definite, not G>.
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Furthermore, observe that ϕ is Hermitian iff G = G∗, and ϕ is positive definite iff the
matrix G is positive definite, that is,

(Gx)>x = x∗Gx > 0 for all x ∈ Cn, x 6= 0.

The matrix G associated with a Hermitian product is called the Gram matrix of the Hermi-
tian product with respect to the basis (e1, . . . , en).

Conversely, if A is a Hermitian positive definite n×n matrix, it is easy to check that the
Hermitian form

〈x, y〉 = y∗Ax

is positive definite. If we make a change of basis from the basis (e1, . . . , en) to the basis
(f1, . . . , fn), and if the change of basis matrix is P (where the jth column of P consists of
the coordinates of fj over the basis (e1, . . . , en)), then with respect to coordinates x′ and y′

over the basis (f1, . . . , fn), we have

y∗Gx = (y′)∗P ∗GPx′,

so the matrix of our inner product over the basis (f1, . . . , fn) is P ∗GP . We summarize these
facts in the following proposition.

Proposition 12.2. Let E be a finite-dimensional vector space, and let (e1, . . . , en) be a basis
of E.

1. For any Hermitian inner product 〈−,−〉 on E, if G = (gij) with gij = 〈ej, ei〉 is the
Gram matrix of the Hermitian product 〈−,−〉 w.r.t. the basis (e1, . . . , en), then G is
Hermitian positive definite.

2. For any change of basis matrix P , the Gram matrix of 〈−,−〉 with respect to the new
basis is P ∗GP .

3. If A is any n× n Hermitian positive definite matrix, then

〈x, y〉 = y∗Ax

is a Hermitian product on E.

We will see later that a Hermitian matrix is positive definite iff its eigenvalues are all
positive.

The following result reminiscent of the first polarization identity of Proposition 12.1 can
be used to prove that two linear maps are identical.

Proposition 12.3. Given any Hermitian space E with Hermitian product 〈−,−〉, for any
linear map f : E → E, if 〈f(x), x〉 = 0 for all x ∈ E, then f = 0.
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Proof. Compute 〈f(x+ y), x+ y〉 and 〈f(x− y), x− y〉:

〈f(x+ y), x+ y〉 = 〈f(x), x〉+ 〈f(x), y〉+ 〈f(y), x〉+ 〈y, y〉
〈f(x− y), x− y〉 = 〈f(x), x〉 − 〈f(x), y〉 − 〈f(y), x〉+ 〈y, y〉;

then, subtract the second equation from the first, to obtain

〈f(x+ y), x+ y〉 − 〈f(x− y), x− y〉 = 2(〈f(x), y〉+ 〈f(y), x〉).

If 〈f(u), u〉 = 0 for all u ∈ E, we get

〈f(x), y〉+ 〈f(y), x〉 = 0 for all x, y ∈ E.

Then, the above equation also holds if we replace x by ix, and we obtain

i〈f(x), y〉 − i〈f(y), x〉 = 0, for all x, y ∈ E,

so we have

〈f(x), y〉+ 〈f(y), x〉 = 0

〈f(x), y〉 − 〈f(y), x〉 = 0,

which implies that 〈f(x), y〉 = 0 for all x, y ∈ E. Since 〈−,−〉 is positive definite, we have
f(x) = 0 for all x ∈ E; that is, f = 0.

One should be careful not to apply Proposition 12.3 to a linear map on a real Euclidean
space, because it is false! The reader should find a counterexample.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-Hilbert
spaces and to Hermitian spaces.

Proposition 12.4. Let 〈E,ϕ〉 be a pre-Hilbert space with associated quadratic form Φ. For
all u, v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent.

We also have the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are linearly de-
pendent, where in addition, if u 6= 0 and v 6= 0, then u = λv for some real λ such that
λ > 0.



348 CHAPTER 12. HERMITIAN SPACES

Proof. For all u, v ∈ E and all µ ∈ C, we have observed that

ϕ(u+ µv, u+ µv) = ϕ(u, u) + 2<(µϕ(u, v)) + |µ|2ϕ(v, v).

Let ϕ(u, v) = ρeiθ, where |ϕ(u, v)| = ρ (ρ ≥ 0). Let F : R→ R be the function defined such
that

F (t) = Φ(u+ teiθv),

for all t ∈ R. The above shows that

F (t) = ϕ(u, u) + 2t|ϕ(u, v)|+ t2ϕ(v, v) = Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v).

Since ϕ is assumed to be positive, we have F (t) ≥ 0 for all t ∈ R. If Φ(v) = 0, we must have
ϕ(u, v) = 0, since otherwise, F (t) could be made negative by choosing t negative and small
enough. If Φ(v) > 0, in order for F (t) to be nonnegative, the equation

Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u, v)|2 ≤ Φ(u)Φ(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.

For the second part of the claim, if ϕ is positive definite, we argue as follows. If u and v
are linearly dependent, it is immediately verified that we get an equality. Conversely, if

|ϕ(u, v)|2 = Φ(u)Φ(v),

then there are two cases. If Φ(v) = 0, since ϕ is positive definite, we must have v = 0, so u
and v are linearly dependent. Otherwise, the equation

Φ(u) + 2t|ϕ(u, v)|+ t2Φ(v) = 0

has a double root t0, and thus
Φ(u+ t0e

iθv) = 0.

Since ϕ is positive definite, we must have

u+ t0e
iθv = 0,

which shows that u and v are linearly dependent.

If we square the Minkowski inequality, we get

Φ(u+ v) ≤ Φ(u) + Φ(v) + 2
√

Φ(u)
√

Φ(v).

However, we observed earlier that

Φ(u+ v) = Φ(u) + Φ(v) + 2<(ϕ(u, v)).
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Thus, it is enough to prove that

<(ϕ(u, v)) ≤
√

Φ(u)
√

Φ(v),

but this follows from the Cauchy–Schwarz inequality

|ϕ(u, v)| ≤
√

Φ(u)
√

Φ(v)

and the fact that <z ≤ |z|.
If ϕ is positive definite and u and v are linearly dependent, it is immediately verified that

we get an equality. Conversely, if equality holds in the Minkowski inequality, we must have

<(ϕ(u, v)) =
√

Φ(u)
√

Φ(v),

which implies that
|ϕ(u, v)| =

√
Φ(u)

√
Φ(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

<(ϕ(u, v)) ≤ |ϕ(u, v)| <
√

Φ(u)
√

Φ(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

<(ϕ(u, v)) = |ϕ(u, v)|.

But then, we proved in the Cauchy–Schwarz case that u and v are linearly dependent. Since
we also just proved that ϕ(u, v) is real and nonnegative, the coefficient of proportionality
between u and v is indeed nonnegative.

As in the Euclidean case, if 〈E,ϕ〉 is a Hermitian space, the Minkowski inequality√
Φ(u+ v) ≤

√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√

Φ(u) is a norm on E. The norm induced by ϕ is called the

Hermitian norm induced by ϕ. We usually denote
√

Φ(u) by ‖u‖, and the Cauchy–Schwarz
inequality is written as

|u · v| ≤ ‖u‖‖v‖.

Since a Hermitian space is a normed vector space, it is a topological space under the
topology induced by the norm (a basis for this topology is given by the open balls B0(u, ρ)
of center u and radius ρ > 0, where

B0(u, ρ) = {v ∈ E | ‖v − u‖ < ρ}.

If E has finite dimension, every linear map is continuous; see Chapter 7 (or Lang [65, 66],
Dixmier [35], or Schwartz [91, 92]). The Cauchy–Schwarz inequality

|u · v| ≤ ‖u‖‖v‖
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shows that ϕ : E × E → C is continuous, and thus, that ‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a seminorm. In this case, the condition

‖u‖ = 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that if ‖u‖ = 0, then
u · v = 0 for all v ∈ E.

Remark: As in the case of real vector spaces, a norm on a complex vector space is induced
by some positive definite Hermitian product 〈−,−〉 iff it satisfies the parallelogram law :

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

This time, the Hermitian product is recovered using the polarization identity from Proposi-
tion 12.1:

4〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2 + i ‖u+ iv‖2 − i ‖u− iv‖2 .

It is easy to check that 〈u, u〉 = ‖u‖2, and

〈v, u〉 = 〈u, v〉
〈iu, v〉 = i〈u, v〉,

so it is enough to check linearity in the variable u, and only for real scalars. This is easily
done by applying the proof from Section 10.1 to the real and imaginary part of 〈u, v〉; the
details are left as an exercise.

We will now basically mirror the presentation of Euclidean geometry given in Chapter
10 rather quickly, leaving out most proofs, except when they need to be seriously amended.

12.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the Her-
mitian inner product by u · v or 〈u, v〉. The concepts of orthogonality, orthogonal family of
vectors, orthonormal family of vectors, and orthogonal complement of a set of vectors are
unchanged from the Euclidean case (Definition 10.2).

For example, the set C[−π, π] of continuous functions f : [−π, π] → C is a Hermitian
space under the product

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.

Proposition 10.3 and 10.4 hold without any changes. It is easy to show that∥∥∥∥∥
n∑
i=1

ui

∥∥∥∥∥
2

=
n∑
i=1

‖ui‖2 +
∑

1≤i<j≤n
2<(ui · uj).
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Analogously to the case of Euclidean spaces of finite dimension, the Hermitian product
induces a canonical bijection (i.e., independent of the choice of bases) between the vector
space E and the space E∗. This is one of the places where conjugation shows up, but in this
case, troubles are minor.

Given a Hermitian space E, for any vector u ∈ E, let ϕlu : E → C be the map defined
such that

ϕlu(v) = u · v, for all v ∈ E.
Similarly, for any vector v ∈ E, let ϕrv : E → C be the map defined such that

ϕrv(u) = u · v, for all u ∈ E.

Since the Hermitian product is linear in its first argument u, the map ϕrv is a linear form
in E∗, and since it is semilinear in its second argument v, the map ϕlu is also a linear form
in E∗. Thus, we have two maps [l : E → E∗ and [r : E → E∗, defined such that

[l(u) = ϕlu, and [r(v) = ϕrv.

Actually, ϕlu = ϕru and [l = [r. Indeed, for all u, v ∈ E, we have

[l(u)(v) = ϕlu(v)

= u · v
= v · u
= ϕru(v)

= [r(u)(v).

Therefore, we use the notation ϕu for both ϕlu and ϕru, and [ for both [l and [r.

Theorem 12.5. let E be a Hermitian space E. The map [ : E → E∗ defined such that

[(u) = ϕlu = ϕru for all u ∈ E
is semilinear and injective. When E is also of finite dimension, the map [ : E → E∗ is a
canonical isomorphism.

Proof. That [ : E → E∗ is a semilinear map follows immediately from the fact that [ = [r,
and that the Hermitian product is semilinear in its second argument. If ϕu = ϕv, then
ϕu(w) = ϕv(w) for all w ∈ E, which by definition of ϕu and ϕv means that

w · u = w · v
for all w ∈ E, which by semilinearity on the right is equivalent to

w · (v − u) = 0 for all w ∈ E,
which implies that u = v, since the Hermitian product is positive definite. Thus, [ : E → E∗

is injective. Finally, when E is of finite dimension n, E∗ is also of dimension n, and then
[ : E → E∗ is bijective. Since [ is semilinar, the map [ : E → E∗ is an isomorphism.
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The inverse of the isomorphism [ : E → E∗ is denoted by ] : E∗ → E.

As a corollary of the isomorphism [ : E → E∗, if E is a Hermitian space of finite dimen-
sion, then every linear form f ∈ E∗ corresponds to a unique v ∈ E, such that

f(u) = u · v, for every u ∈ E.

In particular, if f is not the null form, the kernel of f , which is a hyperplane H, is precisely
the set of vectors that are orthogonal to v.

Remarks:

1. The “musical map” [ : E → E∗ is not surjective when E has infinite dimension. This
result can be salvaged by restricting our attention to continuous linear maps, and by
assuming that the vector space E is a Hilbert space.

2. Dirac’s “bra-ket” notation. Dirac invented a notation widely used in quantum me-
chanics for denoting the linear form ϕu = [(u) associated to the vector u ∈ E via the
duality induced by a Hermitian inner product. Dirac’s proposal is to denote the vectors
u in E by |u〉, and call them kets ; the notation |u〉 is pronounced “ket u.” Given two
kets (vectors) |u〉 and |v〉, their inner product is denoted by

〈u|v〉

(instead of |u〉 · |v〉). The notation 〈u|v〉 for the inner product of |u〉 and |v〉 anticipates
duality. Indeed, we define the dual (usually called adjoint) bra u of ket u, denoted by
〈u|, as the linear form whose value on any ket v is given by the inner product, so

〈u|(|v〉) = 〈u|v〉.

Thus, bra u = 〈u| is Dirac’s notation for our [(u). Since the map [ is semi-linear, we
have

〈λu| = λ〈u|.
Using the bra-ket notation, given an orthonormal basis (|u1〉, . . . , |un〉), ket v (a vector)
is written as

|v〉 =
n∑
i=1

〈v|ui〉|ui〉,

and the corresponding linear form bra v is written as

〈v| =
n∑
i=1

〈v|ui〉〈ui| =
n∑
i=1

〈ui|v〉〈ui|

over the dual basis (〈u1|, . . . , 〈un|). As cute as it looks, we do not recommend using
the Dirac notation.
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The existence of the isomorphism [ : E → E∗ is crucial to the existence of adjoint maps.
Indeed, Theorem 12.5 allows us to define the adjoint of a linear map on a Hermitian space.
Let E be a Hermitian space of finite dimension n, and let f : E → E be a linear map. For
every u ∈ E, the map

v 7→ u · f(v)

is clearly a linear form in E∗, and by Theorem 12.5, there is a unique vector in E denoted
by f ∗(u), such that

f ∗(u) · v = u · f(v),

that is,
f ∗(u) · v = u · f(v), for every v ∈ E.

The following proposition shows that the map f ∗ is linear.

Proposition 12.6. Given a Hermitian space E of finite dimension, for every linear map
f : E → E there is a unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f(v),

for all u, v ∈ E. The map f ∗ is called the adjoint of f (w.r.t. to the Hermitian product).

Proof. Careful inspection of the proof of Proposition 10.6 reveals that it applies unchanged.
The only potential problem is in proving that f ∗(λu) = λf ∗(u), but everything takes place
in the first argument of the Hermitian product, and there, we have linearity.

The fact that
v · u = u · v

implies that the adjoint f ∗ of f is also characterized by

f(u) · v = u · f ∗(v),

for all u, v ∈ E.

Given two Hermitian spaces E and F , where the Hermitian product on E is denoted
by 〈−,−〉1 and the Hermitian product on F is denoted by 〈−,−〉2, given any linear map
f : E → F , it is immediately verified that the proof of Proposition 12.6 can be adapted to
show that there is a unique linear map f ∗ : F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

As in the euclidean case, the following properties immediately follow from the definition
of the adjoint map:

(1) For any linear map f : E → F , we have

f ∗∗ = f.
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(2) For any two linear maps f, g : E → F and any scalar λ ∈ R:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗.

(3) If E,F,G are Hermitian spaces with respective inner products 〈−,−〉1, 〈−,−〉2, and
〈−,−〉3, and if f : E → F and g : F → G are two linear maps, then

(g ◦ f)∗ = f ∗ ◦ g∗.

As in the Euclidean case, a linear map f : E → E (where E is a finite-dimensional
Hermitian space) is self-adjoint if f = f ∗. The map f is positive semidefinite iff

〈f(x), x〉 ≥ 0 all x ∈ E;

positive definite iff
〈f(x), x〉 > 0 all x ∈ E, x 6= 0.

An interesting corollary of Proposition 12.3 is that a positive semidefinite linear map must
be self-adjoint. In fact, we can prove a slightly more general result.

Proposition 12.7. Given any finite-dimensional Hermitian space E with Hermitian product
〈−,−〉, for any linear map f : E → E, if 〈f(x), x〉 ∈ R for all x ∈ E, then f is self-adjoint.
In particular, any positive semidefinite linear map f : E → E is self-adjoint.

Proof. Since 〈f(x), x〉 ∈ R for all x ∈ E, we have

〈f(x), x〉 = 〈f(x), x〉
= 〈x, f(x)〉
= 〈f ∗(x), x〉,

so we have
〈(f − f ∗)(x), x〉 = 0 all x ∈ E,

and Proposition 12.3 implies that f − f ∗ = 0.

Beware that Proposition 12.7 is false if E is a real Euclidean space.

As in the Euclidean case, Theorem 12.5 can be used to show that any Hermitian space
of finite dimension has an orthonormal basis. The proof is unchanged.

Proposition 12.8. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, there
is an orthonormal basis (u1, . . . , un) for E.

The Gram–Schmidt orthonormalization procedure also applies to Hermitian spaces of
finite dimension, without any changes from the Euclidean case!
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Proposition 12.9. Given a nontrivial Hermitian space E of finite dimension n ≥ 1, from
any basis (e1, . . . , en) for E we can construct an orthonormal basis (u1, . . . , un) for E with
the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . , ek) and (u1, . . . , uk) generate
the same subspace.

Remark: The remarks made after Proposition 10.8 also apply here, except that in the
QR-decomposition, Q is a unitary matrix.

As a consequence of Proposition 10.7 (or Proposition 12.9), given any Hermitian space
of finite dimension n, if (e1, . . . , en) is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · ·+ unen and v = v1e1 + · · ·+ vnen, the Hermitian product u · v is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · ·+ unen‖ =

( n∑
i=1

|ui|2
)1/2

.

The fact that a Hermitian space always has an orthonormal basis implies that any Gram
matrix G can be written as

G = Q∗Q,

for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram
matrix G becomes G′ = (P )∗GP . If the basis corresponding to G′ is orthonormal, then

G′ = I, so G = (P
−1

)∗P
−1

.

Proposition 10.9 also holds unchanged.

Proposition 12.10. Given any nontrivial Hermitian space E of finite dimension n ≥ 1, for
any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension n − k,
and E = F ⊕ F⊥. Furthermore, we have F⊥⊥ = F .

12.3 Linear Isometries (Also Called Unitary Transfor-

mations)

In this section we consider linear maps between Hermitian spaces that preserve the Hermitian
norm. All definitions given for Euclidean spaces in Section 10.3 extend to Hermitian spaces,
except that orthogonal transformations are called unitary transformation, but Proposition
10.10 extends only with a modified condition (2). Indeed, the old proof that (2) implies
(3) does not work, and the implication is in fact false! It can be repaired by strengthening
condition (2). For the sake of completeness, we state the Hermitian version of Definition
10.3.
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Definition 12.4. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, a function f : E → F is a unitary transformation, or a linear isometry , if it is
linear and

‖f(u)‖ = ‖u‖, for all u ∈ E.
Proposition 10.10 can be salvaged by strengthening condition (2).

Proposition 12.11. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, for every function f : E → F , the following properties are equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖ and f(iu) = if(u), for all u, v ∈ E.

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Proposition 10.10 needs to be revised as
follows. We use the polarization identity

2ϕ(u, v) = (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2.

Since f(iv) = if(v), we get f(0) = 0 by setting v = 0, so the function f preserves distance
and norm, and we get

2ϕ(f(u), f(v)) = (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− if(v)‖2

= (1 + i)(‖f(u)‖2 + ‖f(v)‖2)− ‖f(u)− f(v)‖2

− i‖f(u)− f(iv)‖2

= (1 + i)(‖u‖2 + ‖v‖2)− ‖u− v‖2 − i‖u− iv‖2

= 2ϕ(u, v),

which shows that f preserves the Hermitian inner product, as desired. The rest of the proof
is unchanged.

Remarks:

(i) In the Euclidean case, we proved that the assumption

‖f(v)− f(u)‖ = ‖v − u‖ for all u, v ∈ E and f(0) = 0 (2′)

implies (3). For this we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2 − ‖u− v‖2.



12.4. THE UNITARY GROUP, UNITARY MATRICES 357

In the Hermitian case the polarization identity involves the complex number i. In fact,
the implication (2′) implies (3) is false in the Hermitian case! Conjugation z 7→ z
satisfies (2′) since

|z2 − z1| = |z2 − z1| = |z2 − z1|,
and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring that there be some
τ ∈ E such that

f(τ + iu) = f(τ) + i(f(τ + u)− f(τ))

for all u ∈ E, then the function g : E → E defined such that

g(u) = f(τ + u)− f(τ)

satisfies the old conditions of (2), and the implications (2)→ (3) and (3)→ (1) prove
that g is linear, and thus that f is affine. In view of the first remark, some condition
involving i is needed on f , in addition to the fact that f is distance-preserving.

12.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean space,
we explore some of the fundamental properties of the unitary group and of unitary matrices.
As an immediate corollary of the Gram–Schmidt orthonormalization procedure, we obtain
the QR-decomposition for invertible matrices. In the Hermitian framework, the matrix of
the adjoint of a linear map is not given by the transpose of the original matrix, but by its
conjugate.

Definition 12.5. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i,

and the conjugate A of A is the m× n matrix A = (bi j) defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The adjoint A∗ of A is the matrix defined such that

A∗ = (A>) =
(
A
)>
.

Proposition 12.12. Let E be any Hermitian space of finite dimension n, and let f : E → E
be any linear map. The following properties hold:
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(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if the matrix of f is A, then the matrix
of f ∗ is the adjoint A∗ of A, and f is an isometry iff A satisfies the identities

AA∗ = A∗A = In,

where In denotes the identity matrix of order n, iff the columns of A form an orthonor-
mal basis of Cn, iff the rows of A form an orthonormal basis of Cn.

Proof. (1) The proof is identical to that of Proposition 10.12 (1).

(2) If (e1, . . . , en) is an orthonormal basis for E, let A = (ai j) be the matrix of f , and let
B = (bi j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f(v)

for all u, v ∈ E, using the fact that if w = w1e1 + · · ·+ wnen, we have wk = w · ek, for all k,
1 ≤ k ≤ n; letting u = ei and v = ej, we get

bj i = f ∗(ei) · ej = ei · f(ej) = f(ej) · ei = ai j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. Now, if X and Y are arbitrary matrices over the
basis (e1, . . . , en), denoting as usual the jth column of X by Xj, and similarly for Y , a simple
calculation shows that

Y ∗X = (Xj · Y i)1≤i,j≤n.

Then it is immediately verified that if X = Y = A, then A∗A = AA∗ = In iff the column
vectors (A1, . . . , An) form an orthonormal basis. Thus, from (1), we see that (2) is clear.

Proposition 10.12 shows that the inverse of an isometry f is its adjoint f ∗. Proposition
10.12 also motivates the following definition.

Definition 12.6. A complex n× n matrix is a unitary matrix if

AA∗ = A∗A = In.

Remarks:

(1) The conditions AA∗ = In, A∗A = In, and A−1 = A∗ are equivalent. Given any two
orthonormal bases (u1, . . . , un) and (v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn), it is easy to show that the matrix P is unitary. The proof
of Proposition 12.11 (3) also shows that if f is an isometry, then the image of an
orthonormal basis (u1, . . . , un) is an orthonormal basis.
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(2) Using the explicit formula for the determinant, we see immediately that

det(A) = det(A).

If f is a unitary transformation and A is its matrix with respect to any orthonormal
basis, from AA∗ = I, we get

det(AA∗) = det(A) det(A∗) = det(A)det(A>) = det(A)det(A) = | det(A)|2,

and so | det(A)| = 1. It is clear that the isometries of a Hermitian space of dimension
n form a group, and that the isometries of determinant +1 form a subgroup.

This leads to the following definition.

Definition 12.7. Given a Hermitian space E of dimension n, the set of isometries f : E →
E forms a subgroup of GL(E,C) denoted by U(E), or U(n) when E = Cn, called the
unitary group (of E). For every isometry f we have | det(f)| = 1, where det(f) denotes
the determinant of f . The isometries such that det(f) = 1 are called rotations, or proper
isometries, or proper unitary transformations , and they form a subgroup of the special
linear group SL(E,C) (and of U(E)), denoted by SU(E), or SU(n) when E = Cn, called
the special unitary group (of E). The isometries such that det(f) 6= 1 are called improper
isometries, or improper unitary transformations, or flip transformations .

A very important example of unitary matrices is provided by Fourier matrices (up to a
factor of

√
n), matrices that arise in the various versions of the discrete Fourier transform.

For more on this topic, see the problems, and Strang [102, 104].

Now that we have the definition of a unitary matrix, we can explain how the Gram–
Schmidt orthonormalization procedure immediately yields the QR-decomposition for matri-
ces.

Proposition 12.13. Given any n× n complex matrix A, if A is invertible, then there is a
unitary matrix Q and an upper triangular matrix R with positive diagonal entries such that
A = QR.

The proof is absolutely the same as in the real case!

We have the following version of the Hadamard inequality for complex matrices. The
proof is essentially the same as in the Euclidean case but it uses Proposition 12.13 instead
of Proposition 10.13.

Proposition 12.14. (Hadamard) For any complex n× n matrix A = (aij), we have

| det(A)| ≤
n∏
i=1

( n∑
j=1

|aij|2
)1/2

and | det(A)| ≤
n∏
j=1

( n∑
i=1

|aij|2
)1/2

.

Moreover, equality holds iff either A has a zero column in the left inequality or a zero row in
the right inequality, or A is unitary.
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We also have the following version of Proposition 10.15 for Hermitian matrices. The
proof of Proposition 10.15 goes through because the Cholesky decomposition for a Hermitian
positive definite A matrix holds in the form A = B∗B, where B is upper triangular with
positive diagonal entries. The details are left to the reader.

Proposition 12.15. (Hadamard) For any complex n×n matrix A = (aij), if A is Hermitian
positive semidefinite, then we have

det(A) ≤
n∏
i=1

aii.

Moreover, if A is positive definite, then equality holds iff A is a diagonal matrix.

12.5 Orthogonal Projections and Involutions

In this section, we assume that the field K is not a field of characteristic 2. Recall that a
linear map f : E → E is an involution iff f 2 = id, and is idempotent iff f 2 = f . We know
from Proposition 4.5 that if f is idempotent, then

E = Im(f)⊕Ker (f),

and that the restriction of f to its image is the identity. For this reason, a linear involution
is called a projection. The connection between involutions and projections is given by the
following simple proposition.

Proposition 12.16. For any linear map f : E → E, we have f 2 = id iff 1
2
(id − f) is a

projection iff 1
2
(id + f) is a projection; in this case, f is equal to the difference of the two

projections 1
2
(id + f) and 1

2
(id− f).

Proof. We have (
1

2
(id− f)

)2

=
1

4
(id− 2f + f 2)

so (
1

2
(id− f)

)2

=
1

2
(id− f) iff f 2 = id.

We also have (
1

2
(id + f)

)2

=
1

4
(id + 2f + f 2),

so (
1

2
(id + f)

)2

=
1

2
(id + f) iff f 2 = id.

Oviously, f = 1
2
(id + f)− 1

2
(id− f).
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Let U+ = Ker (1
2
(id− f)) and let U− = Im(1

2
(id− f)). If f 2 = id, then

(id + f) ◦ (id− f) = id− f 2 = id− id = 0,

which implies that

Im

(
1

2
(id + f)

)
⊆ Ker

(
1

2
(id− f)

)
.

Conversely, if u ∈ Ker
(

1
2
(id− f)

)
, then f(u) = u, so

1

2
(id + f)(u) =

1

2
(u+ u) = u,

and thus

Ker

(
1

2
(id− f)

)
⊆ Im

(
1

2
(id + f)

)
.

Therefore,

U+ = Ker

(
1

2
(id− f)

)
= Im

(
1

2
(id + f)

)
,

and so, f(u) = u on U+ and f(u) = −u on U−. The involutions of E that are unitary
transformations are characterized as follows.

Proposition 12.17. Let f ∈ GL(E) be an involution. The following properties are equiva-
lent:

(a) The map f is unitary; that is, f ∈ U(E).

(b) The subspaces U− = Im(1
2
(id− f)) and U+ = Im(1

2
(id + f)) are orthogonal.

Furthermore, if E is finite-dimensional, then (a) and (b) are equivalent to

(c) The map is self-adjoint; that is, f = f ∗.

Proof. If f is unitary, then from 〈f(u), f(v)〉 = 〈u, v〉 for all u, v ∈ E, we see that if u ∈ U+

and v ∈ U−, we get

〈u, v〉 = 〈f(u), f(v)〉 = 〈u,−v〉 = −〈u, v〉,
so 2〈u, v〉 = 0, which implies 〈u, v〉 = 0, that is, U+ and U− are orthogonal. Thus, (a)
implies (b).

Conversely, if (b) holds, since f(u) = u on U+ and f(u) = −u on U−, we see that
〈f(u), f(v)〉 = 〈u, v〉 if u, v ∈ U+ or if u, v ∈ U−. Since E = U+ ⊕ U− and since U+ and U−

are orthogonal, we also have 〈f(u), f(v)〉 = 〈u, v〉 for all u, v ∈ E, and (b) implies (a).

If E is finite-dimensional, the adjoint f ∗ of f exists, and we know that f−1 = f ∗. Since
f is an involution, f 2 = id, which implies that f ∗ = f−1 = f .
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A unitary involution is the identity on U+ = Im(1
2
(id + f)), and f(v) = −v for all

v ∈ U− = Im(1
2
(id−f)). Furthermore, E is an orthogonal direct sum E = U+⊕U−. We say

that f is an orthogonal reflection about U+. In the special case where U+ is a hyperplane,
we say that f is a hyperplane reflection. We already studied hyperplane reflections in the
Euclidean case; see Chapter 11.

If f : E → E is a projection (f 2 = f), then

(id− 2f)2 = id− 4f + 4f 2 = id− 4f + 4f = id,

so id− 2f is an involution. As a consequence, we get the following result.

Proposition 12.18. If f : E → E is a projection (f 2 = f), then Ker (f) and Im(f) are
orthogonal iff f ∗ = f .

Proof. Apply Proposition 12.17 to g = id− 2f . Since id− g = 2f we have

U+ = Ker

(
1

2
(id− g)

)
= Ker (f)

and

U− = Im

(
1

2
(id− g)

)
= Im(f),

which proves the proposition.

A projection such that f = f ∗ is called an orthogonal projection.

If (a1 . . . , ak) are k linearly independent vectors in Rn, let us determine the matrix P of
the orthogonal projection onto the subspace of Rn spanned by (a1, . . . , ak). Let A be the
n×k matrix whose jth column consists of the coordinates of the vector aj over the canonical
basis (e1, . . . , en).

Any vector in the subspace (a1, . . . , ak) is a linear combination of the form Ax, for some
x ∈ Rk. Given any y ∈ Rn, the orthogonal projection Py = Ax of y onto the subspace
spanned by (a1, . . . , ak) is the vector Ax such that y − Ax is orthogonal to the subspace
spanned by (a1, . . . , ak) (prove it). This means that y−Ax is orthogonal to every aj, which
is expressed by

A>(y − Ax) = 0;

that is,
A>Ax = A>y.

The matrix A>A is invertible because A has full rank k, thus we get

x = (A>A)−1A>y,

and so
Py = Ax = A(A>A)−1A>y.
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Therefore, the matrix P of the projection onto the subspace spanned by (a1 . . . , ak) is given
by

P = A(A>A)−1A>.

The reader should check that P 2 = P and P> = P .

12.6 Dual Norms

In the remark following the proof of Proposition 7.9, we explained that if (E, ‖ ‖) and
(F, ‖ ‖) are two normed vector spaces and if we let L(E;F ) denote the set of all continuous
(equivalently, bounded) linear maps from E to F , then, we can define the operator norm (or
subordinate norm) ‖ ‖ on L(E;F ) as follows: for every f ∈ L(E;F ),

‖f‖ = sup
x∈E
x6=0

‖f(x)‖
‖x‖ = sup

x∈E
‖x‖=1

‖f(x)‖ .

In particular, if F = C, then L(E;F ) = E ′ is the dual space of E, and we get the operator
norm denoted by ‖ ‖∗ given by

‖f‖∗ = sup
x∈E
‖x‖=1

|f(x)|.

The norm ‖ ‖∗ is called the dual norm of ‖ ‖ on E ′.

Let us now assume that E is a finite-dimensional Hermitian space, in which case E ′ = E∗.
Theorem 12.5 implies that for every linear form f ∈ E∗, there is a unique vector y ∈ E so
that

f(x) = 〈x, y〉,
for all x ∈ E, and so we can write

‖f‖∗ = sup
x∈E
‖x‖=1

|〈x, y〉|.

The above suggests defining a norm ‖ ‖D on E.

Definition 12.8. If E is a finite-dimensional Hermitian space and ‖ ‖ is any norm on E, for
any y ∈ E we let

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉|,

be the dual norm of ‖ ‖ (on E). If E is a real Euclidean space, then the dual norm is defined
by

‖y‖D = sup
x∈E
‖x‖=1

〈x, y〉

for all y ∈ E.
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Beware that ‖ ‖ is generally not the Hermitian norm associated with the Hermitian innner
product. The dual norm shows up in convex programming; see Boyd and Vandenberghe [22],
Chapters 2, 3, 6, 9.

The fact that ‖ ‖D is a norm follows from the fact that ‖ ‖∗ is a norm and can also be

checked directly. It is worth noting that the triangle inequality for ‖ ‖D comes “for free,” in
the sense that it holds for any function p : E → R. Indeed, if we define pD by

pD(x) = sup
p(z)=1

|〈z, x〉|,

then we have

pD(x+ y) = sup
p(z)=1

|〈z, x+ y〉|

= sup
p(z)=1

(|〈z, x〉+ 〈z, y〉|)

≤ sup
p(z)=1

(|〈z, x〉|+ |〈z, y〉|)

≤ sup
p(z)=1

|〈z, x〉|+ sup
p(z)=1

|〈z, y〉|

= pD(x) + pD(y).

If p : E → R is a function such that

(1) p(x) ≥ 0 for all x ∈ E, and p(x) = 0 iff x = 0;

(2) p(λx) = |λ|p(x), for all x ∈ E and all λ ∈ C;

(3) p is continuous, in the sense that for some basis (e1, . . . , en) of E, the function

(x1, . . . , xn) 7→ p(x1e1 + · · ·+ xnen)

from Cn to R is continuous;

then we say that p is a pre-norm. Obviously, every norm is a pre-norm, but a pre-norm
may not satisfy the triangle inequality. However, we just showed that the dual norm of any
pre-norm is actually a norm.

Proposition 12.19. For all y ∈ E, we have

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉| = sup
x∈E
‖x‖=1

<〈x, y〉.

Proof. Since E is finite dimensional, the unit sphere Sn−1 = {x ∈ E | ‖x‖ = 1} is compact,
so there is some x0 ∈ Sn−1 such that

‖y‖D = |〈x0, y〉|.
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If 〈x0, y〉 = ρeiθ, with ρ ≥ 0, then

|〈e−iθx0, y〉| = |e−iθ〈x0, y〉| = |e−iθρeiθ| = ρ,

so

‖y‖D = ρ = 〈e−iθx0, y〉, (∗)
with

∥∥e−iθx0

∥∥ = ‖x0‖ = 1. On the other hand,

<〈x, y〉 ≤ |〈x, y〉|,

so by (∗) we get

‖y‖D = sup
x∈E
‖x‖=1

|〈x, y〉| = sup
x∈E
‖x‖=1

<〈x, y〉,

as claimed.

Proposition 12.20. For all x, y ∈ E, we have

|〈x, y〉| ≤ ‖x‖ ‖y‖D

|〈x, y〉| ≤ ‖x‖D ‖y‖ .

Proof. If x = 0, then 〈x, y〉 = 0 and these inequalities are trivial. If x 6= 0, since ‖x/ ‖x‖‖ = 1,
by definition of ‖y‖D, we have

|〈x/ ‖x‖ , y〉| ≤ sup
‖z‖=1

|〈z, y〉| = ‖y‖D ,

which yields

|〈x, y〉| ≤ ‖x‖ ‖y‖D .
The second inequality holds because |〈x, y〉| = |〈y, x〉|.

It is not hard to show that for all y ∈ Cn,

‖y‖D1 = ‖y‖∞
‖y‖D∞ = ‖y‖1

‖y‖D2 = ‖y‖2 .

Thus, the Euclidean norm is autodual. More generally, the following proposition holds.

Proposition 12.21. If p, q ≥ 1 and 1/p+ 1/q = 1, then for all y ∈ Cn, we have

‖y‖Dp = ‖y‖q .
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Proof. By Hölder’s inequality (Corollary 7.2), for all x, y ∈ Cn, we have

|〈x, y〉| ≤ ‖x‖p ‖y‖q ,

so
‖y‖Dp = sup

x∈Cn
‖x‖p=1

|〈x, y〉| ≤ ‖y‖q .

For the converse, we consider the cases p = 1, 1 < p < +∞, and p = +∞. First, assume
p = 1. The result is obvious for y = 0, so assume y 6= 0. Given y, if we pick xj = 1
for some index j such that ‖y‖∞ = max1≤i≤n |yi| = |yj|, and xk = 0 for k 6= j, then

|〈x, y〉| = |yj| = ‖y‖∞, so ‖y‖D1 = ‖y‖∞.

Now we turn to the case 1 < p < +∞. Then we also have 1 < q < +∞, and the equation
1/p + 1/q = 1 is equivalent to pq = p + q, that is, p(q − 1) = q. Pick zj = yj|yj|q−2 for
j = 1, . . . , n, so that

‖z‖p =

(
n∑
j=1

|zj|p
)1/p

=

(
n∑
j=1

|yj|(q−1)p

)1/p

=

(
n∑
j=1

|yj|q
)1/p

.

Then if x = z/ ‖z‖p, we have

|〈x, y〉| =

∣∣∣∑n
j=1 zjyj

∣∣∣
‖z‖p

=

∣∣∣∑n
j=1 yjyj|yj|q−2

∣∣∣
‖z‖p

=

∑n
j=1 |yj|q(∑n

j=1 |yj|q
)1/p

=

(
n∑
j=1

|yj|q
)1/q

= ‖y‖q .

Thus ‖y‖Dp = ‖y‖q.
Finally, if p =∞, then pick xj = yj/|yj| if yj 6= 0, and xj = 0 if yj = 0. Then

|〈x, y〉| =

∣∣∣∣∣∣
n∑

yj 6=0

yjyj/|yj|

∣∣∣∣∣∣ =
∑
yj 6=0

|yj| = ‖y‖1 .

Thus ‖y‖D∞ = ‖y‖1.

We can show that the dual of the spectral norm is the trace norm (or nuclear norm) from
Section 16.3. Recall from Proposition 7.9 that the spectral norm ‖A‖2 of a matrix A is the
square root of the largest eigenvalue of A∗A, that is, the largest singular value of A.

Proposition 12.22. The dual of the spectral norm is given by

‖A‖D2 = σ1 + · · ·+ σr,

where σ1 > · · · > σr > 0 are the singular values of A ∈ Mn(C) (which has rank r).
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Proof. In this case, the inner product on Mn(C) is the Frobenius inner product 〈A,B〉 =
tr(B∗A), and the dual norm of the spectral norm is given by

‖A‖D2 = sup{|tr(A∗B)| | ‖B‖2 = 1}.

If we factor A using an SVD as A = V ΣU∗, where U and V are unitary and Σ is a diagonal
matrix whose r nonzero entries are the singular values σ1 > · · · > σr > 0, where r is the
rank of A, then

|tr(A∗B)| = |tr(UΣV ∗B)| = |tr(ΣV ∗BU)|,
so if we pick B = V U∗, a unitary matrix such that ‖B‖2 = 1, we get

|tr(A∗B)| = tr(Σ) = σ1 + · · ·+ σr,

and thus
‖A‖D2 ≥ σ1 + · · ·+ σr.

Since ‖B‖2 = 1 and U and V are unitary, by Proposition 7.9 we have ‖V ∗BU‖2 = ‖B‖2 =
1. If Z = V ∗BU , by definition of the operator norm

1 = ‖Z‖2 = sup{‖Zx‖2 | ‖x‖2 = 1},

so by picking x to be the canonical vector ej, we see that ‖Zj‖2 ≤ 1 where Zj is the jth
column of Z, so |zjj| ≤ 1, and since

|tr(ΣV ∗BU)| = |tr(ΣZ)| =
∣∣∣∣∣
r∑
j=1

σjzjj

∣∣∣∣∣ ≤
r∑
j=1

σj|zjj| ≤
r∑
j=1

σj,

and we conclude that

|tr(ΣV ∗BU)| ≤
r∑
j=1

σj.

The above implies that
‖A‖D2 ≤ σ1 + · · ·+ σr,

and since we also have ‖A‖D2 ≥ σ1 + · · ·+ σr, we concude that

‖A‖D2 = σ1 + · · ·+ σr,

proving our proposition.

We close this section by stating the following duality theorem.

Theorem 12.23. If E is a finite-dimensional Hermitian space, then for any norm ‖ ‖ on
E, we have

‖y‖DD = ‖y‖
for all y ∈ E.
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Proof. By Proposition 12.20, we have

|〈x, y〉| ≤ ‖x‖D ‖y‖ ,

so we get

‖y‖DD = sup
‖x‖D=1

|〈x, y〉| ≤ ‖y‖ , for all y ∈ E.

It remains to prove that

‖y‖ ≤ ‖y‖DD , for all y ∈ E.

Proofs of this fact can be found in Horn and Johnson [56] (Section 5.5), and in Serre [96]
(Chapter 7). The proof makes use of the fact that a nonempty, closed, convex set has a
supporting hyperplane through each of its boundary points, a result known as Minkowski’s
lemma. This result is a consequence of the Hahn–Banach theorem; see Gallier [44]. We give
the proof in the case where E is a real Euclidean space. Some minor modifications have to
be made when dealing with complex vector spaces and are left as an exercise.

Since the unit ball B = {z ∈ E | ‖z‖ ≤ 1} is closed and convex, the Minkowski lemma
says for every x such that ‖x‖ = 1, there is an affine map g, of the form

g(z) = 〈z, w〉 − 〈x,w〉

with ‖w‖ = 1, such that g(x) = 0 and g(z) ≤ 0 for all z such that ‖z‖ ≤ 1. Then, it is clear
that

sup
‖z‖=1

〈z, w〉 = 〈x,w〉,

and so

‖w‖D = 〈x,w〉.

It follows that

‖x‖DD ≥ 〈w/ ‖w‖D , x〉 =
〈x,w〉
‖w‖D

= 1 = ‖x‖

for all x such that ‖x‖ = 1. By homogeneity, this is true for all y ∈ E, which completes the
proof in the real case. When E is a complex vector space, we have to view the unit ball B
as a closed convex set in R2n and we use the fact that there is real affine map of the form

g(z) = <〈z, w〉 − <〈x,w〉

such that g(x) = 0 and g(z) ≤ 0 for all z with ‖z‖ = 1, so that ‖w‖D = <〈x,w〉.

More details on dual norms and unitarily invariant norms can be found in Horn and
Johnson [56] (Chapters 5 and 7).
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12.7 Summary

The main concepts and results of this chapter are listed below:

• Semilinear maps .

• Sesquilinear forms ; Hermitian forms .

• Quadratic form associated with a sesquilinear form.

• Polarization identities .

• Positive and positive definite Hermitian forms; pre-Hilbert spaces , Hermitian spaces .

• Gram matrix associated with a Hermitian product.

• The Cauchy–Schwarz inequality and the Minkowski inequality .

• Hermitian inner product , Hermitian norm.

• The parallelogram law .

• The musical isomorphisms [ : E → E∗ and ] : E∗ → E; Theorem 12.5 (E is finite-
dimensional).

• The adjoint of a linear map (with respect to a Hermitian inner product).

• Existence of orthonormal bases in a Hermitian space (Proposition 12.8).

• Gram–Schmidt orthonormalization procedure.

• Linear isometries (unitary transformations).

• The unitary group, unitary matrices .

• The unitary group U(n);

• The special unitary group SU(n).

• QR-Decomposition for invertible matrices.

• The Hadamard inequality for complex matrices.

• The Hadamard inequality for Hermitian positive semidefinite matrices.

• Orthogonal projections and involutions; orthogonal reflections.

• Dual norms.
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Chapter 13

Eigenvectors and Eigenvalues

13.1 Eigenvectors and Eigenvalues of a Linear Map

Given a finite-dimensional vector space E, let f : E → E be any linear map. If, by luck,
there is a basis (e1, . . . , en) of E with respect to which f is represented by a diagonal matrix

D =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

 ,

then the action of f on E is very simple; in every “direction” ei, we have

f(ei) = λiei.

We can think of f as a transformation that stretches or shrinks space along the direction
e1, . . . , en (at least if E is a real vector space). In terms of matrices, the above property
translates into the fact that there is an invertible matrix P and a diagonal matrix D such
that a matrix A can be factored as

A = PDP−1.

When this happens, we say that f (or A) is diagonalizable, the λis are called the eigenvalues
of f , and the eis are eigenvectors of f . For example, we will see that every symmetric matrix
can be diagonalized. Unfortunately, not every matrix can be diagonalized. For example, the
matrix

A1 =

(
1 1
0 1

)
can’t be diagonalized. Sometimes, a matrix fails to be diagonalizable because its eigenvalues
do not belong to the field of coefficients, such as

A2 =

(
0 −1
1 0

)
,

371
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whose eigenvalues are ±i. This is not a serious problem because A2 can be diagonalized over
the complex numbers. However, A1 is a “fatal” case! Indeed, its eigenvalues are both 1 and
the problem is that A1 does not have enough eigenvectors to span E.

The next best thing is that there is a basis with respect to which f is represented by
an upper triangular matrix. In this case we say that f can be triangularized , or that f is
triangulable. As we will see in Section 13.2, if all the eigenvalues of f belong to the field of
coefficients K, then f can be triangularized. In particular, this is the case if K = C.

Now, an alternative to triangularization is to consider the representation of f with respect
to two bases (e1, . . . , en) and (f1, . . . , fn), rather than a single basis. In this case, if K = R
or K = C, it turns out that we can even pick these bases to be orthonormal , and we get a
diagonal matrix Σ with nonnegative entries , such that

f(ei) = σifi, 1 ≤ i ≤ n.

The nonzero σis are the singular values of f , and the corresponding representation is the
singular value decomposition, or SVD . The SVD plays a very important role in applications,
and will be considered in detail later.

In this section, we focus on the possibility of diagonalizing a linear map, and we introduce
the relevant concepts to do so. Given a vector space E over a fieldK, let id denote the identity
map on E.

The notion of eigenvalue of a linear map f : E → E defined on an infinite-dimensional
space E is quite subtle because it cannot be defined in terms of eigenvectors as in the finite-
dimensional case. The problem is that the map λ id− f (with λ ∈ C) could be noninvertible
(because it is not surjective) and yet injective. In finite dimension this cannot happen, so
until further notice we assume that E is of finite dimension n.

Definition 13.1. Given any vector space E of finite dimension n and any linear map f : E →
E, a scalar λ ∈ K is called an eigenvalue, or proper value, or characteristic value of f if
there is some nonzero vector u ∈ E such that

f(u) = λu.

Equivalently, λ is an eigenvalue of f if Ker (λ id− f) is nontrivial (i.e., Ker (λ id− f) 6= {0})
iff λ id−f is not invertible (this is where the fact that E is finite-dimensional is used; a linear
map from E to istelf is injective iff it is invertible). A vector u ∈ E is called an eigenvector,
or proper vector, or characteristic vector of f if u 6= 0 and if there is some λ ∈ K such that

f(u) = λu;

the scalar λ is then an eigenvalue, and we say that u is an eigenvector associated with
λ. Given any eigenvalue λ ∈ K, the nontrivial subspace Ker (λ id− f) consists of all the
eigenvectors associated with λ together with the zero vector; this subspace is denoted by
Eλ(f), or E(λ, f), or even by Eλ, and is called the eigenspace associated with λ, or proper
subspace associated with λ.
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Note that distinct eigenvectors may correspond to the same eigenvalue, but distinct
eigenvalues correspond to disjoint sets of eigenvectors.

Remark: As we emphasized in the remark following Definition 7.4, we require an eigenvector
to be nonzero. This requirement seems to have more benefits than inconvenients, even though
it may considered somewhat inelegant because the set of all eigenvectors associated with an
eigenvalue is not a subspace since the zero vector is excluded.

The next proposition shows that the eigenvalues of a linear map f : E → E are the roots
of a polynomial associated with f .

Proposition 13.1. Let E be any vector space of finite dimension n and let f be any linear
map f : E → E. The eigenvalues of f are the roots (in K) of the polynomial

det(λ id− f).

Proof. A scalar λ ∈ K is an eigenvalue of f iff there is some vector u 6= 0 in E such that

f(u) = λu

iff
(λ id− f)(u) = 0

iff (λ id− f) is not invertible iff, by Proposition 5.15,

det(λ id− f) = 0.

In view of the importance of the polynomial det(λ id−f), we have the following definition.

Definition 13.2. Given any vector space E of dimension n, for any linear map f : E → E,
the polynomial Pf (X) = χf (X) = det(X id − f) is called the characteristic polynomial of
f . For any square matrix A, the polynomial PA(X) = χA(X) = det(XI − A) is called the
characteristic polynomial of A.

Note that we already encountered the characteristic polynomial in Section 5.7; see Defi-
nition 5.11.

Given any basis (e1, . . . , en), if A = M(f) is the matrix of f w.r.t. (e1, . . . , en), we
can compute the characteristic polynomial χf (X) = det(X id − f) of f by expanding the
following determinant:

det(XI − A) =

∣∣∣∣∣∣∣∣∣
X − a1 1 −a1 2 . . . −a1n

−a2 1 X − a2 2 . . . −a2n
...

...
. . .

...
−an 1 −an 2 . . . X − ann

∣∣∣∣∣∣∣∣∣ .
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If we expand this determinant, we find that

χA(X) = det(XI − A) = Xn − (a1 1 + · · ·+ ann)Xn−1 + · · ·+ (−1)n det(A).

The sum tr(A) = a1 1 + · · ·+ann of the diagonal elements of A is called the trace of A. Since
we proved in Section 5.7 that the characteristic polynomial only depends on the linear map
f , the above shows that tr(A) has the same value for all matrices A representing f . Thus,
the trace of a linear map is well-defined; we have tr(f) = tr(A) for any matrix A representing
f .

Remark: The characteristic polynomial of a linear map is sometimes defined as det(f −
X id). Since

det(f −X id) = (−1)n det(X id− f),

this makes essentially no difference but the version det(X id − f) has the small advantage
that the coefficient of Xn is +1.

If we write

χA(X) = det(XI − A) = Xn − τ1(A)Xn−1 + · · ·+ (−1)kτk(A)Xn−k + · · ·+ (−1)nτn(A),

then we just proved that

τ1(A) = tr(A) and τn(A) = det(A).

It is also possible to express τk(A) in terms of determinants of certain submatrices of A. For
any nonempty subset, I ⊆ {1, . . . , n}, say I = {i1 < . . . < ik}, let AI,I be the k×k submatrix
of A whose jth column consists of the elements aih ij , where h = 1, . . . , k. Equivalently, AI,I
is the matrix obtained from A by first selecting the columns whose indices belong to I, and
then the rows whose indices also belong to I. Then, it can be shown that

τk(A) =
∑

I⊆{1,...,n}
|I|=k

det(AI,I).

If all the roots, λ1, . . . , λn, of the polynomial det(XI −A) belong to the field K, then we
can write

χA(X) = det(XI − A) = (X − λ1) · · · (X − λn),

where some of the λis may appear more than once. Consequently,

χA(X) = det(XI − A) = Xn − σ1(λ)Xn−1 + · · ·+ (−1)kσk(λ)Xn−k + · · ·+ (−1)nσn(λ),

where
σk(λ) =

∑
I⊆{1,...,n}
|I|=k

∏
i∈I

λi,
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the kth elementary symmetric polynomial (or function) of the λi’s, where λ = (λ1, . . . , λn).
The elementary symmetric polynomial σk(λ) is often denoted Ek(λ), but this notation may be
confusing in the context of linear algebra. For n = 5, the elementary symmetric polynomials
are listed below:

σ0(λ) = 1

σ1(λ) = λ1 + λ2 + λ3 + λ4 + λ5

σ2(λ) = λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5

+ λ3λ4 + λ3λ5 + λ4λ5

σ3(λ) = λ3λ4λ5 + λ2λ4λ5 + λ2λ3λ5 + λ2λ3λ4 + λ1λ4λ5

+ λ1λ3λ5 + λ1λ3λ4 + λ1λ2λ5 + λ1λ2λ4 + λ1λ2λ3

σ4(λ) = λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5

σ5(λ) = λ1λ2λ3λ4λ5.

Since

χA(X) = Xn − τ1(A)Xn−1 + · · ·+ (−1)kτk(A)Xn−k + · · ·+ (−1)nτn(A)

= Xn − σ1(λ)Xn−1 + · · ·+ (−1)kσk(λ)Xn−k + · · ·+ (−1)nσn(λ),

we have
σk(λ) = τk(A), k = 1, . . . , n,

and in particular, the product of the eigenvalues of f is equal to det(A) = det(f), and the
sum of the eigenvalues of f is equal to the trace tr(A) = tr(f), of f ; for the record,

tr(f) = λ1 + · · ·+ λn

det(f) = λ1 · · ·λn,

where λ1, . . . , λn are the eigenvalues of f (and A), where some of the λis may appear more
than once. In particular, f is not invertible iff it admits 0 has an eigenvalue.

Remark: Depending on the field K, the characteristic polynomial χA(X) = det(XI − A)
may or may not have roots in K. This motivates considering algebraically closed fields ,
which are fields K such that every polynomial with coefficients in K has all its root in K.
For example, over K = R, not every polynomial has real roots. If we consider the matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
,

then the characteristic polynomial det(XI − A) has no real roots unless θ = kπ. However,
over the field C of complex numbers, every polynomial has roots. For example, the matrix
above has the roots cos θ ± i sin θ = e±iθ.
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It is possible to show that every linear map f over a complex vector space E must have
some (complex) eigenvalue without having recourse to determinants (and the characteristic
polynomial). Let n = dim(E), pick any nonzero vector u ∈ E, and consider the sequence

u, f(u), f 2(u), . . . , fn(u).

Since the above sequence has n + 1 vectors and E has dimension n, these vectors must be
linearly dependent, so there are some complex numbers c0, . . . , cm, not all zero, such that

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0,

where m ≤ n is the largest integer such that the coefficient of fm(u) is nonzero (m must
exits since we have a nontrivial linear dependency). Now, because the field C is algebraically
closed, the polynomial

c0X
m + c1X

m−1 + · · ·+ cm

can be written as a product of linear factors as

c0X
m + c1X

m−1 + · · ·+ cm = c0(X − λ1) · · · (X − λm)

for some complex numbers λ1, . . . , λm ∈ C, not necessarily distinct. But then, since c0 6= 0,

c0f
m(u) + c1f

m−1(u) + · · ·+ cmu = 0

is equivalent to
(f − λ1 id) ◦ · · · ◦ (f − λm id)(u) = 0.

If all the linear maps f − λi id were injective, then (f − λ1 id) ◦ · · · ◦ (f − λm id) would be
injective, contradicting the fact that u 6= 0. Therefore, some linear map f − λi id must have
a nontrivial kernel, which means that there is some v 6= 0 so that

f(v) = λiv;

that is, λi is some eigenvalue of f and v is some eigenvector of f .

As nice as the above argument is, it does not provide a method for finding the eigenvalues
of f , and even if we prefer avoiding determinants as a much as possible, we are forced to
deal with the characteristic polynomial det(X id− f).

Definition 13.3. Let A be an n × n matrix over a field K. Assume that all the roots of
the characteristic polynomial χA(X) = det(XI − A) of A belong to K, which means that
we can write

det(XI − A) = (X − λ1)k1 · · · (X − λm)km ,

where λ1, . . . , λm ∈ K are the distinct roots of det(XI − A) and k1 + · · · + km = n. The
integer ki is called the algebraic multiplicity of the eigenvalue λi, and the dimension of the
eigenspace Eλi = Ker(λiI − A) is called the geometric multiplicity of λi. We denote the
algebraic multiplicity of λi by alg(λi), and its geometric multiplicity by geo(λi).
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By definition, the sum of the algebraic multiplicities is equal to n, but the sum of the
geometric multiplicities can be strictly smaller.

Proposition 13.2. Let A be an n×n matrix over a field K and assume that all the roots of
the characteristic polynomial χA(X) = det(XI−A) of A belong to K. For every eigenvalue λi
of A, the geometric multiplicity of λi is always less than or equal to its algebraic multiplicity,
that is,

geo(λi) ≤ alg(λi).

Proof. To see this, if ni is the dimension of the eigenspace Eλi associated with the eigenvalue
λi, we can form a basis of Kn obtained by picking a basis of Eλi and completing this linearly
independent family to a basis of Kn. With respect to this new basis, our matrix is of the
form

A′ =

(
λiIni B

0 D

)
and a simple determinant calculation shows that

det(XI − A) = det(XI − A′) = (X − λi)ni det(XIn−ni −D).

Therefore, (X−λi)ni divides the characteristic polynomial of A′, and thus, the characteristic
polynomial of A. It follows that ni is less than or equal to the algebraic multiplicity of λi.

The following proposition shows an interesting property of eigenspaces.

Proposition 13.3. Let E be any vector space of finite dimension n and let f be any linear
map. If u1, . . . , um are eigenvectors associated with pairwise distinct eigenvalues λ1, . . . , λm,
then the family (u1, . . . , um) is linearly independent.

Proof. Assume that (u1, . . . , um) is linearly dependent. Then, there exists µ1, . . . , µk ∈ K
such that

µ1ui1 + · · ·+ µkuik = 0,

where 1 ≤ k ≤ m, µi 6= 0 for all i, 1 ≤ i ≤ k, {i1, . . . , ik} ⊆ {1, . . . ,m}, and no proper
subfamily of (ui1 , . . . , uik) is linearly dependent (in other words, we consider a dependency
relation with k minimal). Applying f to this dependency relation, we get

µ1λi1ui1 + · · ·+ µkλikuik = 0,

and if we multiply the original dependency relation by λi1 and subtract it from the above,
we get

µ2(λi2 − λi1)ui2 + · · ·+ µk(λik − λi1)uik = 0,

which is a nontrivial linear dependency among a proper subfamily of (ui1 , . . . , uik) since the
λj are all distinct and the µi are nonzero, a contradiction.
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Thus, from Proposition 13.3, if λ1, . . . , λm are all the pairwise distinct eigenvalues of f
(where m ≤ n), we have a direct sum

Eλ1 ⊕ · · · ⊕ Eλm
of the eigenspaces Eλi . Unfortunately, it is not always the case that

E = Eλ1 ⊕ · · · ⊕ Eλm .

When
E = Eλ1 ⊕ · · · ⊕ Eλm ,

we say that f is diagonalizable (and similarly for any matrix associated with f). Indeed,
picking a basis in each Eλi , we obtain a matrix which is a diagonal matrix consisting of the
eigenvalues, each λi occurring a number of times equal to the dimension of Eλi . This happens
if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In
particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable.
It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.

For a negative example, we leave as exercise to show that the matrix

M =

(
1 1
0 1

)
cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace
of 1 only has dimension 1. The matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
cannot be diagonalized either, because it has no real eigenvalues, unless θ = kπ. However,
over the field of complex numbers, it can be diagonalized.

13.2 Reduction to Upper Triangular Form

Unfortunately, not every linear map on a complex vector space can be diagonalized. The
next best thing is to “triangularize,” which means to find a basis over which the matrix has
zero entries below the main diagonal. Fortunately, such a basis always exist.

We say that a square matrix A is an upper triangular matrix if it has the following shape,

a1 1 a1 2 a1 3 . . . a1n−1 a1n

0 a2 2 a2 3 . . . a2n−1 a2n

0 0 a3 3 . . . a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann


,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.
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Theorem 13.4. Given any finite dimensional vector space over a field K, for any linear
map f : E → E, there is a basis (u1, . . . , un) with respect to which f is represented by an
upper triangular matrix (in Mn(K)) iff all the eigenvalues of f belong to K. Equivalently,
for every n× n matrix A ∈ Mn(K), there is an invertible matrix P and an upper triangular
matrix T (both in Mn(K)) such that

A = PTP−1

iff all the eigenvalues of A belong to K.

Proof. If there is a basis (u1, . . . , un) with respect to which f is represented by an upper
triangular matrix T in Mn(K), then since the eigenvalues of f are the diagonal entries of T ,
all the eigenvalues of f belong to K.

For the converse, we proceed by induction on the dimension n of E. For n = 1 the result
is obvious. If n > 1, since by assumption f has all its eigenvalue in K, pick some eigenvalue
λ1 ∈ K of f , and let u1 be some corresponding (nonzero) eigenvector. We can find n − 1
vectors (v2, . . . , vn) such that (u1, v2, . . . , vn) is a basis of E, and let F be the subspace of
dimension n − 1 spanned by (v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f is of
the form

U =


λ1 a1 2 . . . a1n

0 a2 2 . . . a2n
...

...
. . .

...
0 an 2 . . . ann

 ,

since its first column contains the coordinates of λ1u1 over the basis (u1, v2, . . . , vn). If we
let p : E → F be the projection defined such that p(u1) = 0 and p(vi) = vi when 2 ≤ i ≤ n,
the linear map g : F → F defined as the restriction of p ◦ f to F is represented by the
(n − 1) × (n − 1) matrix V = (ai j)2≤i,j≤n over the basis (v2, . . . , vn). We need to prove
that all the eigenvalues of g belong to K. However, since the first column of U has a single
nonzero entry, we get

χU(X) = det(XI − U) = (X − λ1) det(XI − V ) = (X − λ1)χV (X),

where χU(X) is the characteristic polynomial of U and χV (X) is the characteristic polynomial
of V . It follows that χV (X) divides χU(X), and since all the roots of χU(X) are in K, all
the roots of χV (X) are also in K. Consequently, we can apply the induction hypothesis, and
there is a basis (u2, . . . , un) of F such that g is represented by an upper triangular matrix
(bi j)1≤i,j≤n−1. However,

E = Ku1 ⊕ F,
and thus (u1, . . . , un) is a basis for E. Since p is the projection from E = Ku1 ⊕ F onto F
and g : F → F is the restriction of p ◦ f to F , we have

f(u1) = λ1u1
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and

f(ui+1) = a1 iu1 +
i∑

j=1

bi juj+1

for some a1 i ∈ K, when 1 ≤ i ≤ n−1. But then the matrix of f with respect to (u1, . . . , un)
is upper triangular.

For the matrix version, we assume that A is the matrix of f with respect to some basis,
Then, we just proved that there is a change of basis matrix P such that A = PTP−1 where
T is upper triangular.

If A = PTP−1 where T is upper triangular, note that the diagonal entries of T are the
eigenvalues λ1, . . . , λn of A. Indeed, A and T have the same characteristic polynomial. Also,
if A is a real matrix whose eigenvalues are all real, then P can be chosen to real, and if A
is a rational matrix whose eigenvalues are all rational, then P can be chosen rational. Since
any polynomial over C has all its roots in C, Theorem 13.4 implies that every complex n×n
matrix can be triangularized.

If λ is an eigenvalue of the matrix A and if u is an eigenvector associated with λ, from

Au = λu,

we obtain

A2u = A(Au) = A(λu) = λAu = λ2u,

which shows that λ2 is an eigenvalue of A2 for the eigenvector u. An obvious induction shows
that λk is an eigenvalue of Ak for the eigenvector u, for all k ≥ 1. Now, if all eigenvalues
λ1, . . . , λn of A are in K, it follows that λk1, . . . , λ

k
n are eigenvalues of Ak. However, it is not

obvious that Ak does not have other eigenvalues. In fact, this can’t happen, and this can be
proved using Theorem 13.4.

Proposition 13.5. Given any n × n matrix A ∈ Mn(K) with coefficients in a field K,
if all eigenvalues λ1, . . . , λn of A are in K, then for every polynomial q(X) ∈ K[X], the
eigenvalues of q(A) are exactly (q(λ1), . . . , q(λn)).

Proof. By Theorem 13.4, there is an upper triangular matrix T and an invertible matrix P
(both in Mn(K)) such that

A = PTP−1.

Since A and T are similar, they have the same eigenvalues (with the same multiplicities), so
the diagonal entries of T are the eigenvalues of A. Since

Ak = PT kP−1, k ≥ 1,
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for any polynomial q(X) = c0X
m + · · ·+ cm−1X + cm, we have

q(A) = c0A
m + · · ·+ cm−1A+ cmI

= c0PT
mP−1 + · · ·+ cm−1PTP

−1 + cmPIP
−1

= P (c0T
m + · · ·+ cm−1T + cmI)P−1

= Pq(T )P−1.

Furthermore, it is easy to check that q(T ) is upper triangular and that its diagonal entries
are q(λ1), . . . , q(λn), where λ1, . . . , λn are the diagonal entries of T , namely the eigenvalues
of A. It follows that q(λ1), . . . , q(λn) are the eigenvalues of q(A).

If E is a Hermitian space (see Chapter 12), the proof of Theorem 13.4 can be easily
adapted to prove that there is an orthonormal basis (u1, . . . , un) with respect to which the
matrix of f is upper triangular. This is usually known as Schur’s lemma.

Theorem 13.6. (Schur decomposition) Given any linear map f : E → E over a complex
Hermitian space E, there is an orthonormal basis (u1, . . . , un) with respect to which f is
represented by an upper triangular matrix. Equivalently, for every n×n matrix A ∈ Mn(C),
there is a unitary matrix U and an upper triangular matrix T such that

A = UTU∗.

If A is real and if all its eigenvalues are real, then there is an orthogonal matrix Q and a
real upper triangular matrix T such that

A = QTQ>.

Proof. During the induction, we choose F to be the orthogonal complement of Cu1 and we
pick orthonormal bases (use Propositions 12.10 and 12.9). If E is a real Euclidean space
and if the eigenvalues of f are all real, the proof also goes through with real matrices (use
Propositions 10.9 and 10.8).

Using, Theorem 13.6, we can derive two very important results.

Proposition 13.7. If A is a Hermitian matrix (i.e. A∗ = A), then its eigenvalues are real
and A can be diagonalized with respect to an orthonormal basis of eigenvectors. In matrix
terms, there is a unitary matrix U and a real diagonal matrix D such that A = UDU∗. If
A is a real symmetric matrix (i.e. A> = A), then its eigenvalues are real and A can be
diagonalized with respect to an orthonormal basis of eigenvectors. In matrix terms, there is
an orthogonal matrix Q and a real diagonal matrix D such that A = QDQ>.

Proof. By Theorem 13.6, we can write A = UTU∗ where T = (tij) is upper triangular and
U is a unitary matrix. If A∗ = A, we get

UTU∗ = UT ∗U∗,
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which implies that T = T ∗. Since T is an upper triangular matrix, T ∗ is a lower triangular
matrix, which implies that T is a diagonal matrix. Furthermore, since T = T ∗, we have
tii = tii for i = 1, . . . , n, which means that the tii are real, so T is indeed a real diagonal
matrix, say D.

If we apply this result to a (real) symmetric matrix A, we obtain the fact that all the
eigenvalues of a symmetric matrix are real, and by applying Theorem 13.6 again, we conclude
that A = QDQ>, where Q is orthogonal and D is a real diagonal matrix.

More general versions of Proposition 13.7 are proved in Chapter 14.

When a real matrix A has complex eigenvalues, there is a version of Theorem 13.6
involving only real matrices provided that we allow T to be block upper-triangular (the
diagonal entries may be 2× 2 matrices or real entries).

Theorem 13.6 is not a very practical result but it is a useful theoretical result to cope
with matrices that cannot be diagonalized. For example, it can be used to prove that
every complex matrix is the limit of a sequence of diagonalizable matrices that have distinct
eigenvalues!

Remark: There is another way to prove Proposition 13.5 that does not use Theorem 13.4,
but instead uses the fact that given any field K, there is field extension K of K (K ⊆ K) such
that every polynomial q(X) = c0X

m + · · ·+ cm−1X + cm (of degree m ≥ 1) with coefficients
ci ∈ K factors as

q(X) = c0(X − α1) · · · (X − αn), αi ∈ K, i = 1, . . . , n.

The field K is called an algebraically closed field (and an algebraic closure of K).

Assume that all eigenvalues λ1, . . . , λn of A belong to K. Let q(X) be any polynomial
(in K[X]) and let µ ∈ K be any eigenvalue of q(A) (this means that µ is a zero of the
characteristic polynomial χq(A)(X) ∈ K[X] of q(A). Since K is algebraically closed, χq(A)(X)
has all its root in K). We claim that µ = q(λi) for some eigenvalue λi of A.

Proof. (After Lax [67], Chapter 6). Since K is algebraically closed, the polynomial µ− q(X)
factors as

µ− q(X) = c0(X − α1) · · · (X − αn),

for some αi ∈ K. Now, µI − q(A) is a matrix in Mn(K), and since µ is an eigenvalue of
q(A), it must be singular. We have

µI − q(A) = c0(A− α1I) · · · (A− αnI),

and since the left-hand side is singular, so is the right-hand side, which implies that some
factor A−αiI is singular. This means that αi is an eigenvalue of A, say αi = λi. As αi = λi
is a zero of µ− q(X), we get

µ = q(λi),

which proves that µ is indeed of the form q(λi) for some eigenvalue λi of A.
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13.3 Location of Eigenvalues

If A is an n×n complex (or real) matrix A, it would be useful to know, even roughly, where
the eigenvalues of A are located in the complex plane C. The Gershgorin discs provide some
precise information about this.

Definition 13.4. For any complex n× n matrix A, for i = 1, . . . , n, let

R′i(A) =
n∑
j=1
j 6=i

|ai j|

and let

G(A) =
n⋃
i=1

{z ∈ C | |z − ai i| ≤ R′i(A)}.

Each disc {z ∈ C | |z − ai i| ≤ R′i(A)} is called a Gershgorin disc and their union G(A) is
called the Gershgorin domain.

Although easy to prove, the following theorem is very useful:

Theorem 13.8. (Gershgorin’s disc theorem) For any complex n×n matrix A, all the eigen-
values of A belong to the Gershgorin domain G(A). Furthermore the following properties
hold:

(1) If A is strictly row diagonally dominant, that is

|ai i| >
n∑

j=1, j 6=i
|ai j|, for i = 1, . . . , n,

then A is invertible.

(2) If A is strictly row diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

Proof. Let λ be any eigenvalue of A and let u be a corresponding eigenvector (recall that we
must have u 6= 0). Let k be an index such that

|uk| = max
1≤i≤n

|ui|.

Since Au = λu, we have

(λ− ak k)uk =
n∑
j=1
j 6=k

ak juj,
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which implies that

|λ− ak k||uk| ≤
n∑
j=1
j 6=k

|ak j||uj| ≤ |uk|
n∑
j=1
j 6=k

|ak j|

and since u 6= 0 and |uk| = max1≤i≤n |ui|, we must have |uk| 6= 0, and it follows that

|λ− ak k| ≤
n∑
j=1
j 6=k

|ak j| = R′k(A),

and thus

λ ∈ {z ∈ C | |z − ak k| ≤ R′k(A)} ⊆ G(A),

as claimed.

(1) Strict row diagonal dominance implies that 0 does not belong to any of the Gershgorin
discs, so all eigenvalues of A are nonzero, and A is invertible.

(2) If A is strictly row diagonally dominant and ai i > 0 for i = 1, . . . , n, then each of the
Gershgorin discs lies strictly in the right half-plane, so every eigenvalue of A has a strictly
positive real part.

In particular, Theorem 13.8 implies that if a symmetric matrix is strictly row diagonally
dominant and has strictly positive diagonal entries, then it is positive definite. Theorem 13.8
is sometimes called the Gershgorin–Hadamard theorem.

Since A and A> have the same eigenvalues (even for complex matrices) we also have a
version of Theorem 13.8 for the discs of radius

C ′j(A) =
n∑
i=1
i 6=j

|ai j|,

whose domain is denoted by G(A>). Thus we get the following:

Theorem 13.9. For any complex n × n matrix A, all the eigenvalues of A belong to the
intersection of the Gershgorin domains, G(A)∩G(A>). Furthermore the following properties
hold:

(1) If A is strictly column diagonally dominant, that is

|ai i| >
n∑

i=1, i 6=j
|ai j|, for j = 1, . . . , n,

then A is invertible.
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(2) If A is strictly column diagonally dominant, and if ai i > 0 for i = 1, . . . , n, then every
eigenvalue of A has a strictly positive real part.

There are refinements of Gershgorin’s theorem and eigenvalue location results involving
other domains besides discs; for more on this subject, see Horn and Johnson [56], Sections
6.1 and 6.2.

Remark: Neither strict row diagonal dominance nor strict column diagonal dominance are
necessary for invertibility. Also, if we relax all strict inequalities to inequalities, then row
diagonal dominance (or column diagonal dominance) is not a sufficient condition for invert-
ibility.

13.4 Summary

The main concepts and results of this chapter are listed below:

• Diagonal matrix .

• Eigenvalues, eigenvectors ; the eigenspace associated with an eigenvalue.

• The characteristic polynomial .

• The trace.

• algebraic and geometric multiplicity .

• Eigenspaces associated with distinct eigenvalues form a direct sum (Proposition 13.3).

• Reduction of a matrix to an upper-triangular matrix.

• Schur decomposition.

• The Gershgorin’s discs can be used to locate the eigenvalues of a complex matrix; see
Theorems 13.8 and 13.9.
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Chapter 14

Spectral Theorems in Euclidean and
Hermitian Spaces

14.1 Introduction

The goal of this chapter is to show that there are nice normal forms for symmetric matrices,
skew-symmetric matrices, orthogonal matrices, and normal matrices. The spectral theorem
for symmetric matrices states that symmetric matrices have real eigenvalues and that they
can be diagonalized over an orthonormal basis. The spectral theorem for Hermitian matrices
states that Hermitian matrices also have real eigenvalues and that they can be diagonalized
over a complex orthonormal basis. Normal real matrices can be block diagonalized over an
orthonormal basis with blocks having size at most two, and there are refinements of this
normal form for skew-symmetric and orthogonal matrices.

14.2 Normal Linear Maps

We begin by studying normal maps, to understand the structure of their eigenvalues and
eigenvectors. This section and the next two were inspired by Lang [63], Artin [6], Mac Lane
and Birkhoff [71], Berger [9], and Bertin [12].

Definition 14.1. Given a Euclidean space E, a linear map f : E → E is normal if

f ◦ f ∗ = f ∗ ◦ f.

A linear map f : E → E is self-adjoint if f = f ∗, skew-self-adjoint if f = −f ∗, and orthogonal
if f ◦ f ∗ = f ∗ ◦ f = id.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal linear
map. Our first goal is to show that for every normal linear map f : E → E, there is an
orthonormal basis (w.r.t. 〈−,−〉) such that the matrix of f over this basis has an especially

387
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nice form: It is a block diagonal matrix in which the blocks are either one-dimensional
matrices (i.e., single entries) or two-dimensional matrices of the form

(
λ µ
−µ λ

)
.

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or orthog-
onal. As a first step, we show that f and f ∗ have the same kernel when f is normal.

Proposition 14.1. Given a Euclidean space E, if f : E → E is a normal linear map, then
Ker f = Ker f ∗.

Proof. First, let us prove that

〈f(u), f(v)〉 = 〈f ∗(u), f ∗(v)〉

for all u, v ∈ E. Since f ∗ is the adjoint of f and f ◦ f ∗ = f ∗ ◦ f , we have

〈f(u), f(u)〉 = 〈u, (f ∗ ◦ f)(u)〉,
= 〈u, (f ◦ f ∗)(u)〉,
= 〈f ∗(u), f ∗(u)〉.

Since 〈−,−〉 is positive definite,

〈f(u), f(u)〉 = 0 iff f(u) = 0,

〈f ∗(u), f ∗(u)〉 = 0 iff f ∗(u) = 0,

and since

〈f(u), f(u)〉 = 〈f ∗(u), f ∗(u)〉,
we have

f(u) = 0 iff f ∗(u) = 0.

Consequently, Ker f = Ker f ∗.

The next step is to show that for every linear map f : E → E there is some subspace W
of dimension 1 or 2 such that f(W ) ⊆ W . When dim(W ) = 1, the subspace W is actually
an eigenspace for some real eigenvalue of f . Furthermore, when f is normal, there is a
subspace W of dimension 1 or 2 such that f(W ) ⊆ W and f ∗(W ) ⊆ W . The difficulty is
that the eigenvalues of f are not necessarily real. One way to get around this problem is to
complexify both the vector space E and the inner product 〈−,−〉.

Every real vector space E can be embedded into a complex vector space EC, and every
linear map f : E → E can be extended to a linear map fC : EC → EC.
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Definition 14.2. Given a real vector space E, let EC be the structure E × E under the
addition operation

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2),

and let multiplication by a complex scalar z = x+ iy be defined such that

(x+ iy) · (u, v) = (xu− yv, yu+ xv).

The space EC is called the complexification of E.

It is easily shown that the structure EC is a complex vector space. It is also immediate
that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consisting of all vectors of the form (u, 0),
we can write

(u, v) = u+ iv.

Observe that if (e1, . . . , en) is a basis of E (a real vector space), then (e1, . . . , en) is also
a basis of EC (recall that ei is an abreviation for (ei, 0)).

A linear map f : E → E is extended to the linear map fC : EC → EC defined such that

fC(u+ iv) = f(u) + if(v).

For any basis (e1, . . . , en) of E, the matrix M(f) representing f over (e1, . . . , en) is iden-
tical to the matrix M(fC) representing fC over (e1, . . . , en), where we view (e1, . . . , en) as a
basis of EC. As a consequence, det(zI −M(f)) = det(zI −M(fC)), which means that f
and fC have the same characteristic polynomial (which has real coefficients). We know that
every polynomial of degree n with real (or complex) coefficients always has n complex roots
(counted with their multiplicity), and the roots of det(zI −M(fC)) that are real (if any) are
the eigenvalues of f .

Next, we need to extend the inner product on E to an inner product on EC.

The inner product 〈−,−〉 on a Euclidean space E is extended to the Hermitian positive
definite form 〈−,−〉C on EC as follows:

〈u1 + iv1, u2 + iv2〉C = 〈u1, u2〉+ 〈v1, v2〉+ i(〈v1, u2〉 − 〈u1, v2〉).

It is easily verified that 〈−,−〉C is indeed a Hermitian form that is positive definite, and
it is clear that 〈−,−〉C agrees with 〈−,−〉 on real vectors. Then, given any linear map
f : E → E, it is easily verified that the map f ∗C defined such that

f ∗C(u+ iv) = f ∗(u) + if ∗(v)

for all u, v ∈ E is the adjoint of fC w.r.t. 〈−,−〉C.

Assuming again that E is a Hermitian space, observe that Proposition 14.1 also holds.
We deduce the following corollary.
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Proposition 14.2. Given a Hermitian space E, for any normal linear map f : E → E, we
have Ker (f) ∩ Im(f) = (0).

Proof. Assume v ∈ Ker (f) ∩ Im(f) = (0), which means that v = f(u) for some u ∈ E, and
f(v) = 0. By Proposition 14.1, Ker (f) = Ker (f ∗), so f(v) = 0 implies that f ∗(v) = 0.
Consequently,

0 = 〈f ∗(v), u〉
= 〈v, f(u)〉
= 〈v, v〉,

and thus, v = 0.

We also have the following crucial proposition relating the eigenvalues of f and f ∗.

Proposition 14.3. Given a Hermitian space E, for any normal linear map f : E → E, a
vector u is an eigenvector of f for the eigenvalue λ (in C) iff u is an eigenvector of f ∗ for
the eigenvalue λ.

Proof. First, it is immediately verified that the adjoint of f −λ id is f ∗−λ id. Furthermore,
f − λ id is normal. Indeed,

(f − λ id) ◦ (f − λ id)∗ = (f − λ id) ◦ (f ∗ − λ id),

= f ◦ f ∗ − λf − λf ∗ + λλ id,

= f ∗ ◦ f − λf ∗ − λf + λλ id,

= (f ∗ − λ id) ◦ (f − λ id),

= (f − λ id)∗ ◦ (f − λ id).

Applying Proposition 14.1 to f − λ id, for every nonnull vector u, we see that

(f − λ id)(u) = 0 iff (f ∗ − λ id)(u) = 0,

which is exactly the statement of the proposition.

The next proposition shows a very important property of normal linear maps: Eigenvec-
tors corresponding to distinct eigenvalues are orthogonal.

Proposition 14.4. Given a Hermitian space E, for any normal linear map f : E → E, if
u and v are eigenvectors of f associated with the eigenvalues λ and µ (in C) where λ 6= µ,
then 〈u, v〉 = 0.

Proof. Let us compute 〈f(u), v〉 in two different ways. Since v is an eigenvector of f for µ,
by Proposition 14.3, v is also an eigenvector of f ∗ for µ, and we have

〈f(u), v〉 = 〈λu, v〉 = λ〈u, v〉
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and
〈f(u), v〉 = 〈u, f ∗(v)〉 = 〈u, µv〉 = µ〈u, v〉,

where the last identity holds because of the semilinearity in the second argument, and thus

λ〈u, v〉 = µ〈u, v〉,

that is,
(λ− µ)〈u, v〉 = 0,

which implies that 〈u, v〉 = 0, since λ 6= µ.

We can also show easily that the eigenvalues of a self-adjoint linear map are real.

Proposition 14.5. Given a Hermitian space E, all the eigenvalues of any self-adjoint linear
map f : E → E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We compute
〈f(u), u〉 in two different ways. We have

〈f(u), u〉 = 〈zu, u〉 = z〈u, u〉,

and since f = f ∗, we also have

〈f(u), u〉 = 〈u, f ∗(u)〉 = 〈u, f(u)〉 = 〈u, zu〉 = z〈u, u〉.

Thus,
z〈u, u〉 = z〈u, u〉,

which implies that z = z, since u 6= 0, and z is indeed real.

There is also a version of Proposition 14.5 for a (real) Euclidean space E and a self-adjoint
map f : E → E.

Proposition 14.6. Given a Euclidean space E, if f : E → E is any self-adjoint linear map,
then every eigenvalue λ of fC is real and is actually an eigenvalue of f (which means that
there is some real eigenvector u ∈ E such that f(u) = λu). Therefore, all the eigenvalues of
f are real.

Proof. Let EC be the complexification of E, 〈−,−〉C the complexification of the inner product
〈−,−〉 on E, and fC : EC → EC the complexification of f : E → E. By definition of fC and
〈−,−〉C, if f is self-adjoint, we have

〈fC(u1 + iv1), u2 + iv2〉C = 〈f(u1) + if(v1), u2 + iv2〉C
= 〈f(u1), u2〉+ 〈f(v1), v2〉+ i(〈u2, f(v1)〉 − 〈f(u1), v2〉)
= 〈u1, f(u2)〉+ 〈v1, f(v2)〉+ i(〈f(u2), v1〉 − 〈u1, f(v2)〉)
= 〈u1 + iv1, f(u2) + if(v2)〉C
= 〈u1 + iv1, fC(u2 + iv2)〉C,
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which shows that fC is also self-adjoint with respect to 〈−,−〉C.

As we pointed out earlier, f and fC have the same characteristic polynomial det(zI−fC) =
det(zI − f), which is a polynomial with real coefficients. Proposition 14.5 shows that the
zeros of det(zI − fC) = det(zI − f) are all real, and for each real zero λ of det(zI − f), the
linear map λid − f is singular, which means that there is some nonzero u ∈ E such that
f(u) = λu. Therefore, all the eigenvalues of f are real.

Given any subspace W of a Euclidean space E, recall that the orthogonal complement
W⊥ of W is the subspace defined such that

W⊥ = {u ∈ E | 〈u,w〉 = 0, for all w ∈ W}.

Recall from Proposition 10.9 that E = W ⊕ W⊥ (this can be easily shown, for example,
by constructing an orthonormal basis of E using the Gram–Schmidt orthonormalization
procedure). The same result also holds for Hermitian spaces; see Proposition 12.10.

As a warm up for the proof of Theorem 14.10, let us prove that every self-adjoint map on
a Euclidean space can be diagonalized with respect to an orthonormal basis of eigenvectors.

Theorem 14.7. (Spectral theorem for self-adjoint linear maps on a Euclidean space) Given
a Euclidean space E of dimension n, for every self-adjoint linear map f : E → E, there is
an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this
basis is a diagonal matrix 

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

with λi ∈ R.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. From Proposition 14.6, all the eigenvalues of f are real, so
pick some eigenvalue λ ∈ R, and let w be some eigenvector for λ. By dividing w by its norm,
we may assume that w is a unit vector. Let W be the subspace of dimension 1 spanned by w.
Clearly, f(W ) ⊆ W . We claim that f(W⊥) ⊆ W⊥, where W⊥ is the orthogonal complement
of W .

Indeed, for any v ∈ W⊥, that is, if 〈v, w〉 = 0, because f is self-adjoint and f(w) = λw,
we have

〈f(v), w〉 = 〈v, f(w)〉
= 〈v, λw〉
= λ〈v, w〉 = 0
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since 〈v, w〉 = 0. Therefore,
f(W⊥) ⊆ W⊥.

Clearly, the restriction of f to W⊥ is self-adjoint, and we conclude by applying the induction
hypothesis to W⊥ (whose dimension is n− 1).

We now come back to normal linear maps. One of the key points in the proof of Theorem
14.7 is that we found a subspace W with the property that f(W ) ⊆ W implies that f(W⊥) ⊆
W⊥. In general, this does not happen, but normal maps satisfy a stronger property which
ensures that such a subspace exists.

The following proposition provides a condition that will allow us to show that a nor-
mal linear map can be diagonalized. It actually holds for any linear map. We found the
inspiration for this proposition in Berger [9].

Proposition 14.8. Given a Hermitian space E, for any linear map f : E → E and any
subspace W of E, if f(W ) ⊆ W , then f ∗

(
W⊥) ⊆ W⊥. Consequently, if f(W ) ⊆ W and

f ∗(W ) ⊆ W , then f
(
W⊥) ⊆ W⊥ and f ∗

(
W⊥) ⊆ W⊥.

Proof. If u ∈ W⊥, then
〈w, u〉 = 0 for all w ∈ W.

However,
〈f(w), u〉 = 〈w, f ∗(u)〉,

and f(W ) ⊆ W implies that f(w) ∈ W . Since u ∈ W⊥, we get

0 = 〈f(w), u〉 = 〈w, f ∗(u)〉,

which shows that 〈w, f ∗(u)〉 = 0 for all w ∈ W , that is, f ∗(u) ∈ W⊥. Therefore, we have
f ∗(W⊥) ⊆ W⊥.

We just proved that if f(W ) ⊆ W , then f ∗
(
W⊥) ⊆ W⊥. If we also have f ∗(W ) ⊆ W ,

then by applying the above fact to f ∗, we get f ∗∗(W⊥) ⊆ W⊥, and since f ∗∗ = f , this is
just f(W⊥) ⊆ W⊥, which proves the second statement of the proposition.

It is clear that the above proposition also holds for Euclidean spaces.

Although we are ready to prove that for every normal linear map f (over a Hermitian
space) there is an orthonormal basis of eigenvectors (see Theorem 14.11 below), we now
return to real Euclidean spaces.

If f : E → E is a linear map and w = u + iv is an eigenvector of fC : EC → EC for the
eigenvalue z = λ+ iµ, where u, v ∈ E and λ, µ ∈ R, since

fC(u+ iv) = f(u) + if(v)

and
fC(u+ iv) = (λ+ iµ)(u+ iv) = λu− µv + i(µu+ λv),
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we have
f(u) = λu− µv and f(v) = µu+ λv,

from which we immediately obtain

fC(u− iv) = (λ− iµ)(u− iv),

which shows that w = u− iv is an eigenvector of fC for z = λ− iµ. Using this fact, we can
prove the following proposition.

Proposition 14.9. Given a Euclidean space E, for any normal linear map f : E → E, if
w = u+ iv is an eigenvector of fC associated with the eigenvalue z = λ+ iµ (where u, v ∈ E
and λ, µ ∈ R), if µ 6= 0 (i.e., z is not real) then 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, which implies
that u and v are linearly independent, and if W is the subspace spanned by u and v, then
f(W ) = W and f ∗(W ) = W . Furthermore, with respect to the (orthogonal) basis (u, v), the
restriction of f to W has the matrix (

λ µ
−µ λ

)
.

If µ = 0, then λ is a real eigenvalue of f , and either u or v is an eigenvector of f for λ. If
W is the subspace spanned by u if u 6= 0, or spanned by v 6= 0 if u = 0, then f(W ) ⊆ W and
f ∗(W ) ⊆ W .

Proof. Since w = u+ iv is an eigenvector of fC, by definition it is nonnull, and either u 6= 0
or v 6= 0. From the fact stated just before Proposition 14.9, u− iv is an eigenvector of fC for
λ− iµ. It is easy to check that fC is normal. However, if µ 6= 0, then λ + iµ 6= λ− iµ, and
from Proposition 14.4, the vectors u+ iv and u− iv are orthogonal w.r.t. 〈−,−〉C, that is,

〈u+ iv, u− iv〉C = 〈u, u〉 − 〈v, v〉+ 2i〈u, v〉 = 0.

Thus, we get 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, and since u 6= 0 or v 6= 0, u and v are linearly
independent. Since

f(u) = λu− µv and f(v) = µu+ λv

and since by Proposition 14.3 u+ iv is an eigenvector of f ∗C for λ− iµ, we have

f ∗(u) = λu+ µv and f ∗(v) = −µu+ λv,

and thus f(W ) = W and f ∗(W ) = W , where W is the subspace spanned by u and v.

When µ = 0, we have
f(u) = λu and f(v) = λv,

and since u 6= 0 or v 6= 0, either u or v is an eigenvector of f for λ. If W is the subspace
spanned by u if u 6= 0, or spanned by v if u = 0, it is obvious that f(W ) ⊆ W and
f ∗(W ) ⊆ W . Note that λ = 0 is possible, and this is why ⊆ cannot be replaced by =.
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The beginning of the proof of Proposition 14.9 actually shows that for every linear map
f : E → E there is some subspace W such that f(W ) ⊆ W , where W has dimension 1 or
2. In general, it doesn’t seem possible to prove that W⊥ is invariant under f . However, this
happens when f is normal.

We can finally prove our first main theorem.

Theorem 14.10. (Main spectral theorem) Given a Euclidean space E of dimension n, for
every normal linear map f : E → E, there is an orthonormal basis (e1, . . . , en) such that the
matrix of f w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either a one-dimensional matrix (i.e., a real scalar) or a two-
dimensional matrix of the form

Aj =

(
λj −µj
µj λj

)
,

where λj, µj ∈ R, with µj > 0.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. First, since C is algebraically closed (i.e., every polynomial
has a root in C), the linear map fC : EC → EC has some eigenvalue z = λ + iµ (where
λ, µ ∈ R). Let w = u + iv be some eigenvector of fC for λ + iµ (where u, v ∈ E). We can
now apply Proposition 14.9.

If µ = 0, then either u or v is an eigenvector of f for λ ∈ R. Let W be the subspace
of dimension 1 spanned by e1 = u/‖u‖ if u 6= 0, or by e1 = v/‖v‖ otherwise. It is obvious
that f(W ) ⊆ W and f ∗(W ) ⊆ W . The orthogonal W⊥ of W has dimension n − 1, and by
Proposition 14.8, we have f

(
W⊥) ⊆ W⊥. But the restriction of f to W⊥ is also normal,

and we conclude by applying the induction hypothesis to W⊥.

If µ 6= 0, then 〈u, v〉 = 0 and 〈u, u〉 = 〈v, v〉, and if W is the subspace spanned by u/‖u‖
and v/‖v‖, then f(W ) = W and f ∗(W ) = W . We also know that the restriction of f to W
has the matrix (

λ µ
−µ λ

)
with respect to the basis (u/‖u‖, v/‖v‖). If µ < 0, we let λ1 = λ, µ1 = −µ, e1 = u/‖u‖, and
e2 = v/‖v‖. If µ > 0, we let λ1 = λ, µ1 = µ, e1 = v/‖v‖, and e2 = u/‖u‖. In all cases, it
is easily verified that the matrix of the restriction of f to W w.r.t. the orthonormal basis
(e1, e2) is

A1 =

(
λ1 −µ1

µ1 λ1

)
,
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where λ1, µ1 ∈ R, with µ1 > 0. However, W⊥ has dimension n− 2, and by Proposition 14.8,
f
(
W⊥) ⊆ W⊥. Since the restriction of f to W⊥ is also normal, we conclude by applying

the induction hypothesis to W⊥.

After this relatively hard work, we can easily obtain some nice normal forms for the
matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. However, for the sake
of completeness (and since we have all the tools to so do), we go back to the case of a
Hermitian space and show that normal linear maps can be diagonalized with respect to an
orthonormal basis. The proof is a slight generalization of the proof of Theorem 14.6.

Theorem 14.11. (Spectral theorem for normal linear maps on a Hermitian space) Given
a Hermitian space E of dimension n, for every normal linear map f : E → E there is an
orthonormal basis (e1, . . . , en) of eigenvectors of f such that the matrix of f w.r.t. this basis
is a diagonal matrix 

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

where λj ∈ C.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the result is
trivial. Assume now that n ≥ 2. Since C is algebraically closed (i.e., every polynomial has
a root in C), the linear map f : E → E has some eigenvalue λ ∈ C, and let w be some unit
eigenvector for λ. Let W be the subspace of dimension 1 spanned by w. Clearly, f(W ) ⊆ W .
By Proposition 14.3, w is an eigenvector of f ∗ for λ, and thus f ∗(W ) ⊆ W . By Proposition
14.8, we also have f(W⊥) ⊆ W⊥. The restriction of f to W⊥ is still normal, and we conclude
by applying the induction hypothesis to W⊥ (whose dimension is n− 1).

Thus, in particular, self-adjoint, skew-self-adjoint, and orthogonal linear maps can be
diagonalized with respect to an orthonormal basis of eigenvectors. In this latter case, though,
an orthogonal map is called a unitary map. Also, Proposition 14.5 shows that the eigenvalues
of a self-adjoint linear map are real. It is easily shown that skew-self-adjoint maps have
eigenvalues that are pure imaginary or null, and that unitary maps have eigenvalues of
absolute value 1.

Remark: There is a converse to Theorem 14.11, namely, if there is an orthonormal basis
(e1, . . . , en) of eigenvectors of f , then f is normal. We leave the easy proof as an exercise.

14.3 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal

Linear Maps

We begin with self-adjoint maps.
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Theorem 14.12. Given a Euclidean space E of dimension n, for every self-adjoint linear
map f : E → E, there is an orthonormal basis (e1, . . . , en) of eigenvectors of f such that the
matrix of f w.r.t. this basis is a diagonal matrix

λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn

 ,

where λi ∈ R.

Proof. We already proved this; see Theorem 14.6. However, it is instructive to give a more
direct method not involving the complexification of 〈−,−〉 and Proposition 14.5.

Since C is algebraically closed, fC has some eigenvalue λ + iµ, and let u + iv be some
eigenvector of fC for λ+ iµ, where λ, µ ∈ R and u, v ∈ E. We saw in the proof of Proposition
14.9 that

f(u) = λu− µv and f(v) = µu+ λv.

Since f = f ∗,
〈f(u), v〉 = 〈u, f(v)〉

for all u, v ∈ E. Applying this to

f(u) = λu− µv and f(v) = µu+ λv,

we get
〈f(u), v〉 = 〈λu− µv, v〉 = λ〈u, v〉 − µ〈v, v〉

and
〈u, f(v)〉 = 〈u, µu+ λv〉 = µ〈u, u〉+ λ〈u, v〉,

and thus we get
λ〈u, v〉 − µ〈v, v〉 = µ〈u, u〉+ λ〈u, v〉,

that is,
µ(〈u, u〉+ 〈v, v〉) = 0,

which implies µ = 0, since either u 6= 0 or v 6= 0. Therefore, λ is a real eigenvalue of f .

Now, going back to the proof of Theorem 14.10, only the case where µ = 0 applies, and
the induction shows that all the blocks are one-dimensional.

Theorem 14.12 implies that if λ1, . . . , λp are the distinct real eigenvalues of f , and Ei is
the eigenspace associated with λi, then

E = E1 ⊕ · · · ⊕ Ep,
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where Ei and Ej are orthogonal for all i 6= j.

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to use a
little bit of calculus. We learned such a proof from Herman Gluck. The idea is to consider
the real-valued function Φ: E → R defined such that

Φ(u) = 〈f(u), u〉

for every u ∈ E. This function is C∞, and if we represent f by a matrix A over some
orthonormal basis, it is easy to compute the gradient vector

∇Φ(X) =

(
∂Φ

∂x1

(X), . . . ,
∂Φ

∂xn
(X)

)
of Φ at X. Indeed, we find that

∇Φ(X) = (A+ A>)X,

where X is a column vector of size n. But since f is self-adjoint, A = A>, and thus

∇Φ(X) = 2AX.

The next step is to find the maximum of the function Φ on the sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}.

Since Sn−1 is compact and Φ is continuous, and in fact C∞, Φ takes a maximum at some X
on Sn−1. But then it is well known that at an extremum X of Φ we must have

dΦX(Y ) = 〈∇Φ(X), Y 〉 = 0

for all tangent vectors Y to Sn−1 at X, and so ∇Φ(X) is orthogonal to the tangent plane at
X, which means that

∇Φ(X) = λX

for some λ ∈ R. Since ∇Φ(X) = 2AX, we get

2AX = λX,

and thus λ/2 is a real eigenvalue of A (i.e., of f).

Next, we consider skew-self-adjoint maps.
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Theorem 14.13. Given a Euclidean space E of dimension n, for every skew-self-adjoint
linear map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f
w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either 0 or a two-dimensional matrix of the form

Aj =

(
0 −µj
µj 0

)
,

where µj ∈ R, with µj > 0. In particular, the eigenvalues of fC are pure imaginary of the
form ±iµj or 0.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 14.10, fC has some
eigenvalue z = λ+ iµ, where λ, µ ∈ R. We claim that λ = 0. First, we show that

〈f(w), w〉 = 0

for all w ∈ E. Indeed, since f = −f ∗, we get

〈f(w), w〉 = 〈w, f ∗(w)〉 = 〈w,−f(w)〉 = −〈w, f(w)〉 = −〈f(w), w〉,

since 〈−,−〉 is symmetric. This implies that

〈f(w), w〉 = 0.

Applying this to u and v and using the fact that

f(u) = λu− µv and f(v) = µu+ λv,

we get
0 = 〈f(u), u〉 = 〈λu− µv, u〉 = λ〈u, u〉 − µ〈u, v〉

and
0 = 〈f(v), v〉 = 〈µu+ λv, v〉 = µ〈u, v〉+ λ〈v, v〉,

from which, by addition, we get

λ(〈v, v〉+ 〈v, v〉) = 0.

Since u 6= 0 or v 6= 0, we have λ = 0.

Then, going back to the proof of Theorem 14.10, unless µ = 0, the case where u and v
are orthogonal and span a subspace of dimension 2 applies, and the induction shows that all
the blocks are two-dimensional or reduced to 0.
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Remark: One will note that if f is skew-self-adjoint, then ifC is self-adjoint w.r.t. 〈−,−〉C.
By Proposition 14.5, the map ifC has real eigenvalues, which implies that the eigenvalues of
fC are pure imaginary or 0.

Finally, we consider orthogonal linear maps.

Theorem 14.14. Given a Euclidean space E of dimension n, for every orthogonal linear
map f : E → E there is an orthonormal basis (e1, . . . , en) such that the matrix of f w.r.t.
this basis is a block diagonal matrix of the form

A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap


such that each block Aj is either 1, −1, or a two-dimensional matrix of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
where 0 < θj < π. In particular, the eigenvalues of fC are of the form cos θj ± i sin θj, 1, or
−1.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 14.10, fC has some
eigenvalue z = λ + iµ, where λ, µ ∈ R. It is immediately verified that f ◦ f ∗ = f ∗ ◦ f = id
implies that fC ◦ f ∗C = f ∗C ◦ fC = id, so the map fC is unitary. In fact, the eigenvalues of fC
have absolute value 1. Indeed, if z (in C) is an eigenvalue of fC, and u is an eigenvector for
z, we have

〈fC(u), fC(u)〉 = 〈zu, zu〉 = zz〈u, u〉
and

〈fC(u), fC(u)〉 = 〈u, (f ∗C ◦ fC)(u)〉 = 〈u, u〉,
from which we get

zz〈u, u〉 = 〈u, u〉.
Since u 6= 0, we have zz = 1, i.e., |z| = 1. As a consequence, the eigenvalues of fC are of the
form cos θ ± i sin θ, 1, or −1. The theorem then follows immediately from Theorem 14.10,
where the condition µ > 0 implies that sin θj > 0, and thus, 0 < θj < π.

It is obvious that we can reorder the orthonormal basis of eigenvectors given by Theorem
14.14, so that the matrix of f w.r.t. this basis is a block diagonal matrix of the form

A1 . . .
...

. . .
...

...
. . . Ar

−Iq
. . . Ip
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where each block Aj is a two-dimensional rotation matrix Aj 6= ±I2 of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
with 0 < θj < π.

The linear map f has an eigenspace E(1, f) = Ker (f − id) of dimension p for the eigen-
value 1, and an eigenspace E(−1, f) = Ker (f + id) of dimension q for the eigenvalue −1. If
det(f) = +1 (f is a rotation), the dimension q of E(−1, f) must be even, and the entries in
−Iq can be paired to form two-dimensional blocks, if we wish. In this case, every rotation
in SO(n) has a matrix of the form

A1 . . .
...

. . .
...

. . . Am
. . . In−2m


where the first m blocks Aj are of the form

Aj =

(
cos θj − sin θj
sin θj cos θj

)
with 0 < θj ≤ π.

Theorem 14.14 can be used to prove a version of the Cartan–Dieudonné theorem.

Theorem 14.15. Let E be a Euclidean space of dimension n ≥ 2. For every isometry
f ∈ O(E), if p = dim(E(1, f)) = dim(Ker (f − id)), then f is the composition of n − p
reflections, and n− p is minimal.

Proof. From Theorem 14.14 there are r subspaces F1, . . . , Fr, each of dimension 2, such that

E = E(1, f)⊕ E(−1, f)⊕ F1 ⊕ · · · ⊕ Fr,

and all the summands are pairwise orthogonal. Furthermore, the restriction ri of f to each
Fi is a rotation ri 6= ±id. Each 2D rotation ri can be written a the composition ri = s′i ◦ si
of two reflections si and s′i about lines in Fi (forming an angle θi/2). We can extend si and
s′i to hyperplane reflections in E by making them the identity on F⊥i . Then,

s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1

agrees with f on F1 ⊕ · · · ⊕ Fr and is the identity on E(1, f) ⊕ E(−1, f). If E(−1, f)
has an orthonormal basis of eigenvectors (v1, . . . , vq), letting s′′j be the reflection about the
hyperplane (vj)

⊥, it is clear that
s′′q ◦ · · · ◦ s′′1
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agrees with f on E(−1, f) and is the identity on E(1, f)⊕ F1 ⊕ · · · ⊕ Fr. But then,

f = s′′q ◦ · · · ◦ s′′1 ◦ s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1,

the composition of 2r + q = n− p reflections.

If
f = st ◦ · · · ◦ s1,

for t reflections si, it is clear that

F =
t⋂
i=1

E(1, si) ⊆ E(1, f),

where E(1, si) is the hyperplane defining the reflection si. By the Grassmann relation, if
we intersect t ≤ n hyperplanes, the dimension of their intersection is at least n − t. Thus,
n− t ≤ p, that is, t ≥ n−p, and n−p is the smallest number of reflections composing f .

As a corollary of Theorem 14.15, we obtain the following fact: If the dimension n of the
Euclidean space E is odd, then every rotation f ∈ SO(E) admits 1 has an eigenvalue.

Proof. The characteristic polynomial det(XI − f) of f has odd degree n and has real coeffi-
cients, so it must have some real root λ. Since f is an isometry, its n eigenvalues are of the
form, +1,−1, and e±iθ, with 0 < θ < π, so λ = ±1. Now, the eigenvalues e±iθ appear in
conjugate pairs, and since n is odd, the number of real eigenvalues of f is odd. This implies
that +1 is an eigenvalue of f , since otherwise −1 would be the only real eigenvalue of f , and
since its multiplicity is odd, we would have det(f) = −1, contradicting the fact that f is a
rotation.

When n = 3, we obtain the result due to Euler which says that every 3D rotation R has
an invariant axis D, and that restricted to the plane orthogonal to D, it is a 2D rotation.
Furthermore, if (a, b, c) is a unit vector defining the axis D of the rotation R and if the angle
of the rotation is θ, if B is the skew-symmetric matrix

B =

 0 −c b
c 0 −a
−b a 0

 ,

then it can be shown that

R = I + sin θB + (1− cos θ)B2.

The theorems of this section and of the previous section can be immediately applied to
matrices.



14.4. NORMAL AND OTHER SPECIAL MATRICES 403

14.4 Normal and Other Special Matrices

First, we consider real matrices. Recall the following definitions.

Definition 14.3. Given a real m× n matrix A, the transpose A> of A is the n×m matrix
A> = (a>i j) defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. A real n× n matrix A is

• normal if

AA> = A>A,

• symmetric if

A> = A,

• skew-symmetric if

A> = −A,

• orthogonal if

AA> = A>A = In.

Recall from Proposition 10.12 that when E is a Euclidean space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A> is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a symmetric matrix, a skew-self-adjoint
linear map has a skew-symmetric matrix, and an orthogonal linear map has an orthogonal
matrix. Similarly, if E and F are Euclidean spaces, (u1, . . . , un) is an orthonormal basis for
E, and (v1, . . . , vm) is an orthonormal basis for F , if a linear map f : E → F has the matrix
A w.r.t. the bases (u1, . . . , un) and (v1, . . . , vm), then its adjoint f ∗ has the matrix A> w.r.t.
the bases (v1, . . . , vm) and (u1, . . . , un).

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is orthogonal, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en)
and B is the matrix of f w.r.t. (u1, . . . , un), then

B = P>AP.

As a consequence, Theorems 14.10 and 14.12–14.14 can be restated as follows.
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Theorem 14.16. For every normal matrix A there is an orthogonal matrix P and a block
diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Dj is either a one-dimensional matrix (i.e., a real scalar) or a two-
dimensional matrix of the form

Dj =

(
λj −µj
µj λj

)
,

where λj, µj ∈ R, with µj > 0.

Theorem 14.17. For every symmetric matrix A there is an orthogonal matrix P and a
diagonal matrix D such that A = PDP>, where D is of the form

D =


λ1 . . .

λ2 . . .
...

...
. . .

...
. . . λn

 ,

where λi ∈ R.

Theorem 14.18. For every skew-symmetric matrix A there is an orthogonal matrix P and
a block diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Dj is either 0 or a two-dimensional matrix of the form

Dj =

(
0 −µj
µj 0

)
,

where µj ∈ R, with µj > 0. In particular, the eigenvalues of A are pure imaginary of the
form ±iµj, or 0.

Theorem 14.19. For every orthogonal matrix A there is an orthogonal matrix P and a
block diagonal matrix D such that A = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp
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such that each block Dj is either 1, −1, or a two-dimensional matrix of the form

Dj =

(
cos θj − sin θj
sin θj cos θj

)
where 0 < θj < π. In particular, the eigenvalues of A are of the form cos θj ± i sin θj, 1, or
−1.

We now consider complex matrices.

Definition 14.4. Given a complex m × n matrix A, the transpose A> of A is the n × m
matrix A> =

(
a>i j
)

defined such that

a>i j = aj i

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The conjugate A of A is the m × n matrix A = (bi j)
defined such that

bi j = ai j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an m× n complex matrix A, the adjoint A∗ of A is
the matrix defined such that

A∗ = (A>) = (A)>.

A complex n× n matrix A is

• normal if
AA∗ = A∗A,

• Hermitian if
A∗ = A,

• skew-Hermitian if
A∗ = −A,

• unitary if
AA∗ = A∗A = In.

Recall from Proposition 12.12 that when E is a Hermitian space and (e1, . . ., en) is an
orthonormal basis for E, if A is the matrix of a linear map f : E → E w.r.t. the basis
(e1, . . . , en), then A∗ is the matrix of the adjoint f ∗ of f . Consequently, a normal linear map
has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a skew-self-adjoint
linear map has a skew-Hermitian matrix, and a unitary linear map has a unitary matrix.
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Similarly, if E and F are Hermitian spaces, (u1, . . . , un) is an orthonormal basis for E, and
(v1, . . . , vm) is an orthonormal basis for F , if a linear map f : E → F has the matrix A w.r.t.
the bases (u1, . . . , un) and (v1, . . . , vm), then its adjoint f ∗ has the matrix A∗ w.r.t. the bases
(v1, . . . , vm) and (u1, . . . , un).

Furthermore, if (u1, . . . , un) is another orthonormal basis for E and P is the change of
basis matrix whose columns are the components of the ui w.r.t. the basis (e1, . . . , en), then
P is unitary, and for any linear map f : E → E, if A is the matrix of f w.r.t (e1, . . . , en) and
B is the matrix of f w.r.t. (u1, . . . , un), then

B = P ∗AP.

Theorem 14.11 can be restated in terms of matrices as follows. We can also say a little
more about eigenvalues (easy exercise left to the reader).

Theorem 14.20. For every complex normal matrix A there is a unitary matrix U and a
diagonal matrix D such that A = UDU∗. Furthermore, if A is Hermitian, then D is a real
matrix; if A is skew-Hermitian, then the entries in D are pure imaginary or null; and if A
is unitary, then the entries in D have absolute value 1.

14.5 Conditioning of Eigenvalue Problems

The following n× n matrix

A =



0
1 0

1 0
. . . . . .

1 0
1 0


has the eigenvalue 0 with multiplicity n. However, if we perturb the top rightmost entry of
A by ε, it is easy to see that the characteristic polynomial of the matrix

A(ε) =



0 ε
1 0

1 0
. . . . . .

1 0
1 0


is Xn − ε. It follows that if n = 40 and ε = 10−40, A(10−40) has the eigenvalues ek2πi/4010−1

with k = 1, . . . , 40. Thus, we see that a very small change (ε = 10−40) to the matrix A causes
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a significant change to the eigenvalues of A (from 0 to ek2πi/4010−1 ). Indeed, the relative
error is 10−39. Worse, due to machine precision, since very small numbers are treated as 0,
the error on the computation of eigenvalues (for example, of the matrix A(10−40)) can be
very large.

This phenomenon is similar to the phenomenon discussed in Section 7.3 where we studied
the effect of a small pertubation of the coefficients of a linear system Ax = b on its solution.
In Section 7.3, we saw that the behavior of a linear system under small perturbations is
governed by the condition number cond(A) of the matrix A. In the case of the eigenvalue
problem (finding the eigenvalues of a matrix), we will see that the conditioning of the problem
depends on the condition number of the change of basis matrix P used in reducing the matrix
A to its diagonal form D = P−1AP , rather than on the condition number of A itself. The
following proposition in which we assume that A is diagonalizable and that the matrix norm
‖ ‖ satisfies a special condition (satisfied by the operator norms ‖ ‖p for p = 1, 2,∞), is due
to Bauer and Fike (1960).

Proposition 14.21. Let A ∈ Mn(C) be a diagonalizable matrix, P be an invertible matrix
and, D be a diagonal matrix D = diag(λ1, . . . , λn) such that

A = PDP−1,

and let ‖ ‖ be a matrix norm such that

‖diag(α1, . . . , αn)‖ = max
1≤i≤n

|αi|,

for every diagonal matrix. Then, for every perturbation matrix δA, if we write

Bi = {z ∈ C | |z − λi| ≤ cond(P ) ‖δA‖},

for every eigenvalue λ of A+ δA, we have

λ ∈
n⋃
k=1

Bk.

Proof. Let λ be any eigenvalue of the matrix A + δA. If λ = λj for some j, then the result
is trivial. Thus, assume that λ 6= λj for j = 1, . . . , n. In this case, the matrix D − λI is
invertible (since its eigenvalues are λ− λj for j = 1, . . . , n), and we have

P−1(A+ δA− λI)P = D − λI + P−1(δA)P

= (D − λI)(I + (D − λI)−1P−1(δA)P ).

Since λ is an eigenvalue of A+ δA, the matrix A+ δA− λI is singular, so the matrix

I + (D − λI)−1P−1(δA)P
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must also be singular. By Proposition 7.10(2), we have

1 ≤
∥∥(D − λI)−1P−1(δA)P

∥∥ ,
and since ‖ ‖ is a matrix norm,∥∥(D − λI)−1P−1(δA)P

∥∥ ≤ ∥∥(D − λI)−1
∥∥∥∥P−1

∥∥ ‖δA‖ ‖P‖ ,
so we have

1 ≤
∥∥(D − λI)−1

∥∥∥∥P−1
∥∥ ‖δA‖ ‖P‖ .

Now, (D − λI)−1 is a diagonal matrix with entries 1/(λi − λ), so by our assumption on the
norm, ∥∥(D − λI)−1

∥∥ =
1

mini(|λi − λ|)
.

As a consequence, since there is some index k for which mini(|λi − λ|) = |λk − λ|, we have∥∥(D − λI)−1
∥∥ =

1

|λk − λ|
,

and we obtain
|λ− λk| ≤

∥∥P−1
∥∥ ‖δA‖ ‖P‖ = cond(P ) ‖δA‖ ,

which proves our result.

Proposition 14.21 implies that for any diagonalizable matrix A, if we define Γ(A) by

Γ(A) = inf{cond(P ) | P−1AP = D},

then for every eigenvalue λ of A+ δA, we have

λ ∈
n⋃
k=1

{z ∈ Cn | |z − λk| ≤ Γ(A) ‖δA‖}.

The number Γ(A) is called the conditioning of A relative to the eigenvalue problem. If A is
a normal matrix, since by Theorem 14.20, A can be diagonalized with respect to a unitary
matrix U , and since for the spectral norm ‖U‖2 = 1, we see that Γ(A) = 1. Therefore,
normal matrices are very well conditionned w.r.t. the eigenvalue problem. In fact, for every
eigenvalue λ of A+ δA (with A normal), we have

λ ∈
n⋃
k=1

{z ∈ Cn | |z − λk| ≤ ‖δA‖2}.

If A and A+δA are both symmetric (or Hermitian), there are sharper results; see Proposition
14.27.

Note that the matrix A(ε) from the beginning of the section is not normal.
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14.6 Rayleigh Ratios and the Courant-Fischer Theo-

rem

A fact that is used frequently in optimization problems is that the eigenvalues of a symmetric
matrix are characterized in terms of what is known as the Rayleigh ratio, defined by

R(A)(x) =
x>Ax

x>x
, x ∈ Rn, x 6= 0.

The following proposition is often used to prove the correctness of various optimization
or approximation problems (for example PCA).

Proposition 14.22. (Rayleigh–Ritz) If A is a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where
ui is a unit eigenvector associated with λi, then

max
x 6=0

x>Ax

x>x
= λn

(with the maximum attained for x = un), and

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= λn−k

(with the maximum attained for x = un−k), where 1 ≤ k ≤ n− 1. Equivalently, if Vk is the
subspace spanned by (u1, . . . , uk), then

λk = max
x 6=0,x∈Vk

x>Ax

x>x
, k = 1, . . . , n.

Proof. First, observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x∈{un−k+1,...,un}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , un) be such a basis. If we write

x =
n∑
i=1

xiui,
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a simple computation shows that

x>Ax =
n∑
i=1

λix
2
i .

If x>x = 1, then
∑n

i=1 x
2
i = 1, and since we assumed that λ1 ≤ λ2 ≤ · · · ≤ λn, we get

x>Ax =
n∑
i=1

λix
2
i ≤ λn

( n∑
i=1

x2
i

)
= λn.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λn,

and since this maximum is achieved for en = (0, 0, . . . , 1), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λn.

Next, observe that x ∈ {un−k+1, . . . , un}⊥ and x>x = 1 iff xn−k+1 = · · · = xn = 0 and∑n−k
i=1 x

2
i = 1. Consequently, for such an x, we have

x>Ax =
n−k∑
i=1

λix
2
i ≤ λn−k

(n−k∑
i=1

x2
i

)
= λn−k.

Thus,
max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
≤ λn−k,

and since this maximum is achieved for en−k = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position
n− k, we conclude that

max
x

{
x>Ax | (x ∈ {un−k+1, . . . , un}⊥) ∧ (x>x = 1)

}
= λn−k,

as claimed.

For our purposes, we need the version of Proposition 14.22 applying to min instead of
max, whose proof is obtained by a trivial modification of the proof of Proposition 14.22.

Proposition 14.23. (Rayleigh–Ritz) If A is a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where
ui is a unit eigenvector associated with λi, then

min
x 6=0

x>Ax

x>x
= λ1

(with the minimum attained for x = u1), and

min
x 6=0,x∈{u1,...,ui−1}⊥

x>Ax

x>x
= λi
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(with the minimum attained for x = ui), where 2 ≤ i ≤ n. Equivalently, if Wk = V ⊥k−1

denotes the subspace spanned by (uk, . . . , un) (with V0 = (0)), then

λk = min
x 6=0,x∈Wk

x>Ax

x>x
= min

x 6=0,x∈V ⊥k−1

x>Ax

x>x
, k = 1, . . . , n.

Propositions 14.22 and 14.23 together are known the Rayleigh–Ritz theorem.

As an application of Propositions 14.22 and 14.23, we prove a proposition which allows
us to compare the eigenvalues of two symmetric matrices A and B = R>AR, where R is a
rectangular matrix satisfying the equation R>R = I.

First, we need a definition.

Definition 14.5. Given an n × n symmetric matrix A and an m ×m symmetric B, with
m ≤ n, if λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the
eigenvalues of B, then we say that the eigenvalues of B interlace the eigenvalues of A if

λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m.

For example, if n = 5 and m = 3, we have

λ1 ≤ µ1 ≤ λ3

λ2 ≤ µ2 ≤ λ4

λ3 ≤ µ3 ≤ λ5.

Proposition 14.24. Let A be an n× n symmetric matrix, R be an n×m matrix such that
R>R = I (with m ≤ n), and let B = R>AR (an m ×m matrix). The following properties
hold:

(a) The eigenvalues of B interlace the eigenvalues of A.

(b) If λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µm are the
eigenvalues of B, and if λi = µi, then there is an eigenvector v of B with eigenvalue
µi such that Rv is an eigenvector of A with eigenvalue λi.

Proof. (a) Let (u1, . . . , un) be an orthonormal basis of eigenvectors for A, and let (v1, . . . , vm)
be an orthonormal basis of eigenvectors for B. Let Uj be the subspace spanned by (u1, . . . , uj)
and let Vj be the subspace spanned by (v1, . . . , vj). For any i, the subspace Vi has dimension
i and the subspace R>Ui−1 has dimension at most i − 1. Therefore, there is some nonzero
vector v ∈ Vi ∩ (R>Ui−1)⊥, and since

v>R>uj = (Rv)>uj = 0, j = 1, . . . , i− 1,

we have Rv ∈ (Ui−1)⊥. By Proposition 14.23 and using the fact that R>R = I, we have

λi ≤
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
.
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On the other hand, by Proposition 14.22,

µi = max
x 6=0,x∈{vi+1,...,vn}⊥

x>Bx

x>x
= max

x 6=0,x∈{v1,...,vi}

x>Bx

x>x
,

so
w>Bw

w>w
≤ µi for all w ∈ Vi,

and since v ∈ Vi, we have

λi ≤
v>Bv

v>v
≤ µi, i = 1, . . . ,m.

We can apply the same argument to the symmetric matrices −A and −B, to conclude that

−λn−m+i ≤ −µi,

that is,

µi ≤ λn−m+i, i = 1, . . . ,m.

Therefore,

λi ≤ µi ≤ λn−m+i, i = 1, . . . ,m,

as desired.

(b) If λi = µi, then

λi =
(Rv)>ARv

(Rv)>Rv
=
v>Bv

v>v
= µi,

so v must be an eigenvector for B and Rv must be an eigenvector for A, both for the
eigenvalue λi = µi.

Proposition 14.24 immediately implies the Poincaré separation theorem. It can be used
in situations, such as in quantum mechanics, where one has information about the inner
products u>i Auj.

Proposition 14.25. (Poincaré separation theorem) Let A be a n × n symmetric (or Her-
mitian) matrix, let r be some integer with 1 ≤ r ≤ n, and let (u1, . . . , ur) be r orthonormal
vectors. Let B = (u>i Auj) (an r × r matrix), let λ1(A) ≤ . . . ≤ λn(A) be the eigenvalues of
A and λ1(B) ≤ . . . ≤ λr(B) be the eigenvalues of B; then we have

λk(A) ≤ λk(B) ≤ λk+n−r(A), k = 1, . . . , r.

Observe that Proposition 14.24 implies that

λ1 + · · ·+ λm ≤ tr(R>AR) ≤ λn−m+1 + · · ·+ λn.
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If P1 is the the n × (n − 1) matrix obtained from the identity matrix by dropping its last
column, we have P>1 P1 = I, and the matrix B = P>1 AP1 is the matrix obtained from A by
deleting its last row and its last column. In this case, the interlacing result is

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−2 ≤ λn−1 ≤ µn−1 ≤ λn,

a genuine interlacing. We obtain similar results with the matrix Pn−r obtained by dropping
the last n − r columns of the identity matrix and setting B = P>n−rAPn−r (B is the r × r
matrix obtained from A by deleting its last n− r rows and columns). In this case, we have
the following interlacing inequalities known as Cauchy interlacing theorem:

λk ≤ µk ≤ λk+n−r, k = 1, . . . , r. (∗)

Another useful tool to prove eigenvalue equalities is the Courant–Fischer characteriza-
tion of the eigenvalues of a symmetric matrix, also known as the Min-max (and Max-min)
theorem.

Theorem 14.26. (Courant–Fischer) Let A be a symmetric n × n matrix with eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. If Vk denotes the set of subspaces of Rn of dimension k, then

λk = max
W∈Vn−k+1

min
x∈W,x6=0

x>Ax

x>x

λk = min
W∈Vk

max
x∈W,x6=0

x>Ax

x>x
.

Proof. Let us consider the second equality, the proof of the first equality being similar. Let
(u1, . . . , un) be any orthonormal basis of eigenvectors of A, where ui is a unit eigenvector
associated with λi. Observe that the space Vk spanned by (u1, . . . , uk) has dimension k, and
by Proposition 14.22, we have

λk = max
x 6=0,x∈Vk

x>Ax

x>x
≥ min

W∈Vk
max

x∈W,x6=0

x>Ax

x>x
.

Therefore, we need to prove the reverse inequality; that is, we have to show that

λk ≤ max
x 6=0,x∈W

x>Ax

x>x
, for all W ∈ Vk.

Now, for any W ∈ Vk, if we can prove that W∩V ⊥k−1 6= (0), then for any nonzero v ∈ W∩V ⊥k−1,
by Proposition 14.23 , we have

λk = min
x 6=0,x∈V ⊥k−1

x>Ax

x>x
≤ v>Av

v>v
≤ max

x∈W,x6=0

x>Ax

x>x
.

It remains to prove that dim(W ∩ V ⊥k−1) ≥ 1. However, dim(Vk−1) = k − 1, so dim(V ⊥k−1) =
n− k + 1, and by hypothesis dim(W ) = k. By the Grassmann relation,

dim(W ) + dim(V ⊥k−1) = dim(W ∩ V ⊥k−1) + dim(W + V ⊥k−1),
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and since dim(W + V ⊥k−1) ≤ dim(Rn) = n, we get

k + n− k + 1 ≤ dim(W ∩ V ⊥k−1) + n;

that is, 1 ≤ dim(W ∩ V ⊥k−1), as claimed.

The Courant–Fischer theorem yields the following useful result about perturbing the
eigenvalues of a symmetric matrix due to Hermann Weyl.

Proposition 14.27. Given two n×n symmetric matrices A and B = A+ δA, if α1 ≤ α2 ≤
· · · ≤ αn are the eigenvalues of A and β1 ≤ β2 ≤ · · · ≤ βn are the eigenvalues of B, then

|αk − βk| ≤ ρ(δA) ≤ ‖δA‖2 , k = 1, . . . , n.

Proof. Let Vk be defined as in the Courant–Fischer theorem and let Vk be the subspace
spanned by the k eigenvectors associated with λ1, . . . , λk. By the Courant–Fischer theorem
applied to B, we have

βk = min
W∈Vk

max
x∈W,x6=0

x>Bx

x>x

≤ max
x∈Vk

x>Bx

x>x

= max
x∈Vk

(
x>Ax

x>x
+
x>δ Ax

x>x

)
≤ max

x∈Vk

x>Ax

x>x
+ max

x∈Vk

x>δAx

x>x
.

By Proposition 14.22, we have

αk = max
x∈Vk

x>Ax

x>x
,

so we obtain

βk ≤ max
x∈Vk

x>Ax

x>x
+ max

x∈Vk

x>δAx

x>x

= αk + max
x∈Vk

x>δAx

x>x

≤ αk + max
x∈Rn

x>δAx

x>x
.

Now, by Proposition 14.22 and Proposition 7.8, we have

max
x∈Rn

x>δAx

x>x
= max

i
λi(δA) ≤ ρ(δA) ≤ ‖δA‖2 ,
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where λi(δA) denotes the ith eigenvalue of δA, which implies that

βk ≤ αk + ρ(δA) ≤ αk + ‖δA‖2 .

By exchanging the roles of A and B, we also have

αk ≤ βk + ρ(δA) ≤ βk + ‖δA‖2 ,

and thus,
|αk − βk| ≤ ρ(δA) ≤ ‖δA‖2 , k = 1, . . . , n,

as claimed.

Proposition 14.27 also holds for Hermitian matrices.

A pretty result of Wielandt and Hoffman asserts that

n∑
k=1

(αk − βk)2 ≤ ‖δA‖2
F ,

where ‖ ‖F is the Frobenius norm. However, the proof is significantly harder than the above
proof; see Lax [67].

The Courant–Fischer theorem can also be used to prove some famous inequalities due to
Hermann Weyl. Given two symmetric (or Hermitian) matrices A and B, let λi(A), λi(B),
and λi(A + B) denote the ith eigenvalue of A,B, and A + B, respectively, arranged in
nondecreasing order.

Proposition 14.28. (Weyl) Given two symmetric (or Hermitian) n×n matrices A and B,
the following inequalities hold: For all i, j, k with 1 ≤ i, j, k ≤ n:

1. If i+ j = k + 1, then
λi(A) + λj(B) ≤ λk(A+B).

2. If i+ j = k + n, then
λk(A+B) ≤ λi(A) + λj(B).

Proof. Observe that the first set of inequalities is obtained form the second set by replacing
A by −A and B by −B, so it is enough to prove the second set of inequalities. By the
Courant–Fischer theorem, there is a subspace H of dimension n− k + 1 such that

λk(A+B) = min
x∈H,x 6=0

x>(A+B)x

x>x
.

Similarly, there exist a subspace F of dimension i and a subspace G of dimension j such that

λi(A) = max
x∈F,x6=0

x>Ax

x>x
, λj(B) = max

x∈G,x 6=0

x>Bx

x>x
.
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We claim that F ∩G∩H 6= (0). To prove this, we use the Grassmann relation twice. First,

dim(F ∩G∩H) = dim(F ) + dim(G∩H)− dim(F + (G∩H)) ≥ dim(F ) + dim(G∩H)− n,
and second,

dim(G ∩H) = dim(G) + dim(H)− dim(G+H) ≥ dim(G) + dim(H)− n,
so

dim(F ∩G ∩H) ≥ dim(F ) + dim(G) + dim(H)− 2n.

However,
dim(F ) + dim(G) + dim(H) = i+ j + n− k + 1

and i+ j = k + n, so we have

dim(F ∩G ∩H) ≥ i+ j + n− k + 1− 2n = k + n+ n− k + 1− 2n = 1,

which shows that F ∩G∩H 6= (0). Then, for any unit vector z ∈ F ∩G∩H 6= (0), we have

λk(A+B) ≤ z>(A+B)z, λi(A) ≥ z>Az, λj(B) ≥ z>Bz,

establishing the desired inequality λk(A+B) ≤ λi(A) + λj(B).

In the special case i = j = k, we obtain

λ1(A) + λ1(B) ≤ λ1(A+B), λn(A+B) ≤ λn(A) + λn(B).

It follows that λ1 is concave, while λn is convex.

If i = 1 and j = k, we obtain

λ1(A) + λk(B) ≤ λk(A+B),

and if i = k and j = n, we obtain

λk(A+B) ≤ λk(A) + λn(B),

and combining them, we get

λ1(A) + λk(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

In particular, if B is positive semidefinite, since its eigenvalues are nonnegative, we obtain
the following inequality known as the monotonicity theorem for symmetric (or Hermitian)
matrices: if A and B are symmetric (or Hermitian) and B is positive semidefinite, then

λk(A) ≤ λk(A+B) k = 1, . . . , n.

The reader is referred to Horn and Johnson [56] (Chapters 4 and 7) for a very complete
treatment of matrix inequalities and interlacing results, and also to Lax [67] and Serre [96].

We now have all the tools to present the important singular value decomposition (SVD)
and the polar form of a matrix. However, we prefer to first illustrate how the material of this
section can be used to discretize boundary value problems, and we give a brief introduction
to the finite elements method.
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14.7 Summary

The main concepts and results of this chapter are listed below:

• Normal linear maps, self-adjoint linear maps, skew-self-adjoint linear maps, and or-
thogonal linear maps.

• Properties of the eigenvalues and eigenvectors of a normal linear map.

• The complexification of a real vector space, of a linear map, and of a Euclidean inner
product.

• The eigenvalues of a self-adjoint map in a Hermitian space are real .

• The eigenvalues of a self-adjoint map in a Euclidean space are real .

• Every self-adjoint linear map on a Euclidean space has an orthonormal basis of eigen-
vectors.

• Every normal linear map on a Euclidean space can be block diagonalized (blocks of
size at most 2× 2) with respect to an orthonormal basis of eigenvectors.

• Every normal linear map on a Hermitian space can be diagonalized with respect to an
orthonormal basis of eigenvectors.

• The spectral theorems for self-adjoint, skew-self-adjoint, and orthogonal linear maps
(on a Euclidean space).

• The spectral theorems for normal, symmetric, skew-symmetric, and orthogonal (real)
matrices.

• The spectral theorems for normal, Hermitian, skew-Hermitian, and unitary (complex)
matrices.

• The conditioning of eigenvalue problems.

• The Rayleigh ratio and the Rayleigh–Ritz theorem.

• Interlacing inequalities and the Cauchy interlacing theorem.

• The Poincaré separation theorem.

• The Courant–Fischer theorem.

• Inequalities involving perturbations of the eigenvalues of a symmetric matrix.

• The Weyl inequalities .
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Chapter 15

Variational Approximation of
Boundary-Value Problems;
Introduction to the Finite Elements
Method

15.1 A One-Dimensional Problem: Bending of a Beam

Consider a beam of unit length supported at its ends in 0 and 1, stretched along its axis by
a force P , and subjected to a transverse load f(x)dx per element dx, as illustrated in Figure
15.1.

0 1dx
P−P

f(x)dx

Figure 15.1: Vertical deflection of a beam

The bending moment u(x) at the absissa x is the solution of a boundary problem (BP)
of the form

−u′′(x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = α

u(1) = β,

419
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where c(x) = P/(EI(x)), where E is the Young’s modulus of the material of which the beam
is made and I(x) is the principal moment of inertia of the cross-section of the beam at the
abcissa x, and with α = β = 0. For this problem, we may assume that c(x) ≥ 0 for all
x ∈ [0, 1].

Remark: The vertical deflection w(x) of the beam and the bending moment u(x) are related
by the equation

u(x) = −EI d
2w

dx2
.

If we seek a solution u ∈ C2([0, 1]), that is, a function whose first and second derivatives
exist and are continuous, then it can be shown that the problem has a unique solution
(assuming c and f to be continuous functions on [0, 1]).

Except in very rare situations, this problem has no closed-form solution, so we are led to
seek approximations of the solutions.

One one way to proceed is to use the finite difference method , where we discretize the
problem and replace derivatives by differences. Another way is to use a variational approach.
In this approach, we follow a somewhat surprising path in which we come up with a so-called
“weak formulation” of the problem, by using a trick based on integrating by parts!

First, let us observe that we can always assume that α = β = 0, by looking for a solution
of the form u(x)− (α(1−x) + βx). This turns out to be crucial when we integrate by parts.
There are a lot of subtle mathematical details involved to make what follows rigorous, but
here, we will take a “relaxed” approach.

First, we need to specify the space of “weak solutions.” This will be the vector space V of
continuous functions f on [0, 1], with f(0) = f(1) = 0, and which are piecewise continuously
differentiable on [0, 1]. This means that there is a finite number of points x0, . . . , xN+1 with
x0 = 0 and xN+1 = 1, such that f ′(xi) is undefined for i = 1, . . . , N , but otherwise f ′ is
defined and continuous on each interval (xi, xi+1) for i = 0, . . . , N .1 The space V becomes a
Euclidean vector space under the inner product

〈f, g〉V =

∫ 1

0

(f(x)g(x) + f ′(x)g′(x))dx,

for all f, g ∈ V . The associated norm is

‖f‖V =

(∫ 1

0

(f(x)2 + f ′(x)2)dx

)1/2

.

Assume that u is a solution of our original boundary problem (BP), so that

−u′′(x) + c(x)u(x) = f(x), 0 < x < 1

u(0) = 0

u(1) = 0.

1We also assume that f ′(x) has a limit when x tends to a boundary of (xi, xi+1).
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Multiply the differential equation by any arbitrary test function v ∈ V , obtaining

−u′′(x)v(x) + c(x)u(x)v(x) = f(x)v(x), (∗)

and integrate this equation! We get

−
∫ 1

0

u′′(x)v(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. (†)

Now, the trick is to use integration by parts on the first term. Recall that

(u′v)′ = u′′v + u′v′,

and to be careful about discontinuities, write∫ 1

0

u′′(x)v(x)dx =
N∑
i=0

∫ xi+1

xi

u′′(x)v(x)dx.

Using integration by parts, we have∫ xi+1

xi

u′′(x)v(x)dx =

∫ xi+1

xi

(u′(x)v(x))′dx−
∫ xi+1

xi

u′(x)v′(x)dx

= [u′(x)v(x)]
x=xi+1

x=xi
−
∫ xi+1

xi

u′(x)v′(x)dx

= u′(xi+1)v(xi+1)− u′(xi)v(xi)−
∫ xi+1

xi

u′(x)v′(x)dx.

It follows that∫ 1

0

u′′(x)v(x)dx =
N∑
i=0

∫ xi+1

xi

u′′(x)v(x)dx

=
N∑
i=0

(
u′(xi+1)v(xi+1)− u′(xi)v(xi)−

∫ xi+1

xi

u′(x)v′(x)dx

)
= u′(1)v(1)− u′(0)v(0)−

∫ 1

0

u′(x)v′(x)dx.

However, the test function v satisfies the boundary conditions v(0) = v(1) = 0 (recall that
v ∈ V ), so we get ∫ 1

0

u′′(x)v(x)dx = −
∫ 1

0

u′(x)v′(x)dx.

Consequently, the equation (†) becomes∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx,
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or ∫ 1

0

(u′v′ + cuv)dx =

∫ 1

0

fvdx, for all v ∈ V. (∗∗)

Thus, it is natural to introduce the bilinear form a : V × V → R given by

a(u, v) =

∫ 1

0

(u′v′ + cuv)dx, for all u, v ∈ V ,

and the linear form f̃ : V → R given by

f̃(v) =

∫ 1

0

f(x)v(x)dx, for all v ∈ V .

Then, (∗∗) becomes

a(u, v) = f̃(v), for all v ∈ V.

We also introduce the energy function J given by

J(v) =
1

2
a(v, v)− f̃(v) v ∈ V.

Then, we have the following theorem.

Theorem 15.1. Let u be any solution of the boundary problem (BP).

(1) Then we have

a(u, v) = f̃(v), for all v ∈ V, (WF)

where

a(u, v) =

∫ 1

0

(u′v′ + cuv)dx, for all u, v ∈ V ,

and

f̃(v) =

∫ 1

0

f(x)v(x)dx, for all v ∈ V .

(2) If c(x) ≥ 0 for all x ∈ [0, 1], then a function u ∈ V is a solution of (WF) iff u
minimizes J(v), that is,

J(u) = inf
v∈V

J(v),

with

J(v) =
1

2
a(v, v)− f̃(v) v ∈ V.

Furthermore, u is unique.
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Proof. We already proved (1).

To prove (2), first we show that

‖v‖2
V ≤ 2a(v, v), for all v ∈ V.

For this, it suffices to prove that

‖v‖2
V ≤ 2

∫ 1

0

(f ′(x))2dx, for all v ∈ V.

However, by Cauchy-Schwarz for functions, for every x ∈ [0, 1], we have

|v(x)| =
∣∣∣∣∫ x

0

v′(t)dt

∣∣∣∣ ≤ ∫ 1

0

|v′(t)|dt ≤
(∫ 1

0

|v′(t)|2dt
)1/2

,

and so

‖v‖2
V =

∫ 1

0

((v(x))2 + (v′(x))2)dx ≤ 2

∫ 1

0

(v′(x))2dx ≤ 2a(v, v),

since

a(v, v) =

∫ 1

0

((v′)2 + cv2)dx.

Next, it is easy to check that

J(u+ v)− J(u) = a(u, v)− f̃(v) +
1

2
a(v, v), for all u, v ∈ V .

Then, if u is a solution of (WF), we deduce that

J(u+ v)− J(u) =
1

2
a(v, v) ≥ 1

4
‖v‖V ≥ 0 for all v ∈ V.

since a(u, v)− f̃(v) = 0 for all v ∈ V . Therefore, J achieves a minimun for u.

We also have

J(u+ θv)− J(u) = θ(a(u, v)− f(v)) +
θ2

2
a(v, v) for all θ ∈ R,

and so J(u + θv) − J(u) ≥ 0 for all θ ∈ R. Consequently, if J achieves a minimum for u,

then a(u, v) = f̃(v), which means that u is a solution of (WF).

Finally, assuming that c(x) ≥ 0, we claim that if v ∈ V and v 6= 0, then a(v, v) > 0. This
is because if a(v, v) = 0, since

‖v‖2
V ≤ 2a(v, v) for all v ∈ V,

we would have ‖v‖V = 0, that is, v = 0. Then, if v 6= 0, from

J(u+ v)− J(u) =
1

2
a(v, v) for all v ∈ V

we see that J(u+ v) > J(u), so the minimum u is unique
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Theorem 15.1 shows that every solution u of our boundary problem (BP) is a solution
(in fact, unique) of the equation (WF).

The equation (WF) is called the weak form or variational equation associated with the
boundary problem. This idea to derive these equations is due to Ritz and Galerkin.

Now, the natural question is whether the variational equation (WF) has a solution, and
whether this solution, if it exists, is also a solution of the boundary problem (it must belong
to C2([0, 1]), which is far from obvious). Then, (BP) and (WF) would be equivalent.

Some fancy tools of analysis can be used to prove these assertions. The first difficulty is
that the vector space V is not the right space of solutions, because in order for the variational
problem to have a solution, it must be complete. So, we must construct a completion of the
vector space V . This can be done and we get the Sobolev space H1

0 (0, 1). Then, the question
of the regularity of the “weak solution” can also be tackled.

We will not worry about all this. Instead, let us find approximations of the problem (WF).
Instead of using the infinite-dimensional vector space V , we consider finite-dimensional sub-
spaces Va (with dim(Va) = n) of V , and we consider the discrete problem:

Find a function u(a) ∈ Va, such that

a(u(a), v) = f̃(v), for all v ∈ Va. (DWF)

Since Va is finite dimensional (of dimension n), let us pick a basis of functions (w1, . . . , wn)
in Va, so that every function u ∈ Va can we written as

u = u1w1 + · · ·+ unwn.

Then, the equation (DWF) holds iff

a(u,wj) = f̃(wj), j = 1, . . . , n,

and by plugging u1w1 + · · ·+ unwn for u, we get a system of k linear equations

n∑
i=1

a(wi, wj)ui = f̃(wj), 1 ≤ j ≤ n.

Because a(v, v) ≥ 1
2
‖v‖Va , the bilinear form a is symmetric positive definite, and thus

the matrix (a(wi, wj)) is symmetric positive definite, and thus invertible. Therefore, (DWF)
has a solution given by a linear system!

From a practical point of view, we have to compute the integrals

aij = a(wi, wj) =

∫ 1

0

(w′iw
′
j + cwiwj)dx,

and

bj = f̃(wj) =

∫ 1

0

f(x)wj(x)dx.
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However, if the basis functions are simple enough, this can be done “by hand.” Otherwise,
numerical integration methods must be used, but there are some good ones.

Let us also remark that the proof of Theorem 15.1 also shows that the unique solution of
(DWF) is the unique minimizer of J over all functions in Va. It is also possible to compare
the approximate solution u(a) ∈ Va with the exact solution u ∈ V .

Theorem 15.2. Suppose c(x) ≥ 0 for all x ∈ [0, 1]. For every finite-dimensional subspace
Va (dim(Va) = n) of V , for every basis (w1, . . . , wn) of Va, the following properties hold:

(1) There is a unique function u(a) ∈ Va such that

a(u(a), v) = f̃(v), for all v ∈ Va, (DWF)

and if u(a) = u1w1 + · · · + unwn, then u = (u1, . . . , un) is the solution of the linear
system

Au = b, (∗)

with A = (aij) = (a(wi, wj)) and bj = f̃(wj), 1 ≤ i, j ≤ n. Furthermore, the matrix
A = (aij) is symmetric positive definite.

(2) The unique solution u(a) ∈ Va of (DWF) is the unique minimizer of J over Va, that is,

J(u(a)) = inf
v∈Va

J(v),

(3) There is a constant C independent of Va and of the unique solution u ∈ V of (WF),
such that ∥∥u− u(a)

∥∥
V
≤ C inf

v∈Va
‖u− v‖V .

We proved (1) and (2), but we will omit the proof of (3) which can be found in Ciarlet
[30].

Let us now give examples of the subspaces Va used in practice. They usually consist of
piecewise polynomial functions.

Pick an integer N ≥ 1 and subdivide [0, 1] into N + 1 intervals [xi, xi+1], where

xi = hi, h =
1

N + 1
, i = 0, . . . , N + 1.

We will use the following fact: every polynomial P (x) of degree 2m + 1 (m ≥ 0) is
completely determined by its values as well as the values of its first m derivatives at two
distinct points α, β ∈ R.



426 CHAPTER 15. INTRODUCTION TO THE FINITE ELEMENTS METHOD

There are various ways to prove this. One way is to use the Bernstein basis, because
the kth derivative of a polynomial is given by a formula in terms of its control points. For
example, for m = 1, every degree 3 polynomial can be written as

P (x) = (1− x)3 b0 + 3(1− x)2x b1 + 3(1− x)x2 b2 + x3 b3,

with b0, b1, b2, b3 ∈ R, and we showed that

P ′(0) = 3(b1 − b0)

P ′(1) = 3(b3 − b2).

Given P (0) and P (1), we determine b0 and b3, and from P ′(0) and P ′(1), we determine b1

and b2.

In general, for a polynomial of degree m written as

P (x) =
m∑
j=0

bjB
m
j (x)

in terms of the Bernstein basis (Bm
0 (x), . . . , Bm

m(x)) with

Bm
j (x) =

(
m

j

)
(1− x)m−jxj,

it can be shown that the kth derivative of P at zero is given by

P (k)(0) = m(m− 1) · · · (m− k + 1)

( k∑
i=0

(
k

i

)
(−1)k−i bi

)
,

and there is a similar formula for P (k)(1).

Actually, we need to use the Bernstein basis of polynomials Bm
k [r, s], where

Bm
j [r, s](x) =

(
m

j

)(
s− x
s− r

)m−j (
x− r
s− r

)j
,

with r < s, in which case

P (k)(0) =
m(m− 1) · · · (m− k + 1)

(s− r)k
( k∑

i=0

(
k

i

)
(−1)k−i bi

)
,

with a similar formula for P (k)(1). In our case, we set r = xi, s = xi+1.

Now, if the 2m+ 2 values

P (0), P (1)(0), . . . , P (m)(0), P (1), P (1)(1), . . . , P (m)(1)
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are given, we obtain a triangular system that determines uniquely the 2m+ 2 control points
b0, . . . , b2m+1.

Recall that Cm([0, 1]) denotes the set of Cm functions f on [0, 1], which means that
f, f (1), . . . , f (m) exist are are continuous on [0, 1].

We define the vector space V m
N as the subspace of Cm([0, 1]) consisting of all functions f

such that

1. f(0) = f(1) = 0.

2. The restriction of f to [xi, xi+1] is a polynomial of degree 2m+ 1, for i = 0, . . . , N .

Observe that the functions in V 0
N are the piecewise affine functions f with f(0) = f(1) =

0; an example is shown in Figure 15.2.

x

y

0 1ih

Figure 15.2: A piecewise affine function

This space has dimension N , and a basis consists of the “hat functions” wi, where the
only two nonflat parts of the graph of wi are the line segments from (xi−1, 0) to (xi, 1), and
from (xi, 1) to (xi+1, 0), for i = 1, . . . , N , see Figure 15.3.

The basis functions wi have a small support, which is good because in computing the
integrals giving a(wi, wj), we find that we get a tridiagonal matrix. They also have the nice
property that every function v ∈ V 0

N has the following expression on the basis (wi):

v(x) =
N∑
i=1

v(ih)wi(x), x ∈ [0, 1].
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x

y

ih(i − 1)h (i + 1)h

wi

Figure 15.3: A basis “hat function”

In general, it it not hard to see that V m
N has dimension mN + 2(m− 1).

Going back to our problem (the bending of a beam), assuming that c and f are constant
functions, it is not hard to show that the linear system (∗) becomes

1

h



2 + 2c
3
h2 −1 + c

6
h2

−1 + c
6
h2 2 + 2c

3
h2 −1 + c

6
h2

. . . . . . . . .

−1 + c
6
h2 2 + 2c

3
h2 −1 + c

6
h2

−1 + c
6
h2 2 + 2c

3
h2





u1

u2

...

uN−1

uN


= h



f

f

...

f

f


.

We can also find a basis of 2N + 2 cubic functions for V 1
N consisting of functions with

small support. This basis consists of the N functions w0
i and of the N + 2 functions w1

i
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uniquely determined by the following conditions:

w0
i (xj) = δij, 1 ≤ j ≤ N, 1 ≤ i ≤ N

(w0
i )
′(xj) = 0, 0 ≤ j ≤ N + 1, 1 ≤ i ≤ N

w1
i (xj) = 0, 1 ≤ j ≤ N, 0 ≤ i ≤ N + 1

(w1
i )
′(xj) = δij, 0 ≤ j ≤ N + 1, 0 ≤ i ≤ N + 1

with δij = 1 iff i = j and δij = 0 if i 6= j. Some of these functions are displayed in Figure
15.4. The function w0

i is given explicitly by

w0
i (x) =

1

h3
(x− (i− 1)h)2((2i+ 1)h− 2x), (i− 1)h ≤ x ≤ ih,

w0
i (x) =

1

h3
((i+ 1)h− x)2(2x− (2i− 1)h), ih ≤ x ≤ (i+ 1)h,

for i = 1, . . . , N . The function w1
j is given explicitly by

w1
j (x) = − 1

h2
(ih− x)(x− (i− 1)h)2, (i− 1)h ≤ x ≤ ih,

and

w1
j (x) =

1

h2
((i+ 1)h− x)2(x− ih), ih ≤ x ≤ (i+ 1)h,

for j = 0, . . . , N + 1. Furthermore, for every function v ∈ V 1
N , we have

v(x) =
N∑
i=1

v(ih)w0
i (x) +

N+1∑
j=0

v′jih)w1
j (x), x ∈ [0, 1].

If we order these basis functions as

w1
0, w

0
1, w

1
1, w

0
2, w

1
2, . . . , w

0
N , w

1
N , w

1
N+1,

we find that if c = 0, the matrix A of the system (∗) is tridiagonal by blocks, where the blocks
are 2× 2, 2× 1, or 1× 2 matrices, and with single entries in the top left and bottom right
corner. A different order of the basis vectors would mess up the tridiagonal block structure
of A. We leave the details as an exercise.

Let us now take a quick look at a two-dimensional problem, the bending of an elastic
membrane.
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x

y

ih jh

w0
i

w1
j

w1
0 w1

N+1

0 1

Figure 15.4: The basis functions w0
i and w1

j

15.2 A Two-Dimensional Problem: An Elastic

Membrane

Consider an elastic membrane attached to a round contour whose projection on the (x1, x2)-
plane is the boundary Γ of an open, connected, bounded region Ω in the (x1, x2)-plane, as
illustrated in Figure 15.5. In other words, we view the membrane as a surface consisting of
the set of points (x, z) given by an equation of the form

z = u(x),

with x = (x1, x2) ∈ Ω, where u : Ω → R is some sufficiently regular function, and we think
of u(x) as the vertical displacement of this membrane.

We assume that this membrane is under the action of a vertical force τf(x)dx per surface
element in the horizontal plane (where τ is the tension of the membrane). The problem is
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x1

x2

Γy

g(y)

Ω

u(x)

x

τf(x)dx

dx

Figure 15.5: An elastic membrane

to find the vertical displacement u as a function of x, for x ∈ Ω. It can be shown (under

some assumptions on Ω, Γ, and f), that u(x) is given by a PDE with boundary condition,
of the form

−∆u(x) = f(x), x ∈ Ω

u(x) = g(x), x ∈ Γ,

where g : Γ → R represents the height of the contour of the membrane. We are looking for
a function u in C2(Ω) ∩ C1(Ω). The operator ∆ is the Laplacian, and it is given by

∆u(x) =
∂2u

∂x2
1

(x) +
∂2u

∂x2
2

(x).

This is an example of a boundary problem, since the solution u of the PDE must satisfy the
condition u(x) = g(x) on the boundary of the domain Ω. The above equation is known as
Poisson’s equation, and when f = 0 as Laplace’s equation.

It can be proved that if the data f, g and Γ are sufficiently smooth, then the problem has
a unique solution.

To get a weak formulation of the problem, first we have to make the boundary condition
homogeneous, which means that g(x) = 0 on Γ. It turns out that g can be extended to the

whole of Ω as some sufficiently smooth function ĥ, so we can look for a solution of the form
u − ĥ, but for simplicity, let us assume that the contour of Ω lies in a plane parallel to the
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(x1, x2)- plane, so that g = 0. We let V be the subspace of C2(Ω) ∩ C1(Ω) consisting of
functions v such that v = 0 on Γ.

As before, we multiply the PDE by a test function v ∈ V , getting

−∆u(x)v(x) = f(x)v(x),

and we “integrate by parts.” In this case, this means that we use a version of Stokes formula
known as Green’s first identity , which says that∫

Ω

−∆u v dx =

∫
Ω

(gradu) · (grad v) dx−
∫

Γ

(gradu) · n vdσ

(where n denotes the outward pointing unit normal to the surface). Because v = 0 on Γ, the
integral

∫
Γ

drops out, and we get an equation of the form

a(u, v) = f̃(v) for all v ∈ V,

where a is the bilinear form given by

a(u, v) =

∫
Ω

(
∂u

∂x1

∂v

∂x1

+
∂u

∂x2

∂v

∂x2

)
dx

and f̃ is the linear form given by

f̃(v) =

∫
Ω

fvdx.

We get the same equation as in section 15.2, but over a set of functions defined on a
two-dimensional domain. As before, we can choose a finite-dimensional subspace Va of V
and consider the discrete problem with respect to Va. Again, if we pick a basis (w1, . . . , wn)
of Va, a vector u = u1w1 + · · ·+ unwn is a solution of the Weak Formulation of our problem
iff u = (u1, . . . , un) is a solution of the linear system

Au = b,

with A = (a(wi, wj)) and b = (f̃(wj)). However, the integrals that give the entries in A and
b are much more complicated.

An approach to deal with this problem is the method of finite elements . The idea is
to also discretize the boundary curve Γ. If we assume that Γ is a polygonal line, then we
can triangulate the domain Ω, and then we consider spaces of functions which are piecewise
defined on the triangles of the triangulation of Ω. The simplest functions are piecewise affine
and look like tents erected above groups of triangles. Again, we can define base functions
with small support, so that the matrix A is tridiagonal by blocks.

The finite element method is a vast subject and it is presented in many books of various
degrees of difficulty and obscurity. Let us simply state three important requirements of the
finite element method:
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1. “Good” triangulations must be found. This in itself is a vast research topic. Delaunay
triangulations are good candidates.

2. “Good” spaces of functions must be found; typically piecewise polynomials and splines.

3. “Good” bases consisting of functions will small support must be found, so that integrals
can be easily computed and sparse banded matrices arise.

We now consider boundary problems where the solution varies with time.

15.3 Time-Dependent Boundary Problems: The Wave

Equation

Consider a homogeneous string (or rope) of constant cross-section, of length L, and stretched
(in a vertical plane) between its two ends which are assumed to be fixed and located along
the x-axis at x = 0 and at x = L.

Figure 15.6: A vibrating string

The string is subjected to a transverse force τf(x)dx per element of length dx (where
τ is the tension of the string). We would like to investigate the small displacements of the
string in the vertical plane, that is, how it vibrates.

Thus, we seek a function u(x, t) defined for t ≥ 0 and x ∈ [0, L], such that u(x, t)
represents the vertical deformation of the string at the abscissa x and at time t.

It can be shown that u must satisfy the following PDE

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = f(x, t), 0 < x < L, t > 0,

with c =
√
τ/ρ, where ρ is the linear density of the string, known as the one-dimensional

wave equation.
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Furthermore, the initial shape of the string is known at t = 0, as well as the distribution
of the initial velocities along the string; in other words, there are two functions ui,0 and ui,1
such that

u(x, 0) = ui,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L.

For example, if the string is simply released from its given starting position, we have ui,1 = 0.
Lastly, because the ends of the string are fixed, we must have

u(0, t) = u(L, t) = 0, t ≥ 0.

Consequently, we look for a function u : R+ × [0, L] → R satisfying the following condi-
tions:

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = f(x, t), 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0, t ≥ 0 (boundary condition),

u(x, 0) = ui,0(x), 0 ≤ x ≤ L (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L (intitial condition).

This is an example of a time-dependent boundary-value problem, with two initial condi-
tions .

To simplify the problem, assume that f = 0, which amounts to neglecting the effect of
gravity. In this case, our PDE becomes

1

c2

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = 0, 0 < x < L, t > 0,

Let us try our trick of multiplying by a test function v depending only on x, C1 on [0, L],
and such that v(0) = v(L) = 0, and integrate by parts. We get the equation∫ L

0

∂2u

∂t2
(x, t)v(x)dx− c2

∫ L

0

∂2u

∂x2
(x, t)v(x)dx = 0.

For the first term, we get∫ L

0

∂2u

∂t2
(x, t)v(x)dx =

∫ L

0

∂2

∂t2
[u(x, t)v(x)]dx

=
d2

dt2

∫ L

0

u(x, t)v(x)dx

=
d2

dt2
〈u, v〉,



15.3. TIME-DEPENDENT BOUNDARY PROBLEMS 435

where 〈u, v〉 is the inner product in L2([0, L]). The fact that it is legitimate to move ∂2/∂t2

outside of the integral needs to be justified rigorously, but we won’t do it here.

For the second term, we get

−
∫ L

0

∂2u

∂x2
(x, t)v(x)dx = −

[
∂u

∂x
(x, t)v(x)

]x=L

x=0

+

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx,

and because v ∈ V , we have v(0) = v(L) = 0, so we obtain

−
∫ L

0

∂2u

∂x2
(x, t)v(x)dx =

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx.

Our integrated equation becomes

d2

dt2
〈u, v〉+ c2

∫ L

0

∂u

∂x
(x, t)

dv

dx
(x)dx = 0, for all v ∈ V and all t ≥ 0.

It is natural to introduce the bilinear form a : V × V → R given by

a(u, v) =

∫ L

0

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx,

where, for every t ∈ R+, the functions u(x, t) and (v, t) belong to V . Actually, we have to
replace V by the subspace of the Sobolev space H1

0 (0, L) consisting of the functions such
that v(0) = v(L) = 0. Then, the weak formulation (variational formulation) of our problem
is this:

Find a function u ∈ V such that

d2

dt2
〈u, v〉+ a(u, v) = 0, for all v ∈ V and all t ≥ 0

u(x, 0) = ui,0(x), 0 ≤ x ≤ L (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), 0 ≤ x ≤ L (intitial condition).

It can be shown that there is a positive constant α > 0 such that

a(u, u) ≥ α ‖u‖2
H1

0
for all v ∈ V

(Poincaré’s inequality), which shows that a is positive definite on V . The above method is
known as the method of Rayleigh-Ritz .

A study of the above equation requires some sophisticated tools of analysis which go
far beyond the scope of these notes. Let us just say that there is a countable sequence of
solutions with separated variables of the form

u
(1)
k = sin

(
kπx

L

)
cos

(
kπct

L

)
, u

(2)
k = sin

(
kπx

L

)
sin

(
kπct

L

)
, k ∈ N+,
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called modes (or normal modes). Complete solutions of the problem are series obtained by
combining the normal modes, and they are of the form

u(x, t) =
∞∑
k=1

sin

(
kπx

L

)(
Ak cos

(
kπct

L

)
+Bk sin

(
kπct

L

))
,

where the coefficients Ak, Bk are determined from the Fourier series of ui,0 and ui,1.

We now consider discrete approximations of our problem. As before, consider a finite
dimensional subspace Va of V and assume that we have approximations ua,0 and ua,1 of ui,0
and ui,1. If we pick a basis (w1, . . . , wn) of Va, then we can write our unknown function
u(x, t) as

u(x, t) = u1(t)w1 + · · ·+ un(t)wn,

where u1, . . . , un are functions of t. Then, if we write u = (u1, . . . , un), the discrete version
of our problem is

A
d2u

dt2
+Ku = 0,

u(x, 0) = ua,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ua,1(x), 0 ≤ x ≤ L,

where A = (〈wi, wj〉) and K = (a(wi, wj)) are two symmetric matrices, called the mass
matrix and the stiffness matrix , respectively. In fact, because a and the inner product
〈−,−〉 are positive definite, these matrices are also positive definite.

We have made some progress since we now have a system of ODE’s, and we can solve it
by analogy with the scalar case. So, we look for solutions of the form U cosωt (or U sinωt),
where U is an n-dimensional vector. We find that we should have

(K − ω2A)U cosωt = 0,

which implies that ω must be a solution of the equation

KU = ω2AU.

Thus, we have to find some λ such that

KU = λAU,

a problem known as a generalized eigenvalue problem, since the ordinary eigenvalue problem
for K is

KU = λU.
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Fortunately, because A is SPD, we can reduce this generalized eigenvalue problem to a
standard eigenvalue problem. A good way to do so is to use a Cholesky decomposition of A
as

A = LL>,

where L is a lower triangular matrix (see Theorem 6.10). Because A is SPD, it is invertible,
so L is also invertible, and

KU = λAU = λLL>U

yields
L−1KU = λL>U,

which can also be written as

L−1K(L>)−1L>U = λL>U.

Then, if we make the change of variable

Y = L>U,

using the fact (L>)−1 = (L−1)>, the above equation is equivalent to

L−1K(L−1)>Y = λY,

a standard eigenvalue problem for the matrix K̂ = L−1K(L−1)>. Furthermore, we know

from Section 6.7 that since K is SPD and L−1 is invertible, the matrix K̂ = L−1K(L−1)> is
also SPD.

Consequently, K̂ has positive real eigenvalues (ω2
1, . . . , ω

2
n) (not necessarily distinct) and

it can be diagonalized with respect to an orthonormal basis of eigenvectors, say Y1, . . . ,Yn.
Then, since Y = L>U, the vectors

Ui = (L>)−1Yi, i = 1, . . . , n,

are linearly independent and are solutions of the generalized eigenvalue problem; that is,

KUi = ω2
iAUi, i = 1, . . . , n.

More is true. Because the vectors Y1, . . . ,Yn are orthonormal, and because Yi = L>Ui,
from

(Yi)>Yj = δij,

we get
(Ui)>LL>Uj = δij, 1 ≤ i, j ≤ n,

and since A = LL>, this yields

(Ui)>AUj = δij, 1 ≤ i, j ≤ n.
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This suggests defining the functions U i ∈ Va by

U i =
n∑
k=1

Ui
kwk.

Then, it immediate to check that

a(U i, U j) = (Ui)>AUj = δij,

which means that the functions (U1, . . . , Un) form an orthonormal basis of Va for the inner
product a. The functions U i ∈ Va are called modes (or modal vectors).

As a final step, let us look again for a solution of our discrete weak formulation of the
problem, this time expressing the unknown solution u(x, t) over the modal basis (U1, . . . , Un),
say

u =
n∑
j=1

ũj(t)U
j,

where each ũj is a function of t. Because

u =
n∑
j=1

ũj(t)U
j =

n∑
j=1

ũj(t)

(
n∑
k=1

Uj
kwk

)
=

n∑
k=1

(
n∑
j=1

ũj(t)U
j
k

)
wk,

if we write u = (u1, . . . , un) with uk =
∑n

j=1 ũj(t)U
j
k for k = 1, . . . , n, we see that

u =
n∑
j=1

ũjU
j,

so using the fact that
KUj = ω2

jAUj, j = 1, . . . , n,

the equation

A
d2u

dt2
+Ku = 0

yields
n∑
j=1

[(ũj)
′′ + ω2

j ũj]AUj = 0.

Since A is invertible and since (U1, . . . ,Un) are linearly independent, the vectors (AU1,
. . . , AUn) are linearly independent, and consequently we get the system of n ODEs’

(ũj)
′′ + ω2

j ũj = 0, 1 ≤ j ≤ n.

Each of these equation has a well-known solution of the form

ũj = Aj cosωjt+Bj sinωjt.
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Therefore, the solution of our approximation problem is given by

u =
n∑
j=1

(Aj cosωjt+Bj sinωjt)U
j,

and the constants Aj, Bj are obtained from the intial conditions

u(x, 0) = ua,0(x), 0 ≤ x ≤ L,

∂u

∂t
(x, 0) = ua,1(x), 0 ≤ x ≤ L,

by expressing ua,0 and ua,1 on the modal basis (U1, . . . , Un). Furthermore, the modal func-
tions (U1, . . . , Un) form an orthonormal basis of Va for the inner product a.

If we use the vector space V 0
N of piecewise affine functions, we find that the matrices A

and K are familar! Indeed,

A =
1

h


2 −1 0 0 0
−1 2 −1 0 0
...

. . . . . . . . .
...

0 0 −1 2 −1
0 0 0 −1 2


and

K =
h

6


4 1 0 0 0
1 4 1 0 0
...

. . . . . . . . .
...

0 0 1 4 1
0 0 0 1 4

 .

To conclude this section, let us discuss briefly the wave equation for an elastic membrane,
as described in Section 15.2. This time, we look for a function u : R+ × Ω → R satisfying
the following conditions:

1

c2

∂2u

∂t2
(x, t)−∆u(x, t) = f(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ, t ≥ 0 (boundary condition),

u(x, 0) = ui,0(x), x ∈ Ω (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), x ∈ Ω (intitial condition).

Assuming that f = 0, we look for solutions in the subspace V of the Sobolev space H1
0 (Ω)

consisting of functions v such that v = 0 on Γ. Multiplying by a test function v ∈ V and
using Green’s first identity, we get the weak formulation of our problem:
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Find a function u ∈ V such that

d2

dt2
〈u, v〉+ a(u, v) = 0, for all v ∈ V and all t ≥ 0

u(x, 0) = ui,0(x), x ∈ Ω (intitial condition),

∂u

∂t
(x, 0) = ui,1(x), x ∈ Ω (intitial condition),

where a : V × V → R is the bilinear form given by

a(u, v) =

∫
Ω

(
∂u

∂x1

∂v

∂x1

+
∂u

∂x2

∂v

∂x2

)
dx,

and

〈u, v〉 =

∫
Ω

uvdx.

As usual, we find approximations of our problem by using finite dimensional subspaces
Va of V . Picking some basis (w1, . . . , wn) of Va, and triangulating Ω, as before, we obtain
the equation

A
d2u

dt2
+Ku = 0,

u(x, 0) = ua,0(x), x ∈ Γ,

∂u

∂t
(x, 0) = ua,1(x), x ∈ Γ,

where A = (〈wi, wj〉) and K = (a(wi, wj)) are two symmetric positive definite matrices.

In principle, the problem is solved, but, it may be difficult to find good spaces Va, good
triangulations of Ω, and good bases of Va, to be able to compute the matrices A and K, and
to ensure that they are sparse.



Chapter 16

Singular Value Decomposition and
Polar Form

16.1 Singular Value Decomposition for

Square Matrices

In this section, we assume that we are dealing with real Euclidean spaces. Let f : E → E
be any linear map. In general, it may not be possible to diagonalize f . We show that every
linear map can be diagonalized if we are willing to use two orthonormal bases. This is the
celebrated singular value decomposition (SVD). A close cousin of the SVD is the polar form
of a linear map, which shows how a linear map can be decomposed into its purely rotational
component (perhaps with a flip) and its purely stretching part.

The key observation is that f ∗ ◦ f is self-adjoint, since

〈(f ∗ ◦ f)(u), v〉 = 〈f(u), f(v)〉 = 〈u, (f ∗ ◦ f)(v)〉.
Similarly, f ◦ f ∗ is self-adjoint.

The fact that f ∗ ◦ f and f ◦ f ∗ are self-adjoint is very important, because it implies that
f ∗ ◦ f and f ◦ f ∗ can be diagonalized and that they have real eigenvalues. In fact, these
eigenvalues are all nonnegative. Indeed, if u is an eigenvector of f ∗ ◦ f for the eigenvalue λ,
then

〈(f ∗ ◦ f)(u), u〉 = 〈f(u), f(u)〉
and

〈(f ∗ ◦ f)(u), u〉 = λ〈u, u〉,
and thus

λ〈u, u〉 = 〈f(u), f(u)〉,
which implies that λ ≥ 0, since 〈−,−〉 is positive definite. A similar proof applies to f ◦ f ∗.
Thus, the eigenvalues of f ∗ ◦ f are of the form σ2

1, . . . , σ
2
r or 0, where σi > 0, and similarly

for f ◦ f ∗.

441
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The above considerations also apply to any linear map f : E → F betwen two Euclidean
spaces (E, 〈−,−〉1) and (F, 〈−,−〉2). Recall that the adjoint f ∗ : F → E of f is the unique
linear map f ∗ such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1, for all u ∈ E and all v ∈ F .

Then, f ∗ ◦ f and f ◦ f ∗ are self-adjoint (the proof is the same as in the previous case), and
the eigenvalues of f ∗ ◦f and f ◦f ∗ are nonnegative. If λ is an eigenvalue of f ∗ ◦f and u(6= 0)
is a corresponding eigenvector, we have

〈(f ∗ ◦ f)(u), u〉1 = 〈f(u), f(u)〉2,

and also

〈(f ∗ ◦ f)(u), u〉1 = λ〈u, u〉1,

so

λ〈u, u〉1,= 〈f(u), f(u)〉2,

which implies that λ ≥ 0. A similar proof applies to f ◦ f ∗. The situation is even better,
since we will show shortly that f ∗ ◦ f and f ◦ f ∗ have the same nonzero eigenvalues.

Remark: Given any two linear maps f : E → F and g : F → E, where dim(E) = n and
dim(F ) = m, it can be shown that

λm det(λ In − g ◦ f) = λn det(λ Im − f ◦ g),

and thus g ◦ f and f ◦ g always have the same nonzero eigenvalues!

Definition 16.1. Given any linear map f : E → F , the square roots σi > 0 of the positive
eigenvalues of f ∗ ◦ f (and f ◦ f ∗) are called the singular values of f .

Definition 16.2. A self-adjoint linear map f : E → E whose eigenvalues are nonnegative is
called positive semidefinite (or positive), and if f is also invertible, f is said to be positive
definite. In the latter case, every eigenvalue of f is strictly positive.

If f : E → F is any linear map, we just showed that f ∗ ◦ f and f ◦ f ∗ are positive
semidefinite self-adjoint linear maps. This fact has the remarkable consequence that every
linear map has two important decompositions:

1. The polar form.

2. The singular value decomposition (SVD).
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The wonderful thing about the singular value decomposition is that there exist two or-
thonormal bases (u1, . . . , un) and (v1, . . . , vm) such that, with respect to these bases, f is
a diagonal matrix consisting of the singular values of f , or 0. Thus, in some sense, f can
always be diagonalized with respect to two orthonormal bases. The SVD is also a useful tool
for solving overdetermined linear systems in the least squares sense and for data analysis, as
we show later on.

First, we show some useful relationships between the kernels and the images of f , f ∗,
f ∗ ◦ f , and f ◦ f ∗. Recall that if f : E → F is a linear map, the image Im f of f is the
subspace f(E) of F , and the rank of f is the dimension dim(Im f) of its image. Also recall
that (Theorem 4.6)

dim (Ker f) + dim (Im f) = dim (E),

and that (Propositions 10.9 and 12.10) for every subspace W of E,

dim (W ) + dim (W⊥) = dim (E).

Proposition 16.1. Given any two Euclidean spaces E and F , where E has dimension n
and F has dimension m, for any linear map f : E → F , we have

Ker f = Ker (f ∗ ◦ f),

Ker f ∗ = Ker (f ◦ f ∗),
Ker f = (Im f ∗)⊥,

Ker f ∗ = (Im f)⊥,

dim(Im f) = dim(Im f ∗),

and f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.

Proof. To simplify the notation, we will denote the inner products on E and F by the same
symbol 〈−,−〉 (to avoid subscripts). If f(u) = 0, then (f ∗ ◦ f)(u) = f ∗(f(u)) = f ∗(0) = 0,
and so Ker f ⊆ Ker (f ∗ ◦ f). By definition of f ∗, we have

〈f(u), f(u)〉 = 〈(f ∗ ◦ f)(u), u〉

for all u ∈ E. If (f ∗ ◦ f)(u) = 0, since 〈−,−〉 is positive definite, we must have f(u) = 0,
and so Ker (f ∗ ◦ f) ⊆ Ker f . Therefore,

Ker f = Ker (f ∗ ◦ f).

The proof that Ker f ∗ = Ker (f ◦ f ∗) is similar.

By definition of f ∗, we have

〈f(u), v〉 = 〈u, f ∗(v)〉 for all u ∈ E and all v ∈ F . (∗)
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This immediately implies that

Ker f = (Im f ∗)⊥ and Ker f ∗ = (Im f)⊥.

Let us explain why Ker f = (Im f ∗)⊥, the proof of the other equation being similar.

Because the inner product is positive definite, for every u ∈ E, we have
u ∈ Ker f
iff f(u) = 0
iff 〈f(u), v〉 = 0 for all v,
by (∗) iff 〈u, f ∗(v)〉 = 0 for all v,
iff u ∈ (Im f ∗)⊥.

Since

dim(Im f) = n− dim(Ker f)

and

dim(Im f ∗) = n− dim((Im f ∗)⊥),

from

Ker f = (Im f ∗)⊥

we also have

dim(Ker f) = dim((Im f ∗)⊥),

from which we obtain

dim(Im f) = dim(Im f ∗).

Since

dim(Ker (f ∗ ◦ f)) + dim(Im (f ∗ ◦ f)) = dim(E),

Ker (f ∗ ◦ f) = Ker f and Ker f = (Im f ∗)⊥, we get

dim((Im f ∗)⊥) + dim(Im (f ∗ ◦ f)) = dim(E).

Since

dim((Im f ∗)⊥) + dim(Im f ∗) = dim(E),

we deduce that

dim(Im f ∗) = dim(Im (f ∗ ◦ f)).

A similar proof shows that

dim(Im f) = dim(Im (f ◦ f ∗)).

Consequently, f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.
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We will now prove that every square matrix has an SVD. Stronger results can be obtained
if we first consider the polar form and then derive the SVD from it (there are uniqueness
properties of the polar decomposition). For our purposes, uniqueness results are not as
important so we content ourselves with existence results, whose proofs are simpler. Readers
interested in a more general treatment are referred to [44].

The early history of the singular value decomposition is described in a fascinating paper
by Stewart [99]. The SVD is due to Beltrami and Camille Jordan independently (1873,
1874). Gauss is the grandfather of all this, for his work on least squares (1809, 1823)
(but Legendre also published a paper on least squares!). Then come Sylvester, Schmidt, and
Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave a computational method
to find an SVD. Schmidt’s work really has to do with integral equations and symmetric and
asymmetric kernels (1907). Weyl’s work has to do with perturbation theory (1912). Autonne
came up with the polar decomposition (1902, 1915). Eckart and Young extended SVD to
rectangular matrices (1936, 1939).

Theorem 16.2. (Singular value decomposition) For every real n×n matrix A there are two
orthogonal matrices U and V and a diagonal matrix D such that A = V DU>, where D is of
the form

D =


σ1 . . .

σ2 . . .
...

...
. . .

...
. . . σn

 ,

where σ1, . . . , σr are the singular values of f , i.e., the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = · · · = σn = 0. The columns of U are eigenvectors
of A>A, and the columns of V are eigenvectors of AA>.

Proof. Since A>A is a symmetric matrix, in fact, a positive semidefinite matrix, there exists
an orthogonal matrix U such that

A>A = UD2U>,

with D = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A; that is, σ1, . . . , σr are the singular values of A. It follows that

U>A>AU = (AU)>AU = D2,

and if we let fj be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,
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then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vn) (for example,
using Gram–Schmidt). Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n,

〈vi, fj〉 = 0 1 ≤ i ≤ n, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vn, then V is orthogonal and the above equations
prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD2U>, AA> = V D2V >,

which shows that A>A and AA> have the same eigenvalues, that the columns of U are
eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

Theorem 16.2 suggests the following definition.

Definition 16.3. A triple (U,D, V ) such that A = V DU>, where U and V are orthogonal
and D is a diagonal matrix whose entries are nonnegative (it is positive semidefinite) is called
a singular value decomposition (SVD) of A.

The proof of Theorem 16.2 shows that there are two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), where (u1, . . . , un) are eigenvectors of A>A and (v1, . . . , vn) are eigenvectors
of AA>. Furthermore, (u1, . . . , ur) is an orthonormal basis of ImA>, (ur+1, . . . , un) is an
orthonormal basis of KerA, (v1, . . . , vr) is an orthonormal basis of ImA, and (vr+1, . . . , vn)
is an orthonormal basis of KerA>.

Using a remark made in Chapter 3, if we denote the columns of U by u1, . . . , un and the
columns of V by v1, . . . , vn, then we can write

A = V DU> = σ1v1u
>
1 + · · ·+ σrvru

>
r .

As a consequence, if r is a lot smaller than n (we write r � n), we see that A can be
reconstructed from U and V using a much smaller number of elements. This idea will be
used to provide “low-rank” approximations of a matrix. The idea is to keep only the k top
singular values for some suitable k � r for which σk+1, . . . σr are very small.

Remarks:
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(1) In Strang [103] the matrices U, V,D are denoted by U = Q2, V = Q1, and D = Σ, and
an SVD is written as A = Q1ΣQ>2 . This has the advantage that Q1 comes before Q2 in
A = Q1ΣQ>2 . This has the disadvantage that A maps the columns of Q2 (eigenvectors
of A>A) to multiples of the columns of Q1 (eigenvectors of AA>).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub and
Van Loan [49], Demmel [33], and Trefethen and Bau [106], where the SVD and its
applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex n×n matrix
A, there are two unitary matrices U and V and a diagonal matrix D such that

A = V DU∗,

where D is a diagonal matrix consisting of real entries σ1, . . . , σn, where σ1, . . . , σr are
the singular values of A, i.e., the positive square roots of the nonzero eigenvalues of
A∗A and AA∗, and σr+1 = . . . = σn = 0.

A notion closely related to the SVD is the polar form of a matrix.

Definition 16.4. A pair (R, S) such that A = RS with R orthogonal and S symmetric
positive semidefinite is called a polar decomposition of A.

Theorem 16.2 implies that for every real n×n matrix A, there is some orthogonal matrix
R and some positive semidefinite symmetric matrix S such that

A = RS.

This is easy to show and we will prove it below. Furthermore, R, S are unique if A is
invertible, but this is harder to prove.

For example, the matrix

A =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies that
some of the eigenvalues of A are negative.

Remark: In the complex case, the polar decomposition states that for every complex n×n
matrix A, there is some unitary matrix U and some positive semidefinite Hermitian matrix
H such that

A = UH.
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It is easy to go from the polar form to the SVD, and conversely.

Given an SVD decomposition A = V DU>, let R = V U> and S = UDU>. It is clear
that R is orthogonal and that S is positive semidefinite symmetric, and

RS = V U>UDU> = V DU> = A.

Going the other way, given a polar decomposition A = R1S, where R1 is orthogonal
and S is positive semidefinite symmetric, there is an orthogonal matrix R2 and a positive
semidefinite diagonal matrix D such that S = R2DR>2 , and thus

A = R1R2DR>2 = V DU>,

where V = R1R2 and U = R2 are orthogonal.

The eigenvalues and the singular values of a matrix are typically not related in any
obvious way. For example, the n× n matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


has the eigenvalue 1 with multiplicity n, but its singular values, σ1 ≥ · · · ≥ σn, which are
the positive square roots of the eigenvalues of the matrix B = A>A with

B =



1 2 0 0 . . . 0 0
2 5 2 0 . . . 0 0
0 2 5 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 2 5 2 0
0 0 . . . 0 2 5 2
0 0 . . . 0 0 2 5


have a wide spread, since

σ1

σn
= cond2(A) ≥ 2n−1.

If A is a complex n× n matrix, the eigenvalues λ1, . . . , λn and the singular values
σ1 ≥ σ2 ≥ · · · ≥ σn of A are not unrelated, since

σ2
1 · · ·σ2

n = det(A∗A) = | det(A)|2
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and
|λ1| · · · |λn| = | det(A)|,

so we have
|λ1| · · · |λn| = σ1 · · · σn.

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 16.3. (Weyl’s inequalities, 1949 ) For any complex n×n matrix, A, if λ1, . . . , λn ∈
C are the eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that
|λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · ·σn and

|λ1| · · · |λk| ≤ σ1 · · · σk, for k = 1, . . . , n− 1.

A proof of Theorem 16.3 can be found in Horn and Johnson [57], Chapter 3, Section
3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are
given.

Theorem 16.2 can be easily extended to rectangular m × n matrices, as we show in the
next section (for various versions of the SVD for rectangular matrices, see Strang [103] Golub
and Van Loan [49], Demmel [33], and Trefethen and Bau [106]).

16.2 Singular Value Decomposition for

Rectangular Matrices

Here is the generalization of Theorem 16.2 to rectangular matrices.

Theorem 16.4. (Singular value decomposition) For every real m × n matrix A, there are
two orthogonal matrices U (n×n) and V (m×m) and a diagonal m×n matrix D such that
A = V DU>, where D is of the form

D =



σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0


or D =


σ1 . . . 0 . . . 0

σ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . σm 0 . . . 0

 ,

where σ1, . . . , σr are the singular values of f , i.e. the (positive) square roots of the nonzero
eigenvalues of A>A and AA>, and σr+1 = . . . = σp = 0, where p = min(m,n). The columns
of U are eigenvectors of A>A, and the columns of V are eigenvectors of AA>.
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Proof. As in the proof of Theorem 16.2, since A>A is symmetric positive semidefinite, there
exists an n× n orthogonal matrix U such that

A>A = UΣ2U>,

with Σ = diag(σ1, . . . , σr, 0, . . . , 0), where σ2
1, . . . , σ

2
r are the nonzero eigenvalues of A>A,

and where r is the rank of A. Observe that r ≤ min{m,n}, and AU is an m× n matrix. It
follows that

U>A>AU = (AU)>AU = Σ2,

and if we let fj ∈ Rm be the jth column of AU for j = 1, . . . , n, then we have

〈fi, fj〉 = σ2
i δij, 1 ≤ i, j ≤ r

and
fj = 0, r + 1 ≤ j ≤ n.

If we define (v1, . . . , vr) by
vj = σ−1

j fj, 1 ≤ j ≤ r,

then we have
〈vi, vj〉 = δij, 1 ≤ i, j ≤ r,

so complete (v1, . . . , vr) into an orthonormal basis (v1, . . . , vr, vr+1, . . . , vm) (for example,
using Gram–Schmidt).

Now, since fj = σjvj for j = 1 . . . , r, we have

〈vi, fj〉 = σj〈vi, vj〉 = σjδi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ r

and since fj = 0 for j = r + 1, . . . , n, we have

〈vi, fj〉 = 0 1 ≤ i ≤ m, r + 1 ≤ j ≤ n.

If V is the matrix whose columns are v1, . . . , vm, then V is an m×m orthogonal matrix and
if m ≥ n, we let

D =

(
Σ

0m−n

)
=



σ1 . . .
σ2 . . .

...
...

. . .
...

. . . σn

0
... . . . 0

...
...

. . .
...

0
... . . . 0


,

else if n ≥ m, then we let

D =


σ1 . . . 0 . . . 0

σ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . σm 0 . . . 0

 .
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In either case, the above equations prove that

V >AU = D,

which yields A = V DU>, as required.

The equation A = V DU> implies that

A>A = UD>DU> = Udiag(σ2
1, . . . , σ

2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

)U>

and
AA> = V DD>V > = V diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

)V >,

which shows that A>A and AA> have the same nonzero eigenvalues, that the columns of U
are eigenvectors of A>A, and that the columns of V are eigenvectors of AA>.

A triple (U,D, V ) such that A = V DU> is called a singular value decomposition (SVD)
of A.

Even though the matrix D is an m×n rectangular matrix, since its only nonzero entries
are on the descending diagonal, we still say that D is a diagonal matrix.

If we view A as the representation of a linear map f : E → F , where dim(E) = n and
dim(F ) = m, the proof of Theorem 16.4 shows that there are two orthonormal bases (u1, . . .,
un) and (v1, . . . , vm) for E and F , respectively, where (u1, . . . , un) are eigenvectors of f ∗ ◦ f
and (v1, . . . , vm) are eigenvectors of f ◦f ∗. Furthermore, (u1, . . . , ur) is an orthonormal basis
of Im f ∗, (ur+1, . . . , un) is an orthonormal basis of Ker f , (v1, . . . , vr) is an orthonormal basis
of Im f , and (vr+1, . . . , vm) is an orthonormal basis of Ker f ∗.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular matrix; we
will do so in Chapter 17. The reader may also consult Strang [103], Demmel [33], Trefethen
and Bau [106], and Golub and Van Loan [49].

One of the spectral theorems states that a symmetric matrix can be diagonalized by
an orthogonal matrix. There are several numerical methods to compute the eigenvalues
of a symmetric matrix A. One method consists in tridiagonalizing A, which means that
there exists some orthogonal matrix P and some symmetric tridiagonal matrix T such that
A = PTP>. In fact, this can be done using Householder transformations. It is then possible
to compute the eigenvalues of T using a bisection method based on Sturm sequences. One can
also use Jacobi’s method. For details, see Golub and Van Loan [49], Chapter 8, Demmel [33],
Trefethen and Bau [106], Lecture 26, or Ciarlet [30]. Computing the SVD of a matrix A is
more involved. Most methods begin by finding orthogonal matrices U and V and a bidiagonal
matrix B such that A = V BU>. This can also be done using Householder transformations.
Observe that B>B is symmetric tridiagonal. Thus, in principle, the previous method to
diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to compute
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B>B explicitly, and more subtle methods are used for this last step. Again, see Golub and
Van Loan [49], Chapter 8, Demmel [33], and Trefethen and Bau [106], Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any deformation it
is important to separate stretching from rotation. This is exactly what QS achieves. The
orthogonal part Q corresponds to rotation (perhaps with an additional reflection), and the
symmetric matrix S to stretching (or compression). The real eigenvalues σ1, . . . , σr of S are
the stretch factors (or compression factors) (see Marsden and Hughes [72]). The fact that
S can be diagonalized by an orthogonal matrix corresponds to a natural choice of axes, the
principal axes.

The SVD has applications to data compression, for instance in image processing. The
idea is to retain only singular values whose magnitudes are significant enough. The SVD
can also be used to determine the rank of a matrix when other methods such as Gaussian
elimination produce very small pivots. One of the main applications of the SVD is the
computation of the pseudo-inverse. Pseudo-inverses are the key to the solution of various
optimization problems, in particular the method of least squares. This topic is discussed in
the next chapter (Chapter 17). Applications of the material of this chapter can be found
in Strang [103, 102]; Ciarlet [30]; Golub and Van Loan [49], which contains many other
references; Demmel [33]; and Trefethen and Bau [106].

16.3 Ky Fan Norms and Schatten Norms

The singular values of a matrix can be used to define various norms on matrices which
have found recent applications in quantum information theory and in spectral graph theory.
Following Horn and Johnson [57] (Section 3.4) we can make the following definitions:

Definition 16.5. For any matrix A ∈ Mm,n(C), let q = min{m,n}, and if σ1 ≥ · · · ≥ σq are
the singular values of A, for any k with 1 ≤ k ≤ q, let

Nk(A) = σ1 + · · ·+ σk,

called the Ky Fan k-norm of A.

More generally, for any p ≥ 1 and any k with 1 ≤ k ≤ q, let

Nk;p(A) = (σp1 + · · ·+ σpk)
1/p,

called the Ky Fan p-k-norm of A. When k = q, Nq;p is also called the Schatten p-norm.

Observe that when k = 1, N1(A) = σ1, and the Ky Fan norm N1 is simply the spectral
norm from Chapter 7, which is the subordinate matrix norm associated with the Euclidean
norm. When k = q, the Ky Fan norm Nq is given by

Nq(A) = σ1 + · · ·+ σq = tr((A∗A)1/2)



16.4. SUMMARY 453

and is called the trace norm or nuclear norm. When p = 2 and k = q, the Ky Fan Nq;2 norm
is given by

Nk;2(A) = (σ2
1 + · · ·+ σ2

q )
1/2 =

√
tr(A∗A) = ‖A‖F ,

which is the Frobenius norm of A.

It can be shown that Nk and Nk;p are unitarily invariant norms, and that when m = n,
they are matrix norms; see Horn and Johnson [57] (Section 3.4, Corollary 3.4.4 and Problem
3).

16.4 Summary

The main concepts and results of this chapter are listed below:

• For any linear map f : E → E on a Euclidean space E, the maps f ∗ ◦ f and f ◦ f ∗ are
self-adjoint and positive semidefinite.

• The singular values of a linear map.

• Positive semidefinite and positive definite self-adjoint maps.

• Relationships between Im f , Ker f , Im f ∗, and Ker f ∗.

• The singular value decomposition theorem for square matrices (Theorem 16.2).

• The SVD of matrix.

• The polar decomposition of a matrix.

• The Weyl inequalities .

• The singular value decomposition theorem for m× n matrices (Theorem 16.4).

• Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms.
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Chapter 17

Applications of SVD and
Pseudo-Inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile, que celui dont nous avons
fait usage dans les recherches précédentes, et qui consiste à rendre minimum la somme
des carrés des erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre
qui, empêchant les extrêmes de prévaloir, est très propre à faire connaitre l’état du
système le plus proche de la vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des
Comètes

17.1 Least Squares Problems and the Pseudo-Inverse

This chapter presents several applications of SVD. The first one is the pseudo-inverse, which
plays a crucial role in solving linear systems by the method of least squares. The second ap-
plication is data compression. The third application is principal component analysis (PCA),
whose purpose is to identify patterns in data and understand the variance–covariance struc-
ture of the data. The fourth application is the best affine approximation of a set of data, a
problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of linear
equations

Ax = b,

i.e., a system in which A is a rectangular m×n matrix with more equations than unknowns
(when m > n). Historically, the method of least squares was used by Gauss and Legendre
to solve problems in astronomy and geodesy. The method was first published by Legendre
in 1805 in a paper on methods for determining the orbits of comets. However, Gauss had
already used the method of least squares as early as 1801 to determine the orbit of the asteroid

455
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Ceres, and he published a paper about it in 1810 after the discovery of the asteroid Pallas.
Incidentally, it is in that same paper that Gaussian elimination using pivots is introduced.

The reason why more equations than unknowns arise in such problems is that repeated
measurements are taken to minimize errors. This produces an overdetermined and often
inconsistent system of linear equations. For example, Gauss solved a system of eleven equa-
tions in six unknowns to determine the orbit of the asteroid Pallas. As a concrete illustration,
suppose that we observe the motion of a small object, assimilated to a point, in the plane.
From our observations, we suspect that this point moves along a straight line, say of equation
y = dx+ c. Suppose that we observed the moving point at three different locations (x1, y1),
(x2, y2), and (x3, y3). Then we should have

c+ dx1 = y1,

c+ dx2 = y2,

c+ dx3 = y3.

If there were no errors in our measurements, these equations would be compatible, and c
and d would be determined by only two of the equations. However, in the presence of errors,
the system may be inconsistent. Yet we would like to find c and d!

The idea of the method of least squares is to determine (c, d) such that it minimizes the
sum of the squares of the errors, namely,

(c+ dx1 − y1)2 + (c+ dx2 − y2)2 + (c+ dx3 − y3)2.

In general, for an overdetermined m×n system Ax = b, what Gauss and Legendre discovered
is that there are solutions x minimizing

‖Ax− b‖2
2

(where ‖u‖2
2 = u2

1 +· · ·+u2
n, the square of the Euclidean norm of the vector u = (u1, . . . , un)),

and that these solutions are given by the square n× n system

A>Ax = A>b,

called the normal equations . Furthermore, when the columns of A are linearly independent,
it turns out that A>A is invertible, and so x is unique and given by

x = (A>A)−1A>b.

Note that A>A is a symmetric matrix, one of the nice features of the normal equations of a
least squares problem. For instance, the normal equations for the above problem are(

3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
c
d

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.

In fact, given any real m × n matrix A, there is always a unique x+ of minimum norm
that minimizes ‖Ax− b‖2

2, even when the columns of A are linearly dependent. How do we
prove this, and how do we find x+?
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Theorem 17.1. Every linear system Ax = b, where A is an m × n matrix, has a unique
least squares solution x+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed, we can
interpret b as a point in the Euclidean (affine) space Rm, and the image subspace of A (also
called the column space of A) as a subspace U of Rm (passing through the origin). Then, it
is clear that

inf
x∈Rn
‖Ax− b‖2

2 = inf
y∈U
‖y − b‖2

2,

with U = ImA, and we claim that x minimizes ‖Ax− b‖2
2 iff Ax = p, where p the orthogonal

projection of b onto the subspace U .

Recall from Section 11.1 that the orthogonal projection pU : U ⊕ U⊥ → U is the linear
map given by

pU(u+ v) = u,

with u ∈ U and v ∈ U⊥. If we let p = pU(b) ∈ U , then for any point y ∈ U , the vectors
−→py = y − p ∈ U and

−→
bp = p− b ∈ U⊥ are orthogonal, which implies that

‖−→by‖2
2 = ‖−→bp‖2

2 + ‖−→py‖2
2,

where
−→
by = y− b. Thus, p is indeed the unique point in U that minimizes the distance from

b to any point in U .

Thus, the problem has been reduced to proving that there is a unique x+ of minimum
norm such that Ax+ = p, with p = pU(b) ∈ U , the orthogonal projection of b onto U . We
use the fact that

Rn = KerA⊕ (KerA)⊥.

Consequently, every x ∈ Rn can be written uniquely as x = u + v, where u ∈ KerA and
v ∈ (KerA)⊥, and since u and v are orthogonal,

‖x‖2
2 = ‖u‖2

2 + ‖v‖2
2.

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which shows
that the solutions of Ax = p for which x has minimum norm must belong to (KerA)⊥.
However, the restriction of A to (KerA)⊥ is injective. This is because if Av1 = Av2, where
v1, v2 ∈ (KerA)⊥, then A(v2 − v2) = 0, which implies v2 − v1 ∈ KerA, and since v1, v2 ∈
(KerA)⊥, we also have v2 − v1 ∈ (KerA)⊥, and consequently, v2 − v1 = 0. This shows that
there is a unique x+ of minimum norm such that Ax+ = p, and that x+ must belong to
(KerA)⊥. By our previous reasoning, x+ is the unique vector of minimum norm minimizing
‖Ax− b‖2

2.

The proof also shows that x minimizes ‖Ax − b‖2
2 iff

−→
pb = b − Ax is orthogonal to U ,

which can be expressed by saying that b−Ax is orthogonal to every column of A. However,
this is equivalent to

A>(b− Ax) = 0, i.e., A>Ax = A>b.
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Finally, it turns out that the minimum norm least squares solution x+ can be found in terms
of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A.

Definition 17.1. Given any nonzero m × n matrix A of rank r, if A = V DU> is an SVD
of A such that

D =

(
Λ 0r,n−r

0m−r,r 0m−r,n−r

)
,

with

Λ = diag(λ1, . . . , λr)

an r× r diagonal matrix consisting of the nonzero singular values of A, then if we let D+ be
the n×m matrix

D+ =

(
Λ−1 0r,m−r

0n−r,r 0n−r,m−r

)
,

with

Λ−1 = diag(1/λ1, . . . , 1/λr),

the pseudo-inverse of A is defined by

A+ = UD+V >.

If A = 0m,n is the zero matrix, we set A+ = 0n,m. Observe that D+ is obtained from D by
inverting the nonzero diagonal entries of D, leaving all zeros in place, and then transposing
the matrix. The pseudo-inverse of a matrix is also known as the Moore–Penrose pseudo-
inverse.

Actually, it seems that A+ depends on the specific choice of U and V in an SVD (U,D, V )
for A, but the next theorem shows that this is not so.

Theorem 17.2. The least squares solution of smallest norm of the linear system Ax = b,
where A is an m× n matrix, is given by

x+ = A+b = UD+V >b.

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then, since x
minimizes ‖Dx− b‖2

2 iff Dx is the projection of b onto the image subspace F of D, it is fairly
obvious that x+ = D+b. Otherwise, we can write

A = V DU>,

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖2 = ‖V DU>x− b‖2 = ‖DU>x− V >b‖2.
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Letting y = U>x, we have ‖x‖2 = ‖y‖2, since U is an isometry, and since U is surjective,
‖Ax − b‖2 is minimized iff ‖Dy − V >b‖2 is minimized, and we have shown that the least
solution is

y+ = D+V >b.

Since y = U>x, with ‖x‖2 = ‖y‖2, we get

x+ = UD+V >b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.

By Proposition 17.2 and Theorem 17.1, A+b is uniquely defined by every b, and thus A+

depends only on A.

Proposition 17.3. When A has full rank, the pseudo-inverse A+ can be expressed as A+ =
(A>A)−1A> when m ≥ n, and as A+ = A>(AA>)−1 when n ≥ m. In the first case (m ≥ n),
observe that A+A = I, so A+ is a left inverse of A; in the second case (n ≥ m), we have
AA+ = I, so A+ is a right inverse of A.

Proof. If m ≥ n and A has full rank rank n, we have

A = V

(
Λ

0m−n,n

)
U>

with Λ an n× n diagonal invertible matrix (with positive entries), so

A+ = U
(
Λ−1 0n,m−n

)
V >.

We find that

A>A = U
(
Λ 0n,m−n

)
V >V

(
Λ

0m−n,n

)
U> = UΛ2U>,

which yields

(A>A)−1A> = UΛ−2U>U
(
Λ 0n,m−n

)
V >V = U

(
Λ−1 0n,m−n

)
V > = A+.

Therefore, if m ≥ n and A has full rank rank n, then

A+ = (A>A)−1A>.

If n ≥ m and A has full rank rank m, then

A = V
(
Λ 0m,n−m

)
U>

with Λ an m×m diagonal invertible matrix (with positive entries), so

A+ = U

(
Λ−1

0n−m,m

)
V >.
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We find that

AA> = V
(
Λ 0m,n−m

)
U>U

(
Λ

0n−m,m

)
V > = V Λ2V >,

which yields

A>(AA>)−1 = U

(
Λ

0n−m,m

)
V >V Λ−2V > = U

(
Λ−1

0n−m,m

)
V > = A+.

Therefore, if n ≥ m and A has full rank rank m, then A+ = A>(AA>)−1.

17.2 Properties of the Pseudo-Inverse

Let A = V ΣU> be an SVD for any m× n matrix A. It is easy to check that

AA+A = A,

A+AA+ = A+,

and both AA+ and A+A are symmetric matrices. In fact,

AA+ = V ΣU>UΣ+V > = V ΣΣ+V > = V

(
Ir 0
0 0m−r

)
V >

and

A+A = UΣ+V >V ΣU> = UΣ+ΣU> = U

(
Ir 0
0 0n−r

)
U>.

We immediately get

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both symmetric).

Proposition 17.4. The matrix AA+ is the orthogonal projection onto the range of A and
A+A is the orthogonal projection onto Ker(A)⊥ = Im(A>), the range of A>.

Proof. Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A), since
AA+A = A, we have

AA+y = AA+Ax = Ax = y,

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆ Ker(A+A), and
since AA+A = A, we also have Ker(A+A) ⊆ Ker(A), and so

Ker(A+A) = Ker(A).

Since A+A is symmetric, range(A+A) = range((A+A)>) = Ker(A+A)⊥ = Ker(A)⊥, as
claimed.
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Proposition 17.5. The set range(A) = range(AA+) consists of all vectors y ∈ Rm such
that

V >y =

(
z
0

)
,

with z ∈ Rr.

Proof. Indeed, if y = Ax, then

V >y = V >Ax = V >V ΣU>x = ΣU>x =

(
Σr 0
0 0m−r

)
U>x =

(
z
0

)
,

where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if V >y = ( z0 ), then
y = V ( z0 ), and

AA+y = V

(
Ir 0
0 0m−r

)
V >y

= V

(
Ir 0
0 0m−r

)
V >V

(
z
0

)
= V

(
Ir 0
0 0m−r

)(
z
0

)

= V

(
z
0

)
= y,

which shows that y belongs to the range of A.

Similarly, we have the following result.

Proposition 17.6. The set range(A+A) = Ker(A)⊥ consists of all vectors y ∈ Rn such that

U>y =

(
z
0

)
,

with z ∈ Rr.

Proof. If y = A+Au, then

y = A+Au = U

(
Ir 0
0 0n−r

)
U>u = U

(
z
0

)
,

for some z ∈ Rr. Conversely, if U>y = ( z0 ), then y = U ( z0 ), and so

A+AU

(
z
0

)
= U

(
Ir 0
0 0n−r

)
U>U

(
z
0

)
= U

(
Ir 0
0 0n−r

)(
z
0

)
= U

(
z
0

)
= y,

which shows that y ∈ range(A+A).
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If A is a symmetric matrix, then in general, there is no SVD V ΣU> of A with V = U .
However, if A is positive semidefinite, then the eigenvalues of A are nonnegative, and so the
nonzero eigenvalues of A are equal to the singular values of A and SVDs of A are of the form

A = V ΣV >.

Analogous results hold for complex matrices, but in this case, V and U are unitary
matrices and AA+ and A+A are Hermitian orthogonal projections.

If A is a normal matrix, which means that AA> = A>A, then there is an intimate
relationship between SVD’s of A and block diagonalizations of A. As a consequence, the
pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization
of A.

If A is a (real) normal matrix, then we know from Theorem 14.16 that A can be block
diagonalized with respect to an orthogonal matrix U as

A = UΛU>,

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . , Bn),

consisting either of 2× 2 blocks of the form

Bj =

(
λj −µj
µj λj

)
with µj 6= 0, or of one-dimensional blocks Bk = (λk). Then we have the following proposition:

Proposition 17.7. For any (real) normal matrix A and any block diagonalization A =
UΛU> of A as above, the pseudo-inverse of A is given by

A+ = UΛ+U>,

where Λ+ is the pseudo-inverse of Λ. Furthermore, if

Λ =

(
Λr 0
0 0

)
,

where Λr has rank r, then

Λ+ =

(
Λ−1
r 0
0 0

)
.

Proof. Assume that B1, . . . , Bp are 2× 2 blocks and that λ2p+1, . . . , λn are the scalar entries.
We know that the numbers λj ± iµj, and the λ2p+k are the eigenvalues of A. Let ρ2j−1 =
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ρ2j =
√
λ2
j + µ2

j for j = 1, . . . , p, ρ2p+j = λj for j = 1, . . . , n−2p, and assume that the blocks

are ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn. Then it is easy to see that

UU> = U>U = UΛU>UΛ>U> = UΛΛ>U>,

with
ΛΛ> = diag(ρ2

1, . . . , ρ
2
n),

so the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of A, which are the nonnegative square roots of
the eigenvalues of AA>, are such that

σj = ρj, 1 ≤ j ≤ n.

We can define the diagonal matrices

Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where r = rank(A), σ1 ≥ · · · ≥ σr > 0 and

Θ = diag(σ−1
1 B1, . . . , σ

−1
2p Bp, 1, . . . , 1),

so that Θ is an orthogonal matrix and

Λ = ΘΣ = (B1, . . . , Bp, λ2p+1, . . . , λr, 0, . . . , 0).

But then we can write
A = UΛU> = UΘΣU>,

and we if let V = UΘ, since U is orthogonal and Θ is also orthogonal, V is also orthogonal
and A = V ΣU> is an SVD for A. Now we get

A+ = UΣ+V > = UΣ+Θ>U>.

However, since Θ is an orthogonal matrix, Θ> = Θ−1, and a simple calculation shows that

Σ+Θ> = Σ+Θ−1 = Λ+,

which yields the formula
A+ = UΛ+U>.

Also observe that if we write

Λr = (B1, . . . , Bp, λ2p+1, . . . , λr),

then Λr is invertible and

Λ+ =

(
Λ−1
r 0
0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.
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The following properties, due to Penrose, characterize the pseudo-inverse of a matrix.
We have already proved that the pseudo-inverse satisfies these equations. For a proof of the
converse, see Kincaid and Cheney [60].

Proposition 17.8. Given any m× n matrix A (real or complex), the pseudo-inverse A+ of
A is the unique n×m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)> = AA+,

(A+A)> = A+A.

If A is an m × n matrix of rank n (and so m ≥ n), it is immediately shown that the
QR-decomposition in terms of Householder transformations applies as follows:

There are n m × m matrices H1, . . . , Hn, Householder matrices or the identity, and an
upper triangular m× n matrix R of rank n such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax− b‖2 = ‖Rx−Hn · · ·H1b‖2,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now, the system
Rx = Hn · · ·H1b

is of the form (
R1

0m−n

)
x =

(
c
d

)
,

where R1 is an invertible n× n matrix (since A has rank n), c ∈ Rn, and d ∈ Rm−n, and the
least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.

The method of least squares is one of the most effective tools of the mathematical sciences.
There are entire books devoted to it. Readers are advised to consult Strang [103], Golub and
Van Loan [49], Demmel [33], and Trefethen and Bau [106], where extensions and applications
of least squares (such as weighted least squares and recursive least squares) are described.
Golub and Van Loan [49] also contains a very extensive bibliography, including a list of
books on least squares.
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17.3 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, notably for
images. In order to make precise the notion of closeness of matrices, we use the notion of
matrix norm. This concept is defined in Chapter 7 and the reader may want to review it
before reading any further.

Given an m× n matrix of rank r, we would like to find a best approximation of A by a
matrix B of rank k ≤ r (actually, k < r) so that ‖A−B‖2 (or ‖A−B‖F ) is minimized.

Proposition 17.9. Let A be an m× n matrix of rank r and let V DU> = A be an SVD for
A. Write ui for the columns of U , vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σp for the
singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to A (in the ‖ ‖2

norm) is given by

Ak =
k∑
i=1

σiviu
>
i = V diag(σ1, . . . , σk)U

>

and ‖A− Ak‖2 = σk+1.

Proof. By construction, Ak has rank k, and we have

‖A− Ak‖2 =
∥∥∥ p∑
i=k+1

σiviu
>
i

∥∥∥
2

=
∥∥V diag(0, . . . , 0, σk+1, . . . , σp)U

>∥∥
2

= σk+1.

It remains to show that ‖A−B‖2 ≥ σk+1 for all rank-k matrices B. Let B be any rank-k
matrix, so its kernel has dimension n− k. The subspace Uk+1 spanned by (u1, . . . , uk+1) has
dimension k + 1, and because the sum of the dimensions of the kernel of B and of Uk+1 is
(n − k) + k + 1 = n + 1, these two subspaces must intersect in a subspace of dimension at
least 1. Pick any unit vector h in Ker(B) ∩ Uk+1. Then since Bh = 0, we have

‖A−B‖2
2 ≥ ‖(A−B)h‖2

2 = ‖Ah‖2
2 =

∥∥V DU>h∥∥2

2
=
∥∥DU>h∥∥2

2
≥ σ2

k+1

∥∥U>h∥∥2

2
= σ2

k+1,

which proves our claim.

Note that Ak can be stored using (m + n)k entries, as opposed to mn entries. When
k � m, this is a substantial gain.

A nice example of the use of Proposition 17.9 in image compression is given in Demmel
[33], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an SVD.
This is a very interesting but tricky subject. Most methods reduce the computation of an
SVD to the diagonalization of a well-chosen symmetric matrix (which is not A>A). Interested
readers should read Section 5.4 of Demmel’s excellent book [33], which contains an overview
of most known methods and an extensive list of references.
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17.4 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X1, . . . , Xn, with each Xi ∈ Rd viewed
as a row vector .

Think of the Xi’s as persons, and if Xi = (xi 1, . . . , xi d), each xi j is the value of some
feature (or attribute) of that person. For example, the Xi’s could be mathematicians, d = 2,
and the first component, xi 1, of Xi could be the year that Xi was born, and the second
component, xi 2, the length of the beard of Xi in centimeters. Here is a small data set:

Name year length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12
Adrien-Marie Legendre 1752 0
Bernhard Riemann 1826 15
David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2
Hermann Schwarz 1843 20

We usually form the n × d matrix X whose ith row is Xi, with 1 ≤ i ≤ n. Then the
jth column is denoted by Cj (1 ≤ j ≤ d). It is sometimes called a feature vector , but this
terminology is far from being universally accepted. In fact, many people in computer vision
call the data points Xi feature vectors!

The purpose of principal components analysis , for short PCA, is to identify patterns in
data and understand the variance–covariance structure of the data. This is useful for the
following tasks:

1. Data reduction: Often much of the variability of the data can be accounted for by a
smaller number of principal components .

2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) x = (x1, . . . , xn) ∈ Rn, recall that the mean
(or average) x of x is given by

x =

∑n
i=1 xi
n

.

We let x− x denote the centered data point

x− x = (x1 − x, . . . , xn − x).
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In order to measure the spread of the xi’s around the mean, we define the sample variance
(for short, variance) var(x) (or s2) of the sample x by

var(x) =

∑n
i=1(xi − x)2

n− 1
.

There is a reason for using n − 1 instead of n. The above definition makes var(x) an
unbiased estimator of the variance of the random variable being sampled. However, we
don’t need to worry about this. Curious readers will find an explanation of these peculiar
definitions in Epstein [39] (Chapter 14, Section 14.5), or in any decent statistics book.

Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the sample covariance (for short,
covariance) of x and y is given by

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1
.

The covariance of x and y measures how x and y vary from the mean with respect to each
other . Obviously, cov(x, y) = cov(y, x) and cov(x, x) = var(x).

Note that

cov(x, y) =
(x− x)>(y − y)

n− 1
.

We say that x and y are uncorrelated iff cov(x, y) = 0.

Finally, given an n × d matrix X of n points Xi, for PCA to be meaningful, it will be
necessary to translate the origin to the centroid (or center of gravity) µ of the Xi’s, defined
by

µ =
1

n
(X1 + · · ·+Xn).

Observe that if µ = (µ1, . . . , µd), then µj is the mean of the vector Cj (the jth column of
X).

We let X − µ denote the matrix whose ith row is the centered data point Xi − µ (1 ≤
i ≤ n). Then, the sample covariance matrix (for short, covariance matrix ) of X is the d× d
symmetric matrix

Σ =
1

n− 1
(X − µ)>(X − µ) = (cov(Ci, Cj)).

Remark: The factor 1
n−1

is irrelevant for our purposes and can be ignored.

Here is the matrix X − µ in the case of our bearded mathematicians: Since

µ1 = 1828.4, µ2 = 5.6,
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we get

Name year length
Carl Friedrich Gauss −51.4 −5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre −76.4 −5.6
Bernhard Riemann −2.4 9.4
David Hilbert 33.6 −3.6
Henri Poincaré 25.6 −0.6
Emmy Noether 53.6 −5.6
Karl Weierstrass 13.4 −5.6
Eugenio Beltrami 6.6 −3.6
Hermann Schwarz 14.6 14.4

We can think of the vector Cj as representing the features of X in the direction ej (the
jth canonical basis vector in Rd, namely ej = (0, . . . , 1, . . . 0), with a 1 in the jth position).

If v ∈ Rd is a unit vector, we wish to consider the projection of the data points X1, . . . , Xn

onto the line spanned by v. Recall from Euclidean geometry that if x ∈ Rd is any vector
and v ∈ Rd is a unit vector, the projection of x onto the line spanned by v is

〈x, v〉v.
Thus, with respect to the basis v, the projection of x has coordinate 〈x, v〉. If x is represented
by a row vector and v by a column vector, then

〈x, v〉 = xv.

Therefore, the vector Y ∈ Rn consisting of the coordinates of the projections of X1, . . . , Xn

onto the line spanned by v is given by Y = Xv, and this is the linear combination

Xv = v1C1 + · · ·+ vdCd

of the columns of X (with v = (v1, . . . , vd)).

Observe that because µj is the mean of the vector Cj (the jth column of X), we get

Y = Xv = v1µ1 + · · ·+ vdµd,

and so the centered point Y − Y is given by

Y − Y = v1(C1 − µ1) + · · ·+ vd(Cd − µd) = (X − µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y, Z) =
((X − µ)v)>(X − µ)w

n− 1

= v>
1

n− 1
(X − µ)>(X − µ)w

= v>Σw,
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where Σ is the covariance matrix of X. Since Y − Y has zero mean, we have

var(Y ) = var(Y − Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.

The above suggests that we should move the origin to the centroid µ of the Xi’s and consider
the matrix X − µ of the centered data points Xi − µ.

From now on, beware that we denote the columns of X − µ by C1, . . . , Cd and that Y
denotes the centered point Y = (X − µ)v =

∑d
j=1 vjCj, where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y of the
data points X1, . . ., Xn onto some directions v (where the v’s are unit vectors) such that
var(Y ) is maximal.

This suggests the following definition:

Definition 17.2. Given an n×d matrix X of data points X1, . . . , Xn, if µ is the centroid of
the Xi’s, then a first principal component of X (first PC) is a centered point Y1 = (X−µ)v1,
the projection of X1, . . . , Xn onto a direction v1 such that var(Y1) is maximized, where v1 is
a unit vector (recall that Y1 = (X − µ)v1 is a linear combination of the Cj’s, the columns of
X − µ).

More generally, if Y1, . . . , Yk are k principal components of X along some unit vectors
v1, . . . , vk, where 1 ≤ k < d, a (k+1)th principal component of X ((k+1)th PC) is a centered
point Yk+1 = (X − µ)vk+1, the projection of X1, . . . , Xn onto some direction vk+1 such that
var(Yk+1) is maximized, subject to cov(Yh, Yk+1) = 0 for all h with 1 ≤ h ≤ k, and where
vk+1 is a unit vector (recall that Yh = (X − µ)vh is a linear combination of the Cj’s). The
vh are called principal directions .

The following proposition is the key to the main result about PCA:

Proposition 17.10. If A is a symmetric d × d matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λd and if (u1, . . . , ud) is any orthonormal basis of eigenvectors of A, where ui is a unit
eigenvector associated with λi, then

max
x 6=0

x>Ax

x>x
= λ1

(with the maximum attained for x = u1) and

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= λk+1

(with the maximum attained for x = uk+1), where 1 ≤ k ≤ d− 1.
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Proof. First, observe that

max
x 6=0

x>Ax

x>x
= max

x
{x>Ax | x>x = 1},

and similarly,

max
x 6=0,x∈{u1,...,uk}⊥

x>Ax

x>x
= max

x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized with respect
to an orthonormal basis of eigenvectors, so let (u1, . . . , ud) be such a basis. If we write

x =
d∑
i=1

xiui,

a simple computation shows that

x>Ax =
d∑
i=1

λix
2
i .

If x>x = 1, then
∑d

i=1 x
2
i = 1, and since we assumed that λ1 ≥ λ2 ≥ · · · ≥ λd, we get

x>Ax =
d∑
i=1

λix
2
i ≤ λ1

( d∑
i=1

x2
i

)
= λ1.

Thus,
max
x

{
x>Ax | x>x = 1

}
≤ λ1,

and since this maximum is achieved for e1 = (1, 0, . . . , 0), we conclude that

max
x

{
x>Ax | x>x = 1

}
= λ1.

Next, observe that x ∈ {u1, . . . , uk}⊥ and x>x = 1 iff x1 = · · · = xk = 0 and
∑d

i=1 xi = 1.
Consequently, for such an x, we have

x>Ax =
d∑

i=k+1

λix
2
i ≤ λk+1

( d∑
i=k+1

x2
i

)
= λk+1.

Thus,
max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
≤ λk+1,

and since this maximum is achieved for ek+1 = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position k+1,
we conclude that

max
x

{
x>Ax | (x ∈ {u1, . . . , uk}⊥) ∧ (x>x = 1)

}
= λk+1,

as claimed.
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The quantity
x>Ax

x>x
is known as the Rayleigh–Ritz ratio and Proposition 17.10 is often known as part of the
Rayleigh–Ritz theorem.

Proposition 17.10 also holds if A is a Hermitian matrix and if we replace x>Ax by x∗Ax
and x>x by x∗x. The proof is unchanged, since a Hermitian matrix has real eigenvalues
and is diagonalized with respect to an orthonormal basis of eigenvectors (with respect to the
Hermitian inner product).

We then have the following fundamental result showing how the SVD of X yields the
PCs :

Theorem 17.11. (SVD yields PCA) Let X be an n × d matrix of data points X1, . . . , Xn,
and let µ be the centroid of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ
and if the main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then the
centered points Y1, . . . , Yd, where

Yk = (X − µ)uk = kth column of V D

and uk is the kth column of U , are d principal components of X. Furthermore,

var(Yk) =
σ2
k

n− 1

and cov(Yh, Yk) = 0, whenever h 6= k and 1 ≤ k, h ≤ d.

Proof. Recall that for any unit vector v, the centered projection of the points X1, . . . , Xn

onto the line of direction v is Y = (X − µ)v and that the variance of Y is given by

var(Y ) = v>
1

n− 1
(X − µ)>(X − µ)v.

Since X − µ = V DU>, we get

var(Y ) = v>
1

(n− 1)
(X − µ)>(X − µ)v

= v>
1

(n− 1)
UDV >V DU>v

= v>U
1

(n− 1)
D2U>v.

Similarly, if Y = (X − µ)v and Z = (X − µ)w, then the covariance of Y and Z is given by

cov(Y, Z) = v>U
1

(n− 1)
D2U>w.
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Obviously, U 1
(n−1)

D2U> is a symmetric matrix whose eigenvalues are
σ2
1

n−1
≥ · · · ≥ σ2

d

n−1
, and

the columns of U form an orthonormal basis of unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing var(Y ) is equivalent
to maximizing

v>U
1

(n− 1)
D2U>v,

where v is a unit vector. By Proposition 17.10, the maximum of the above quantity is the

largest eigenvalue of U 1
(n−1)

D2U>, namely
σ2
1

n−1
, and it is achieved for u1, the first columnn

of U . Now we get
Y1 = (X − µ)u1 = V DU>u1,

and since the columns of U form an orthonormal basis, U>u1 = e1 = (1, 0, . . . , 0), and so Y1

is indeed the first column of V D.

By the induction hypothesis, the centered points Y1, . . . , Yk, where Yh = (X − µ)uh and
u1, . . . , uk are the first k columns of U , are k principal components of X. Because

cov(Y, Z) = v>U
1

(n− 1)
D2U>w,

where Y = (X − µ)v and Z = (X − µ)w, the condition cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to the fact that w belongs to the orthogonal complement of the subspace
spanned by {u1, . . . , uk}, and maximizing var(Z) subject to cov(Yh, Z) = 0 for h = 1, . . . , k
is equivalent to maximizing

w>U
1

(n− 1)
D2U>w,

where w is a unit vector orthogonal to the subspace spanned by {u1, . . . , uk}. By Proposition
17.10, the maximum of the above quantity is the (k+1)th eigenvalue of U 1

(n−1)
D2U>, namely

σ2
k+1

n−1
, and it is achieved for uk+1, the (k + 1)th columnn of U . Now we get

Yk+1 = (X − µ)uk+1 = V DU>uk+1,

and since the columns of U form an orthonormal basis, U>uk+1 = ek+1, and Yk+1 is indeed
the (k + 1)th column of V D, which completes the proof of the induction step.

The d columns u1, . . . , ud of U are usually called the principal directions of X − µ (and
X). We note that not only do we have cov(Yh, Yk) = 0 whenever h 6= k, but the directions
u1, . . . , ud along which the data are projected are mutually orthogonal. Also, if r is the rank
of the matrix X, then the columns of index k ≥ r + 1 in D are zero, so the columns of
index k ≥ r + 1 in V D are also zero, and we have Yk = 0 for k ≥ r + 1. Thus the principal
components Yk only yield useful information if k ≥ r = rank(X).

We know from our study of SVD that σ2
1, . . . , σ

2
d are the eigenvalues of the symmetric

positive semidefinite matrix (X − µ)>(X − µ) and that u1, . . . , ud are corresponding eigen-
vectors. Numerically, it is preferable to use SVD on X−µ rather than to compute explicitly
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(X − µ)>(X − µ) and then diagonalize it. Indeed, the explicit computation of A>A from
a matrix A can be numerically quite unstable, and good SVD algorithms avoid computing
A>A explicitly.

In general, since an SVD of X is not unique, the principal directions u1, . . . , ud are not
unique. This can happen when a data set has some rotational symmetries , and in such a
case, PCA is not a very good method for analyzing the data set.

17.5 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data
set of n points X1, . . . , Xn, with Xi ∈ Rd, by a p-dimensional affine subspace A of Rd, with
1 ≤ p ≤ d− 1 (the terminology rank d− p is also used).

First, consider p = d − 1. Then A = A1 is an affine hyperplane (in Rd), and it is given
by an equation of the form

a1x1 + · · ·+ adxd + c = 0.

By best approximation, we mean that (a1, . . . , ad, c) solves the homogeneous linear system

x1 1 · · · x1 d 1
...

...
...

...
xn 1 · · · xnd 1



a1
...
ad
c

 =


0
...
0
0


in the least squares sense, subject to the condition that a = (a1, . . . , ad) is a unit vector , that
is, a>a = 1, where Xi = (xi 1, · · · , xi d).

If we form the symmetric matrixx1 1 · · · x1 d 1
...

...
...

...
xn 1 · · · xnd 1


>x1 1 · · · x1 d 1

...
...

...
...

xn 1 · · · xnd 1


involved in the normal equations, we see that the bottom row (and last column) of that
matrix is

nµ1 · · · nµd n,

where nµj =
∑n

i=1 xi j is n times the mean of the column Cj of X.

Therefore, if (a1, . . . , ad, c) is a least squares solution, that is, a solution of the normal
equations, we must have

nµ1a1 + · · ·+ nµdad + nc = 0,

that is,
a1µ1 + · · ·+ adµd + c = 0,
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which means that the hyperplane A1 must pass through the centroid µ of the data points
X1, . . . , Xn. Then we can rewrite the original system with respect to the centered data
Xi − µ, and we find that the variable c drops out and we get the system

(X − µ)a = 0,

where a = (a1, . . . , ad).

Thus, we are looking for a unit vector a solving (X − µ)a = 0 in the least squares sense,
that is, some a such that a>a = 1 minimizing

a>(X − µ)>(X − µ)a.

Compute some SVD V DU> of X−µ, where the main diagonal of D consists of the singular
values σ1 ≥ σ2 ≥ · · · ≥ σd of X − µ arranged in descending order. Then

a>(X − µ)>(X − µ)a = a>UD2U>a,

where D2 = diag(σ2
1, . . . , σ

2
d) is a diagonal matrix, so pick a to be the last column in U

(corresponding to the smallest eigenvalue σ2
d of (X − µ)>(X − µ)). This is a solution to our

best fit problem.

Therefore, if Ud−1 is the linear hyperplane defined by a, that is,

Ud−1 = {u ∈ Rd | 〈u, a〉 = 0},
where a is the last column in U for some SVD V DU> of X − µ, we have shown that the
affine hyperplane A1 = µ + Ud−1 is a best approximation of the data set X1, . . . , Xn in the
least squares sense.

Is is easy to show that this hyperplane A1 = µ + Ud−1 minimizes the sum of the square
distances of each Xi to its orthogonal projection onto A1. Also, since Ud−1 is the orthogonal
complement of a, the last column of U , we see that Ud−1 is spanned by the first d−1 columns
of U , that is, the first d− 1 principal directions of X − µ.

All this can be generalized to a best (d−k)-dimensional affine subspace Ak approximating
X1, . . . , Xn in the least squares sense (1 ≤ k ≤ d− 1). Such an affine subspace Ak is cut out
by k independent hyperplanes Hi (with 1 ≤ i ≤ k), each given by some equation

ai 1x1 + · · ·+ ai dxd + ci = 0.

If we write ai = (ai 1, · · · , ai d), to say that the Hi are independent means that a1, . . . , ak are
linearly independent. In fact, we may assume that a1, . . . , ak form an orthonormal system.

Then, finding a best (d − k)-dimensional affine subspace Ak amounts to solving the
homogeneous linear system

X 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 X 1



a1

c1
...
ak
ck

 =

0
...
0

 ,
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in the least squares sense, subject to the conditions a>i aj = δi j, for all i, j with 1 ≤ i, j ≤ k,
where the matrix of the system is a block diagonal matrix consisting of k diagonal blocks
(X,1), where 1 denotes the column vector (1, . . . , 1) ∈ Rn.

Again, it is easy to see that each hyperplane Hi must pass through the centroid µ of
X1, . . . , Xn, and by switching to the centered data Xi − µ we get the systemX − µ 0 · · · 0

...
...

. . .
...

0 0 · · · X − µ


a1

...
ak

 =

0
...
0

 ,

with a>i aj = δi j for all i, j with 1 ≤ i, j ≤ k.

If V DU> = X−µ is an SVD decomposition, it is easy to see that a least squares solution
of this system is given by the last k columns of U , assuming that the main diagonal of D
consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd of X−µ arranged in descending order. But
now the (d− k)-dimensional subspace Ud−k cut out by the hyperplanes defined by a1, . . . , ak
is simply the orthogonal complement of (a1, . . . , ak), which is the subspace spanned by the
first d− k columns of U .

So the best (d−k)-dimensional affine subpsace Ak approximating X1, . . . , Xn in the least
squares sense is

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d−k principal directions of X−µ, that
is, the first d−k columns of U . Consequently, we get the following interesting interpretation
of PCA (actually, principal directions):

Theorem 17.12. Let X be an n × d matrix of data points X1, . . . , Xn, and let µ be the
centroid of the Xi’s. If X − µ = V DU> is an SVD decomposition of X − µ and if the
main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σd, then a best (d− k)-
dimensional affine approximation Ak of X1, . . . , Xn in the least squares sense is given by

Ak = µ+ Ud−k,

where Ud−k is the linear subspace spanned by the first d − k columns of U , the first d − k
principal directions of X − µ (1 ≤ k ≤ d− 1).

There are many applications of PCA to data compression, dimension reduction, and
pattern analysis. The basic idea is that in many cases, given a data set X1, . . . , Xn, with
Xi ∈ Rd, only a “small” subset of m < d of the features is needed to describe the data set
accurately.

If u1, . . . , ud are the principal directions of X−µ, then the first m projections of the data
(the first m principal components, i.e., the first m columns of V D) onto the first m principal
directions represent the data without much loss of information. Thus, instead of using the
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original data points X1, . . . , Xn, with Xi ∈ Rd, we can use their projections onto the first m
principal directions Y1, . . . , Ym, where Yi ∈ Rm and m < d, obtaining a compressed version
of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and Kirby
(1987) seem to be the first to have had the idea of using PCA to compress facial images.
They introduced the term eigenpicture to refer to the principal directions, ui. However, an
explicit face recognition algorithm was given only later, by Turk and Pentland (1991). They
renamed eigenpictures as eigenfaces .

For details on the topic of eigenfaces, see Forsyth and Ponce [42] (Chapter 22, Section
22.3.2), where you will also find exact references to Turk and Pentland’s papers.

Another interesting application of PCA is to the recognition of handwritten digits . Such
an application is described in Hastie, Tibshirani, and Friedman, [53] (Chapter 14, Section
14.5.1).

17.6 Summary

The main concepts and results of this chapter are listed below:

• Least squares problems .

• Existence of a least squares solution of smallest norm (Theorem 17.1).

• The pseudo-inverse A+ of a matrix A.

• The least squares solution of smallest norm is given by the pseudo-inverse (Theorem
17.2)

• Projection properties of the pseudo-inverse.

• The pseudo-inverse of a normal matrix.

• The Penrose characterization of the pseudo-inverse.

• Data compression and SVD.

• Best approximation of rank < r of a matrix.

• Principal component analysis .

• Review of basic statistical concepts: mean, variance, covariance, covariance matrix .

• Centered data, centroid .

• The principal components (PCA).
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• The Rayleigh–Ritz theorem (Theorem 17.10).

• The main theorem: SVD yields PCA (Theorem 17.11).

• Best affine approximation.

• SVD yields a best affine approximation (Theorem 17.12).

• Face recognition, eigenfaces.
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Chapter 18

Annihilating Polynomials and the
Primary Decomposition

18.1 Annihilating Polynomials and the Minimal Poly-

nomial

In Section 5.7, we explained that if f : E → E is a linear map on a K-vector space E, then
for any polynomial p(X) = a0X

d + a1X
d−1 + · · ·+ ad with coefficients in the field K, we can

define the linear map p(f) : E → E by

p(f) = a0f
d + a1f

d−1 + · · ·+ adid,

where fk = f ◦ · · · ◦ f , the k-fold composition of f with itself. Note that

p(f)(u) = a0f
d(u) + a1f

d−1(u) + · · ·+ adu,

for every vector u ∈ E. Then, we showed that if E is finite-dimensional and if χf (X) =
det(XI − f) is the characteristic polynomial of f , by the Cayley–Hamilton Theorem, we
have

χf (f) = 0.

This fact suggests looking at the set of all polynomials p(X) such that

p(f) = 0.

Such polynomials are called annihilating polynomials of f , the set of all these poynomials,
denoted Ann(f), is called the annihilator of f , and the Cayley-Hamilton Theorem shows that
it is nontrivial, since it contains a polynomial of positive degree. It turns out that Ann(f)
contains a polynomial mf of smallest degree that generates Ann(f), and this polynomial
divides the characteristic polynomial. Furthermore, the polynomial mf encapsulates a lot of
information about f , in particular whether f can be diagonalized.

In order to understand the structure of Ann(f), we need to review some basic properties
of polynomials. The first crucial notion is that of an ideal.

479
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Definition 18.1. Given a commutative ring A with unit 1, an ideal of A is a nonempty
subset I of A satisfying the following properties:

(ID1) If a, b ∈ I, then b− a ∈ I.

(ID2) If a ∈ I, then ax ∈ I for all x ∈ A.

An ideal I is a principal ideal if there is some a ∈ I, called a generator , such that

I = {ax | x ∈ A}.

In this case, we usually write I = aA, or I = (a). The ideal I = (0) = {0} is called the null
ideal (or zero ideal).

Given a field K, any nonzero polynomial p(X) ∈ K[X] has some monomial of highest
degree a0X

n with a0 6= 0, and the integer n = deg(p) ≥ 0 is called the degree of p. It is
convenient to set the degree of the zero polynomial (denoted by 0) to be

deg(0) = −∞.

A polynomial p(X) such that the coefficient a0 of its monomial of highest degree is 1 is called
a monic polynomial.

The following proposition is a fundamental result about polynomials over a field.

Proposition 18.1. If K is a field, then every polynomial ideal I ⊆ K[X] is a principal
ideal. As a consequence, if I is not the zero ideal, then there is a unique monic polynomial

p(X) = Xn + a1X
n−1 + · · ·+ an−1X + an

in I such that I = (p).

Proof. This result is not hard to prove if we recall that polynomials can divided: Given any
two nonzero polynomials f, g ∈ K[X], there are unique polynomials q, r such that

f = gq + r, and deg(r) < deg(g).

If I is not the zero ideal, there is some polynomial of smallest degree in I, and since K is a
field, by suitable multiplication by a scalar, we can make sure that this polynomial is monic.
Thus, let f be a monic polynomial of smallest degree in I. By (ID2), it is clear that (f) ⊆ I.
Now, let g ∈ I. Using the Euclidean algorithm, there exist unique q, r ∈ K[X] such that

g = qf + r and deg(r) < deg(f).

If r 6= 0, there is some λ 6= 0 in K such that λr is a monic polynomial, and since λr =
λg − λqf , with f, g ∈ I, by (ID1) and (ID2), we have λr ∈ I, where deg(λr) < deg(f) and
λr is a monic polynomial, contradicting the minimality of the degree of f . Thus, r = 0, and
g ∈ (f). The uniqueness of the monic polynomial f is left as an exercise.
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We will also need to know that the greatest common divisor of polynomials exist. Given
any two nonzero polynomials f, g ∈ K[X], recall that f divides g if g = fq for some q ∈ K[X].

Definition 18.2. Given any two nonzero polynomials f, g ∈ K[X], a polynomial d ∈ K[X]
is a greatest common divisor of f and g (for short, a gcd of f and g) if d divides f and g and
whenever h ∈ K[X] divides f and g, then h divides d. We say that f and g are relatively
prime if 1 is a gcd of f and g.

Note that f and g are relatively prime iff all of their gcd’s are constants (scalars in K),
or equivalently, if f, g have no common divisor q of degree deg(q) ≥ 1.

We can characterize gcd’s of polynomials as follows.

Proposition 18.2. Let K be a field and let f, g ∈ K[X] be any two nonzero polynomials.
For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f and g.

(2) The polynomial d divides f and g and there exist u, v ∈ K[X] such that

d = uf + vg.

(3) The ideals (f), (g), and (d) satisfy the equation

(d) = (f) + (g).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero scalar in K.

As a consequence of Proposition 18.2, two nonzero polynomials f, g ∈ K[X] are relatively
prime iff there exist u, v ∈ K[X] such that

uf + vg = 1.

The identity
d = uf + vg

of part (2) of Lemma 18.2 is often called the Bezout identity . An important consequence of
the Bezout identity is the following result.

Proposition 18.3. (Euclid’s proposition) Let K be a field and let f, g, h ∈ K[X] be any
nonzero polynomials. If f divides gh and f is relatively prime to g, then f divides h.

Proposition 18.3 can be generalized to any number of polynomials.

Proposition 18.4. Let K be a field and let f, g1, . . . , gm ∈ K[X] be some nonzero polyno-
mials. If f and gi are relatively prime for all i, 1 ≤ i ≤ m, then f and g1 · · · gm are relatively
prime.
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Definition 18.2 is generalized to any finite number of polynomials as follows.

Definition 18.3. Given any nonzero polynomials f1, . . . , fn ∈ K[X], where n ≥ 2, a poly-
nomial d ∈ K[X] is a greatest common divisor of f1, . . . , fn (for short, a gcd of f1, . . . , fn)
if d divides each fi and whenever h ∈ K[X] divides each fi, then h divides d. We say that
f1, . . . , fn are relatively prime if 1 is a gcd of f1, . . . , fn.

It is easily shown that Proposition 18.2 can be generalized to any finite number of poly-
nomials.

Proposition 18.5. Let K be a field and let f1, . . . , fn ∈ K[X] be any n ≥ 2 nonzero
polynomials. For every polynomial d ∈ K[X], the following properties are equivalent:

(1) The polynomial d is a gcd of f1, . . . , fn.

(2) The polynomial d divides each fi and there exist u1, . . . , un ∈ K[X] such that

d = u1f1 + · · ·+ unfn.

(3) The ideals (fi), and (d) satisfy the equation

(d) = (f1) + · · ·+ (fn).

In addition, d 6= 0, and d is unique up to multiplication by a nonzero scalar in K.

As a consequence of Proposition 18.5, any n ≥ 2 nonzero polynomials f1, . . . , fn ∈ K[X]
are relatively prime iff there exist u1, . . . , un ∈ K[X] such that

u1f1 + · · ·+ unfn = 1,

the Bezout identity .

We will also need to know that every nonzero polynomial (over a field) can be factored into
irreducible polynomials, which are the generalization of the prime numbers to polynomials.

Definition 18.4. Given a field K, a polynomial p ∈ K[X] is irreducible or indecomposable
or prime if deg(p) ≥ 1 and if p is not divisible by any polynomial q ∈ K[X] such that
1 ≤ deg(q) < deg(p). Equivalently, p is irreducible if deg(p) ≥ 1 and if p = q1q2, then either
q1 ∈ K or q2 ∈ K (and of course, q1 6= 0, q2 6= 0).

Every polynomial aX + b of degree 1 is irreducible. Over the field R, the polynomial
X2 + 1 is irreducible (why?), but X3 + 1 is not irreducible, since

X3 + 1 = (X + 1)(X2 −X + 1).
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The polynomial X2 − X + 1 is irreducible over R (why?). It would seem that X4 + 1 is
irreducible over R, but in fact,

X4 + 1 = (X2 −
√

2X + 1)(X2 +
√

2X + 1).

However, in view of the above factorization, X4 + 1 is irreducible over Q.

It can be shown that the irreducible polynomials over R are the polynomials of degree
1, or the polynomials of degree 2 of the form aX2 + bX + c, for which b2 − 4ac < 0 (i.e.,
those having no real roots). This is not easy to prove! Over the complex numbers C, the
only irreducible polynomials are those of degree 1. This is a version of a fact often referred
to as the “Fundamental theorem of Algebra.”

Observe that the definition of irreducibilty implies that any finite number of distinct
irreducible polynomials are relatively prime.

The following fundamental result can be shown

Theorem 18.6. Given any field K, for every nonzero polynomial

f = adX
d + ad−1X

d−1 + · · ·+ a0

of degree d = deg(f) ≥ 1 in K[X], there exists a unique set {〈p1, k1〉, . . . , 〈pm, km〉} such that

f = adp
k1
1 · · · pkmm ,

where the pi ∈ K[X] are distinct irreducible monic polynomials, the ki are (not necessarily
distinct) integers, and with m ≥ 1, ki ≥ 1.

We can now return to minimal polynomials. Given a linear map f : E → E, it is easy to
check that the set Ann(f) of polynomials that annihilate f is an ideal. Furthermore, when
E is finite-dimensional, the Cayley-Hamilton Theorem implies that Ann(f) is not the zero
ideal. Therefore, by Proposition 18.1, there is a unique monic polynomial mf that generates
Ann(f).

Definition 18.5. If f : E → E, is linear map on a finite-dimensional vector space E, the
unique monic polynomial mf (X) that generates the ideal Ann(f) of polynomials which
annihilate f (the annihilator of f) is called the minimal polynomial of f .

The minimal polynomial mf of f is the monic polynomial of smallest degree that an-
nihilates f . Thus, the minimal polynomial divides the characteristic polynomial χf , and
deg(mf ) ≥ 1. For simplicity of notation, we often write m instead of mf .

If A is any n × n matrix, the set Ann(A) of polynomials that annihilate A is the set of
polynomials

p(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad

such that
a0A

d + a1A
d−1 + · · ·+ ad−1A+ adI = 0.
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It is clear that Ann(A) is a nonzero ideal and its unique monic generator is called the minimal
polynomial of A. We check immediately that if Q is an invertible matrix, then A and Q−1AQ
have the same minimal polynomial. Also, if A is the matrix of f with respect to some basis,
then f and A have the same minimal polynomial.

The zeros (in K) of the minimal polynomial of f and the eigenvalues of f (in K) are
intimately related.

Proposition 18.7. Let f : E → E be a linear map on some finite-dimensional vector space
E. Then, λ ∈ K is a zero of the minimal polynomial mf (X) of f iff λ is an eigenvalue of f
iff λ is a zero of χf (X). Therefore, the minimal and the characteristic polynomials have the
same zeros (in K), except for multiplicities.

Proof. First, assume that m(λ) = 0 (with λ ∈ K, and writing m instead of mf ). If so, using
polynomial division, m can be factored as

m = (X − λ)q,

with deg(q) < deg(m). Since m is the minimal polynomial, q(f) 6= 0, so there is some
nonzero vector v ∈ E such that u = q(f)(v) 6= 0. But then, because m is the minimal
polynomial,

0 = m(f)(v)

= (f − λid)(q(f)(v))

= (f − λid)(u),

which shows that λ is an eigenvalue of f .

Conversely, assume that λ ∈ K is an eigenvalue of f . This means that for some u 6= 0,
we have f(u) = λu. Now, it is easy to show that

m(f)(u) = m(λ)u,

and since m is the minimal polynomial of f , we have m(f)(u) = 0, so m(λ)u = 0, and since
u 6= 0, we must have m(λ) = 0.

If we assume that f is diagonalizable, then its eigenvalues are all in K, and if λ1, . . . , λk
are the distinct eigenvalues of f , then by Proposition 18.7, the minimal polynomial m of f
must be a product of powers of the polynomials (X − λi). Actually, we claim that

m = (X − λ1) · · · (X − λk).

For this, we just have to show that m annihilates f . However, for any eigenvector u of f ,
one of the linear maps f − λiid sends u to 0, so

m(f)(u) = (f − λ1id) ◦ · · · ◦ (f − λkid)(u) = 0.
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Since E is spanned by the eigenvectors of f , we conclude that

m(f) = 0.

Therefore, if a linear map is diagonalizable, then its minimal polynomial is a product of
distinct factors of degree 1. It turns out that the converse is true, but this will take a little
work to establish it.

18.2 Minimal Polynomials of Diagonalizable

Linear Maps

In this section, we prove that if the minimal polynomial mf of a linear map f is of the form

mf = (X − λ1) · · · (X − λk)

for disctinct scalars λ1, . . . , λk ∈ K, then f is diagonalizable. This is a powerful result that
has a number of implications. We need of few properties of invariant subspaces.

Given a linear map f : E → E, recall that a subspace W of E is invariant under f if
f(u) ∈ W for all u ∈ W .

Proposition 18.8. Let W be a subspace of E invariant under the linear map f : E → E
(where E is finite-dimensional). Then, the minimal polynomial of the restriction f | W of
f to W divides the minimal polynomial of f , and the characteristic polynomial of f | W
divides the characteristic polynomial of f .

Sketch of proof. The key ingredient is that we can pick a basis (e1, . . . , en) of E in which
(e1, . . . , ek) is a basis of W . Then, the matrix of f over this basis is a block matrix of the
form

A =

(
B C
0 D

)
,

where B is a k × k matrix, D is a (n− k)× (n− k) matrix, and C is a k × (n− k) matrix.
Then

det(XI − A) = det(XI −B) det(XI −D),

which implies the statement about the characteristic polynomials. Furthermore,

Ai =

(
Bi Ci
0 Di

)
,

for some k × (n − k) matrix Ci. It follows that any polynomial which annihilates A also
annihilates B and D. So, the minimal polynomial of B divides the minimal polynomial of
A.
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For the next step, there are at least two ways to proceed. We can use an old-fashion argu-
ment using Lagrange interpolants, or use a slight generalization of the notion of annihilator.
We pick the second method because it illustrates nicely the power of principal ideals.

What we need is the notion of conductor (also called transporter).

Definition 18.6. Let f : E → E be a linear map on a finite-dimensional vector space E, let
W be an invariant subspace of f , and let u be any vector in E. The set Sf (u,W ) consisting
of all polynomials q ∈ K[X] such that q(f)(u) ∈ W is called the f -conductor of u into W .

Observe that the minimal polynomial m of f always belongs to Sf (u,W ), so this is a
nontrivial set. Also, if W = (0), then Sf (u, (0)) is just the annihilator of f . The crucial
property of Sf (u,W ) is that it is an ideal.

Proposition 18.9. If W is an invariant subspace for f , then for each u ∈ E, the f -conductor
Sf (u,W ) is an ideal in K[X].

We leave the proof as a simple exercise, using the fact that if W invariant under f , then
W is invariant under every polynomial q(f) in f .

Since Sf (u,W ) is an ideal, it is generated by a unique monic polynomial q of smallest
degree, and because the minimal polynomial mf of f is in Sf (u,W ), the polynomial q divides
m.

Proposition 18.10. Let f : E → E be a linear map on a finite-dimensional space E, and
assume that the minimal polynomial m of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of f belong to K. If W is a proper subspace of E which is
invariant under f , then there is a vector u ∈ E with the following properties:

(a) u /∈ W ;

(b) (f − λid)(u) ∈ W , for some eigenvalue λ of f .

Proof. Observe that (a) and (b) together assert that the f -conductor of u into W is a
polynomial of the form X − λi. Pick any vector v ∈ E not in W , and let g be the conductor
of v into W . Since g divides m and v /∈ W , the polynomial g is not a constant, and thus it
is of the form

g = (X − λ1)s1 · · · (X − λk)sk ,
with at least some si > 0. Choose some index j such that sj > 0. Then X − λj is a factor
of g, so we can write

g = (X − λj)q.
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By definition of g, the vector u = q(f)(v) cannot be in W , since otherwise g would not be
of minimal degree. However,

(f − λjid)(u) = (f − λjid)(q(f)(v))

= g(f)(v)

is in W , which concludes the proof.

We can now prove the main result of this section.

Theorem 18.11. Let f : E → E be a linear map on a finite-dimensional space E. Then f
is diagonalizable iff its minimal polynomial m is of the form

m = (X − λ1) · · · (X − λk),
where λ1, . . . , λk are distinct elements of K.

Proof. We already showed in Section 18.2 that if f is diagonalizable, then its minimal poly-
nomial is of the above form (where λ1, . . . , λk are the distinct eigenvalues of f).

For the converse, let W be the subspace spanned by all the eigenvectors of f . If W 6= E,
since W is invariant under f , by Proposition 18.10, there is some vector u /∈ W such that
for some λj, we have

(f − λjid)(u) ∈ W.
Let v = (f − λjid)(u) ∈ W . Since v ∈ W , we can write

v = w1 + · · ·+ wk

where f(wi) = λiwi (either wi = 0 or wi is an eigenvector for λi), and so, for every polynomial
h, we have

h(f)(v) = h(λ1)w1 + · · ·+ h(λk)wk,

which shows that h(f)(v) ∈ W for every polynomial h. We can write

m = (X − λj)q
for some polynomial q, and also

q − q(λj) = p(X − λj)
for some polynomial p. We know that p(f)(v) ∈ W , and since m is the minimal polynomial
of f , we have

0 = m(f)(u) = (f − λjid)(q(f)(u)),

which implies that q(f)(u) ∈ W (either q(f)(u) = 0, or it is an eigenvector associated with
λj). However,

q(f)(u)− q(λj)u = p(f)((f − λjid)(u)) = p(f)(v),

and since p(f)(v) ∈ W and q(f)(u) ∈ W , we conclude that q(λj)u ∈ W . But, u /∈ W , which
implies that q(λj) = 0, so λj is a double root of m, a contradiction. Therefore, we must have
W = E.
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Remark: Proposition 18.10 can be used to give a quick proof of Theorem 13.4.

Using Theorem 18.11, we can give a short proof about commuting diagonalizable linear
maps. If F is a family of linear maps on a vector space E, we say that F is a commuting
family iff f ◦ g = g ◦ f for all f, g ∈ F .

Proposition 18.12. Let F be a nonempty finite commuting family of diagonalizable linear
maps on a finite-dimensional vector space E. There exists a basis of E such that every linear
map in F is represented in that basis by a diagonal matrix.

Proof. We proceed by induction on n = dim(E). If n = 1, there is nothing to prove. If
n > 1, there are two cases. If all linear maps in F are of the form λid for some λ ∈
K, then the proposition holds trivially. In the second case, let f ∈ F be some linear
map in F which is not a scalar multiple of the identity. In this case, f has at least two
distinct eigenvalues λ1, . . . , λk, and because f is diagonalizable, E is the direct sum of the
corresponding eigenspaces Eλ1 , . . . , Eλk . For every index i, the eigenspace Eλi is invariant
under f and under every other linear map g in F , since for any g ∈ F and any u ∈ Eλi ,
because f and g commute, we have

f(g(u)) = g(f(u)) = g(λiu) = λig(u)

so g(u) ∈ Eλi . Let Fi be the family obtained by restricting each f ∈ F to Eλi . By
proposition 18.8, the minimal polynomial of every linear map f | Eλi in Fi divides the
minimal polynomial mf of f , and since f is diagonalizable, mf is a product of distinct
linear factors, so the minimal polynomial of f | Eλi is also a product of distinct linear
factors. By Theorem 18.11, the linear map f | Eλi is diagonalizable. Since k > 1, we have
dim(Eλi) < dim(E) for i = 1, . . . , k, and by the induction hypothesis, for each i there is
a basis of Eλi over which f | Eλi is represented by a diagonal matrix. Since the above
argument holds for all i, by combining the bases of the Eλi , we obtain a basis of E such that
the matrix of every linear map f ∈ F is represented by a diagonal matrix.

Remark: Proposition 18.12 also holds for infinite commuting familes F of diagonalizable
linear maps, because E being finite dimensional, there is a finite subfamily of linearly inde-
pendent linear maps in F spanning F .

There is also an analogous result for commuting families of linear maps represented by
upper triangular matrices. To prove this, we need the following proposition.

Proposition 18.13. Let F be a nonempty finite commuting family of triangulable linear
maps on a finite-dimensional vector space E. Let W be a proper subspace of E which is
invariant under F . Then there exists a vector u ∈ E such that:

1. u /∈ W .

2. For every f ∈ F , the vector f(u) belongs to the subspace W ⊕Ku spanned by W and
u.
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Proof. By renaming the elements of F if necessary, we may assume that (f1, . . . , fr) is a
basis of the subspace of End(E) spanned by F . We prove by induction on r that there exists
some vector u ∈ E such that

1. u /∈ W .

2. (fi − αiid)(u) ∈ W for i = 1, . . . , r, for some scalars αi ∈ K.

Consider the base case r = 1. Since f1 is triangulable, its eigenvalues all belong to K
since they are the diagonal entries of the triangular matrix associated with f1 (this is the
easy direction of Theorem 13.4), so the minimal polynomial of f1 is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of f1 belong to K. We conclude by applying Proposition
18.10.

Next, assume that r ≥ 2 and that the induction hypothesis holds for f1, . . . , fr−1. Thus,
there is a vector ur−1 ∈ E such that

1. ur−1 /∈ W .

2. (fi − αiid)(ur−1) ∈ W for i = 1, . . . , r − 1, for some scalars αi ∈ K.

Let
Vr−1 = {w ∈ E | (fi − αiid)(w) ∈ W, i = 1, . . . , r − 1}.

Clearly, W ⊆ Vr−1 and ur−1 ∈ Vr−1. We claim that Vr−1 is invariant under F . This is
because, for any v ∈ Vr−1 and any f ∈ F , since f and fi commute, we have

(fi − αiid)(f(v)) = f(fi − αiid)(v)), 1 ≤ i ≤ r − 1.

Now, (fi−αiid)(v) ∈ W because v ∈ Vr−1, and W is invariant under F so f(fi−αiid)(v)) ∈
W , that is, (fi − αiid)(f(v)) ∈ W .

Consider the restriction gr of fr to Vr−1. The minimal polynomial of gr divides the
minimal polynomial of fr, and since fr is triangulable, just as we saw for f1, the minimal
polynomial of fr is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

where the eigenvalues λ1, . . . , λk of fr belong to K, so the minimal polynomial of gr is of the
same form. By Proposition 18.10, there is some vector ur ∈ Vr−1 such that

1. ur /∈ W .

2. (gr − αrid)(ur) ∈ W for some scalars αr ∈ K.
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Now, since ur ∈ Vr−1, we have (fi−αiid)(ur) ∈ W for i = 1, . . . , r−1, so (fi−αiid)(ur) ∈ W
for i = 1, . . . , r (since gr is the restriction of fr), which concludes the proof of the induction
step. Finally, since every f ∈ F is the linear combination of (f1, . . . , fr), condition (2) of the
inductive claim implies condition (2) of the proposition.

We can now prove the following result.

Proposition 18.14. Let F be a nonempty finite commuting family of triangulable linear
maps on a finite-dimensional vector space E. There exists a basis of E such that every
linear map in F is represented in that basis by an upper triangular matrix.

Proof. Let n = dim(E). We construct inductively a basis (u1, . . . , un) of E such that if Wi

is the subspace spanned by (u1 . . . , ui), then for every f ∈ F ,

f(ui) = af1iu1 + · · ·+ afiiui,

for some afij ∈ K; that is, f(ui) belongs to the subspace Wi.

We begin by applying Proposition 18.13 to the subspace W0 = (0) to get u1 so that for
all f ∈ F ,

f(u1) = αf1u1.

For the induction step, since Wi invariant under F , we apply Proposition 18.13 to the
subspace Wi, to get ui+1 ∈ E such that

1. ui+1 /∈ Wi.

2. For every f ∈ F , the vector f(ui+1) belong to the subspace spanned by Wi and ui+1.

Condition (1) implies that (u1, . . . , ui, ui+1) is linearly independent, and condition (2) means
that for every f ∈ F ,

f(ui+1) = af1i+1u1 + · · ·+ afi+1i+1ui+1,

for some afi+1j ∈ K, establishing the induction step. After n steps, each f ∈ F is represented
by an upper triangular matrix.

Observe that if F consists of a single linear map f and if the minimal polynomial of f is
of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

with all λi ∈ K, using Proposition 18.10 instead of Proposition 18.13, the proof of Proposition
18.14 yields another proof of Theorem 13.4.
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18.3 The Primary Decomposition Theorem

If f : E → E is a linear map and λ ∈ K is an eigenvalue of f , recall that the eigenspace Eλ
associated with λ is the kernel of the linear map λid− f . If all the eigenvalues λ1 . . . , λk of
f are in K, it may happen that

E = Eλ1 ⊕ · · · ⊕ Eλk ,

but in general there are not enough eigenvectors to span E. What if we generalize the notion
of eigenvector and look for (nonzero) vectors u such that

(λid− f)r(u) = 0, for some r ≥ 1?

Then, it turns out that if the minimal polynomial of f is of the form

m = (X − λ1)r1 · · · (X − λk)rk ,

then r = ri does the job for λi; that is, if we let

Wi = Ker (λiid− f)ri ,

then
E = W1 ⊕ · · · ⊕Wk.

This result is very nice but seems to require that the eigenvalues of f all belong to K.
Actually, it is a special case of a more general result involving the factorization of the
minimal polynomial m into its irreducible monic factors (See Theorem 18.6),

m = pr11 · · · prkk ,

where the pi are distinct irreducible monic polynomials over K.

Theorem 18.15. (Primary Decomposition Theorem) Let f : E → E be a linear map on the
finite-dimensional vector space E over the field K. Write the minimal polynomial m of f as

m = pr11 · · · prkk ,

where the pi are distinct irreducible monic polynomials over K, and the ri are positive inte-
gers. Let

Wi = Ker (prii (f)), i = 1, . . . , k.

Then

(a) E = W1 ⊕ · · · ⊕Wk.

(b) Each Wi is invariant under f .

(c) The minimal polynomial of the restriction f | Wi of f to Wi is prii .
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Proof. The trick is to construct projections πi using the polynomials p
rj
j so that the range

of πi is equal to Wi. Let

gi = m/prii =
∏
j 6=i

p
rj
j .

Note that
prii gi = m.

Since p1, . . . , pk are irreducible and distinct, they are relatively prime. Then, using Proposi-
tion 18.4, it is easy to show that g1, . . . , gk are relatively prime. Otherwise, some irreducible
polynomial p would divide all of g1, . . . , gk, so by Proposition 18.4 it would be equal to one
of the irreducible factors pi. But, that pi is missing from gi, a contradiction. Therefore, by
Proposition 18.5, there exist some polynomials h1, . . . , hk such that

g1h1 + · · ·+ gkhk = 1.

Let qi = gihi and let πi = qi(f) = gi(f)hi(f). We have

q1 + · · ·+ qk = 1,

and since m divides qiqj for i 6= j, we get

π1 + · · ·+ πk = id

πiπj = 0, i 6= j.

(We implicitly used the fact that if p, q are two polynomials, the linear maps p(f) ◦ q(f)
and q(f) ◦ p(f) are the same since p(f) and q(f) are polynomials in the powers of f , which
commute.) Composing the first equation with πi and using the second equation, we get

π2
i = πi.

Therefore, the πi are projections, and E is the direct sum of the images of the πi. Indeed,
every u ∈ E can be expressed as

u = π1(u) + · · ·+ πk(u).

Also, if
π1(u) + · · ·+ πk(u) = 0,

then by applying πi we get

0 = π2
i (u) = πi(u), i = 1, . . . k.

To finish proving (a), we need to show that

Wi = Ker (prii (f)) = πi(E).
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If v ∈ πi(E), then v = πi(u) for some u ∈ E, so

prii (f)(v) = prii (f)(πi(u))

= prii (f)gi(f)hi(f)(u)

= hi(f)prii (f)gi(f)(u)

= hi(f)m(f)(u) = 0,

because m is the minimal polynomial of f . Therefore, v ∈ Wi.

Conversely, assume that v ∈ Wi = Ker (prii (f)). If j 6= i, then gjhj is divisible by prii , so

gj(f)hj(f)(v) = πj(v) = 0, j 6= i.

Then, since π1 + · · · + πk = id, we have v = πiv, which shows that v is in the range of πi.
Therefore, Wi = Im(πi), and this finishes the proof of (a).

If prii (f)(u) = 0, then prii (f)(f(u)) = f(prii (f)(u)) = 0, so (b) holds.

If we write fi = f | Wi, then prii (fi) = 0, because prii (f) = 0 on Wi (its kernel). Therefore,
the minimal polynomial of fi divides prii . Conversely, let q be any polynomial such that
q(fi) = 0 (on Wi). Since m = prii gi, the fact that m(f)(u) = 0 for all u ∈ E shows that

prii (f)(gi(f)(u)) = 0, u ∈ E,

and thus Im(gi(f)) ⊆ Ker (prii (f)) = Wi. Consequently, since q(f) is zero on Wi,

q(f)gi(f) = 0 for all u ∈ E.

But then, qgi is divisible by the minimal polynomial m = prii gi of f , and since prii and gi are
relatively prime, by Euclid’s Proposition, prii must divide q. This finishes the proof that the
minimal polynomial of fi is prii , which is (c).

If all the eigenvalues of f belong to the field K, we obtain the following result.

Theorem 18.16. (Primary Decomposition Theorem, Version 2) Let f : E → E be a lin-
ear map on the finite-dimensional vector space E over the field K. If all the eigenvalues
λ1, . . . , λk of f belong to K, write

m = (X − λ1)r1 · · · (X − λk)rk

for the minimal polynomial of f ,

χf = (X − λ1)n1 · · · (X − λk)nk

for the characteristic polynomial of f , with 1 ≤ ri ≤ ni, and let

Wi = Ker (λiid− f)ri , i = 1, . . . , k.

Then
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(a) E = W1 ⊕ · · · ⊕Wk.

(b) Each Wi is invariant under f .

(c) dim(Wi) = ni.

(d) The minimal polynomial of the restriction f | Wi of f to Wi is (X − λi)ri.

Proof. Parts (a), (b) and (d) have already been proved in Theorem 18.16, so it remains to
prove (c). Since Wi is invariant under f , let fi be the restriction of f to Wi. The characteristic
polynomial χfi of fi divides χ(f), and since χ(f) has all its roots in K, so does χi(f). By
Theorem 13.4, there is a basis of Wi in which fi is represented by an upper triangular matrix,
and since (λiid− f)ri = 0, the diagonal entries of this matrix are equal to λi. Consequently,

χfi = (X − λi)dim(Wi),

and since χfi divides χ(f), we conclude hat

dim(Wi) ≤ ni, i = 1, . . . , k.

Because E is the direct sum of the Wi, we have dim(W1) + · · · + dim(Wk) = n, and since
n1 + · · ·+ nk = n, we must have

dim(Wi) = ni, i = 1, . . . , k,

proving (c).

Definition 18.7. If λ ∈ K is an eigenvalue of f , we define a generalized eigenvector of f as
a nonzero vector u ∈ E such that

(λid− f)r(u) = 0, for some r ≥ 1.

The index of λ is defined as the smallest r ≥ 1 such that

Ker (λid− f)r = Ker (λid− f)r+1.

It is clear that Ker (λid − f)i ⊆ Ker (λid − f)i+1 for all i ≥ 1. By Theorem 18.16(d), if
λ = λi, the index of λi is equal to ri.

Another important consequence of Theorem 18.16 is that f can be written as the sum of
a diagonalizable and a nilpotent linear map (which commute). If we write

D = λ1π1 + · · ·+ λkπk,

where πi is the projection from E onto the subspace Wi defined in the proof of Theorem
18.15, since

π1 + · · ·+ πk = id,
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we have

f = fπ1 + · · ·+ fπk,

and so we get

f −D = (f − λ1id)π1 + · · ·+ (f − λkid)πk.

Since the πi are polynomials in f , they commute with f , and if we write N = f −D, using
the properties of the πi, we get

N r = (f − λ1id)rπ1 + · · ·+ (f − λkid)rπk.

Therefore, if r = max{ri}, we have (f − λkid)r = 0 for i = 1, . . . , k, which implies that

N r = 0.

A linear map g : E → E is said to be nilpotent if there is some positive integer r such
that gr = 0.

Since N is a polynomial in f , it commutes with f , and thus with D. From

D = λ1π1 + · · ·+ λkπk,

and

π1 + · · ·+ πk = id,

we see that

D − λiid = λ1π1 + · · ·+ λkπk − λi(π1 + · · ·+ πk)

= (λ1 − λi)π1 + · · ·+ (λi−1 − λi)πi−1 + (λi+1 − λi)πi+1 + · · ·+ (λk − λi)πk.

Since the projections πj with j 6= i vanish on Wi, the above equation implies that D − λiid
vanishes on Wi and that (D − λjid)(Wi) ⊆ Wi, and thus that the minimal polynomial of D
is

(X − λ1) · · · (X − λk).
Since the λi are distinct, by Theorem 18.11, the linear map D is diagonalizable, so we have
shown that when all the eigenvalues of f belong to K, there exist a diagonalizable linear
map D and a nilpotent linear map N , such that

f = D +N

DN = ND,

and N and D are polynomials in f .

A decomposition of f as above is called a Jordan decomposition. In fact, we can prove
more: The maps D and N are uniquely determined by f .



496 CHAPTER 18. ANNIHILATING POLYNOMIALS; PRIMARY DECOMPOSITION

Theorem 18.17. (Jordan Decomposition) Let f : E → E be a linear map on the finite-
dimensional vector space E over the field K. If all the eigenvalues λ1, . . . , λk of f belong to
K, then there exist a diagonalizable linear map D and a nilpotent linear map N such that

f = D +N

DN = ND.

Furthermore, D and N are uniquely determined by the above equations and they are polyno-
mials in f .

Proof. We already proved the existence part. Suppose we also have f = D′ + N ′, with
D′N ′ = N ′D′, where D′ is diagonalizable, N ′ is nilpotent, and both are polynomials in f .
We need to prove that D = D′ and N = N ′.

Since D′ and N ′ commute with one another and f = D′ + N ′, we see that D′ and N ′

commute with f . Then, D′ and N ′ commute with any polynomial in f ; hence they commute
with D and N . From

D +N = D′ +N ′,

we get

D −D′ = N ′ −N,

and D,D′, N,N ′ commute with one another. Since D and D′ are both diagonalizable and
commute, by Proposition 18.12, they are simultaneousy diagonalizable, so D −D′ is diago-
nalizable. Since N and N ′ commute, by the binomial formula, for any r ≥ 1,

(N ′ −N)r =
r∑
j=0

(−1)j
(
r

j

)
(N ′)r−jN j.

Since both N and N ′ are nilpotent, we have N r1 = 0 and (N ′)r2 = 0, for some r1, r2 > 0, so
for r ≥ r1 + r2, the right-hand side of the above expression is zero, which shows that N ′−N
is nilpotent. (In fact, it is easy that r1 = r2 = n works). It follows that D −D′ = N ′ − N
is both diagonalizable and nilpotent. Clearly, the minimal polynomial of a nilpotent linear
map is of the form Xr for some r > 0 (and r ≤ dim(E)). But D −D′ is diagonalizable, so
its minimal polynomial has simple roots, which means that r = 1. Therefore, the minimal
polynomial of D −D′ is X, which says that D −D′ = 0, and then N = N ′.

If K is an algebraically closed field, then Theorem 18.17 holds. This is the case when
K = C. This theorem reduces the study of linear maps (from E to itself) to the study of
nilpotent operators. There is a special normal form for such operators which is discussed in
the next section.
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18.4 Nilpotent Linear Maps and Jordan Form

This section is devoted to a normal form for nilpotent maps. We follow Godement’s exposi-
tion [47]. Let f : E → E be a nilpotent linear map on a finite-dimensional vector space over
a field K, and assume that f is not the zero map. Then, there is a smallest positive integer
r ≥ 1 such f r 6= 0 and f r+1 = 0. Clearly, the polynomial Xr+1 annihilates f , and it is the
minimal polynomial of f since f r 6= 0. It follows that r + 1 ≤ n = dim(E). Let us define
the subspaces Ni by

Ni = Ker (f i), i ≥ 0.

Note that N0 = (0), N1 = Ker (f), and Nr+1 = E. Also, it is obvious that

Ni ⊆ Ni+1, i ≥ 0.

Proposition 18.18. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0 as above, the
inclusions in the following sequence are strict:

(0) = N0 ⊂ N1 ⊂ · · · ⊂ Nr ⊂ Nr+1 = E.

Proof. We proceed by contradiction. Assume that Ni = Ni+1 for some i with 0 ≤ i ≤ r.
Since f r+1 = 0, for every u ∈ E, we have

0 = f r+1(u) = f i+1(f r−i(u)),

which shows that f r−i(u) ∈ Ni+1. Since Ni = Ni+1, we get f r−i(u) ∈ Ni, and thus f r(u) = 0.
Since this holds for all u ∈ E, we see that f r = 0, a contradiction.

Proposition 18.19. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0, for any
integer i with 1 ≤ i ≤ r, for any subspace U of E, if U ∩Ni = (0), then f(U) ∩Ni−1 = (0),
and the restriction of f to U is an isomorphism onto f(U).

Proof. Pick v ∈ f(U) ∩ Ni−1. We have v = f(u) for some u ∈ U and f i−1(v) = 0, which
means that f i(u) = 0. Then, u ∈ U ∩ Ni, so u = 0 since U ∩ Ni = (0), and v = f(u) = 0.
Therefore, f(U) ∩ Ni−1 = (0). The restriction of f to U is obviously surjective on f(U).
Suppose that f(u) = 0 for some u ∈ U . Then u ∈ U ∩N1 ⊆ U ∩Ni = (0) (since i ≥ 1), so
u = 0, which proves that f is also injective on U .

Proposition 18.20. Given a nilpotent linear map f with f r 6= 0 and f r+1 = 0, there exists
a sequence of subspace U1, . . . , Ur+1 of E with the following properties:

(1) Ni = Ni−1 ⊕ Ui, for i = 1, . . . , r + 1.

(2) We have f(Ui) ⊆ Ui−1, and the restriction of f to Ui is an injection, for i = 2, . . . , r+1.
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Proof. We proceed inductively, by defining the sequence Ur+1, Ur, . . . , U1. We pick Ur+1 to
be any supplement of Nr in Nr+1 = E, so that

E = Nr+1 = Nr ⊕ Ur+1.

Since f r+1 = 0 and Nr = Ker (f r), we have f(Ur+1) ⊆ Nr, and by Proposition 18.19, as
Ur+1∩Nr = (0), we have f(Ur+1)∩Nr−1 = (0). As a consequence, we can pick a supplement
Ur of Nr−1 in Nr so that f(Ur+1) ⊆ Ur. We have

Nr = Nr−1 ⊕ Ur and f(Ur+1) ⊆ Ur.

By Proposition 18.19, f is an injection from Ur+1 to Ur. Assume inductively that Ur+1, . . . , Ui
have been defined for i ≥ 2 and that they satisfy (1) and (2). Since

Ni = Ni−1 ⊕ Ui,

we have Ui ⊆ Ni, so f i−1(f(Ui)) = f i(Ui) = (0), which implies that f(Ui) ⊆ Ni−1. Also,
since Ui∩Ni−1 = (0), by Proposition 18.19, we have f(Ui)∩Ni−2 = (0). It follows that there
is a supplement Ui−1 of Ni−2 in Ni−1 that contains f(Ui). We have

Ni−1 = Ni−2 ⊕ Ui−1 and f(Ui) ⊆ Ui−1.

The fact that f is an injection from Ui into Ui−1 follows from Proposition 18.19. Therefore,
the induction step is proved. The construction stops when i = 1.

Because N0 = (0) and Nr+1 = E, we see that E is the direct sum of the Ui:

E = U1 ⊕ · · · ⊕ Ur+1,

with f(Ui) ⊆ Ui−1, and f an injection from Ui to Ui−1, for i = r + 1, . . . , 2. By a clever
choice of bases in the Ui, we obtain the following nice theorem.

Theorem 18.21. For any nilpotent linear map f : E → E on a finite-dimensional vector
space E of dimension n over a field K, there is a basis of E such that the matrix N of f is
of the form

N =


0 ν1 0 · · · 0 0
0 0 ν2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 νn
0 0 0 · · · 0 0

 ,

where νi = 1 or νi = 0.
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Proof. First, apply Proposition 18.20 to obtain a direct sum E =
⊕r+1

i=1 Ui. Then, we define
a basis of E inductively as follows. First, we choose a basis

er+1
1 , . . . , er+1

nr+1

of Ur+1. Next, for i = r + 1, . . . , 2, given the basis

ei1, . . . , e
i
ni

of Ui, since f is injective on Ui and f(Ui) ⊆ Ui−1, the vectors f(ei1), . . . , f(eini) are linearly
independent, so we define a basis of Ui−1 by completing f(ei1), . . . , f(eini) to a basis in Ui−1:

ei−1
1 , . . . , ei−1

ni
, ei−1
ni+1, . . . , e

i−1
ni−1

with
ei−1
j = f(eij), j = 1 . . . , ni.

Since U1 = N1 = Ker (f), we have

f(e1
j) = 0, j = 1, . . . , n1.

These basis vectors can be arranged as the rows of the following matrix:

er+1
1 · · · er+1

nr+1

...
...

er1 · · · ernr+1
ernr+1+1 · · · ernr

...
...

...
...

er−1
1 · · · er−1

nr+1
er−1
nr+1+1 · · · er−1

nr er−1
nr+1 · · · er−1

nr−1

...
...

...
...

...
...

...
...

...
...

...
...

e1
1 · · · e1

nr+1
e1
nr+1+1 · · · e1

nr e1
nr+1 · · · e1

nr−1
· · · · · · e1

n1


Finally, we define the basis (e1, . . . , en) by listing each column of the above matrix from

the bottom-up, starting with column one, then column two, etc. This means that we list
the vectors eij in the following order:

For j = 1, . . . , nr+1, list e1
j , . . . , e

r+1
j ;

In general, for i = r, . . . , 1,

for j = ni+1 + 1, . . . , ni, list e1
j , . . . , e

i
j.

Then, because f(e1
j) = 0 and ei−1

j = f(eij) for i ≥ 2, either

f(ei) = 0 or f(ei) = ei−1,

which proves the theorem.
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As an application of Theorem 18.21, we obtain the Jordan form of a linear map.

Definition 18.8. A Jordan block is an r × r matrix Jr(λ), of the form

Jr(λ) =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · λ

 ,

where λ ∈ K, with J1(λ) = (λ) if r = 1. A Jordan matrix , J , is an n × n block diagonal
matrix of the form

J =

Jr1(λ1) · · · 0
...

. . .
...

0 · · · Jrm(λm)

 ,

where each Jrk(λk) is a Jordan block associated with some λk ∈ K, and with r1+· · ·+rm = n.

To simplify notation, we often write J(λ) for Jr(λ). Here is an example of a Jordan
matrix with four blocks:

J =



λ 1 0 0 0 0 0 0
0 λ 1 0 0 0 0 0
0 0 λ 0 0 0 0 0
0 0 0 λ 1 0 0 0
0 0 0 0 λ 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 µ 1
0 0 0 0 0 0 0 µ


.

Theorem 18.22. (Jordan form) Let E be a vector space of dimension n over a field K and
let f : E → E be a linear map. The following properties are equivalent:

(1) The eigenvalues of f all belong to K (i.e. the roots of the characteristic polynomial χf
all belong to K).

(2) There is a basis of E in which the matrix of f is a Jordan matrix.

Proof. Assume (1). First we apply Theorem 18.16, and we get a direct sum E =
⊕k

j=1Wk,
such that the restriction of gi = f − λjid to Wi is nilpotent. By Theorem 18.21, there is a
basis of Wi such that the matrix of the restriction of gi is of the form

Gi =


0 ν1 0 · · · 0 0
0 0 ν2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 νni
0 0 0 · · · 0 0

 ,
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where νi = 1 or νi = 0. Furthermore, over any basis, λiid is represented by the diagonal
matrix Di with λi on the diagonal. Then, it is clear that we can split Di + Gi into Jordan
blocks by forming a Jordan block for every uninterrupted chain of 1s. By Putting the bases
of the Wi together, we obtain a matrix in Jordan form for f .

Now, assume (2). If f can be represented by a Jordan matrix, it is obvious that the
diagonal entries are the eigenvalues of f , so they all belong to K.

Observe that Theorem 18.22 applies if K = C. It turns out that there are uniqueness
properties of the Jordan blocks, but we will use more powerful machinery to prove this.
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Chapter 19

Topology

19.1 Metric Spaces and Normed Vector Spaces

This chapter contains a review of basic topological concepts. First metric spaces are defined.
Next normed vector spaces are defined. Closed and open sets are defined, and their basic
properties are stated. The general concept of a topological space is defined. The closure
and the interior of a subset are defined. The subspace topology and the product topology
are defined. Continuous maps and homeomorphisms are defined. Limits of sequences are
defined. Continuous linear maps and multilinear maps are defined and studied briefly. The
chapter ends with the definition of a normed affine space.

Most spaces considered in this book have a topological structure given by a metric or a
norm, and we first review these notions. We begin with metric spaces. Recall that R+ =
{x ∈ R | x ≥ 0}.
Definition 19.1. A metric space is a set E together with a function d : E × E → R+,
called a metric, or distance, assigning a nonnegative real number d(x, y) to any two points
x, y ∈ E, and satisfying the following conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Geometrically, Condition (D3) expresses the fact that in a triangle with vertices x, y, z,
the length of any side is bounded by the sum of the lengths of the other two sides. From
(D3), we immediately get

|d(x, y)− d(y, z)| ≤ d(x, z).

Let us give some examples of metric spaces. Recall that the absolute value |x| of a real
number x ∈ R is defined such that |x| = x if x ≥ 0, |x| = −x if x < 0, and for a complex
number x = a+ ib, by |x| =

√
a2 + b2.

505
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Example 19.1.

1. Let E = R, and d(x, y) = |x − y|, the absolute value of x − y. This is the so-called
natural metric on R.

2. Let E = Rn (or E = Cn). We have the Euclidean metric

d2(x, y) =
(
|x1 − y1|2 + · · ·+ |xn − yn|2

) 1
2 ,

the distance between the points (x1, . . . , xn) and (y1, . . . , yn).

3. For every set E, we can define the discrete metric, defined such that d(x, y) = 1 iff
x 6= y, and d(x, x) = 0.

4. For any a, b ∈ R such that a < b, we define the following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b}, (closed interval)

(a, b) = {x ∈ R | a < x < b}, (open interval)

[a, b) = {x ∈ R | a ≤ x < b}, (interval closed on the left, open on the right)

(a, b] = {x ∈ R | a < x ≤ b}, (interval open on the left, closed on the right)

Let E = [a, b], and d(x, y) = |x− y|. Then ([a, b], d) is a metric space.

We will need to define the notion of proximity in order to define convergence of limits
and continuity of functions. For this, we introduce some standard “small neighborhoods.”

Definition 19.2. Given a metric space E with metric d, for every a ∈ E, for every ρ ∈ R,
with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}
is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}

is called the open ball of center a and radius ρ, and the set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}

is called the sphere of center a and radius ρ. It should be noted that ρ is finite (i.e., not
+∞). A subset X of a metric space E is bounded if there is a closed ball B(a, ρ) such that
X ⊆ B(a, ρ).

Clearly, B(a, ρ) = B0(a, ρ) ∪ S(a, ρ).
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Example 19.2.

1. In E = R with the distance |x− y|, an open ball of center a and radius ρ is the open
interval (a− ρ, a+ ρ).

2. In E = R2 with the Euclidean metric, an open ball of center a and radius ρ is the set
of points inside the disk of center a and radius ρ, excluding the boundary points on
the circle.

3. In E = R3 with the Euclidean metric, an open ball of center a and radius ρ is the set
of points inside the sphere of center a and radius ρ, excluding the boundary points on
the sphere.

One should be aware that intuition can be misleading in forming a geometric image of a
closed (or open) ball. For example, if d is the discrete metric, a closed ball of center a and
radius ρ < 1 consists only of its center a, and a closed ball of center a and radius ρ ≥ 1
consists of the entire space!

� If E = [a, b], and d(x, y) = |x − y|, as in Example 19.1, an open ball B0(a, ρ), with
ρ < b− a, is in fact the interval [a, a+ ρ), which is closed on the left.

We now consider a very important special case of metric spaces, normed vector spaces.
Normed vector spaces have already been defined in Chapter 7 (Definition 7.1) but for the
reader’s convenience we repeat the definition.

Definition 19.3. Let E be a vector space over a field K, where K is either the field R of
reals, or the field C of complex numbers. A norm on E is a function ‖ ‖ : E → R+, assigning
a nonnegative real number ‖u‖ to any vector u ∈ E, and satisfying the following conditions
for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (homogeneity (or scaling))

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a normed vector space.

We showed in Chapter 7 that
‖−x‖ = ‖x‖ ,

and from (N3), we get
|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Given a normed vector space E, if we define d such that

d(x, y) = ‖x− y‖,
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it is easily seen that d is a metric. Thus, every normed vector space is immediately a metric
space. Note that the metric associated with a norm is invariant under translation, that is,

d(x+ u, y + u) = d(x, y).

For this reason, we can restrict ourselves to open or closed balls of center 0.

Examples of normed vector spaces were given in Example 7.1. We repeat the most
important examples.

Example 19.3. Let E = Rn (or E = Cn). There are three standard norms. For every
(x1, . . . , xn) ∈ E, we have the norm ‖x‖1, defined such that,

‖x‖1 = |x1|+ · · ·+ |xn|,
we have the Euclidean norm ‖x‖2, defined such that,

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that,

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.
More generally, we define the `p-norm (for p ≥ 1) by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p.

We proved in Proposition 7.1 that the `p-norms are indeed norms. The closed unit balls
centered at (0, 0) for ‖‖1, ‖‖2, and ‖‖∞, along with the containment relationships, are shown
in Figures 19.1 and 19.2. Figures 19.3 and 19.4 illustrate the situation in R3.

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

a b

c

Figure 19.1: Figure (a) shows the diamond shaped closed ball associated with ‖ ‖1. Figure
(b) shows the closed unit disk associated with ‖ ‖2, while Figure (c) illustrates the closed
unit ball associated with ‖ ‖∞.
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K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

Figure 19.2: The relationship between the closed unit balls centered at (0, 0).

> > 

Figure 19.4: The relationship between the closed unit balls centered at (0, 0, 0).

In a normed vector space, we define a closed ball or an open ball of radius ρ as a closed
ball or an open ball of center 0. We may use the notation B(ρ) and B0(ρ).

We will now define the crucial notions of open sets and closed sets, and of a topological
space.

Definition 19.4. Let E be a metric space with metric d. A subset U ⊆ E is an open
set in E if either U = ∅, or for every a ∈ U , there is some open ball B0(a, ρ) such that,
B0(a, ρ) ⊆ U .1 A subset F ⊆ E is a closed set in E if its complement E − F is open in E.
See Figure 19.5.

The set E itself is open, since for every a ∈ E, every open ball of center a is contained in
E. In E = Rn, given n intervals [ai, bi], with ai < bi, it is easy to show that the open n-cube

{(x1, . . . , xn) ∈ E | ai < xi < bi, 1 ≤ i ≤ n}

is an open set. In fact, it is possible to find a metric for which such open n-cubes are open
balls! Similarly, we can define the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n},
1Recall that ρ > 0.
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a
b

c

Figure 19.3: Figure (a) shows the octahedral shaped closed ball associated with ‖ ‖1. Figure
(b) shows the closed spherical associated with ‖ ‖2, while Figure (c) illustrates the closed
unit ball associated with ‖ ‖∞.

which is a closed set.

The open sets satisfy some important properties that lead to the definition of a topological
space.

Proposition 19.1. Given a metric space E with metric d, the family O of all open sets
defined in Definition 19.4 satisfies the following properties:

(O1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is
closed under finite intersections.

(O2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃
i∈I Ui ∈ O, i.e., O is closed

under arbitrary unions.

(O3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

Furthermore, for any two distinct points a 6= b in E, there exist two open sets Ua and Ub
such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅.
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U

a

BO
(a,    )ρ

Figure 19.5: An open set U in E = R2 under the standard Euclidean metric. Any point in
the peach set U is surrounded by a small raspberry open set which lies within U .

Proof. It is straightforward. For the last point, letting ρ = d(a, b)/3 (in fact ρ = d(a, b)/2
works too), we can pick Ua = B0(a, ρ) and Ub = B0(b, ρ). By the triangle inequality, we
must have Ua ∩ Ub = ∅.

The above proposition leads to the very general concept of a topological space.

� One should be careful that, in general, the family of open sets is not closed under infinite
intersections. For example, in R under the metric |x − y|, letting Un = (−1/n, +1/n),

each Un is open, but
⋂
n Un = {0}, which is not open.

19.2 Topological Spaces

Motivated by Proposition 19.1, a topological space is defined in terms of a family of sets
satisfing the properties of open sets stated in that proposition.

Definition 19.5. Given a set E, a topology on E (or a topological structure on E), is defined
as a family O of subsets of E called open sets , and satisfying the following three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is
closed under finite intersections.

(2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃
i∈I Ui ∈ O, i.e., O is closed

under arbitrary unions.

(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

A set E together with a topology O on E is called a topological space. Given a topological
space (E,O), a subset F of E is a closed set if F = E − U for some open set U ∈ O, i.e., F
is the complement of some open set.
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� It is possible that an open set is also a closed set. For example, ∅ and E are both open
and closed. When a topological space contains a proper nonempty subset U which is

both open and closed, the space E is said to be disconnected .

A topological space (E,O) is said to satisfy the Hausdorff separation axiom (or T2-
separation axiom) if for any two distinct points a 6= b in E, there exist two open sets Ua and
Ub such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅. When the T2-separation axiom is satisfied,
we also say that (E,O) is a Hausdorff space.

As shown by Proposition 19.1, any metric space is a topological Hausdorff space, the
family of open sets being in fact the family of arbitrary unions of open balls. Similarly,
any normed vector space is a topological Hausdorff space, the family of open sets being the
family of arbitrary unions of open balls. The topology O consisting of all subsets of E is
called the discrete topology .

Remark: Most (if not all) spaces used in analysis are Hausdorff spaces. Intuitively, the
Hausdorff separation axiom says that there are enough “small” open sets. Without this
axiom, some counter-intuitive behaviors may arise. For example, a sequence may have more
than one limit point (or a compact set may not be closed). Nevertheless, non-Hausdorff
topological spaces arise naturally in algebraic geometry. But even there, some substitute for
separation is used.

One of the reasons why topological spaces are important is that the definition of a topol-
ogy only involves a certain family O of sets, and not how such family is generated from
a metric or a norm. For example, different metrics or different norms can define the same
family of open sets. Many topological properties only depend on the family O and not on
the specific metric or norm. But the fact that a topology is definable from a metric or a
norm is important, because it usually implies nice properties of a space. All our examples
will be spaces whose topology is defined by a metric or a norm.

By taking complements, we can state properties of the closed sets dual to those of Defi-
nition 19.5. Thus, ∅ and E are closed sets, and the closed sets are closed under finite unions
and arbitrary intersections.

It is also worth noting that the Hausdorff separation axiom implies that for every a ∈ E,
the set {a} is closed. Indeed, if x ∈ E−{a}, then x 6= a, and so there exist open sets Ua and
Ux such that a ∈ Ua, x ∈ Ux, and Ua∩Ux = ∅. See Figure 19.6. Thus, for every x ∈ E−{a},
there is an open set Ux containing x and contained in E−{a}, showing by (O3) that E−{a}
is open, and thus that the set {a} is closed.

Given a topological space (E,O), given any subset A of E, since E ∈ O and E is a closed
set, the family CA = {F | A ⊆ F, F a closed set} of closed sets containing A is nonempty,
and since any arbitrary intersection of closed sets is a closed set, the intersection

⋂ CA of
the sets in the family CA is the smallest closed set containing A. By a similar reasoning, the
union of all the open subsets contained in A is the largest open set contained in A.
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Figure 19.6: A schematic illustration of the Hausdorff separation property.

Definition 19.6. Given a topological space (E,O), given any subset A of E, the smallest
closed set containing A is denoted by A, and is called the closure, or adherence of A. See
Figure 19.7. A subset A of E is dense in E if A = E. The largest open set contained in A

is denoted by
◦
A, and is called the interior of A. See Figure 19.8. The set FrA = A ∩E − A

is called the boundary (or frontier) of A. We also denote the boundary of A by ∂A. See
Figure 19.9.

A

A
_

(1,1)

(1,1)

(1,-1)

(1,-1)

Figure 19.7: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The closure of A is obtained by the intersection of A with the
closed unit ball.
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A

(1,1)

(1,-1)
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(1,1)
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o

Figure 19.8: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The interior of A is obtained by the covering A with small open
balls.

A

(1,1)

(1,-1) A

(1,1)

(1,-1) д

Figure 19.9: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the

lines y = x and y = −x. The boundary of A is A−
◦
A.

Remark: The notation A for the closure of a subset A of E is somewhat unfortunate,
since A is often used to denote the set complement of A in E. Still, we prefer it to more
cumbersome notations such as clo(A), and we denote the complement of A in E by E − A
(or sometimes, Ac).

By definition, it is clear that a subset A of E is closed iff A = A. The set Q of rationals

is dense in R. It is easily shown that A =
◦
A ∪ ∂A and

◦
A ∩ ∂A = ∅. Another useful

characterization of A is given by the following proposition.
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Proposition 19.2. Given a topological space (E,O), given any subset A of E, the closure
A of A is the set of all points x ∈ E such that for every open set U containing x, then
U ∩ A 6= ∅. See Figure 19.10.

A

A

Figure 19.10: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The purple subset A is illustrated with three red points, each in its closure since the
open ball centered at each point has nontrivial intersection with A.

Proof. If A = ∅, since ∅ is closed, the proposition holds trivially. Thus, assume that A 6= ∅.
First, assume that x ∈ A. Let U be any open set such that x ∈ U . If U ∩ A = ∅, since U is
open, then E − U is a closed set containing A, and since A is the intersection of all closed
sets containing A, we must have x ∈ E − U , which is impossible. Conversely, assume that
x ∈ E is a point such that for every open set U containing x, then U ∩ A 6= ∅. Let F be
any closed subset containing A. If x /∈ F , since F is closed, then U = E − F is an open set
such that x ∈ U , and U ∩ A = ∅, a contradiction. Thus, we have x ∈ F for every closed set
containing A, that is, x ∈ A.

Often, it is necessary to consider a subset A of a topological space E, and to view the
subset A as a topological space. The following proposition shows how to define a topology
on a subset.

Proposition 19.3. Given a topological space (E,O), given any subset A of E, let

U = {U ∩ A | U ∈ O}
be the family of all subsets of A obtained as the intersection of any open set in O with A.
The following properties hold.
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(1) The space (A,U) is a topological space.

(2) If E is a metric space with metric d, then the restriction dA : A × A → R+ of the
metric d to A defines a metric space. Furthermore, the topology induced by the metric
dA agrees with the topology defined by U , as above.

Proof. Left as an exercise.

Proposition 19.3 suggests the following definition.

Definition 19.7. Given a topological space (E,O), given any subset A of E, the subspace
topology on A induced by O is the family U of open sets defined such that

U = {U ∩ A | U ∈ O}
is the family of all subsets of A obtained as the intersection of any open set in O with A.
We say that (A,U) has the subspace topology . If (E, d) is a metric space, the restriction
dA : A× A→ R+ of the metric d to A is called the subspace metric.

For example, if E = Rn and d is the Euclidean metric, we obtain the subspace topology
on the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.
See Figure 19.11,

� One should realize that every open set U ∈ O which is entirely contained in A is also in
the family U , but U may contain open sets that are not in O. For example, if E = R

with |x− y|, and A = [a, b], then sets of the form [a, c), with a < c < b belong to U , but they
are not open sets for R under |x−y|. However, there is agreement in the following situation.

Proposition 19.4. Given a topological space (E,O), given any subset A of E, if U is the
subspace topology, then the following properties hold.

(1) If A is an open set A ∈ O, then every open set U ∈ U is an open set U ∈ O.

(2) If A is a closed set in E, then every closed set w.r.t. the subspace topology is a closed
set w.r.t. O.

Proof. Left as an exercise.

The concept of product topology is also useful. We have the following proposition.

Proposition 19.5. Given n topological spaces (Ei,Oi), let B be the family of subsets of
E1 × · · · × En defined as follows:

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},
and let P be the family consisting of arbitrary unions of sets in B, including ∅. Then, P is
a topology on E1 × · · · × En.
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A = (1,1,1)

B = (1,1,0)

C = (1,0,1)

D = (0,1,1)

Figure 19.11: An example of an open set in the subspace topology for {(x, y, z) ∈ R3 | −1 ≤
x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1}. The open set is the corner region ABCD and is obtained
by intersection the cube B0((1, 1, 1), 1).

Proof. Left as an exercise.

Definition 19.8. Given n topological spaces (Ei,Oi), the product topology on E1×· · ·×En
is the family P of subsets of E1 × · · · × En defined as follows: if

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

then P is the family consisting of arbitrary unions of sets in B, including ∅. See Figure 19.12.

If each (Ei, dEi) is a metric space, there are three natural metrics that can be defined on
E1 × · · · × En:

d1((x1, . . . , xn), (y1, . . . , yn)) = dE1(x1, y1) + · · ·+ dEn(xn, yn),

d2((x1, . . . , xn), (y1, . . . , yn)) =
(
(dE1(x1, y1))2 + · · ·+ (dEn(xn, yn))2

) 1
2 ,

d∞((x1, . . . , xn), (y1, . . . , yn)) = max{dE1(x1, y1), . . . , dEn(xn, yn)}.
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U1

U1

U1

U1

U

U2

U2

U2

U2

3

U3

x

x x

Figure 19.12: Examples of open sets in the product topology for R2 and R3 induced by the
Euclidean metric.

It is easy to show that

d∞((x1, . . . , xn), (y1, . . . , yn)) ≤ d2((x1, . . . , xn), (y1, . . . , yn)) ≤ d1((x1, . . . , xn), (y1, . . . , yn))

≤ nd∞((x1, . . . , xn), (y1, . . . , yn)),

so these distances define the same topology, which is the product topology.

If each (Ei, ‖ ‖Ei) is a normed vector space, there are three natural norms that can be
defined on E1 × · · · × En:

‖(x1, . . . , xn)‖1 = ‖x1‖E1 + · · ·+ ‖xn‖En ,

‖(x1, . . . , xn)‖2 =
(
‖x1‖2

E1
+ · · ·+ ‖xn‖2

En

) 1
2
,

‖(x1, . . . , xn)‖∞ = max {‖x1‖E1 , . . . , ‖xn‖En} .

It is easy to show that

‖(x1, . . . , xn)‖∞ ≤ ‖(x1, . . . , xn)‖2 ≤ ‖(x1, . . . , xn)‖1 ≤ n‖(x1, . . . , xn)‖∞,

so these norms define the same topology, which is the product topology. It can also be
verified that when Ei = R, with the standard topology induced by |x − y|, the topology
product on Rn is the standard topology induced by the Euclidean norm.

Definition 19.9. Two metrics d1 and d2 on a space E are equivalent if they induce the same
topology O on E (i.e., they define the same family O of open sets). Similarly, two norms
‖ ‖1 and ‖ ‖2 on a space E are equivalent if they induce the same topology O on E.

Remark: Given a topological space (E,O), it is often useful, as in Proposition 19.5, to
define the topology O in terms of a subfamily B of subsets of E. We say that a family B of
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subsets of E is a basis for the topology O, if B is a subset of O, and if every open set U in
O can be obtained as some union (possibly infinite) of sets in B (agreeing that the empty
union is the empty set).

For example, given any metric space (E, d), B = {B0(a, ρ) | a ∈ E, ρ > 0}. In particular,
if d = ‖ ‖2, the open intervals form a basis for R, while the open disks form a basis for R2.
The open rectangles also form a basis for R2 with the standard topology. See Figure 19.13.

It is immediately verified that if a family B = (Ui)i∈I is a basis for the topology of (E,O),
then E =

⋃
i∈I Ui, and the intersection of any two sets Ui, Uj ∈ B is the union of some sets in

the family B (again, agreeing that the empty union is the empty set). Conversely, a family
B with these properties is the basis of the topology obtained by forming arbitrary unions of
sets in B.

A subbasis for O is a family S of subsets of E, such that the family B of all finite
intersections of sets in S (including E itself, in case of the empty intersection) is a basis of
O. See Figure 19.13

a b

(i.)

(ii.)

Figure 19.13: Figure (i.) shows that the set of infinite open intervals forms a subbasis for R.
Figure (ii.) shows that the infinite open strips form a subbasis for R2.

The following proposition gives useful criteria for determining whether a family of open
subsets is a basis of a topological space.

Proposition 19.6. Given a topological space (E,O) and a family B of open subsets in O
the following properties hold:

(1) The family B is a basis for the topology O iff for every open set U ∈ O and every
x ∈ U , there is some B ∈ B such that x ∈ B and B ⊆ U . See Figure 19.14.

(2) The family B is a basis for the topology O iff

(a) For every x ∈ E, there is some B ∈ B such that x ∈ B.
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(b) For any two open subsets, B1, B2 ∈ B, for every x ∈ E, if x ∈ B1∩B2, then there
is some B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2. See Figure 19.15.

x

U

B

B1

Figure 19.14: Given an open subset U of R2 and x ∈ U , there exists an open ball B containing
x with B ⊂ U . There also exists an open rectangle B1 containing x with B1 ⊂ U .

x

B1

B2

B3

Figure 19.15: A schematic illustration of Condition (b) in Proposition 19.6.

We now consider the fundamental property of continuity.

19.3 Continuous Functions, Limits

Definition 19.10. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, we say that f is continuous at a, if for every open set V ∈ OF
containing f(a), there is some open set U ∈ OE containing a, such that, f(U) ⊆ V . See
Figure 19.16. We say that f is continuous if it is continuous at every a ∈ E.

Define a neighborhood of a ∈ E as any subset N of E containing some open set O ∈ O
such that a ∈ O. Now, if f is continuous at a and N is any neighborhood of f(a), there is
some open set V ⊆ N containing f(a), and since f is continuous at a, there is some open
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E

F

a

f

f(a)
V

U f(U)

Figure 19.16: A schematic illustration of Definition 19.10.

set U containing a, such that f(U) ⊆ V . Since V ⊆ N , the open set U is a subset of f−1(N)
containing a, and f−1(N) is a neighborhood of a. Conversely, if f−1(N) is a neighborhood
of a whenever N is any neighborhood of f(a), it is immediate that f is continuous at a. See
Figure 19.17.

f(a)

NV
a

-1
f  (N)

U
f(U)

f

E F

Figure 19.17: A schematic illustration of the neighborhood condition.

It is easy to see that Definition 19.10 is equivalent to the following statements.

Proposition 19.7. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, the function f is continuous at a ∈ E iff for every neighborhood
N of f(a) ∈ F , then f−1(N) is a neighborhood of a. The function f is continuous on E iff
f−1(V ) is an open set in OE for every open set V ∈ OF .

If E and F are metric spaces defined by metrics d1 and d2, we can show easily that f is
continuous at a iff

for every ε > 0, there is some η > 0, such that, for every x ∈ E,

if d1(a, x) ≤ η, then d2(f(a), f(x)) ≤ ε.

Similarly, if E and F are normed vector spaces defined by norms ‖ ‖1 and ‖ ‖2, we can
show easily that f is continuous at a iff
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for every ε > 0, there is some η > 0, such that, for every x ∈ E,

if ‖x− a‖1 ≤ η, then ‖f(x)− f(a)‖2 ≤ ε.

It is worth noting that continuity is a topological notion, in the sense that equivalent
metrics (or equivalent norms) define exactly the same notion of continuity.

If (E,OE) and (F,OF ) are topological spaces, and f : E → F is a function, for every
nonempty subset A ⊆ E of E, we say that f is continuous on A if the restriction of f to A
is continuous with respect to (A,U) and (F,OF ), where U is the subspace topology induced
by OE on A.

Given a product E1×· · ·×En of topological spaces, as usual, we let πi : E1×· · ·×En → Ei
be the projection function such that, πi(x1, . . . , xn) = xi. It is immediately verified that each
πi is continuous.

Given a topological space (E,O), we say that a point a ∈ E is isolated if {a} is an open
set in O. Then if (E,OE) and (F,OF ) are topological spaces, any function f : E → F is
continuous at every isolated point a ∈ E. In the discrete topology, every point is isolated.

In a nontrivial normed vector space (E, ‖ ‖) (with E 6= {0}), no point is isolated. To
show this, we show that every open ball B0(u, ρ,) contains some vectors different from u.
Indeed, since E is nontrivial, there is some v ∈ E such that v 6= 0, and thus λ = ‖v‖ > 0
(by (N1)). Let

w = u+
ρ

λ+ 1
v.

Since v 6= 0 and ρ > 0, we have w 6= u. Then,

‖w − u‖ =

∥∥∥∥ ρ

λ+ 1
v

∥∥∥∥ =
ρλ

λ+ 1
< ρ,

which shows that ‖w − u‖ < ρ, for w 6= u.

The following proposition is easily shown.

Proposition 19.8. Given topological spaces (E,OE), (F,OF ), and (G,OG), and two func-
tions f : E → F and g : F → G, if f is continuous at a ∈ E and g is continuous at f(a) ∈ F ,
then g ◦ f : E → G is continuous at a ∈ E. Given n topological spaces (Fi,Oi), for every
function f : E → F1 × · · · × Fn, then f is continuous at a ∈ E iff every fi : E → Fi is
continuous at a, where fi = πi ◦ f .

One can also show that in a metric space (E, d), the distance d : E×E → R is continuous,
where E × E has the product topology. By the triangle inequality, we have

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) = d(x0, y0) + d(x0, x) + d(y0, y)

and
d(x0, y0) ≤ d(x0, x) + d(x, y) + d(y, y0) = d(x, y) + d(x0, x) + d(y0, y).
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Consequently,
|d(x, y)− d(x0, y0)| ≤ d(x0, x) + d(y0, y),

which proves that d is continuous at (x0, y0). In fact this shows that d is uniformly continuous;
see Definition 19.14.

Similarly, for a normed vector space (E, ‖ ‖), the norm ‖ ‖ : E → R is (uniformly)
continuous.

Given a function f : E1 × · · · × En → F , we can fix n − 1 of the arguments, say
a1, . . . , ai−1, ai+1, . . . , an, and view f as a function of the remaining argument,

xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an),

where xi ∈ Ei. If f is continuous, it is clear that each fi is continuous.

� One should be careful that the converse is false! For example, consider the function
f : R× R→ R, defined such that,

f(x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f(0, 0) = 0.

The function f is continuous on R× R− {(0, 0)}, but on the line y = mx, with m 6= 0, we
have f(x, y) = m

1+m2 6= 0, and thus, on this line, f(x, y) does not approach 0 when (x, y)
approaches (0, 0). See Figure 19.18.
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with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d,
inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d,
listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto,
plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot
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Figure 19.18: The graph of f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0). The bottom of this graph,
which shows the approach along the line y = −x, does not have a z value of 0.

The following proposition is useful for showing that real-valued functions are continuous.

Proposition 19.9. If E is a topological space, and (R, |x− y|) the reals under the standard
topology, for any two functions f : E → R and g : E → R, for any a ∈ E, for any λ ∈ R, if
f and g are continuous at a, then f+g, λf , f ·g, are continuous at a, and f/g is continuous
at a if g(a) 6= 0.
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Proof. Left as an exercise.

Using Proposition 19.9, we can show easily that every real polynomial function is con-
tinuous.

The notion of isomorphism of topological spaces is defined as follows.

Definition 19.11. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. We say that f is a homeomorphism between E and F if f is bijective, and both
f : E → F and f−1 : F → E are continuous.

� One should be careful that a bijective continuous function f : E → F is not necessarily
a homeomorphism. For example, if E = R with the discrete topology, and F = R with

the standard topology, the identity is not a homeomorphism. Another interesting example
involving a parametric curve is given below. Let L : R → R2 be the function, defined such
that,

L1(t) =
t(1 + t2)

1 + t4
,

L2(t) =
t(1− t2)

1 + t4
.

If we think of (x(t), y(t)) = (L1(t), L2(t)) as a geometric point in R2, the set of points
(x(t), y(t)) obtained by letting t vary in R from −∞ to +∞, defines a curve having the shape
of a “figure eight”, with self-intersection at the origin, called the “lemniscate of Bernoulli”.
See Figure 19.19. The map L is continuous, and in fact bijective, but its inverse L−1 is not
continuous. Indeed, when we approach the origin on the branch of the curve in the upper left
quadrant (i.e., points such that, x ≤ 0, y ≥ 0), then t goes to −∞, and when we approach
the origin on the branch of the curve in the lower right quadrant (i.e., points such that,
x ≥ 0, y ≤ 0), then t goes to +∞.

Figure 19.19: The lemniscate of Bernoulli

We also review the concept of limit of a sequence. Given any set E, a sequence is any
function x : N→ E, usually denoted by (xn)n∈N, or (xn)n≥0, or even by (xn).
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Figure 19.20: A schematic illustration of Definition 19.12.

Definition 19.12. Given a topological space (E,O), we say that a sequence (xn)n∈N con-
verges to some a ∈ E if for every open set U containing a, there is some n0 ≥ 0, such that,
xn ∈ U , for all n ≥ n0. We also say that a is a limit of (xn)n∈N. See Figure 19.20.

When E is a metric space with metric d, it is easy to show that this is equivalent to the
fact that,

for every ε > 0, there is some n0 ≥ 0, such that, d(xn, a) ≤ ε, for all n ≥ n0.

When E is a normed vector space with norm ‖‖, it is easy to show that this is equivalent
to the fact that,

for every ε > 0, there is some n0 ≥ 0, such that, ‖xn − a‖ ≤ ε, for all n ≥ n0.

The following proposition shows the importance of the Hausdorff separation axiom.

Proposition 19.10. Given a topological space (E,O), if the Hausdorff separation axiom
holds, then every sequence has at most one limit.

Proof. Left as an exercise.

It is worth noting that the notion of limit is topological, in the sense that a sequence
converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly
for equivalent norms).

If E is a metric space and if A is a subset of E, there is a convenient way of showing that
a point x ∈ E belongs to the closure A of A in terms of sequences.

Proposition 19.11. Given any metric space (E, d), for any subset A of E and any point
x ∈ E, we have x ∈ A iff there is a sequence (an) of points an ∈ A converging to x.
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Proof. If the sequence (an) of points an ∈ A converges to x, then for every open subset U
of E containing x, there is some n0 such that an ∈ U for all n ≥ n0, so U ∩ A 6= ∅, and
Proposition 19.2 implies that x ∈ A.

Conversely, assume that x ∈ A. Then for every n ≥ 1, consider the open ball B0(x, 1/n).
By Proposition 19.2, we have B0(x, 1/n) ∩A 6= ∅, so we can pick some an ∈ B0(x, 1/n) ∩A.
This, way, we define a sequence (an) of points in A, and by construction d(x, an) < 1/n for
all n ≥ 1, so the sequence (an) converges to x.

We still need one more concept of limit for functions.

Definition 19.13. Let (E,OE) and (F,OF ) be topological spaces, let A be some nonempty
subset of E, and let f : A→ F be a function. For any a ∈ A and any b ∈ F , we say that f(x)
approaches b as x approaches a with values in A if for every open set V ∈ OF containing b,
there is some open set U ∈ OE containing a, such that, f(U ∩ A) ⊆ V . See Figure 19.21.
This is denoted by

lim
x→a,x∈A

f(x) = b.

b
a

b

A
U V

f(U     A)h

E
F

f

Figure 19.21: A schematic illustration of Definition 19.13.

First, note that by Proposition 19.2, since a ∈ A, for every open set U containing a, we
have U ∩ A 6= ∅, and the definition is nontrivial. Also, even if a ∈ A, the value f(a) of f at
a plays no role in this definition. When E and F are metric space with metrics d1 and d2,
it can be shown easily that the definition can be stated as follows:

For every ε > 0, there is some η > 0, such that, for every x ∈ A,

if d1(x, a) ≤ η, then d2(f(x), b) ≤ ε.

When E and F are normed vector spaces with norms ‖‖1 and ‖‖2, it can be shown easily
that the definition can be stated as follows:
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For every ε > 0, there is some η > 0, such that, for every x ∈ A,

if ‖x− a‖1 ≤ η, then ‖f(x)− b‖2 ≤ ε.

We have the following result relating continuity at a point and the previous notion.

Proposition 19.12. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F
be a function. For any a ∈ E, the function f is continuous at a iff f(x) approaches f(a)
when x approaches a (with values in E).

Proof. Left as a trivial exercise.

Another important proposition relating the notion of convergence of a sequence to con-
tinuity, is stated without proof.

Proposition 19.13. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F
be a function.

(1) If f is continuous, then for every sequence (xn)n∈N in E, if (xn) converges to a, then
(f(xn)) converges to f(a).

(2) If E is a metric space, and (f(xn)) converges to f(a) whenever (xn) converges to a,
for every sequence (xn)n∈N in E, then f is continuous.

A special case of Definition 19.13 will be used when E and F are (nontrivial) normed
vector spaces with norms ‖ ‖1 and ‖ ‖2. Let U be any nonempty open subset of E. We
showed earlier that E has no isoled points and that every set {v} is closed, for every v ∈ E.
Since E is nontrivial, for every v ∈ U , there is a nontrivial open ball contained in U (an open
ball not reduced to its center). Then, for every v ∈ U , A = U − {v} is open and nonempty,
and clearly, v ∈ A. For any v ∈ U , if f(x) approaches b when x approaches v with values
in A = U − {v}, we say that f(x) approaches b when x approaches v with values 6= v in U .
This is denoted by

lim
x→v,x∈U,x6=v

f(x) = b.

Remark: Variations of the above case show up in the following case: E = R, and F is some
arbitrary topological space. Let A be some nonempty subset of R, and let f : A → F be
some function. For any a ∈ A, we say that f is continuous on the right at a if

lim
x→a,x∈A∩[a,+∞[

f(x) = f(a).

We can define continuity on the left at a in a similar fashion.

Let us consider another variation. LetA be some nonempty subset of R, and let f : A→ F
be some function. For any a ∈ A, we say that f has a discontinuity of the first kind at a if

lim
x→a,x∈A∩ ]−∞,a[

f(x) = f(a−)
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and

lim
x→a,x∈A∩ ]a,+∞[

f(x) = f(a+)

both exist, and either f(a−) 6= f(a), or f(a+) 6= f(a).

Note that it is possible that f(a−) = f(a+), but f is still discontinuous at a if this
common value differs from f(a). Functions defined on a nonempty subset of R, and that are
continuous, except for some points of discontinuity of the first kind, play an important role
in analysis.

In a metric space, there is another important notion of continuity, namely uniform con-
tinuity.

Definition 19.14. Given two metric spaces, (E, dE) and (F, dF ), a function, f : E → F , is
uniformly continuous if for every ε > 0, there is some η > 0, such that, for all a, b ∈ E,

if dE(a, b) ≤ η then dF (f(a), f(b)) ≤ ε.

See Figures 19.22 and 19.23.
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Figure 19.22: The real valued function f(x) =
√
x is uniformly continuous over (0,∞). Fix

ε. If the x values lie within the rose colored η strip, the y values always lie within the peach
ε strip.

As we saw earlier, the metric on a metric space is uniformly continuous, and the norm
on a normed metric space is uniformly continuous.

Before considering differentials, we need to look at the continuity of linear maps.
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Figure 19.23: The real valued function f(x) = 1/x is not uniformly continuous over (0,∞).
Fix ε. In order for the y values to lie within the peach epsilon strip, the widths of the eta
strips decrease as x→ 0.

19.4 Continuous Linear and Multilinear Maps

If E and F are normed vector spaces, we first characterize when a linear map f : E → F is
continuous.

Proposition 19.14. Given two normed vector spaces E and F , for any linear map f : E →
F , the following conditions are equivalent:

(1) The function f is continuous at 0.

(2) There is a constant k ≥ 0 such that,

‖f(u)‖ ≤ k, for every u ∈ E such that ‖u‖ ≤ 1.

(3) There is a constant k ≥ 0 such that,

‖f(u)‖ ≤ k‖u‖, for every u ∈ E.

(4) The function f is continuous at every point of E.

Proof. Assume (1). Then for every ε > 0, there is some η > 0 such that, for every u ∈ E, if
‖u‖ ≤ η, then ‖f(u)‖ ≤ ε. Pick ε = 1, so that there is some η > 0 such that, if ‖u‖ ≤ η, then
‖f(u)‖ ≤ 1. If ‖u‖ ≤ 1, then ‖ηu‖ ≤ η‖u‖ ≤ η, and so, ‖f(ηu)‖ ≤ 1, that is, η‖f(u)‖ ≤ 1,
which implies ‖f(u)‖ ≤ η−1. Thus, Condition (2) holds with k = η−1.

Assume that (2) holds. If u = 0, then by linearity, f(0) = 0, and thus ‖f(0)‖ ≤ k‖0‖
holds trivially for all k ≥ 0. If u 6= 0, then ‖u‖ > 0, and since∥∥∥∥ u

‖u‖

∥∥∥∥ = 1,
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we have ∥∥∥∥f ( u

‖u‖

)∥∥∥∥ ≤ k,

which implies that
‖f(u)‖ ≤ k‖u‖.

Thus, Condition (3) holds.

If (3) holds, then for all u, v ∈ E, we have

‖f(v)− f(u)‖ = ‖f(v − u)‖ ≤ k‖v − u‖.

If k = 0, then f is the zero function, and continuity is obvious. Otherwise, if k > 0, for every
ε > 0, if ‖v − u‖ ≤ ε

k
, then ‖f(v − u)‖ ≤ ε, which shows continuity at every u ∈ E. Finally,

it is obvious that (4) implies (1).

Among other things, Proposition 19.14 shows that a linear map is continuous iff the image
of the unit (closed) ball is bounded. Since a continuous linear map satisfies the condition
‖f(u)‖ ≤ k‖u‖ (for some k ≥ 0), it is also uniformly continuous.

If E and F are normed vector spaces, the set of all continuous linear maps f : E → F is
denoted by L(E;F ).

Using Proposition 19.14, we can define a norm on L(E;F ) which makes it into a normed
vector space. This definition has already been given in Chapter 7 (Definition 7.7) but for
the reader’s convenience, we repeat it here.

Definition 19.15. Given two normed vector spaces E and F , for every continuous linear
map f : E → F , we define the norm ‖f‖ of f as

‖f‖ = inf {k ≥ 0 | ‖f(x)‖ ≤ k‖x‖, for all x ∈ E} = sup {‖f(x)‖ | ‖x‖ ≤ 1} .

From Definition 19.15, for every continuous linear map f ∈ L(E;F ), we have

‖f(x)‖ ≤ ‖f‖‖x‖,

for every x ∈ E. It is easy to verify that L(E;F ) is a normed vector space under the norm
of Definition 19.15. Furthermore, if E,F,G, are normed vector spaces, and f : E → F and
g : F → G are continuous linear maps, we have

‖g ◦ f‖ ≤ ‖g‖‖f‖.

We can now show that when E = Rn or E = Cn, with any of the norms ‖ ‖1, ‖ ‖2, or
‖ ‖∞, then every linear map f : E → F is continuous.

Proposition 19.15. If E = Rn or E = Cn, with any of the norms ‖ ‖1, ‖ ‖2, or ‖ ‖∞, and
F is any normed vector space, then every linear map f : E → F is continuous.
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Proof. Let (e1, . . . , en) be the standard basis of Rn (a similar proof applies to Cn). In view
of Proposition 7.3, it is enough to prove the proposition for the norm

‖x‖∞ = max{|xi| | 1 ≤ i ≤ n}.

We have,

‖f(v)− f(u)‖ = ‖f(v − u)‖ =

∥∥∥∥∥f(
∑

1≤i≤n
(vi − ui)ei)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
1≤i≤n

(vi − ui)f(ei)

∥∥∥∥∥ ,
and so,

‖f(v)− f(u)‖ ≤
( ∑

1≤i≤n
‖f(ei)‖

)
max
1≤i≤n

|vi − ui| =
( ∑

1≤i≤n
‖f(ei)‖

)
‖v − u‖∞.

By the argument used in Proposition 19.14 to prove that (3) implies (4), f is continuous.

Actually, we proved in Theorem 7.4 that if E is a vector space of finite dimension, then
any two norms are equivalent, so that they define the same topology. This fact together with
Proposition 19.15 prove the following:

Theorem 19.16. If E is a vector space of finite dimension (over R or C), then all norms
are equivalent (define the same topology). Furthermore, for any normed vector space F ,
every linear map f : E → F is continuous.

�� If E is a normed vector space of infinite dimension, a linear map f : E → F may not be
continuous. As an example, let E be the infinite vector space of all polynomials over R.

Let

‖P (X)‖ = sup
0≤x≤1

|P (x)|.

We leave as an exercise to show that this is indeed a norm. Let F = R, and let f : E → F
be the map defined such that, f(P (X)) = P (3). It is clear that f is linear. Consider the
sequence of polynomials

Pn(X) =

(
X

2

)n
.

It is clear that ‖Pn‖ =

(
1
2

)n
, and thus, the sequence Pn has the null polynomial as a limit.

However, we have

f(Pn(X)) = Pn(3) =

(
3

2

)n
,

and the sequence f(Pn(X)) diverges to +∞. Consequently, in view of Proposition 19.13 (1),
f is not continuous.
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We now consider the continuity of multilinear maps. We treat explicitly bilinear maps,
the general case being a straightforward extension.

Proposition 19.17. Given normed vector spaces E, F and G, for any bilinear map f : E×
E → G, the following conditions are equivalent:

(1) The function f is continuous at 〈0, 0〉.

2) There is a constant k ≥ 0 such that,

‖f(u, v)‖ ≤ k, for all u, v ∈ E such that ‖u‖, ‖v‖ ≤ 1.

3) There is a constant k ≥ 0 such that,

‖f(u, v)‖ ≤ k‖u‖‖v‖, for all u, v ∈ E.

4) The function f is continuous at every point of E × F .

Proof. It is similar to that of Proposition 19.14, with a small subtlety in proving that (3)
implies (4), namely that two different η’s that are not independent are needed.

In contrast to continuous linear maps, which must be uniformly continuous, nonzero
continuous bilinear maps are not uniformly continuous. Let f : E×F → G be a continuous
bilinear map such that f(a, b) 6= 0 for some a ∈ E and some b ∈ F . Consider the sequences
(un) and (vn) (with n ≥ 1) given by

un = (xn, yn) = (na, nb)

vn = (x′n, y
′
n) =

((
n+

1

n

)
a,

(
n+

1

n

)
b

)
.

Obviously

‖vn − un‖ ≤
1

n
(‖a‖+ ‖b‖),

so limn7→∞ ‖vn − un‖ = 0. On the other hand

f(x′n, y
′
n)− f(xn, yn) =

(
2 +

1

n2

)
f(a, b),

and thus limn7→∞ ‖f(x′n, y
′
n)− f(xn, yn)‖ = 2 ‖f(a, b)‖ 6= 0, which shows that f is not uni-

formly continuous, because if this was the case, this limit would be zero.

If E, F , and G, are normed vector spaces, we denote the set of all continuous bilinear
maps f : E × F → G by L2(E,F ;G). Using Proposition 19.17, we can define a norm on
L2(E,F ;G) which makes it into a normed vector space.
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Definition 19.16. Given normed vector spaces E, F , and G, for every continuous bilinear
map f : E × F → G, we define the norm ‖f‖ of f as

‖f‖ = inf {k ≥ 0 | ‖f(x, y)‖ ≤ k‖x‖‖y‖, for all x, y ∈ E}
= sup {‖f(x, y)‖ | ‖x‖, ‖y‖ ≤ 1} .

From Definition 19.15, for every continuous bilinear map f ∈ L2(E,F ;G), we have

‖f(x, y)‖ ≤ ‖f‖‖x‖‖y‖,

for all x, y ∈ E. It is easy to verify that L2(E,F ;G) is a normed vector space under the
norm of Definition 19.16.

Given a bilinear map f : E × F → G, for every u ∈ E, we obtain a linear map denoted
fu : F → G, defined such that, fu(v) = f(u, v). Furthermore, since

‖f(x, y)‖ ≤ ‖f‖‖x‖‖y‖,

it is clear that fu is continuous. We can then consider the map ϕ : E → L(F ;G), defined
such that, ϕ(u) = fu, for any u ∈ E, or equivalently, such that,

ϕ(u)(v) = f(u, v).

Actually, it is easy to show that ϕ is linear and continuous, and that ‖ϕ‖ = ‖f‖. Thus, f 7→ ϕ
defines a map from L2(E,F ;G) to L(E;L(F ;G)). We can also go back from L(E;L(F ;G))
to L2(E,F ;G). We summarize all this in the following proposition.

Proposition 19.18. Let E,F,G be three normed vector spaces. The map f 7→ ϕ, from
L2(E,F ;G) to L(E;L(F ;G)), defined such that, for every f ∈ L2(E,F ;G),

ϕ(u)(v) = f(u, v),

is an isomorphism of vector spaces, and furthermore, ‖ϕ‖ = ‖f‖.

As a corollary of Proposition 19.18, we get the following proposition which will be useful
when we define second-order derivatives.

Proposition 19.19. Let E,F be normed vector spaces. The map app from L(E;F )×E to
F , defined such that, for every f ∈ L(E;F ), for every u ∈ E,

app(f, u) = f(u),

is a continuous bilinear map.
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Remark: If E and F are nontrivial, it can be shown that ‖app‖ = 1. It can also be shown
that composition

◦ : L(E;F )× L(F ;G)→ L(E;G),

is bilinear and continuous.

The above propositions and definition generalize to arbitrary n-multilinear maps, with
n ≥ 2. Proposition 19.17 extends in the obvious way to any n-multilinear map f : E1×· · ·×
En → F , but condition (3) becomes:

There is a constant k ≥ 0 such that,

‖f(u1, . . . , un)‖ ≤ k‖u1‖ · · · ‖un‖, for all u1 ∈ E1, . . . , un ∈ En.

Definition 19.16 also extends easily to

‖f‖ = inf {k ≥ 0 | ‖f(x1, . . . , xn)‖ ≤ k‖x1‖ · · · ‖xn‖, for all xi ∈ Ei, 1 ≤ i ≤ n}
= sup {‖f(x1, . . . , xn)‖ | ‖xn‖, . . . , ‖xn‖ ≤ 1} .

Proposition 19.18 is also easily extended, and we get an isomorphism between continuous
n-multilinear maps in Ln(E1, . . . , En;F ), and continuous linear maps in

L(E1;L(E2; . . . ;L(En;F )))

An obvious extension of Proposition 19.19 also holds.

Complete metric spaces and complete normed vector spaces are important tools in anal-
ysis and optimization theory, so we include some sections covering the basics.

19.5 Complete Metric Spaces and Banach Spaces

Definition 19.17. Given a metric space, (E, d), a sequence, (xn)n∈N, in E is a Cauchy
sequence if the following condition holds: for every ε > 0, there is some p ≥ 0, such that, for

all m,n ≥ p, then d(xm, xn) ≤ ε.

If every Cauchy sequence in (E, d) converges we say that (E, d) is a complete metric
space. A normed vector space (E, ‖ ‖) over R (or C) which is a complete metric space for
the distance d(u, v) = ‖v − u‖, is called a Banach space.

The standard example of a complete metric space is the set R of real numbers. As a
matter of fact, the set R can be defined as the “completion” of the set Q of rationals. The
spaces Rn and Cn under their standard topology are complete metric spaces.

It can be shown that every normed vector space of finite dimension is a Banach space
(is complete). It can also be shown that if E and F are normed vector spaces, and F is a
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Banach space, then L(E;F ) is a Banach space. If E,F and G are normed vector spaces,
and G is a Banach space, then L2(E,F ;G) is a Banach space.

An arbitrary metric space (E, d) is not necessarily complete, but there is a construction of

a metric space (Ê, d̂) such that Ê is complete, and there is a continuous (injective) distance-

preserving map ϕ : E → Ê such that ϕ(E) is dense in Ê. This is a generalization of the
construction of the set R of real numbers from the set Q of rational numbers in terms of
Cauchy sequences. This construction can be immediately adapted to a normed vector space
(E, ‖ ‖) to embed (E, ‖ ‖) into a complete normed vector space (Ê, ‖ ‖Ê) (a Banach space).
This construction is used heavily in integration theory, where E is a set of functions.

19.6 Completion of a Metric Space

In order to prove a kind of uniqueness result for the completion (Ê, d̂) of a metric space
(E, d), we need the following result about extending a uniformly continuous function.

Recall that E0 is dense in E iff E0 = E. Since E is a metric space, by Proposition 19.11,
this means that for every x ∈ E, there is some sequence (xn) converging to x, with xn ∈ E0.

Theorem 19.20. Let E and F be two metric spaces, let E0 be a dense subspace of E, and
let f0 : E0 → F be a continuous function. If f0 is uniformly continuous and if F is complete,
then there is a unique uniformly continuous function f : E → F extending f0.

Proof. We follow Schwartz’s proof; see Schwartz [90] (Chapter XI, Section 3, Theorem 1).

Step 1 . We begin by constructing a function f : E → F extending f0. Since E0 is dense
in E, for every x ∈ E, there is some sequence (xn) converging to x, with xn ∈ E0. Then the
sequence (xn) is a Cauchy sequence in E. We claim that (f0(xn)) is a Cauchy sequence in
F .

Proof of the claim. For every ε > 0, since f0 is uniformly continuous, there is some η > 0
such that for all (y, z) ∈ E0, if d(y, z) ≤ η, then d(f0(y), f0(z)) ≤ ε. Since (xn) is a Cauchy
sequence with xn ∈ E0, there is some integer p > 0 such that if m,n ≥ p, then d(xm, xn) ≤ η,
thus d(f0(xm), f0(xn)) ≤ ε, which proves that (f0(xn)) is a Cauchy sequence in F .

Since F is complete and (f0(xn)) is a Cauchy sequence in F , the sequence (f0(xn))
converges to some element of F ; denote this element by f(x).

Step 2 . Let us now show that f(x) does not depend on the sequence (xn) converging to
x. Suppose that (x′n) and (x′′n) are two sequences of elements in E0 converging to x. Then
the mixed sequence

x′0, x
′′
0, x

′
1, x
′′
1, . . . , x

′
n, x

′′
n, . . . ,

also converges to x. It follows that the sequence

f0(x′0), f0(x′′0), f0(x′1), f0(x′′1), . . . , f0(x′n), f0(x′′n), . . . ,
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is a Cauchy sequence in F , and since F is complete, it converges to some element of F , which
implies that the sequences (f0(x′n)) and (f0(x′′n)) converge to the same limit.

As a summary, we have defined a function f : E → F by

f(x) = lim
n7→∞

f0(xn).

for any sequence (xn) converging to x, with xn ∈ E0.

Step 3 . The function f extends f0. Since every element x ∈ E0 is the limit of the
constant sequence (xn) with xn = x for all n ≥ 0, by definition f(x) is the limit of the
sequence (f0(xn)), which is the constant sequence with value f0(x), so f(x) = f0(x); that is,
f extends f0.

Step 4 . We now prove that f is uniformly continuous. Since f0 is uniformly contin-
uous, for every ε > 0, there is some η > 0 such that if a, b ∈ E0 and d(a, b) ≤ η, then
d(f0(a), f0(b)) ≤ ε. Consider any two points x, y ∈ E such that d(x, y) ≤ η/2. We claim
that d(f(x), f(y)) ≤ ε, which shows that f is uniformly continuous.

Let (xn) be a sequence of points in E0 converging to x, and let (yn) be a sequence of
points in E0 converging to y. By the triangle inequality,

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) = d(x, y) + d(xn, x) + d(yn, y),

and since (xn) converges to x and (yn) converges to y, there is some integer p > 0 such that
for all n ≥ p, we have d(xn, x) ≤ η/4 and d(yn, y) ≤ η/4, and thus

d(xn, yn) ≤ d(x, y) +
η

2
.

Since we assumed that d(x, y) ≤ η/2, we get d(xn, yn) ≤ η for all n ≥ p, and by uniform
continuity of f0, we get

d(f0(xn), f0(yn)) ≤ ε

for all n ≥ p. Since the distance function on F is also continuous, and since (f0(xn)) converges
to f(x) and (f0(yn)) converges to f(y), we deduce that the sequence (d(f0(xn), f0(yn)))
converges to d(f(x), f(y)). This implies that d(f(x), f(y)) ≤ ε, as desired.

Step 5 . It remains to prove that f is unique. Since E0 is dense in E, for every x ∈ E,
there is some sequence (xn) converging to x, with xn ∈ E0. Since f extends f0 and since f
is continuous, we get

f(x) = lim
n 7→∞

f0(xn),

which only depends on f0 and x, and shows that f is unique.

Remark: It can be shown that the theorem no longer holds if we either omit the hypothesis
that F is complete or omit that f0 is uniformly continuous.
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For example, if E0 6= E and if we let F = E0 and f0 be the identity function, it is easy to
see that f0 cannot be extended to a continuous function from E to E0 (for any x ∈ E −E0,
any continous extension f of f0 would satisfy f(x) = x, which is absurd since x /∈ E0).

If f0 is continuous but not uniformly continuous, a counter-example can be given by using
E = R = R ∪ {∞} made into a metric space, E0 = R, F = R, and f0 the identity function;
for details, see Schwartz [90] (Chapter XI, Section 3, page 134).

Definition 19.18. If (E, dE) and (F, dF ) are two metric spaces, then a function f : E → F
is distance-preserving , or an isometry , if

dF (f(x), f(y)) = dE(x, y), for all for all x, y ∈ E.

Observe that an isometry must be injective, because if f(x) = f(y), then dF (f(x), f(y)) =
0, and since dF (f(x), f(y)) = dE(x, y), we get dE(x, y) = 0, but dE(x, y) = 0 implies that
x = y. Also, an isometry is uniformly continuous (since we can pick η = ε to satisfy the
condition of uniform continuity). However, an isometry is not necessarily surjective.

We now give a construction of the completion of a metric space. This construction is just
a generalization of the classical construction of R from Q using Cauchy sequences.

Theorem 19.21. Let (E, d) be any metric space. There is a complete metric space (Ê, d̂)
called a completion of (E, d), and a distance-preserving (uniformly continuous) map ϕ : E →
Ê such that ϕ(E) is dense in Ê, and the following extension property holds: for every
complete metric space F and for every uniformly continuous function f : E → F , there is a
unique uniformly continuous function f̂ : Ê → F such that

f = f̂ ◦ ϕ,

as illustrated in the following diagram.

E
ϕ //

f   @@@@@@@@ Ê

f̂
��
F.

As a consequence, for any two completions (Ê1, d̂1) and (Ê2, d̂2) of (E, d), there is a unique

bijective isometry betwen (Ê1, d̂1) and (Ê2, d̂2).

Proof. Consider the set E of all Cauchy sequences (xn) in E, and define the relation ∼ on E
as follows:

(xn) ∼ (yn) iff lim
n7→∞

d(xn, yn) = 0.

It is easy to check that ∼ is an equivalence relation on E , and let Ê = E/ ∼ be the quotient
set, that is, the set of equivalence classes modulo ∼. Our goal is to show that we can endow
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Ê with a distance that makes it into a complete metric space satisfying the conditions of the
theorem. We proceed in several steps.

Step 1 . First, let us construct the function ϕ : E → Ê. For every a ∈ E, we have the
constant sequence (an) such that an = a for all n ≥ 0, which is obviously a Cauchy sequence.

Let ϕ(a) ∈ Ê be the equivalence class [(an)] of the constant sequence (an) with an = a for all
n. By definition of ∼, the equivalence class ϕ(a) is also the equivalence class of all sequences
converging to a. The map a 7→ ϕ(a) is injective because a metric space is Hausdorff, so
if a 6= b, then a sequence converging to a does not converge to b. After having defined a
distance on Ê, we will check that ϕ is an isometry.

Step 2 . Let us now define a distance on Ê. Let α = [(an)] and β = [(bn)] be two
equivalence classes of Cauchy sequences in E. The triangle inequality implies that

d(am, bm) ≤ d(am, an) + d(an, bn) + d(bn, bm) = d(an, bn) + d(am, an) + d(bm, bn)

and

d(an, bn) ≤ d(an, am) + d(am, bm) + d(bm, bn) = d(am, bm) + d(am, an) + d(bm, bn),

which implies that

|d(am, bm)− d(an, bn)| ≤ d(am, an) + d(bm, bn).

Since (an) and (bn) are Cauchy sequences, it follows that (d(an, bn)) is a Cauchy sequence of
nonnegative reals. Since R is complete, the sequence (d(an, bn)) has a limit, which we denote

by d̂(α, β); that is, we set

d̂(α, β) = lim
n 7→∞

d(an, bn), α = [(an)], β = [(bn)].

Step 3 . Let us check that d̂(α, β) does not depend on the Cauchy sequences (an) and
(bn) chosen in the equivalence classes α and β.

If (an) ∼ (a′n) and (bn) ∼ (b′n), then limn7→∞ d(an, a
′
n) = 0 and limn7→∞ d(bn, b

′
n) = 0, and

since

d(a′n, b
′
n) ≤ d(a′n, an) + d(an, bn) + d(bn, b

′
n) = d(an, bn) + d(an, a

′
n) + d(bn, b

′
n)

and

d(an, bn) ≤ d(an, a
′
n) + d(a′n, b

′
n) + d(b′n, bn) = d(a′n, b

′
n) + d(an, a

′
n) + d(bn, b

′
n)

we have
|d(an, bn)− d(a′n, b

′
n)| ≤ d(an, a

′
n) + d(bn, b

′
n),

so we have limn7→∞ d(a′n, b
′
n) = limn7→∞ d(an, bn) = d̂(α, β). Therefore, d̂(α, β) is indeed well

defined.
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Step 4 . Let us check that ϕ is indeed an isometry.

Given any two elements ϕ(a) and ϕ(b) in Ê, since they are the equivalence classes of
the constant sequences (an) and (bn) such that an = a and bn = b for all n, the constant
sequence (d(an, bn)) with d(an, bn) = d(a, b) for all n converges to d(a, b), so by definition

d̂(ϕ(a), ϕ(b)) = limn 7→∞ d(an, bn) = d(a, b), which shows that ϕ is an isometry.

Step 5 . Let us verify that d̂ is a metric on Ê. By definition it is obvious that d̂(α, β) =

d̂(β, α). If α and β are two distinct equivalence classes, then for any Cauchy sequence (an)
in the equivalence class α and for any Cauchy sequence (bn) in the equivalence class β, the
sequences (an) and (bn) are inequivalent, which means that limn7→∞ d(an, bn) 6= 0, that is,

d̂(α, β) 6= 0. Obviously, d̂(α, α) = 0.

For any equivalence classes α = [(an)], β = [(bn)], and γ = [(cn)], we have the triangle
inequality

d(an, cn) ≤ d(an, bn) + d(bn, cn),

so by continuity of the distance function, by passing to the limit, we obtain

d̂(α, γ) ≤ d̂(α, β) + d̂(β, γ),

which is the triangle inequality for d̂. Therefore, d̂ is a distance on Ê.

Step 6 . Let us prove that ϕ(E) is dense in Ê. For any α = [(an)], let (xn) be the constant
sequence such that xk = an for all k ≥ 0, so that ϕ(an) = [(xn)]. Then we have

d̂(α, ϕ(an)) = lim
m 7→∞

d(am, an) ≤ sup
p,q≥n

d(ap, aq).

Since (an) is a Cauchy sequence, supp,q≥n d(ap, aq) tends to 0 as n goes to infinity, so

lim
n7→∞

d(α, ϕ(an)) = 0,

which means that the sequence (ϕ(an)) converge to α, and ϕ(E) is indeed dense in Ê.

Step 7 . Finally, let us prove that the metric space Ê is complete.

Let (αn) be a Cauchy sequence in Ê. Since ϕ(E) is dense in Ê, for every n > 0, there
some an ∈ E such that

d̂(αn, ϕ(an)) ≤ 1

n
.

Since

d̂(ϕ(am), ϕ(an)) ≤ d̂(ϕ(am), αm) + d̂(αm, αn) + d̂(αn, ϕ(an)) ≤ d̂(αm, αn) +
1

m
+

1

n
,

and since (αm) is a Cauchy sequence, so is (ϕ(an)), and as ϕ is an isometry, the sequence

(an) is a Cauchy sequence in E. Let α ∈ Ê be the equivalence class of (an). Since

d̂(α, ϕ(an)) = lim
m7→∞

d(am, an)
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and (an) is a Cauchy sequence, we deduce that the sequence (ϕ(an)) converges to α, and
since d(αn, ϕ(an)) ≤ 1/n for all n > 0, the sequence (αn) also converges to α.

Step 8 . Let us prove the extension property. Let F be any complete metric space and
let f : E → F be any uniformly continuous function. The function ϕ : E → Ê is an isometry
and a bijection between E and its image ϕ(E), so its inverse ϕ−1 : ϕ(E) → E is also an
isometry, and thus is uniformly continuous. If we let g = f ◦ ϕ−1, then g : ϕ(E) → F is

a uniformly continuous function, and ϕ(E) is dense in Ê, so by Theorem 19.20 there is a

unique uniformly continuous function f̂ : Ê → F extending g = f ◦ ϕ−1; see the diagram
below:

E

f
((RRRRRRRRRRRRRRRRRR ϕ(E)

ϕ−1
oo

g

""DDDDDDDDD
⊆ Ê

f̂����������

F

This means that

f̂ |ϕ(E) = f ◦ ϕ−1,

which implies that

(f̂ |ϕ(E)) ◦ ϕ = f,

that is, f = f̂ ◦ ϕ, as illustrated in the diagram below:

E
ϕ //

f ��@@@@@@@@ Ê

f̂
��
F

If h : Ê → F is any other uniformly continuous function such that f = h ◦ ϕ, then
g = f ◦ϕ−1 = h|ϕ(E), so h is a uniformly continuous function extending g, and by Theorem

19.20, we have have h = f̂ , so f̂ is indeed unique.

Step 9 . Uniqueness of the completion (Ê, d̂) up to a bijective isometry.

Let (Ê1, d̂1) and (Ê2, d̂2) be any two completions of (E, d). Then we have two uniformly

continuous isometries ϕ1 : E → Ê1 and ϕ2 : E → Ê2 , so by the unique extension property,
there exist unique uniformly continuous maps ϕ̂2 : Ê1 → Ê2 and ϕ̂1 : Ê2 → Ê1 such that the
following diagrams commute:

E
ϕ1 //

ϕ2
��>>>>>>>> Ê1

ϕ̂2

��

Ê2

E
ϕ2 //

ϕ1 ��@@@@@@@@ Ê2

ϕ̂1

��

Ê1.
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Consequently we have the following commutative diagrams:

Ê2

ϕ̂1

��

E
ϕ1 //

ϕ2
��>>>>>>>>

ϕ2

??��������
Ê1

ϕ̂2

��

Ê2

Ê1

ϕ̂2

��

E
ϕ2 //

ϕ1 ��@@@@@@@@

ϕ1

??~~~~~~~~
Ê2

ϕ̂1

��

Ê1.

However, idÊ1
and idÊ2

are uniformly continuous functions making the following diagrams
commute

E
ϕ1 //

ϕ1
��>>>>>>>> Ê1

id
Ê1

��

Ê1

E
ϕ2 //

ϕ2
��???????? Ê2

id
Ê2

��

Ê2,

so by the uniqueness of extensions we must have

ϕ̂1 ◦ ϕ̂2 = idÊ1
and ϕ̂2 ◦ ϕ̂1 = idÊ2

.

This proves that ϕ̂1 and ϕ̂2 are mutual inverses. Now, since ϕ2 = ϕ̂2 ◦ ϕ1, we have

ϕ̂2|ϕ1(E) = ϕ2 ◦ ϕ−1
1 ,

and since ϕ−1
1 and ϕ2 are isometries, so is ϕ̂2|ϕ1(E). But we saw earlier that ϕ̂2 is the

uniform continuous extension of ϕ̂2|ϕ1(E) and ϕ1(E) is dense in Ê1, so for any two elements

α, β ∈ Ê1, if (an) and (bn) are sequences in ϕ1(E) converging to α and β, we have

d̂2((ϕ̂2|ϕ1(E))(an), ((ϕ̂2|ϕ1(E))(bn)) = d̂1(an, bn),

and by passing to the limit we get

d̂2(ϕ̂2(α), ϕ̂2(β)) = d̂1(α, β),

which shows that ϕ̂2 is an isometry (similarly, ϕ̂1 is an isometry).

Remarks:

1. Except for Step 8 and Step 9, the proof of Theorem 19.21 is the proof given in Schwartz
[90] (Chapter XI, Section 4, Theorem 1), and Kormogorov and Fomin [61] (Chapter 2,
Section 7, Theorem 4).

2. The construction of Ê relies on the completeness of R, and so it cannot be used to
construct R from Q. However, this construction can be modified to yield a construction
of R from Q.

We show in Section 19.7 that Theorem 19.21 yields a construction of the completion of
a normed vector space.
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19.7 Completion of a Normed Vector Space

An easy corollary of Theorem 19.21 and Theorem 19.20 is that every normed vector space
can be embedded in a complete normed vector space, that is, a Banach space.

Theorem 19.22. If (E, ‖‖) is a normed vector space, then its completion (Ê, d̂) as a metric
space (where E is given the metric d(x, y) = ‖x − y‖) can be given a unique vector space

structure extending the vector space structure on E, and a norm ‖ ‖Ê, so that (Ê, ‖ ‖Ê) is a

Banach space, and the metric d̂ is associated with the norm ‖‖Ê. Furthermore, the isometry

ϕ : E → Ê is a linear isometry.

Proof. The addition operation +: E × E → E is uniformly continuous because

‖(u′ + v′)− (u′′ + v′′)‖ ≤ ‖u′ − u′′‖+ ‖v′ − v′′‖.

It is not hard to show that Ê × Ê is a complete metric space and that E × E is dense
in Ê × Ê. Then, by Theorem 19.20, the uniformly continuous function + has a unique
continuous extension +: Ê × Ê → Ê.

The map · : R × E → E is not uniformly continuous, but for any fixed λ ∈ R, the
map Lλ : E → E given by Lλ(u) = λ · u is uniformly continuous, so by Theorem 19.20 the

function Lλ has a unique continuous extension Lλ : Ê → Ê, which we use to define the scalar
multiplication · : R × Ê → Ê. It is easily checked that with the above addition and scalar
multiplication, Ê is a vector space.

Since the norm ‖ ‖ on E is uniformly continuous, it has a unique continuous extension

‖ ‖Ê : Ê → R+. The identities ‖u + v‖ ≤ ‖u‖ + ‖v‖ and ‖λu‖ ≤ |λ| ‖u‖ extend to Ê by
continuity. The equation

d(u, v) = ‖u− v‖

also extends to Ê by continuity and yields

d̂(α, β) = ‖α− β‖Ê,

which shows that ‖ ‖Ê is indeed a norm, and that the metric d̂ is associated to it. Finally, it
is easy to verify that the map ϕ is linear. The uniqueness of the structure of normed vector
space follows from the uniqueness of continuous extensions in Theorem 19.20.

Theorem 19.22 and Theorem 19.20 will be used to show that every Hermitian space can
be embedded in a Hilbert space.

We refer the readers to the references cited at the end of this chapter for a discussion of
the concepts of compactness and connecteness. They are important, but of less immediate
concern.
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19.8 The Contraction Mapping Theorem

If (E, d) is a nonempty complete metric space, every map, f : E → E, for which there is
some k such that 0 ≤ k < 1 and

d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ E

has the very important property that it has a unique fixed point, that is, there is a unique,
a ∈ E, such that f(a) = a.

Definition 19.19. Let (E, d) be a metric space. A map f : E → E is a contraction (or a
contraction mapping) if there is some real number k such that 0 ≤ k < 1 and

d(f(u), f(v)) ≤ kd(u, v) for all u, v ∈ E.

The number k is often called a Lipschitz constant .

Furthermore, the fixed point of a contraction mapping can be computed as the limit of
a fast converging sequence.

The fixed point property of contraction mappings is used to show some important the-
orems of analysis, such as the implicit function theorem and the existence of solutions to
certain differential equations. It can also be used to show the existence of fractal sets de-
fined in terms of iterated function systems. Since the proof is quite simple, we prove the
fixed point property of contraction mappings. First, observe that a contraction mapping is
(uniformly) continuous.

Theorem 19.23. (Contraction Mapping Theorem) If (E, d) is a nonempty complete metric
space, every contraction mapping, f : E → E, has a unique fixed point. Furthermore, for
every x0 ∈ E, if we define the sequence (xn)≥0 such that xn+1 = f(xn) for all n ≥ 0, then
(xn)n≥0 converges to the unique fixed point of f .

Proof. First we prove that f has at most one fixed point. Indeed, if f(a) = a and f(b) = b,
since

d(a, b) = d(f(a), f(b)) ≤ kd(a, b)

and 0 ≤ k < 1, we must have d(a, b) = 0, that is, a = b.

Next we prove that (xn) is a Cauchy sequence. Observe that

d(x2, x1) ≤ kd(x1, x0),

d(x3, x2) ≤ kd(x2, x1) ≤ k2d(x1, x0),

...
...

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0).
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Thus, we have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + · · ·+ d(xn+1, xn)

≤ (kp−1 + kp−2 + · · ·+ k + 1)knd(x1, x0)

≤ kn

1− k d(x1, x0).

We conclude that d(xn+p, xn) converges to 0 when n goes to infinity, which shows that (xn)
is a Cauchy sequence. Since E is complete, the sequence (xn) has a limit, a. Since f is
continuous, the sequence (f(xn)) converges to f(a). But xn+1 = f(xn) converges to a and
so f(a) = a, the unique fixed point of f .

The above theorem is also called the Banach fixed point theorem. Note that no matter
how the starting point x0 of the sequence (xn) is chosen, (xn) converges to the unique fixed
point of f . Also, the convergence is fast, since

d(xn, a) ≤ kn

1− k d(x1, x0).

19.9 Futher Readings

A thorough treatment of general topology can be found in Munkres [78, 77], Dixmier [35],
Lang [66], Schwartz [91, 90], Bredon [23], and the classic, Seifert and Threlfall [95].

19.10 Summary

The main concepts and results of this chapter are listed below:

• Metric space, distance, metric.

• Euclidean metric, discrete metric.

• Closed ball , open ball , sphere, bounded subset .

• Normed vector space, norm.

• Open and closed sets.

• Topology , topological space.

• Hausdorff separation axiom, Hausdorff space.

• Discrete topology .

• Closure, dense subset , interior , frontier or boundary .
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• Subspace topology .

• Product topology .

• Basis of a topology , subbasis of a topology .

• Continuous functions.

• Neighborhood of a point.

• Homeomorphisms .

• Limits of sequences.

• Continuous linear maps .

• The norm of a continuous linear map.

• Continuous bilinear maps .

• The norm of a continuous bilinear map.

• The isomorphism between L(E,F ;G) and L(E,L(F ;G)).

• Cauchy sequences

• Complete metric spaces and Banach spaces .

• Completion of a metric space or of a normed vector space.

• Contractions .

• The contraction mapping theorem.
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Chapter 20

Differential Calculus

20.1 Directional Derivatives, Total Derivatives

This chapter contains a review of basic notions of differential calculus. First, we review the
definition of the derivative of a function f : R → R. Next, we define directional derivatives
and the total derivative of a function f : E → F between normed vector spaces. Basic
properties of derivatives are shown, including the chain rule. We show how derivatives
are represented by Jacobian matrices. The mean value theorem is stated, as well as the
implicit function theorem and the inverse function theorem. Diffeomorphisms and local
diffeomorphisms are defined. Higher-order derivatives are defined, as well as the Hessian.
Schwarz’s lemma (about the commutativity of partials) is stated. Several versions of Taylor’s
formula are stated, and a famous formula due to Faà di Bruno’s is given.

We first review the notion of the derivative of a real-valued function whose domain is an
open subset of R.

Let f : A → R, where A is a nonempty open subset of R, and consider any a ∈ A.
The main idea behind the concept of the derivative of f at a, denoted by f ′(a), is that
locally around a (that is, in some small open set U ⊆ A containing a), the function f is
approximated linearly1 by the map

x 7→ f(a) + f ′(a)(x− a).

As pointed out by Dieudonné in the early 1960s, it is an “unfortunate accident” that if
V is vector space of dimension one, then there is a bijection between the space V ∗ of linear
forms defined on V and the field of scalars. As a consequence, the derivative of a real-valued
function f defined on an open subset A of the reals can be defined as the scalar f ′(a) (for
any a ∈ A). But as soon as f is a function of several arguments, the scalar interpretation of
the derivative breaks down.

1Actually, the approximation is affine, but everybody commits this abuse of language.

547



548 CHAPTER 20. DIFFERENTIAL CALCULUS

Part of the difficulty in extending the idea of derivative to more complex spaces is to give
an adequate notion of linear approximation. The key idea is to use linear maps. This could
be carried out in terms of matrices but it turns out that this neither shortens nor simplifies
proofs. In fact, this is often the opposite.

We admit that the more intrinsic definition of the notion of derivative f ′a at a point a of
a function f : E → F between two normed vector spaces E and F as a linear map requires a
greater effort to be grasped, but we feel that the advantages of this definition outweight its
degree of abstraction. In particular, it yields a clear notion of the derivative of a function
f : Mm(R) → Mn(R) defined from m × m matrices to n × n matrices (many definitions
make use of partial derivatives with respect to matrices that do make any sense). But more
importantly, the definition of the derivative as a linear map makes it clear that whether
the space E or the space F is infinite dimensional does not matter. This is important in
optimization theory where the natural space of solutions of the problem is often an infinite
dimensional function space. Of course, to carry out computations one need to pick finite
bases and to use Jacobian matrices, but this is a different matter.

Let us now review the formal definition of the derivative of a real-valued function.

Definition 20.1. Let A be any nonempty open subset of R, and let a ∈ A. For any function
f : A→ R, the derivative of f at a ∈ A is the limit (if it exists)

lim
h→0, h∈U

f(a+ h)− f(a)

h
,

where U = {h ∈ R | a + h ∈ A, h 6= 0}. This limit is denoted by f ′(a), or Df(a), or df
dx

(a).
If f ′(a) exists for every a ∈ A, we say that f is differentiable on A. In this case, the map
a 7→ f ′(a) is denoted by f ′, or Df , or df

dx
.

Note that since A is assumed to be open, A − {a} is also open, and since the function
h 7→ a + h is continuous and U is the inverse image of A − {a} under this function, U is
indeed open and the definition makes sense.

We can also define f ′(a) as follows: there is some function ε, such that,

f(a+ h) = f(a) + f ′(a) · h+ ε(h)h,

whenever a+ h ∈ A, where ε(h) is defined for all h such that a+ h ∈ A, and

lim
h→0, h∈U

ε(h) = 0.

Remark: We can also define the notion of derivative of f at a on the left , and derivative
of f at a on the right . For example, we say that the derivative of f at a on the left is the
limit f ′(a−) (if it exists)

f ′(a−) = lim
h→0, h∈U

f(a+ h)− f(a)

h
,
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where U = {h ∈ R | a+ h ∈ A, h < 0}.
If a function f as in Definition 20.1 has a derivative f ′(a) at a, then it is continuous at

a. If f is differentiable on A, then f is continuous on A. The composition of differentiable
functions is differentiable.

Remark: A function f has a derivative f ′(a) at a iff the derivative of f on the left at a and
the derivative of f on the right at a exist, and if they are equal. Also, if the derivative of f
on the left at a exists, then f is continuous on the left at a (and similarly on the right).

We would like to extend the notion of derivative to functions f : A→ F , where E and F
are normed vector spaces, and A is some nonempty open subset of E. The first difficulty is
to make sense of the quotient

f(a+ h)− f(a)

h
.

Since F is a normed vector space, f(a + h) − f(a) makes sense. But now, how do we
define the quotient by a vector? Well, we don’t!

A first possibility is to consider the directional derivative with respect to a vector u 6= 0
in E. We can consider the vector f(a+ tu)− f(a), where t ∈ R. Now,

f(a+ tu)− f(a)

t

makes sense.

The idea is that in E, the points of the form a+ tu for t in some small interval [−ε, +ε] in
R form a line segment [r, s] in A containing a, and that the image of this line segment defines
a small curve segment on f(A). This curve segment is defined by the map t 7→ f(a + tu),
from [r, s] to F , and the directional derivative Duf(a) defines the direction of the tangent
line at a to this curve; see Figure 20.1. This leads us to the following definition.

Definition 20.2. Let E and F be two normed vector spaces, let A be a nonempty open
subset of E, and let f : A → F be any function. For any a ∈ A, for any u 6= 0 in E, the
directional derivative of f at a w.r.t. the vector u, denoted by Duf(a), is the limit (if it
exists)

Duf(a) = lim
t→0, t∈U

f(a+ tu)− f(a)

t
,

where U = {t ∈ R | a+ tu ∈ A, t 6= 0} (or U = {t ∈ C | a+ tu ∈ A, t 6= 0}).

Since the map t 7→ a+ tu is continuous, and since A− {a} is open, the inverse image U
of A − {a} under the above map is open, and the definition of the limit in Definition 20.2
makes sense. The directional derivative is sometimes called the Gâteaux derivative.

Remark: Since the notion of limit is purely topological, the existence and value of a di-
rectional derivative is independent of the choice of norms in E and F , as long as they are
equivalent norms.
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u
a

a + tu

a + tu
a

f(a)

f(a+tu)

D   f(a)
u

Figure 20.1: Let f : R2 → R. The graph of f is the peach surface in R3, and t 7→ f(a + tu)
is the embedded orange curve connecting f(a) to f(a+ tu). Then Duf(a) is the slope of the
pink tangent line in the direction of u.

In the special case where E = R and F = R, and we let u = 1 (i.e., the real number 1,
viewed as a vector), it is immediately verified that D1f(a) = f ′(a), in the sense of Definition
20.1. When E = R (or E = C) and F is any normed vector space, the derivative D1f(a),
also denoted by f ′(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension ≥ 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonnull vectors u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not.

Example 20.1. Let f : R2 → R be the function given by

f(x, y) =

{
x2y
x4+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

For any u 6= 0, letting u =

(
h
k

)
, we have

f(0 + tu)− f(0)

t
=

h2k

t2h4 + k2
,

so that

Duf(0, 0) =

{
h2

k
if k 6= 0

0 if k = 0.
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Thus, Duf(0, 0) exists for all u 6= 0.

On the other hand, if Df(0, 0) existed, it would be a linear map Df(0, 0) : R2 → R
represented by a row matrix (α β), and we would have Duf(0, 0) = Df(0, 0)(u) = αh+ βk,
but the explicit formula for Duf(0, 0) is not linear. As a matter of fact, the function f is
not continuous at (0, 0). For example, on the parabola y = x2, f(x, y) = 1

2
, and when we

approach the origin on this parabola, the limit is 1
2
, but f(0, 0) = 0.

To avoid the problems arising with directional derivatives we introduce a more uniform
notion.

Given two normed spaces E and F , recall that a linear map f : E → F is continuous iff
there is some constant C ≥ 0 such that

‖f(u)‖ ≤ C ‖u‖ for all u ∈ E.

Definition 20.3. Let E and F be two normed vector spaces, let A be a nonempty open
subset of E, and let f : A→ F be any function. For any a ∈ A, we say that f is differentiable
at a ∈ A if there is a linear continuous map L : E → F and a function h 7→ ε(h), such that

f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for every a+ h ∈ A, where ε(h) is defined for every h such that a+ h ∈ A, and

lim
h→0, h∈U

ε(h) = 0,

where U = {h ∈ E | a + h ∈ A, h 6= 0}. The linear map L is denoted by Df(a), or Dfa, or
df(a), or dfa, or f ′(a), and it is called the Fréchet derivative, or derivative, or total derivative,
or total differential , or differential , of f at a; see Figure 20.2.

Since the map h 7→ a+h from E to E is continuous, and since A is open in E, the inverse
image U of A− {a} under the above map is open in E, and it makes sense to say that

lim
h→0, h∈U

ε(h) = 0.

Note that for every h ∈ U , since h 6= 0, ε(h) is uniquely determined since

ε(h) =
f(a+ h)− f(a)− L(h)

‖h‖ ,

and that the value ε(0) plays absolutely no role in this definition. The condition for f to be
differentiable at a amounts to the fact that

lim
h7→0

‖f(a+ h)− f(a)− L(h)‖
‖h‖ = 0
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a

h

h

f(a)

f(a+h)

f(a)
L(h)

f(a+h) -

Figure 20.2: Let f : R2 → R. The graph of f is the green surface in R3. The linear map
L = Df(a) is the pink tangent plane. For any vector h ∈ R2, L(h) is approximately equal
to f(a+ h)− f(a). Note that L(h) is also the direction tangent to the curve t 7→ f(a+ tu).

as h 6= 0 approaches 0, when a+ h ∈ A. However, it does no harm to assume that ε(0) = 0,
and we will assume this from now on.

Again, we note that the derivative Df(a) of f at a provides an affine approximation of
f , locally around a.

Remarks:

(1) Since the notion of limit is purely topological, the existence and value of a derivative is
independent of the choice of norms in E and F , as long as they are equivalent norms.

(2) If h : (−a, a) → R is a real-valued function defined on some open interval containing
0, we say that h is o(t) for t→ 0, and we write h(t) = o(t), if

lim
t7→0, t 6=0

h(t)

t
= 0.

With this notation (the little o notation), the function f is differentiable at a iff

f(a+ h)− f(a)− L(h) = o(‖h‖),

which is also written as

f(a+ h) = f(a) + L(h) + o(‖h‖).
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The following proposition shows that our new definition is consistent with the definition
of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 20.1. Let E and F be two normed spaces, let A be a nonempty open subset
of E, and let f : A → F be any function. For any a ∈ A, if Df(a) is defined, then f is
continuous at a and f has a directional derivative Duf(a) for every u 6= 0 in E. Furthermore,

Duf(a) = Df(a)(u)

and thus, Df(a) is uniquely defined.

Proof. If L = Df(a) exists, then for any nonzero vector u ∈ E, because A is open, for any
t ∈ R− {0} (or t ∈ C− {0}) small enough, a+ tu ∈ A, so

f(a+ tu) = f(a) + L(tu) + ε(tu)‖tu‖
= f(a) + tL(u) + |t|ε(tu)‖u‖

which implies that

L(u) =
f(a+ tu)− f(a)

t
− |t|

t
ε(tu)‖u‖,

and since limt7→0 ε(tu) = 0, we deduce that

L(u) = Df(a)(u) = Duf(a).

Because
f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for all h such that ‖h‖ is small enough, L is continuous, and limh7→0 ε(h)‖h‖ = 0, we have
limh7→0 f(a+ h) = f(a), that is, f is continuous at a.

When E is of finite dimension, every linear map is continuous (see Proposition 7.7 or
Theorem 19.16), and this assumption is then redundant.

Although this may not be immediately obvious, the reason for requiring the linear map
Dfa to be continuous is to ensure that if a function f is differentiable at a, then it is
continuous at a. This is certainly a desirable property of a differentiable function. In finite
dimension this holds, but in infinite dimension this is not the case. The following proposition
shows that if Dfa exists at a and if f is continuous at a, then Dfa must be a continuous
map. So if a function is differentiable at a, then it is continuous iff the linear map Dfa is
continuous. We chose to include the second condition rather that the first in the definition
of a differentiable function.

Proposition 20.2. Let E and F be two normed spaces, let A be a nonempty open subset of
E, and let f : A→ F be any function. For any a ∈ A, if Dfa is defined, then f is continuous
at a iff Dfa is a continuous linear map.
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Proof. Proposition 20.1 shows that if Dfa is defined and continuous then f is continuous at
a. Conversely, assume that Dfa exists and that f is continuous at a. Since f is continuous
at a and since Dfa exists, for any η > 0 there is some ρ with 0 < ρ < 1 such that if ‖h‖ ≤ ρ
then

‖f(a+ h)− f(a)‖ ≤ η

2
,

and
‖f(a+ h)− f(a)−Da(h)‖ ≤ η

2
‖h‖ ≤ η

2
,

so we have

‖Da(h)‖ = ‖Da(h)− (f(a+ h)− f(a)) + f(a+ h)− f(a)‖
≤ ‖f(a+ h)− f(a)−Da(h)‖+ ‖f(a+ h)− f(a)‖
≤ η

2
+
η

2
= η,

which proves that Dfa is continuous at 0. By Proposition 19.14, Dfa is a continuous linear
map.

As an example, consider the map f : Mn(R)→ Mn(R) given by

f(A) = A>A− I,

where Mn(R) denotes the vector space of all n × n matrices with real entries equipped
with any matrix norm, since they are all equivalent; for example, pick the Frobenius norm
‖A‖F =

√
tr(A>A). We claim that

Df(A)(H) = A>H +H>A, for all A and H in Mn(R).

We have

f(A+H)− f(A)− (A>H +H>A) = (A+H)>(A+H)− I − (A>A− I)− A>H −H>A
= A>A+ A>H +H>A+H>H − A>A− A>H −H>A
= H>H.

It follows that

ε(H) =
f(A+H)− f(A)− (A>H +H>A)

‖H‖ =
H>H

‖H‖ ,

and since our norm is the Frobenius norm,

‖ε(H)‖ =

∥∥∥∥H>H‖H‖
∥∥∥∥ ≤

∥∥H>∥∥ ‖H‖
‖H‖ =

∥∥H>∥∥ = ‖H‖ ,

so
lim
H 7→0

ε(H) = 0,
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and we conclude that
Df(A)(H) = A>H +H>A.

If Df(a) exists for every a ∈ A, we get a map Df : A→ L(E;F ), called the derivative of
f on A, and also denoted by df . Here L(E;F ) denotes the vector space of continuous linear
maps from E to F .

We now consider a number of standard results about derivatives. A function f : E → F

is said to be affine if there is some linear map
−→
f : E → F and some fixed vector c ∈ F , such

that

f(u) =
−→
f (u) + c

for all u ∈ E. We call
−→
f the linear map associated with f .

Proposition 20.3. Given two normed spaces E and F , if f : E → F is a constant function,

then Df(a) = 0, for every a ∈ E. If f : E → F is a continuous affine map, then Df(a) =
−→
f ,

for every a ∈ E, where
−→
f denotes the linear map associated with f .

Proposition 20.4. Given a normed space E and a normed vector space F , for any two
functions f, g : E → F , for every a ∈ E, if Df(a) and Dg(a) exist, then D(f + g)(a) and
D(λf)(a) exist, and

D(f + g)(a) = Df(a) + Dg(a),

D(λf)(a) = λDf(a).

Given two normed vector spaces (E1, ‖ ‖1) and (E2, ‖ ‖2), there are three natural and
equivalent norms that can be used to make E1 × E2 into a normed vector space:

1. ‖(u1, u2)‖1 = ‖u1‖1 + ‖u2‖2.

2. ‖(u1, u2)‖2 = (‖u1‖2
1 + ‖u2‖2

2)1/2.

3. ‖(u1, u2)‖∞ = max(‖u1‖1 , ‖u2‖2).

We usually pick the first norm. If E1, E2, and F are three normed vector spaces, recall that
a bilinear map f : E1 × E2 → F is continuous iff there is some constant C ≥ 0 such that

‖f(u1, u2)‖ ≤ C ‖u1‖1 ‖u2‖2 for all u1 ∈ E1 and all u2 ∈ E2.

Proposition 20.5. Given three normed vector spaces E1, E2, and F , for any continuous
bilinear map f : E1 × E2 → F , for every (a, b) ∈ E1 × E2, Df(a, b) exists, and for every
u ∈ E1 and v ∈ E2,

Df(a, b)(u, v) = f(u, b) + f(a, v).
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Proof. Since f is bilinear, a simple computation implies that

f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v)) = f(a+ u, b+ v)− f(a, b)− f(u, b)− f(a, v)

= f(a+ u, b) + f(a+ u, v)− f(a, b)− f(u, b)− f(a, v)

= f(a, b) + f(u, b) + f(a, v) + f(u, v)− f(a, b)− f(u, b)− f(a, v)

= f(u, v).

We define

ε(u, v) =
f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))

‖(u, v)‖1

,

and observe that the continuity of f implies

‖f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))‖ = ‖f(u, v)‖
≤ C ‖u‖1 ‖v‖2 ≤ C (‖u‖1 + ‖v‖2)2 .

Hence

‖ε(u, v)‖ =

∥∥∥∥ f(u, v)

‖(u, v)‖1

∥∥∥∥ =
‖f(u, v)‖
‖(u, v)‖1

≤ C (‖u‖1 + ‖v‖2)2

‖u‖1 + ‖v‖2

= C (‖u‖1 + ‖v‖2) = C ‖(u, v)‖1 ,

which in turn implies

lim
(u,v)7→(0,0)

ε(u, v) = 0.

We now state the very useful chain rule.

Theorem 20.6. Given three normed spaces E, F , and G, let A be an open set in E, and
let B an open set in F . For any functions f : A → F and g : B → G, such that f(A) ⊆ B,
for any a ∈ A, if Df(a) exists and Dg(f(a)) exists, then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Proof. Since f is differentiable at a and g is differentiable at b = f(a) for every η such that
0 < η < 1 there is some ρ > 0 such that for all s, t, if ‖s‖ ≤ ρ and ‖t‖ ≤ ρ then

f(a+ s) = f(a) + Dfa(s) + ε1(s)

g(b+ t) = g(b) + Dgb(t) + ε2(t),

with ‖ε1(s)‖ ≤ η ‖s‖ and ‖ε2(t)‖ ≤ η ‖t‖. Since Dfa and Dgb are continuous, we have

‖Dfa(s)‖ ≤ ‖Dfa‖ ‖s‖ and ‖Dgb(t)‖ ≤ ‖Dgb‖ ‖t‖ ,
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which, since ‖ε1(s)‖ ≤ η ‖s‖ and η < 1, implies that

‖Dfa(s) + ε1(s)‖ ≤ ‖Dfa‖ ‖s‖+ ‖ε1(s)‖ ≤ ‖Dfa‖ ‖s‖+ η ‖s‖ ≤ (‖Dfa‖+ 1) ‖s‖ .

Consequently, if ‖s‖ < ρ/(‖Dfa‖+ 1), we have

‖ε2(Dfa(s) + ε1(s))‖ ≤ η(‖Dfa‖+ 1) ‖s‖ (∗1)

and
‖Dgb(ε1(s))‖ ≤ ‖Dgb‖ ‖ε1(s)‖ ≤ η ‖Dgb‖ ‖s‖ . (∗2)

Then since b = f(a), using the above we have

(g ◦ f)(a+ s) = g(f(a+ s)) = g(b+ Dfa(s) + ε1(s))

= g(b) + Dgb(Dfa(s) + ε1(s)) + ε2(Dfa(s) + ε1(s))

= g(b) + (Dgb ◦Dfa)(s) + Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s)).

Now by (∗1) and (∗2) we have

‖Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s))‖ ≤ ‖Dgb(ε1(s))‖+ ‖ε2(Dfa(s) + ε1(s))‖
≤ η ‖Dgb‖ ‖s‖+ η(‖Dfa‖+ 1) ‖s‖
= η(‖Dfa‖+ ‖Dgb‖+ 1) ‖s‖ ,

so if we write ε3(s) = Dgb(ε1(s)) + ε2(Dfa(s) + ε1(s)) we proved that

(g ◦ f)(a+ s) = g(b) + (Dgb ◦Dfa)(s) + ε3(s)

with ε3(s) ≤ η(‖Dfa‖+ ‖Dgb‖+ 1) ‖s‖, which proves that Dgb ◦Dfa is the derivative of g ◦ f
at a. Since Dfa and Dgb are continuous, so is Dgb ◦Dfa, which proves our proposition.

Theorem 20.6 has many interesting consequences. We mention two corollaries.

Proposition 20.7. Given three normed vector spaces E, F , and G, for any open subset A
in E, for any a ∈ A, let f : A→ F such that Df(a) exists, and let g : F → G be a continuous
affine map. Then, D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = −→g ◦Df(a),

where −→g is the linear map associated with the affine map g.

Proposition 20.8. Given two normed vector spaces E and F , let A be some open subset in
E, let B be some open subset in F , let f : A → B be a bijection from A to B, and assume
that Df exists on A and that Df−1 exists on B. Then, for every a ∈ A,

Df−1(f(a)) = (Df(a))−1.
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Proposition 20.8 has the remarkable consequence that the two vector spaces E and F
have the same dimension. In other words, a local property, the existence of a bijection f
between an open set A of E and an open set B of F , such that f is differentiable on A and
f−1 is differentiable on B, implies a global property, that the two vector spaces E and F
have the same dimension.

Let us mention two more rules about derivatives that are used all the time.

Let ι : GL(n,C)→ Mn(C) be the function (inversion) defined on invertible n×n matrices
by

ι(A) = A−1.

Observe that GL(n,C) is indeed an open subset of the normed vector space Mn(C) of
complex n × n matrices, since its complement is the closed set of matrices A ∈ Mn(C)
satisfying det(A) = 0. Then we have

dιA(H) = −A−1HA−1,

for all A ∈ GL(n,C) and for all H ∈ Mn(C).

To prove the preceding line observe that for H with sufficiently small norm, we have

ι(A+H)− ι(A) + A−1HA−1 = (A+H)−1 − A−1 + A−1HA−1

= (A+H)−1[I − (A+H)A−1 + (A+H)A−1HA−1]

= (A+H)−1[I − I −HA−1 +HA−1 +HA−1HA−1]

= (A+H)−1HA−1HA−1.

Consequently, we get

ε(H) =
ι(A+H)− ι(A) + A−1HA−1

‖H‖ =
(A+H)−1HA−1HA−1

‖H‖ ,

and since ∥∥(A+H)−1HA−1HA−1
∥∥ ≤ ‖H‖2

∥∥A−1
∥∥2 ∥∥(A+H)−1

∥∥ ,
it is clear that limH 7→0 ε(H) = 0, which proves that

dιA(H) = −A−1HA−1.

In particular, if A = I, then dιI(H) = −H.

Next, if f : Mn(C)→ Mn(C) and g : Mn(C)→ Mn(C) are differentiable matrix functions,
then

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈Mn(C). This is known as the product rule.

When E is of finite dimension n, for any basis, (u1, . . . , un), of E, we can define the
directional derivatives with respect to the vectors in the basis (u1, . . . , un) (actually, we can
also do it for an infinite basis). This way we obtain the definition of partial derivatives, as
follows:
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Definition 20.4. For any two normed spaces E and F , if E is of finite dimension n, for
every basis (u1, . . . , un) for E, for every a ∈ E, for every function f : E → F , the directional
derivatives Dujf(a) (if they exist) are called the partial derivatives of f with respect to the

basis (u1, . . . , un). The partial derivative Dujf(a) is also denoted by ∂jf(a), or
∂f

∂xj
(a).

The notation
∂f

∂xj
(a) for a partial derivative, although customary and going back to

Leibniz, is a “logical obscenity.” Indeed, the variable xj really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to
overthrow!

We now consider the situation where the normed vector space F is a finite direct sum
F = F1 ⊕ · · · ⊕ Fm.

Proposition 20.9. Given normed vector spaces E and F = F1 ⊕ · · · ⊕ Fm, given any open
subset A of E, for any a ∈ A, for any function f : A → F , letting f = (f1, . . . , fm), Df(a)
exists iff every Dfi(a) exists, and

Df(a) = in1 ◦Df1(a) + · · ·+ inm ◦Dfm(a).

Proof. The proposition is a simple application of Theorem 20.6.

In the special case where F is a normed vector space of finite dimension m, for any basis
(v1, . . . , vm) of F , every vector x ∈ F can be expressed uniquely as

x = x1v1 + · · ·+ xmvm,

where (x1, . . . , xm) ∈ Km, the coordinates of x in the basis (v1, . . . , vm) (where K = R or
K = C). Thus, letting Fi be the standard normed vector space K with its natural structure,
we note that F is isomorphic to the direct sum F = K ⊕ · · · ⊕ K. Then, every function
f : E → F is represented by m functions (f1, . . . , fm), where fi : E → K (where K = R or
K = C), and

f(x) = f1(x)v1 + · · ·+ fm(x)vm,

for every x ∈ E. The following proposition is an immediate corollary of Proposition 20.9.

Proposition 20.10. For any two normed vector spaces E and F , if F is of finite dimension
m, for any basis (v1, . . . , vm) of F , a function f : E → F is differentiable at a iff each fi is
differentiable at a, and

Df(a)(u) = Df1(a)(u)v1 + · · ·+ Dfm(a)(u)vm,

for every u ∈ E.
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We now consider the situation where E is a finite direct sum. Given a normed vector
space E = E1 ⊕ · · · ⊕ En and a normed vector space F , given any open subset A of E, for
any c = (c1, . . . , cn) ∈ A, we define the continuous functions icj : Ej → E, such that

icj(x) = (c1, . . . , cj−1, x, cj+1, . . . , cn).

For any function f : A→ F , we have functions f ◦ icj : Ej → F , defined on (icj)
−1(A), which

contains cj. If D(f ◦icj)(cj) exists, we call it the partial derivative of f w.r.t. its jth argument,
at c. We also denote this derivative by Djf(c). Note that Djf(c) ∈ L(Ej;F ).

This notion is a generalization of the notion defined in Definition 20.4. In fact, when E
is of dimension n, and a basis (u1, . . . , un) has been chosen, we can write E = E1⊕ · · ·⊕En,
for some obvious Ej (as explained just after Proposition 20.9), and then

Djf(c)(λuj) = λ∂jf(c),

and the two notions are consistent. We will use freely the notation ∂jf(c) instead of Djf(c).

The notion ∂jf(c) introduced in Definition 20.4 is really that of the vector derivative,
whereas Djf(c) is the corresponding linear map. Although perhaps confusing, we identify
the two notions. The following proposition holds.

Proposition 20.11. Given a normed vector space E = E1⊕ · · · ⊕En, and a normed vector
space F , given any open subset A of E, for any function f : A → F , for every c ∈ A, if
Df(c) exists, then each Djf(c) exists, and

Df(c)(u1, . . . , un) = D1f(c)(u1) + · · ·+ Dnf(c)(un),

for every ui ∈ Ei, 1 ≤ i ≤ n. The same result holds for the finite product E1 × · · · × En.

Proof. If ij : Ej → E is the linear map given by

ij(x) = (0, . . . , 0, x, 0, . . . , 0),

then
icj(x) = (c1, . . . , cj−1, 0, cj+1, . . . , cn) + ij(x),

which shows that icj is affine, so Dicj(x) = ij. The proposition is then a simple application of
Theorem 20.6.

20.2 Jacobian Matrices

If both E and F are of finite dimension, for any basis (u1, . . . , un) of E and any basis
(v1, . . . , vm) of F , every function f : E → F is determined by m functions fi : E → R (or
fi : E → C), where

f(x) = f1(x)v1 + · · ·+ fm(x)vm,
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for every x ∈ E. From Proposition 20.1, we have

Df(a)(uj) = Dujf(a) = ∂jf(a),

and from Proposition 20.10, we have

Df(a)(uj) = Df1(a)(uj)v1 + · · ·+ Dfi(a)(uj)vi + · · ·+ Dfm(a)(uj)vm,

that is,
Df(a)(uj) = ∂jf1(a)v1 + · · ·+ ∂jfi(a)vi + · · ·+ ∂jfm(a)vm.

Since the j-th column of the m×n-matrix representing Df(a) w.r.t. the bases (u1, . . . , un)
and (v1, . . . , vm) is equal to the components of the vector Df(a)(uj) over the basis (v1, . . . ,vm),
the linear map Df(a) is determined by the m×n-matrix J(f)(a) = (∂jfi(a)), (or J(f)(a) =
(∂fi/∂xj)(a)):

J(f)(a) =


∂1f1(a) ∂2f1(a) . . . ∂nf1(a)
∂1f2(a) ∂2f2(a) . . . ∂nf2(a)

...
...

. . .
...

∂1fm(a) ∂2fm(a) . . . ∂nfm(a)


or

J(f)(a) =



∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xn
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xn
(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)


This matrix is called the Jacobian matrix of Df at a. When m = n, the determinant,

det(J(f)(a)), of J(f)(a) is called the Jacobian of Df(a). From a previous remark, we know
that this determinant in fact only depends on Df(a), and not on specific bases. However,
partial derivatives give a means for computing it.

When E = Rn and F = Rm, for any function f : Rn → Rm, it is easy to compute the
partial derivatives (∂fi/∂xj)(a). We simply treat the function fi : Rn → R as a function of
its j-th argument, leaving the others fixed, and compute the derivative as in Definition 20.1,
that is, the usual derivative.

Example 20.2. For example, consider the function f : R2 → R2, defined such that

f(r, θ) = (r cos(θ), r sin(θ)).

Then, we have

J(f)(r, θ) =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
and the Jacobian (determinant) has value det(J(f)(r, θ)) = r.
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In the case where E = R (or E = C), for any function f : R → F (or f : C → F ), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D1f(a).
Then, for every λ ∈ R (or λ ∈ C),

Df(a)(λ) = λD1f(a).

This case is sufficiently important to warrant a definition.

Definition 20.5. Given a function f : R→ F (or f : C→ F ), where F is a normed vector
space, the vector

Df(a)(1) = D1f(a)

is called the vector derivative or velocity vector (in the real case) at a. We usually identify
Df(a) with its Jacobian matrix D1f(a), which is the column vector corresponding to D1f(a).
By abuse of notation, we also let Df(a) denote the vector Df(a)(1) = D1f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve that is
the trajectory of some particle moving in Rm as a function of time, and the vector D1f(a)
is the velocity of the moving particle f(t) at t = a; see Figure 20.3.

It is often useful to consider functions f : [a, b]→ F from a closed interval [a, b] ⊆ R to a
normed vector space F , and its derivative Df(a) on [a, b], even though [a, b] is not open. In
this case, as in the case of a real-valued function, we define the right derivative D1f(a+) at
a, and the left derivative D1f(b−) at b, and we assume their existence.

Example 20.3.

1. When A = (0, 1) and F = R3, a function
f : (0, 1) → R3 defines a (parametric) curve in R3. If f = (f1, f2, f3), its Jacobian
matrix at a ∈ R is

J(f)(a) =



∂f1

∂t
(a)

∂f2

∂t
(a)

∂f3

∂t
(a)

 .

See Figure 20.3.

The velocity vectors J(f)(a) =

− sin(t)
cos(t)

1

 are represented by the blue arrows.



20.2. JACOBIAN MATRICES 563

Figure 20.3: The red space curve f(t) = (cos(t), sin(t), t).

2. When E = R2 and F = R3, a function ϕ : R2 → R3 defines a parametric surface.
Letting ϕ = (f, g, h), its Jacobian matrix at a ∈ R2 is

J(ϕ)(a) =



∂f

∂u
(a)

∂f

∂v
(a)

∂g

∂u
(a)

∂g

∂v
(a)

∂h

∂u
(a)

∂h

∂v
(a)

 .

See Figure 20.4. The Jacobian matrix is J(f)(a) =

 1 0
0 1

2u 2v

. The first column is

the vector tangent to the pink u-direction curve, while the second column is the vector
tangent to the blue v-direction curve.

3. When E = R3 and F = R, for a function f : R3 → R, the Jacobian matrix at a ∈ R3 is

J(f)(a) =

(
∂f

∂x
(a)

∂f

∂y
(a)

∂f

∂z
(a)

)
.

More generally, when f : Rn → R, the Jacobian matrix at a ∈ Rn is the row vector

J(f)(a) =

(
∂f

∂x1

(a) · · · ∂f
∂xn

(a)

)
.

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a) or ∇f(a).
Then, given any v ∈ Rn, note that

Df(a)(v) =
∂f

∂x1

(a) v1 + · · ·+ ∂f

∂xn
(a) vn = gradf(a) · v,
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Figure 20.4: The parametric surface x = u, y = v, z = u2 + v2.

the scalar product of gradf(a) and v.

Example 20.4. Consider the quadratic function f : Rn → R given by

f(x) = x>Ax, x ∈ Rn,

where A is a real n× n symmetric matrix. We claim that

dfu(h) = 2u>Ah for all u, h ∈ Rn.

Since A is symmetric, we have

f(u+ h) = (u> + h>)A(u+ h)

= u>Au+ u>Ah+ h>Au+ h>Ah

= u>Au+ 2u>Ah+ h>Ah,

so we have

f(u+ h)− f(u)− 2u>Ah = h>Ah.

If we write

ε(h) =
h>Ah

‖h‖
for h /∈ 0 where ‖ ‖ is the 2-norm, by Cauchy–Schwarz we have

|ε(h)| ≤ ‖h‖ ‖Ah‖‖h‖ ≤ ‖h‖
2 ‖A‖
‖h‖ = ‖h‖ ‖A‖ ,
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which shows that limh7→0 ε(h) = 0. Therefore,

dfu(h) = 2u>Ah for all u, h ∈ Rn,

as claimed. This formula shows that the gradient ∇fu of f at u is given by

∇fu = 2Au.

As a first corollary we obtain the gradient of a function of the form

f(x) =
1

2
x>Ax− b>x,

where A is a symmetric n× n matrix and b is some vector b ∈ Rn. Since the derivative of a
linear function is itself, we obtain

dfu(h) = u>Ah− b>h,

and the gradient of f is given by

∇fu = Au− b.

As a second corollary we obtain the gradient of the function

f(x) = ‖Ax− b‖2
2 = (Ax− b)>(Ax− b) = (x>A> − b>)(Ax− b)

which is the function to minimize in a least squares problem, where A is an m × n matrix.
We have

f(x) = x>A>Ax− x>A>b− b>Ax+ b>b = x>A>Ax− 2b>Ax+ b>b,

and since the derivative of a constant function is 0 and the derivative of a linear function is
itself, we get

dfu(h) = 2u>A>Ah− 2b>Ah.

Consequently, the gradient of f is given by

∇fu = 2A>Au− 2A>b.

When E, F , and G have finite dimensions, and (u1, . . . , up) is a basis for E, (v1, . . . , vn)
is a basis for F , and (w1, . . . , wm) is a basis for G, if A is an open subset of E, B is an
open subset of F , for any functions f : A→ F and g : B → G, such that f(A) ⊆ B, for any
a ∈ A, letting b = f(a), and h = g ◦ f , if Df(a) exists and Dg(b) exists, by Theorem 20.6,
the Jacobian matrix J(h)(a) = J(g ◦ f)(a) w.r.t. the bases (u1, . . . , up) and (w1, . . . , wm) is
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the product of the Jacobian matrices J(g)(b) w.r.t. the bases (v1, . . . , vn) and (w1, . . . , wm),
and J(f)(a) w.r.t. the bases (u1, . . . , up) and (v1, . . . , vn):

J(h)(a) =


∂1g1(b) ∂2g1(b) . . . ∂ng1(b)
∂1g2(b) ∂2g2(b) . . . ∂ng2(b)

...
...

. . .
...

∂1gm(b) ∂2gm(b) . . . ∂ngm(b)



∂1f1(a) ∂2f1(a) . . . ∂pf1(a)
∂1f2(a) ∂2f2(a) . . . ∂pf2(a)

...
...

. . .
...

∂1fn(a) ∂2fn(a) . . . ∂pfn(a)


or

J(h)(a) =



∂g1

∂y1

(b)
∂g1

∂y2

(b) . . .
∂g1

∂yn
(b)

∂g2

∂y1

(b)
∂g2

∂y2

(b) . . .
∂g2

∂yn
(b)

...
...

. . .
...

∂gm
∂y1

(b)
∂gm
∂y2

(b) . . .
∂gm
∂yn

(b)





∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xp
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xp
(a)

...
...

. . .
...

∂fn
∂x1

(a)
∂fn
∂x2

(a) . . .
∂fn
∂xp

(a)


.

Thus, we have the familiar formula

∂hi
∂xj

(a) =
k=n∑
k=1

∂gi
∂yk

(b)
∂fk
∂xj

(a).

Given two normed vector spaces E and F of finite dimension, given an open subset A of
E, if a function f : A→ F is differentiable at a ∈ A, then its Jacobian matrix is well defined.

� One should be warned that the converse is false. There are functions such that all the
partial derivatives exist at some a ∈ A, but yet, the function is not differentiable at a,

and not even continuous at a. For example, consider the function f : R2 → R, defined such
that f(0, 0) = 0, and

f(x, y) =
x2y

x4 + y2
if (x, y) 6= (0, 0).

For any u 6= 0, letting u =

(
h
k

)
, we have

f(0 + tu)− f(0)

t
=

h2k

t2h4 + k2
,

so that

Duf(0, 0) =

{
h2

k
if k 6= 0

0 if k = 0.

Thus, Duf(0, 0) exists for all u 6= 0. On the other hand, if Df(0, 0) existed, it would be
a linear map Df(0, 0) : R2 → R represented by a row matrix (α β), and we would have
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Duf(0, 0) = Df(0, 0)(u) = αh + βk, but the explicit formula for Duf(0, 0) is not linear. As
a matter of fact, the function f is not continuous at (0, 0). For example, on the parabola
y = x2, f(x, y) = 1

2
, and when we approach the origin on this parabola, the limit is 1

2
, when

in fact, f(0, 0) = 0.

However, there are sufficient conditions on the partial derivatives for Df(a) to exist,
namely, continuity of the partial derivatives.

If f is differentiable on A, then f defines a function Df : A→ L(E;F ). It turns out that
the continuity of the partial derivatives on A is a necessary and sufficient condition for Df
to exist and to be continuous on A.

If f : [a, b]→ R is a function which is continuous on [a, b] and differentiable on ]a, b], then
there is some c with a < c < b such that

f(b)− f(a) = (b− a)f ′(c).

This result is known as the mean value theorem and is a generalization of Rolle’s theorem,
which corresponds to the case where f(a) = f(b).

Unfortunately, the mean value theorem fails for vector-valued functions. For example,
the function f : [0, 2π]→ R2 given by

f(t) = (cos t, sin t)

is such that f(2π)− f(0) = (0, 0), yet its derivative f ′(t) = (− sin t, cos t) does not vanish in
(0, 2π).

A suitable generalization of the mean value theorem to vector-valued functions is possible
if we consider an inequality (an upper bound) instead of an equality. This generalized version
of the mean value theorem plays an important role in the proof of several major results of
differential calculus.

If E is an vector space (over R or C), given any two points a, b ∈ E, the closed segment
[a, b] is the set of all points a + λ(b − a), where 0 ≤ λ ≤ 1, λ ∈ R, and the open segment
(a, b) is the set of all points a+ λ(b− a), where 0 < λ < 1, λ ∈ R.

Lemma 20.12. Let E and F be two normed vector spaces, let A be an open subset of E,
and let f : A→ F be a continuous function on A. Given any a ∈ A and any h 6= 0 in E, if
the closed segment [a, a + h] is contained in A, if f : A → F is differentiable at every point
of the open segment (a, a+ h), and

sup
x∈(a,a+h)

‖Df(x)‖ ≤M,

for some M ≥ 0, then
‖f(a+ h)− f(a)‖ ≤M‖h‖.
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As a corollary, if L : E → F is a continuous linear map, then

‖f(a+ h)− f(a)− L(h)‖ ≤M‖h‖,

where M = supx∈(a,a+h) ‖Df(x)− L‖.

The above lemma is sometimes called the “mean value theorem.” Lemma 20.12 can be
used to show the following important result.

Theorem 20.13. Given two normed vector spaces E and F , where E is of finite dimension
n, and where (u1, . . . , un) is a basis of E, given any open subset A of E, given any function
f : A → F , the derivative Df : A → L(E;F ) is defined and continuous on A iff every

partial derivative ∂jf (or
∂f

∂xj
) is defined and continuous on A, for all j, 1 ≤ j ≤ n. As

a corollary, if F is of finite dimension m, and (v1, . . . , vm) is a basis of F , the derivative

Df : A→ L(E;F ) is defined and continuous on A iff every partial derivative ∂jfi (or
∂fi
∂xj

)

is defined and continuous on A, for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Theorem 20.13 gives a necessary and sufficient condition for the existence and continuity
of the derivative of a function on an open set. It should be noted that a more general version
of Theorem 20.13 holds, assuming that E = E1⊕ · · · ⊕En, or E = E1× · · · ×En, and using
the more general partial derivatives Djf introduced before Proposition 20.11.

Definition 20.6. Given two normed vector spaces E and F , and an open subset A of E, we
say that a function f : A→ F is of class C0 on A or a C0-function on A if f is continuous
on A. We say that f : A→ F is of class C1 on A or a C1-function on A if Df exists and is
continuous on A.

Since the existence of the derivative on an open set implies continuity, a C1-function
is of course a C0-function. Theorem 20.13 gives a necessary and sufficient condition for a
function f to be a C1-function (when E is of finite dimension). It is easy to show that the
composition of C1-functions (on appropriate open sets) is a C1-function.

20.3 The Implicit and The Inverse Function Theorems

Given three normed vector spaces E,F , and G, given a function f : E × F → G, given any
c ∈ G, it may happen that the equation

f(x, y) = c

has the property that, for some open sets A ⊆ E, and B ⊆ F , there is a function g : A→ B,
such that

f(x, g(x)) = c,
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for all x ∈ A. Such a situation is usually very rare, but if some solution (a, b) ∈ E × F
such that f(a, b) = c is known, under certain conditions, for some small open sets A ⊆ E
containing a and B ⊆ F containing b, the existence of a unique g : A→ B, such that

f(x, g(x)) = c,

for all x ∈ A, can be shown. Under certain conditions, it can also be shown that g is
continuous, and differentiable. Such a theorem, known as the implicit function theorem,
can be shown. We state a version of this result below. The proof is fairly involved, and
uses a fixed-point theorem for contracting mappings in complete metric spaces; it is given in
Schwartz [92].

Theorem 20.14. Let E,F , and G, be normed vector spaces, let Ω be an open subset of
E × F , let f : Ω→ G be a function defined on Ω, let (a, b) ∈ Ω, let c ∈ G, and assume that
f(a, b) = c. If the following assumptions hold:

(1) The function f : Ω→ G is continuous on Ω;

(2) F is a complete normed vector space (and so is G);

(3)
∂f

∂y
(x, y) exists for every (x, y) ∈ Ω, and

∂f

∂y
: Ω→ L(F ;G) is continuous;

(4)
∂f

∂y
(a, b) is a bijection of L(F ;G), and

(∂f
∂y

(a, b)
)−1

∈ L(G;F );

then the following properties hold:

(a) There exist some open subset A ⊆ E containing a and some open subset B ⊆ F
containing b, such that A× B ⊆ Ω, and for every x ∈ A, the equation f(x, y) = c has
a single solution y = g(x), and thus, there is a unique function g : A → B such that
f(x, g(x)) = c, for all x ∈ A;

(b) The function g : A→ B is continuous.

If we also assume that

(5) The derivative Df(a, b) exists;

then

(c) The derivative Dg(a) exists, and

Dg(a) = −
(∂f
∂y

(a, b)
)−1

◦ ∂f
∂x

(a, b);

and if in addition
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(6)
∂f

∂x
: Ω→ L(E;G) is also continuous (and thus, in view of (3), f is C1 on Ω);

then

(d) The derivative Dg : A→ L(E;F ) is continuous, and

Dg(x) = −
(∂f
∂y

(x, g(x))
)−1

◦ ∂f
∂x

(x, g(x)),

for all x ∈ A.

The implicit function theorem plays an important role in the calculus of variations. We
now consider another very important notion, that of a (local) diffeomorphism.

Definition 20.7. Given two topological spaces E and F , and an open subset A of E, we
say that a function f : A → F is a local homeomorphism from A to F if for every a ∈ A,
there is an open set U ⊆ A containing a and an open set V containing f(a) such that f is a
homeomorphism from U to V = f(U). If B is an open subset of F , we say that f : A → F
is a (global) homeomorphism from A to B if f is a homeomorphism from A to B = f(A). If
E and F are normed vector spaces, we say that f : A → F is a local diffeomorphism from
A to F if for every a ∈ A, there is an open set U ⊆ A containing a and an open set V
containing f(a) such that f is a bijection from U to V , f is a C1-function on U , and f−1

is a C1-function on V = f(U). We say that f : A → F is a (global) diffeomorphism from A
to B if f is a homeomorphism from A to B = f(A), f is a C1-function on A, and f−1 is a
C1-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a consequence of
Proposition 20.8, if f is a diffeomorphism on A, then Df(a) is a bijection for every a ∈ A.
The following theorem can be shown. In fact, there is a fairly simple proof using Theorem
20.14.

Theorem 20.15. (Inverse Function Theorem) Let E and F be complete normed spaces, let
A be an open subset of E, and let f : A→ F be a C1-function on A. The following properties
hold:

(1) For every a ∈ A, if Df(a) is a linear isomorphism (which means that both Df(a)
and (Df(a))−1 are linear and continuous),2 then there exist some open subset U ⊆ A
containing a, and some open subset V of F containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df−1(f(a)) = (Df(a))−1.

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a), and
for every open ball U ⊆ A of center a, the image f(U) of U contains some open ball
of center f(a).

2Actually, since E and F are Banach spaces, by the Open Mapping Theorem, it is sufficient to assume
that Df(a) is continuous and bijective; see Lang [65].
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(2) If Df(a) is invertible for every a ∈ A, then B = f(A) is an open subset of F , and
f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is a
diffeomorphism from A to B.

Proofs of the Inverse function theorem can be found in Lang [65], Abraham and Marsden
[1], Schwartz [92], and Cartan [26]. Part (1) of Theorem 20.15 is often referred to as the
“(local) inverse function theorem.” It plays an important role in the study of manifolds and
(ordinary) differential equations.

If E and F are both of finite dimension, and some bases have been chosen, the invertibility
of Df(a) is equivalent to the fact that the Jacobian determinant det(J(f)(a)) is nonnull. The
case where Df(a) is just injective or just surjective is also important for defining manifolds,
using implicit definitions.

Definition 20.8. Let E and F be normed vector spaces, where E and F are of finite
dimension (or both E and F are complete), and let A be an open subset of E. For any
a ∈ A, a C1-function f : A → F is an immersion at a if Df(a) is injective. A C1-function
f : A → F is a submersion at a if Df(a) is surjective. A C1-function f : A → F is an
immersion on A (resp. a submersion on A) if Df(a) is injective (resp. surjective) for every
a ∈ A.

When E and F are finite dimensional with dim(E) = n and dim(F ) = m, if m ≥ n,
then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank n for all a ∈ E and
if n ≥ m, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank m for all
a ∈ E. For example, f : R → R2 defined by f(t) = (cos(t), sin(t)) is an immersion since

J(f)(t) =

(
− sin(t)
cos(t)

)
has rank 1 for all t. On the other hand, f : R → R2 defined by

f(t) = (t2, t2) is not an immersion since J(f)(t) =

(
2t
2t

)
vanishes at t = 0. See Figure 20.5.

An example of a submersion is given by the projection map f : R2 → R, where f(x, y) = x,
since J(f)(x, y) =

(
1 0

)
.

The following results can be shown.

Proposition 20.16. Let A be an open subset of Rn, and let f : A → Rm be a function.
For every a ∈ A, f : A → Rm is a submersion at a iff there exists an open subset U of A
containing a, an open subset W ⊆ Rn−m, and a diffeomorphism ϕ : U → f(U) ×W , such
that,

f = π1 ◦ ϕ,

where π1 : f(U)×W → f(U) is the first projection. Equivalently,

(f ◦ ϕ−1)(y1, . . . , ym, . . . , yn) = (y1, . . . , ym).
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(i.)

(ii.)

Figure 20.5: Figure (i.) is the immersion of R into R2 given by f(t) = (cos(t), sin(t)). Figure
(ii.), the parametric curve f(t) = (t2, t2), is not an immersion since the tangent vanishes at
the origin.

U ⊆ A
ϕ //

f &&NNNNNNNNNNN f(U)×W
π1
��

f(U) ⊆ Rm

Futhermore, the image of every open subset of A under f is an open subset of F . (The same
result holds for Cn and Cm).

Proposition 20.17. Let A be an open subset of Rn, and let f : A → Rm be a function.
For every a ∈ A, f : A → Rm is an immersion at a iff there exists an open subset U of
A containing a, an open subset V containing f(a) such that f(U) ⊆ V , an open subset W
containing 0 such that W ⊆ Rm−n, and a diffeomorphism ϕ : V → U ×W , such that,

ϕ ◦ f = in1,

where in1 : U → U ×W is the injection map such that in1(u) = (u, 0), or equivalently,

(ϕ ◦ f)(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).
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U ⊆ A
f //

in1 &&MMMMMMMMMMM f(U) ⊆ V

ϕ

��
U ×W

(The same result holds for Cn and Cm).

We now briefly consider second-order and higher-order derivatives.

20.4 Second-Order and Higher-Order Derivatives

Given two normed vector spaces E and F , and some open subset A of E, if Df(a) is defined
for every a ∈ A, then we have a mapping Df : A → L(E;F ). Since L(E;F ) is a normed
vector space, if Df exists on an open subset U of A containing a, we can consider taking
the derivative of Df at some a ∈ A. If D(Df)(a) exists for every a ∈ A, we get a mapping
D2f : A → L(E;L(E;F )), where D2f(a) = D(Df)(a), for every a ∈ A. If D2f(a) exists,
then for every u ∈ E,

D2f(a)(u) = D(Df)(a)(u) = Du(Df)(a) ∈ L(E;F ).

Recall from Proposition 19.19, that the map app from L(E;F ) × E to F , defined such
that for every L ∈ L(E;F ), for every v ∈ E,

app(L, v) = L(v),

is a continuous bilinear map. Thus, in particular, given a fixed v ∈ E, the linear map
appv : L(E;F )→ F , defined such that appv(L) = L(v), is a continuous map.

Also recall from Proposition 20.7, that if h : A→ G is a function such that Dh(a) exits,
and k : G→ H is a continuous linear map, then, D(k ◦ h)(a) exists, and

k(Dh(a)(u)) = D(k ◦ h)(a)(u),

that is,
k(Duh(a)) = Du(k ◦ h)(a),

Applying these two facts to h = Df , and to k = appv, we have

Du(Df)(a)(v) = Du(appv ◦Df)(a).

But (appv ◦Df)(x) = Df(x)(v) = Dvf(x), for every x ∈ A, that is, appv ◦Df = Dvf on A.
So, we have

Du(Df)(a)(v) = Du(Dvf)(a),

and since D2f(a)(u) = Du(Df)(a), we get

D2f(a)(u)(v) = Du(Dvf)(a).
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Thus, when D2f(a) exists, Du(Dvf)(a) exists, and

D2f(a)(u)(v) = Du(Dvf)(a),

for all u, v ∈ E. We also denote Du(Dvf)(a) by D2
u,vf(a), or DuDvf(a).

Recall from Proposition 19.18, that the map from L2(E,E;F ) to L(E;L(E;F )) defined
such that g 7→ ϕ iff for every g ∈ L2(E,E;F ),

ϕ(u)(v) = g(u, v),

is an isomorphism of vector spaces. Thus, we will consider D2f(a) ∈ L(E;L(E;F )) as a con-
tinuous bilinear map in L2(E,E;F ), and we will write D2f(a)(u, v), instead of D2f(a)(u)(v).

Then, the above discussion can be summarized by saying that when D2f(a) is defined,
we have

D2f(a)(u, v) = DuDvf(a).

When E has finite dimension and (e1, . . . , en) is a basis for E, we denote DejDeif(a) by
∂2f

∂xi∂xj
(a), when i 6= j, and we denote DeiDeif(a) by

∂2f

∂x2
i

(a).

The following important lemma attributed to Schwarz can be shown, using Lemma 20.12.
Given a bilinear map f : E × E → F , recall that f is symmetric, if

f(u, v) = f(v, u),

for all u, v ∈ E.

Lemma 20.18. (Schwarz’s lemma) Given two normed vector spaces E and F , given any
open subset A of E, given any f : A→ F , for every a ∈ A, if D2f(a) exists, then D2f(a) ∈
L2(E,E;F ) is a continuous symmetric bilinear map. As a corollary, if E is of finite dimen-
sion n, and (e1, . . . , en) is a basis for E, we have

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).

Remark: There is a variation of the above lemma which does not assume the existence of
D2f(a), but instead assumes that DuDvf and DvDuf exist on an open subset containing a
and are continuous at a, and concludes that DuDvf(a) = DvDuf(a). This is just a different
result which does not imply Lemma 20.18, and is not a consequence of Lemma 20.18.

� When E = R2, the only existence of
∂2f

∂x∂y
(a) and

∂2f

∂y∂x
(a) is not sufficient to insure the

existence of D2f(a).
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When E if of finite dimension n and (e1, . . . , en) is a basis for E, if D2f(a) exists, for
every u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen in E, since D2f(a) is a symmetric
bilinear form, we have

D2f(a)(u, v) =
n∑

i=1,j=1

uivj
∂2f

∂xi∂xj
(a),

which can be written in matrix form as:

D2f(a)(u, v) = U>



∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a) . . .
∂2f

∂x1∂xn
(a)

∂2f

∂x1∂x2

(a)
∂2f

∂x2
2

(a) . . .
∂2f

∂x2∂xn
(a)

...
...

. . .
...

∂2f

∂x1∂xn
(a)

∂2f

∂x2∂xn
(a) . . .

∂2f

∂x2
n

(a)


V

where U is the column matrix representing u, and V is the column matrix representing v,
over the basis (e1, . . . , en).

The above symmetric matrix is called the Hessian of f at a. If F itself is of finite
dimension, and (v1, . . . , vm) is a basis for F , then f = (f1, . . . , fm), and each component
D2f(a)i(u, v) of D2f(a)(u, v) (1 ≤ i ≤ m), can be written as

D2f(a)i(u, v) = U>



∂2fi
∂x2

1

(a)
∂2fi

∂x1∂x2

(a) . . .
∂2fi

∂x1∂xn
(a)

∂2fi
∂x1∂x2

(a)
∂2fi
∂x2

2

(a) . . .
∂2fi

∂x2∂xn
(a)

...
...

. . .
...

∂2fi
∂x1∂xn

(a)
∂2fi

∂x2∂xn
(a) . . .

∂2fi
∂x2

n

(a)


V

Thus, we could describe the vector D2f(a)(u, v) in terms of an mn×mn-matrix consisting
of m diagonal blocks, which are the above Hessians, and the row matrix (U>, . . . , U>) (m
times) and the column matrix consisting of m copies of V . In particular, if m = 1, that is,
F = R or F = C, then the Hessian matrix is an n× n matrix.

We now indicate briefly how higher-order derivatives are defined. Let m ≥ 2. Given
a function f : A → F as before, for any a ∈ A, if the derivatives Dif exist on A for all
i, 1 ≤ i ≤ m − 1, by induction, Dm−1f can be considered to be a continuous function
Dm−1f : A→ Lm−1(Em−1;F ), and we define

Dmf(a) = D(Dm−1f)(a).



576 CHAPTER 20. DIFFERENTIAL CALCULUS

Then, Dmf(a) can be identified with a continuous m-multilinear map in Lm(Em;F ). We
can then show (as we did before), that if Dmf(a) is defined, then

Dmf(a)(u1, . . . , um) = Du1 . . .Dumf(a).

When E if of finite dimension n and (e1, . . . , en) is a basis for E, if Dmf(a) exists, for
every j1, . . . , jm ∈ {1, . . . , n}, we denote Dejm

. . .Dej1
f(a) by

∂mf

∂xj1 . . . ∂xjm
(a).

Given a m-multilinear map f ∈ Lm(Em;F ), recall that f is symmetric if

f(uπ(1), . . . , uπ(m)) = f(u1, . . . , um),

for all u1, . . . , um ∈ E, and all permutations π on {1, . . . ,m}. Then, the following general-
ization of Schwarz’s lemma holds.

Lemma 20.19. Given two normed vector spaces E and F , given any open subset A of E,
given any f : A → F , for every a ∈ A, for every m ≥ 1, if Dmf(a) exists, then Dmf(a) ∈
Lm(Em;F ) is a continuous symmetric m-multilinear map. As a corollary, if E is of finite
dimension n, and (e1, . . . , en) is a basis for E, we have

∂mf

∂xj1 . . . ∂xjm
(a) =

∂mf

∂xπ(j1) . . . ∂xπ(jm)

(a),

for every j1, . . . , jm ∈ {1, . . . , n}, and for every permutation π on {1, . . . ,m}.

If E is of finite dimension n, and (e1, . . . , en) is a basis for E, Dmf(a) is a symmetric
m-multilinear map, and we have

Dmf(a)(u1, . . . , um) =
∑
j

u1,j1 · · ·um,jm
∂mf

∂xj1 . . . ∂xjm
(a),

where j ranges over all functions j : {1, . . . ,m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · ·+ uj,nen.

The concept of C1-function is generalized to the concept of Cm-function, and Theorem
20.13 can also be generalized.

Definition 20.9. Given two normed vector spaces E and F , and an open subset A of E,
for any m ≥ 1, we say that a function f : A → F is of class Cm on A or a Cm-function on
A if Dkf exists and is continuous on A for every k, 1 ≤ k ≤ m. We say that f : A → F
is of class C∞ on A or a C∞-function on A if Dkf exists and is continuous on A for every
k ≥ 1. A C∞-function (on A) is also called a smooth function (on A). A Cm-diffeomorphism
f : A → B between A and B (where A is an open subset of E and B is an open subset
of B) is a bijection between A and B = f(A), such that both f : A → B and its inverse
f−1 : B → A are Cm-functions.
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Equivalently, f is a Cm-function on A if f is a C1-function on A and Df is a Cm−1-
function on A.

We have the following theorem giving a necessary and sufficient condition for f to a
Cm-function on A. A generalization to the case where E = E1 ⊕ · · · ⊕ En also holds.

Theorem 20.20. Given two normed vector spaces E and F , where E is of finite dimension
n, and where (u1, . . . , un) is a basis of E, given any open subset A of E, given any function
f : A → F , for any m ≥ 1, the derivative Dmf is a Cm-function on A iff every partial

derivative Dujk
. . .Duj1

f (or
∂kf

∂xj1 . . . ∂xjk
(a)) is defined and continuous on A, for all k,

1 ≤ k ≤ m, and all j1, . . . , jk ∈ {1, . . . , n}. As a corollary, if F is of finite dimension p,
and (v1, . . . , vp) is a basis of F , the derivative Dmf is defined and continuous on A iff every

partial derivative Dujk
. . .Duj1

fi (or
∂kfi

∂xj1 . . . ∂xjk
(a)) is defined and continuous on A, for all

k, 1 ≤ k ≤ m, for all i, 1 ≤ i ≤ p, and all j1, . . . , jk ∈ {1, . . . , n}.

When E = R (or E = C), for any a ∈ E, Dmf(a)(1, . . . , 1) is a vector in F , called
the mth-order vector derivative. As in the case m = 1, we will usually identify the mul-
tilinear map Dmf(a) with the vector Dmf(a)(1, . . . , 1). Some notational conventions can
also be introduced to simplify the notation of higher-order derivatives, and we discuss such
conventions very briefly.

Recall that when E is of finite dimension n, and (e1, . . . , en) is a basis for E, Dmf(a) is
a symmetric m-multilinear map, and we have

Dmf(a)(u1, . . . , um) =
∑
j

u1,j1 · · ·um,jm
∂mf

∂xj1 . . . ∂xjm
(a),

where j ranges over all functions j : {1, . . . ,m} → {1, . . . , n}, for any m vectors

uj = uj,1e1 + · · ·+ uj,nen.

We can then group the various occurrences of ∂xjk corresponding to the same variable xjk ,
and this leads to the notation( ∂

∂x1

)α1
( ∂

∂x2

)α2

· · ·
( ∂

∂xn

)αn
f(a),

where α1 + α2 + · · ·+ αn = m.

If we denote (α1, . . . , αn) simply by α, then we denote( ∂

∂x1

)α1
( ∂

∂x2

)α2

· · ·
( ∂

∂xn

)αn
f

by

∂αf, or
( ∂
∂x

)α
f.
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If α = (α1, . . . , αn), we let |α| = α1 + α2 + · · ·+ αn, α! = α1! · · ·αn!, and if h = (h1, . . . , hn),
we denote hα1

1 · · ·hαnn by hα.

In the next section, we survey various versions of Taylor’s formula.

20.5 Taylor’s Formula, Faà di Bruno’s Formula

We discuss, without proofs, several versions of Taylor’s formula. The hypotheses required in
each version become increasingly stronger. The first version can be viewed as a generalization
of the notion of derivative. Given an m-linear map f : Em → F , for any vector h ∈ E, we
abbreviate

f(h, . . . , h︸ ︷︷ ︸
m

)

by f(hm). The version of Taylor’s formula given next is sometimes referred to as the formula
of Taylor–Young .

Theorem 20.21. (Taylor–Young) Given two normed vector spaces E and F , for any open
subset A ⊆ E, for any function f : A → F , for any a ∈ A, if Dkf exists in A for all k,
1 ≤ k ≤ m− 1, and if Dmf(a) exists, then we have:

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) + ‖h‖mε(h),

for any h such that a+ h ∈ A, and where limh→0, h 6=0 ε(h) = 0.

The above version of Taylor’s formula has applications to the study of relative maxima
(or minima) of real-valued functions. It is also used to study the local properties of curves
and surfaces.

The next version of Taylor’s formula can be viewed as a generalization of Lemma 20.12.
It is sometimes called the Taylor formula with Lagrange remainder or generalized mean value
theorem.

Theorem 20.22. (Generalized mean value theorem) Let E and F be two normed vector
spaces, let A be an open subset of E, and let f : A → F be a function on A. Given any
a ∈ A and any h 6= 0 in E, if the closed segment [a, a + h] is contained in A, Dkf exists in
A for all k, 1 ≤ k ≤ m, Dm+1f(x) exists at every point x of the open segment ]a, a+h[, and

max
x∈(a,a+h)

∥∥Dm+1f(x)
∥∥ ≤M,

for some M ≥ 0, then∥∥∥∥f(a+ h)− f(a)−
( 1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm)

)∥∥∥∥ ≤M
‖h‖m+1

(m+ 1)!
.
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As a corollary, if L : Em+1 → F is a continuous (m+ 1)-linear map, then∥∥∥∥f(a+ h)− f(a)−
( 1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) +

L(hm+1)

(m+ 1)!

)∥∥∥∥ ≤M
‖h‖m+1

(m+ 1)!
,

where M = maxx∈(a,a+h) ‖Dm+1f(x)− L‖.

The above theorem is sometimes stated under the slightly stronger assumption that f is
a Cm-function on A. If f : A→ R is a real-valued function, Theorem 20.22 can be refined a
little bit. This version is often called the formula of Taylor–Maclaurin.

Theorem 20.23. (Taylor–Maclaurin) Let E be a normed vector space, let A be an open
subset of E, and let f : A → R be a real-valued function on A. Given any a ∈ A and any
h 6= 0 in E, if the closed segment [a, a + h] is contained in A, if Dkf exists in A for all k,
1 ≤ k ≤ m, and Dm+1f(x) exists at every point x of the open segment ]a, a+ h[, then there
is some θ ∈ R, with 0 < θ < 1, such that

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm) +

1

(m+ 1)!
Dm+1f(a+ θh)(hm+1).

We also mention for “mathematical culture,” a version with integral remainder, in the
case of a real-valued function. This is usually called Taylor’s formula with integral remainder .

Theorem 20.24. (Taylor’s formula with integral remainder) Let E be a normed vector
space, let A be an open subset of E, and let f : A→ R be a real-valued function on A. Given
any a ∈ A and any h 6= 0 in E, if the closed segment [a, a + h] is contained in A, and if f
is a Cm+1-function on A, then we have

f(a+ h) = f(a) +
1

1!
D1f(a)(h) + · · ·+ 1

m!
Dmf(a)(hm)

+

∫ 1

0

(1− t)m
m!

[
Dm+1f(a+ th)(hm+1)

]
dt.

The advantage of the above formula is that it gives an explicit remainder. We now
examine briefly the situation where E is of finite dimension n, and (e1, . . . , en) is a basis for
E. In this case, we get a more explicit expression for the expression

k=m∑
i=0

1

k!
Dkf(a)(hk)

involved in all versions of Taylor’s formula, where by convention, D0f(a)(h0) = f(a). If
h = h1e1 + · · ·+ hnen, then we have

k=m∑
k=0

1

k!
Dkf(a)(hk) =

∑
k1+···+kn≤m

hk11 · · ·hknn
k1! · · · kn!

( ∂

∂x1

)k1
· · ·
( ∂

∂xn

)kn
f(a),
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which, using the abbreviated notation introduced at the end of Section 20.4, can also be
written as

k=m∑
k=0

1

k!
Dkf(a)(hk) =

∑
|α|≤m

hα

α!
∂αf(a).

The advantange of the above notation is that it is the same as the notation used when
n = 1, i.e., when E = R (or E = C). Indeed, in this case, the Taylor–Maclaurin formula
reads as:

f(a+ h) = f(a) +
h

1!
D1f(a) + · · ·+ hm

m!
Dmf(a) +

hm+1

(m+ 1)!
Dm+1f(a+ θh),

for some θ ∈ R, with 0 < θ < 1, where Dkf(a) is the value of the k-th derivative of f at
a (and thus, as we have already said several times, this is the kth-order vector derivative,
which is just a scalar, since F = R).

In the above formula, the assumptions are that f : [a, a + h] → R is a Cm-function on
[a, a+ h], and that Dm+1f(x) exists for every x ∈ (a, a+ h).

Taylor’s formula is useful to study the local properties of curves and surfaces. In the case
of a curve, we consider a function f : [r, s] → F from a closed interval [r, s] of R to some
vector space F , the derivatives Dkf(a)(hk) correspond to vectors hkDkf(a), where Dkf(a) is
the kth vector derivative of f at a (which is really Dkf(a)(1, . . . , 1)), and for any a ∈ (r, s),
Theorem 20.21 yields the following formula:

f(a+ h) = f(a) +
h

1!
D1f(a) + · · ·+ hm

m!
Dmf(a) + hmε(h),

for any h such that a+ h ∈ (r, s), and where limh→0, h 6=0 ε(h) = 0.

In the case of functions f : Rn → R, it is convenient to have formulae for the Taylor–
Young formula and the Taylor–Maclaurin formula in terms of the gradient and the Hessian.
Recall that the gradient ∇f(a) of f at a ∈ Rn is the column vector

∇f(a) =



∂f

∂x1

(a)

∂f

∂x2

(a)

...

∂f

∂xn
(a)


,

and that
f ′(a)(u) = Df(a)(u) = ∇f(a) · u,

for any u ∈ Rn (where · means inner product). The above equation shows that the direction
of the gradient ∇f(a) is the direction of maximal increase of the function f at a and that
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‖∇f(a)‖ is the rate of change of f in its direction of maximal increase. This is the reason
why methods of “gradient descent” pick the direction opposite to the gradient (we are trying
to minimize f).

The Hessian matrix ∇2f(a) of f at a ∈ Rn is the n× n symmetric matrix

∇2f(a) =



∂2f

∂x2
1

(a)
∂2f

∂x1∂x2

(a) . . .
∂2f

∂x1∂xn
(a)

∂2f

∂x1∂x2

(a)
∂2f

∂x2
2

(a) . . .
∂2f

∂x2∂xn
(a)

...
...

. . .
...

∂2f

∂x1∂xn
(a)

∂2f

∂x2∂xn
(a) . . .

∂2f

∂x2
n

(a)


,

and we have
D2f(a)(u, v) = u>∇2f(a) v = u · ∇2f(a)v = ∇2f(a)u · v,

for all u, v ∈ Rn. Then, we have the following three formulations of the formula of Taylor–
Young of order 2:

f(a+ h) = f(a) + Df(a)(h) +
1

2
D2f(a)(h, h) + ‖h‖2 ε(h)

f(a+ h) = f(a) +∇f(a) · h+
1

2
(h · ∇2f(a)h) + (h · h)ε(h)

f(a+ h) = f(a) + (∇f(a))>h+
1

2
(h>∇2f(a)h) + (h>h)ε(h),

with limh7→0 ε(h) = 0.

One should keep in mind that only the first formula is intrinsic (i.e., does not depend on
the choice of a basis), whereas the other two depend on the basis and the inner product chosen
on Rn. As an exercise, the reader should write similar formulae for the Taylor–Maclaurin
formula of order 2.

Another application of Taylor’s formula is the derivation of a formula which gives the m-
th derivative of the composition of two functions, usually known as “Faà di Bruno’s formula.”
This formula is useful when dealing with geometric continuity of splines curves and surfaces.

Proposition 20.25. Given any normed vector space E, for any function f : R→ R and any
function g : R→ E, for any a ∈ R, letting b = f(a), f (i)(a) = Dif(a), and g(i)(b) = Dig(b),
for any m ≥ 1, if f (i)(a) and g(i)(b) exist for all i, 1 ≤ i ≤ m, then (g◦f)(m)(a) = Dm(g◦f)(a)
exists and is given by the following formula:

(g ◦ f)(m)(a) =
∑

0≤j≤m

∑
i1+i2+···+im=j

i1+2i2+···+mim=m
i1,i2,··· ,im≥0

m!

i1! · · · im!
g(j)(b)

(
f (1)(a)

1!

)i1
· · ·
(
f (m)(a)

m!

)im
.
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When m = 1, the above simplifies to the familiar formula

(g ◦ f)′(a) = g′(b)f ′(a),

and for m = 2, we have

(g ◦ f)(2)(a) = g(2)(b)(f (1)(a))2 + g(1)(b)f (2)(a).

20.6 Futher Readings

A thorough treatment of differential calculus can be found in Munkres [77], Lang [66],
Schwartz [92], Cartan [26], and Avez [7]. The techniques of differential calculus have many
applications, especially to the geometry of curves and surfaces and to differential geometry
in general. For this, we recommend do Carmo [36, 37] (two beautiful classics on the sub-
ject), Kreyszig [62], Stoker [100], Gray [50], Berger and Gostiaux [11], Milnor [76], Lang [64],
Warner [112] and Choquet-Bruhat [28].

20.7 Summary

The main concepts and results of this chapter are listed below:

• Directional derivative (Duf(a)).

• Total derivative, Fréchet derivative, derivative, total differential , differential
(df(a), dfa).

• Partial derivatives .

• Affine functions.

• The chain rule.

• Jacobian matrices (J(f)(a)) Jacobians .

• Gradient of a function (grad f(a), ∇f(a)).

• Mean value theorem.

• C0-functions, C1-functions .

• The implicit function theorem.

• Local homeomorphisms, local diffeomorphisms , diffeomorphisms .

• The inverse function theorem.
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• Immersions, submersions .

• Second-order derivatives.

• Schwarz’s lemma.

• Hessian matrix .

• C∞-functions , smooth functions .

• Taylor–Young’s formula.

• Generalized mean value theorem.

• Taylor–MacLaurin’s formula.

• Taylor’s formula with integral remainder .

• Faà di Bruno’s formula.
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Chapter 21

Extrema of Real-Valued Functions

21.1 Local Extrema, Constrained Local Extrema, and

Lagrange Multipliers

Let J : E → R be a real-valued function defined on a normed vector space E (or more
generally, any topological space). Ideally we would like to find where the function J reaches
a minimum or a maximum value, at least locally. In this chapter we will usually use the
notations dJ(u) or J ′(u) (or dJu or J ′u) for the derivative of J at u, instead of DJ(u). Our
presentation follows very closely that of Ciarlet [30] (Chapter 7), which we find to be one of
the clearest.

Definition 21.1. If J : E → R is a real-valued function defined on a normed vector space
E, we say that J has a local minimum (or relative minimum) at the point u ∈ E if there is
some open subset W ⊆ E containing u such that

J(u) ≤ J(w) for all w ∈ W.

Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ E if
there is some open subset W ⊆ E containing u such that

J(u) ≥ J(w) for all w ∈ W.

In either case, we say that J has a local extremum (or relative extremum) at u. We say that
J has a strict local minimum (resp. strict local maximum) at the point u ∈ E if there is
some open subset W ⊆ E containing u such that

J(u) < J(w) for all w ∈ W − {u}

(resp.

J(u) > J(w) for all w ∈ W − {u}).

585
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By abuse of language, we often say that the point u itself “is a local minimum” or a
“local maximum,” even though, strictly speaking, this does not make sense.

We begin with a well-known necessary condition for a local extremum.

Proposition 21.1. Let E be a normed vector space and let J : Ω → R be a function, with
Ω some open subset of E. If the function J has a local extremum at some point u ∈ Ω and
if J is differentiable at u, then

dJu = J ′(u) = 0.

Proof. Pick any v ∈ E. Since Ω is open, for t small enough we have u + tv ∈ Ω, so there is
an open interval I ⊆ R such that the function ϕ given by

ϕ(t) = J(u+ tv)

for all t ∈ I is well-defined. By applying the chain rule, we see that ϕ is differentiable at
t = 0, and we get

ϕ′(0) = dJu(v).

Without loss of generality, assume that u is a local minimum. Then we have

ϕ′(0) = lim
t7→0−

ϕ(t)− ϕ(0)

t
≤ 0

and

ϕ′(0) = lim
t7→0+

ϕ(t)− ϕ(0)

t
≥ 0,

which shows that ϕ′(0) = dJu(v) = 0. As v ∈ E is arbitrary, we conclude that dJu = 0.

A point u ∈ Ω such that J ′(u) = 0 is called a critical point of J .

If E = Rn, then the condition dJu = 0 is equivalent to the system

∂J

∂x1

(u1, . . . , un) = 0

...

∂J

∂xn
(u1, . . . , un) = 0.

� The condition of Proposition 21.1 is only a necessary condition for the existences of an
extremum, but not a sufficient condition. Here are some counter-examples. If f : R→ R

is the function given by f(x) = x3, since f ′(x) = 3x2, we have f ′(0) = 0, but 0 is neither
a minimum nor a maximum of f . If g : R2 → R is the function given by g(x, y) = x2 − y2,
then g′(x,y) = (2x − 2y), so g′(0,0) = (0 0), yet near (0, 0) the function g takes negative and
positive values.
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In many practical situations, we need to look for local extrema of a function J under
additional constraints . This situation can be formalized conveniently as follows: We have a
function J : Ω → R defined on some open subset Ω of a normed vector space, but we also
have some subset U of Ω, and we are looking for the local extrema of J with respect to the
set U .

The elements u ∈ U are often called feasible solutions of the optimization problem con-
sisting in finding the local extrema of some objective function J with respect to some subset
U of Ω defined by a set of constraints. Note that in most cases, U is not open. In fact, U is
usually closed.

Definition 21.2. If J : Ω→ R is a real-valued function defined on some open subset Ω of a
normed vector space E and if U is some subset of Ω, we say that J has a local minimum (or
relative minimum) at the point u ∈ U with respect to U if there is some open subset W ⊆ Ω
containing u such that

J(u) ≤ J(w) for all w ∈ U ∩W.

Similarly, we say that J has a local maximum (or relative maximum) at the point u ∈ U
with respect to U if there is some open subset W ⊆ Ω containing u such that

J(u) ≥ J(w) for all w ∈ U ∩W.

In either case, we say that J has a local extremum at u with respect to U .

� It is very important to note that the hypothesis that Ω is open is crucial for the validity
of Proposition 21.1. For example, if J is the identity function on R and U = [0, 1], a

closed subset, then J ′(x) = 1 for all x ∈ [0, 1], even though J has a minimum at x = 0 and
a maximum at x = 1.

Therefore, in order to find necessary conditions for a function J : Ω→ R to have a local
extremum with respect to a subset U of Ω (where Ω is open), we need to somehow incorporate
the definition of U into these conditions. This can be done in two cases:

(1) The set U is defined by a set of equations,

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).

(2) The set U is defined by a set of inequalities,

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually differentiable).
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In (1), the equations ϕi(x) = 0 are called equality constraints , and in (2), the inequalities
ϕi(x) ≤ 0 are called inequality constraints .

An inequality constraint of the form ϕi(x) ≥ 0 is equivalent to the inequality constraint
−ϕx(x) ≤ 0. An equality constraint ϕi(x) = 0 is equivalent to the conjunction of the
two inequality constraints ϕi(x) ≤ 0 and −ϕi(x) ≤ 0, so the case of inequality constraints
subsumes the case of equality constraints. However, the case of equality constraints is easier
to deal with, and in this chapter we will restrict our attention to this case.

If the functions ϕi are convex and Ω is convex, then U is convex. This is a very important
case that we will discuss later. In particular, if the functions ϕi are affine, then the equality
constraints can be written as Ax = b, and the inequality constraints as Ax ≤ b, for some
m× n matrix A and some vector b ∈ Rm. We will also discuss the case of affine constraints
later.

In the case of equality constraints, a necessary condition for a local extremum with respect
to U can be given in terms of Lagrange multipliers . In the case of inequality constraints, there
is also a necessary condition for a local extremum with respect to U in terms of generalized
Lagrange multipliers and the Karush–Kuhn–Tucker conditions. This will be discussed in
Chapter 31.

We begin by considering the case where Ω ⊆ E1 × E2 is an open subset of a product of
normed vector spaces and where U is the zero locus of some continuous function ϕ : Ω→ E2,
which means that

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}.

For the sake of brevity, we say that J has a constrained local extremum at u instead of saying
that J has a local extremum at the point u ∈ U with respect to U . Fortunately, there is a
necessary condition for constrained local extrema in terms of Lagrange multipliers .

Theorem 21.2. (Necessary condition for a constrained extremum) Let Ω ⊆ E1 × E2 be an
open subset of a product of normed vector spaces, with E1 a Banach space (E1 is complete),
let ϕ : Ω → E2 be a C1-function (which means that dϕ(ω) exists and is continuous for all
ω ∈ Ω), and let

U = {(u1, u2) ∈ Ω | ϕ(u1, u2) = 0}.

Moreover, let u = (u1, u2) ∈ U be a point such that

∂ϕ

∂x2

(u1, u2) ∈ L(E2;E2) and

(
∂ϕ

∂x2

(u1, u2)

)−1

∈ L(E2;E2),

and let J : Ω → R be a function which is differentiable at u. If J has a constrained local
extremum at u, then there is a continuous linear form Λ(u) ∈ L(E2;R) such that

dJ(u) + Λ(u) ◦ dϕ(u) = 0.
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Proof. The plan of attack is to use the implicit function theorem; Theorem 20.14. Observe
that the assumptions of Theorem 20.14 are indeed met. Therefore, there exist some open
subsets U1 ⊆ E1, U2 ⊆ E2, and a continuous function g : U1 → U2 with (u1, u2) ∈ U1×U2 ⊆ Ω
and such that

ϕ(v1, g(v1)) = 0

for all v1 ∈ U1. Moreover, g is differentiable at u1 ∈ U1 and

dg(u1) = −
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u).

It follows that the restriction of J to (U1 × U2) ∩ U yields a function G of a single variable,
with

G(v1) = J(v1, g(v1))

for all v1 ∈ U1. Now, the function G is differentiable at u1 and it has a local extremum at
u1 on U1, so Proposition 21.1 implies that

dG(u1) = 0.

By the chain rule,

dG(u1) =
∂J

∂x1

(u) +
∂J

∂x2

(u) ◦ dg(u1)

=
∂J

∂x1

(u)− ∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u).

From dG(u1) = 0, we deduce

∂J

∂x1

(u) =
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x1

(u),

and since we also have

∂J

∂x2

(u) =
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦ ∂ϕ
∂x2

(u),

if we let

Λ(u) = − ∂J
∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

,

then we get

dJ(u) =
∂J

∂x1

(u) +
∂J

∂x2

(u)

=
∂J

∂x2

(u) ◦
(
∂ϕ

∂x2

(u)

)−1

◦
(
∂ϕ

∂x1

(u) +
∂ϕ

∂x2

(u)

)
= −Λ(u) ◦ dϕ(u),

which yields dJ(u) + Λ(u) ◦ dϕ(u) = 0, as claimed.
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In most applications, we have E1 = Rn−m and E2 = Rm for some integers m,n such that
1 ≤ m < n, Ω is an open subset of Rn, J : Ω → R, and we have m functions ϕi : Ω → R
defining the subset

U = {v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m}.
Theorem 21.2 yields the following necessary condition:

Theorem 21.3. (Necessary condition for a constrained extremum in terms of Lagrange
multipliers) Let Ω be an open subset of Rn, consider m C1-functions ϕi : Ω → R (with
1 ≤ m < n), let

U = {v ∈ Ω | ϕi(v) = 0, 1 ≤ i ≤ m},
and let u ∈ U be a point such that the derivatives dϕi(u) ∈ L(Rn;R) are linearly independent;
equivalently, assume that the m × n matrix

(
(∂ϕi/∂xj)(u)

)
has rank m. If J : Ω → R is a

function which is differentiable at u ∈ U and if J has a local constrained extremum at u,
then there exist m numbers λi(u) ∈ R, uniquely defined, such that

dJ(u) + λ1(u)dϕ1(u) + · · ·+ λm(u)dϕm(u) = 0;

equivalently,

∇J(u) + λ1(u)∇ϕ1(u) + · · ·+ λ1(u)∇ϕm(u) = 0.

Proof. The linear independence of the m linear forms dϕi(u) is equivalent to the fact that
the m × n matrix A =

(
(∂ϕi/∂xj)(u)

)
has rank m. By reordering the columns, we may

assume that the first m columns are linearly independent. If we let ϕ : Ω → Rm be the
function defined by

ϕ(v) = (ϕ1(v), . . . , ϕm(v))

for all v ∈ Ω, then we see that ∂ϕ/∂x2(u) is invertible and both ∂ϕ/∂x2(u) and its inverse
are continuous, so that Theorem 21.2 applies, and there is some (continuous) linear form
Λ(u) ∈ L(Rm;R) such that

dJ(u) + Λ(u) ◦ dϕ(u) = 0.

However, Λ(u) is defined by some m-tuple (λ1(u), . . . , λm(u)) ∈ Rm, and in view of the
definition of ϕ, the above equation is equivalent to

dJ(u) + λ1(u)dϕ1(u) + · · ·+ λm(u)dϕm(u) = 0.

The uniqueness of the λi(u) is a consequence of the linear independence of the dϕi(u).

The numbers λi(u) involved in Theorem 21.3 are called the Lagrange multipliers asso-
ciated with the constrained extremum u (again, with some minor abuse of language). The
linear independence of the linear forms dϕi(u) is equivalent to the fact that the Jacobian ma-
trix

(
(∂ϕi/∂xj)(u)

)
of ϕ = (ϕ1, . . . , ϕm) at u has rank m. If m = 1, the linear independence

of the dϕi(u) reduces to the condition ∇ϕ1(u) 6= 0.
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A fruitful way to reformulate the use of Lagrange multipliers is to introduce the notion
of the Lagrangian associated with our constrained extremum problem. This is the function
L : Ω× Rm → R given by

L(v, λ) = J(v) + λ1ϕ1(v) + · · ·+ λmϕm(v),

with λ = (λ1, . . . , λm). Then, observe that there exists some µ = (µ1, . . . , µm) and some
u ∈ U such that

dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u) = 0

if and only if

dL(u, µ) = 0,

or equivalently

∇L(u, µ) = 0;

that is, iff (u, λ) is a critical point of the Lagrangian L.

Indeed dL(u, µ) = 0 if equivalent to

∂L

∂v
(u, µ) = 0

∂L

∂λ1

(u, µ) = 0

...

∂L

∂λm
(u, µ) = 0,

and since
∂L

∂v
(u, µ) = dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u)

and
∂L

∂λi
(u, µ) = ϕi(u),

we get

dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u) = 0

and

ϕ1(u) = · · · = ϕm(u) = 0,

that is, u ∈ U .

If we write out explicitly the condition

dJ(u) + µ1dϕ1(u) + · · ·+ µmdϕm(u) = 0,
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we get the n×m system

∂J

∂x1

(u) + λ1
∂ϕ1

∂x1

(u) + · · ·+ λm
∂ϕm
∂x1

(u) = 0

...

∂J

∂xn
(u) + λ1

∂ϕ1

∂xn
(u) + · · ·+ λm

∂ϕm
∂xn

(u) = 0,

and it is important to note that the matrix of this system is the transpose of the Jacobian
matrix of ϕ at u. If we write Jac(J)(u) =

(
(∂ϕi/∂xj)(u)

)
for the Jacobian matrix of J (at

u), then the above system is written in matrix form as

∇J(u) + (Jac(J)(u))>λ = 0,

where λ is viewed as a column vector, and the Lagrangian is equal to

L(u, λ) = J(u) + (ϕ1(u), . . . , ϕm(u))λ.

Remark: If the Jacobian matrix Jac(J)(v) =
(
(∂ϕi/∂xj)(v)

)
has rank m for all v ∈ U

(which is equivalent to the linear independence of the linear forms dϕi(v)), then we say that
0 ∈ Rm is a regular value of ϕ. In this case, it is known that

U = {v ∈ Ω | ϕ(v) = 0}

is a smooth submanifold of dimension n−m of Rn. Furthermore, the set

TvU = {w ∈ Rn | dϕi(v)(w) = 0, 1 ≤ i ≤ m} =
m⋂
i=1

Ker dϕi(v)

is the tangent space to U at v (a vector space of dimension n−m). Then, the condition

dJ(v) + µ1dϕ1(v) + · · ·+ µmdϕm(v) = 0

implies that dJ(v) vanishes on the tangent space TvU . Conversely, if dJ(v)(w) = 0 for
all w ∈ TvU , this means that dJ(v) is orthogonal (in the sense of Definition 9.3) to TvU .
Since (by Theorem 9.1 (b)) the orthogonal of TvU is the space of linear forms spanned
by dϕ1(v), . . . , dϕm(v), it follows that dJ(v) must be a linear combination of the dϕi(v).
Therefore, when 0 is a regular value of ϕ, Theorem 21.3 asserts that if u ∈ U is a local
extremum of J , then dJ(u) must vanish on the tangent space TuU . We can say even more.
The subset Z(J) of Ω given by

Z(J) = {v ∈ Ω | J(v) = J(u)}
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(the level set of level J(u)) is a hypersurface in Ω, and if dJ(u) 6= 0, the zero locus of dJ(u)
is the tangent space TuZ(J) to Z(J) at u (a vector space of dimension n− 1), where

TuZ(J) = {w ∈ Rn | dJ(u)(w) = 0}.

Consequently, Theorem 21.3 asserts that

TuU ⊆ TuZ(J);

this is a geometric condition.

The beauty of the Lagrangian is that the constraints {ϕi(v) = 0} have been incorporated
into the function L(v, λ), and that the necessary condition for the existence of a constrained
local extremum of J is reduced to the necessary condition for the existence of a local ex-
tremum of the unconstrained L.

However, one should be careful to check that the assumptions of Theorem 21.3 are sat-
isfied (in particular, the linear independence of the linear forms dϕi). For example, let
J : R3 → R be given by

J(x, y, z) = x+ y + z2

and g : R3 → R by
g(x, y, z) = x2 + y2.

Since g(x, y, z) = 0 iff x = y = 0, we have U = {(0, 0, z) | z ∈ R} and the restriction of J to
U is given by

J(0, 0, z) = z2,

which has a minimum for z = 0. However, a “blind” use of Lagrange multipliers would
require that there is some λ so that

∂J

∂x
(0, 0, z) = λ

∂g

∂x
(0, 0, z),

∂J

∂y
(0, 0, z) = λ

∂g

∂y
(0, 0, z),

∂J

∂z
(0, 0, z) = λ

∂g

∂z
(0, 0, z),

and since
∂g

∂x
(x, y, z) = 2x,

∂g

∂y
(x, y, z) = 2y,

∂g

∂z
(0, 0, z) = 0,

the partial derivatives above all vanish for x = y = 0, so at a local extremum we should also
have

∂J

∂x
(0, 0, z) = 0,

∂J

∂y
(0, 0, z) = 0,

∂J

∂z
(0, 0, z) = 0,

but this is absurd since

∂J

∂x
(x, y, z) = 1,

∂J

∂y
(x, y, z) = 1,

∂J

∂z
(x, y, z) = 2z.

The reader should enjoy finding the reason for the flaw in the argument.
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One should also keep in mind that Theorem 21.3 gives only a necessary condition. The
(u, λ) may not correspond to local extrema! Thus, it is always necessary to analyze the local
behavior of J near a critical point u. This is generally difficult, but in the case where J is
affine or quadratic and the constraints are affine or quadratic, this is possible (although not
always easy).

Let us apply the above method to the following example in which E1 = R, E2 = R,
Ω = R2, and

J(x1, x2) = −x2

ϕ(x1, x2) = x2
1 + x2

2 − 1.

Observe that
U = {(x1, x2) ∈ R2 | x2

1 + x2
2 = 1}

is the unit circle, and since

∇ϕ(x1, x2) =

(
2x1

2x2

)
,

it is clear that ∇ϕ(x1, x2) 6= 0 for every point = (x1, x2) on the unit circle. If we form the
Lagrangian

L(x1, x2, λ) = −x2 + λ(x2
1 + x2

2 − 1),

Theorem 21.3 says that a necessary condition for J to have a constrained local extremum is
that ∇L(x1, x2, λ) = 0, so the following equations must hold:

2λx1 = 0

−1 + 2λx2 = 0

x2
1 + x2

2 = 1.

The second equation implies that λ 6= 0, and then the first yields x1 = 0, so the third yields
x2 = ±1, and we get two solutions:

λ =
1

2
, (x1, x2) = (0, 1)

λ = −1

2
, (x′1, x

′
2) = (0,−1).

We can check immediately that the first solution is a minimum and the second is a maximum.
The reader should look for a geometric interpretation of this problem.

Let us now consider the case in which J is a quadratic function of the form

J(v) =
1

2
v>Av − v>b,

where A is an n × n symmetric matrix, b ∈ Rn, and the constraints are given by a linear
system of the form

Cv = d,
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where C is an m× n matrix with m < n and d ∈ Rm. We also assume that C has rank m.
In this case, the function ϕ is given by

ϕ(v) = (Cv − d)>,

because we view ϕ(v) as a row vector (and v as a column vector), and since

dϕ(v)(w) = C>w,

the condition that the Jacobian matrix of ϕ at u have rank m is satisfied. The Lagrangian
of this problem is

L(v, λ) =
1

2
v>Av − v>b+ (Cv − d)>λ =

1

2
v>Av − v>b+ λ>(Cv − d),

where λ is viewed as a column vector. Now, because A is a symmetric matrix, it is easy to
show that

∇L(v, λ) =

(
Av − b+ C>λ

Cv − d

)
.

Therefore, the necessary condition for contrained local extrema is

Av + C>λ = b

Cv = d,

which can be expressed in matrix form as(
A C>

C 0

)(
v
λ

)
=

(
b
d

)
,

where the matrix of the system is a symmetric matrix. We should not be surprised to find
the system of Section 23, except for some renaming of the matrices and vectors involved.
As we know from Section 23.2, the function J has a minimum iff A is positive definite, so
in general, if A is only a symmetric matrix, the critical points of the Lagrangian do not
correspond to extrema of J .

We now investigate conditions for the existence of extrema involving the second derivative
of J .

21.2 Using Second Derivatives to Find Extrema

For the sake of brevity, we consider only the case of local minima; analogous results are
obtained for local maxima (replace J by −J , since maxu J(u) = −minu−J(u)). We begin
with a necessary condition for an unconstrained local minimum.



596 CHAPTER 21. EXTREMA OF REAL-VALUED FUNCTIONS

Proposition 21.4. Let E be a normed vector space and let J : Ω→ R be a function, with Ω
some open subset of E. If the function J is differentiable in Ω, if J has a second derivative
D2J(u) at some point u ∈ Ω, and if J has a local minimum at u, then

D2J(u)(w,w) ≥ 0 for all w ∈ E.

Proof. Pick any nonzero vector w ∈ E. Since Ω is open, for t small enough, u+ tw ∈ Ω and
J(u+ tw) ≥ J(u), so there is some open interval I ⊆ R such that

u+ tw ∈ Ω and J(u+ tw) ≥ J(u)

for all t ∈ I. Using the Taylor–Young formula and the fact that we must have dJ(u) = 0
since J has a local minimum at u, we get

0 ≤ J(u+ tw)− J(u) =
t2

2
D2J(u)(w,w) + t2 ‖w‖2 ε(tw),

with limt7→0 ε(tw) = 0, which implies that

D2J(u)(w,w) ≥ 0.

Since the argument holds for all w ∈ E (trivially if w = 0), the proposition is proved.

One should be cautioned that there is no converse to the previous proposition. For exam-
ple, the function f : x 7→ x3 has no local minimum at 0, yet df(0) = 0 and D2f(0)(u, v) = 0.
Similarly, the reader should check that the function f : R2 → R given by

f(x, y) = x2 − 3y3

has no local minimum at (0, 0); yet df(0, 0) = 0 and D2f(0, 0)(u, v) = 2u2 ≥ 0.

When E = Rn, Proposition 21.4 says that a necessary condition for having a local
minimum is that the Hessian ∇2J(u) be positive semidefinite (it is always symmetric).

We now give sufficient conditions for the existence of a local minimum.

Theorem 21.5. Let E be a normed vector space, let J : Ω→ R be a function with Ω some
open subset of E, and assume that J is differentiable in Ω and that dJ(u) = 0 at some point
u ∈ Ω. The following properties hold:

(1) If D2J(u) exists and if there is some number α ∈ R such that α > 0 and

D2J(u)(w,w) ≥ α ‖w‖2 for all w ∈ E,

then J has a strict local minimum at u.
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(2) If D2J(v) exists for all v ∈ Ω and if there is a ball B ⊆ Ω centered at u such that

D2J(v)(w,w) ≥ 0 for all v ∈ B and all w ∈ E,

then J has a local minimum at u.

Proof. (1) Using the formula of Taylor–Young, for every vector w small enough, we can write

J(u+ w)− J(u) =
1

2
D2J(u)(w,w) + ‖w‖2 ε(w)

≥
(

1

2
α + ε(w)

)
‖w‖2

with limw 7→0 ε(w) = 0. Consequently if we pick r > 0 small enough that |ε(w)| < α for all w
with ‖w‖ < r, then J(u+w) > J(u) for all u+w ∈ B, where B is the open ball of center u
and radius r. This proves that J has a local strict minimum at u.

(2) The formula of Taylor–Maclaurin shows that for all u+ w ∈ B, we have

J(u+ w) = J(u) +
1

2
D2J(v)(w,w) ≥ J(u),

for some v ∈ (u,w + w).

There are no converses of the two assertions of Theorem 21.5. However, there is a
condition on D2J(u) that implies the condition of Part (1). Since this condition is easier to
state when E = Rn, we begin with this case.

Recall that a n×n symmetric matrix A is positive definite if x>Ax > 0 for all x ∈ Rn−{0}.
In particular, A must be invertible.

Proposition 21.6. For any symmetric matrix A, if A is positive definite, then there is some
α > 0 such that

x>Ax ≥ α ‖x‖2 for all x ∈ Rn.

Proof. Pick any norm in Rn (recall that all norms on Rn are equivalent). Since the unit
sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1} is compact and since the function f(x) = x>Ax is never
zero on Sn−1, the function f has a minimum α > 0 on Sn−1. Using the usual trick that
x = ‖x‖ (x/ ‖x‖) for every nonzero vector x ∈ Rn and the fact that the inequality of the
proposition is trivial for x = 0, from

x>Ax ≥ α for all x with ‖x‖ = 1,

we get
x>Ax ≥ α ‖x‖2 for all x ∈ Rn,

as claimed.
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We can combine Theorem 21.5 and Proposition 21.6 to obtain a useful sufficient condition
for the existence of a strict local minimum. First let us introduce some terminology.

Definition 21.3. Given a function J : Ω → R as before, say that a point u ∈ Ω is a
nondegenerate critical point if dJ(u) = 0 and if the Hessian matrix ∇2J(u) is invertible.

Proposition 21.7. Let J : Ω → R be a function defined on some open subset Ω ⊆ Rn. If
J is differentiable in Ω and if some point u ∈ Ω is a nondegenerate critical point such that
∇2J(u) is positive definite, then J has a strict local minimum at u.

Remark: It is possible to generalize Proposition 21.7 to infinite-dimensional spaces by find-
ing a suitable generalization of the notion of a nondegenerate critical point. Firstly, we
assume that E is a Banach space (a complete normed vector space). Then, we define the
dual E ′ of E as the set of continuous linear forms on E, so that E ′ = L(E;R). Following
Lang, we use the notation E ′ for the space of continuous linear forms to avoid confusion
with the space E∗ = Hom(E,R) of all linear maps from E to R. A continuous bilinear map
ϕ : E × E → R in L2(E,E;R) yields a map Φ from E to E ′ given by

Φ(u) = ϕu,

where ϕu ∈ E ′ is the linear form defined by

ϕu(v) = ϕ(u, v).

It is easy to check that ϕu is continuous and that the map Φ is continuous. Then, we say
that ϕ is nondegenerate iff Φ: E → E ′ is an isomorphism of Banach spaces, which means
that Φ is invertible and that both Φ and Φ−1 are continuous linear maps. Given a function
J : Ω → R differentiable on Ω as before (where Ω is an open subset of E), if D2J(u) exists
for some u ∈ Ω, we say that u is a nondegenerate critical point if dJ(u) = 0 and if D2J(u) is
nondegenerate. Of course, D2J(u) is positive definite if D2J(u)(w,w) > 0 for all w ∈ E−{0}.

Using the above definition, Proposition 21.6 can be generalized to a nondegenerate posi-
tive definite bilinear form (on a Banach space) and Theorem 21.7 can also be generalized to
the situation where J : Ω → R is defined on an open subset of a Banach space. For details
and proofs, see Cartan [26] (Part I Chapter 8) and Avez [7] (Chapter 8 and Chapter 10).

In the next section we make use of convexity; both on the domain Ω and on the function
J itself.

21.3 Using Convexity to Find Extrema

We begin by reviewing the definition of a convex set and of a convex function.
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Definition 21.4. Given any real vector space E, we say that a subset C of E is convex if
either C = ∅ or if for every pair of points u, v ∈ C, the line segment connecting u and v is
contained in C, i.e.,

(1− λ)u+ λv ∈ C for all λ ∈ R such that 0 ≤ λ ≤ 1.

Given any two points u v ∈ E, the line segment [u, v] is the set

[u, v] = {(1− λ)u+ λv ∈ E | λ ∈ R, 0 ≤ λ ≤ 1}.
Clearly, a nonempty set C is convex iff [u, v] ⊆ C whenever u, v ∈ C. See Figure 21.1 for an
example of a convex set.

(a)

(b)

u

v

u

v

Figure 21.1: Figure (a) shows that a sphere is not convex in R3 since the dashed green line
does not lie on its surface. Figure (b) shows that a solid ball is convex in R3.

Definition 21.5. If C is a nonempty convex subset of E, a function f : C → R is convex
(on C) if for every pair of points u, v ∈ C,

f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 ≤ λ ≤ 1;

the function f is strictly convex (on C) if for every pair of distinct points u, v ∈ C (u 6= v),

f((1− λ)u+ λv) < (1− λ)f(u) + λf(v) for all λ ∈ R such that 0 < λ < 1;

see Figure 21.2. The epigraph1 epi(f) of a function f : A→ R defined on some subset A of
Rn is the subset of Rn+1 defined as

epi(f) = {(x, y) ∈ Rn+1 | f(x) ≤ y, x ∈ A}.
1“Epi” means above.
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A function f : C → R defined on a convex subset C is concave (resp. strictly concave) if
(−f) is convex (resp. strictly convex).

It is obvious that a function f if convex iff its epigraph epi(f) is a convex subset of Rn+1.

u v

l = (1-λ)f(u) + λf(v)

f

(a)

u v

l = (1-λ)f(u) + λf(v)

f

(b)

Figure 21.2: Figures (a) and (b) are the graphs of real valued functions. Figure (a) is the
graph of convex function since the blue line lies above the graph of f . Figure (b) shows the
graph of a function which is not convex.

Subspaces V ⊆ E of a vector space E are convex; affine subspaces , that is, sets of the
form u + V , where V is a subspace of E and u ∈ E, are convex. Balls (open or closed) are
convex. Given any linear form ϕ : E → R, for any scalar c ∈ R, the closed half–spaces

H+
ϕ,c = {u ∈ E | ϕ(u) ≥ c}, H−ϕ,c = {u ∈ E | ϕ(u) ≤ c},

are convex. Any intersection of half–spaces is convex. More generally, any intersection of
convex sets is convex.

Linear forms are convex functions (but not strictly convex). Any norm ‖ ‖ : E → R+ is
a convex function. The max function,

max(x1, . . . , xn) = max{x1, . . . , xn}

is convex on Rn. The exponential x 7→ ecx is strictly convex for any c 6= 0 (c ∈ R).
The logarithm function is concave on R+ − {0}, and the log-determinant function log det is
concave on the set of symmetric positive definite matrices. This function plays an important
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role in convex optimization. An excellent exposition of convexity and its applications to
optimization can be found in Boyd [22].

Here is a necessary condition for a function to have a local minimum with respect to a
convex subset U .

Theorem 21.8. (Necessary condition for a local minimum on a convex subset) Let J : Ω→ R
be a function defined on some open subset Ω of a normed vector space E and let U ⊆ Ω be
a nonempty convex subset. Given any u ∈ U , if dJ(u) exists and if J has a local minimum
in u with respect to U , then

dJ(u)(v − u) ≥ 0 for all v ∈ U.

Proof. Let v = u+w be an arbitrary point in U . Since U is convex, we have u+ tw ∈ U for
all t such that 0 ≤ t ≤ 1. Since dJ(u) exists, we can write

J(u+ tw)− J(u) = dJ(u)(tw) + ‖tw‖ ε(tw)

with limt7→0 ε(tw) = 0. However, because 0 ≤ t ≤ 1,

J(u+ tw)− J(u) = t(dJ(u)(w) + ‖w‖ ε(tw))

and since u is a local minimum with respect to U , we have J(u+ tw)− J(u) ≥ 0, so we get

t(dJ(u)(w) + ‖w‖ ε(tw)) ≥ 0.

The above implies that dJ(u)(w) ≥ 0, because otherwise we could pick t > 0 small enough
so that

dJ(u)(w) + ‖w‖ ε(tw) < 0,

a contradiction. Since the argument holds for all v = u+w ∈ U , the theorem is proved.

Observe that the convexity of U is a substitute for the use of Lagrange multipliers, but
we now have to deal with an inequality instead of an equality.

Consider the special case where U is a subspace of E. In this case since u ∈ U we have
2u ∈ U , and for any u + w ∈ U , we must have 2u − (u + w) = u − w ∈ U . The previous
theorem implies that dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥ 0, that is, dJ(u)(w) ≤ 0, so dJ(u) = 0.
Since the argument holds for w ∈ U (because U is a subspace, if u,w ∈ U , then u+w ∈ U),
we conclude that

dJ(u)(w) = 0 for all w ∈ U.

We will now characterize convex functions when they have a first derivative or a second
derivative.

Proposition 21.9. (Convexity and first derivative) Let f : Ω → R be a function differen-
tiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a nonempty
convex subset.
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(1) The function f is convex on U iff

f(v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U.

(2) The function f is strictly convex on U iff

f(v) > f(u) + df(u)(v − u) for all u, v ∈ U with u 6= v.

See Figure 21.3.

u v

f
(u, f(u))

(v, f(v))

(y,v)

v - u

y - v

y = f(u) + df(u)(v-u)

Figure 21.3: An illustration of a convex valued function f . Since f is convex it always lies
above its tangent line.

Proof. Let u, v ∈ U be any two distinct points and pick λ ∈ R with 0 < λ < 1. If the
function f is convex, then

f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v),

which yields
f((1− λ)u+ λv)− f(u)

λ
≤ f(v)− f(u).

It follows that

df(u)(v − u) = lim
λ 7→0

f((1− λ)u+ λv)− f(u)

λ
≤ f(v)− f(u).
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If f is strictly convex, the above reasoning does not work, because a strict inequality is not
necessarily preserved by “passing to the limit.” We have recourse to the following trick: For
any ω such that 0 < ω < 1, observe that

(1− λ)u+ λv = u+ λ(v − u) =
ω − λ
ω

u+
λ

ω
(u+ ω(v − u)).

If we assume that 0 < λ ≤ ω, the convexity of f yields

f(u+ λ(v − u)) ≤ ω − λ
ω

f(u) +
λ

ω
f(u+ ω(v − u)).

If we subtract f(u) to both sides, we get

f(u+ λ(v − u))− f(u)

λ
≤ f(u+ ω(v − u))− f(u)

ω
.

Now, since 0 < ω < 1 and f is strictly convex,

f(u+ ω(v − u)) = f((1− ω)u+ ωv) < (1− ω)f(u) + ωf(v),

which implies that
f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u),

and thus we get

f(u+ λ(v − u))− f(u)

λ
≤ f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u).

If we let λ go to 0, by passing to the limit we get

df(u)(v − u) ≤ f(u+ ω(v − u))− f(u)

ω
< f(v)− f(u),

which yields the desired strict inequality.

Let us now consider the converse of (1); that is, assume that

f(v) ≥ f(u) + df(u)(v − u) for all u, v ∈ U.
For any two distinct points u, v ∈ U and for any λ with 0 < λ < 1, we get

f(v) ≥ f(v + λ(v − u))− λdf(v + λ(u− v))(u− v)

f(u) ≥ f(v + λ(u− v)) + (1− λ)df(v + λ(u− v))(u− v),

and if we multiply the first inequality by 1−λ and the second inequality by λ and them add
up the resulting inequalities, we get

(1− λ)f(v) + λf(u) ≥ f(v + λ(u− v)) = f((1− λ)v + λu),

which proves that f is convex.

The proof of the converse of (2) is similar, except that the inequalities are replaced by
strict inequalities.
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We now establish a convexity criterion using the second derivative of f . This criterion is
often easier to check than the previous one.

Proposition 21.10. (Convexity and second derivative) Let f : Ω → R be a function twice
differentiable on some open subset Ω of a normed vector space E and let U ⊆ Ω be a nonempty
convex subset.

(1) The function f is convex on U iff

D2f(u)(v − u, v − u) ≥ 0 for all u, v ∈ U.

(2) If
D2f(u)(v − u, v − u) > 0 for all u, v ∈ U with u 6= v,

then f is strictly convex.

Proof. First,assume that the inequality in Condition (1) is satisfied. For any two distinct
points u, v ∈ U , the formula of Taylor–Maclaurin yields

f(v)− f(u)− df(u)(v − u) =
1

2
D2f(w)(v − u, v − u)

=
ρ2

2
D2f(w)(v − w, v − w),

for some w = (1 − λ)u + λv = u + λ(v − u) with 0 < λ < 1, and with ρ = 1/(1 − λ) > 0,
so that v − u = ρ(v − w). Since D2f(u)(v − w, v − w) ≥ 0 for all u,w ∈ U , we conclude by
applying Proposition 21.9(1).

Similarly, if (2) holds, the above reasoning and Proposition 21.9(2) imply that f is strictly
convex.

To prove the necessary condition in (1), define g : Ω→ R by

g(v) = f(v)− df(u)(v),

where u ∈ U is any point considered fixed. If f is convex, since

g(v)− g(u) = f(v)− f(u)− df(u)(v − u),

Proposition 21.9 implies that f(v) − f(u) − df(u)(v − u) ≥ 0, which implies that g has a
local minimum at u with respect to all v ∈ U . Therefore, we have dg(u) = 0. Observe that
g is twice differentiable in Ω and D2g(u) = D2f(u), so the formula of Taylor–Young yields
for every v = u+ w ∈ U and all t with 0 ≤ t ≤ 1,

0 ≤ g(u+ tw)− g(u) =
t2

2
D2f(u)(tw, tw) + ‖tw‖2 ε(tw)

=
t2

2
(D2f(u)(w,w) + 2 ‖w‖2 ε(wt)),

with limt7→0 ε(wt) = 0, and for t small enough, we must have D2f(u)(w,w) ≥ 0, as claimed.
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The converse of Proposition 21.10 (2) is false as we see by considering the function f
given by f(x) = x4.

Example 21.1. On the other hand, if f is a quadratic function of the form

f(u) =
1

2
u>Au− u>b

where A is a symmetric matrix, we know that

df(u)(v) = v>(Au− b),

so

f(v)− f(u)− df(u)(v − u) =
1

2
v>Av − v>b− 1

2
u>Au+ u>b− (v − u)>(Au− b)

=
1

2
v>Av − 1

2
u>Au− (v − u)>Au

=
1

2
v>Av +

1

2
u>Au− v>Au

=
1

2
(v − u)>A(v − u).

Therefore, Proposition 21.9 implies that if A is positive semidefinite, then f is convex and if
A is positive definite, then f is strictly convex. The converse follows by Proposition 21.10.

We conclude this section by applying our previous theorems to convex functions defined
on convex subsets. In this case, local minima (resp. local maxima) are global minima (resp.
global maxima).

Definition 21.6. Let f : E → R be any function defined on some normed vector space (or
more generally, any set). For any u ∈ E, we say that f has a minimum in u (resp. maximum
in u) if

f(u) ≤ f(v) (resp. f(u) ≥ f(v)) for all v ∈ E.
We say that f has a strict minimum in u (resp. strict maximum in u) if

f(u) < f(v) (resp. f(u) > f(v)) for all v ∈ E − {u}.

If U ⊆ E is a subset of E and u ∈ U , we say that f has a minimum in u (resp. strict
minimum in u) with respect to U if

f(u) ≤ f(v) for all v ∈ U (resp. f(u) < f(v) for all v ∈ U − {u}),

and similarly for a maximum in u (resp. strict maximum in u) with respect to U with ≤
changed to ≥ and < to >.
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Sometimes, we say global maximum (or minimum) to stress that a maximum (or a min-
imum) is not simply a local maximum (or minimum).

Theorem 21.11. Given any normed vector space E, let U be any nonempty convex subset
of E.

(1) For any convex function J : U → R, for any u ∈ U , if J has a local minimum at u in
U , then J has a (global) minimum at u in U .

(2) Any strict convex function J : U → R has at most one minimum (in U), and if it does,
then it is a strict minimum (in U).

(3) Let J : Ω → R be any function defined on some open subset Ω of E with U ⊆ Ω and
assume that J is convex on U . For any point u ∈ U , if dJ(u) exists, then J has a
minimum in u with respect to U iff

dJ(u)(v − u) ≥ 0 for all v ∈ U.

(4) If the convex subset U in (3) is open, then the above condition is equivalent to

dJ(u) = 0.

Proof. (1) Let v = u + w be any arbitrary point in U . Since J is convex, for all t with
0 ≤ t ≤ 1, we have

J(u+ tw) = J(u+ t(v − u)) ≤ (1− t)J(u) + tJ(v),

which yields
J(u+ tw)− J(u) ≤ t(J(v)− J(u)).

Because J has a local minimum in u, there is some t0 with 0 < t0 < 1 such that

0 ≤ J(u+ t0w)− J(u),

which implies that J(v)− J(u) ≥ 0.

(2) If J is strictly convex, the above reasoning with w 6= 0 shows that there is some t0
with 0 < t0 < 1 such that

0 ≤ J(u+ t0w)− J(u) < t0(J(v)− J(u)),

which shows that u is a strict global minimum (in U), and thus that it is unique.

(3) We already know from Theorem 21.8 that the condition dJ(u)(v−u) ≥ 0 for all v ∈ U
is necessary (even if J is not convex). Conversely, because J is convex, careful inspection of
the proof of part (1) of Proposition 21.9 shows that only the fact that dJ(u) exists in needed
to prove that

J(v)− J(u) ≥ dJ(u)(v − u) for all v ∈ U,
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and if
dJ(u)(v − u) ≥ 0 for all v ∈ U,

then
J(v)− J(u) ≥ 0 for all v ∈ U,

as claimed.

(4) If U is open, then for every u ∈ U we can find an open ball B centered at u of radius
ε small enough so that B ⊆ U . Then, for any w 6= 0 such that ‖w‖ < ε, we have both
v = u+ w ∈ B and v′ = u− w ∈ B, so condition (3) implies that

dJ(u)(w) ≥ 0 and dJ(u)(−w) ≥ 0,

which yields
dJ(u)(w) = 0.

Since the above holds for all w 6= 0 such such that ‖w‖ < ε and since dJ(u) is linear, we
leave it to the reader to fill in the details of the proof that dJ(u) = 0.

Theorem 21.11 can be used to rederive the fact that the least squares solutions of a linear
system Ax = b (where A is an m× n matrix) are given by the normal equation

A>Ax = A>b.

For this, we consider the quadratic function

J(v) =
1

2
‖Av − b‖2

2 −
1

2
‖b‖2

2 ,

and our least squares problem is equivalent to finding the minima of J on Rn. A computation
reveals that

J(v) =
1

2
‖Av − b‖2

2 −
1

2
‖b‖2

2

=
1

2
(Av − b)>(Av − b)− 1

2
b>b

=
1

2
(v>A> − b>)(Av − b)− 1

2
b>b

=
1

2
v>A>Av − v>A>b,

and so
dJ(u) = A>Au− A>b.

Since A>A is positive semidefinite, the function J is convex, and Theorem 21.11(4) implies
that the minima of J are the solutions of the equation

A>Au− A>b = 0.
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The considerations in this chapter reveal the need to find methods for finding the zeros
of the derivative map

dJ : Ω→ E ′,

where Ω is some open subset of a normed vector space E and E ′ is the space of all continuous
linear forms on E (a subspace of E∗). Generalizations of Newton’s method yield such methods
and they are the objet of the next chapter.

21.4 Summary

The main concepts and results of this chapter are listed below:

• Local minimum, local maximum, local extremum, strict local minimum, strict local
maximum.

• Necessary condition for a local extremum involving the derivative; critical point .

• Local minimum with respect to a subset U , local maximum with respect to a subset U ,
local extremum with respect to a subset U .

• Constrained local extremum.

• Necessary condition for a constrained extremum.

• Necessary condition for a constrained extremum in terms of Lagrange multipliers .

• Lagrangian.

• Critical points of a Lagrangian.

• Necessary condition of an unconstrained local minimum involving the second-order
derivative.

• Sufficient condition for a local minimum involving the second-order derivative.

• A sufficient condition involving nondegenerate critical points .

• Convex sets , convex functions , concave functions , strictly convex functions , strictly
concave functions ,

• Necessary condition for a local minimum on a convex set involving the derivative.

• Convexity of a function involving a condition on its first derivative.

• Convexity of a function involving a condition on its second derivative.

• Minima of convex functions on convex sets.



Chapter 22

Newton’s Method and Its
Generalizations

22.1 Newton’s Method for Real Functions of a Real

Argument

In Chapter 21 we investigated the problem of determining when a function J : Ω→ R defined
on some open subset Ω of a normed vector space E has a local extremum. Proposition 21.1
gives a necessary condition when J is differentiable: if J has a local extremum at u ∈ Ω,
then we must have

J ′(u) = 0.

Thus we are led to the problem of finding the zeros of the derivative

J ′ : Ω→ E ′,

where E ′ = L(E;R) is the set of linear continuous functions from E to R; that is, the dual
of E, as defined in the remark after Proposition 21.7.

This leads us to consider the problem in a more general form, namely: Given a function
f : Ω→ Y from an open subset Ω of a normed vector space X to a normed vector space Y ,
find

(i) Sufficient conditions which guarantee the existence of a zero of the function f ; that is,
an element a ∈ Ω such that f(a) = 0.

(ii) An algorithm for approximating such an a, that is, a sequence (xk) of points of Ω whose
limit is a.

When X = Y = R, we can use Newton’s method . We pick some initial element x0 ∈ R
“close enough” to a zero a of f , and we define the sequence (xk) by

xk+1 = xk −
f(xk)

f ′(xk)
,

609
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for all k ≥ 0, provided that f ′(xk) 6= 0. The idea is to define xk+1 as the intersection of the
x-axis with the tangent line to the graph of the function x 7→ f(x) at the point (xk, f(xk)).
Indeed, the equation of this tangent line is

y − f(xk) = f ′(xk)(x− xk),
and its intersection with the x-axis is obtained for y = 0, which yields

x = xk −
f(xk)

f ′(xk)
,

as claimed.

For example, if α > 0 and f(x) = x2 − α, Newton’s method yields the sequence

xk+1 =
1

2

(
xk +

α

xk

)
to compute the square root

√
α of α. It can be shown that the method converges to

√
α for

any x0 > 0. Actually, the method also converges when x0 < 0! Find out what is the limit.

The case of a real function suggests the following method for finding the zeros of a
function f : Ω→ Y , with Ω ⊆ X: given a starting point x0 ∈ Ω, the sequence (xk) is defined
by

xk+1 = xk − (f ′(xk))
−1(f(xk))

for all k ≥ 0.

For the above to make sense, it must be ensured that

(1) All the points xk remain within Ω.

(2) The function f is differentiable within Ω.

(3) The derivative f ′(x) is a bijection from X to Y for all x ∈ Ω.

These are rather demanding conditions but there are sufficient conditions that guarantee
that they are met. Another practical issue is that it may be very costly to compute (f ′(xk))−1

at every iteration step. In the next section, we investigate generalizations of Newton’s method
which address the issues that we just discussed.

22.2 Generalizations of Newton’s Method

Suppose that f : Ω → Rn is given by n functions fi : Ω → R, where Ω ⊆ Rn. In this case,
finding a zero a of f is equivalent to solving the system

f1(a1 . . . , an) = 0

f2(a1 . . . , an) = 0

...

fn(a1 . . . , an) = 0.
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A single iteration of Newton’s method consists in solving the linear system

(J(f)(xk))εk = −f(xk),

and then setting
xk+1 = xk + εk,

where J(f)(xk) = ( ∂fi
∂xj

(xk)) is the Jacobian matrix of f at xk.

In general, it is very costly to compute J(f)(xk) at each iteration and then to solve
the corresponding linear system. If the method converges, the consecutive vectors xk should
differ only a little, as also the corresponding matrices J(f)(xk). Thus, we are led to a variant
of Newton’s method which consists in keeping the same matrix for p consecutive steps (where
p is some fixed integer ≥ 2):

xk+1 = xk − (f ′(x0))−1(f(xk)), 0 ≤ k ≤ p− 1

xk+1 = xk − (f ′(xp))
−1(f(xk)), p ≤ k ≤ 2p− 1

...

xk+1 = xk − (f ′(xrp))
−1(f(xk)), rp ≤ k ≤ (r + 1)p− 1

...

It is also possible to set p = ∞, that is, to use the same matrix f ′(x0) for all iterations,
which leads to iterations of the form

xk+1 = xk − (f ′(x0))−1(f(xk)), k ≥ 0,

or even to replace f ′(x0) by a particular matrix A0 which is easy to invert:

xk+1 = xk − A−1
0 f(xk), k ≥ 0.

In the last two cases, if possible, we use an LU factorization of f ′(x0) or A0 to speed up the
method. In some cases, it may even possible to set A0 = I.

The above considerations lead us to the definition of a generalized Newton method , as in
Ciarlet [30] (Chapter 7). Recall that a linear map f ∈ L(E;F ) is called an isomorphism iff
f is continuous, bijective, and f−1 is also continuous.

Definition 22.1. If X and Y are two normed vector spaces and if f : Ω→ Y is a function
from some open subset Ω of X, a generalized Newton method for finding zeros of f consists
of

(1) A sequence of families (Ak(x)) of linear isomorphisms from X to Y , for all x ∈ Ω and
all integers k ≥ 0;

(2) Some starting point x0 ∈ Ω;
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(3) A sequence (xk) of points of Ω defined by

xk+1 = xk − (Ak(x`))
−1(f(xk)), k ≥ 0,

where for every integer k ≥ 0, the integer ` satisfies the condition

0 ≤ ` ≤ k.

The function Ak(x) usually depends on f ′.

Definition 22.1 gives us enough flexibility to capture all the situations that we have
previously discussed:

Ak(x) = f ′(x), ` = k

Ak(x) = f ′(x), ` = min{rp, k}, if rp ≤ k ≤ (r + 1)p− 1, r ≥ 0

Ak(x) = f ′(x), ` = 0

Ak(x) = A0,

where A0 is a linear isomorphism from X to Y . The first case corresponds to Newton’s
orginal method and the others to the variants that we just discussed. We could also have
Ak(x) = Ak, a fixed linear isomorphism independent of x ∈ Ω.

The following theorem inspired by the Newton–Kantorovich theorem gives sufficient con-
ditions that guarantee that the sequence (xk) constructed by a generalized Newton method
converges to a zero of f close to x0. Althoug quite technical, these conditions are not very
surprising.

Theorem 22.1. Let X be a Banach space, let f : Ω→ Y be differentiable on the open subset
Ω ⊆ X, and assume that there are constants r,M, β > 0 such that if we let

B = {x ∈ X | ‖x− x0‖ ≤ r} ⊆ Ω,

then

(1)
sup
k≥0

sup
x∈B

∥∥A−1
k (x)

∥∥
L(Y ;X)

≤M,

(2) β < 1 and

sup
k≥0

sup
x,x′∈B

‖f ′(x)− Ak(x′)‖L(X;Y ) ≤
β

M

(3)

‖f(x0)‖ ≤ r

M
(1− β).
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Then, the sequence (xk) defined by

xk+1 = xk − A−1
k (x`)(f(xk)), 0 ≤ ` ≤ k

is entirely contained within B and converges to a zero a of f , which is the only zero of f in
B. Furthermore, the convergence is geometric, which means that

‖xk − a‖ ≤
‖x1 − x0‖

1− β βk.

A proof of Theorem 22.1 can be found in Ciarlet [30] (Section 7.5). It is not really difficult
but quite technical.

If we assume that we already know that some element a ∈ Ω is a zero of f , the next
theorem gives sufficient conditions for a special version of a generalized Newton method to
converge. For this special method, the linear isomorphisms Ak(x) are independent of x ∈ Ω.

Theorem 22.2. Let X be a Banach space, and let f : Ω → Y be differentiable on the open
subset Ω ⊆ X. If a ∈ Ω is a point such that f(a) = 0, if f ′(a) is a linear isomorphism, and
if there is some λ with 0 < λ < 1/2 such that

sup
k≥0
‖Ak − f ′(a)‖L(X;Y ) ≤

λ

‖(f ′(a))−1‖L(Y ;X)

,

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined
by

xk+1 = xk − A−1
k (f(xk)), k ≥ 0,

is entirely contained within B and converges to a, which is the only zero of f in B. Further-
more, the convergence is geometric, which means that

‖xk − a‖ ≤ βk ‖x0 − a‖ ,

for some β < 1.

A proof of Theorem 22.2 can be also found in Ciarlet [30] (Section 7.5).

For the sake of completeness, we state a version of the Newton–Kantorovich theorem,
which corresponds to the case where Ak(x) = f ′(x). In this instance, a stronger result can
be obtained especially regarding upper bounds, and we state a version due to Gragg and
Tapia which appears in Problem 7.5-4 of Ciarlet [30].

Theorem 22.3. (Newton–Kantorovich) Let X be a Banach space, and let f : Ω → Y be
differentiable on the open subset Ω ⊆ X. Assume that there exist three positive constants
λ, µ, ν and a point x0 ∈ Ω such that

0 < λµν ≤ 1

2
,
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and if we let

ρ− =
1−√1− 2λµν

µν

ρ+ =
1 +
√

1− 2λµν

µν

B = {x ∈ X | ‖x− x0‖ < ρ−}
Ω+ = {x ∈ Ω | ‖x− x0‖ < ρ+},

then B ⊆ Ω, f ′(x0) is an isomorphism of L(X;Y ), and∥∥(f ′(x0))−1
∥∥ ≤ µ,∥∥(f ′(x0))−1f(x0)
∥∥ ≤ λ,

sup
x,y∈Ω+

‖f ′(x)− f ′(y)‖ ≤ ν ‖x− y‖ .

Then, f ′(x) is isomorphism of L(X;Y ) for all x ∈ B, and the sequence defined by

xk+1 = xk − (f ′(xk))
−1(f(xk)), k ≥ 0

is entirely contained within the ball B and converges to a zero a of f which is the only zero
of f in Ω+. Finally, if we write θ = ρ−/ρ+, then we have the following bounds:

‖xk − a‖ ≤
2
√

1− 2λµν

λµν

θ2k

1− θ2k
‖x1 − x0‖ if λµν <

1

2

‖xk − a‖ ≤
‖x1 − x0‖

2k−1
if λµν =

1

2
,

and
2 ‖xk+1 − xk‖

1 +
√

(1 + 4θ2k(1 + θ2k)−2)
≤ ‖xk − a‖ ≤ θ2k−1 ‖xk − xk−1‖ .

We can now specialize Theorems 22.1 and 22.2 to the search of zeros of the derivative
f ′ : Ω → E ′, of a function f : Ω → R, with Ω ⊆ E. The second derivative J ′′ of J is a
continuous bilinear form J ′′ : E × E → R, but is is convenient to view it as a linear map
in L(E,E ′); the continuous linear form J ′′(u) is given by J ′′(u)(v) = J ′′(u, v). In our next
theorem, we assume that the Ak(x) are isomorphisms in L(E,E ′).

Theorem 22.4. Let E be a Banach space, let J : Ω→ R be twice differentiable on the open
subset Ω ⊆ E, and assume that there are constants r,M, β > 0 such that if we let

B = {x ∈ E | ‖x− x0‖ ≤ r} ⊆ Ω,

then
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(1)
sup
k≥0

sup
x∈B

∥∥A−1
k (x)

∥∥
L(E′;E)

≤M,

(2) β < 1 and

sup
k≥0

sup
x,x′∈B

‖J ′′(x)− Ak(x′)‖L(E;E′) ≤
β

M

(3)

‖J ′(x0)‖ ≤ r

M
(1− β).

Then, the sequence (xk) defined by

xk+1 = xk − A−1
k (x`)(J

′(xk)), 0 ≤ ` ≤ k

is entirely contained within B and converges to a zero a of J ′, which is the only zero of J ′

in B. Furthermore, the convergence is geometric, which means that

‖xk − a‖ ≤
‖x1 − x0‖

1− β βk.

In the next theorem, we assume that the Ak(x) are isomorphisms in L(E,E ′) that are
independent of x ∈ Ω.

Theorem 22.5. Let E be a Banach space, and let J : Ω → R be twice differentiable on the
open subset Ω ⊆ E. If a ∈ Ω is a point such that J ′(a) = 0, if J ′′(a) is a linear isomorphism,
and if there is some λ with 0 < λ < 1/2 such that

sup
k≥0
‖Ak − J ′′(a)‖L(E;E′) ≤

λ

‖(J ′′(a))−1‖L(E′;E)

,

then there is a closed ball B of center a such that for every x0 ∈ B, the sequence (xk) defined
by

xk+1 = xk − A−1
k (J ′(xk)), k ≥ 0,

is entirely contained within B and converges to a, which is the only zero of J ′ in B. Fur-
thermore, the convergence is geometric, which means that

‖xk − a‖ ≤ βk ‖x0 − a‖ ,

for some β < 1.

When E = Rn, the Newton method given by Theorem 22.4 yield an iteration step of the
form

xk+1 = xk − A−1
k (x`)∇J(xk), 0 ≤ ` ≤ k,
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where ∇J(xk) is the gradient of J at xk (here, we identify E ′ with Rn). In particular,
Newton’s original method picks Ak = J ′′, and the iteration step is of the form

xk+1 = xk − (∇2J(xk))
−1∇J(xk), k ≥ 0,

where ∇2J(xk) is the Hessian of J at xk.

As remarked in Ciarlet [30] (Section 7.5), generalized Newton methods have a very wide
range of applicability. For example, various versions of gradient descent methods can be
viewed as instances of Newton method.

Newton’s method also plays an important role in convex optimization, in particular,
interior-point methods. A variant of Newton’s method dealing with equality constraints has
been developed. We refer the reader to Boyd and Vandenberghe [22], Chapters 10 and 11,
for a comprehensive exposition of these topics.

22.3 Summary

The main concepts and results of this chapter are listed below:

• Newton’s method for functions f : R→ R.

• Generalized Newton methods.

• The Newton-Kantorovich theorem.



Chapter 23

Quadratic Optimization Problems

23.1 Quadratic Optimization: The Positive Definite

Case

In this chapter, we consider two classes of quadratic optimization problems that appear
frequently in engineering and in computer science (especially in computer vision):

1. Minimizing

Q(x) =
1

2
x>Ax− x>b

over all x ∈ Rn, or subject to linear or affine constraints.

2. Minimizing

Q(x) =
1

2
x>Ax− x>b

over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient conditions for
f to have a global minimum.

Many problems in physics and engineering can be stated as the minimization of some
energy function, with or without constraints. Indeed, it is a fundamental principle of me-
chanics that nature acts so as to minimize energy. Furthermore, if a physical system is in a
stable state of equilibrium, then the energy in that state should be minimal. For example, a
small ball placed on top of a sphere is in an unstable equilibrium position. A small motion
causes the ball to roll down. On the other hand, a ball placed inside and at the bottom of a
sphere is in a stable equilibrium position, because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can be
conveniently defined in the form

Q(x) = x>Ax− x>b,

617
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where A is a symmetric n× n matrix, and x, b, are vectors in Rn, viewed as column vectors.
Actually, for reasons that will be clear shortly, it is preferable to put a factor 1

2
in front of

the quadratic term, so that

Q(x) =
1

2
x>Ax− x>b.

The question is, under what conditions (on A) does Q(x) have a global minimum, prefer-
ably unique?

We give a complete answer to the above question in two stages:

1. In this section, we show that if A is symmetric positive definite, then Q(x) has a unique
global minimum precisely when

Ax = b.

2. In Section 23.2, we give necessary and sufficient conditions in the general case, in terms
of the pseudo-inverse of A.

We begin with the matrix version of Definition 16.2.

Definition 23.1. A symmetric positive definite matrix is a matrix whose eigenvalues are
strictly positive, and a symmetric positive semidefinite matrix is a matrix whose eigenvalues
are nonnegative.

Equivalent criteria are given in the following proposition.

Proposition 23.1. Given any Euclidean space E of dimension n, the following properties
hold:

(1) Every self-adjoint linear map f : E → E is positive definite iff

〈f(x), x〉 > 0

for all x ∈ E with x 6= 0.

(2) Every self-adjoint linear map f : E → E is positive semidefinite iff

〈f(x), x〉 ≥ 0

for all x ∈ E.

Proof. (1) First, assume that f is positive definite. Recall that every self-adjoint linear map
has an orthonormal basis (e1, . . . , en) of eigenvectors, and let λ1, . . . , λn be the corresponding
eigenvalues. With respect to this basis, for every x = x1e1 + · · ·+ xnen 6= 0, we have

〈f(x), x〉 =
〈
f
( n∑
i=1

xiei

)
,

n∑
i=1

xiei

〉
=
〈 n∑

i=1

λixiei,
n∑
i=1

xiei

〉
=

n∑
i=1

λix
2
i ,
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which is strictly positive, since λi > 0 for i = 1, . . . , n, and x2
i > 0 for some i, since x 6= 0.

Conversely, assume that
〈f(x), x〉 > 0

for all x 6= 0. Then for x = ei, we get

〈f(ei), ei〉 = 〈λiei, ei〉 = λi,

and thus λi > 0 for all i = 1, . . . , n.

(2) As in (1), we have

〈f(x), x〉 =
n∑
i=1

λix
2
i ,

and since λi ≥ 0 for i = 1, . . . , n because f is positive semidefinite, we have 〈f(x), x〉 ≥ 0, as
claimed. The converse is as in (1) except that we get only λi ≥ 0 since 〈f(ei), ei〉 ≥ 0.

Some special notation is customary (especially in the field of convex optimization) to
express that a symmetric matrix is positive definite or positive semidefinite.

Definition 23.2. Given any n × n symmetric matrix A we write A � 0 if A is positive
semidefinite and we write A � 0 if A is positive definite.

It should be noted that we can define the relation

A � B

between any two n×n matrices (symmetric or not) iff A−B is symmetric positive semidef-
inite. It is easy to check that this relation is actually a partial order on matrices, called the
positive semidefinite cone ordering ; for details, see Boyd and Vandenberghe [22], Section 2.4.

If A is symmetric positive definite, it is easily checked that A−1 is also symmetric positive
definite. Also, if C is a symmetric positive definite m×m matrix and A is an m×n matrix of
rank n (and so m ≥ n and the map x 7→ Ax is surjective onto Rm), then A>CA is symmetric
positive definite.

We can now prove that

Q(x) =
1

2
x>Ax− x>b

has a global minimum when A is symmetric positive definite.

Proposition 23.2. Given a quadratic function

Q(x) =
1

2
x>Ax− x>b,

if A is symmetric positive definite, then Q(x) has a unique global minimum for the solution
of the linear system Ax = b. The minimum value of Q(x) is

Q(A−1b) = −1

2
b>A−1b.
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Proof. Since A is positive definite, it is invertible, since its eigenvalues are all strictly positive.
Let x = A−1b, and compute Q(y)−Q(x) for any y ∈ Rn. Since Ax = b, we get

Q(y)−Q(x) =
1

2
y>Ay − y>b− 1

2
x>Ax+ x>b

=
1

2
y>Ay − y>Ax+

1

2
x>Ax

=
1

2
(y − x)>A(y − x).

Since A is positive definite, the last expression is nonnegative, and thus

Q(y) ≥ Q(x)

for all y ∈ Rn, which proves that x = A−1b is a global minimum of Q(x). A simple
computation yields

Q(A−1b) = −1

2
b>A−1b.

Remarks:

(1) The quadratic function Q(x) is also given by

Q(x) =
1

2
x>Ax− b>x,

but the definition using x>b is more convenient for the proof of Proposition 23.2.

(2) If Q(x) contains a constant term c ∈ R, so that

Q(x) =
1

2
x>Ax− x>b+ c,

the proof of Proposition 23.2 still shows that Q(x) has a unique global minimum for
x = A−1b, but the minimal value is

Q(A−1b) = −1

2
b>A−1b+ c.

Thus, when the energy function Q(x) of a system is given by a quadratic function

Q(x) =
1

2
x>Ax− x>b,

where A is symmetric positive definite, finding the global minimum of Q(x) is equivalent to
solving the linear system Ax = b. Sometimes, it is useful to recast a linear problem Ax = b
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as a variational problem (finding the minimum of some energy function). However, very
often, a minimization problem comes with extra constraints that must be satisfied for all
admissible solutions. For instance, we may want to minimize the quadratic function

Q(x1, x2) =
1

2

(
x2

1 + x2
2

)
subject to the constraint

2x1 − x2 = 5.

The solution for which Q(x1, x2) is minimum is no longer (x1, x2) = (0, 0), but instead,
(x1, x2) = (2,−1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(x1, x2) in R3 is a paraboloid
of revolution P with axis of revolution Oz. The constraint

2x1 − x2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing the line of equation
2x1−x2 = 5 in the xy-plane. Thus, the constrained minimum of Q is located on the parabola
that is the intersection of the paraboloid P with the plane H.

A nice way to solve constrained minimization problems of the above kind is to use the
method of Lagrange multipliers discussed in Section 21.1. But first, let us define precisely
what kind of minimization problems we intend to solve.

Definition 23.3. The quadratic constrained minimization problem consists in minimizing a
quadratic function

Q(x) =
1

2
x>A−1x− b>x

subject to the linear constraints
B>x = f,

where A−1 is an m×m symmetric positive definite matrix, B is an m× n matrix of rank n
(so that m ≥ n), and where b, x ∈ Rm (viewed as column vectors), and f ∈ Rn (viewed as a
column vector).

The reason for using A−1 instead of A is that the constrained minimization problem has
an interpretation as a set of equilibrium equations in which the matrix that arises naturally
is A (see Strang [102]). Since A and A−1 are both symmetric positive definite, this doesn’t
make any difference, but it seems preferable to stick to Strang’s notation.

As explained in Section 21.1, the method of Lagrange multipliers consists in incorporating
the n constraints B>x = f into the quadratic function Q(x), by introducing extra variables
λ = (λ1, . . . , λn) called Lagrange multipliers , one for each constraint. We form the Lagrangian

L(x, λ) = Q(x) + λ>(B>x− f) =
1

2
x>A−1x− (b−Bλ)>x− λ>f.
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We know from Theorem 21.3 that a necessary condition for our constrained optimization
problem to have a solution is that ∇L(x, λ) = 0. Since

∂L

∂x
(x, λ) = A−1x− (b−Bλ)

∂L

∂λ
(x, λ) = B>x− f,

we obtain the system of linear equations

A−1x+Bλ = b,

B>x = f,

which can be written in matrix form as(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

We shall prove in Proposition 23.3 below that our constrained minimization problem has a
unique solution actually given by the above system.

Note that the matrix of this system is symmetric. We solve it as follows. Eliminating x
from the first equation

A−1x+Bλ = b,

we get
x = A(b−Bλ),

and substituting into the second equation, we get

B>A(b−Bλ) = f,

that is,
B>ABλ = B>Ab− f.

However, by a previous remark, since A is symmetric positive definite and the columns of
B are linearly independent, B>AB is symmetric positive definite, and thus invertible. Thus
we obtain the solution

λ = (B>AB)−1(B>Ab− f), x = A(b−Bλ).

Note that this way of solving the system requires solving for the Lagrange multipliers first.

Letting e = b−Bλ, we also note that the system(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)



23.1. QUADRATIC OPTIMIZATION: THE POSITIVE DEFINITE CASE 623

is equivalent to the system

e = b−Bλ,
x = Ae,

B>x = f.

The latter system is called the equilibrium equations by Strang [102]. Indeed, Strang shows
that the equilibrium equations of many physical systems can be put in the above form.
This includes spring-mass systems, electrical networks, and trusses, which are structures
built from elastic bars. In each case, x, e, b, A, λ, f , and K = B>AB have a physical
interpretation. The matrix K = B>AB is usually called the stiffness matrix . Again, the
reader is referred to Strang [102].

In order to prove that our constrained minimization problem has a unique solution, we
proceed to prove that the constrained minimization of Q(x) subject to B>x = f is equivalent
to the unconstrained maximization of another function −G(λ). We get G(λ) by minimizing
the Lagrangian L(x, λ) treated as a function of x alone. The function −G(λ) is the dual
function of the Lagrangian L(x, λ). Here we are encountering a special case of the notion of
dual function defined in Section 31.5.

Since A−1 is symmetric positive definite and

L(x, λ) =
1

2
x>A−1x− (b−Bλ)>x− λ>f,

by Proposition 23.2 the global minimum (with respect to x) of L(x, λ) is obtained for the
solution x of

A−1x = b−Bλ,
that is, when

x = A(b−Bλ),

and the minimum of L(x, λ) is

min
x
L(x, λ) = −1

2
(Bλ− b)>A(Bλ− b)− λ>f.

Letting

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

we will show in Proposition 23.3 that the solution of the constrained minimization of Q(x)
subject to B>x = f is equivalent to the unconstrained maximization of −G(λ). This is a
special case of the duality discussed in Section 31.5.

Of course, since we minimized L(x, λ) with respect to x, we have

L(x, λ) ≥ −G(λ)
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for all x and all λ. However, when the constraint B>x = f holds, L(x, λ) = Q(x), and thus
for any admissible x, which means that B>x = f , we have

min
x
Q(x) ≥ max

λ
−G(λ).

In order to prove that the unique minimum of the constrained problem Q(x) subject to
B>x = f is the unique maximum of −G(λ), we compute Q(x) +G(λ).

Proposition 23.3. The quadratic constrained minimization problem of Definition 23.3 has
a unique solution (x, λ) given by the system(

A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

Furthermore, the component λ of the above solution is the unique value for which −G(λ) is
maximum.

Proof. As we suggested earlier, let us compute Q(x) + G(λ), assuming that the constraint
B>x = f holds. Eliminating f , since b>x = x>b and λ>B>x = x>Bλ, we get

Q(x) +G(λ) =
1

2
x>A−1x− b>x+

1

2
(Bλ− b)>A(Bλ− b) + λ>f

=
1

2
(A−1x+Bλ− b)>A(A−1x+Bλ− b).

Since A is positive definite, the last expression is nonnegative. In fact, it is null iff

A−1x+Bλ− b = 0,

that is,
A−1x+Bλ = b.

But then the unique constrained minimum of Q(x) subject to B>x = f is equal to the
unique maximum of −G(λ) exactly when B>x = f and A−1x + Bλ = b, which proves the
proposition.

We can confirm that the maximum of −G(λ), or equivalently the minimum of

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

corresponds to value of λ obtained by solving the system(
A−1 B
B> 0

)(
x
λ

)
=

(
b
f

)
.

Indeed, since

G(λ) =
1

2
λ>B>ABλ− λ>B>Ab+ λ>f +

1

2
b>b,
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and B>AB is symmetric positive definite, by Proposition 23.2, the global minimum of G(λ)
is obtained when

B>ABλ−B>Ab+ f = 0,

that is, λ = (B>AB)−1(B>Ab− f), as we found earlier.

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization
of Q(x) subject to B>x = f is called the primal problem, and the unconstrained
maximization of −G(λ) is called the dual problem. Duality is the fact stated slightly
loosely as

min
x
Q(x) = max

λ
−G(λ).

A general treatment of duality in constrained minimization problems is given in Section
31.5.

Recalling that e = b−Bλ, since

G(λ) =
1

2
(Bλ− b)>A(Bλ− b) + λ>f,

we can also write

G(λ) =
1

2
e>Ae+ λ>f.

This expression often represents the total potential energy of a system. Again, the
optimal solution is the one that minimizes the potential energy (and thus maximizes
−G(λ)).

(2) It is immediately verified that the equations of Proposition 23.3 are equivalent to the
equations stating that the partial derivatives of the Lagrangian L(x, λ) are null:

∂L

∂xi
= 0, i = 1, . . . ,m,

∂L

∂λj
= 0, j = 1, . . . , n.

Thus, the constrained minimum of Q(x) subject to B>x = f is an extremum of the
Lagrangian L(x, λ). As we showed in Proposition 23.3, this extremum corresponds
to simultaneously minimizing L(x, λ) with respect to x and maximizing L(x, λ) with
respect to λ. Geometrically, such a point is a saddle point for L(x, λ). Saddle points
are discussed in Section 31.5.

(3) The Lagrange multipliers sometimes have a natural physical meaning. For example, in
the spring-mass system they correspond to node displacements. In some general sense,
Lagrange multipliers are correction terms needed to satisfy equilibrium equations and
the price paid for the constraints. For more details, see Strang [102].
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Going back to the constrained minimization of Q(x1, x2) = 1
2
(x2

1 + x2
2) subject to

2x1 − x2 = 5,

the Lagrangian is

L(x1, x2, λ) =
1

2

(
x2

1 + x2
2

)
+ λ(2x1 − x2 − 5),

and the equations stating that the Lagrangian has a saddle point are

x1 + 2λ = 0,

x2 − λ = 0,

2x1 − x2 − 5 = 0.

We obtain the solution (x1, x2, λ) = (2,−1,−1).

The use of Lagrange multipliers in optimization and variational problems is discussed
extensively in Chapter 31.

Least squares methods and Lagrange multipliers are used to tackle many problems in
computer graphics and computer vision; see Trucco and Verri [107], Metaxas [74], Jain,
Katsuri, and Schunck [58], Faugeras [40], and Foley, van Dam, Feiner, and Hughes [41].

23.2 Quadratic Optimization: The General Case

In this section we complete the study initiated in Section 23.1 and give necessary and suf-
ficient conditions for the quadratic function 1

2
x>Ax − x>b to have a global minimum. We

begin with the following simple fact:

Proposition 23.4. If A is an invertible symmetric matrix, then the function

f(x) =
1

2
x>Ax− x>b

has a minimum value iff A � 0, in which case this optimal value is obtained for a unique
value of x, namely x∗ = A−1b, and with

f(A−1b) = −1

2
b>A−1b.

Proof. Observe that

1

2
(x− A−1b)>A(x− A−1b) =

1

2
x>Ax− x>b+

1

2
b>A−1b.

Thus,

f(x) =
1

2
x>Ax− x>b =

1

2
(x− A−1b)>A(x− A−1b)− 1

2
b>A−1b.



23.2. QUADRATIC OPTIMIZATION: THE GENERAL CASE 627

If A has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector u of
A associated with λ, then for any α ∈ R with α 6= 0, if we let x = αu + A−1b, then since
Au = −λu, we get

f(x) =
1

2
(x− A−1b)>A(x− A−1b)− 1

2
b>A−1b

=
1

2
αu>Aαu− 1

2
b>A−1b

= −1

2
α2λ ‖u‖2

2 −
1

2
b>A−1b,

and since α can be made as large as we want and λ > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have A � 0. If A � 0, since A is
invertible, it is positive definite, so (x− A−1b)>A(x− A−1b) > 0 iff x− A−1b 6= 0, and it is
clear that the minimum value of f is achieved when x− A−1b = 0, that is, x = A−1b.

Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 23.5. If A is a n× n symmetric matrix, then the function

f(x) =
1

2
x>Ax− x>b

has a minimum value iff A � 0 and (I − AA+)b = 0, in which case this minimum value is

p∗ = −1

2
b>A+b.

Furthermore, if A is diagonlized as A = U>ΣU (with U orthogonal), then the optimal value
is achieved by all x ∈ Rn of the form

x = A+b+ U>
(

0
z

)
,

for any z ∈ Rn−r, where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 23.4, so we may assume
that A is singular. If A has rank r < n, then we can diagonalize A as

A = U>
(

Σr 0
0 0

)
U,

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix. Then
we have

f(x) =
1

2
x>U>

(
Σr 0
0 0

)
Ux− x>U>Ub

=
1

2
(Ux)>

(
Σr 0
0 0

)
Ux− (Ux)>Ub.
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If we write

Ux =

(
y
z

)
and Ub =

(
c
d

)
,

with y, c ∈ Rr and z, d ∈ Rn−r, we get

f(x) =
1

2
(Ux)>

(
Σr 0
0 0

)
Ux− (Ux)>Ub

=
1

2
(y> z>)

(
Σr 0
0 0

)(
y
z

)
− (y> z>)

(
c
d

)
=

1

2
y>Σry − y>c− z>d.

For y = 0, we get
f(x) = −z>d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that

Ub =

(
c
0

)
,

and we know from Proposition 17.5 that b is in the range of A (here, U is V >), which is
equivalent to (I − AA+)b = 0. If d = 0, then

f(x) =
1

2
y>Σry − y>c,

and since Σr is invertible, by Proposition 23.4, the function f has a minimum iff Σr � 0,
which is equivalent to A � 0.

Therefore, we have proved that if f has a minimum, then (I − AA+)b = 0 and A � 0.
Conversely, if (I − AA+)b = 0 and A � 0, what we just did proves that f does have a
minimum.

When the above conditions hold, since

A = U>
(

Σr 0
0 0

)
U

is positive semidefinite, the pseudo-inverse A+ of A is given by

A+ = U>
(

Σ−1
r 0
0 0

)
U,

and by Proposition 23.4 the minimum is achieved if y = Σ−1
r c, z = 0 and d = 0, that is, for

x∗ given by

Ux∗ =

(
Σ−1
r c
0

)
and Ub =

(
c
0

)
,
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from which we deduce that

x∗ = U>
(

Σ−1
r c
0

)
= U>

(
Σ−1
r 0
0 0

)(
c
0

)
= U>

(
Σ−1
r 0
0 0

)
Ub = A+b

and the minimum value of f is

f(x∗) = −1

2
b>A+b.

For any x ∈ Rn of the form

x = A+b+ U>
(

0
z

)
,

for any z ∈ Rn−r, we have

f(x) =
1

2

(
A+b+ U>

(
0
z

))>
A

(
A+b+ U>

(
0
z

))
−
(
A+b+ U>

(
0
z

))>
b

=
1

2
(A+b)>AA+b+ (0 z>)UAA+b+

1

2
(0 z>)UAU>

(
0
z

)
− (A+b)>b− (0 z>)Ub

= −1

2
b>A+b+ (0 z>)UAA+b+

1

2
(0 z>)UAU>

(
0
z

)
− (0 z>)Ub.

We have

(0 z>)UAA+b = (0 z>)UU>
(

Σr 0
0 0

)
UU>

(
Σ−1
r 0
0 0

)
Ub

= (0 z>)

(
Ir 0
0 0

)
Ub = 0,

(0 z>)UAU>
(

0
z

)
= (0 z>)UU>

(
Σr 0
0 0

)
UU>

(
0
z

)
= (0 z>)

(
Σr 0
0 0

)(
0
z

)
= 0,

and

(0 z>)Ub = (0 z>)

(
c
0

)
= 0,

because (I − AA+)b = 0, that is,((
Ir 0
0 In−r

)
− U>

(
Σr 0
0 0

)
UU>

(
Σ−1
r 0
0 0

)
U

)
b =

((
Ir 0
0 In−r

)
− U>

(
Ir 0
0 0

)
U

)
b

= U>
(

0 0
0 In−r

)
Ub = 0,

so if

Ub =

(
c
d

)
,

then d = 0. Therefore, f(x) = −1
2
b>A+b.
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The problem of minimizing the function

f(x) =
1

2
x>Ax− x>b

in the case where we add either linear constraints of the form C>x = 0 or affine constraints
of the form C>x = t (where t ∈ Rm and t 6= 0) where C is an n×m matrix can be reduced
to the unconstrained case using a QR-decomposition of C. Let us show how to do this for
linear constraints of the form C>x = 0.

If we use a QR decomposition of C, by permuting the columns of C to make sure that
the first r columns of C are linearly independent (where r = rank(C)), we may assume that

C = Q>
(
R S
0 0

)
Π,

where Q is an n× n orthogonal matrix, R is an r × r invertible upper triangular matrix, S
is an r × (m− r) matrix, and Π is a permutation matrix (C has rank r). Then if we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

C>x = Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,

which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.

Our original problem becomes

minimize
1

2
(y> z>)QAQ>

(
y
z

)
+ (y> z>)Qb

subject to y = 0, y ∈ Rr, z ∈ Rn−r.

Thus, the constraint C>x = 0 has been simplifed to y = 0, and if we write

QAQ> =

(
G11 G12

G21 G22

)
,

where G11 is an r × r matrix and G22 is an (n− r)× (n− r) matrix, and

Qb =

(
b1

b2

)
, b1 ∈ Rr, b2 ∈ Rn−r,
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our problem becomes

minimize
1

2
z>G22z + z>b2, z ∈ Rn−r,

the problem solved in Proposition 23.5.

Constraints of the form C>x = t (where t 6= 0) can be handled in a similar fashion. In
this case, we may assume that C is an n × m matrix with full rank (so that m ≤ n) and
t ∈ Rm. Then we use a QR-decomposition of the form

C = P

(
R
0

)
,

where P is an orthogonal n×n matrix and R is an m×m invertible upper triangular matrix.
If we write

x = P

(
y
z

)
,

where y ∈ Rm and z ∈ Rn−m, the equation C>x = t becomes

(R> 0)P>x = t,

that is,

(R> 0)

(
y
z

)
= t,

which yields
R>y = t.

Since R is invertible, we get y = (R>)−1t, and then it is easy to see that our original problem
reduces to an unconstrained problem in terms of the matrix P>AP ; the details are left as
an exercise.

23.3 Maximizing a Quadratic Function on the Unit

Sphere

In this section we discuss various quadratic optimization problems mostly arising from com-
puter vision (image segmentation and contour grouping). These problems can be reduced to
the following basic optimization problem: Given an n× n real symmetric matrix A

maximize x>Ax

subject to x>x = 1, x ∈ Rn.

In view of Proposition 17.10, the maximum value of x>Ax on the unit sphere is equal
to the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector u1

associated with λ1.
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A variant of the above problem often encountered in computer vision consists in mini-
mizing x>Ax on the ellipsoid given by an equation of the form

x>Bx = 1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can be
diagonalized as

B = QDQ>,

where Q is an orthogonal matrix and D is a diagonal matrix,

D = diag(d1, . . . , dn),

with di > 0, for i = 1, . . . , n. If we define the matrices B1/2 and B−1/2 by

B1/2 = Q diag
(√

d1, . . . ,
√
dn

)
Q>

and
B−1/2 = Q diag

(
1/
√
d1, . . . , 1/

√
dn

)
Q>,

it is clear that these matrices are symmetric, that B−1/2BB−1/2 = I, and that B1/2 and
B−1/2 are mutual inverses. Then, if we make the change of variable

x = B−1/2y,

the equation x>Bx = 1 becomes y>y = 1, and the optimization problem

maximize x>Ax

subject to x>Bx = 1, x ∈ Rn,

is equivalent to the problem

maximize y>B−1/2AB−1/2y

subject to y>y = 1, y ∈ Rn,

where y = B1/2x and where B−1/2AB−1/2 is symmetric.

The complex version of our basic optimization problem in which A is a Hermitian matrix
also arises in computer vision. Namely, given an n× n complex Hermitian matrix A,

maximize x∗Ax

subject to x∗x = 1, x ∈ Cn.

Again by Proposition 17.10, the maximum value of x∗Ax on the unit sphere is equal
to the largest eigenvalue λ1 of the matrix A and it is achieved for any unit eigenvector u1

associated with λ1.
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Remark: It is worth pointing out that if A is a skew-Hermitian matrix, that is, if A∗ = −A,
then x∗Ax is pure imaginary or zero.

Indeed, since z = x∗Ax is a scalar, we have z∗ = z (the conjugate of z), so we have

x∗Ax = (x∗Ax)∗ = x∗A∗x = −x∗Ax,

so x∗Ax+ x∗Ax = 2Re(x∗Ax) = 0, which means that x∗Ax is pure imaginary or zero.

In particular, if A is a real matrix and if A is skew-symmetric, then

x>Ax = 0.

Thus, for any real matrix (symmetric or not),

x>Ax = x>H(A)x,

where H(A) = (A+ A>)/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the problem
of maximizing a quadratic function on the sphere. This problem was completely solved by
Golub [48] (1973). The problem is the following: Given an n × n real symmetric matrix A
and an n× p matrix C,

minimize x>Ax

subject to x>x = 1, C>x = 0, x ∈ Rn.

As in Section 23.2, Golub shows that the linear constraint C>x = 0 can be eliminated
as follows: If we use a QR decomposition of C, by permuting the columns, we may assume
that

C = Q>
(
R S
0 0

)
Π,

where Q is an orthogonal n×n matrix, R is an r× r invertible upper triangular matrix, and
S is an r × (p− r) matrix (assuming C has rank r). Then if we let

x = Q>
(
y
z

)
,

where y ∈ Rr and z ∈ Rn−r, then C>x = 0 becomes

Π>
(
R> 0
S> 0

)
Qx = Π>

(
R> 0
S> 0

)(
y
z

)
= 0,

which implies y = 0, and every solution of C>x = 0 is of the form

x = Q>
(

0
z

)
.
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Our original problem becomes

minimize (y> z>)QAQ>
(
y
z

)
subject to z>z = 1, z ∈ Rn−r,

y = 0, y ∈ Rr.

Thus, the constraint C>x = 0 has been simplified to y = 0, and if we write

QAQ> =

(
G11 G12

G>12 G22

)
,

our problem becomes

minimize z>G22z

subject to z>z = 1, z ∈ Rn−r,

a standard eigenvalue problem.

Remark: There is a way of finding the eigenvalues of G22 which does not require the QR-
factorization of C. Observe that if we let

J =

(
0 0
0 In−r

)
,

then

JQAQ>J =

(
0 0
0 G22

)
,

and if we set
P = Q>JQ,

then
PAP = Q>JQAQ>JQ.

Now, Q>JQAQ>JQ and JQAQ>J have the same eigenvalues, so PAP and JQAQ>J also
have the same eigenvalues. It follows that the solutions of our optimization problem are
among the eigenvalues of K = PAP , and at least r of those are 0. Using the fact that CC+

is the projection onto the range of C, where C+ is the pseudo-inverse of C, it can also be
shown that

P = I − CC+,

the projection onto the kernel of C>. So P can be computed directly in terms of C. In
particular, when n ≥ p and C has full rank (the columns of C are linearly independent),
then we know that C+ = (C>C)−1C> and

P = I − C(C>C)−1C>.
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This fact is used by Cour and Shi [31] and implicitly by Yu and Shi [113].

The problem of adding affine constraints of the form N>x = t, where t 6= 0, also comes
up in practice. At first glance, this problem may not seem harder than the linear problem in
which t = 0, but it is. This problem was extensively studied in a paper by Gander, Golub,
and von Matt [46] (1989).

Gander, Golub, and von Matt consider the following problem: Given an (n+m)×(n+m)
real symmetric matrix A (with n > 0), an (n+m)×m matrix N with full rank, and a nonzero
vector t ∈ Rm with

∥∥(N>)+t
∥∥ < 1 (where (N>)+ denotes the pseudo-inverse of N>),

minimize x>Ax

subject to x>x = 1, N>x = t, x ∈ Rn+m.

The condition
∥∥(N>)+t

∥∥ < 1 ensures that the problem has a solution and is not trivial.
The authors begin by proving that the affine constraint N>x = t can be eliminated. One
way to do so is to use a QR decomposition of N . If

N = P

(
R
0

)
,

where P is an orthogonal (n + m) × (n + m) matrix and R is an m × m invertible upper
triangular matrix, then if we observe that

x>Ax = x>PP>APP>x,

N>x = (R> 0)P>x = t,

x>x = x>PP>x = 1,

and if we write

P>AP =

(
B Γ>

Γ C

)
,

where B is an m ×m symmetric matrix, C is an n × n symmetric matrix, Γ is an m × n
matrix, and

P>x =

(
y
z

)
,

with y ∈ Rm and z ∈ Rn, then we get

x>Ax = y>By + 2z>Γy + z>Cz,

R>y = t,

y>y + z>z = 1.

Thus
y = (R>)−1t,
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and if we write
s2 = 1− y>y > 0

and
b = Γy,

we get the simplified problem

minimize z>Cz + 2z>b

subject to z>z = s2, z ∈ Rm.

Unfortunately, if b 6= 0, Proposition 17.10 is no longer applicable. It is still possible to find
the minimum of the function z>Cz + 2z>b using Lagrange multipliers, but such a solution
is too involved to be presented here. Interested readers will find a thorough discussion in
Gander, Golub, and von Matt [46].

23.4 Summary

The main concepts and results of this chapter are listed below:

• Quadratic optimization problems; quadratic functions .

• Symmetric positive definite and positive semidefinite matrices.

• The positive semidefinite cone ordering .

• Existence of a global minimum when A is symmetric positive definite.

• Constrained quadratic optimization problems.

• Lagrange multipliers ; Lagrangian.

• Primal and dual problems.

• Quadratic optimization problems: the case of a symmetric invertible matrix A.

• Quadratic optimization problems: the general case of a symmetric matrix A.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form C>x = t, with t 6= 0.

• Maximizing a quadratic function over the unit sphere.

• Maximizing a quadratic function over an ellipsoid.

• Maximizing a Hermitian quadratic form.

• Adding linear constraints of the form C>x = 0.

• Adding affine constraints of the form N>x = t, with t 6= 0.



Chapter 24

Schur Complements and Applications

24.1 Schur Complements

Schur complements arise naturally in the process of inverting block matrices of the form

M =

(
A B
C D

)
and in characterizing when symmetric versions of these matrices are positive definite or
positive semidefinite. These characterizations come up in various quadratic optimization
problems; see Boyd and Vandenberghe [22], especially Appendix B. In the most general
case, pseudo-inverses are also needed.

In this chapter we introduce Schur complements and describe several interesting ways in
which they are used. Along the way we provide some details and proofs of some results from
Appendix A.5 (especially Section A.5.5) of Boyd and Vandenberghe [22].

Let M be an n× n matrix written as a 2× 2 block matrix

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p + q (so B is a p× q matrix
and C is a q × p matrix). We can try to solve the linear system(

A B
C D

)(
x
y

)
=

(
c
d

)
,

that is,

Ax+By = c,

Cx+Dy = d,

637
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by mimicking Gaussian elimination. If we assume that D is invertible, then we first solve
for y, getting

y = D−1(d− Cx),

and after substituting this expression for y in the first equation, we get

Ax+B(D−1(d− Cx)) = c,

that is,
(A−BD−1C)x = c−BD−1d.

If the matrix A−BD−1C is invertible, then we obtain the solution to our system

x = (A−BD−1C)−1(c−BD−1d),

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)).

If A is invertible, then by eliminating x first using the first equation, we obtain analogous
formulas involving the matrix D − CA−1B. The above formulas suggest that the matrices
A−BD−1C and D − CA−1B play a special role and suggest the following definition:

Definition 24.1. Given any n× n block matrix of the form

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p + q (so B is a p× q matrix
and C is a q × p matrix), if D is invertible, then the matrix A−BD−1C is called the Schur
complement of D in M . If A is invertible, then the matrix D − CA−1B is called the Schur
complement of A in M .

The above equations written as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d,

y = −D−1C(A−BD−1C)−1c

+ (D−1 +D−1C(A−BD−1C)−1BD−1)d,

yield a formula for the inverse of M in terms of the Schur complement of D in M , namely(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

A moment of reflection reveals that(
A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
,

and then (
A B
C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
.

By taking inverses, we obtain the following result.
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Proposition 24.1. If the matrix D is invertibke, then(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

The above expression can be checked directly and has the advantage of requiring only
the invertibility of D.

Remark: If A is invertible, then we can use the Schur complement D − CA−1B of A to
obtain the following factorization of M :(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

If D − CA−1B is invertible, we can invert all three matrices above, and we get another
formula for the inverse of M in terms of (D − CA−1B), namely,

(
A B
C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If A,D and both Schur complements A − BD−1C and D − CA−1B are all invertible, by
comparing the two expressions for M−1, we get the (nonobvious) formula

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [56]):

Proposition 24.2. If A,D and both Schur complements A−BD−1C and D −CA−1B are
all invertible, then(

A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If we set D = I and change B to −B, we get

(A+BC)−1 = A−1 − A−1B(I − CA−1B)−1CA−1,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [22], Appendix
C.4, especially C.4.3).
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24.2 Symmetric Positive Definite Matrices and

Schur Complements

If we assume that our block matrix M is symmetric, so that A,D are symmetric and C = B>,
then we see that M is expressed as

M =

(
A B
B> D

)
=

(
I BD−1

0 I

)(
A−BD−1B> 0

0 D

)(
I BD−1

0 I

)>
,

which shows that M is similar to a block diagonal matrix (obviously, the Schur complement,
A − BD−1B>, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M � 0 for a symmetric matrix.

Proposition 24.3. For any symmetric matrix M of the form

M =

(
A B
B> C

)
,

if C is invertible, then the following properties hold:

(1) M � 0 iff C � 0 and A−BC−1B> � 0.

(2) If C � 0, then M � 0 iff A−BC−1B> � 0.

Proof. (1) Observe that (
I BC−1

0 I

)−1

=

(
I −BC−1

0 I

)
,

and we know that for any symmetric matrix T and any invertible matrix N , the matrix T
is positive definite (T � 0) iff NTN> (which is obviously symmetric) is positive definite
(NTN> � 0). But a block diagonal matrix is positive definite iff each diagonal block is
positive definite, which concludes the proof.

(2) This is because for any symmetric matrix T and any invertible matrix N , we have
T � 0 iff NTN> � 0.

Another version of Proposition 24.3 using the Schur complement of A instead of the
Schur complement of C also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 24.1).

Proposition 24.4. For any symmetric matrix M of the form

M =

(
A B
B> C

)
,

if A is invertible then the following properties hold:
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(1) M � 0 iff A � 0 and C −B>A−1B � 0.

(2) If A � 0, then M � 0 iff C −B>A−1B � 0.

Here is an illustration of Proposition 24.4(2). Consider the nonlinear quadratic constraint

(Ax+ b)>(Ax+ b) ≤ c>x+ d,

were A ∈ Mn(R), x, b, c ∈ Rn and d ∈ R. Since obviously I = In is invertible and I � 0, we
have (

I Ax+ b
(Ax+ b)> c>x+ d

)
� 0

iff c>x + d − (Ax + b)>(Ax + b) � 0 iff (Ax + b)>(Ax + b) ≤ c>x + d, since the matrix (a
scalar) c>x+ d− (Ax+ b)>(Ax+ b) is the Schur complement of I in the above matrix.

The trick of using Schur complements to convert nonlinear inequality constraints into
linear constraints on symmetric matrices involving the semidefinire ordering � is used exten-
sively to convert nonlinear problems into semidefinite programs; see Boyd and Vandenberghe
[22].

When C is singular (or A is singular), it is still possible to characterize when a symmetric
matrix M as above is positive semidefinite, but this requires using a version of the Schur
complement involving the pseudo-inverse of C, namely A − BC+B> (or the Schur comple-
ment, C − B>A+B, of A). We use the criterion of Proposition 23.5, which tells us when a
quadratic function of the form 1

2
x>Px− x>b has a minimum and what this optimum value

is (where P is a symmetric matrix).

24.3 Symmetric Positive Semidefinite Matrices and

Schur Complements

We now return to our original problem, characterizing when a symmetric matrix

M =

(
A B
B> C

)
is positive semidefinite. Thus, we want to know when the function

f(x, y) = (x>, y>)

(
A B
B> C

)(
x
y

)
= x>Ax+ 2x>By + y>Cy

has a minimum with respect to both x and y. If we hold y constant, Proposition 23.5 implies
that f(x, y) has a minimum iff A � 0 and (I − AA+)By = 0, and then the minimum value
is

f(x∗, y) = −y>B>A+By + y>Cy = y>(C −B>A+B)y.
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Since we want f(x, y) to be uniformly bounded from below for all x, y, we must have (I −
AA+)B = 0. Now, f(x∗, y) has a minimum iff C − B>A+B � 0. Therefore, we have
established that f(x, y) has a minimum over all x, y iff

A � 0, (I − AA+)B = 0, C −B>A+B � 0.

Similar reasoning applies if we first minimize with respect to y and then with respect to x,
but this time, the Schur complement A − BC+B> of C is involved. Putting all these facts
together, we get our main result:

Theorem 24.5. Given any symmetric matrix

M =

(
A B
B> C

)
the following conditions are equivalent:

(1) M � 0 (M is positive semidefinite).

(2) A � 0, (I − AA+)B = 0, C −B>A+B � 0.

(3) C � 0, (I − CC+)B> = 0, A−BC+B> � 0.

If M � 0 as in Theorem 24.5, then it is easy to check that we have the following
factorizations (using the fact that A+AA+ = A+ and C+CC+ = C+):(

A B
B> C

)
=

(
I BC+

0 I

)(
A−BC+B> 0

0 C

)(
I 0

C+B> I

)
and (

A B
B> C

)
=

(
I 0

B>A+ I

)(
A 0
0 C −B>A+B

)(
I A+B
0 I

)
.
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Chapter 25

Convex Sets, Cones, H-Polyhedra

25.1 What is Linear Programming?

What is linear programming? At first glance, one might think that this is some style of com-
puter programming. After all, there is imperative programming, functional programming,
object-oriented programming etc. The term linear programming is somewhat misleading,
because it really refers to a method for planning with linear constraints, or more accurately,
an optimization method where both the objective function and the constraints are linear.1

Linear programming was created in the late 1940’s, one of the key players being George
Dantzing, who invented the simplex algorithm. Kantorovitch also did some pioneering work
on linear programming as early as 1939. The term linear programming has a military con-
notation because in the early 1950’s it was used as a synonym for plans or schedules for
training troops, logistical supply, resource allocation, etc. Unfortunately the term linear
programming is well established and we are stuck with it.

Interestingly, even though originally most applications of linear programming were in
the field of economics and industrial engineering, linear programming has become an im-
portant tool in theoretical computer science and in the theory of algorithms. Indeed, linear
programming is often an effective tool for designing approximation algorithms to solve hard
problems (typically NP-hard problems). Linear programming is also the “baby version” of
convex programming, a very effective methodology which has received much attention in
recent years.

Our goal in these notes is to present the mathematical underpinnings of linear pro-
gramming, in particular the existence of an optimal solution if a linear program is feasible
and bounded, and the duality theorem in linear programming, one of the deepest results
in this field. The duality theorem in linear programming also has significant algorithmic
implications but we do not discuss this here. We present the simplex algorithm, the dual
simplex algorithm, and the primal dual algorithm. We also describe the tableau formalism

1Again, we witness another unfortunate abuse of terminology; the constraints are in fact affine.
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for running the simplex algorithm and its variants. A particularly nice feature of the tableau
formalism is that the update of a tableau can be performed using elementary row operations
identical to the operations used during the reduction of a matrix to row reduced echelon
form (rref). What differs is the criterion for the choice of the pivot.

However, we do not discuss other methods such as the ellipsoid method or interior points
methods. For these more algorithmic issues, we refer the reader to standard texts on linear
programming. In our opinion, one of the clearest (and among the most concise!) is Matousek
and Gardner [73]; Chvatal [29] and Schrijver [89] are classics. Papadimitriou and Steiglitz
[80] offers a very crisp presentation in the broader context of combinatorial optimization,
and Bertsimas and Tsitsiklis [17] and Vanderbei [110] are very complete.

Linear programming has to do with maximizing a linear cost function c1x1 + · · · + cnxn
with respect to m “linear” inequalities of the form

ai1x1 + · · ·+ ainxn ≤ bi.

These constraints can be put together into an m × n matrix A = (aij), and written more
concisely as

Ax ≤ b.

For technical reasons that will appear clearer later on, it is often preferable to add the
nonnegativity constaints xi ≥ 0 for i = 1, . . . , n. We write x ≥ 0. It is easy to show that
every linear program is equivalent to another one satisfying the constraints x ≥ 0, at the
expense of adding new variables that are also constrained to be nonnegative. Let P(A, b) be
the set of feasible solutions of our linear program given by

P(A, b) = {x ∈ Rn | Ax ≤ b, x ≥ 0}.

Then, there are two basic questions:

(1) Is P(A, b) nonempty, that is, does our linear program have a chance to have a solution?

(2) Does the objective function c1x1 + · · ·+ cnxn have a maximum value on P(A, b)?

The answer to both questions can be no. But if P(A, b) is nonempty and if the objective
function is bounded above (on P(A, b)), then it can be shown that the maximum of c1x1 +
· · · + cnxn is achieved by some x ∈ P(A, b). Such a solution is called an optimal solution.
Perhaps surprisingly, this result is not so easy to prove (unless one has the simplex method
as its disposal). We will prove this result in full detail (see Proposition 26.1).

The reason why linear constraints are so important is that the domain of potential optimal
solutions P(A, b) is convex . In fact, P(A, b) is a convex polyhedron which is the intersection
of half-spaces cut out by affine hyperplanes. The objective function being linear is convex,
and this is also a crucial fact. Thus, we are led to study convex sets, in particular those that
arise from solutions of inequalities defined by affine forms, but also convex cones.
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We give a brief introduction to these topics. As a reward, we provide several criteria for
testing whether a system of inequalities

Ax ≤ b, x ≥ 0

has a solution or not in terms of versions of the Farkas lemma (see Proposition 31.3 and
Proposition 28.4). Then we give a complete proof of the strong duality theorem for linear
programming (see Theorem 28.7). We also discuss the complementary slackness conditions
and show that they can be exploired to design an algorithm for solving a linear program
that uses both the primal problem and its dual. This algorithm known as the primal dual
algorithm, although not used much nowadays, has been the source of inspiration for a whole
class of approximation algorithms also known as primal dual algorithms.

We hope that these notes will be a motivation for learning more about linear program-
ming, convex optimization, but also convex geometry. The “bible” in convex optimization
is Boyd and Vandenberghe [22], and one of the best sources for convex geometry is Ziegler
[114]. This is a rather advanced text, so the reader may want to begin with Gallier [45].

25.2 Affine Subsets, Convex Sets, Affine Hyperplanes,

Half-Spaces

We view Rn as consisting of column vectors (n×1 matrices). As usual, row vectors represent
linear forms, that is linear maps ϕ : Rn → R, in the sense that the row vector y (a 1 × n
matrix) represents the linear form ϕ if ϕ(x) = yx for all x ∈ Rn. We denote the space of
linear forms (row vectors) by (Rn)∗.

Recall that a linear combination of vectors in Rn is an expression

λ1x1 + · · ·+ λmxm

where x1, . . . , xm ∈ Rn and where λ1, . . . , λm are arbitrary scalars in R. Given a sequence of
vectors S = (x1, . . . , xm) with xi ∈ Rn, the set of all linear combinations of the vectors in S is
the smallest (linear) subspace containing S called the linear span of S, and denoted span(S).
A linear subspace of Rn is any nonempty subset of Rn closed under linear combinations.

An affine combination of vectors in Rn is an expression

λ1x1 + · · ·+ λmxm

where x1, . . . , xm ∈ Rn and where λ1, . . . , λm are scalars in R satisfying the condition

λ1 + · · ·+ λm = 1.

Given a sequence of vectors S = (x1, . . . , xm) with xi ∈ Rn, the set of all affine combinations
of the vectors in S is the smallest affine subspace containing S called the affine hull of S
and denoted aff(S).
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1

(a) (b)

Figure 25.1: (a) A convex set; (b) A nonconvex set

Definition 25.1. An affine subspace A of Rn is any subset of Rn closed under affine com-
binations.

If A is a nonempty affine subset of Rn, then it can be shown that VA = {a− b | a, b ∈ A}
is a linear subspace of Rn called the direction of A, and that

A = a+ VA = {a+ v | v ∈ VA}

for any a ∈ A. The dimension of a nonempty affine subspace A is the dimension of its
direction VA.

Convex combinations are affine combinations λ1x1 + · · · + λmxm satisfying the extra
condition that λi ≥ 0 for i = 1, . . . ,m. A convex set is defined as follows.

Definition 25.2. A subset V of Rn is convex if for any two points a, b ∈ V , we have c ∈ V
for every point c = (1 − λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R). Given any two points a, b, the
notation [a, b] is often used to denote the line segment between a and b, that is,

[a, b] = {c ∈ Rn | c = (1− λ)a+ λb, 0 ≤ λ ≤ 1},

and thus a set V is convex if [a, b] ⊆ V for any two points a, b ∈ V (a = b is allowed). The
dimension of a convex set V is the dimension of its affine hull aff(A).

The empty set is trivially convex, every one-point set {a} is convex, and the entire affine
space Rn is convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets is convex.

Definition 25.3. Given any (nonempty) subset S of Rn, the smallest convex set containing
S is denoted by conv(S) and called the convex hull of S (it is the intersection of all convex
sets containing S).
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A good understanding of what conv(S) is, and good methods for computing it, are
essential. We have the following simple but crucial result.

Proposition 25.1. For any family S = (ai)i∈I of points in Rn, the set V of convex combi-
nations

∑
i∈I λiai (where

∑
i∈I λi = 1 and λi ≥ 0) is the convex hull conv(S) of S = (ai)i∈I .

It is natural to wonder whether Proposition 25.1 can be sharpened in two directions:
(1) Is it possible to have a fixed bound on the number of points involved in the convex
combinations? (2) Is it necessary to consider convex combinations of all points, or is it
possible to consider only a subset with special properties?

The answer is yes in both cases. In Case 1, Carathéodory’s theorem asserts that it is
enough to consider convex combinations of n + 1 points. For example, in the plane R2, the
convex hull of a set S of points is the union of all triangles (interior points included) with
vertices in S. In Case 2, the theorem of Krein and Milman asserts that a convex set that is
also compact is the convex hull of its extremal points (given a convex set S, a point a ∈ S
is extremal if S − {a} is also convex).

We will not prove these theorems here, but we invite the reader to consult Gallier [45] or
Berger [10].

Convex sets also arise as half-spaces cut out by affine hyperplanes.

Definition 25.4. An affine form ϕ : Rn → R is defined by some linear form c ∈ (Rn)∗ and
some scalar β ∈ R so that

ϕ(x) = cx+ β for all x ∈ Rn.

If c 6= 0, the affine form ϕ specified by (c, β) defines the affine hyperplane (for short hyper-
plane) H(ϕ) given by

H(ϕ) = {x ∈ Rn | ϕ(x) = 0} = {x ∈ Rn | cx+ β = 0},

and the two (closed) half-spaces

H+(ϕ) = {x ∈ Rn | ϕ(x) ≥ 0} = {x ∈ Rn | cx+ β ≥ 0},
H−(ϕ) = {x ∈ Rn | ϕ(x) ≤ 0} = {x ∈ Rn | cx+ β ≤ 0}.

When β = 0, we call H a linear hyperplane.

Both H+(ϕ) and H−(ϕ) are convex and H = H+(ϕ) ∩H−(ϕ).

For example, ϕ : R2 → R with ϕ(x, y) = 2x + y + 3 is an affine form defining the line
given by the equation y = −2x − 3. Another example of an affine form is ϕ : R3 → R
with ϕ(x, y, z) = x + y + z − 1; this affine form defines the plane given by the equation
x + y + z = 1, which is the plane through the points (0, 0, 1), (0, 1, 0), and (1, 0, 0). Both of
these hyperplanes are illustrated in Figure 25.2.
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y = -2x - 3

(0,0,1)

(1,0,0)

(0,1,0)

x + y + z = 1

HH+
H+_

H_

i. ii.

Figure 25.2: Figure i. illustrates the hyperplane H(ϕ) for ϕ(x, y) = 2x+ y+ 3, while Figure
ii. illustrates the hyperplane H(ϕ) for ϕ(x, y, z) = x+ y + z − 1.

For any two vector x, y ∈ Rn with x = (x1, . . . , xn) and y = (y1, . . . , yn) we write x ≤ y
iff xi ≤ yi for i = 1, . . . , n, and x ≥ y iff y ≤ x. In particular x ≥ 0 iff xi ≥ 0 for i = 1, . . . , n.

Certain special types of convex sets called cones and H-polyhedra play an important role.
The set of feasible solutions of a linear program is an H-polyhedron, and cones play a crucial
role in the proof of Proposition 26.1 and in the Farkas–Minkowski proposition (Proposition
28.2).

25.3 Cones, Polyhedral Cones, and H-Polyhedra

Cones and polyhedral cones are defined as follows.

Definition 25.5. Given a nonempty subset S ⊆ Rn, the cone C = cone(S) spanned by S
is the convex set

cone(S) =

{ k∑
i=1

λiui, ui ∈ S, λi ∈ R, λi ≥ 0

}
,

of positive combinations of vectors from S. If S consists of a finite set of vector, the cone
C = cone(S) is called a polyhedral cone. Figure 25.3 illustrates a polyhedral cone.

Note that if some nonzero vector u belongs to a cone C, then λu ∈ C for all λ ≥ 0, that
is, the ray {λu | λ ≥ 0} belongs to C.

Remark: The cones (and polyhedral cones) of Definition 25.5 are always convex. For this
reason we use the simpler terminology cone instead of convex cone. However, there are more
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(1,0,1)

(0,0,1)

(1,1,1)

(0,1,1)

(1,0,1)

(0,0,1)

(1,1,1)

(0,1,1)

S

cone(S)

Figure 25.3: Let S = {(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)}. The polyhedral cone, cone(S), is
the solid “pyramid” with apex at the origin and square cross sections.

general kinds of cones that are not convex (for example, a union of polyhedral cones or the
linear cone generated by the curve in Figure 25.4), and if we were dealing with those we
would refer to the cones of Definition 25.5 as convex cones.

Definition 25.6. An H-polyhedron, for short a polyhedron, is any subset P =
⋂s
i=1Ci of Rn

defined as the intersection of a finite number s of closed half-spaces Ci. An example of an
H-polyhedron is shown in Figure 25.6. An H-polytope is a bounded H-polyhedron, which
means that there is a closed ball Br(x) of center x and radius r > 0 such that P ⊆ Br(x).
An example of a H-polytope is shown in Figure 25.5.

By convention, we agree that Rn itself is an H-polyhedron.

Remark: The H-polyhedra of Definition 25.6 are always convex. For this reason, as in the
case of cones we use the simpler terminology H-polyhedron instead of convex H-polyhedron.
In algebraic topology, there are more general polyhedra that are not convex.

It can be shown that an H-polytope P is equal to the convex hull of finitely many points
(the extreme points of P). This is a nontrivial result whose proof takes a significant amount
of work; see Gallier [45] and Ziegler [114].

An unbounded H-polyhedron is not equal to the convex hull of finite set of points. To
obtain an equivalent notion we introduce the notion of a V-polyhedron.
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(0,0,1)
S

cone(S)

Figure 25.4: Let S be a planar curve in z = 1. The linear cone of S, consisting of all half
rays connecting S to the origin, is not convex.

Definition 25.7. A V-polyhedron is any convex subset A ⊆ Rn of the form

A = conv(Y ) + cone(V ) = {a+ v | a ∈ conv(Y ), v ∈ cone(V )},

where Y ⊆ Rn and V ⊆ Rn are finite (possibly empty).

When V = ∅ we simply have a polytope, and when Y = ∅ or Y = {0}, we simply have a
cone.

It can be shown that every H-polyhedron is a V-polyhedron and conversely. This is one
of the major theorems in the theory of polyhedra, and its proof is nontrivial. For a complete
proof, see Gallier [45] and Ziegler [114].

Every polyhedral cone is closed. This is an important fact that is used in the proof of
several other key results such as Proposition 26.1 and the Farkas–Minkowski proposition
(Proposition 28.2).

Although it seems obvious that a polyhedral cone should be closed, a rigorous proof is
not entirely trivial.

Indeed, the fact that a polyhedral cone is closed relies crucially on the fact that C is
spanned by a finite number of vectors, because the cone generated by an infinite set may
not be closed. For example, consider the closed disk D ⊆ R2 of center (0, 1) and radius 1,
which is tangent to the x-axis at the origin. Then the cone(D) consists of the open upper
half-plane plus the origin (0, 0), but this set is not closed.
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Figure 25.5: An icosahedron is an example of an H-polytope.

Proposition 25.2. Every polyhedral cone C is closed.

Proof. This is proved by showing that

1. Every primitive cone is closed.

2. A polyhedral cone C is the union of finitely many primitive cones, where a primitive
cone is a polyhedral cone spanned by linearly independent vectors.

Assume that (a1, . . . , am) are linearly independent vectors in Rn, and consider any se-
quence (x(k))k≥0

x(k) =
m∑
i=1

λ
(k)
i ai

of vectors in the primitive cone cone({a1, . . . , am}), which means that λ
(k)
j ≥ 0 for i =

1, . . . ,m and all k ≥ 0. The vectors x(k) belong to the subspace U spanned by (a1, . . . , am),
and U is closed. Assume that the sequence (x(k))k≥0 converges to a limit x ∈ Rn. Since U
is closed and x(k) ∈ U for all k ≥ 0, we have x ∈ U . If we write x = x1a1 + · · · + xmam, we
would like to prove that xi ≥ 0 for i = 1, . . . ,m. The sequence the (x(k))k≥0 converges to x
iff

lim
k 7→∞

∥∥x(k) − x
∥∥ = 0,

iff

lim
k 7→∞

( m∑
i=1

|λ(k)
i − xi|2

)1/2

= 0

iff
lim
k 7→∞

λ
(k)
i = xi, i = 1, . . . ,m.

Since λ
(k)
i ≥ 0 for i = 1, . . . ,m and all k ≥ 0, we have xi ≥ 0 for i = 1, . . . ,m, so

x ∈ cone({a1, . . . , am}).
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2

-2

x

y

y + z = 0

(2,0,0)

(-2,0,0)
conv(Y)

cone(V)

conv(Y) cone(V)+

 y - z = 0

y + z = 0

(0,1,1)(0,-1,1)

Figure 25.6: The “triangular trough” determined by the inequalities y − z ≤ 0, y + z ≥ 0,
and −2 ≤ x ≤ 2 is an H-polyhedron and an V-polyhedron, where Y = {(2, 0, 0, ), (−2, 0, 0)}
and V = {(0, 1, 1), (0,−1, 1)}.

Next, assume that x belongs to the polyhedral cone C. Consider a positive combination

x = λ1a1 + · · ·+ λkak, (∗1)

for some nonzero a1, . . . , ak ∈ C, with λi ≥ 0 and with k minimal . Since k is minimal, we
must have λi > 0 for i = 1, . . . , k. We claim that (a1, . . . , ak) are linearly independent.

If not, there is some nontrivial linear combination

µ1a1 + · · ·+ µkak = 0, (∗2)

and since the ai are nonzero, µj 6= 0 for some at least some j. We may assume that µj < 0
for some j (otherwise, we consider the family (−µi)1≤i≤k), so let

J = {j ∈ {1, . . . , k} | µj < 0}.

For any t ∈ R, since x = λ1a1 + · · ·+ λkak, using (∗2) we get

x = (λ1 + tµ1)a1 + · · ·+ (λk + tµk)ak, (∗3)
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and if we pick

t = min
j∈J

(
−λj
µj

)
≥ 0,

we have (λi + tµi) ≥ 0 for i = 1, . . . , k, but λj + tµj = 0 for some j ∈ J , so (∗3) is an
expression of x with less that k nonzero coefficients, contadicting the minimality of k in (∗1).
Therefore, (a1, . . . , ak) are linearly independent.

Since a polyhedral cone C is spanned by finitely many vectors, there are finitely many
primitive cones (corresponding to linearly independent subfamilies), and since every x ∈ C,
belongs to some primitive cone, C is the union of a finite number of primitive cones. Since
every primitive cone is closed, as a union of finitely many closed sets, C itself is closed.

The above facts are also proved in Matousek and Gardner [73] (Chapter 6, Section 5,
Lemma 6.5.3, 6.5.4, and 6.5.5).

Another way to prove that a polyhedral cone C is closed is to show that C is also a H-
polyhedron. This takes even more work; see Gallier [45] (Chapter 4, Section 4, Proposition
4.16). Yet another proof is given in Lax [67] (Chapter 13, Theorem 1).
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Chapter 26

Linear Programs

26.1 Linear Programs, Feasible Solutions, Optimal So-

lutions

The purpose of linear programming is to solve the following type of optimization problem.

Definition 26.1. A linear program (P ) is the following kind of optimization problem:

maximize cx

subject to

a1x ≤ b1

. . .

amx ≤ bm

x ≥ 0,

where x ∈ Rn, c, a1, . . . , am ∈ (Rn)∗, b1, . . . , bm ∈ R.

The linear form c defines the objective function x 7→ cx of the program (P ) (from Rn to
R), and the inequalities aix ≤ bi and xj ≥ 0 are called the constraints of the linear program
(P ).

If we define the m× n matrix

A =

a1
...
am


whose rows are the row vectors a1, . . . , am and b as the column vector

b =

 b1
...
bm

 ,

657
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the m inequality constraints aix ≤ bi can be written in matrix form as

Ax ≤ b.

Thus the linear program (P ) can also be stated as the linear program (P ):

maximize cx

subject to Ax ≤ b and x ≥ 0.

Here is an explicit example of a linear program of type (P ):

Example 26.1.

maximize x1 + x2

subject to

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

x1 ≥ 0, x2 ≥ 0,

and in matrix form

maximize
(
1 1

)(x1

x2

)
subject to −1 1

1 6
4 −1

(x1

x2

)
≤

 1
15
10


x1 ≥ 0, x2 ≥ 0.

It turns out that x1 = 3, x2 = 2 yields the maximum of the objective function x1 + x2,
which is 5. This is illustrated in Figure 26.1. Observe that the set of points that satisfy
the above constraints is a convex region cut out by half planes determined by the lines of
equations

x2 − x1 = 1

x1 + 6x2 = 15

4x1 − x2 = 10

x1 = 0

x2 = 0.
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K1 0 1 2 3 4 5

K1

1

2

3

4

x   + 6x    = 151 2

(3,2)

x    -
 x    =

 1

2
1

4x
   -

 x
    

= 
10

1
2

Figure 26.1: The H-polyhedron associated with Example 26.1. The green point (3, 2) is the
unique optimal solution.

In general, each constraint aix ≤ bi corresponds to the affine form ϕi given by ϕi(x) =
aix− bi and defines the half-space H−(ϕi), and each inequality xj ≥ 0 defines the half-space
H+(xj). The intersection of these half-spaces is the set of solutions of all these constraints.
It is a (possibly empty) H-polyhedron denoted P(A, b).

Definition 26.2. If P(A, b) = ∅, we say that the linear program (P ) has no feasible solution,
and otherwise any x ∈ P(A, b) is called a feasible solution of (P ).

The linear program shown in Example 26.2 obtained by reversing the direction of the
inequalities x2 − x1 ≤ 1 and 4x1 − x2 ≤ 10 in the linear program of Example 26.1 has no
feasible solution; see Figure 26.2.

Example 26.2.

maximize x1 + x2

subject to

x1 − x2 ≤ −1

x1 + 6x2 ≤ 15

x2 − 4x1 ≤ −10

x1 ≥ 0, x2 ≥ 0.

Assume P(A, b) 6= ∅, so that the linear program (P ) has a feasible solution. In this case,
consider the image {cx ∈ R | x ∈ P(A, b)} of P(A, b) under the objective function x 7→ cx.
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Figure 26.2: There is no H-polyhedron associated with Example 26.2 since the blue and
purple regions do not overlap.

Definition 26.3. If the set {cx ∈ R | x ∈ P(A, b)} is unbounded above, then we say that
the linear program (P ) is unbounded .

The linear program shown in Example 26.3 obtained from the linear program of Example
26.1 by deleting the constraints 4x1 − x2 ≤ 10 and x1 + 6x2 ≤ 15 is unbounded.

Example 26.3.

maximize x1 + x2

subject to

x2 − x1 ≤ 1

x1 ≥ 0, x2 ≥ 0.

Otherwise, we will prove shortly that if µ is the least upper bound of the set {cx ∈ R |
x ∈ P(A, b)}, then there is some p ∈ P(A, b) such that

cp = µ,

that is, the objective function x 7→ cx has a maximum value µ on P(A, b) which is achieved
by some p ∈ P(A, b).

Definition 26.4. If the set {cx ∈ R | x ∈ P(A, b)} is nonempty and bounded above, any
point p ∈ P(A, b) such that cp = max{cx ∈ R | x ∈ P(A, b)} is called an optimal solution
(or optimum) of (P ). Optimal solutions are often denoted by an upper ∗; for example, p∗.
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The linear program of Example 26.1 has a unique optimal solution (3, 2), but observe
that the linear program of Example 26.4 in which the objective function is (1/6)x1 + x2

has infinitely many optimal solutions; the maximum of the objective function is 15/6 which
occurs along the points of orange boundary line in Figure 26.1.

Example 26.4.

maximize
1

6
x1 + x2

subject to

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

x1 ≥ 0, x2 ≥ 0.

The proof that if the set {cx ∈ R | x ∈ P(A, b)} is nonempty and bounded above, then
there is an optimal solution p ∈ P(A, b), is not as trivial as it might seem. It relies on the
fact that a polyhedral cone is closed, a fact that was shown in Section 25.3.

We also use a trick that makes the proof simpler, which is that a linear program (P ) with
inequality constraints Ax ≤ b

maximize cx

subject to Ax ≤ b and x ≥ 0,

is equivalent to the linear program (P2) with equality constraints

maximize ĉ x̂

subject to Âx̂ = b and x̂ ≥ 0,

where Â is an m× (n+m) matrix, ĉ is a linear form in (Rn+m)∗, and x̂ ∈ Rn+m, given by

Â =
(
A Im

)
, ĉ =

(
c 0>m

)
, and x̂ =

(
x
z

)
,

with x ∈ Rn and z ∈ Rm.

Indeed, Âx̂ = b and x̂ ≥ 0 iff

Ax+ z = b, x ≥ 0, z ≥ 0,

iff
Ax ≤ b, x ≥ 0,

and ĉ x̂ = cx.
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The variables z are called slack variables , and a linear program of the form (P2) is called
a linear program in standard form.

The result of converting the linear program of Example 26.4 to standard form is the
program shown in Example 26.5.

Example 26.5.

maximize
1

6
x1 + x2

subject to

x2 − x1 + z1 = 1

x1 + 6x2 + z2 = 15

4x1 − x2 + z3 = 10

x1 ≥ 0, x2 ≥ 0, z1 ≥ 0, z2 ≥ 0, z3 ≥ 0.

We can now prove that if a linear program has a feasible solution and is bounded, then
it has an optimal solution.

Proposition 26.1. Let (P2) be a linear program in standard form, with equality constraint
Ax = b. If P(A, b) is nonempty and bounded above, and if µ is the least upper bound of the
set {cx ∈ R | x ∈ P(A, b)}, then there is some p ∈ P(A, b) such that

cp = µ,

that is, the objective function x 7→ cx has a maximum value µ on P(A, b) which is achieved
by some optimum solution p ∈ P(A, b).

Proof. Since µ = sup{cx ∈ R | x ∈ P(A, b)}, there is a sequence (x(k))k≥0 of vectors

x(k) ∈ P(A, b) such that limk 7→∞ cx(k) = µ. In particular, if we write x(k) = (x
(k)
1 , . . . , x

(k)
n )

we have x
(k)
j ≥ 0 for j = 1, . . . , n and for all k ≥ 0. Let Ã be the (m+ 1)× n matrix

Ã =

(
c
A

)
,

and consider the sequence (Ãx(k))k≥0 of vectors Ãx(k) ∈ Rm+1. We have

Ãx(k) =

(
c
A

)
x(k) =

(
cx(k)

Ax(k)

)
=

(
cx(k)

b

)
,

since by hypothesis x(k) ∈ P(A, b), and the constraints are Ax = b and x ≥ 0. Since by

hypothesis limk 7→∞ cx(k) = µ, the sequence (Ãx(k))k≥0 converges to the vector

(
µ
b

)
. Now,

observe that each vector Ãx(k) can be written as the convex combination

Ãx(k) =
n∑
j=1

x
(k)
j Ãj,
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with x
(k)
j ≥ 0 and where Ãj ∈ Rm+1 is the jth column of Ã. Therefore, Ãx(k) belongs to the

polyheral cone

C = cone(Ã1, . . . , Ãn) = {Ãx | x ∈ Rn, x ≥ 0},

and since by Proposition 25.2 this cone is closed, limk≥∞ Ãx(k) ∈ C, which means that there
is some u ∈ Rn with u ≥ 0 such that(

µ
b

)
= lim

k≥∞
Ãx(k) = Ãu =

(
cu
Au

)
,

that is, cu = µ and Au = b. Hence, u is an optimal solution of (P2).

The next question is, how do we find such an optimal solution? It turns out that for
linear programs in standard form where the constraints are of the form Ax = b and x ≥ 0,
there are always optimal solutions of a special type called basic feasible solutions.

26.2 Basic Feasible Solutions and Vertices

If the system Ax = b has a solution and if some row of A is a linear combination of other
rows, then the corresponding equation is redundant, so we may assume that the rows of A
are linearly independent; that is, we may assume that A has rank m, so m ≤ n.

If A is an m×n matrix, for any nonempty subset K of {1, . . . , n}, let AK be the submatrix
of A consisting of the columns of A whose indices belong to K. We denote the jth column
of the matrix A by Aj.

Definition 26.5. Given a linear program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

where A has rank m, a vector x ∈ Rn is a basic feasible solution of (P ) if x ∈ P(A, b) 6= ∅,
and if there is some subset K of {1, . . . , n} of size m such that

(1) The matrix AK is invertible (that is, the columns of AK are linearly independent).

(2) xj = 0 for all j /∈ K.

The subset K is called a basis of x. Every index k ∈ K is called basic, and every index
j /∈ K is called nonbasic. Similarly, the columns Ak corresponding to indices k ∈ K are
called basic, and the columns Aj corresponding to indices j /∈ K are called nonbasic. The
variables corresponding to basic indices k ∈ K ar called basic variables , and the variables
corresponding to indices j /∈ K are called nonbasic.



664 CHAPTER 26. LINEAR PROGRAMS

For example, the linear program

maximize x1 + x2

subject to x1 + x2 + x3 = 1 and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, (∗)

has three basic feasible solutions; the basic feasible solution K = {1} corresponds to the
point (1, 0, 0); the basic feasible solution K = {2} corresponds to the point (0, 1, 0); the
basic feasible solution K = {3} corresponds to the point (0, 0, 1). Each of these points
corresponds to the vertices of the slanted purple triangle illustrated in Figure 26.3. The
vertices (1, 0, 0) and (0, 1, 0) optimize the objective function with a value of 1.

x + y + z = 1

x + y = 0.7

Figure 26.3: The H-polytope associated with Linear Program (∗). The objective function
(with x1 → x and x2 → y) is represented by vertical planes parallel to the purple plane
x+ y = 0.7, and reaches it maximal value when x+ y = 1.

We now show that if the standard linear program (P2) as in Definition 26.5 has some
feasible solution and is bounded above, then some basic feasible solution is an optimal
solution. We follow Matousek and Gardner [73] (Chapter 4, Section 2, Theorem 4.2.3).

First we obtain a more convenient characterization of a basic feasible solution.

Proposition 26.2. Given any standard linear program (P2) where Ax = b and A is an m×n
matrix of rank m, for any feasible solution x, if J> = {j ∈ {1, . . . , n} | xj > 0}, then x is a
basic feasible solution iff the columns of the matrix AJ> are linearly independent.

Proof. If x is a basic feasible solution then there is some subset K ⊆ {1, . . . , n} of size m such
that the columns of AK are linearly independent and xj = 0 for all j /∈ K, so by definition
J> ⊆ K, which implies that the columns of the matrix AJ> are linearly independent.

Conversely, assume that x is a feasible solution such that the columns of the matrix AJ>
are linearly independent. If |J>| = m, we are done since we can pick K = J> and then x
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is a basic feasible solution. If |J>| < m, we can extend J> to an m-element subset K by
adding m− |J>| column indices so that the columns of AK are linearly independent, which
is possible since A has rank m.

Next we prove that if a linear program in standard form has any feasible solution x0 and
is bounded above, then is has some basic feasible solution x̃ which is as good as x0, in the
sense that cx̃ ≥ cx0.

Proposition 26.3. Let (P2) be any standard linear program with objective function cx, where
Ax = b and A is an m × n matrix of rank m. If (P2) is bounded above and if x0 is some
feasible solution of (P2), then there is some basic feasible solution x̃ such that cx̃ ≥ cx0.

Proof. Among the feasible solutions x such that cx ≥ cx0 (x0 is one of them) pick one with
the maximum number of coordinates xj equal to 0, say x̃. Let

K = J> = {j ∈ {1, . . . , n} | x̃j > 0}

and let s = |K|. We claim that x̃ is a basic feasible solution, and by construction cx̃ ≥ cx0.

If the columns of AK are linearly independent, then by Proposition 26.2 we know that x̃
is a basic feasible solution and we are done.

Otherwise, the columns of AK are linearly dependent, so there is some nonzero vector
v = (v1, . . . , vs) such that AK v = 0. Let w ∈ Rn be the vector obtained by extending v by
setting wj = 0 for all j /∈ K. By construction,

Aw = AK v = 0.

We will derive a contradiction by exhibiting a feasible solution x(t0) such that cx(t0) ≥ cx0

with more zero coordinates than x̃.

For this we claim that we may assume that w satisfies the following two conditions:

(1) cw ≥ 0.

(2) There is some j ∈ K such that wj < 0.

If cw = 0 and if Condition (2) fails, since w 6= 0, we have wj > 0 for some j ∈ K, in
which case we can use −w, for which wj < 0.

If cw < 0 then c(−w) > 0, so we may assume that cw > 0. If wj > 0 for all j ∈ K, since
x̃ is feasible x̃ ≥ 0, and so x(t) = x̃ + tw ≥ 0 for all t ≥ 0. Furthermore, since Aw = 0 and
x̃ is feasible, we have

Ax(t) = Ax̃+ tAw = b,

and thus x(t) is feasible for all t ≥ 0. We also have

cx(t) = cx̃+ tcw.
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Since cw > 0, as t > 0 goes to infinity the objective function cx(t) also tends to infinity,
contradicting the fact that is is bounded above. Therefore, some w satisfying Conditions (1)
and (2) above must exist.

We show that there is some t0 > 0 such that cx(t0) ≥ cx0 and x(t0) = x̃+ t0w is feasible,
yet x(t0) has more zero coordinates than x̃, a contradiction.

Since x(t) = x̃+ tw, we have
x(t)i = x̃i + twi,

so if we let I = {i ∈ {1, . . . , n} | wi < 0} ⊆ K, which is nonempty since w satisfies Condition
(2) above, if we pick

t0 = min
i∈I

{−x̃i
wi

}
,

then t0 > 0, because wi < 0 for all i ∈ I, and by definition of K we have x̃i > 0 for all i ∈ K.
By the definition of t0 > 0 and since x̃ ≥ 0, we have

x(t0)j = x̃j + t0wj ≥ 0 for all j ∈ K,

so x(t0) ≥ 0, and x(t0)i = 0 for some i ∈ I. Since Ax(t0) = b (for any t), x(t0) is a feasible
solution,

cx(t0) = cx̃+ t0cw ≥ cx0 + t0cw ≥ cx0,

and x(t0)i = 0 for some i ∈ I, we see that x(t0) has more zero coordinates than x̃, a
contradiction.

Proposition 26.3 implies the following important result.

Theorem 26.4. Let (P2) be any standard linear program with objective function cx, where
Ax = b and A is an m× n matrix of rank m. If (P2) has some feasible solution and if it is
bounded above, then some basic feasible solution x̃ is an optimal solution of (P2).

Proof. By Proposition 26.3, for any feasible solution x there is some basic feasible solution x̃
such that cx ≤ cx̃. But there are only finitely many basic feasible solutions, so one of them
has to yield the maximum of the objective function.

Geometrically, basic solutions are exactly the vertices of the polyhedron P(A, b), a notion
that we now define.

Definition 26.6. Given an H-polyhedron P ⊆ Rn, a vertex of P is a point v ∈ P with
property that there is some nonzero linear form c ∈ (Rn)∗ and some µ ∈ R, such that v
is the unique point of P for which the map x 7→ cx has the maximum value µ ; that is,
cy < cv = µ for all y ∈ P − {v}. Geometrically this means that the hyperplane of equation
cy = µ touches P exactly at v. More generally, a convex subset F of P is a k-dimensional
face of P if F has dimension k and if there is some affine form ϕ(x) = cx − µ such that
cy = µ for all y ∈ F , and cy < µ for all y ∈ P − F . A 1-dimensional face is called an edge.
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x + y + z = 3

(1,1,1)

Figure 26.4: The cube centered at the origin with diagonal through (−1,−1,−1) and (1, 1, 1)
has eight vertices. The vertex (1, 1, 1) is associated with the linear form x+ y + z = 3.

The concept of a vertex is illustrated in Figure 26.4, while the concept of an edge is
illustrated in Figure 26.5.

Since a k-dimensional face F of P is equal to the intersection of the hyperplane H(ϕ)
of equation cx = µ with P , it is indeed convex and the notion of dimension makes sense.
Observe that a 0-dimensional face of P is a vertex. If P has dimension d, then the (d− 1)-
dimensional faces of P are called its facets .

If (P ) is a linear program in standard form, then its basic feasible solutions are exactly
the vertices of the polyhedron P(A, b). To prove this fact we need the following simple
proposition

Proposition 26.5. Let Ax = b be a linear system where A is an m× n matrix of rank m.
For any subset K ⊆ {1, . . . , n} of size m, if AK is invertible, then there is at most one basic
feasible solution x ∈ Rn with xj = 0 for all j /∈ K (of course, x ≥ 0)

Proof. In order for x to be feasible we must have Ax = b. Write N = {1, . . . , n} −K, xK
for the vector consisting of the coordinates of x with indices in K, and xN for the vector
consisting of the coordinates of x with indices in N . Then

Ax = AKxK + ANxN = b.

In order for x to be a basic feasible solution we must have xN = 0, so

AKxK = b.

Since by hypothesis AK is invertible, xK = A−1
K b is uniquely determined. If xK ≥ 0 then x

is a basic feasible solution, otherwise it is not. This proves that there is at most one basic
feasible solution x ∈ Rn with xj = 0 for all j /∈ K.
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x + y = 2
(1,1,1)

(1,1,-1)

Figure 26.5: The cube centered at the origin with diagonal through (−1,−1,−1) and (1, 1, 1)
has twelve edges. The vertex edge from (1, 1,−1) to (1, 1, 1) is associated with the linear
form x+ y = 2.

Theorem 26.6. Let (P ) be a linear program in standard form, where Ax = b and A is an
m× n matrix of rank m. For every v ∈ P(A, b), the following conditions are equivalent:

(1) v is a vertex of the polyhedron P(A, b).

(2) v is a basic feasible solution of the linear program (P ).

Proof. First, assume that v is a vertex of P(A, b), and let ϕ(x) = cx − µ be a linear form
such that cy < µ for all y ∈ P(A, b) and cv = µ. This means that v is the unique point of
P(A, b) for which the objective function x 7→ cx has the maximum value µ on P(A, b), so by
Theorem 26.4, since this maximum is achieved by some basic feasible solution, by uniqueness
v must be a basic feasible solution.

Conversely, suppose v is a basic feasible solution of (P ) corresponding to a subset K ⊆
{1, . . . , n} of size m. Let ĉ ∈ (Rn)∗ be the linear form defined by

ĉj =

{
0 if j ∈ K
−1 if j /∈ K.

By construction ĉ v = 0 and ĉ x ≤ 0 for any x ≥ 0, hence the function x 7→ ĉ x on P(A,B)
has a maximum at v. Furthermore, ĉ x < 0 for any x ≥ 0 such that xj > 0 for some j /∈ K.
However, by Proposition 26.5, the vector v is the only basic feasible solution such that vj = 0
for all j /∈ K, and therefore v is the only point of P(A, b) maximizing the function x 7→ ĉ x,
so it is a vertex.
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In theory, to find an optimal solution we try all
(
n
m

)
possible m-elements subsets K of

{1, . . . , n} and solve for the corresponding unique solution xK of AKx = b. Then we check
whether such a solution satisfies xK ≥ 0, compute cxK , and return some feasible xK for
which the objective function is maximum. This is a totally impractible algorithm.

A practical algorithm is the simplex algorithm. Basically, the simplex algorithm tries to
“climb” in the polyhderon P(A, b) from vertex to vertex along edges (using basic feasible
solutions), trying to maximize the objective function. We present the simplex algorithm in
the next chapter. The reader may also consult texts on linear programming. In particular,
we recommend Matousek and Gardner [73], Chvatal [29], Papadimitriou and Steiglitz [80],
Bertsimas and Tsitsiklis [17], Ciarlet [30], Schrijver [89], and Vanderbei [110].

Observe that Theorem 26.4 asserts that if a linear program (P ) in standard form (where
Ax = b and A is an m×n matrix of rank m) has some feasible solution and is bounded above,
then some basic feasible solution is an optimal solution. By Theorem 26.6, the polyhedron
P(A, b) must have some vertex.

But suppose we only know that P(A, b) is nonempty; that is, we don’t know that the
objective function cx is bounded above. Does P(A, b) have some vertex?

The answer to the above question is yes, and this is important because the simplex
algorithm needs an initial basic feasible solution to get started. Here we prove that if P(A, b)
is nonempty, then it must contain a vertex. This proof still doesn’t constructively yield a
vertex, but we will see in the next chapter that the simplex algorithm always finds a vertex
if there is one (provided that we use a pivot rule that prevents cycling).

Theorem 26.7. Let (P ) be a linear program in standard form, where Ax = b and A is an
m× n matrix of rank m. If P(A, b) is nonempty (there is a feasible solution), then P(A, b)
has some vertex; equivalently, (P ) has some basic feasible solution.

Proof. The proof relies on a trick, which is to add slack variables xn+1, . . . , xn+m and use the
new objective function −(xn+1 + · · ·+ xn+m).

If we let Â be the m× (m+ n)-matrix, and x, x, and x̂ be the vectors given by

Â =
(
A Im

)
, x =

x1
...
xn

 ∈ Rn, x =

xn+1
...

xn+m

 ∈ Rm, x̂ =

(
x
x

)
∈ Rn+m,

then consider the linear program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0.

Since xi ≥ 0 for all i, the objective function −(xn+1 + · · · + xn+m) is bounded above by

0. The system Â x̂ = b is equivalent to the system

Ax+ x = b,
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so for every feasible solution u ∈ P(A, b), since Au = b, the vector (u, 0m) is also a feasible

solution of (P̂ ), in fact an optimal solution since the value of the objective function −(xn+1 +

· · ·+xn+m) for x = 0 is 0. By Proposition 26.3, the linear program (P̂ ) has some basic feasible
solution (u∗, w∗) for which the value of the objective function is greater than or equal to the
value of the objective function for (u, 0m), and since (u, 0m) is an optimal solution, (u∗, w∗)

is also an optimal solution of (P̂ ). This implies that w∗ = 0, since otherwise the objective
function −(xn+1 + · · ·+ xn+m) would have a strictly negative value.

Therefore, (u∗, 0m) is a basic feasible solution of (P̂ ), and thus the columns corresponding
to nonzero components of u∗ are linearly independent. Some of the coordinates of u∗ could
be equal to 0, but since A has rank m we can add columns of A to obtain a basis K associated
with u∗, and u∗ is indeed a basic feasible solution of (P ).

The definition of a basic feasible solution can be adapted to linear programs where the
constraints are of the form Ax ≤ b, x ≥ 0; see Matousek and Gardner [73] (Chapter 4,
Section 4, Definition 4.4.2).

The most general type of linear program allows constraints of the form aix ≥ bi or
aix = bi besides constraints of the form aix ≤ bi. The variables xi may also take negative
values. It is always possible to convert such programs to the type considered in Definition
26.1. We proceed as follows.

Every constraint aix ≥ bi is replaced by the constraint −aix ≤ −bi. Every equality
constraint aix = bi is replaced by the two constraints aix ≤ bi and −aix ≤ −bi.

If there are n variables xi, we create n new variables yi and n new variables zi and
replace every variable xi by yi− zi. We also add the 2n constraints yi ≥ 0 and zi ≥ 0. If the
constraints are given by the inequalities Ax ≤ b, we now have constraints given by

(
A −A

)(y
z

)
≤ b, y ≥ 0, z ≥ 0.

We replace the objective function cx by cy − cz.

Remark: We also showed that we can replace the ineqality constraints Ax ≤ b by equality
constraints Ax = b, by adding slack variables constrained to be nonnegative.
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The Simplex Algorithm

27.1 The Idea Behind the Simplex Algorithm

The simplex algorithm, due to Dantzig, applies to a linear program (P ) in standard form,
where the constraints are given by Ax = b and x ≥ 0, with A a m × n matrix of rank m,
and with an objective function c 7→ cx. This algorithm either reports that (P ) has no
feasible solution, or that (P ) is unbounded, or yields an optimal solution. Geometrically,
the algorithm climbs from vertex to vertex in the polyhedron P(A, b), trying to improve
the value of the objective function. Since vertices correspond to basic feasible solutions, the
simplex algorithm actually works with basic feasible solutions.

Recall that a basic feasible solution x is a feasible solution for which there is a subset
K ⊆ {1, . . . , n} of size m such that the matrix AK consisting of the columns of A whose
indices belong to K are linearly independent, and that xj = 0 for all j /∈ K. We also let
J>(x) be the set of indices

J>(x) = {j ∈ {1, . . . , n} | xj > 0},

so for a basic feasible solution x associated with K, we have J>(x) ⊆ K. In fact, by
Proposition 26.2, a feasible solution x is a basic feasible solution iff the columns of AJ>(x)

are linearly independent.

If J>(x) had cardinality m for all basic feasible solutions x, then the simplex algorithm
would make progress at every step, in the sense that it would strictly increase the value of the
objective function. Unfortunately, it is possible that |J>(x)| < m for certain basic feasible
solutions, and in this case a step of the simplex algorithm may not increase the value of the
objective function. Worse, in rare cases, it is possible that the algorithm enters an infinite
loop. This phenomenon called cycling can be detected, but in this case the algorithm fails
to give a conclusive answer.

Fortunately, there are ways of preventing the simplex algorithm from cycling (for exam-
ple, Bland’s rule discussed later), although proving that these rules work correctly is quite
involved.

671
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The potential “bad” behavior of a basic feasible solution is recorded in the following
definition.

Definition 27.1. Given a linear program (P ) in standard form where the constraints are
given by Ax = b and x ≥ 0, with A an m× n matrix of rank m, a basic feasible solution x
is degenerate if |J>(x)| < m, otherwise it is nondegenerate.

The origin 0n, if it is a basic feasible solution, is degenerate. For a less trivial example,
x = (0, 0, 0, 2) is a degenerate basic feasible solution of the following linear program in which
m = 2 and n = 4.

Example 27.1.

maximize x2

subject to

− x1 + x2 + x3 = 0

x1 + x4 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The matrix A and the vector b are given by

A =

(
−1 1 1 0
1 0 0 1

)
, b =

(
0
2

)
,

and if x = (0, 0, 0, 2), then J>(x) = {4}. There are two ways of forming a set of two linearly
independent columns of A containing the fourth column.

Given a basic feasible solution x associated with a subset K of size m, since the columns
of the matrix AK are linearly independent, by abuse of language we call the columns of AK
a basis of x.

If u is a vertex of (P ), that is, a basic feasible solution of (P ) associated with a basis
K (of size m), in “normal mode,” the simplex algorithm tries to move along an edge from
the vertex u to an adjacent vertex v (with u, v ∈ P(A, b) ⊆ Rn) corresponding to a basic
feasible solution whose basis is obtained by replacing one of the basic vectors Ak with k ∈ K
by another nonbasic vector Aj for some j /∈ K, in such a way that the value of the objective
function is increased.

Let us demonstrate this process on an example.

Example 27.2. Let (P ) be the following linear program in standard form.

maximize x1 + x2

subject to

− x1 + x2 + x3 = 1

x1 + x4 = 3

x2 + x5 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.
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The matrix A and the vector b are given by

A =

−1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 , b =

1
3
2

 .

K1 0 1 2 3 4 5

K1

1

2

3

-x
 +

 x 
= 1

1
2

u

uu0 1

2

Figure 27.1: The planar H-polyhedron associated with Example 27.2. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal orange
line to feasible solution at vertex u1. It then moves along the vertical red line to obtain the
optimal feasible solution u2.

The vector u0 = (0, 0, 1, 3, 2) corresponding to the basis K = {3, 4, 5} is a basic feasible
solution, and the corresponding value of the objective function is 0 + 0 = 0. Since the
columns (A3, A4, A5) corresponding to K = {3, 4, 5} are linearly independent we can express
A1 and A2 as

A1 = −A3 + A4

A2 = A3 + A5.

Since

1A3 + 3A4 + 2A5 = Au0 = b,

for any θ ∈ R, we have

b = 1A3 + 3A4 + 2A5 − θA1 + θA1

= 1A3 + 3A4 + 2A5 − θ(−A3 + A4) + θA1

= θA1 + (1 + θ)A3 + (3− θ)A4 + 2A5,
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and

b = 1A3 + 3A4 + 2A5 − θA2 + θA2

= 1A3 + 3A4 + 2A5 − θ(A3 + A5) + θA1

= θA2 + (1− θ)A3 + 3A4 + (2− θ)A5.

In the first case, the vector (θ, 0, 1 + θ, 3 − θ, 2) is a feasible solution iff 0 ≤ θ ≤ 3, and
the new value of the objective function is θ.

In the second case, the vector (0, θ, 1 − θ, 3, 2 − θ, 1) is a feasible solution iff 0 ≤ θ ≤ 1,
and the new value of the objective function is also θ.

Consider the first case. It is natural to ask whether we can get another vertex and increase
the objective function by setting to zero one of the coordinates of (θ, 0, 1+θ, 3−θ, 2), in this
case the fouth one, by picking θ = 3. This yields the feasible solution (3, 0, 4, 0, 2), which
corresponds to the basis (A1, A3, A5), and so is indeed a basic feasible solution, with an
improved value of the objective function equal to 3. Note that A4 left the basis (A3, A4, A5)
and A1 entered the new basis (A1, A3, A5).

We can now express A2 and A4 in terms of the basis (A1, A3, A5), which is easy to do
since we already have A1 and A2 in term of (A3, A4, A5), and A1 and A4 are swapped. Such
a step is called a pivoting step. We obtain

A2 = A3 + A5

A4 = A1 + A3.

Then we repeat the process with u1 = (3, 0, 4, 0, 2) and the basis (A1, A3, A5). We have

b = 3A1 + 4A3 + 2A5 − θA2 + θA2

= 3A1 + 4A3 + 2A5 − θ(A3 + A5) + θA2

= 3A1 + θA2 + (4− θ)A3 + (2− θ)A5,

and

b = 3A1 + 4A3 + 2A5 − θA4 + θA4

= 3A1 + 4A3 + 2A5 − θ(A1 + A3) + θA4

= (3− θ)A1 + (4− θ)A3 + θA4 + 2A5.

In the first case, the point (3, θ, 4 − θ, 0, 2 − θ) is a feasible solution iff 0 ≤ θ ≤ 2, and the
new value of the objective function is 3+θ. In the second case, the point (3−θ, 0, 4−θ, θ, 2)
is a feasible solution iff 0 ≤ θ ≤ 3, and the new value of the objective function is 3− θ. To
increase the objective function we must choose the first case and we pick θ = 2. Then, we
get the feasible solution u2 = (3, 2, 2, 0, 0), which corresponds to the basis (A1, A2, A3), and
thus is a basic feasible solution. The new value of the objective function is 5.
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Next we express A4 and A5 in terms of the basis (A1, A2, A3). Again this is easy to do
since we just swapped A5 and A2 (a pivoting step), and we get

A5 = A2 − A3

A4 = A1 + A3.

We repeat the process with u2 = (3, 2, 2, 0, 0) and the basis (A1, A2, A3). We have

b = 3A1 + 2A2 + 2A3 − θA4 + θA4

= 3A1 + 2A2 + 2A3 − θ(A1 + A3) + θA4

= (3− θ)A1 + 2A2 + (2− θ)A3 + θA4,

and

b = 3A1 + 2A2 + 2A3 − θA5 + θA5

= 3A1 + 2A2 + 2A3 − θ(A2 − A3) + θA5

= 3A1 + (2− θ)A2 + (2 + θ)A3 + θA5.

In the first case, the point (3 − θ, 2, 2 − θ, θ, 0) is a feasible solution iff 0 ≤ θ ≤ 2, and the
value of the objective function is 5− θ. In the second case, the point (3, 2− θ, 2 + θ, 0, θ) is
a feasible solution iff 0 ≤ θ ≤ 2, and the value of the objective function is also 5− θ. Since
we must have θ ≥ 0 to have a feasible solution, there is no way to increase the objective
function. In this situation, it turns out that we have reached an optimal solution, in our
case u2 = (3, 2, 2, 0, 0), with the maximum of the objective function equal to 5.

We could also have applied the simplex algorithm to the vertex u0 = (0, 0, 1, 3, 2) and to
the vector (0, θ, 1 − θ, 3, 2 − θ, 1), which is a feasible solution iff 0 ≤ θ ≤ 1, with new value
of the objective function θ. By picking θ = 1, we obtain the feasible solution (0, 1, 0, 3, 1),
corresponding to the basis (A2, A4, A5), which is indeed a vertex. The new value of the
objective function is 1. Then we express A1 and A3 in terms the basis (A2, A4, A5) obtaining

A1 = A4 − A3

A3 = A2 − A5,

and repeat the process with (0, 1, 0, 3, 1) and the basis (A2, A4, A5). After three more steps
we will reach the optimal solution u2 = (3, 2, 2, 0, 0).

Let us go back to the linear program of Example 27.1 with objective function x2 and
where the matrix A and the vector b are given by

A =

(
−1 1 1 0
1 0 0 1

)
, b =

(
0
2

)
.

Recall that u0 = (0, 0, 0, 2) is a degenerate basic feasible solution, and the objective function
has the value 0. See Figure 27.2 for a planar picture of the H-polyhedron associated with
Example 27.1.
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Figure 27.2: The planar H-polyhedron associated with Example 27.1. The initial basic
feasible solution is the origin. The simplex algorithm moves along the slanted orange line to
the apex of the triangle.

Pick the basis (A3, A4). Then we have

A1 = −A3 + A4

A2 = A3,

and we get

b = 2A4 − θA1 + θA1

= 2A4 − θ(−A3 + A4) + θA1

= θA1 + θA3 + (2− θ)A4,

and

b = 2A4 − θA2 + θA2

= 2A4 − θA3 + θA2

= θA2 − θA3 + 2A4.

In the first case, the point (θ, 0, θ, 2− θ) is a feasible solution iff 0 ≤ θ ≤ 2, and the value of
the objective function is 0, and in the second case the point (0, θ,−θ, 2) is a feasible solution
iff θ = 0, and the value of the objective function is θ. However, since we must have θ = 0 in
the second case, there is no way to increase the objective function either.

It turns out that in order to make the cases considered by the simplex algorithm as
mutually exclusive as possible, since in the second case the coefficient of θ in the value of
the objective function is nonzero, namely 1, we should choose the second case. We must
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pick θ = 0, but we can swap the vectors A3 and A2 (because A2 is coming in and A3 has
the coefficient −θ, which is the reason why θ must be zero), and we obtain the basic feasible
solution u1 = (0, 0, 0, 2) with the new basis (A2, A4). Note that this basic feasible solution
corresponds to the same vertex (0, 0, 0, 2) as before, but the basis has changed. The vectors
A1 and A3 can be expressed in terms of the basis (A2, A4) as

A1 = −A2 + A4

A3 = A2.

We now repeat the procedure with u1 = (0, 0, 0, 2) and the basis (A2, A4), and we get

b = 2A4 − θA1 + θA1

= 2A4 − θ(−A2 + A4) + θA1

= θA1 + θA2 + (2− θ)A4,

and

b = 2A4 − θA3 + θA3

= 2A4 − θA2 + θA3

= −θA2 + θA3 + 2A4.

In the first case, the point (θ, θ, 0, 2−θ) is a feasible solution iff 0 ≤ θ ≤ 2 and the value of the
objective function is θ, and in the second case the point (0,−θ, θ, 2) is a feasible solution iff
θ = 0 and the value of the objective function is θ. In order to increase the objective function
we must choose the first case and pick θ = 2. We obtain the feasible solution u2 = (2, 2, 0, 0)
whose corresponding basis is (A1, A2) and the value of the objective function is 2.

The vectors A3 and A4 are expressed in terms of the basis (A1, A2) as

A3 = A2

A4 = A1 + A3,

and we repeat the procedure with u2 = (2, 2, 0, 0) and the basis (A1, A2). We get

b = 2A1 + 2A2 − θA3 + θA3

= 2A1 + 2A2 − θA2 + θA3

= 2A1 + (2− θ)A2 + θA3,

and

b = 2A1 + 2A2 − θA4 + θA4

= 2A1 + 2A2 − θ(A1 + A3) + θA4

= (2− θ)A1 + 2A2 − θA3 + θA4.
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In the first case, the point (2, 2− θ, 0, θ) is a feasible solution iff 0 ≤ θ ≤ 2 and the value of
the objective function is 2− θ, and in the second case, the point (2− θ, 2,−θ, θ) is a feasible
solution iff θ = 0 and the value of the objective function is 2. This time there is no way
to improve the objective function and we have reached an optimal solution u2 = (2, 2, 0, 0)
with the maximum of the objective function equal to 2.

Let us now consider an example of an unbounded linear program.

Example 27.3. Let (P ) be the following linear program in standard form.

maximize x1

subject to

x1 − x2 + x3 = 1

− x1 + x2 + x4 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The matrix A and the vector b are given by

A =

(
1 −1 1 0
−1 1 0 1

)
, b =

(
1
2

)
.
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Figure 27.3: The planar H-polyhedron associated with Example 27.3. The initial basic
feasible solution is the origin. The simplex algorithm first moves along the horizontal indigo
line to basic feasible solution at vertex (1, 0). Any optimal feasible solution occurs by moving
along the boundary line parameterized by the orange arrow θ(1, 1).

The vector u0 = (0, 0, 1, 2) corresponding to the basis K = {3, 4} is a basic feasible
solution, and the corresponding value of the objective function is 0. The vectors A1 and A2
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are expressed in terms of the basis (A3, A4) by

A1 = A3 − A4

A2 = −A3 + A4.

Starting with u0 = (0, 0, 1, 2), we get

b = A3 + 2A4 − θA1 + θA1

= A3 + 2A4 − θ(A3 − A4) + θA1

= θA1 + (1− θ)A3 + (2 + θ)A4,

and

b = A3 + 2A4 − θA2 + θA2

= A3 + 2A4 − θ(−A3 + A4) + θA2

= θA2 + (1 + θ)A3 + (2− θ)A4.

In the first case, the point (θ, 0, 1− θ, 2 + θ) is a feasible solution iff 0 ≤ θ ≤ 1 and the value
of the objective function is θ, and in the second case, the point (0, θ, 1 + θ, 2− θ) is a feasible
solution iff 0 ≤ θ ≤ 2 and the value of the objective function is 0. In order to increase the
objective function we must choose the first case, and we pick θ = 1. We get the feasible
solution u1 = (1, 0, 0, 3) corresponding to the basis (A1, A4), so it is a basic feasible solution,
and the value of the objective function is 1.

The vectors A2 and A3 are given in terms of the basis (A1, A4) by

A2 = −A1

A3 = A1 + A4.

Repeating the process with u1 = (1, 0, 0, 3), we get

b = A1 + 3A4 − θA2 + θA2

= A1 + 3A4 − θ(−A1) + θA2

= (1 + θ)A1 + θA2 + 3A4,

and

b = A1 + 3A4 − θA3 + θA3

= A1 + 3A4 − θ(A1 + A4) + θA3

= (1− θ)A1 + θA3 + (3− θ)A4.

In the first case, the point (1 + θ, θ, 0, 3) is a feasible solution for all θ ≥ 0 and the value
of the objective function if 1 + θ, and in the second case, the point (1 − θ, 0, θ, 3 − θ) is a
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feasible solution iff 0 ≤ θ ≤ 1 and the value of the objective function is 1− θ. This time, we
are in the situation where the points

(1 + θ, θ, 0, 3) = (1, 0, 0, 3) + θ(1, 1, 0, 0), θ ≥ 0

form an infinite ray in the set of feasible solutions, and the objective function 1 + θ is
unbounded from above on this ray. This indicates that our linear program, although feasible,
is unbounded.

Let us now describe a step of the simplex algorithm in general.

27.2 The Simplex Algorithm in General

We assume that we already have an initial vertex u0 to start from. This vertex corresponds
to a basic feasible solution with basis K0. We will show later that it is always possible to
find a basic feasible solution of a linear program (P ) is standard form, or to detect that (P )
has no feasible solution.

The idea behind the simplex algorithm is this: Given a pair (u,K) consisting of a basic
feasible solution u and a basis K for u, find another pair (u+, K+) consisting of another basic
feasible solution u+ and a basis K+ for u+, such that K+ is obtained from K by deleting
some basic index k− ∈ K and adding some nonbasic index j+ /∈ K, in such a way that the
value of the objective function increases (preferably strictly). The step which consists in
swapping the vectors Ak

−
and Aj

+
is called a pivoting step.

Let u be a given vertex corresponds to a basic feasible solution with basis K. Since the
m vectors Ak corresponding to indices k ∈ K are linearly independent, they form a basis, so
for every nonbasic j /∈ K, we write

Aj =
∑
k∈K

γjkA
k. (∗)

We let γjK ∈ Rm be the vector given by γjK = (γjk)k∈K . Actually, since the vector γjK depends
on K, to be very precise we should denote its components by (γjK)k, but to simplify notation
we usually write γjk instead of (γjK)k (unless confusion arises). We will explain later how the
coefficients γjk can be computed efficiently.

Since u is a feasible solution we have u ≥ 0 and Au = b, that is,∑
k∈K

ukA
k = b. (∗∗)

For every nonbasic j /∈ K, a candidate for entering the basis K, we try to find a new vertex
u(θ) that improves the objective function, and for this we add −θAj + θAj = 0 to b in
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the equation (∗∗) and then replace the occurrence of Aj in −θAj by the right hand side of
equation (∗) to obtain

b =
∑
k∈K

ukA
k − θAj + θAj

=
∑
k∈K

ukA
k − θ

(∑
k∈K

γjkA
k

)
+ θAj

=
∑
k∈K

(
uk − θγjk

)
Ak + θAj.

Consequently, the vector u(θ) appearing on the right-hand side of the above equation given
by

u(θ)i =


ui − θγji if i ∈ K
θ if i = j

0 if i /∈ K ∪ {j}
automatically satisfies the constraints Au(θ) = b, and this vector is a feasible solution iff

θ ≥ 0 and uk ≥ θγjk for all k ∈ K.

Obviously θ = 0 is a solution, and if

θj = min

{
uk

γjk

∣∣∣∣ γjk > 0, k ∈ K
}
> 0,

then we have a range of feasible solutions for 0 ≤ θ ≤ θj. The value of the objective function
for u(θ) is

cu(θ) =
∑
k∈K

ck(uk − θγjk) + θcj = cu+ θ

(
cj −

∑
k∈K

γjkck

)
.

Since the potential change in the objective function is

θ

(
cj −

∑
k∈K

γjkck

)
and θ ≥ 0, if cj −

∑
k∈K γ

j
kck ≤ 0 then the objective function can’t be increased.

However, if cj+ −
∑

k∈K γ
j+

k ck > 0 for some j+ /∈ K, and if θj
+
> 0, then the objective

function can be strictly increased by choosing any θ > 0 such that θ ≤ θj
+

, so it is natural
to zero at least one coefficient of u(θ) by picking θ = θj

+
, which also maximizes the increase

of the objective function. In this case (Case below (B2)), we obtain a new feasible solution
u+ = u(θj

+
).

Now, if θj
+
> 0, then there is some index k ∈ K such uk > 0, γj

+

k > 0, and θj
+

= uk/γ
j+

k ,
so we can pick such an index k− for the vector Ak

−
leaving the basis K. We claim that
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K+ = (K − {k−}) ∪ {j+} is a basis. This is because the coefficient γj
+

k− associated with the

column Ak
−

is nonzero (in fact, γj
+

k− > 0), so equation (∗), namely

Aj
+

= γj
+

k−A
k− +

∑
k∈K−{k−}

γj
+

k Ak,

yields the equation

Ak
−

= (γj
+

k−)−1Aj
+ −

∑
k∈K−{k−}

(γj
+

k−)−1γj
+

k Ak,

and these equations imply that the subspaces spanned by the vectors (Ak)k∈K and the vectors
(Ak)k∈K+ are identical. However, K is a basis of dimension m so this subspace has dimension
m, and since K+ also has m elements, it must be a basis. Therefore, u+ = u(θj

+
) is a basic

feasible solution.

The above case is the most common one, but other situations may arise. In what follows,
we discuss all eventualities.

Case (A).

We have cj −
∑

k∈K γ
j
kck ≤ 0 for all j /∈ K. Then it turns out that u is an optimal

solution. Otherwise, we are in Case (B).

Case (B).

We have cj −
∑

k∈K γ
j
kck > 0 for some j /∈ K (not necessarily unique). There are three

subcases.

Case (B1).

If for some j /∈ K as above we also have γjk ≤ 0 for all k ∈ K, since uk ≥ 0 for all k ∈ K,
this places no restriction on θ, and the objective function is unbounded above.

Case (B2).

There is some index j+ /∈ K such that simultaneously

(1) cj+ −
∑

k∈K γ
j+

k ck > 0, which means that the objective function can potentially be
increased;

(2) There is some k ∈ K such that γj
+

k > 0, and for every k ∈ K, if γj
+

k > 0 then uk > 0,
which implies that θj

+
> 0.

If we pick θ = θj
+

where

θj
+

= min

{
uk

γj
+

k

∣∣∣∣ γj+k > 0, k ∈ K
}
> 0,
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then the feasible solution u+ given by

u+
i =


ui − θj+γj

+

i if i ∈ K
θj

+
if i = j+

0 if i /∈ K ∪ {j+}
is a vertex of P(A, b). If we pick any index k− ∈ K such that θj

+
= uk−/γ

j+
k− , then

K+ = (K−{k−})∪{j+} is a basis for u+. The vector Aj
+

enters the new basis K+, and the
vector Ak

−
leaves the old basis K. This is a pivoting step. The objective function increases

strictly.

Case (B3).

There is some index j /∈ K such that cj −
∑

k∈K γ
j
kck > 0, and for each of the indices

j /∈ K satisfying the above property we have simultaneously

(1) cj −
∑

k∈K γ
j
kck > 0, which means that the objective function can potentially be in-

creased;

(2) There is some k ∈ K such that γjk > 0, and uk = 0, which implies that θj = 0.

Consequently, the objective function does not change. In this case, u is a degenerate basic
feasible solution.

We can associate to u+ = u a new basis K+ as follows: Pick any index j+ /∈ K such that

cj+ −
∑
k∈K

γj
+

k ck > 0,

and any index k− ∈ K such that

γj
+

k− > 0,

and let K+ = (K−{k−})∪{j+}. As in Case (B2), The vector Aj
+

enters the new basis K+,
and the vector Ak

−
leaves the old basis K. This is a pivoting step. However, the objective

function does not change since θj+ = 0.

It is easy to prove that in Case (A) the basic feasible solution u is an optimal solution,
and that in Case (B1) the linear program is unbounded. We already proved that in Case
(B2) the vector u+ and its basis K+ constitutes a basic feasible solution, and the proof in
Case (B3) is similar. For details, see Ciarlet [30] (Chapter 10).

It is convenient to reinterpret the various cases considered by introducing the followings
sets:

B1 =
{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk ≤ 0
}

B2 =

{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk > 0, min
{uk
γjk

∣∣∣ k ∈ K, γjk > 0
}
> 0

}
B3 =

{
j /∈ K | cj −

∑
k∈K

γjkck > 0, max
k∈K

γjk > 0, min
{uk
γjk

∣∣∣ k ∈ K, γjk > 0
}

= 0

}
,
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and

B = B1 ∪B2 ∪B3 =
{
j /∈ K | cj −

∑
k∈K

γjkck > 0
}
.

Then it is easy to see that the following equivalences hold:

Case (A)⇐⇒ B = ∅, Case (B)⇐⇒ B 6= ∅
Case (B1)⇐⇒ B1 6= ∅
Case (B2)⇐⇒ B2 6= ∅
Case (B3)⇐⇒ B3 6= ∅.

Furthermore, (A) and (B), (B1) and (B3), (B2) and (B3) are mutually exclusive, while (B1)
and (B2) are not.

If Case (B1) and Case (B2) arise simultaneously, we opt for Case (B1) which says that
the linear program (P ) is unbounded and terminate the algorithm.

Here are a few remarks about the method.

In Case (B2), which is the path followed by the algorithm most frequently, various choices
have to be made for the index j+ /∈ K for which θj

+
> 0 (the new index in K+). Similarly,

various choices have to be made for the index k− ∈ K leaving K, but such choices are
typically less important.

Similarly in Case (B3), various choices have to be made for the new index j+ /∈ K going
into K+. In Cases (B2) and (B3), criteria for making such choices are called pivot rules .

Case (B3) only arises when u is a degenerate vertex. But even if u is degenerate, Case
(B2) may arise if uk > 0 whenever γjk > 0. It may also happen that u is nondegenerate but
as a result of Case (B2), the new vertex u+ is degenerate because at least two components

uk1 − θj
+
γj

+

k1
and uk2 − θj

+
γj

+

k2
vanish for some distinct k1, k2 ∈ K.

Cases (A) and (B1) correspond to situations where the algorithm terminates, and Case
(B2) can only arise a finite number of times during execution of the simplex algorithm, since
the objective function is strictly increased from vertex to vertex and there are only finitely
many vertices. Therefore, if the simplex algorithm is started on any initial basic feasible
solution u0, then one of three mutually exclusive situations may arise:

(1) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with an
occurrence of Case (A). Then the last vertex produced by the algorithm is an optimal
solution.

(2) There is a finite sequence of occurrences of Case (B2) and/or Case (B3) ending with
an occurrence of Case (B1). We conclude that the problem is unbounded, and thus
has no solution.
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(3) There is a finite sequence of occurrences of Case (B2) and/or Case (B3), followed by
an infinite sequence of Case (B3). If this occurs, the algorithm visits the some basis
twice. This a phenomenon known as cycling . In this eventually the algorithm fails to
come to a conclusion.

There are examples for which cycling occur, although this is rare in practice. Such an
example is given in Chvatal [29]; see Chapter 3, pages 31-32, for an example with seven
variables and three equations that cycles after six iterations under a certain pivot rule.

The third possibility can be avoided by the choice of a suitable pivot rule. Two of these
rules are Bland’s rule and the lexicographic rule; see Chvatal [29] (Chapter 3, pages 34-38).

Bland’s rule says: choose the smallest of the elligible incoming indices j+ /∈ K, and
similarly choose the smallest of the elligible outgoing indices k− ∈ K.

It can be proved that cycling cannot occur if Bland’s rule is chosen as the pivot rule. The
proof is very technical; see Chvatal [29] (Chapter 3, pages 37-38), Matousek and Gardner [73]
(Chapter 5, Theorem 5.8.1), and Papadimitriou and Steiglitz [80] (Section 2.7). Therefore,
assuming that some initial basic feasible solution is provided, and using a suitable pivot rule
(such as Bland’s rule), the simplex algorithm always terminates and either yields an optimal
solution or reports that the linear program is unbounded. Unfortunately Bland’s rules is one
of the slowest pivot rules.

The choice of a pivot rule affects greatly the number of pivoting steps that the simplex
algorithms goes through. It is not our intention here to explain the various pivot rules.
We simply mention the following rules, referring the reader to Matousek and Gardner [73]
(Chapter 5, Section 5.7) or to the texts cited in Section 25.1.

1. Largest coefficient.

2. Largest increase.

3. Steepest edge.

4. Bland’s Rule.

5. Random edge.

The steepest edge rule is one of the most popular. The idea is to maximize the ratio

c(u+ − u)

‖u+ − u‖ .

The random edge rule picks the index j+ /∈ K of the entering basis vector uniformly at
random among all elligible indices.

Let us now return to the issue of the initialization of the simplex algorithm. We use the
linear program (P̂ ) introduced during the proof of Theorem 26.7.
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Consider a linear program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

in standard form where A is an m× n matrix of rank m.

First, observe that since the constraints are equations, we can ensure that b ≥ 0, because
evey equation aix = bi where bi < 0 can be replaced by −aix = −bi. The next step is to
introduce the linear program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0,

where Â and x̂ are given by

Â =
(
A Im

)
, x̂ =

 x1
...

xn+m

 .

Since we assumed that b ≥ 0, the vector x̂ = (0n, b) is a feasible solution of (P̂ ), in fact a basic
feasible solutions since the matrix associated with the indices n+1, . . . , n+m is the identity
matrix Im. Furthermore, since xi ≥ 0 for all i, the objective function −(xn+1 + · · ·+ xn+m)
is bounded above by 0.

If we execute the simplex algorithm with a pivot rule that prevents cycling, starting with
the basic feasible solution (0n, d), since the objective function is bounded by 0, the simplex
algorithm terminates with an optimal solution given by some basic feasible solution, say
(u∗, w∗), with u∗ ∈ Rn and w∗ ∈ Rm.

As in the proof of Theorem 26.7, for every feasible solution u ∈ P(A, b) the vector (u, 0m)

is an optimal solution of (P̂ ). Therefore, if w∗ 6= 0, then P(A, b) = ∅, since otherwise for
every feasible solution u ∈ P(A, b) the vector (u, 0m) would yield a value of the objective
function −(xn+1 + · · ·+ xn+m) equal to 0, but (u∗, w∗) yields a strictly negative value since
w∗ 6= 0.

Otherwise, w∗ = 0, and u∗ is a feasible solution of (P ). Since (u∗, 0m) is a basic feasible

solution of (P̂ ) the columns corresponding to nonzero components of u∗ are linearly inde-
pendent. Some of the coordinates of u∗ could be equal to 0, but since A has rank m we can
add columns of A to obtain a basis K∗ associated with u∗, and u∗ is indeed a basic feasible
solution of (P ).

Running the simplex algorithm on the linear program P̂ to obtain an initial feasible
solution (u0, K0) of the linear program (P2) is called Phase I of the simplex algorithm.
Running the simplex algorithm on the linear program (P2) with some initial feasible solution
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(u0, K0) is called Phase II of the simplex algorithm. If a feasible solution of the linear
program (P2) is readily available then Phase I is skipped. Sometimes, at the end of Phase
I, an optimal solution of (P2) is already obtained.

In summary, we proved the following fact worth recording.

Proposition 27.1. For any linear program (P2)

maximize cx

subject to Ax = b and x ≥ 0,

in standard form, where A is an m × n matrix of rank m and b ≥ 0, consider the linear
program (P̂ ) in standard form

maximize − (xn+1 + · · ·+ xn+m)

subject to Â x̂ = b and x̂ ≥ 0.

The simplex algorithm with a pivot rule that prevents cycling started on the basic feasible
solution x̂ = (0n, b) of (P̂ ) terminates with an optimal solution (u∗, w∗).

(1) If w∗ 6= 0, then P(A,B) = ∅, that is, the linear program (P ) has no feasible solution.

(2) If w∗ = 0, then P(A,B) 6= ∅, and u∗ is a basic feasible solution of (P ) associated with
some basis K.

Proposition 27.1 shows that determining whether the polyhedron P(A, b) defined by a
system of equations Ax = b and inequalities x ≥ 0 is nonempty is decidable. This decision
procedure uses a fail-safe version of the simplex algorithm (that prevents cycling), and the
proof that it always terminates and returns an answer is nontrivial.

27.3 How to Perform a Pivoting Step Efficiently

We now discuss briefly how to perform the computation of (u+, K+) from a basic feasible
solution (u,K).

In order to avoid applying permutation matrices it is preferable to allow a basis K to be
a sequence of indices, possibly out of order. Thus, for any m × n matrix A (with m ≤ n)
and any sequence K = (k1, k2, · · · , km) of m elements with ki ∈ {1, . . . , n}, the matrix AK
denotes the m × m matrix whose ith column is the kith column of A, and similarly for
any vector u ∈ Rn (resp. any linear form c ∈ (Rn)∗) the vector uK ∈ Rm (the linear form
cK ∈ (Rm)∗) is the vector whose ith entry is the kith entry in u (resp. the linear whose ith
entry is the kith entry in c).

For each nonbasic j /∈ K, we have

Aj = γjk1A
k1 + · · ·+ γjkmA

km = AKγ
j
K ,
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so the vector γjK is given by γjK = A−1
K Aj, that is, by solving the system

AKγ
j
K = Aj. (∗γ)

To be very precise, since the vector γjK depends on K its components should be denoted by
(γjK)ki , but as we said before, to simplify notation we write γjki instead of (γjK)ki .

In order to decide which case applies ((A), (B1), (B2), (B3)), we need to compute the
numbers cj −

∑
k∈K γ

j
kck for all j /∈ K. For this, observe that

cj −
∑
k∈K

γjkck = cj − cKγjK = cj − cKA−1
K Aj.

If we write βK = cKA
−1
K , then

cj −
∑
k∈K

γjkck = cj − βKAj.

and we see that β>K ∈ Rm is the solution of the system β>K = (A−1
K )>c>k , which means that

β>K is the solution of the system
A>Kβ

>
K = c>K . (∗β)

Remark: Observe that since u is a basis feasible solution of (P ), we have uj = 0 for all
j /∈ K, so u is the solution of the equation AKuK = b. As a consequence, the value of the
objective function for u is cu = cKuK = cKA

−1
K b. This fact will play a crucial role in Section

28.2 to show that when the simplex algorithm terminates with an optimal solution of the
linear program (P ), then it also produces an optimal solution of the dual linear program
(D).

Assume that we have a basic feasible solution u, a basis K for u, and that we also have
the matrix AK as well its inverse A−1

K (perhaps implicitly) and also the inverse (A>K)−1 of
A>K (perhaps implicitly). Here is a description of an iteration step of the simplex algorithm,
following almost exactly Chvatal (Chvatal [29], Chapter 7, Box 7.1).

An Iteration Step of the (Revised) Simplex Method

Step 1. Compute the numbers cj −
∑

k∈K γ
j
kck = cj − βKAj for all j /∈ K, and for this,

compute β>K as the solution of the system

A>Kβ
>
K = c>K .

If cj − βKAj ≤ 0 for all j /∈ K, stop and return the optimal solution u (Case (A)).

Step 2. If Case (B) arises, use a pivot rule to determine which index j+ /∈ K should enter
the new basis K+ (the condition cj+ − βKAj+ > 0 should hold).

Step 3. Compute maxk∈K γ
j+

k . For this, solve the linear system

AKγ
j+

K = Aj
+

.



27.3. HOW TO PERFORM A PIVOTING STEP EFFICIENTLY 689

Step 4. If maxk∈K γ
j+

k ≤ 0, then stop and report that the linear program (P ) is unbounded
(Case (B1)).

Step 5. If maxk∈K γ
j+

k > 0, use the ratios uk/γ
j+

k for all k ∈ K such that γj
+

k > 0 to
compute θj

+
, and use a pivot rule to determine which index k− ∈ K such that θj

+
= uk−/γ

j+
k−

should leave K (Case (B2)).

If maxk∈K γ
j+

k = 0, then use a pivot rule to determine which index k− for which γj
+

k− > 0
should leave the basis K (Case (B3)).

Step 6. Update u, K, and AK , to u+ and K+, and AK+ . During this step, given the
basis K specified by the sequence K = (k1, . . . , k`, . . . , km), with k− = k`, then K+ is the
sequence obtained by replacing k` by the incoming index j+, so K+ = (k1, . . . , j

+, . . . , km)
with j+ in the `th slot.

The vector u is easily updated. To compute AK+ from AK we take advantage that AK
and AK+ only differ by a single column, namely the `th column Aj

+
, which is given by the

linear combination
Aj

+

= AKγ
j+

K .

To simplify notation, denote γj
+

K by γ, and recall that k− = k`. If K = (k1, . . . , km), then
AK = [Ak1 · · ·Ak− · · ·Aim ], and since AK+ is the result of replacing the `th column Ak

−
of

AK by the column Aj
+

, we have

AK+ = [Ak1 · · ·Aj+ · · ·Aim ] = [Ak1 · · ·AKγ · · ·Aim ] = AKE(γ),

where E(γ) is the following invertible matrix obtained from the identity matrix Im by re-
placing its `th column by γ:

E(γ) =



1 γ1

. . .
...

1 γ`−1

γ`
γ`+1 1

...
. . .

γm 1


.

Since γ` = γj
+

k− > 0, the matrix E(γ) is invertible, and it is easy to check that its inverse is
given by

E(γ)−1 =



1 −γ−1
` γ1

. . .
...

1 −γ−1
` γ`−1

γ−1
`

−γ−1
` γ`+1 1

...
. . .

−γ−1
` γm 1


,
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which is very cheap to compute. We also have

A−1
K+ = E(γ)−1A−1

K .

Consequently, if AK and A−1
K are available, then AK+ and A−1

K+ can be computed cheaply
in terms of AK and A−1

K and matrices of the form E(γ). Then the systems (∗γ) to find the
vectors γjK can be solved cheaply.

Since

A>K+ = E(γ)>A>K

and

(A>K+)−1 = (A>K)−1(E(γ)>)−1,

the matrices A>K+ and (A>K+)−1 can also be computed cheaply from A>K , (A>K)−1, and matrices
of the form E(γ)>. Thus the systems (∗β) to find the linear forms βK can also be solved
cheaply.

A matrix of the form E(γ) is called an eta matrix ; see Chvatal [29] (Chapter 7). We
showed that the matrix AKs obtained after s steps of the simplex algorithm can be written
as

AKs = AKs−1Es

for some eta matrix Es, so Aks can be written as the product

AKs = E1E2 · · ·Es

of s beta matrices. Such a factorization is called an eta factorization. The eta factorization
can be used to either invert AKs or to solve a system of the form AKsγ = Aj

+
iteratively.

Which method is more efficient depends on the sparsity of the Ei.

In summary, there are cheap methods for finding the next basic feasible solution (u+, K+)
from (u,K). We simply wanted to give the reader a flavor of these techniques. We refer the
reader to texts on linear programming for detailed presentations of methods for implementing
efficiently the simplex method. In particular, the revised simplex method is presented in
Chvatal [29], Papadimitriou and Steiglitz [80], Bertsimas and Tsitsiklis [17], and Vanderbei
[110].

27.4 The Simplex Algorithm Using Tableaux

We now describe a formalism for presenting the simplex algorithm, namely (full) tableaux .
This is the traditional formalism used in all books, modulo minor variations. A particularly
nice feature of the tableau formalism is that the update of a tableau can be performed using
elementary row operations identical to the operations used during the reduction of a matrix
to row reduced echelon form (rref). What differs is the criterion for the choice of the pivot.
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Since the quantities cj− cKγjK play a crucial role in determining which column Aj should
come into the basis, the notation cj is used to denote cj − cKγjK , which is called the reduced
cost of the variable xj. The reduced costs actually depend on K so to be very precise we
should denote them by (cK)j, but to simplify notation we write cj instead of (cK)j. We will
see shortly how (cK+)i is computed in terms of in terms of (cK)i.

Observe that the data needed to execute the next step of the simplex algorithm are

(1) The current basic solution uK and its basis K = (k1, . . . , km).

(2) The reduced costs cj = cj − cKA−1
K Aj = cj − cKγjK , for all j /∈ K.

(3) The vectors γjK = (γjki)
m
i=1 for all j /∈ K, that allow us to express each Aj as AKγ

j
K .

All this information can be packed into a (m+ 1)× (n+ 1) matrix called a (full) tableau
organized as follows:

cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

It is convenient to think as the first row as row 0, and of the first column as column 0.
Row 0 contains the current value of the objective function and the reduced costs, column
0 except for its top entry contains the components of the current basic solution uK , and
the remaining columns except for their top entry contain the vectors γjK . Observe that
the γjK corresponding to indices j in K constitute a permutation of the identity matrix

Im. The entry γj
+

k− is called the pivot element. A tableau together with the new basis
K+ = (K − {k−}) ∪ {j+} contains all the data needed to compute the new uK+ , the new
γjK+ , and the new reduced costs (cK+)j.

If we define the m× n matrix Γ as the matrix Γ = [γ1
K · · · γnK ] whose jth column is γjK ,

and c as the row vector c = (c1 · · · cn), then the above tableau is denoted concisely by

cKuK c
uK Γ

We now show that the update of a tableau can be performed using elementary row
operations identical to the operations used during the reduction of a matrix to row reduced
echelon form (rref).

If K = (k1, . . . , km), j+ is the index of the incoming basis vector, k− = k` is the index
of the column leaving the basis, and if K+ = (k1, . . . , k`−1, j

+, k`+1, . . . , km), since AK+ =

AKE(γj
+

K ), the new columns γjK+ are computed in terms of the old columns γjK using the
equations

γjK+ = A−1
K+A

j = E(γj
+

K )−1A−1
K Aj = E(γj

+

K )−1γjK .
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Consequently the matrix Γ+ is given in terms of Γ by

Γ+ = E(γj
+

K )−1Γ.

But the matrix E(γj
+

K )−1 is of the form

E(γ)−1 =



1 −(γj
+

k−)−1γj
+

k1
. . .

...

1 −(γj
+

k−)−1γj
+

k`−1

(γj
+

k−)−1

−(γj
+

k−)−1γj
+

k`+1
1

...
. . .

−(γj
+

k−)−1γj
+

km
1


,

with the column involving the γs in the `th column, and this matrix is the product of the
following elementary row operations:

1. Multiply row ` by 1/γj
+

k− (the inverse of the pivot) to make the entry on row ` and
column j+ equal to 1.

2. subtract γj
+

ki
× (the normalized) row ` from row i, for i = 1, . . . , `− 1, `+ 1, . . . ,m.

These are exactly the elementary row operations that reduce the `th column γj
+

K of Γ
to the `th column of the identity matrix Im. Thus, this step is identical to the sequence of
steps that the procedure to convert a matrix to row reduced echelon from executes on the
`th column of the matrix. The only difference is the criterion for the choice of the pivot.

Since the new basic solution uK+ is given by uK+ = A−1
K+b, we have

uK+ = E(γj
+

K )−1A−1
K b = E(γj

+

K )−1uK .

This means that u+ is obtained from uK by applying exactly the same elementary row
operations that were applied to Γ. Consequently, just as in the procedure for reducing a
matrix to rref, we can apply elementary row operations to the matrix [uk Γ], which consists
of rows 1, . . . ,m of the tableau.

Once the new matrix Γ+ is obtained, the new reduced costs are given by the following
proposition.

Proposition 27.2. Given any linear program (P2) is standard form

maximize cx

subject to Ax = b and x ≥ 0,
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where A is an m × n matrix of rank m, if (u,K) is a basic (not feasible) solution of (P2)
and if K+ = (K − {k−}) ∪ {j+}, with K = (k1, . . . , km) and k− = k`, then for i = 1, . . . , n
we have

ci − cK+γiK+ = ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ).

Using the reduced cost notation, the above equation is

(cK+)i = (cK)i −
γik−

γj
+

k−

(cK)j+ .

Proof. Without any loss of generality and to simplify notation assume that K = (1, . . . ,m)
and write j for j+ and ` for km. Since γiK = A−1

K Ai, γiK+ = A−1
K+Ai, and AK+ = AKE(γjK),

we have

ci − cK+γiK+ = ci − cK+A−1
K+A

i = ci − cK+E(γjK)−1A−1
K Ai = ci − cK+E(γjK)−1γiK ,

where

E(γjK)−1 =



1 −(γj` )
−1γj1

. . .
...

1 −(γj` )
−1γj`−1

(γj` )
−1

−(γj` )
−1γj`+1 1
...

. . .

−(γj` )
−1γjm 1



where the `th column contains the γs. Since cK+ = (c1, . . . , c`−1, cj, c`+1, . . . , cm), we have

cK+E(γjK)−1 =

(
c1, . . . , c`−1,

cj

γj`
−

m∑
k=1,k 6=`

ck
γjk
γj`
, c`+1, . . . , cm

)
,
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and

cK+E(γjK)−1γiK =

(
c1 . . . c`−1

cj

γj`
−

m∑
k=1,k 6=`

ck
γjk
γj`

c`+1 . . . cm

)


γi1
...

γi`−1

γi`
γi`+1

...
γim


=

m∑
k=1,k 6=`

ckγ
i
k +

γi`
γj`

(
cj −

m∑
k=1,k 6=`

ckγ
j
k

)

=
m∑

k=1,k 6=`
ckγ

i
k +

γi`
γj`

(
cj + c`γ

j
` −

m∑
k=1

ckγ
j
k

)

=
m∑
k=1

ckγ
i
k +

γi`
γj`

(
cj −

m∑
k=1

ckγ
j
k

)
= cKγ

i
K +

γi`
γj`

(cj − cKγjK),

and thus

ci − cK+γiK+ = ci − cK+E(γjK)−1γiK = ci − cKγiK −
γi`
γj`

(cj − cKγjK),

as claimed.

Since (γ1
k− , . . . , γ

n
k−) is the `th row of Γ, we see that Proposition 27.2 shows that

cK+ = cK −
(cK)j+

γj
+

k−

Γ`, (†)

where Γ` denotes the `-th row of Γ and γj
+

k− is the pivot. This means that cK+ is obtained
by the elementary row operations which consist first normalizing the `th row by dividing it

by the pivot γj
+

k− , and then subtracting (cK)j+× the normalized row ` from cK . These are
exactly the row operations that make the reduced cost (cK)j+ zero.

Remark: It easy easy to show that we also have

cK+ = c− cK+Γ+.
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We saw in section 27.2 that the change in the objective function after a pivoting step
during which column j+ comes in and column k− leaves is given by

θj
+

(
cj+ −

∑
k∈K

γj
+

k ck

)
= θj

+

(cK)j+ ,

where
θj

+

=
uk−

γj
+

k−

.

If we denote the value of the objective function cKuK by zK , then we see that

zK+ = zK +
(cK)j+

γj
+

k−

uk− .

This means that the new value zK+ of the objective function is obtained by first normalizing

the `th row by dividing it by the pivot γj
+

k− , and then adding (cK)j+× the zeroth entry of
the normalized `th line by (cK)j+ to the zeroth entry of line 0.

In updating the reduced costs, we subtract rather than add (cK)j+× the normalized row `
from row 0. This suggests storing −zK as the zeroth entry on line 0 rather than zK , because
then all the entries row 0 are updated by the same elementary row operations. Therefore,
from now on, we use tableau of the form

−cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

The simplex algorithm first chooses the incoming column j+ by picking some column for

which cj > 0, and then chooses the outgoing column k− by considering the ratios uk/γ
j+

k for

which γj
+

k > 0 (along column j+), and picking k− to achieve the minimum of these ratios.

Here is an illustration of the simplex algorithm using elementary row operations on an
example from Papadimitriou and Steiglitz [80] (Section 2.9).

Example 27.4. Consider the linear program

maximize − 2x2 − x4 − 5x7

subject to

x1 + x2 + x3 + x4 = 4

x1 + x5 = 2

x3 + x6 = 3

3x2 + x3 + x7 = 6

x1, x2, x3, x4, x5, x6, x7 ≥ 0.
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We have the basic feasible solution u = (0, 0, 0, 4, 2, 3, 6), with K = (4, 5, 6, 7). Since cK =
(−1, 0, 0,−5) and c = (0,−2, 0,−1, 0, 0− 5) the first tableau is

34 1 14 6 0 0 0 0
u4 = 4 1 1 1 1 0 0 0

u5 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1

Row 0 is obtained by subtracting −1× (row 1) and −5× (row 4) from c = (0,−2, 0,−1, 0,
0,−5). Let us pick column j+ = 1 as the incoming column. We have the ratios (for positive
entries on column 1)

4/1, 2/1,

and since the minimum is 2, we pick the outgoing column to be column k− = 5. The pivot
1 is indicated in red. The new basis is K = (4, 1, 6, 7). Next we apply row operations to
reduce column 1 to the second vector of the identity matrix I4. For this, we subtract row 2
from row 1. We get the tableau

34 1 14 6 0 0 0 0
u4 = 2 0 1 1 1 −1 0 0

u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1

To compute the new reduced costs, we want to set c1 to 0 so we subtract row 2 from row
0, and we get the tableau

32 0 14 6 0 −1 0 0

u4 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 6 0 3 1 0 0 0 1

Next, pick column j+ = 3 as the incoming column. We have the ratios (for positive
entries on column 3)

2/1, 3/1, 6/1,

and since the minimum is 2, we pick the outgoing column to be column k− = 4. The pivot
1 is indicated in red and the new basis is K = (3, 1, 6, 7). Next we apply row operations to
reduce column 3 to the first vector of the identity matrix I4. For this, we subtract row 1
from row 3 and from row 4, to obtain the tableau:
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32 0 14 6 0 −1 0 0

u3 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 1 0 −1 0 −1 1 1 0
u7 = 4 0 2 0 −1 1 0 1

To compute the new reduced costs, we want to set c3 to 0 so we subtract 6× row 1 from
row 0, and we get the tableau

20 0 8 0 −6 5 0 0

u3 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 1 0 −1 0 −1 1 1 0
u7 = 4 0 2 0 −1 1 0 1

Next we pick j+ = 2 as the incoming column. We have the ratios (for positive entries on
column 2)

2/1, 4/2,

and since the minimum is 2, we pick the outgoing column to be column k− = 3. The pivot
1 is indicated in red and the new basis is K = (2, 1, 6, 7). Next we apply row operations to
reduce column 2 to the first vector of the identity matrix I4. For this, we add row 1 to row
3 and subtract 2× row 1 from row 4 to obtain the tableau:

20 0 8 0 −6 5 0 0

u2 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0
u7 = 0 0 0 −2 −3 3 0 1

To compute the new reduced costs, we want to set c2 to 0 so we subtract 8× row 1 from
row 0 and we get the tableau

4 0 0 −8 −14 13 0 0
u2 = 2 0 1 1 1 −1 0 0
u1 = 2 1 0 0 0 1 0 0
u6 = 3 0 0 1 0 0 1 0

u7 = 0 0 0 −2 −3 3 0 1

The only possible incoming column corresponds to j+ = 5. We have the ratios (for
positive entries on column 5)

2/1, 0/3,
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and since the minimum is 0, we pick the outgoing column to be column k− = 7. The pivot
3 is indicated in red and the new basis is K = (2, 1, 6, 5). Since the minimum is 0, the basis
K = (2, 1, 6, 5) is degenerate (indeed, the component corresponding to the index 5 is 0).
Next we apply row operations to reduce column 5 to the fourth vector of the identity matrix
I4. For this, we multiply row 4 by 1/3, and then add the normalized row 4 to row 1 and
subtract the normalized row 4 from row 2, and to obtain the tableau:

4 0 0 −8 −14 13 0 0
u2 = 2 0 1 1/3 0 0 0 1/3
u1 = 2 1 0 2/3 1 0 0 −1/3
u6 = 3 0 0 1 0 0 1 0

u5 = 0 0 0 −2/3 −1 1 0 1/3

To compute the new reduced costs, we want to set c5 to 0 so we subtract 13× row 4 from
row 0 and we get the tableau

4 0 0 2/3 −1 0 0 −13/3
u2 = 2 0 1 1/3 0 0 0 1/3

u1 = 2 1 0 2/3 1 0 0 −1/3

u6 = 3 0 0 1 0 0 1 0
u5 = 0 0 0 −2/3 −1 1 0 1/3

The only possible incoming column corresponds to j+ = 3. We have the ratios (for
positive entries on column 3)

2/(1/3) = 6, 2/(2/3) = 3, 3/1 = 3,

and since the minimum is 3, we pick the outgoing column to be column k− = 1. The pivot
2/3 is indicated in red and the new basis is K = (2, 3, 6, 5). Next we apply row operations
to reduce column 3 to the second vector of the identity matrix I4. For this, we multiply row
2 by 2/3, subtract (1/3)× (normalized row 2) from row 1, and subtract normalized row 2
from row 3, add add row (2/3)× (normalized row 2) to row 4, to obtain the tableau:

4 0 0 2/3 −1 0 0 −13/3
u2 = 1 −1/2 1 0 −1/2 0 0 1/2

u3 = 3 3/2 0 1 3/2 0 0 −1/2
u6 = 0 −3/2 0 0 −3/2 0 1 1/2
u5 = 2 1 0 0 0 1 0 0

To compute the new reduced costs, we want to set c3 to 0 so we subtract (2/3)× row 2
from row 0 and we get the tableau
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2 −1 0 0 −2 0 0 −4
u2 = 1 −1/2 1 0 −1/2 0 0 1/2
u3 = 3 3/2 0 1 3/2 0 0 −1/2
u6 = 0 −3/2 0 0 −3/2 0 1 1/2
u5 = 2 1 0 0 0 1 0 0

Since all the reduced cost are ≤ 0, we have reached an optimal solution, namely
(0, 1, 3, 0, 2, 0, 0, 0), with optimal value −2.

The progression of the simplex algorithm from one basic feasible solution to another
corresponds to the visit of vertices of the polyhedron P associated with the constraints of
the linear program illustrated in Figure 27.4.

x3

x2

x1

(2,2,0)

(0,2,2)

(0,2,0)

(2,0,0)

(1,0,3)
(0,0,3)

(0,1,3)

1

x      =   2
1

3

4 = 5

6

x      +  x      + x       = 4

1
2

3

3x     + x      = 6
3

2

Figure 27.4: The polytope P associated with the linear program optimized by the tableau
method. The red arrowed path traces the progression of the simplex method from the origin
to the vertex (0, 1, 3).

As a final comment, if it is necessary to run Phase I of the simplex algorithm, in the event
that the simplex algorithm terminates with an optimal solution (u∗, 0m) and a basis K∗ such
that some ui = 0, then the basis K∗ contains indices of basic columns Aj corresponding to
slack variables that need to be driven out of the basis. This is easy to achieve by performing a
pivoting step involving some other column j+ corresponding to one of the original variables

(not a slack variable) for which (γK∗)
j+

i 6= 0. In such a step, it doesn’t matter whether

(γK∗)
j+

i < 0 or (cK∗)j+ ≤ 0. If the original matrix A has no redundant equations, such a step
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is always possible. Otherwise, (γK∗)
j
i = 0 for all non-slack variables, so we detected that the

ith equation is redundant and we can delete it.

Other presentations of the tableau method can be found in Bertsimas and Tsitsiklis [17]
and Papadimitriou and Steiglitz [80].

27.5 Computational Efficiency of the Simplex Method

Let us conclude with a few comments about the efficiency of the simplex algorithm. In
practice, it was observed by Dantzig that for linear programs with m < 50 and m+n < 200,
the simplex algorithms typically requires less than 3m/2 iterations, but at most 3m iterations.
This fact agrees with more recent empirical experiments with much larger programs that
show that the number iterations is bounded by 3m. Thus, it was somewhat of a shock in
1972 when Klee and Minty found a linear program with n variables and n equations for
which the simplex algorithm with Dantzig’s pivot rule requires requires 2n − 1 iterations.
This program (taken from Chvatal [29], page 47) is reproduced below:

maximize
n∑
j=1

10n−jxj

subject to(
2
i−1∑
j=1

10i−jxj

)
+ xi ≤ 100i−1

xj ≥ 0,

for i = 1, . . . , n and j = 1, . . . , n.

If p = max(m,n), then , in terms of worse case behavior, for all currently known pivot
rules, the simplex algorithm has exponential complexity in p. However, as we said earlier, in
practice, nasty examples such as the Klee–Minty example seem to be rare, and the number
of iterations appears to be linear in m.

Whether or not a pivot rule (a clairvoyant rule) for which the simplex algorithms runs
in polynomial time in terms of m is still an open problem.

The Hirsch conjecture claims that there is some pivot rule such that the simplex algorithm
finds an optimal solution in O(p) steps. The best bound known so far due to Kalai and
Kleitman is m1+lnn = (2n)lnm. For more on this topic, see Matousek and Gardner [73]
(Section 5.9) and Bertsimas and Tsitsiklis [17] (Section 3.7).

Researchers have investigated the problem of finding upper bounds on the expected
number of pivoting steps if a randomized pivot rule is used. Bounds better than 2m (but of
course, not polynomial) have been found.
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Understanding the complexity of linear programing, in particular of the simplex algo-
rithm, is still ongoing. The interested reader is referred to Matousek and Gardner [73]
(Chapter 5, Section 5.9) for some pointers.

In the next section we consider important theoretical criteria for determining whether a
set of constraints Ax ≤ b and x ≥ 0 has a solution or not.
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Chapter 28

Linear Programming and Duality

28.1 Variants of the Farkas Lemma

If A is an m × n matrix and if b ∈ Rm is a vector, it is known from linear algebra that
the linear system Ax = b has no solution iff there is some linear form y ∈ (Rm)∗ such that
yA = 0 and yb 6= 0. This means that the linear from y vanishes on the columns A1, . . . , An

of A but does not vanish on b. Since the linear form y defines the linear hyperplane H
of equation yz = 0 (with z ∈ Rm), geometrically the equation Ax = b has no solution iff
there is a linear hyperplane H containing A1, . . . , An and not containing b. This is a kind of
separation theorem that says that the vectors A1, . . . , An and b can be separated by some
linear hyperplane H.

What we would like to do is to generalize this kind of criterion, first to a system Ax = b
subject to the constraints x ≥ 0, and next to sets of inequality constraints Ax ≤ b and x ≥ 0.
There are indeed such criteria going under the name of Farkas lemma.

The key is a separation result involving polyhedral cones known as the Farkas–Minkowski
proposition. We have the following fundamental separation lemma.

Proposition 28.1. Let C ⊆ Rn be a closed nonempty cone. For any point a ∈ Rn, if a /∈ C,
then there is a linear hyperplane H (through 0) such that

1. C lies in one of the two half-spaces determined by H.

2. a /∈ H

3. a lies in the other half-space determined by H.

We say that H strictly separates C and a.

Proposition 28.1 is an easy consequence of another separation theorem that asserts that
given any two nonempty closed convex sets A and B with A compact, there is a hyperplane
H strictly separating A and B (which means that A∩H = ∅, B ∩H = ∅, that A lies in one

703
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of the two half-spaces determined by H, and B lies in the other half-space determined by
H); see Gallier [44] (Chapter 7, Corollary 7.4 and Proposition 7.3). This proof is nontrivial
and involves a geometric version of the Hahn–Banach theorem.

The Farkas–Minkowski proposition is Proposition 28.1 applied to a polyhedral cone

C = {λ1a1 + · · ·+ λnan | λi ≥ 0, i = 1, . . . , n}

where {a1, . . . , an} is a finite number of vectors ai ∈ Rn. By Proposition 25.2, any polyhedral
cone is closed, so Proposition 28.1 applies and we obtain the following separation lemma.

Proposition 28.2. (Farkas–Minkowski) Let C ⊆ Rn be a nonempty polyhedral cone C =
cone({a1, . . . , an}). For any point b ∈ Rn, if b /∈ C, then there is a linear hyperplane H
(through 0) such that

1. C lies in one of the two half-spaces determined by H.

2. a /∈ H

3. a lies in the other half-space determined by H.

Equivalently, there is a nonzero linear form y ∈ (Rn)∗ such that

1. yai ≥ 0 for i = 1, . . . , n.

2. yb < 0.

A direct proof of the Farkas–Minkowski proposition not involving Proposition 28.1 is
given at the end of this section.

Remark: There is a generalization of the Farkas–Minkowski proposition applying to infinite
dimensional real Hilbert spaces; see Theorem 29.11 (or Ciarlet [30], Chapter 9).

Proposition 28.2 implies our first version of Farkas’ lemma.

Proposition 28.3. (Farkas Lemma, Version I) Let A be an m × n matrix and let b ∈ Rm

be any vector. The linear system Ax = b has no solution x ≥ 0 iff there is some nonzero
linear form y ∈ (Rm)∗ such that yA ≥ 0>n and yb < 0.

Proof. First, assume that there is some nonzero linear form y ∈ (Rm)∗ such that yA ≥ 0
and yb < 0. If x ≥ 0 is a solution of Ax = b, then we get

yAx = yb,

but if yA ≥ 0 and x ≥ 0, then yAx ≥ 0, and yet by hypothesis yb < 0, a contradiction.

Next assume that Ax = b has no solution x ≥ 0. This means that b does not belong to
the polyhedral cone C = cone({A1, . . . , An}) spanned by the columns of A. By Proposition
28.2, there is a nonzero linear form y ∈ (Rm)∗ such that
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1. yAj ≥ 0 for j = 1, . . . , n.

2. yb < 0,

which says that yA ≥ 0>n and yb < 0.

Next consider the solvability of a system of inequalities of the form Ax ≤ b and x ≥ 0.

Proposition 28.4. (Farkas Lemma, Version II) Let A be an m× n matrix and let b ∈ Rm

be any vector. The system of inequalities Ax ≤ b has no solution x ≥ 0 iff there is some
nonzero linear form y ∈ (Rm)∗ such that y ≥ 0>m, yA ≥ 0>n , and yb < 0.

Proof. We use the trick of linear programming which consists of adding “slack variables” zi
to convert inequalities aix ≤ bi into equations aix + zi = bi with zi ≥ 0 already discussed
just before Definition 25.5. If we let z = (z1, . . . , zm), it is obvious that the system Ax ≤ b
has a solution x ≥ 0 iff the equation

(
A Im

)(x
z

)
= b

has a solution

(
x
z

)
with x ≥ 0 and z ≥ 0. Now by Farkas I, the above system has no

solution with with x ≥ 0 and z ≥ 0 iff there is some nonzero linear form y ∈ (Rm)∗ such that

y
(
A Im

)
≥ 0>n+m

and yb < 0, that is, yA ≥ 0>n , y ≥ 0>m, and yb < 0.

In the next section we use Farkas II to prove the duality theorem in linear programming.
Observe that by taking the negation of the equivalence in Farkas II we obtain a criterion of
solvability, namely:

The system of inequalities Ax ≤ b has a solution x ≥ 0 iff for every nonzero linear form
y ∈ (Rm)∗ such that y ≥ 0>m, if yA ≥ 0>n , then yb ≥ 0.

We now prove the Farkas–Minkowski proposition without using Proposition 28.1. This
approach uses a basic property of the distance function from a point to a closed set.

Let X ⊆ Rn be any nonempty set and let a ∈ Rn be any point. The distance d(a,X)
from a to X is defined as

d(a,X) = inf
x∈X
‖a− x‖ .

Here, ‖ ‖ denotes the Euclidean norm.

Proposition 28.5. Let X ⊆ Rn be any nonempty set and let a ∈ Rn be any point. If X is
closed, then there is some z ∈ X such that ‖a− z‖ = d(a,X).
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Proof. Since X is nonempty, pick any x0 ∈ X, and let r = ‖a− x0‖. If Br(a) is the closed
ball Br(a) = {x ∈ Rn | ‖x− a‖ ≤ r}, then clearly

d(a,X) = inf
x∈X
‖a− x‖ = inf

x∈X∩Br(a)
‖a− x‖ .

Since Br(a) is compact and X is closed, K = X ∩ Br(a) is also compact. But the function
x 7→ ‖a− x‖ defined on the compact set K is continuous, and the image of a compact set
by a continuous function is compact, so by Heine–Borel it has a minimum that is achieved
by some z ∈ K ⊆ X.

Remark: If U is a nonempty, closed and convex subset of a Hilbert space V , a standard
result of Hilbert space theory (the projection theorem) asserts that for any v ∈ V there is a
unique p ∈ U such that

‖v − p‖ = inf
u∈U
‖v − u‖ = d(v, U),

and
〈p− v, u− p〉 ≥ 0 for all u ∈ U.

Here ‖w‖ =
√
〈w,w〉, where 〈−,−〉 is the inner product of the Hilbert space V .

We can now give a proof of the Farkas–Minkowski proposition (Proposition 28.2).

Proof of the Farkas–Minkowski proposition. Let C = cone({a1, . . . , am}) be a polyhedral
cone (nonempty) and assume that b /∈ C. By Proposition 25.2, the polyhedral cone is
closed, and by Proposition 28.5 there is some z ∈ C such that d(b, C) = ‖b− z‖; that is, z
is a point of C closest to b. Since b /∈ C and z ∈ C we have u = z − b 6= 0, and we claim
that the linear hyperplane H orthogonal to u does the job, as illustrated in Figure 28.1.

First let us show that
〈u, z〉 = 〈z − b, z〉 = 0. (∗1)

This is trivial if z = 0, so assume z 6= 0. If 〈u, z〉 6= 0, then either 〈u, z〉 > 0 or 〈u, z〉 < 0. In
either case we show that we can find some point z′ ∈ C closer to b than z is, a contradiction.

Case 1 : 〈u, z〉 > 0.

Let z′ = (1− α)z for any α such that 0 < α < 1. Then z′ ∈ C and since u = z − b

z′ − b = (1− α)z − (z − u) = u− αz,

so
‖z′ − b‖2

= ‖u− αz‖2 = ‖u‖2 − 2α〈u, z〉+ α2 ‖z‖2 .

If we pick α > 0 such that α < 2〈u, z〉/ ‖z‖2, then −2α〈u, z〉 + α2 ‖z‖2 < 0, so ‖z′ − b‖2 <
‖u‖2 = ‖z − b‖2, contradicting the fact that z is a point of C closest to b.

Case 2 : 〈u, z〉 < 0.
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a1
a2

3a

b

z H
C

Figure 28.1: The hyperplane H, perpendicular to z − b, separates the point b from C =
cone({a1, a2, a3}).

Let z′ = (1 + α)z for any α such that α ≥ −1. Then z′ ∈ C and since u = z − b we have
z′ − b = (1 + α)z − (z − u) = u+ αz so

‖z′ − b‖2
= ‖u+ αz‖2 = ‖u‖2 + 2α〈u, z〉+ α2 ‖z‖2 ,

and if

0 < α < −2〈u, z〉/ ‖z‖2 ,

then 2α〈u, z〉+ α2 ‖z‖2 < 0, so ‖z′ − b‖2 < ‖u‖2 = ‖z − b‖2, a contradiction as above.

Therefore 〈u, z〉 = 0. We have

〈u, u〉 = 〈u, z − b〉 = 〈u, z〉 − 〈u, b〉 = −〈u, b〉,

and since u 6= 0, we have 〈u, u〉 > 0, so 〈u, u〉 = −〈u, b〉 implies that

〈u, b〉 < 0. (∗2)

It remains to prove that 〈u, ai〉 ≥ 0 for i = 1, . . . ,m. Pick any x ∈ C such that x 6= z.
We claim that

〈b− z, x− z〉 ≤ 0. (∗3)

Otherwise 〈b− z, x− z〉 > 0, that is, 〈z − b, x− z〉 < 0, and we show that we can find some
point z′ ∈ C on the line segment [z, x] closer to b than z is.
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For any α such that 0 ≤ α ≤ 1, we have z′ = (1 − α)z + αx = z + α(x − z) ∈ C, and
since z′ − b = z − b+ α(x− z) we have

‖z′ − b‖2
= ‖z − b+ α(x− z)‖2 = ‖z − b‖2 + 2α〈z − b, x− z〉+ α2 ‖x− z‖2 ,

so for any α > 0 such that

α < −2〈z − b, x− z〉/ ‖x− z‖2 ,

we have 2α〈z − b, x− z〉+ α2 ‖x− z‖2 < 0, which implies that ‖z′ − b‖2 < ‖z − b‖2, contra-
dicting that z is a point of C closest to b.

Since 〈b− z, x− z〉 ≤ 0, u = z − b, and by (∗1) 〈u, z〉 = 0, we have

0 ≥ 〈b− z, x− z〉 = 〈−u, x− z〉 = −〈u, x〉+ 〈u, z〉 = −〈u, x〉,

which means that
〈u, x〉 ≥ 0 for all x ∈ C, (∗3)

as claimed. In particular,
〈u, ai〉 ≥ 0 for i = 1, . . . ,m. (∗4)

Then, by (∗2) and (∗4), the linear form defined by y = u> satisfies the properties yb < 0 and
yai ≥ 0 for i = 1, . . . ,m, which proves the Farkas–Minkowski proposition.

There are other ways of proving the Farkas–Minkowski proposition, for instance using
minimally infeasible systems or Fourier–Motzkin elimination; see Matousek and Gardner [73]
(Chapter 6, Sections 6.6 and 6.7).

28.2 The Duality Theorem in Linear Programming

Let (P ) be the linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A a m× n matrix, and assume that (P ) has a feasible solution and is bounded above.
Since by hypothesis the objective function x 7→ cx is bounded on P(A, b), it might be useful
to deduce an upper bound for cx from the inequalities Ax ≤ b, for any x ∈ P(A, b). We can
do this as follows: for every inequality

aix ≤ bi 1 ≤ i ≤ m,

pick a nonnegative scalar yi, multiply both sides of the above inequality by yi obtaining

yiaix ≤ yibi 1 ≤ i ≤ m,
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(the direction of the inequality is preserved since yi ≥ 0), and then add up these m equations,
which yields

(y1a1 + · · ·+ ymam)x ≤ y1b1 + · · ·+ ymbm.

If we can pick the yi ≥ 0 such that

c ≤ y1a1 + · · ·+ ymam,

then since xj ≥ 0 we have

cx ≤ (y1a1 + · · ·+ ymam)x ≤ y1b1 + · · ·+ ymbm,

namely we found an upper bound of the value cx of the objective function of (P ) for any
feasible solution x ∈ P(A, b). If we let y be the linear form y = (y1, . . . , ym), then since

A =

a1
...
am


y1a1 + · · · + ymam = yA, and y1b1 + · · · + ymbm = yb, what we did was to look for some
y ∈ (Rm)∗ such that

c ≤ yA, y ≥ 0,

so that we have

cx ≤ yb for all x ∈ P(A, b). (∗)

Then it is natural to look for a “best” value of yb, namely a minimum value, which leads to
the definition of the dual of the linear program (P ), a notion due to John von Neumann.

Definition 28.1. Given any linear program (P )

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A a m× n matrix, the dual (D) of (P ) is the following optimization problem:

minimize yb

subject to yA ≥ c and y ≥ 0,

where y ∈ (Rm)∗. The original linear program (P ) is called the primal linear program.

Here is an explicit example of a linear program and its dual.
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Example 28.1. Consider the linear program illustrated by Figure 28.3

maximize 2x1 + 3x2

subject to

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

Its dual linear program is illustrated in Figure28.2

minimize 12y1 + 3y2 + 4y3

subject to

4y1 + 2y2 + 3y3 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

It can be checked that (x1, x2) = (1/2, 5/4) is an optimal solution of the primal linear
program, with the maximum value of the objective function 2x1 + 3x2 equal to 19/4, and
that (y1, y2, y3) = (5/16, 0, 1/4) is an optimal solution of the dual linear program, with the
minimum value of the objective function 12y1 + 3y2 + 4y3 also equal to 19/4.

x
0 0.5 1 1.5 2

y

0

1

2

3

4x + 8y  = 12

2x + y = 3

3x + 2y = 4

Figure 28.2: The H-polytope for the linear program of Example 28.1. Note x1 → x and
x2 → y.

Observe that in the primal linear program (P ), we are looking for a vector x ∈ Rn

maximizing the form cx, and that the constraints are determined by the action of the rows
of the matrix A on x. On the other hand, in the dual linear program (D), we are looking
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x

y

4x + 2y + 3z = 2

8x + y + 2z = 3

Figure 28.3: The H-polyhedron for the dual linear program of Example 28.1 is the spacial
region “above” the pink plane and in “front” of the blue plane. Note y1 → x, y2 → y, and
y3 → z.

for a linear form y ∈ (R∗)m minimizing the form yb, and the constraints are determined by
the action of y on the columns of A. This is the sense in which (D) is the dual (P ). In most
presentations, the fact that (P ) and (D) perform a search for a solution in spaces that are
dual to each other is obscured by excessive use of transposition.

To convert the dual program (D) to a standard maximization problem we change the
objective function yb to −b>y> and the inequality yA ≥ c to −A>y> ≤ −c>. The dual
linear program (D) is now stated as (D′)

maximize − b>y>

subject to − A>y> ≤ −c> and y> ≥ 0,

where y ∈ (Rm)∗. Observe that the dual in maximization form (D′′) of the dual program
(D′) gives back the primal program (P ).

The above discussion established the following inequality known as weak duality .

Proposition 28.6. (Weak Duality) Given any linear program (P )

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A a m×n matrix, for any feasible solution x ∈ Rn of the primal problem (P ) and every
feasible solution y ∈ (Rm)∗ of the dual problem (D), we have

cx ≤ yb.
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We say that the dual linear program (D) is bounded below if {yb | y> ∈ P(−A>,−c>)}
is bounded below.

What happens if x∗ is an optimal solution of (P ) and if y∗ is an optimal solution of (D)?
We have cx∗ ≤ y∗b, but is there a “duality gap,” that is, is it possible that cx∗ < y∗b?

The answer is no, this is the strong duality theorem. Actually, the strong duality theorem
asserts more than this.

Theorem 28.7. (Strong Duality for Linear Programming) Let (P ) be any linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

with A a m×n matrix. The primal problem (P ) has a feasible solution and is bounded above
iff the dual problem (D) has a feasible solution and is bounded below. Furthermore, if (P )
has a feasible solution and is bounded above, then for every optimal solution x∗ of (P ) and
every optimal solution y∗ of (D), we have

cx∗ = y∗b.

Proof. If (P ) has a feasible solution and is bounded above then we know from Proposition
26.1 that (P ) has some optimal solution. Let x∗ be any optimal solution of (P ). First we
will show that (D) has a feasible solution v.

Let µ = cx∗ be the maximum of the objective function x 7→ cx. Then for any ε > 0, the
system of inequalties

Ax ≤ b, x ≥ 0, cx ≥ µ+ ε

has no solution, since otherwise µ would not be the maximum value of the objective function
cx. We would like to apply Farkas II, so first we transform the above system of inequalities
into the system (

A
−c

)
x ≤

(
b

−(µ+ ε)

)
.

By Proposition 28.3 (Farkas II), there is some linear form (λ, z) ∈ (Rm+1)∗ such that λ ≥ 0,
z ≥ 0, (

λ z
)( A
−c

)
≥ 0>m,

and (
λ z

)( b
−(µ+ ε)

)
< 0,

which means that

λA− zc ≥ 0>m, λb− z(µ+ ε) < 0,
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that is,

λA ≥ zc

λb < z(µ+ ε)

λ ≥ 0, z ≥ 0.

On the other hand, since x∗ ≥ 0 is an optimal solution of the system Ax ≤ b, by Farkas II
again (by taking the negation of the equivalence), since λA ≥ 0 (for the same λ as before),
we must have

λb ≥ 0. (∗1)

We claim that z > 0. Otherwize, since z ≥ 0, we must have z = 0, but then

λb < z(µ+ ε)

implies

λb < 0, (∗2)

and since λb ≥ 0 by (∗1), we have a contradiction. Consequently, we can divide by z > 0
without changing the direction of inequalities, and we obtain

λ

z
A ≥ c

λ

z
b < µ+ ε

λ

z
≥ 0,

which shows that v = λ/z is a feasible solution of the dual problem (D). However, weak
duality (Proposition 28.6) implies that cx∗ = µ ≤ yb for any feasible solution y ≥ 0 of the
dual program (D), so (D) is bounded below and by Proposition 26.1 applied to the version
of (D) written as a maximization problem, we conclude that (D) has some optimal solution.
For any optimal solution y∗ of (D), since v is a feasible solution of (D) such that vb < µ+ ε,
we must have

µ ≤ y∗b < µ+ ε,

and since our reasoning is valid for any ε > 0, we conclude that cx∗ = µ = y∗b.

If we assume that the dual program (D) has a feasible solution and is bounded below,
since the dual of (D) is (P ), we conclude that (P ) is also feasible and bounded above.

The strong duality theorem can also be proved by the simplex method, because when
it terminates with an optimal solution of (P ), the final tableau also produces an optimal
solution y of (D) that can be read off the reduced costs of columns n + 1, . . . , n + m by
flipping their signs. We follow the proof in Ciarlet [30] (Chapter 10).
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Theorem 28.8. Consider the linear program (P),

maximize cx

subject to Ax ≤ b and x ≥ 0,

its equivalent version (P2) in standard form,

maximize ĉ x̂

subject to Âx̂ = b and x̂ ≥ 0,

where Â is an m× (n+m) matrix, ĉ is a linear form in (Rn+m)∗, and x̂ ∈ Rn+m, given by

Â =
(
A Im

)
, ĉ =

(
c 0>m

)
, x =

x1
...
xn

 , x =

xn+1
...

xn+m

 , x̂ =

(
x
x

)
,

and the dual (D) of (P ) given by

minimize yb

subject to yA ≥ c and y ≥ 0,

where y ∈ (Rm)∗. If the simplex algorithm applied to the linear program (P2) terminates
with an optimal solution (û∗, K∗), where û∗ is a basic feasible solution and K∗ is a basis for

û∗, then y∗ = ĉK∗Â
−1
K∗ is an optimal solution for (D) such that ĉ û∗ = y∗b. Furthermore, y∗

is given in terms of the reduced costs by y∗ = −((cK∗)n+1 . . . (cK∗)n+m).

Proof. We know that K∗ is a subset of {1, . . . , n+m} consisting of m indices such that the

corresponding columns of Â are linearly independent. Let N∗ = {1, . . . , n + m} −K∗. The
simplex methods terminates with an optimal solution in Case (A), namely when

ĉj −
∑
k∈k

γjkĉk ≤ 0 for all j ∈ N∗,

where Âj =
∑

k∈K∗ γ
j
kÂ

k, or using the notations of Section 27.3,

ĉj − ĉK∗Â−1
K∗Â

j ≤ 0 for all j ∈ N∗.

The above inequalities can be written as

ĉN∗ − ĉK∗Â−1
K∗ÂN∗ ≤ 0>n ,

or equivalently as
ĉK∗Â

−1
K∗ÂN∗ ≥ ĉN∗ . (∗1)
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The value of the objective function for the optimal solution û∗ is ĉ û∗ = ĉK∗û
∗
K∗ , and since

û∗K∗ satisfies the equation ÂK∗û
∗
K∗ = b, the value of the objective function is

ĉK∗ û
∗
K∗ = ĉK∗Â

−1
K∗b. (∗2)

Then if we let y∗ = ĉK∗Â
−1
K∗ , obviously we have y∗b = ĉK∗ûK∗ , so if we can prove that y∗ is a

feasible solution of the dual linear program (D), by weak duality, y∗ is an optimal solution
of (D). We have

y∗ÂK∗ = ĉK∗Â
−1
K∗ÂK∗ = ĉK∗ , (∗3)

and by (∗1) we get

y∗ÂN∗ = ĉK∗Â
−1
K∗ÂN∗ ≥ ĉN∗ . (∗4)

Let P be the (n+m)× (n+m) permutation matrix defined so that

Â P =
(
A Im

)
P =

(
ÂK∗ ÂN∗

)
.

Then we also have
ĉ P =

(
c 0>m

)
P =

(
cK∗ cN∗

)
.

Using the equations (∗3) and (∗4) we obtain

y∗
(
ÂK∗ ÂN∗

)
≥
(
cK∗ cN∗

)
,

that is,
y∗
(
A Im

)
P ≥

(
c 0>m

)
P,

which is equivalent to
y∗
(
A Im

)
≥
(
c 0>m

)
,

that is
y∗A ≥ c, y ≥ 0,

and these are exactly the conditions that say that y∗ is a feasible solution of the dual program
(D).

The reduced costs are given by (ĉK∗)i = ĉi − ĉK∗Â−1
K∗Â

i, for i = 1, . . . , n + m. But for

i = n+ 1, . . . , n+m each column Ân+j is the jth vector of the identity matrix Im, so

(ĉK∗)n+j = −(ĉK∗Â
−1
K∗)j = −y∗j j = 1, . . . ,m,

as claimed.

The fact that the above proof is fairly short is deceptive, because this proof relies on the
fact that there are versions of the simplex algorithm using pivot rules that prevent cycling,
but the proof that such pivot rules work correctly is quite lengthy. Other proofs are given



716 CHAPTER 28. LINEAR PROGRAMMING AND DUALITY

in Matousek and Gardner [73] (Chapter 6, Sections 6.3), Chvatal [29] (Chapter 5), and
Papadimitriou and Steiglitz [80] (Section 2.7).

Observe that since the last m rows of the final tableau are actually obtained by multipling
[u Â] by Â−1

K∗ , the m×m matrix consisting of the last m columns and last m rows of the final

tableau is Â−1
K∗ (basically, the simplex algorithm has performed the steps of a Gauss–Jordan

reduction). This fact allows saving some steps in the primal dual method.

By combining weak duality and strong duality, we obtain the following theorem which
shows that exactly four cases arise.

Theorem 28.9. (Duality Theorem of Linear Programming) Let (P ) be any linear program

maximize cx

subject to Ax ≤ b and x ≥ 0,

and let (D) be its dual program

minimize yb

subject to yA ≥ c and y ≥ 0,

with A a m× n matrix. Then exactly one of the following possibilities occur:

(1) Neither (P ) nor (D) has a feasible solution.

(2) (P ) is unbounded and (D) has no feasible solution.

(3) (P ) has no feasible solution and (D) is unbounded.

(4) Both (P ) and (D) have a feasible solution. Then both have an optimal solution, and
for every optimal solution x∗ of (P ) and every optimal solution y∗ of (D), we have

cx∗ = y∗b.

An interesting corollary of Theorem 28.9 is that there is a test to determine whether
a linear program (P ) has an optimal solution. Indeed, (P ) has an optimal solution iff the
following set of contraints is satisfiable:

Ax ≤ b

yA ≥ c

cx ≥ yb

x ≥ 0, y ≥ 0>m.

In fact, for any feasible solution (x∗, y∗) of the above system, x∗ is an optimal solution of
(P ) and y∗ is an optimal solution of (D)
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28.3 Complementary Slackness Conditions

Another useful corollary of the strong duality theorem is the following result known as the
equilibrium theorem.

Theorem 28.10. (Equilibrium Theorem) For any linear program (P ) and its dual linear
program (D) (with set of inequalities Ax ≤ b where A is an m × n matrix, and objective
function x 7→ cx), for any feasible solution x of (P ) and any feasible solution y of (D), x
and y are optimal solutions iff

yi = 0 for all i for which
∑n

j=1 aijxj < bi (∗D)

and

xj = 0 for all j for which
∑m

i=1 yiaij > cj. (∗P )

Proof. First, assume that (∗D) and (∗P ) hold. The equations in (∗D) say that yi = 0 unless∑n
j=1 aijxj = bi, hence

yb =
m∑
i=1

yibi =
m∑
i=1

yi

n∑
j=1

aijxj =
m∑
i=1

n∑
j=1

yiaijxj.

Similarly, the equations in (∗P ) say that xj = 0 unless
∑m

i=1 yiaij = cj, hence

cx =
n∑
j=1

cjxj =
n∑
j=1

m∑
i=1

yiaijxj.

Consequently, we obtain

cx = yb.

By weak duality (Proposition 28.6), we have

cx ≤ yb = cx

for all feasible solutions x of (P ), so x is an optimal solution of (P ). Similarly,

yb = cx ≤ yb

for all feasible solutions y of (D), so y is an optimal solution of (D).

Let us now assume that x is an optimal solution of (P ) and that y is an optimal solution
of (D). Then, as in the proof of Proposition 28.6,

n∑
j=1

cjxj ≤
m∑
i=1

n∑
j=1

yiaijxj ≤
m∑
i=1

yibi.
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By strong duality, since x and y are optimal solutions the above inequalities are actually
equalities, so in particular we have

n∑
j=1

(
cj −

m∑
i=1

yiaij

)
xj = 0.

Since x and y∗ are feasible, xi ≥ 0 and yj ≥ 0, so if
∑m

i=1 yiaij > cj, we must have xj = 0.
Similarly, we have

m∑
i=1

yi

( m∑
j=1

aijxj − bi
)

= 0,

so if
∑m

j=1 aijxj < bi, then yi = 0.

The equations in (∗D) and (∗P ) are often called complementary slackness conditions .
These conditions can be exploited to solve for an optimal solution of the primal problem
with the help of the dual problem, and conversely. Indeed, if we guess a solution to one
problem, then we may solve for a solution of the dual using the complementary slackness
conditions, and then check that our guess was correct. This is the essence of the primal-dual
methods. To present this method, first we need to take a closer look at the dual of a linear
program already in standard form.

28.4 Duality for Linear Programs in Standard Form

Let (P ) be a linear program in standard form, where Ax = b for some m× n matrix of rank
m and some objective function x 7→ cx (of course, x ≥ 0). To obtain the dual of (P ) we
convert the equations Ax = b to the following system of inequalities involving a (2m) × n
matrix. (

A
−A

)
x ≤

(
b
−b

)
.

Then, if we denote the 2m dual variables by (y′, y′′), with y′, y′′ ∈ (Rm)∗, the dual of the
above program is

minimize y′b− y′′b

subject to
(
y′ y′′

)( A
−A

)
≥ c and y′, y′′ ≥ 0,

where y′, y′′ ∈ (Rm)∗, which is equivalent to

minimize (y′ − y′′)b
subject to (y′ − y′′)A ≥ c and y′, y′′ ≥ 0,
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where y′, y′′ ∈ (Rm)∗. If we write y = y′ − y′′, we find that the above linear program is
equivalent to the following linear program (D):

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗. Observe that y is not required to be nonnegative; it is arbitrary.

Next, we would like to know what is the version of Theorem 28.8 for a linear program
already in standard form. This is very simple.

Theorem 28.11. Consider the linear program (P2) in standard form

maximize cx

subject to Ax = b and x ≥ 0,

and its dual (D) given by

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗. If the simplex algorithm applied to the linear program (P2) terminates
with an optimal solution (u∗, K∗), where u∗ is a basic feasible solution and K∗ is a basis for
u∗, then y∗ = cK∗A

−1
K∗ is an optimal solution for (D) such that cu∗ = y∗b. Furthermore, if

we assume that the simplex algorithm is started with a basic feasible solution (u0, K0) where
K0 = (n−m+ 1, . . . , n) (the indices of the last m columns of A) and A(n−m+1,...,n) = Im (the
last m columns of A constitute the identity matrix Im), then the optimal solution y∗ = cK∗A

−1
K∗

for (D) is given in terms of the reduced costs by

y∗ = c(n−m+1,...,n) − (cK∗)(n−m+1,...,n),

and the m×m matrix consisting of last m columns and the last m rows of the final tableau
is A−1

K∗.

Proof. The proof of Theorem 28.8 applies with A instead of Â and we can show that

cK∗A
−1
K∗AN∗ ≥ cN∗ ,

and that y∗ = cK∗A
−1
K∗ satisfies, cu∗ = y∗b, and

y∗AK∗ = cK∗A
−1
K∗AK∗ = cK∗ ,

y∗AN∗ = cK∗A
−1
K∗AN∗ ≥ cN∗ .

Let P be the n× n permutation matrix defined so that

AP =
(
AK∗ AN∗

)
.
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Then we also have
cP =

(
cK∗ cN∗

)
,

and using the above equations and inequalities we obtain

y∗
(
AK∗ AN∗

)
≥
(
cK∗ cN∗

)
,

that is, y∗AP ≥ cP , which is equivalent to

y∗A ≥ c,

which shows that y∗ is a feasible solution of (D) (remember, y∗ is arbitrary so there is no
need for the constraint y∗ ≥ 0).

The reduced costs are given by

(cK∗)i = ci − cK∗A−1
K∗A

i,

and since for j = n−m+ 1, . . . , n the column Aj is the (j+m−n)th column of the identity
matrix Im, we have

(cK∗)j = cj − (cK∗AK∗)j+m−n j = n−m+ 1, . . . , n,

that is,
y∗ = c(n−m+1,...,n) − (cK∗)(n−m+1,...,n),

as claimed. Since the last m rows of the final tableau is obtained by multiplying [u0 A] by
A−1
K∗ , and the last m columns of A constitute Im, the last m rows and the last m columns of

the final tableau constitute A−1
K∗ .

Let us now take a look at the complementary slackness conditions of Theorem 28.10. If
we go back to the version of (P ) given by

maximize cx

subject to

(
A
−A

)
x ≤

(
b
−b

)
and x ≥ 0,

and to the version of (D) given by

minimize y′b− y′′b

subject to
(
y′ y′′

)( A
−A

)
≥ c and y′, y′′ ≥ 0,

where y′, y′′ ∈ (Rm)∗, since the inequalities Ax ≤ b and −Ax ≤ −b together imply that
Ax = b, we have equality for all these inequality constraints, and so the Conditions (∗D)
place no constraints at all on y′ and y′′, while the Conditions (∗P ) assert that

xj = 0 for all j for which
∑m

i=1(y′i − y′′i )aij > cj.
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If we write y = y′ − y′′, the above conditions are equivalent to

xj = 0 for all j for which
∑m

i=1 yiaij > cj.

Thus we have the following version of Theorem 28.10.

Theorem 28.12. (Equilibrium Theorem, Version 2) For any linear program (P2) in stan-
dard form (with set of equalities Ax ≤ b where A is an m× n matrix, and objective function
x 7→ cx) and its dual linear program (D), for any feasible solution x of (P ) and any feasible
solution y of (D), x and y are optimal solutions iff

xj = 0 for all j for which
∑m

i=1 yiaij > cj. (∗P )

Therefore, the slackness conditions applied to a linear program (P2) in standard form and
to its dual (D) only impose slackness conditions on the variables xj of the primal problem.

The above fact plays a crucial role in the primal-dual method.

28.5 The Dual Simplex Algorithm

Given a linear program (P2) in standard form

maximize cx

subject to Ax = b and x ≥ 0,

where A is an m × n matrix of rank m, if no obvious feasible solution is available but if
c ≤ 0, then rather than using the method for finding a feasible solution described in Section
27.2 we may use a method known as the dual simplex algorithm. This method uses basic
solutions (u,K) where Au = b and uj = 0 for all uj /∈ K, but does not require u ≥ 0, so u
may not be feasible. However, y = cKA

−1
K is required to be feasible for the dual program

minimize yb

subject to yA ≥ c,

where y ∈ (R∗)m. Since c ≤ 0, observe that y = 0>m is a feasible solution of the dual.

If a basic solution u of (P2) is found such that u ≥ 0, then cu = yb for y = cKA
−1
K ,

and we have found an optimal solution u for (P2) and y for (D). The dual simplex method
makes progress by attempting to make negative components of u zero and by decreasing the
objective function of the dual program.

The dual simplex method starts with a basic solution (u,K) of Ax = b which is not
feasible but for which y = cKA

−1
K is dual feasible. In many cases, the original linear program

is specified by a set of inequalities Ax ≤ b with some bi < 0, so by adding slack variables it is
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easy to find such basic solution u, and if in addition c ≤ 0, then because the cost associated
with slack variables is 0, we see that y = 0 is a feasible solution of the dual.

Given a basic solution (u,K) of Ax = b (feasible or not), y = cKA
−1
K is dual feasible

iff cKA
−1
K A ≥ c, and since cKA

−1
K AK = cK , the inequality cKA

−1
K A ≥ c is equivalent to

cKA
−1
K AN ≥ cN , that is,

cN − cKA−1
K AN ≤ 0, (∗1)

where N = {1, . . . , n} −K. Equation (∗1) is equivalent to

cj − cKγjK ≤ 0 for all j ∈ N , (∗2)

where γjK = A−1
K Aj. Recall that the notation cj is used to denote cj − cKγjK , which is called

the reduced cost of the variable xj.

As in the simplex algorithm we need to decide which column Ak leaves the basis K and
which column Aj enters the new basis K+, in such a way that y+ = cK+A−1

K+ is a feasible
solution of (D), that is, cN+ − cK+A−1

K+AN+ ≤ 0, where N+ = {1, . . . , n} − K+. We use
Proposition 27.2 to decide wich column k− should leave the basis.

Suppose (u,K) is a solution of Ax = b for which y = cKA
−1
K is dual feasible.

Case (A). If u ≥ 0, then u is an optimal solution of (P2).

Case (B). There is some k ∈ K such that uk < 0. In this case, pick some k− ∈ K such
that uk− < 0 (according to some pivot rule).

Case (B1). Suppose that γjk− ≥ 0 for all j /∈ K (in fact, for all j, since γjk− ∈ {0, 1} for
all j ∈ K). If so, we we claim that (P2) is not feasible.

Indeed, let v be some basic feasible solution. We have v ≥ 0 and Av = b, that is,

n∑
j=1

vjA
j = b,

so by multiplying both sides by A−1
K and using the fact that by definition γjK = A−1

K Aj, we
obtain

n∑
j=1

vjγ
j
K = A−1

K b = uK .

But recall that by hypothesis uk− < 0, yet vj ≥ 0 and γjk− ≥ 0 for all j, so the component of
index k− is zero or positive on the left, and negative on the right, a contradiction. Therefore,
(P2) is indeed not feasible.

Case (B2). We have γjk− < 0 for some j.

We pick the column Aj entering the basis among those for which γjk− < 0. Since we

assumed that cj − cKγjK ≤ 0 for all j ∈ N by (∗2), consider

µ+ = max

{
−cj − cKγ

j
K

γjk−

∣∣∣∣ γjk− < 0, j ∈ N
}

= max

{
− cj

γjk−

∣∣∣∣ γjk− < 0, j ∈ N
}
≤ 0,
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and the set

N(µ+) =

{
j ∈ N

∣∣∣∣ − cj

γjk−
= µ+

}
.

We pick some index j+ ∈ N(µ+) as the index of the column entering the basis (using
some pivot rule).

Recall that by hypothesis ci − cKγiK ≤ 0 for all j /∈ K and ci − cKγiK = 0 for all i ∈ K.

Since γj
+

k− < 0, for any index i such that γik− ≥ 0, we have −γik−/γ
j+

k− ≥ 0, and since by
Proposition 27.2

ci − cK+γiK+ = ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ),

we have ci − cK+γiK+ ≤ 0. For any index i such that γik− < 0, by the choice of j+ ∈ K∗,

−ci − cKγ
i
K

γik−
≤ −cj+ − cKγ

j+

K

γj
+

k−

,

so

ci − cKγiK −
γik−

γj
+

k−

(cj+ − cKγj
+

K ) ≤ 0,

and again, ci−cK+γiK+ ≤ 0. Therefore, if we let K+ = (K−{k−})∪{j+}, then y+ = cK+A−1
K+

is dual feasible. As in the simplex algorithm, θ+ is given by

θ+ = uk−/γ
j+

k− ≥ 0,

and u+ is also computed as in the simplex algorithm by

u+
i =


ui − θj+γj

+

i if i ∈ K
θj

+
if i = j+

0 if i /∈ K ∪ {j+}
.

The change in the objective function of the prime and dual program (which is the same,
since uK = A−1

K b and y = cKA
−1
K is chosen such that cu = cKuK = yb) is the same as in the

simplex algorithm, namely

θ+
(
cj

+ − cKγj
+

K

)
.

We have θ+ > 0 and cj
+ − cKγj

+

K ≤ 0, so if cj
+ − cKγj

+

K < 0, then the objective function of
the dual program decreases strictly.

Case (B3). µ+ = 0.

The possibity that µ+ = 0, that is, cj
+−cKγj

+

K = 0, may arise. In this case, the objective
function doesn’t change. This is a case of degeneracy similar to the degeneracy that arises
in the simplex algorithm. We still pick j+ ∈ N(µ+), but we need a pivot rule that prevents
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cycling. Such rules exist; see Bertsimas and Tsitsiklis [17] (Section 4.5) and Papadimitriou
and Steiglitz [80] (Section 3.6).

The reader surely noticed that the dual simplex algorithm is very similar to the simplex
algorithm, except that the simplex algorithm preserves the property that (u,K) is (primal)
feasible, whereas the dual simplex algorithm preserves the property that y = cKA

−1
K is dual

feasible. One might then wonder whether the dual simplex algorithm is equivalent to the
simplex algorithm applied to the dual problem. This is indeed the case, there is a one-to-
one correspondence between the dual simplex algorithm and the simplex algorithm applied
to the dual problem. This correspondence is described in Papadimitriou and Steiglitz [80]
(Section 3.7).

The comparison between the simplex algorithm and the dual simplex algorithm is best
illustrated if we use a description of these methods in terms of (full) tableaux .

Recall that a (full) tableau is an (m+ 1)× (n+ 1) matrix organized as follows:

−cKuK c1 · · · cj · · · cn
uk1 γ1

1 · · · γj1 · · · γn1
...

...
...

...
ukm γ1

m · · · γjm · · · γnm

The top row contains the current value of the objective function and the reduced costs,
the first column except for its top entry contain the components of the current basic solution
uK , and the remaining columns except for their top entry contain the vectors γjK . Observe
that the γjK corresponding to indices j in K constitute a permutation of the identity matrix
Im. A tableau together with the new basis K+ = (K − {k−}) ∪ {j+} contains all the data

needed to compute the new uK+ , the new γjK+ , and the new reduced costs ci− (γik−/γ
j+

k−)cj+ .

When executing the simplex algorithm, we have uk ≥ 0 for all k ∈ K (and uj = 0 for
all j /∈ K), and the incoming column j+ is determined by picking one of the column indices
such that cj > 0. Then, the index k− of the leaving column is determined by looking at the

minimum of the ratios uk/γ
j+

k for which γj
+

k > 0 (along column j+).

On the other hand, when executing the dual simplex algorithm, we have cj ≤ 0 for all
j /∈ K (and ck = 0 for all k ∈ K), and the outgoing column k− is determined by picking one
of the row indices such that uk < 0. The index j+ of the incoming column is determined by
looking at the maximum of the ratios −cj/γjk− for which γjk− < 0 (along row k−).

More details about the comparison between the simplex algorithm and the dual simplex
algorithm can be found in Bertsimas and Tsitsiklis [17] and Papadimitriou and Steiglitz [80].

Here is an example of the the dual simplex method.
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Example 28.2. Consider the following linear program in standard form:

Maximize − 4x1 − 2x2 − x3

subject to

−1 −1 2 1 0 0
−4 −2 1 0 1 0
1 1 −4 0 0 1



x1

x2

x3

x4

x5

x6

 =

−3
−4
2

 and (x1, x2, x3, x4, x5, x6) ≥ 0.

We initialize the dual simplex procedure with (u,K) where u =


0
0
0
−3
−4
1

 and K = (4, 5, 6).

The initial tableau, before explicitly calculating the reduced cost, is

0 c1 c2 c3 c4 c5 c6

u4 = −3 −1 −1 2 1 0 0
u5 = −4 −4 −2 1 0 1 0
u6 = 2 1 1 −4 0 0 1

.

Since u has negative coordinates, Case (B) applies, and we will set k− = 4. We must now
determine whether Case (B1) or Case (B2) applies. This determination is accomplished by
scanning the first three columns in the tableau, and observing each column has a negative
entry. Thus Case (B2) is applicable, and we need to determine the reduced costs. Observe
that c = (−4,−2,−1, 0, 0, 0), which in turn implies c(4,5,6) = (0, 0, 0). Equation (∗2) implies
that the nonzero reduced costs are

c1 = c1 − c(4,5,6)

−1
−4
1

 = −4

c2 = c2 − c(4,5,6)

−1
−2
1

 = −2

c3 = c3 − c(4,5,6)

−2
1
4

 = −1,

and our tableau becomes

0 −4 −2 −1 0 0 0

u4 = −3 −1 −1 2 1 0 0

u5 = −4 −4 −2 1 0 1 0
u6 = 2 1 1 −4 0 0 1

.
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Since k− = 4, our pivot row is the first row of the tableau. To determine candidates for j+,
we scan this row, locate negative entries and compute

µ+ = max

{
− cj
γj4

∣∣∣∣ γj4 < 0, j ∈ {1, 2, 3}
}

= max

{−2

1
,
−4

1

}
= −2.

Since µ+ occurs when j = 2, we set j+ = 2. Our new basis is K+ = (2, 5, 6). We must
normalize the first row of the tableau, namely multiply by −1, then add twice this normalized
row to the second row, and subtract the normalized row from the third row to obtain the
updated tableau.

0 −4 −2 −1 0 0 0

u2 = 3 1 1 −2 −1 0 0
u5 = 2 −2 0 −3 −2 1 0
u6 = −1 0 0 −2 1 0 1

It remains to update the reduced costs and the value of the objective function by adding
twice the normalized row to the top row.

6 −2 0 −5 −2 0 0
u2 = 3 1 1 −2 −1 0 0
u5 = 2 −2 0 −3 −2 1 0

u6 = −1 0 0 −2 1 0 1

We now repeat the procedure of Case (B2) and set k− = 6 (since this is the only negative
entry of u+). Our pivot row is now the third row of the updated tableaux, and the new µ+

becomes

µ+ = max

{
− cj
γj6

∣∣∣∣ γj6 < 0, j ∈ {1, 3, 4}
}

= max

{−5

2

}
= −5

2
,

which implies that j+ = 3. Hence the new basis is K+ = (2, 5, 3), and we update the tableau
by taking −1

2
of Row 3, adding twice the normalized Row 3 to Row 1, and adding three

times the normalized Row 3 to Row 2.

6 −2 0 −5 −2 0 0
u2 = 4 1 1 0 −2 0 −1
u5 = 7/2 −2 0 0 −7/2 1 −3/2

u3 = 1/2 0 0 1 −1/2 0 −1/2

It remains to update the objective function and the reduced costs by adding five times the
normalized row to the top row.

17/2 −2 0 0 −9/2 0 −5/2
u2 = 4 1 1 0 −2 0 −1
u5 = 7/2 −2 0 0 −7

2
1 −3/2

u3 = 1/2 0 0 1 −1/2 0 −1/2

Since u+ has no negative entries, the dual simplex method terminates and objective function
4x1 − 2x2 − x3 is maximized with −17

2
at (0, 4, 1

2
).
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28.6 The Primal-Dual Algorithm

Let (P2) be a linear program in standard form

maximize cx

subject to Ax = b and x ≥ 0,

where A is an m× n matrix of rank m, and (D) be its dual given by

minimize yb

subject to yA ≥ c,

where y ∈ (Rm)∗.

First, we may assume that b ≥ 0 by changing every equation
∑n

j=1 aijxj = bi with bi < 0
to
∑n

j=1−aijxj = −bi. If we happen to have some feasible solution y of the dual program
(D), we know from Theorem 28.12 that a feasible solution x of (P2) is an optimal solution iff
the equations in (∗P ) hold. If we denote by J the subset of {1, . . . , n} for which the equalities

yAj = cj

hold, then by Theorem 28.12 a feasible solution x of (P2) is an optimal solution iff

xj = 0 for all j /∈ J.

Let |J | = p and N = {1, . . . , n} − J . The above suggests looking for x ∈ Rn such that∑
j∈J

xjA
j = b

xj ≥ 0 for all j ∈ J
xj = 0 for all j /∈ J,

or equivalently
AJxJ = b, xJ ≥ 0, (∗1)

and
xN = 0n−p.

To search for such an x, and just need to look for a feasible xJ , and for this we can use
the restricted primal linear program (RP ) defined as follows:

maximize − (ξ1 + · · ·+ ξm)

subject to
(
AJ Im

)(xJ
ξ

)
= b and x, ξ ≥ 0.
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Since by hypothesis b ≥ 0 and the objective function is bounded above by 0, this linear
program has an optimal solution (x∗J , ξ

∗).

If ξ∗ = 0, then the vector u∗ ∈ Rn given by u∗J = x∗J and u∗N = 0n−p is an optimal solution
of (P ).

Otherwise, ξ∗ > 0 and we have failed to solve (∗1). However we may try to use ξ∗ to
improve y. For this, consider the dual (DRP ) of (RP ):

minimize zb

subject to zAJ ≥ 0

z ≥ −1>m.

Observe that the program (DRP ) has the same objective function as the original dual
program (D). We know by Theorem 28.11 that the optimal solution (x∗J , ξ

∗) of (RP ) yields
an optimal solution z∗ of (DRP ) such that

z∗b = −(ξ∗1 + · · ·+ ξ∗m) < 0.

In fact, if K∗ is the basis associated with (x∗J , ξ
∗) and if we write

Â =
(
AJ Im

)
and ĉ = [0>p − 1>], then by Theorem 28.11 we have

z∗ = ĉK∗Â
−1
K∗ = −1>m − (cK∗)(p+1,...,p+m),

where (cK∗)(p+1,...,p+m) denotes the row vector of reduced costs in the final tableau corre-
sponding to the last m columns.

If we write
y(θ) = y + θz∗,

then the new value of the objective function of (D) is

y(θ)b = yb+ θz∗b, (∗2)

and since z∗b < 0, we have a chance of improving the objective function of (D), that is,
decreasing its value for θ > 0 small enough if y(θ) is feasible for (D). This will be the case
iff y(θ)A ≥ c iff

yA+ θz∗A ≥ c. (∗3)

Now since y is a feasible solution of (D) we have yA ≥ c, so if z∗A ≥ 0 then (∗3) is satisfied
and y(θ) is a solution of (D) for all θ > 0, which means that (D) is unbounded. But this
implies that (P ) is not feasible.

Let us take a closer look at the inequalities z∗A ≥ 0. For j ∈ J , Since z∗ is an optimal
solution of (DRP ), we know that z∗AJ ≥ 0, so if z∗Aj ≥ 0 for all j ∈ N , then (P ) is not
feasible.
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Otherwise, there is some j ∈ N = {1, . . . , n} − J such that

z∗Aj < 0,

and then since by the definition of J we have yAj > cj for all j ∈ N , if we pick θ > 0 such
that

θ ≤ yAj − cj
−z∗Aj j ∈ N, z∗Aj < 0,

then we decrease the objective function y(θ)b = yb+ θz∗b of (D) (since z∗b < 0). Therefore
we pick the best θ, namely

θ+ = min

{
yAj − cj
−z∗Aj

∣∣∣∣ j /∈ J, z∗Aj < 0

}
> 0. (∗4)

Next, we update y to y+ = y(θ+) = y + θ+z∗, we create the new restricted primal with
the new subset

J+ = {j ∈ {1, . . . , n} | y+Aj = cj},
and repeat the process. Here are the steps of the primal-dual algorithm.

Step 1. Find some feasible solution y of the dual program (D). We will show later
that this is always possible.

Step 2. Compute
J+ = {j ∈ {1, . . . , n} | yAj = cj}.

Step 3. Set J = J+ and solve the problem (RP ) using the simplex algorithm, starting
from the optimal solution determined during the previous round, obtaining the
optimal solution (x∗J , ξ

∗) with the basis K∗.

Step 4.

If ξ∗ = 0, then stop with an optimal solution u∗ for (P ) such that u∗J = x∗J and the
other components of u∗ are zero.

Else let
z∗ = −1>m − (cK∗)(p+1,...,p+m),

be the optimal solution of (DRP ) corresponding to (x∗J , ξ
∗) and the basis K∗.

If z∗Aj ≥ 0 for all j /∈ J , then stop; the program (P ) has no feasible solution.

Else compute

θ+ = min

{
−yA

j − cj
z∗Aj

∣∣∣∣ j /∈ J, z∗Aj < 0

}
, y+ = y + θ+z∗,

and
J+ = {j ∈ {1, . . . , n} | y+Aj = cj}.

Go back to Step 3.

The following proposition shows that at each iteration we can start the program (RP )
with the optimal solution obtained at the previous iteration.
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Proposition 28.13. Every j ∈ J such that Aj is in the basis of the optimal solution ξ∗

belongs to the next index set J+.

Proof. Such an index j ∈ J correspond to a variable ξj such that ξj > 0, so by complementary
slackness, the constraint z∗Aj ≥ 0 of the dual program (DRP ) must be an equality, that is,
z∗Aj = 0. But then, we have

y+Aj = yAj + θ+z∗Aj = cj,

which shows that j ∈ J+.

If (u∗, ξ∗) with the basis K∗ is the optimal solution of the program (RP ), Proposition
28.13 together with the last property of Theorem 28.11 allows us to restart the (RP ) in Step
3 with (u∗, ξ∗)K∗ as initial solution (with basis K∗). For every j ∈ J − J+, column j is

deleted, and for every j ∈ J+ − J , the new column Aj is computed by multiplying Â−1
K∗ and

Aj, but Â−1
K∗ is the matrix Γ∗[1:m; p+ 1:p+m] consisting of the last m columns of Γ∗ in the

final tableau, and the new reduced cj is given by cj − z∗Aj. Reusing the optimal solution of
the previous (RP ) may improve efficiency significantly.

Another crucial observation is that for any index j0 ∈ N such that
θ+ = (yAj0 − cj0)/(−z∗Aj0), we have

y+Aj0 = yAj0 + θ+z∗Aj0 = cj0 ,

and so j0 ∈ J+. This fact that be used to ensure that the primal-dual algorithm terminates
in a finite number of steps (using a pivot rule that prevents cycling); see Papadimitriou and
Steiglitz [80] (Theorem 5.4).

It remains to discuss how to pick some initial feasible solution y of the dual program (D).
If cj ≤ 0 for j = 1, . . . , n, then we can pick y = 0.

We should note that in many applications, the natural primal optimization problem
is actually the minimization some objective function cx = c1x1 + · · · + cnxn, rather its
maximization. For example, many of the optimization problems considered in Papadimitriou
and Steiglitz [80] are minimization problems.

Of course, minimizing cx is equivalent to maximizing −cx, so our presentation covers
minimization too. But if we are dealing with a minimization problem, the weight cj are
often nonnegative, so from the point of view of maximization we will have −cj ≤ 0 for all j,
and we will be able to use y = 0 as a starting point.

Going back to our primal problem in maximization form and its dual in minimization
form, we still need to deal with the situation where cj > 0 for some j, in which case there
may not be any obvious y feasible for (D). Preferably we would like to find such a y very
cheaply.
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There is a trick to deal with this situation. We pick some very large positive number M
and add to the set of equations Ax = b the new equation

x1 + · · ·+ xn + xn+1 = M,

with the new variable xn+1 constrained to be nonnegative. If the program (P ) has a fea-
sible solution, such an M exists. In fact, it can shown that for any basic feasible solution
u = (u1, . . . , un), each |ui| is bounded by some expression depending only on A and b; see
Papadimitriou and Steiglitz [80] (Lemma 2.1). The proof is not difficult and relies on the fact
that the inverse of a matrix can be expressed in terms of certain determinants (the adjugates).
Unfortunately, this bound contains m! as a factor, which makes it quite impractical.

Having added the new equation above, we obtain the new set of equations(
A 0n
1>n 1

)(
x

xn+1

)
=

(
b
M

)
,

with x ≥ 0, xn+1 ≥ 0, and the new objective function given by(
c 0

)( x
xn+1

)
= cx.

The dual of the above linear program is

minimize yb+ ym+1M

subject to yAj + ym+1 ≥ cj j = 1, . . . , n

ym+1 ≥ 0.

If cj > 0 for some j, observe that the linear form ỹ given by

ỹi =

{
0 if 1 ≤ i ≤ m

max1≤j≤n{cj} > 0

is a feasible solution of the new dual program. In practice, we can choose M to be a number
close to the largest integer representable on the computer being used.

Here is an example of the primal-dual algorithm given in the Math 588 class notes of T.
Molla.

Example 28.3. Consider the following linear program in standard form:

Maximize − x1 − 3x2 − 3x3 − x4

subject to

3 4 −3 1
3 −2 6 −1
6 4 0 1



x1

x2

x3

x4

 =

2
1
4

 and x1, x2, x3, x4 ≥ 0.
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The associated dual program (D) is

Minimize 2y1 + y2 + 4y3

subject to
(
y1 y2 y3

)3 4 −3 1
3 −2 6 −1
6 4 0 1

 ≥

−1
−3
−3
−1

 .

We initialize the primal-dual algorithm with the dual feasible point y = (−1/3 0 0).
Observe that only the first inequality of (D) is actually an equality, and hence J = {1}. We
form the restricted primal program (RP1)

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 1 0 0
3 0 1 0
6 0 0 1



x1

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, ξ1, ξ2, ξ3 ≥ 0.

We now solve (RP1) via the simplex algorithm. The initial tableau with K = (2, 3, 4) and
J = {1} is

x1 ξ1 ξ2 ξ3

7 12 0 0 0
ξ1 = 2 3 1 0 0

ξ2 = 1 3 0 1 0
ξ3 = 4 6 0 0 1

.

For (RP1), c = (0,−1,−1,−1), (x1, ξ1, ξ2, ξ3) = (0, 2, 1, 4), and the nonzero reduced cost is
given by

0− (−1 − 1 − 1)

3
3
6

 = 12.

Since there is only one nonzero reduced cost, we must set j+ = 1. Since
min{ξ1/3, ξ2/3, ξ3/6} = 1/3, we see that k− = 3 and K = (2, 1, 4). Hence we pivot through
the red circled 3 (namely we divide row 2 by 3, and then subtract 3× (row 2) from row 1,
6× (row 2) from row 3, and 12× (row 2) from row 0), to obtain the tableau

x1 ξ1 ξ2 ξ3

3 0 0 −4 0
ξ1 = 1 0 1 −1 0
x1 = 1/3 1 0 1/3 0
ξ3 = 2 0 0 −2 1

.

At this stage the simplex algorithm for (RP1) terminates since there are no positive reduced
costs. Since the upper left corner of the final tableau is not zero, we proceed with Step 4 of
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the primal dual algorithm and compute

z∗ = (−1 − 1 − 1)− (0 − 4 0) = (−1 3 − 1),

(−1/3 0 0)

 4
−2
4

+ 3 =
5

3
, −(−1 3 − 1)

 4
−2
4

 = 14,

(−1/3 0 0)

 1
−1
1

+ 1 =
2

3
, −(−1 3 − 1)

 1
−1
1

 = 5,

so

θ+ = min

{
5

42
,

2

15

}
=

5

42
,

and we conclude that the new feasible solution for (D) is

y+ = (−1/3 0 0) +
5

42
(−1 3 − 1) = (−19/42 5/14 − 5/42).

When we substitute y+ into (D), we discover that the first two constraints are equalities,
and that the new J is J = {1, 2}. The new reduced primal (RP2) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 4 1 0 0
3 −2 0 1 0
6 4 0 0 1



x1

x2

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x2, ξ1, ξ2, ξ3 ≥ 0.

Once again, we solve (RP2) via the simplex algorithm, where c = (0, 0,−1,−1,−1), (x1, x2,
ξ1, ξ2, ξ3) = (1/3, 0, 1, 0, 2) and K = (3, 1, 5). The initial tableau is obtained from the final
tableau of the previous (RP1) by adding a column corresponding the the variable x2, namely

Â−1
K A2 =

1 −1 0
0 1/3 0
0 −2 1

 4
−2
4

 =

 6
−2/3

8

 ,

with

c2 = c2 − z∗A2 = 0−
(
−1 3 −1

) 4
−2
4

 = 14,

and we get
x1 x2 ξ1 ξ2 ξ3

3 0 14 0 −4 0

ξ1 = 1 0 6 1 −1 0
x1 = 1/3 1 −2/3 0 1/3 0
ξ3 = 2 0 8 0 −2 1

.
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Note that j+ = 2 since the only positive reduced cost occurs in column 2. Also observe
that since min{ξ1/6, ξ3/8} = ξ1/6 = 1/6, we set k− = 3, K = (2, 1, 5) and pivot along the
red 6 to obtain the tableau

x1 x2 ξ1 ξ2 ξ3

2/3 0 0 −7/3 −5/3 0
x2 = 1/6 0 1 1/6 −1/6 0
x1 = 4/9 1 0 1/9 2/9 0
ξ3 = 2/3 0 0 −4/3 −2/3 1

.

Since the reduced costs are either zero or negative the simplex algorithm terminates, and
we compute

z∗ = (−1 − 1 − 1)− (−7/3 − 5/3 0) = (4/3 2/3 − 1),

(−19/42 5/14 − 5/42)

 1
−1
1

+ 1 = 1/14, −(4/3 2/3 − 1)

 1
−1
1

 = 1/3,

so

θ+ =
3

14
,

y+ = (−19/42 5/14 − 5/42) +
5

14
(4/3 2/3 − 1) = (−1/6 1/2 − 1/3).

When we plug y+ into (D), we discover that the first, second, and fourth constraints are
equalities, which implies J = {1, 2, 4}. Hence the new restricted primal (RP3) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 4 1 1 0 0
3 −2 −1 0 1 0
6 4 1 0 0 1



x1

x2

x4

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x2, x4, ξ1, ξ2, ξ3 ≥ 0.

The initial tableau for (RP3), with c = (0, 0, 0,−1,−1,−1), (x1, x2, x4, ξ1, ξ2, ξ3) = (4/9, 1/6,
0, 0, 0, 2/3) and K = (2, 1, 6), is obtained from the final tableau of the previous (RP2) by
adding a column corresponding the the variable x4, namely

Â−1
K A4 =

 1/6 −1/6 0
1/9 2/9 0
−4/3 −2/3 1

 1
−1
1

 =

 1/3
−1/9
1/3

 ,

with

c4 = c4 − z∗A4 = 0−
(
4/3 2/3 −1

) 1
−1
1

 = 1/3,
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and we get

x1 x2 x4 ξ1 ξ2 ξ3

2/3 0 0 1/3 −7/3 −5/3 0

x2 = 1/6 0 1 1/3 1/6 −1/6 0

x1 = 4/9 1 0 −1/9 1/9 2/9 0
ξ3 = 2/3 0 0 1/3 −4/3 −2/3 1

.

Since the only positive reduced cost occurs in column 3, we set j+ = 3. Furthermore
since min{x2/(1/3), ξ3/(1/3)} = x2/(1/3) = 1/2, we let k− = 2, K = (3, 1, 6), and pivot
around the red circled 1/3 to obtain

x1 x2 x4 ξ1 ξ2 ξ3

1/2 0 −1 0 −5/2 −3/2 0
x4 = 1/2 0 3 1 1/2 −1/2 0
x1 = 1/2 1 1/3 0 1/6 1/6 0
ξ3 = 1/2 0 −1 0 −3/2 −1/2 1

.

At this stage, there are no positive reduced costs, and we must compute

z∗ = (−1 − 1 − 1)− (−5/2 − 3/2 0) = (3/2 1/2 − 1),

(−1/6 1/2 − 1/3)

−3
6
0

+ 3 = 13/2, −(3/2 1/2 − 1)

−3
6
0

 = 3/2,

so

θ+ =
13

3
,

y+ = (−1/6 1/2 − 1/3) +
13

3
(3/2 1/2 − 1) = (19/3 8/3 − 14/3).

We plug y+ into (D) and discover that the first, third, and fourth constraints are equalities.
Thus, J = {1, 3, 4} and the restricted primal (RP4) is

Maximize − (ξ1 + ξ2 + ξ3)

subject to

3 −3 1 1 0 0
3 6 −1 0 1 0
6 0 1 0 0 1



x1

x3

x4

ξ1

ξ2

ξ3

 =

2
1
4

 and x1, x3, x4, ξ1, ξ2, ξ3 ≥ 0.



736 CHAPTER 28. LINEAR PROGRAMMING AND DUALITY

The initial tableau for (RP4), with c = (0, 0, 0,−1,−1,−1), (x1, x3, x4, ξ1, ξ2, ξ3) = (1/2,
0, 1/2, 0, 0, 1/2) and K = (3, 1, 6) is obtained from the final tableau of the previous (RP3)
by replacing the column corresponding to the variable x2 by a column corresponding to the
variable x3, namely

Â−1
K A3 =

 1/2 −1/2 0
1/6 1/6 0
−3/2 −1/2 1

−3
6
0

 =

−9/2
1/2
3/2

 ,

with

c3 = c3 − z∗A3 = 0−
(
3/2 1/2 −1

)−3
6
0

 = 3/2,

and we get

x1 x3 x4 ξ1 ξ2 ξ3

1/2 0 3/2 0 −5/2 −3/2 0
x4 = 1/2 0 −9/2 1 1/2 −1/2 0
x1 = 1/2 1 1/2 0 1/6 1/6 0

ξ3 = 1/2 0 3/2 0 −3/2 −1/2 1

.

By analyzing the top row of reduced cost, we see that j+ = 2. Furthermore, since
min{x1/(1/2), ξ3/(3/2)} = ξ3/(3/2) = 1/3, we let k− = 6, K = (3, 1, 2), and pivot along the
red circled 3/2 to obtain

x1 x3 x4 ξ1 ξ2 ξ3

0 0 0 0 −1 −1 −1
x4 = 2 0 0 1 −4 −2 3
x1 = 1/3 1 0 0 2/3 1/3 −1/3
x3 = 1/3 0 1 0 −1 −1/3 2/3

.

Since the upper left corner of the final tableau is zero and the reduced costs are all ≤ 0,
we are finally finished. Then y = (19/3 8/3 − 14/3) is an optimal solution of (D), but more
importantly (x1, x2, x3, x4) = (1/3, 0, 1/3, 2) is an optimal solution for our original linear
program and provides an optimal value of −10/3.

The primal-dual algorithm for linear programming doesn’t seem to be the favorite method
to solve linear programs nowadays. But it is important because its basic principle, to use
a restricted (simpler) primal problem involving an objective function with fixed weights,
namely 1, and the dual problem to provide feedback to the primal by improving the ob-
jective function of the dual, has led to a whole class of combinatorial algorithms (often
approximation algorithms) based on the primal-dual paradigm. The reader will get a taste
of this kind of algorithm by consulting Papadimitriou and Steiglitz [80], where it is explained
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how classical algorithms such as Dijkstra’s algorithm for the shortest path problem, and Ford
and Fulkerson’s algorithm for max flow can be derived from the primal-dual paradigm.
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NonLinear Optimization
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Chapter 29

Basics of Hilbert Spaces

Most of the “deep” results about the existence of minima of real-valued functions proven in
Chapter 30 rely on two fundamental results of Hilbert space theory:

(1) The projection lemma, which is a result about nonempty, closed, convex subsets of a
Hilbert space V .

(2) The Riesz representation theorem, which allows us to express a continuous linear form
on a Hilbert space V in terms of a vector in V and the inner product on V .

The correctness of the Karush–Kuhn–Tucker conditions appearing in Lagrangian duality
follows from a version of the Farkas–Minkowski proposition, which also follows from the
projection lemma.

Thus we feel that it is indispensible to review some basic results of Hilbert space theory,
although in most applications considered here the Hilbert space in question will be finite-
dimensional. However, in optimization theory, there are many problems where we seek to
find a function minimizing some type of energy functional (often given by a bilinear form),
in which case we are dealing with an infinite dimensional Hilbert space, so it necessary to
develop tools to deal with the more general situation of infinite-dimensional Hilbert spaces.

29.1 The Projection Lemma, Duality

Given a Hermitian space 〈E,ϕ〉, we showed in Section 12.1 that the function ‖ ‖ : E → R
defined such that ‖u‖ =

√
ϕ(u, u), is a norm on E. Thus, E is a normed vector space. If E

is also complete, then it is a very interesting space.

Recall that completeness has to do with the convergence of Cauchy sequences. A normed
vector space 〈E, ‖ ‖〉 is automatically a metric space under the metric d defined such that
d(u, v) = ‖v−u‖ (see Chapter 19 for the definition of a normed vector space and of a metric
space, or Lang [65, 66], or Dixmier [35]). Given a metric space E with metric d, a sequence

741
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(an)n≥1 of elements an ∈ E is a Cauchy sequence iff for every ε > 0, there is some N ≥ 1
such that

d(am, an) < ε for all m,n ≥ N.

We say that E is complete iff every Cauchy sequence converges to a limit (which is unique,
since a metric space is Hausdorff).

Every finite dimensional vector space over R or C is complete. For example, one can
show by induction that given any basis (e1, . . . , en) of E, the linear map h : Cn → E defined
such that

h((z1, . . . , zn)) = z1e1 + · · ·+ znen

is a homeomorphism (using the sup-norm on Cn). One can also use the fact that any two
norms on a finite dimensional vector space over R or C are equivalent (see Chapter 7, or
Lang [66], Dixmier [35], Schwartz [91]).

However, if E has infinite dimension, it may not be complete. When a Hermitian space is
complete, a number of the properties that hold for finite dimensional Hermitian spaces also
hold for infinite dimensional spaces. For example, any closed subspace has an orthogonal
complement, and in particular, a finite dimensional subspace has an orthogonal complement.
Hermitian spaces that are also complete play an important role in analysis. Since they were
first studied by Hilbert, they are called Hilbert spaces.

Definition 29.1. A (complex) Hermitian space 〈E,ϕ〉 which is a complete normed vector
space under the norm ‖ ‖ induced by ϕ is called a Hilbert space. A real Euclidean space
〈E,ϕ〉 which is complete under the norm ‖ ‖ induced by ϕ is called a real Hilbert space.

All the results in this section hold for complex Hilbert spaces as well as for real Hilbert
spaces. We state all results for the complex case only, since they also apply to the real case,
and since the proofs in the complex case need a little more care.

Example 29.1. The space l2 of all countably infinite sequences x = (xi)i∈N of complex
numbers such that

∑∞
i=0 |xi|2 < ∞ is a Hilbert space. It will be shown later that the map

ϕ : l2 × l2 → C defined such that

ϕ ((xi)i∈N, (yi)i∈N) =
∞∑
i=0

xiyi

is well defined, and that l2 is a Hilbert space under ϕ. In fact, we will prove a more general
result (Proposition A.3).

Example 29.2. The set C∞[a, b] of smooth functions f : [a, b] → C is a Hermitian space
under the Hermitian form

〈f, g〉 =

∫ b

a

f(x)g(x)dx,

but it is not a Hilbert space because it is not complete. It is possible to construct its
completion L2([a, b]), which turns out to be the space of Lebesgue integrable functions on
[a, b].
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Theorem 19.22 yields a quick proof of the fact that any Hermitian space E (with Hermi-
tian product 〈−,−〉) can be embedded in a Hilbert space Eh.

Theorem 29.1. Given a Hermitian space (E, 〈−,−〉) (resp. Euclidean space), there is a
Hilbert space (Eh, 〈−,−〉h) and a linear map ϕ : E → Eh, such that

〈u, v〉 = 〈ϕ(u), ϕ(v)〉h

for all u, v ∈ E, and ϕ(E) is dense in Eh. Furthermore, Eh is unique up to isomorphism.

Proof. Let (Ê, ‖ ‖Ê) be the Banach space, and let ϕ : E → Ê be the linear isometry, given

by Theorem 19.22. Let ‖u‖ =
√
〈u, u〉 and Eh = Ê. If E is a real vector space, we know

from Section 10.1 that the inner product 〈−,−〉 can be expressed in terms of the norm ‖u‖
by the polarity equation

〈u, v〉 =
1

2
(‖u+ v‖2 − ‖u‖2 − ‖v‖2),

and if E is a complex vector space, we know from Section 12.1 that we have the polarity
equation

〈u, v〉 =
1

4
(‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2).

By the Cauchy-Schwarz inequality, |〈u, v〉| ≤ ‖u‖‖v‖, the map 〈−,−〉 : E × E → C (resp.
〈−,−〉 : E × E → R) is continuous. However, it is not uniformly continuous, but we can
get around this problem by using the polarity equations to extend it to a continuous map.
By continuity, the polarity equations also hold in Eh, which shows that 〈−,−〉 extends to
a positive definite Hermitian inner product (resp. Euclidean inner product) 〈−,−〉h on Eh
induced by ‖ ‖Ê extending 〈−,−〉.

Proof. We followed the approach in Schwartz [90] (Chapter XXIII, Section 42. Theorem 2).
For other approaches, see Munkres [78] (Chapter 7, Section 43), and Bourbaki [21].

One of the most important facts about finite-dimensional Hermitian (and Euclidean)
spaces is that they have orthonormal bases. This implies that, up to isomorphism, every
finite-dimensional Hermitian space is isomorphic to Cn (for some n ∈ N) and that the inner
product is given by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
i=1

xiyi.

Furthermore, every subspace W has an orthogonal complement W⊥, and the inner product
induces a natural duality between E and E∗ (actually, between E and E∗) where E∗ is the
space of linear forms on E.

When E is a Hilbert space, E may be infinite dimensional, often of uncountable dimen-
sion. Thus, we can’t expect that E always have an orthonormal basis. However, if we modify
the notion of basis so that a “Hilbert basis” is an orthogonal family that is also dense in E,
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i.e., every v ∈ E is the limit of a sequence of finite combinations of vectors from the Hilbert
basis, then we can recover most of the “nice” properties of finite-dimensional Hermitian
spaces. For instance, if (uk)k∈K is a Hilbert basis, for every v ∈ E, we can define the Fourier
coefficients ck = 〈v, uk〉/‖uk‖, and then, v is the “sum” of its Fourier series

∑
k∈K ckuk. How-

ever, the cardinality of the index set K can be very large, and it is necessary to define what
it means for a family of vectors indexed by K to be summable. We will do this in Section
A.1. It turns out that every Hilbert space is isomorphic to a space of the form l2(K), where
l2(K) is a generalization of the space of Example 29.1 (see Theorem A.8, usually called the
Riesz-Fischer theorem).

Our first goal is to prove that a closed subspace of a Hilbert space has an orthogonal
complement. We also show that duality holds if we redefine the dual E ′ of E to be the space
of continuous linear maps on E. Our presentation closely follows Bourbaki [21]. We also
were inspired by Rudin [83], Lang [65, 66], Schwartz [91, 90], and Dixmier [35]. In fact, we
highly recommend Dixmier [35] as a clear and simple text on the basics of topology and
analysis. We first prove the so-called projection lemma.

Recall that in a metric space E, a subset X of E is closed iff for every convergent sequence
(xn) of points xn ∈ X, the limit x = limn→∞ xn also belongs to X. The closure X of X is
the set of all limits of convergent sequences (xn) of points xn ∈ X. Obviously, X ⊆ X. We
say that the subset X of E is dense in E iff E = X, the closure of X, which means that
every a ∈ E is the limit of some sequence (xn) of points xn ∈ X. Convex sets will again play
a crucial role.

First, we state the following easy “parallelogram inequality”, whose proof is left as an
exercise.

Proposition 29.2. If E is a Hermitian space, for any two vectors u, v ∈ E, we have

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

From the above, we get the following proposition:

Proposition 29.3. If E is a Hermitian space, given any d, δ ∈ R such that 0 ≤ δ < d, let

B = {u ∈ E | ‖u‖ < d} and C = {u ∈ E | ‖u‖ ≤ d+ δ}.

For any convex set such A that A ⊆ C −B, we have

‖v − u‖ ≤
√

12dδ,

for all u, v ∈ A (see Figure 29.1).
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C B

A u

v

Figure 29.1: Inequality of Proposition 29.3

Proof. Since A is convex, 1
2

(u + v) ∈ A if u, v ∈ A, and thus, ‖1
2

(u + v)‖ ≥ d. From the
parallelogram inequality written in the form∥∥∥1

2
(u+ v)

∥∥∥2

+
∥∥∥1

2
(u− v)

∥∥∥2

=
1

2

(
‖u‖2 + ‖v‖2

)
,

since δ < d, we get∥∥∥1

2
(u− v)

∥∥∥2

=
1

2

(
‖u‖2 + ‖v‖2

)
−
∥∥∥1

2
(u+ v)

∥∥∥2

≤ (d+ δ)2 − d2 = 2dδ + δ2 ≤ 3dδ,

from which
‖v − u‖ ≤

√
12dδ.

If X is a nonempty subset of a metric space (E, d), for any a ∈ E, recall that we define
the distance d(a,X) of a to X as

d(a,X) = inf
b∈X

d(a, b).

Also, the diameter δ(X) of X is defined by

δ(X) = sup{d(a, b) | a, b ∈ X}.

It is possible that δ(X) =∞. We leave the following standard two facts as an exercise (see
Dixmier [35]):

Proposition 29.4. Let E be a metric space.

(1) For every subset X ⊆ E, δ(X) = δ(X).

(2) If E is a complete metric space, for every sequence (Fn) of closed nonempty subsets of
E such that Fn+1 ⊆ Fn, if limn→∞ δ(Fn) = 0, then

⋂∞
n=1 Fn consists of a single point.
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We are now ready to prove the crucial projection lemma.

Proposition 29.5. (Projection lemma) Let E be a Hilbert space.

(1) For any nonempty convex and closed subset X ⊆ E, for any u ∈ E, there is a unique
vector pX(u) ∈ X such that

‖u− pX(u)‖ = inf
v∈X
‖u− v‖ = d(u,X).

See Figure 29.2.

(2) The vector pX(u) is the unique vector w ∈ E satisfying the following property (see
Figure 29.3):

w ∈ X and < 〈u− w, z − w〉 ≤ 0 for all z ∈ X. (∗)

(3) If X is a nonempty closed subspace of E then the vector pX(u) is the unique vector
w ∈ E satisfying the following property:

w ∈ X and 〈u− w, z〉 = 0 for all z ∈ X. (∗∗)

u

p
X(u)

u - p   (u)X

Figure 29.2: Let X be the solid pink ellipsoid. The projection of the purple point u onto X
is the magenta point pX(u).

Proof. (1) Let d = infv∈X ‖u − v‖ = d(u,X). We define a sequence Xn of subsets of X as
follows: for every n ≥ 1,

Xn =

{
v ∈ X | ‖u− v‖ ≤ d+

1

n

}
.
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X
w

u

z

Figure 29.3: Inequality of Proposition 29.5

It is immediately verified that each Xn is nonempty (by definition of d), convex, and that
Xn+1 ⊆ Xn. Also, by Proposition 29.3, we have

sup{‖w − v‖ | v, w ∈ Xn} ≤
√

12d/n,

and thus,
⋂
n≥1Xn contains at most one point. We will prove that

⋂
n≥1Xn contains exactly

one point, namely, pX(u). For this, define a sequence (wn)n≥1 by picking some wn ∈ Xn for
every n ≥ 1. We claim that (wn)n≥1 is a Cauchy sequence. Given any ε > 0, if we pick N
such that

N >
12d

ε2
,

since (Xn)n≥1 is a monotonic decreasing sequence, which means that Xn+1 ⊆ Xn for all
n ≥ 1, for all m,n ≥ N , we have

‖wm − wn‖ ≤
√

12d/N < ε,

as desired. Since E is complete, the sequence (wn)n≥1 has a limit w, and since wn ∈ X and
X is closed, we must have w ∈ X. Also observe that

‖u− w‖ ≤ ‖u− wn‖+ ‖wn − w‖,

and since w is the limit of (wn)n≥1 and

‖u− wn‖ ≤ d+
1

n
,

given any ε > 0, there is some n large enough so that

1

n
<
ε

2
and ‖wn − w‖ ≤

ε

2
,

and thus
‖u− w‖ ≤ d+ ε.
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Since the above holds for every ε > 0, we have ‖u − w‖ = d. Thus, w ∈ Xn for all n ≥ 1,
which proves that

⋂
n≥1Xn = {w}. Now, any z ∈ X such that ‖u − z‖ = d(u,X) = d

also belongs to every Xn, and thus z = w, proving the uniqueness of w, which we denote as
pX(u). See Figure 29.4.

u

v

d

d + 1/n+1

d + 1/n

i.

X

X w

X

n+1

w

X

n

w

w

u

ii.

n+1

n

n-1n-1

d + 1/n-1

Figure 29.4: Let X be the solid pink ellipsoid with pX(u) = w at its apex. Each Xn is the
intersection of X and a solid sphere centered at u with radius d + 1/n. These intersections
are the colored “caps” of Figure ii. The Cauchy sequence (wn)n≥1 is obtained by selecting a
point in each colored Xn.

(2) Let z ∈ X. Since X is convex, w = (1 − λ)pX(u) + λz ∈ X for every λ, 0 ≤ λ ≤ 1.
Then, we have

‖u− w‖ ≥ ‖u− pX(u)‖
for all λ, 0 ≤ λ ≤ 1, and since

‖u− w‖2 = ‖u− pX(u)− λ(z − pX(u))‖2

= ‖u− pX(u)‖2 + λ2‖z − pX(u)‖2 − 2λ< 〈u− pX(u), z − pX(u)〉 ,

for all λ, 0 < λ ≤ 1, we get

< 〈u− pX(u), z − pX(u)〉 =
1

2λ

(
‖u− pX(u)‖2 − ‖u− w‖2

)
+
λ

2
‖z − pX(u)‖2,

and since this holds for every λ, 0 < λ ≤ 1 and

‖u− w‖ ≥ ‖u− pX(u)‖,

we have
< 〈u− pX(u), z − pX(u)〉 ≤ 0.
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Conversely, assume that w ∈ X satisfies the condition

< 〈u− w, z − w〉 ≤ 0

for all z ∈ X. For all z ∈ X, we have

‖u− z‖2 = ‖u− w‖2 + ‖z − w‖2 − 2< 〈u− w, z − w〉 ≥ ‖u− w‖2,

which implies that ‖u− w‖ = d(u,X) = d, and from (1), that w = pX(u).

(3) If X is a subspace of E and w ∈ X, when z ranges over X the vector z − w also
ranges over the whole of X so Condition (∗) is equivalent to

w ∈ X and <〈u− w, z〉 ≤ 0 for all z ∈ X. (∗1)

Since X is a subspace, if z ∈ X then −z ∈ X, which implies that (∗1) is equivalent to

w ∈ X and <〈u− w, z〉 = 0 for all z ∈ X. (∗2)

Finally, since X is a subspace if z ∈ X then iz ∈ X, and this implies that

0 = <〈u− w, iz〉 = −i=〈u− w, z〉,

so =〈u−w, z〉 = 0, but since we also have <〈u−w, z〉 = 0, we see that (∗2) is equivalent to

w ∈ X and 〈u− w, z〉 = 0 for all z ∈ X, (∗∗)

as claimed.

The vector pX(u) is called the projection of u onto X, and the map pX : E → X is called
the projection of E onto X. In the case of a real Hilbert space, there is an intuitive geometric
interpretation of the condition

〈u− pX(u), z − pX(u)〉 ≤ 0

for all z ∈ X. If we restate the condition as

〈u− pX(u), pX(u)− z〉 ≥ 0

for all z ∈ X, this says that the absolute value of the measure of the angle between the
vectors u − pX(u) and pX(u) − z is at most π/2. See Figure 29.5. This makes sense, since
X is convex, and points in X must be on the side opposite to the “tangent space” to X at
pX(u), which is orthogonal to u − pX(u). Of course, this is only an intuitive description,
since the notion of tangent space has not been defined!

If X is a closed subspace of E, then Condition (∗∗) says that the vector u − pX(u) is
orthogonal to X, in the sense that u− pX(u) is orthogonal to every vector z ∈ X.

The map pX : E → X is continuous, as shown below.
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u p   (u)X

z

u - p  (u)X
p  (u)X - z

X

X

Figure 29.5: Let X be the solid blue ice cream cone. The acute angle between the black
vector u− pX(u) and the purple vector pX(u)− z is less than π/2.

Proposition 29.6. Let E be a Hilbert space. For any nonempty convex and closed subset
X ⊆ E, the map pX : E → X is continuous. In fact, pX satisfies the Lipschitz condition

‖pX(v)− pX(u)‖ ≤ ‖v − u‖ for all u, v ∈ E.

Proof. For any two vectors u, v ∈ E, let x = pX(u)−u, y = pX(v)−pX(u), and z = v−pX(v).
Clearly, (as illustrated in Figure 29.6),

v − u = x+ y + z,

and from Proposition 29.5 (2), we also have

< 〈x, y〉 ≥ 0 and < 〈z, y〉 ≥ 0,

from which we get

‖v − u‖2 = ‖x+ y + z‖2 = ‖x+ z + y‖2

= ‖x+ z‖2 + ‖y‖2 + 2< 〈x, y〉+ 2< 〈z, y〉
≥ ‖y‖2 = ‖pX(v)− pX(u)‖2.

However, ‖pX(v)− pX(u)‖ ≤ ‖v − u‖ obviously implies that pX is continuous.

We can now prove the following important proposition.

Proposition 29.7. Let E be a Hilbert space.

(1) For any closed subspace V ⊆ E, we have E = V ⊕ V ⊥, and the map pV : E → V is
linear and continuous.

(2) For any u ∈ E, the projection pV (u) is the unique vector w ∈ E such that

w ∈ V and 〈u− w, z〉 = 0 for all z ∈ V .
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u

v

v - u

p  (v)
XZ

P  (u)X

X

y

X

Figure 29.6: Let X be the solid gold ellipsoid. The vector v−u is the sum of the three green
vectors, each of which is determined by the appropriate projections.

Proof. (1) First, we prove that u − pV (u) ∈ V ⊥ for all u ∈ E. For any v ∈ V , since V is a
subspace, z = pV (u) + λv ∈ V for all λ ∈ C, and since V is convex and nonempty (since it
is a subspace), and closed by hypothesis, by Proposition 29.5 (2), we have

<(λ 〈u− pV (u), v〉) = <(〈u− pV (u), λv〉 = < 〈u− pV (u), z − pV (u)〉 ≤ 0

for all λ ∈ C. In particular, the above holds for λ = 〈u− pV (u), v〉, which yields

| 〈u− pV (u), v〉 | ≤ 0,

and thus, 〈u− pV (u), v〉 = 0. See Figure 29.7. As a consequence, u − pV (u) ∈ V ⊥ for all
u ∈ E. Since u = pV (u) + u − pV (u) for every u ∈ E, we have E = V + V ⊥. On the other
hand, since 〈−,−〉 is positive definite, V ∩ V ⊥ = {0}, and thus E = V ⊕ V ⊥.

We already proved in Proposition 29.6 that pV : E → V is continuous. Also, since

pV (λu+µv)− (λpV (u) +µpV (v)) = pV (λu+µv)− (λu+µv) + λ(u− pV (u)) +µ(v− pV (v)),

for all u, v ∈ E, and since the left-hand side term belongs to V , and from what we just
showed, the right-hand side term belongs to V ⊥, we have

pV (λu+ µv)− (λpV (u) + µpV (v)) = 0,

showing that pV is linear.

(2) This is basically obvious from (1). We proved in (1) that u − pV (u) ∈ V ⊥, which is
exactly the condition

〈u− pV (u), z〉 = 0
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for all z ∈ V . Conversely, if w ∈ V satisfies the condition

〈u− w, z〉 = 0

for all z ∈ V , since w ∈ V , every vector z ∈ V is of the form y − w, with y = z + w ∈ V ,
and thus, we have

〈u− w, y − w〉 = 0

for all y ∈ V , which implies the condition of Proposition 29.5 (2):

< 〈u− w, y − w〉 ≤ 0

for all y ∈ V . By Proposition 29.5, w = pV (u) is the projection of u onto V .

u

p  (u)
V

V
u - p

   (
u)

V

Figure 29.7: Let V be the pink plane. The vector u− pV (u) is perpendicular to any v ∈ V .

Remark: If pV : E → V is linear, then V is a subspace of E. It follows that if V is a closed
convex subset of E, then pV : E → V is linear iff V is a subspace of E.

Let us illustrate the power of Proposition 29.7 on the following “least squares” problem.
Given a real m × n-matrix A and some vector b ∈ Rm, we would like to solve the linear
system

Ax = b

in the least-squares sense, which means that we would like to find some solution x ∈ Rn that
minimizes the Euclidean norm ‖Ax− b‖ of the error Ax− b. It is actually not clear that the
problem has a solution, but it does! The problem can be restated as follows: Is there some
x ∈ Rn such that

‖Ax− b‖ = inf
y∈Rn
‖Ay − b‖,
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or equivalently, is there some z ∈ Im (A) such that

‖z − b‖ = d(b, Im (A)),

where Im (A) = {Ay ∈ Rm | y ∈ Rn}, the image of the linear map induced by A. Since
Im (A) is a closed subspace of Rm, because we are in finite dimension, Proposition 29.7 tells
us that there is a unique z ∈ Im (A) such that

‖z − b‖ = inf
y∈Rn
‖Ay − b‖,

and thus, the problem always has a solution since z ∈ Im (A), and since there is at least some
x ∈ Rn such that Ax = z (by definition of Im (A)). Note that such an x is not necessarily
unique. Furthermore, Proposition 29.7 also tells us that z ∈ Im (A) is the solution of the
equation

〈z − b, w〉 = 0 for all w ∈ Im (A),

or equivalently, that x ∈ Rn is the solution of

〈Ax− b, Ay〉 = 0 for all y ∈ Rn,

which is equivalent to
〈A>(Ax− b), y〉 = 0 for all y ∈ Rn,

and thus, since the inner product is positive definite, to A>(Ax− b) = 0, i.e.,

A>Ax = A>b.

Therefore, the solutions of the original least-squares problem are precisely the solutions
of the the so-called normal equations

A>Ax = A>b,

discovered by Gauss and Legendre around 1800. We also proved that the normal equations
always have a solution.

Computationally, it is best not to solve the normal equations directly, and instead, to
use methods such as the QR-decomposition (applied to A) or the SVD-decomposition (in
the form of the pseudo-inverse). We will come back to this point later on.

As another corollary of Proposition 29.7, for any continuous nonnull linear map h : E →
C, the null space

H = Kerh = {u ∈ E | h(u) = 0} = h−1(0)

is a closed hyperplane H, and thus, H⊥ is a subspace of dimension one such that E = H⊕H⊥.
This suggests defining the dual space of E as the set of all continuous maps h : E → C.

Remark: If h : E → C is a linear map which is not continuous, then it can be shown
that the hyperplane H = Kerh is dense in E! Thus, H⊥ is reduced to the trivial subspace
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{0}. This goes against our intuition of what a hyperplane in Rn (or Cn) is, and warns us
not to trust our “physical” intuition too much when dealing with infinite dimensions. As a
consequence, the map [ : E → E∗ introduced in Section 12.2 (see just after Definition 29.2
below) is not surjective, since the linear forms of the form u 7→ 〈u, v〉 (for some fixed vector
v ∈ E) are continuous (the inner product is continuous).

We now show that by redefining the dual space of a Hilbert space as the set of continuous
linear forms on E, we recover Theorem 12.5.

Definition 29.2. Given a Hilbert space E, we define the dual space E ′ of E as the vector
space of all continuous linear forms h : E → C. Maps in E ′ are also called bounded linear
operators, bounded linear functionals, or simply, operators or functionals .

As in Section 12.2, for all u, v ∈ E, we define the maps ϕlu : E → C and ϕrv : E → C such
that

ϕlu(v) = 〈u, v〉,
and

ϕrv(u) = 〈u, v〉 .
In fact, ϕlu = ϕru, and because the inner product 〈−,−〉 is continuous, it is obvious that ϕrv
is continuous and linear, so that ϕrv ∈ E ′. To simplify notation, we write ϕv instead of ϕrv.

Theorem 12.5 is generalized to Hilbert spaces as follows.

Proposition 29.8. (Riesz representation theorem) Let E be a Hilbert space. Then, the map
[ : E → E ′ defined such that

[(v) = ϕv,

is semilinear, continuous, and bijective. Furthermore, for any continuous linear map ψ ∈ E ′,
if u ∈ E is the unique vector such that

ψ(v) = 〈v, u〉 for all v ∈ E,

then we have ‖ψ‖ = ‖u‖, where

‖ψ‖ = sup

{ |ψ(v)|
‖v‖

∣∣∣∣ v ∈ E, v 6= 0

}
.

Proof. The proof is basically identical to the proof of Theorem 12.5, except that a different
argument is required for the surjectivity of [ : E → E ′, since E may not be finite dimensional.
For any nonnull linear operator h ∈ E ′, the hyperplane H = Kerh = h−1(0) is a closed
subspace of E, and by Proposition 29.7, H⊥ is a subspace of dimension one such that
E = H ⊕H⊥. Then, picking any nonnull vector w ∈ H⊥, observe that H is also the kernel
of the linear operator ϕw, with

ϕw(u) = 〈u,w〉 ,
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and thus, since any two nonzero linear forms defining the same hyperplane must be propor-
tional, there is some nonzero scalar λ ∈ C such that h = λϕw. But then, h = ϕλw, proving
that [ : E → E ′ is surjective.

By the Cauchy–Schwarz inequality we have

|ψ(v)| = |〈v, u〉| ≤ ‖v‖ ‖u‖ ,

so by definition of ‖ψ‖ we get
‖ψ‖ ≤ ‖u‖ .

Obviously ψ = 0 iff u = 0 so assume u 6= 0. We have

‖u‖2 = 〈u, u〉 = ψ(u) ≤ ‖ψ‖ ‖u‖ ,

which yields ‖u‖ ≤ ‖ψ‖, and therefore ‖ψ‖ = ‖u‖, as claimed.

Proposition 29.8 is known as the Riesz representation theorem, or “Little Riesz Theorem.”
It shows that the inner product on a Hilbert space induces a natural semilinear isomorphism
between E and its dual E ′ (equivalently, a linear isomorphism between E and E ′). This
isomorphism is an isometry (it is preserves the norm).

Remark: Many books on quantum mechanics use the so-called Dirac notation to denote
objects in the Hilbert space E and operators in its dual space E ′. In the Dirac notation, an
element of E is denoted as |x〉, and an element of E ′ is denoted as 〈t|. The scalar product
is denoted as 〈t| · |x〉. This uses the isomorphism between E and E ′, except that the inner
product is assumed to be semi-linear on the left, rather than on the right.

Proposition 29.8 allows us to define the adjoint of a linear map, as in the Hermitian case
(see Proposition 12.6). Actually, we can prove a slightly more general result which is used
in optimization theory.

If ϕ : E×E → C is a sesquilinear map on a normed vector space (E, ‖ ‖), then Proposition
19.17 is immediately adapted to prove that ϕ is continuous iff there is some constant k ≥ 0
such that

|ϕ(u, v)| ≤ k ‖u‖ ‖v‖ for all u, v ∈ E.
Thus we define ‖ϕ‖ as in Definition 19.16 by

‖ϕ‖ = sup {|ϕ(x, y)| | ‖x‖ ≤ 1, ‖y‖ ≤ 1, x, y ∈ E} .

Proposition 29.9. Given a Hilbert space E, for every continuous sesquilinear map ϕ : E ×
E → C, there is a unique continuous linear map fϕ : E → E, such that

ϕ(u, v) = 〈u, fϕ(v)〉 for all u, v ∈ E.

We also have ‖fϕ‖ = ‖ϕ‖. If ϕ is Hermitian, then fϕ is self-adjoint, that is

〈u, fϕ(v)〉 = 〈fϕ(u), v〉 for all u, v ∈ E.
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Proof. The proof is adapted from Rudin [84] (Theorem 12.8). To define the function fϕ we
proceed as follows. For any fixed v ∈ E define the linear map ϕv by

ϕv(u) = ϕ(u, v) for all u ∈ E.

Since ϕ is continuous ϕv is continuous so by Proposition 29.8, there is a unique vector in E
that we denote fϕ(v) such that

ϕv(u) = 〈u, fϕ(v)〉 for all u ∈ E,

and ‖fϕ(v)‖ = ‖ϕv‖. Let us check that the map v 7→ fϕ(v) is linear.

We have

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2) ϕ is additive

= 〈u, fϕ(v1)〉+ 〈u, fϕ(v2)〉 by definition of fϕ

= 〈u, fϕ(v1) + fϕ(v2)〉 〈−,−〉 is additive

for all u ∈ E, and since fϕ(v1+v2) is the unique vector such that ϕ(u, v1+v2) = 〈u, fϕ(v1+v2)〉
for all u ∈ E, we must have

fϕ(v1 + v2) = fϕ(v1) + fϕ(v2).

For any λ ∈ C we have

ϕ(u, λv) = λϕ(u, v) ϕ is sesquilinear

= λ〈u, fϕ(v)〉 by definition of fϕ

= 〈u, λfϕ(v)〉 〈−,−〉 is sesquilinear

for all u ∈ E, and since fϕ(λv) is the unique vector such that ϕ(u, λv) = 〈u, fϕ(λv)〉 for all
u ∈ E, we must have

fϕ(λv) = λfϕ(v).

Therefore fϕ is linear.

Then by definition of ‖ϕ‖ we have

|ϕv(u)| = |ϕ(u, v)| ≤ ‖ϕ‖ ‖u‖ ‖v‖ ,

which shows that ‖ϕv‖ ≤ ‖ϕ‖ ‖v‖. Since ‖fϕ(v)‖ = ‖ϕv‖, we have

‖fϕ(v)‖ ≤ ‖ϕ‖ ‖v‖ ,

which shows that fϕ is continuous and that ‖fϕ‖ ≤ ‖ϕ‖. But by the Cauchy–Schwarz
inequality we also have

|ϕ(u, v)| = |〈u, fϕ(v)〉| ≤ ‖u‖ ‖fϕ(v)‖ ≤ ‖u‖ ‖fϕ‖ ‖v‖ ,
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so ‖ϕ‖ ≤ ‖fϕ‖, and thus
‖fϕ‖ = ‖ϕ‖ .

If ϕ is Hermitian, ϕ(v, u) = ϕ(u, v), so

〈fϕ(u), v〉 = 〈v, fϕ(u)〉 = ϕ(v, u) = ϕ(u, v) = 〈u, fϕ(v)〉,

which shows that fϕ is self-adjoint.

Proposition 29.10. Given a Hilbert space E, for every continuous linear map f : E → E,
there is a unique continuous linear map f ∗ : E → E, such that

〈f(u), v〉 = 〈u, f ∗(v)〉 for all u, v ∈ E,

and we have ‖f ∗‖ = ‖f‖. The map f ∗ is called the adjoint of f .

Proof. The proof is adapted from Rudin [84] (Section 12.9). By the Cauchy–Schwarz in-
equality

|〈x, y〉| ≤ ‖x‖ ‖y‖
we see that the sesquilinear map (x, y) 7→ 〈x, y〉 on E×E is continuous. Let ϕ : E×E → C
be the sesquilinear map given by

ϕ(u, v) = 〈f(u), v〉 for all u, v ∈ E.

Since f is continuous and the inner product 〈−,−〉 is continuous, this is a continuous map.
By Proposition 29.9 there is a unique linear map f ∗ : E → E such that

〈f(u), v〉 = ϕ(u, v) = 〈u, f ∗(v)〉 for all u, v ∈ E,

with ‖f ∗‖ = ‖ϕ‖.
We can also prove that ‖ϕ‖ = ‖f‖. First, by definition of ‖ϕ‖ we have

‖ϕ‖ = sup {|ϕ(x, y)| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
= sup {|〈f(x), y〉| | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
≤ sup {‖(f(x)‖ ‖y‖ | ‖x‖ ≤ 1, ‖y‖ ≤ 1}
≤ sup {‖(f(x)‖ | ‖x‖ ≤ 1}
= ‖f‖ .

In the other direction we have

‖f(x)‖2 = 〈f(x), f(x)〉 = ϕ(x, f(x)) ≤ ‖ϕ‖ ‖x‖ ‖f(x)‖ ,

and if f(x) 6= 0 we get ‖f(x)‖ ≤ ‖ϕ‖ ‖x‖. This inequality holds trivially if f(x) = 0, so we
conclude that ‖f‖ ≤ ‖ϕ‖. Therefore we have

‖ϕ‖ = ‖f‖ ,

as claimed, and consequently ‖f ∗‖ = ‖ϕ‖ = ‖f‖.
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It is easy to show that the adjoint satisfies the following properties:

(f + g)∗ = f ∗ + g∗

(λf)∗ = λf ∗

(f ◦ g)∗ = g∗ ◦ f ∗
f ∗∗ = f.

One can also show that ‖f ∗ ◦ f‖ = ‖f‖2 (see Rudin [84], Section 12.9).

As in the Hermitian case, given two Hilbert spaces E and F , the above results can be
adapted to show that for any linear map f : E → F , there is a unique linear map f ∗ : F → E
such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

29.2 Farkas–Minkowski Lemma in Hilbert Spaces

In this section, (V, 〈−,−〉) is assumed to be a real Hilbert space. The projection lemma can
be used to show an interesting version of the Farkas–Minkowski lemma in a Hilbert space.

Given a finite sequence of vectors (a1, . . . , am) with ai ∈ V , let C be the polyhedral cone

C = cone(a1, . . . , am) =

{ m∑
i=1

λiai | λi ≥ 0, i = 1, . . . ,m

}
.

For any vector b ∈ V , the Farkas–Minkowski lemma gives a criterion for checking whether
b ∈ C.

In Proposition 25.2 we proved that every polyhedral cone cone(a1, . . . , am) with ai ∈ Rn

is closed. Close examination of the proof shows that it goes through if ai ∈ V where V is any
vector space possibly of infinite dimension, because the important fact is that the number
m of these vectors is finite, not their dimension.

Theorem 29.11. (Farkas–Minkowski Lemma in Hilbert Spaces) Let (V, 〈−,−〉) be a real
Hilbert space. For any finite sequence of vectors (a1, . . . , am) with ai ∈ V , if C is the
polyhedral cone C = cone(a1, . . . , am), for any vector b ∈ V , we have b /∈ C iff there is a
vector u ∈ V such that

〈ai, u〉 ≥ 0 i = 1, . . . ,m, and 〈b, u〉 < 0.

Equivalently, b ∈ C iff for all u ∈ V ,

if 〈ai, u〉 ≥ 0 i = 1, . . . ,m, then 〈b, u〉 ≥ 0.
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Proof. We follow Ciarlet [30] (Chapter 9, Theorem 9.1.1). We already established in Propo-
sition 25.2 that the polyhedral cone C = cone(a1, . . . , am) is closed. Next we claim the
following:

Claim: If C is a nonempty, closed, convex subset of a Hilbert space V , and b ∈ V is any
vector such that b /∈ C, then there exist some u ∈ V and infinitely many scalars α ∈ R such
that

〈v, u〉 > α for every v ∈ C
〈b, u〉 < α.

We use the projection lemma (Proposition 29.5) which says that since b /∈ C there is
some unique c = pC(b) ∈ C such that

‖b− c‖ = inf
v∈C
‖b− v‖ > 0

〈b− c, v − c〉 ≤ 0 for all v ∈ C,
or equivalently

‖b− c‖ = inf
v∈C
‖b− v‖ > 0

〈v − c, c− b〉 ≥ 0 for all v ∈ C.
As a consequence we have

〈v, c− b〉 ≥ 〈c, c− b〉 > 〈b, c− b〉,
and if we pick u = c− b and any α such that

〈c, c− b〉 > α > 〈b, c− b〉,
the claim is satisfied.

We now prove the Farkas–Minkowski Lemma. Asume that b /∈ C. Since C is nonempty,
convex, and closed, by the Claim there is some u ∈ V and some α ∈ R such that

〈v, u〉 > α for every v ∈ C
〈b, u〉 < α.

But C is a polyhedral cone containing 0 so we must have α < 0. Then for every v ∈ C, since
C a polyhedral cone if v ∈ C then λv ∈ C for all λ > 0, so by the above

〈v, u〉 > α

λ
for every λ > 0,

which implies that
〈v, u〉 ≥ 0.

Since ai ∈ C for i = 1, . . . ,m, we proved that

〈ai, u〉 ≥ 0 i = 1, . . . ,m and 〈b, u〉 < α < 0,

which proves Farkas Lemma.
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Observe that the claim established during the proof of Theorem 29.11 shows that the
affine hyperplane Hu,α of equation 〈v, u〉 = α for all v ∈ V separates strictly C and {b}.



Chapter 30

General Results of Optimization
Theory

30.1 Existence of Solutions of an Optimization

Problem

The main goal of optimization theory is to construct algorithms to find solutions (often
approximate) of problems of the form

find u

such that u ∈ U and J(u) = inf
v∈U

J(v),

where U is a given subset of a vector space V (possibly infinite dimensional) and J : Ω→ R
is a function defined on some open subset Ω of V such that U ⊆ Ω.

To be very clear, infv∈U J(v) denotes the greatest lower bound of the set of real number
{J(u) | u ∈ U}. To make sure that we are on firm grounds let us review the notions of
greatest lower bound and least upper bound of a set of real numbers.

Let X be any nonempty subset of R. The set LB(X) of lower bounds of X is defined as

LB(X) = {b ∈ R | b ≤ x for all x ∈ X}.
If the set X is not bounded below, which means that for every r ∈ R there is some x ∈ X
such that x < r, then LB(X) is empty. Otherwise, if LB(X) is nonempty, since it is bounded
above by every element of X, by a fundamental property of the real numbers, the set LB(X)
has a greatest element denoted inf X. The real number inf X is thus the greatest lower bound
of X. In general, inf X does not belong to X, but if it does, then it is the least element of
X.

If LB(X) = ∅, then X is unbounded below and inf X is undefined. In this case (with an
abuse of notation), we write

inf X = −∞.

761
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By convention, when X = ∅ we set
inf ∅ = +∞.

Similarly the set UB(X) of upper bounds of X is given by

UB(X) = {u ∈ R | x ≤ u for all x ∈ X}.

If X is not bounded above, then UB(X) = ∅. Otherwise, if UB(X) 6= ∅, then it has least
element denoted supX. Thus supX is the least upper bound of X. If supX ∈ X, then it is
the greatest element of X. If UB(X) = ∅, then

supX = +∞.

By convention, when X = ∅ we set

sup ∅ = −∞.

The element infv∈U J(v) is just inf{J(v) | v ∈ U}. The notation J∗ is often used to
denote infv∈U J(v). If the function J is not bounded below, which means that for every
r ∈ R, there is some u ∈ U such that J(u) < r, then

inf
v∈U

J(v) = −∞,

and we say that our minimization problem has no solution, or that it is unbounded (below).
For example, if V = Ω = R, U = {x ∈ R | x ≤ 0}, and J(x) = −x, then the function J(x)
is not bounded below and infv∈U J(v) = −∞.

The issue is that J∗ may not belong to {J(u) | u ∈ U}, that is, it may not be achieved
by some element u ∈ U , and solving the above problem consists in finding some u ∈ U that
achieves the value J∗ in the sense that J(u) = J∗. If no such u ∈ U exists, again we say that
our minimization problem has no solution.

The minimization problem

find u

such that u ∈ U and J(u) = inf
v∈U

J(v)

is often presented in the following more informal way:

minimize J(v)

subject to v ∈ U.

A vector u ∈ U such that J(u) = infv∈U J(v) is often called a minimizer of J over U .
Some authors denote the set of minimizers of J over U by arg minv∈U J(v) and write

u ∈ arg min
v∈U

J(v)
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to express that u is such a minimizer. When such a minimizer is unique, by abuse of notation,
this unique minimizer u is denoted by

u = arg min
v∈U

J(v).

We prefer not to use this notation, althoug it seems to have invaded the literature.

If we need to maximize rather than minimize a function, then we try to find some u ∈ U
such that

J(u) = sup
v∈U

J(v).

Here supv∈U J(v) is the least upper bound of the set {J(u) | u ∈ U}. Some authors denote
the set of maximizers of J over U by arg maxv∈U J(v).

Remark: Some authors define an extended real-valued function as a function f : Ω → R
which is allowed to take the value −∞ or even +∞ for some of its arguments. Although
this may be convenient to deal with situations where we need to consider infv∈U J(v) or
supv∈U J(v), such “functions” are really partial functions and we prefer not to use the notion
of extended real-valued function.

In most cases, U is defined as the set of solutions of a finite sets of constraints , either
equality constraints ϕi(v) = 0, or inequality constraints ϕi(v) ≤ 0, where the ϕi : Ω → R
are some given functions. The function J is often called the functional of the optimization
problem. This is a slightly odd terminology, but it is justified if V is a function space.

The following questions arise naturally:

(1) Results concerning the existence and uniqueness of a solution of the above problem.
In the next section we state sufficient conditions either on the domain U or on the
function J that ensure the existence of a solution.

(2) The characterization of the possible solutions of the above problem. These are condi-
tions for any element u ∈ U to be a solution of the problem. Such conditions usually
involve the derivative dJu of J , and possibly the derivatives of the functions ϕi definin-
ing U . Some of these conditions become sufficient when the functions ϕi are convex,

(3) The effective construction of algorithms , typically iterative algorihms that construct
a sequence (uk)k≥1 of elements of U whose limit is a solution u ∈ U of our problem.
It is then necessary to understand when and how quickly such sequences converge.
Gradient descent methods fall under this category. As a general rule, unconstrained
problems (for which U = Ω = V ) are (much) easier to deal with than constrained
problems (where U 6= V ).

The material of this chapter is heavily inspired by Ciarlet [30]. In this chapter it is
assumed that V is a real vector space with an inner product 〈−,−〉. If V is infinite dimen-
sional, then we assume that it is a real Hilbert space (it is complete). As usual, we write
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‖u‖ = 〈u, u〉1/2 for the norm associated with the inner product 〈−,−〉. The reader may
want to review Section 29.1, especially the projection lemma and the Riesz representation
theorem.

As a matter of terminology, if U is defined by inequality and equality constraints as

U = {v ∈ Ω | ϕi(v) ≤ 0, i = 1, . . . ,m, ψj(v) = 0, j = 1, . . . , p},

if J and all the functions ϕi and ψj are affine, the problem is said to be linear (or a linear
program), and otherwise nonlinear . If J is of the form

J(v) = 〈Av, v〉 − 〈b, v〉

where A is a nonzero symmetric positive semidefinite matrix and the constraints are affine,
the problem is called a quadratic programming problem.

We begin with the case where U is a closed but possibly unbounded subset of Rn. In this
case the following type of functions arise.

Definition 30.1. A real-valued function J : V → R defined on a normed vector space V is
coercive iff for any sequence (vk)k≥1 of vectors vk ∈ V , if limk 7→∞ ‖vk‖ =∞, then

lim
k 7→∞

J(vk) = +∞.

For example, the function f(x) = x2 +2x is coercive, but an affine function f(x) = ax+b
is not.

Proposition 30.1. Let U be a nonempty, closed subset of Rn, and let J : Rn → R be a
continuous function which is coercive if U is unbounded. Then there is a least one element
u ∈ Rn such that

u ∈ U and J(u) = inf
v∈U

J(v).

Proof. Since U 6= ∅, pick any u0 ∈ U . Since J is coercive, there is some r > 0 such that for
all v ∈ V , if ‖v‖ > r then J(u0) < J(v). It follows that J is minimized over the set

U0 = U ∩ {v ∈ Rn | ‖v‖ ≤ r}.

Since U is closed and since the closed ball {v ∈ Rn | ‖v‖ ≤ r} is compact, U0 is compact, but
we know that any continuous function on a compact set has a minimum which is achieved.

The key point in the above proof is the fact that U0 is compact. In order to generalize
Proposition 30.1 to the case of an infinite dimensional vector space, we need some additional
assumptions, and it turns out that the convexity of U and of the function J is sufficient. The
key is that convex, closed and bounded subsets of a Hilbert space are “weakly compact.”
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Definition 30.2. Let V be a Hilbert space. A sequence (uk)k≥1 of vectors uk ∈ V converges
weakly if there is some u ∈ V such that

lim
k 7→∞
〈v, uk〉 = 〈v, u〉 for every v ∈ V .

Recall that a Hibert space is separable if it has a countable Hilbert basis (see Definition
A.4). Also, in a Euclidean space V the inner product induces an isomorphism between V
and its dual V ∗. In our case, we need the isomorphism ] from V ∗ to V defined such that for
every linear form ω ∈ V ∗, the vector ω] ∈ V is uniquely defined by the equation

ω(v) = 〈v, ω]〉 for all v ∈ V .

In a Hilbert space, the dual space V ′ is the set of all continuous linear forms ω : V → R,
and the existence of the isomorphism ] between V ′ and V is given by the Riesz representation
theorem; see Proposition 29.8. This theorem allows a generalization of the notion of gradient.
Indeed, if f : V → R is a function defined on the Hilbert space V and if f is differentiable at
some point u ∈ V , then by definition, the derivative dfu : V → R is a continuous linear form,
so by the Riesz representation theorem (Proposition 29.8) there is a unique vector, denoted
∇fu ∈ V , such that

dfu(v) = 〈v,∇fu〉 for all v ∈ V .
By definition, the vector ∇fu is the gradient of f at u.

Similarly, since the second derivative D2fu : V → V ′ of f induces a continuous symmetric
billinear form from V ×V to R, by Proposition 29.9, there is a unique continuous self-adjoint
linear map ∇2fu : V → V such that

D2fu(v, w) = 〈∇2fu(v), w〉 for all v, w ∈ V .

The map ∇2fu is a generalization of the Hessian.

The next theorem is a rather general result about the existence of minima of convex
functions defined on convex domains. The proof is quite involved and can be omitted upon
first reading.

Theorem 30.2. Let U be a nonempty, convex, closed subset of a separable Hilbert space V ,
and let J : V → R be a convex, differentiable function which is coercive if U is unbounded.
Then there is a least one element u ∈ V such that

u ∈ U and J(u) = inf
v∈U

J(v).

Proof. As in the proof of Proposition 30.1, since the function J is coercive, we may assume
that U is bounded and convex (however, if V infinite dimensional, then U is not compact in
general). The proof proceeds in four steps.
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Step 1 . Consider a minimizing sequence (uk)k≥0, namely a sequence of elements uk ∈ V
such that

uk ∈ U for all k ≥ 0, lim
k 7→∞

J(uk) = inf
v∈U

J(v).

At this stage, it is possible that infv∈U J(v) = −∞, but we will see that this is actually
impossible. However, since U is bounded, the sequence (uk)k≥0 is bounded. Our goal is to
prove that there is some subsequence of (w`)`≥0 of (uk)k≥0 that converges weakly.

Since the sequence (uk)k≥0 is bounded there is some constant C > 0 such that ‖uk‖ ≤ C
for all k ≥ 0. Then, by the Cauchy–Schwarz inequality, for every v ∈ V we have

|〈v, uk〉| ≤ ‖v‖ ‖uk‖ ≤ C ‖v‖ ,
which shows that the sequence (〈v, uk〉)k≥0 is bounded. Since V is a separable Hilbert space,
there is a countable family (vk)k≥0 of vectors vk ∈ V which is dense in V . Since the sequence
(〈v1, uk〉)k≥0 is bounded (in R), we can find a convergent subsequence (〈v1, ui1(j)〉)j≥0. Sim-
ilarly, since the sequence (〈v2, ui1(j)〉)j≥0 is bounded, we can find a convergent subsequence
(〈v2, ui2(j)〉)j≥0, and in general, since the sequence (〈vk, uik−1(j)〉)j≥0 is bounded, we can find
a convergent subsequence (〈vk, uik(j)〉)j≥0.

We obtain the following infinite array:
〈v1, ui1(1)〉 〈v2, ui2(1)〉 · · · 〈vk, uik(1)〉 · · ·
〈v1, ui1(2)〉 〈v2, ui2(2)〉 · · · 〈vk, uik(2)〉 · · ·

...
...

...
...

...
〈v1, ui1(k)〉 〈v2, ui2(k)〉 · · · 〈vk, uik(k)〉 · · ·

...
...

...
...

...


Consider the “diagonal” sequence (w`)`≥0 defined by

w` = ui`(`), ` ≥ 0.

We are going to prove that for every v ∈ V , the sequence (〈v, w`〉)`≥0 has a limit.

By construction, for every k ≥ 0, the sequence (〈vk, w`〉)`≥0 has a limit, which is the
limit of the sequence (〈vk, uik(j)〉)j≥0, since the sequence (i`(`))`≥0 is a subsequence of every
sequence (i`(j))j≥0 for every ` ≥ 0.

Pick any v ∈ V and any ε > 0. Since (vk)k≥0 is dense in V , there is some vk such that

‖v − vk‖ ≤ ε/(4C).

Then we have

|〈v, w`〉 − 〈v, wm〉| = |〈v, w` − wm〉|
= |〈vk + v − vk, w` − wm〉|
= |〈vk, w` − wm〉+ 〈v − vk, w` − wm〉|
≤ |〈vk, w`〉 − 〈vk, wm〉|+ |〈v − vk, w` − wm〉|.
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By Cauchy–Schwarz and since ‖w` − wm‖ ≤ ‖w`‖+ ‖wm‖ ≤ C + C = 2C,

|〈v − vk, w` − wm〉| ≤ ‖v − vk‖ ‖w` − wm‖ ≤ (ε/(4C))2C = ε/2,

so
|〈v, w`〉 − 〈v, wm〉| ≤ |〈vk, w` − wm〉|+ ε/2.

With the element vk held fixed, by a previous argument the sequence (〈vk, w`〉)`≥0 converges,
so it is a Cauchy sequence. Consequently there is some `0 (depending on ε and vk) such that

|〈vk, w`〉 − 〈vk, wm〉| ≤ ε/2 for all `,m ≥ `0,

so we get
|〈v, w`〉 − 〈v, wm〉| ≤ ε/2 + ε/2 = ε for all `,m ≥ `0.

This proves that the sequence (〈v, w`〉)`≥0 is a Cauchy sequence, and thus it converges.

Define the function g : V → R by

g(v) = lim
7̀→∞
〈v, w`〉, for all v ∈ V .

Since
|〈v, w`〉| ≤ ‖v‖ ‖w`‖ ≤ C ‖v‖ for all ` ≥ 0,

we have
|g(v)| ≤ C ‖v‖ ,

so g is a continuous linear map. By the Riesz representation theorem (Proposition 29.8),
there is a unique u ∈ V such that

g(v) = 〈v, u〉 for all v ∈ V ,

which shows that
lim
` 7→∞
〈v, w`〉 = 〈v, u〉 for all v ∈ V ,

namely the subsequence (w`)`≥0 of the sequence (uk)k≥0 converges weakly to u ∈ V .

Step 2 . We prove that the “weak limit” u of the sequence (w`)`≥0 belongs to U .

Consider the projection pU(u) of u ∈ V onto the closed convex set U . Since w` ∈ U , by
Proposition 29.5 we have

〈pU(u)− u,w` − pU(u)〉 ≥ 0 for all ` ≥ 0.

The weak convergence of the sequence (w`)`≥0 to u implies that

0 ≤ lim
` 7→∞
〈pU(u)− u,w` − pU(u)〉 = 〈pU(u)− u, u− pU(u)〉

= −‖pU(u)− u‖ ≤ 0,
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so ‖pU(u)− u‖ = 0, which means that pU(u) = u, and so u ∈ U .

Step 3 . We prove that
J(v) ≤ lim inf

` 7→∞
J(z`)

for every sequence (z`)`≥0 converging weakly to some element v ∈ V .

Since J is assumed to be differentiable and convex, by Proposition 21.9 we have

J(v) + 〈∇Jv, z` − v〉 ≤ J(z`) for all ` ≥ 0,

and by definition of weak convergence

lim
7̀→∞
〈∇Jv, z`〉 = 〈∇Jv, v〉,

so lim 7̀→∞〈∇Jv, z` − v〉 = 0, and by definition of lim inf we get

J(v) ≤ lim inf
` 7→∞

J(z`)

for every sequence (z`)`≥0 converging weakly to some element v ∈ V .

Step 4 . The weak limit u ∈ U of the subsequence (w`)`≥0 extracted from the minimizing
sequence (uk)k≥0 satisfies the equation

J(u) = inf
v∈U

J(v).

By Step (1) and Step (2) the subsequence (w`)`≥0 of the sequence (uk)k≥0 converges
weakly to some element u ∈ U , so by Step (3) we have

J(u) ≤ lim inf
`7→∞

J(w`).

On the other hand, by definition of (w`)`≥0 as a subsequence of (uk)k≥0, since the sequence
(J(uk))k≥0 converges to J(v), we have

J(u) ≤ lim inf
7̀→∞

J(w`) = lim
k 7→∞

J(uk) = inf
v∈U

J(v),

which proves that u ∈ U achieves the minimum of J on U .

Remark: Theorem 30.2 still holds if we only assume that J is convex and continuous. It
also holds in a reflexive Banach space, of which Hilbert spaces are a special case; see Brezis
[24], Corollary 3.23.

Theorem 30.2 is a rather general theorem whose proof is quite involved. For functions J
of a certain type, we can obtain existence and uniqueness results that are easier to prove.
This is true in particular for quadratic functionals.
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Definition 30.3. Let V be a real Hilbert space. A function J : V → R is called a quadratic
functional if it is of the form

J(v) =
1

2
a(v, v)− h(v),

where a : V × V → R is a bilinear form which is symmetric and continuous, and h : V → R
is a continuous linear form.

Definition 30.3 is a natural extension of the notion of a quadratic functional on Rn.
Indeed, by Proposition 29.9, there is a unique continuous self-adjoint linear map A : V → V
such that

a(u, v) = 〈Au, v〉 for all u, v ∈ V ,
and by the Riesz representation theorem (Proposition 29.8), there is a unique b ∈ V such
that

h(v) = 〈b, v〉 for all v ∈ V .
Consequently, J can be written as

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 for all v ∈ V .

Since a is bilinear and h is linear, observe that the derivative of J is given by

dJu(v) = a(u, v)− h(v) for all v ∈ V ,

or equivalently by

dJu(v) = 〈Au, v〉 − 〈b, v〉 = 〈Au− b, v〉, for all v ∈ V .

Thus the gradient of J is given by

∇Ju = Au− b,

just as in the case of a quadratic function of the form J(v) = (1/2)v>Av − b>v, where A
is a symmetric n × n matrix and b ∈ Rn. To find the second derivative D2Ju of J at u we
compute

dJu+v(w)− dJu(w) = a(u+ v, w)− h(w)− (a(u,w)− h(w)) = a(v, w),

so
D2Ju(v, w) = a(v, w) = 〈Av,w〉,

which yields
∇2Ju = A.

We will also make use of the following formula (if J is a quadratic functional):

J(u+ ρv) =
ρ2

2
a(v, v) + ρ(a(u, v)− h(v)) + J(u).
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Indeed, since a is symmetric bilinear and h is linear, we have

J(u+ ρv) =
1

2
a(u+ ρv, u+ ρv)− h(u+ ρv)

ρ2

2
a(v, v) + ρa(u, v) +

1

2
a(u, u)− h(u)− ρh(v)

=
ρ2

2
a(v, v) + ρ(a(u, v)− h(v)) + J(u).

Since dJu(v) = a(u, v)− h(v) = 〈Au− b, v〉 and ∇Ju = Au− b, we can also write

J(u+ ρv) =
ρ2

2
a(v, v) + ρ〈∇Ju, v〉+ J(u).

We have the following theorem about the existence and uniqueness of minima of quadratic
functionals.

Theorem 30.3. Given any Hilbert space V , let J : V → R be a quadratic functional of the
form

J(v) =
1

2
a(v, v)− h(v).

Assume that there is some real number α > 0 such that

a(v, v) ≥ α ‖v‖2 for all v ∈ V . (∗α)

If U is any nonempty, closed, convex subset of V , then there is a unique u ∈ U such that

J(u) = inf
v∈U

J(v).

The element u ∈ U satisfies the condition

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)

Conversely, if an element u ∈ U satisfies (∗), then

J(u) = inf
v∈U

J(v).

If U is a subspace of V , then the above inequalities are replaced by the equations

a(u, v) = h(v) for all v ∈ U. (∗∗)

Proof. The key point is that the bilinear form a is actually an inner product in V . This is
because it is positive definite, since (∗α) implies that

√
α ‖v‖ ≤ (a(v, v))1/2,
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and on the other hand the continuity of a implies that

a(v, v) ≤ ‖a‖ ‖v‖2 ,

so we get √
α ‖v‖ ≤ (a(v, v))1/2 ≤

√
‖a‖ ‖v‖ .

The above also shows that the norm v 7→ (a(v, v))1/2 induced by the inner product a is
equivalent to the norm induced by the inner product 〈−,−〉 on V . Thus h is still continu-
ous with respect to the norm v 7→ (a(v, v))1/2. Then by the Riesz representation theorem
(Proposition 29.8), there is some unique c ∈ V such that

h(v) = a(c, v) for all v ∈ V .

Consequently, we can express J(v) as

J(v) =
1

2
a(v, v)− a(c, v) =

1

2
a(v − c, v − c)− 1

2
a(c, c).

But then, minimizing J(v) over U is equivalent to minimizing (a(v− c, v− c))1/2 over v ∈ U ,
and by the projection lemma (Proposition 29.5) this is equivalent to finding the projection
pU(c) of c on the closed convex set U with respect to the inner product a. Therefore, there
is a unique u = pU(c) ∈ U such that

J(u) = inf
v∈U

J(v).

Also by Proposition 29.5, this unique element u ∈ U is characterized by the condition

a(u− c, v − u) ≥ 0 for all v ∈ U.

Since

a(u− c, v − u) = a(u, v − u)− a(c, v − u) = a(u, v − u)− h(v − u),

the above inequality is equivalent to

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)

If U is a subspace of V , then we have the condition

a(u− c, v) = 0 for all v ∈ U,

which is equivalent to

a(u, v) = a(c, v) = h(v) for all v ∈ U. (∗∗)
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Note that the symmetry of the bilinear form a played a crucial role. Also, the inequalities

a(u, v − u) ≥ h(v − u) for all v ∈ U

are sometimes called variational inequalities.

A bilinear form a : V × V → R such that there is some real α > 0 such that

a(v, v) ≥ α ‖v‖2 for all v ∈ V

is said to be coercive.

Theorem 30.3 is the special case of Stampacchia’s theorem, and the Lax–Milgram theorem
when U = V , in the case where a is a symmetric bilinear form. To prove Stampacchia’s
theorem in general, we need to recall the contraction mapping theorem.

Definition 30.4. Let (E, d) be a metric space. A map f : E → E is a contraction (or a
contraction mapping) if there is some real number k such that 0 ≤ k < 1 and

d(f(u), f(v)) ≤ kd(u, v) for all u, v ∈ E.

The number k is often called a Lipschitz constant .

The following theorem is proved in Section 19.8; see Theorem 19.23. A proof can be also
found in Apostol [3], Dixmier [35], or Schwartz [91], among many sources. For the reader’s
convenience we restate this theorem.

Theorem 30.4. (Contraction Mapping Theorem) Let (E, d) be a complete metric space.
Every contraction f : E → E has a unique fixed point (that is, an element u ∈ E such that
f(u) = u).

The contraction mapping theorem is also known as the Banach fixed point theorem.

Theorem 30.5. (Lions–Stampacchia) Given a Hilbert space V , let a : V × V → R be a
continuous bilinear form (not necessarily symmetric), let h ∈ V ′ be a continuous linear
form, and let J be given by

J(v) =
1

2
a(v, v)− h(v), v ∈ V.

If a is coercive, then for every nonempty, closed, convex subset U of V , there is a unique
u ∈ U such that

a(u, v − u) ≥ h(v − u) for all v ∈ U. (∗)
If a is symmetric, then u ∈ U is the unique element of U such that

J(u) = inf
v∈U

J(v).
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Proof. As discussed just after Definition 30.3, by Proposition 29.9, there is a unique contin-
uous linear map A : V → V such that

a(u, v) = 〈Au, v〉 for all u, v ∈ V ,

with ‖A‖ = ‖a‖ = C, and by the Riesz representation theorem (Proposition 29.8), there is
a unique b ∈ V such that

h(v) = 〈b, v〉 for all v ∈ V .
Consequently, J can be written as

J(v) =
1

2
〈Av, v〉 − 〈b, v〉 for all v ∈ V . (∗1)

Since ‖A‖ = ‖a‖ = C, we have ‖Av‖ ≤ ‖A‖ ‖v‖ = C ‖v‖ for all v ∈ V . Using (∗1), the
inequality (∗) is equivalent to finding u such that

〈Au, v − u〉 ≥ 〈b, v − u〉 for all v ∈ V . (∗2)

Let ρ > 0 be a constant to be determined later. Then (∗2) is equivalent to

〈ρb− ρAu+ u− u, v − u〉 ≤ 0 for all v ∈ V . (∗3)

By the projection lemma (Proposition 29.5), (∗3) is equivalent to finding u ∈ U such that

u = pU(ρb− ρAu+ u). (∗4)

We are led to finding a fixed point of the function F : V → V given by

F (v) = pU(ρb− ρAv + v).

By Proposition 29.6, the projection map pU does not increase distance, so

‖F (v1)− F (v2)‖ ≤ ‖v1 − v2 − ρ(Av1 − Av2)‖ .

Since a is coercive we have
a(v, v) ≥ α ‖v‖2 ,

since a(v, v) = 〈Av, v〉 we have

〈Av, v〉 ≥ α ‖v‖2 for all v ∈ V , (∗5)

and since
‖Av‖ ≤ C ‖v‖ for all v ∈ V , (∗6)

we get

‖F (v1)− F (v2)‖2 ≤ ‖v1 − v2‖2 − 2ρ〈Av1 − Av2, v1 − v2〉+ ρ2 ‖Av1 − Av2‖2

≤
(

1− 2ρα + ρ2C
)
‖v1 − v2‖2 .
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If we pick ρ > 0 such that ρ < 2α/C2, then

k2 = 1− 2ρα + ρ2C < 1,

and then
‖F (v1)− F (v2)‖ ≤ k ‖v1 − v2‖ , (∗7)

with 0 ≤ k < 1, which shows that F is a contraction. By Theorem 30.4, the map F has
a unique fixed point u ∈ U , which concludes the proof of the first statement. If a is also
symmetric, then the second statement is just the first part of Proposition 30.3.

Remark: Many physical problems can be expressed in terms of an unknown function u that
satisfies some inequality

a(u, v − u) ≥ h(v − u) for all v ∈ U,

for some set U of “admissible” functions which is closed and convex. The bilinear form a
and the linear form h are often given in terms of integrals. The above inequality is called a
variational inequality .

In the special case where U = V we obtain the Lax–Milgram theorem.

Theorem 30.6. (Lax–Milgram’s Theorem) Given a Hilbert space V , let a : V × V → R be
a continuous bilinear form (not necessarily symmetric), let h ∈ V ′ be a continuous linear
form, and let J be given by

J(v) =
1

2
a(v, v)− h(v), v ∈ V.

If a is coercive, which means that there is some α > 0 such that

a(v, v) ≥ α ‖v‖2 for all v ∈ V ,

then there is a unique u ∈ V such that

a(u, v) = h(v) for all v ∈ V .

If a is symmetric, then u ∈ V is the unique element of V such that

J(u) = inf
v∈V

J(v).

The Lax–Milgram Theorem play an important role in solving linear elliptic partial dif-
ferential equations; see Brezis [24].

We now consider various methods, known as gradient descents, to find minima of certain
types of functionals.



30.2. GRADIENT DESCENT METHODS FOR UNCONSTRAINED PROBLEMS 775

30.2 Gradient Descent Methods for Unconstrained

Problems

We begin by defining the notion of an elliptic functional which generalizes the notion of a
quadratic function defined by a symmetric positive definite matrix. Elliptic functionals are
well adapted to the types of iterative methods described in this section, and lend themselves
well to an analysis of the convergence of these methods.

Definition 30.5. Given a Hilbert space V , a functional J : V → R is said to be elliptic if it
is continuously differentiable on V , and if there is some constant α > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V .

The following proposition gathers properties of elliptic functionals that will be used later
to analyze the convergence of various gradient descent methods.

Theorem 30.7. Let V be a Hilbert space.

(1) An elliptic functional J : V → R is strictly convex and coercice. Furthermore, it satis-
fies the identity

J(v)− J(u) ≥ 〈∇Ju, v − u〉+
α

2
‖v − u‖2 for all u, v ∈ V .

(2) If U is a nonempty, convex, closed subset of the Hilbert space V and if J is an elliptic
functional, then the problem (P ),

find u

such that u ∈ U and J(u) = inf
v∈U

J(v)

has a unique solution.

(3) Suppose the set U is convex and that the functional J is elliptic. Then an element
u ∈ U is a solution of the problem (P ) if and only if it satisfies the condition

〈∇Ju, v − u〉 ≥ 0 for every v ∈ U

in the general case, or

∇Ju = 0 if U = V

(4) A functional J which is twice differentiable in V is elliptic if and only if

〈∇2Ju(w), w〉 ≥ α ‖w‖2 for all u,w ∈ V .
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Proof. (1) Since J is a C1-function, by Taylor’s formula with integral remainder in the case
m = 0 (Theorem 20.24), we get

J(v)− J(u) =

∫ 1

0

dJu+t(v−u)(v − u)dt

=

∫ 1

0

〈∇Ju+t(v−u), v − u〉dt

= 〈∇Ju, v − u〉+

∫ 1

0

〈∇Ju+t(v−u) −∇Ju, v − u〉dt

= 〈∇Ju, v − u〉+

∫ 1

0

〈∇Ju+t(v−u) −∇Ju, t(v − u)〉
t

dt

≥ 〈∇Ju, v − u〉+

∫ 1

0

αt ‖v − u‖2 dt since J is elliptic

= 〈∇Ju, v − u〉+
α

2
‖v − u‖2 .

Using the inequality

J(v)− J(u) ≥ 〈∇Ju, v − u〉+
α

2
‖v − u‖2 for all u, v ∈ V ,

by Proposition 21.9(2), since

J(v) > J(u) + 〈∇Ju, v − u〉 for all u, v ∈ V , v 6= u,

the function J is strictly convex. It is coercive because

J(v) ≥ J(0) + 〈∇J0, v〉+
α

2
‖v‖2

≥ J(0)− ‖∇J0‖ ‖v‖+
α

2
‖v‖2 ,

and the term (−‖∇J0‖+ α
2
‖v‖) ‖v‖ goes to +∞ when ‖v‖ tends to +∞.

(2) Since by (1) the functional J is coercive, by Theorem 30.2, problem (P) has a solution.
Since J is strictly convex, by Theorem 21.11(2), it has a unique minimum.

(3) These are just the conditions of Theorem 21.11(3, 4).

(4) If J is twice differentiable, we showed in Section 20.4 that we have

D2Ju(w,w) = Dw(DJ)(u) = lim
θ 7→0

DJu+θw(w)−DJu(w)

θ
,

and since

D2Ju(w,w) = 〈∇2Ju(w), w〉
DJu+θw(w) = 〈∇Ju+θw, w〉

DJu(w) = 〈∇Ju, w〉,
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and since J is elliptic, for all u,w ∈ V we can write

〈∇2Ju(w), w〉 = lim
θ 7→0

〈∇Ju+θw −∇Ju, w〉
θ

= lim
θ 7→0

〈∇Ju+θw −∇Ju, θw〉
θ2

≥ α ‖w‖2 .

Conversely, assume that the condition

〈∇2Ju(w), w〉 ≥ α ‖w‖2 for all u,w ∈ V

holds. If we define the function g : V → R by

g(w) = 〈∇Jw, v − u〉 = dJw(v − u) = Dv−uJ(w),

where u and v are fixed vectors in V , then we have

dgu+θ(v−u)(v−u) = Dv−ug(u+θ(v−u)) = Dv−uDv−uJ(u+θ(v−u)) = D2Ju+θ(v−u)(v−u, v−u)

and we can apply the Taylor–MacLaurin formula (Theorem 20.23 with m = 0) to g, and we
get

〈∇Jv −∇Ju, v − u〉 = g(v)− g(u)

= dgu+θ(v−u)(v − u) (0 < θ < 1)

= D2Ju+θ(v−u)(v − u, v − u)

= 〈∇2Ju+θ(v−u)(v − u), v − u〉
≥ α ‖v − u‖2 ,

which shows that J is elliptic.

If J : Rn → R is a quadratic function given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉

(where A is a symmetric n× n matrix and 〈−,−〉 is the standard Eucidean inner product),
then J is elliptic iff A is positive definite. This is because

〈∇2Ju(w), w〉 = 〈Aw,w〉 ≥ λ1 ‖w‖2

where λ1 is the smallest eigenvalue of A; see Proposition 14.23 (Rayleigh–Ritz). Note that
by Proposition 14.23 (Rayleigh–Ritz) we also have

〈∇2Ju(w), w〉 ≤ λn ‖w‖2
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where λn is the largest eigenvalue of A; this fact will be useful later on.

Similarly, given a quadratic functional J defined on a Hilbert space V , where

J(v) =
1

2
a(v, v)− h(v),

by Theorem 30.7 (4), the functional J is elliptic iff there is some α > 0 such that

〈∇2Ju(v), v〉 = a(v, v) ≥ α ‖v‖2 for all v ∈ V .

This is precisely the hypothesis (∗α) used in Theorem 30.3.

We will now describe methods for solving unconstrained minimization problems, that is,
finding the minimum (or minima) of a functions J over the whole space V . These methods
are iterative, which means that given some initial vector u0, we construct a sequence (uk)k≥0

that converges to a minimum u of the function J .

The key step is define uk+1 from uk, and a first idea is to reduce the problem to a simpler
problem, namely the minimization of a function of a single (real) variable. For this, we need
two perform two steps:

(1) Find a descent direction at uk, which is a some nonzero vector dk which is usually
determined from the gradient of J at various points.

(2) Find the minimum of the restriction of the function J along the line through uk and
parallel to the direction dk. This means finding a real ρk ∈ R (depending on uk and
dk) such that

J(uk + ρkdk) = inf
ρ∈R

J(uk + ρdk).

This problem only succeeds if ρk is unique, in which case we set

uk+1 = uk + ρkdk.

This step is often called a line search or line minimization, and ρk is called the stepsize
parameter. See Figure 30.1.

If J is a quadratic elliptic functional of the form

J(v) =
1

2
a(v, v)− h(v),

then given dk, there is a unique ρk solving the line search in Step (2). This is because, as we
explained earlier, we have

J(uk + ρdk) =
ρ2

2
a(dk, dk) + ρ〈∇Juk , dk〉+ J(uk),
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uk

k
d

J (uk)

k+1d

uk+1

J (uk+1)

J (uk+1)

J (uk+
dkρ )

J (u )k+2

Figure 30.1: Let J : R2 → R be the function whose graph is represented by the pink surface.
Given a point uk in the xy-plane, and a direction dk, we calculate first uk+1 and then uk+2.

and since a(dk, dk) > 0 (because J is elliptic), the above function of ρ has a unique minimum
when its derivative is zero, namely

ρ a(dk, dk) + 〈∇Juk , dk〉 = 0.

We now consider one of the simplest methods for choosing the directions of descent in
the case where V = Rn, which is to pick the directions of the coordinate axes in a cyclic
fashion. Such a method is called the method of relaxation.

If we write

uk = (uk1, u
k
2, . . . , u

k
n),

then the components uk+1
i of uk+1 are computed in terms of uk by solving from top down

the following system of equations:

J(uk+1
1 , uk2, u

k
3, . . . , u

k
n) = inf

λ∈R
J(λ, uk2, u

k
3, . . . , u

k
n)

J(uk+1
1 ,uk+1

2 , uk3, . . . , u
k
n) = inf

λ∈R
J(uk+1

1 , λ, uk3, . . . , u
k
n)

...

J(uk+1
1 , . . . , uk+1

n−1,u
k+1
n ) = inf

λ∈R
J(uk+1

1 , . . . , uk+1
n−1, λ).

Another and more informative way to write the above system is to define the vectors uk;i
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by

uk;0 = (uk1, u
k
2, . . . , u

k
n)

uk;1 = (uk+1
1 , uk2, . . . , u

k
n)

...

uk;i = (uk+1
1 , . . . , uk+1

i , uki+1, . . . , u
k
n)

...

uk;n = (uk+1
1 , uk+1

2 , . . . , uk+1
n ).

Note that uk;0 = uk and uk;n = uk+1. Then our minimization problem can be written as

J(uk;1) = inf
λ∈R

J(uk;0 + λe1)

...

J(uk;i) = inf
λ∈R

J(uk;i−1 + λei)

...

J(uk;n) = inf
λ∈R

J(uk;n−1 + λen),

where ei denotes the ith canonical basis vector in Rn. If J is differentiable, necessary condi-
tions for a minimum, which are also sufficient if J is convex, is that the directional derivatives
dJv(ei) be all zero, that is,

〈∇Jv, ei〉 = 0 i = 0, . . . , n.

The following result regarding the convergence of the mehod of relaxation is proved in
Ciarlet [30] (Chapter 8, Theorem 8.4.2).

Proposition 30.8. If the functional J : Rn → R is elliptic, then the relaxation method
converges.

Remarks: The proof of Proposition 30.8 uses Theorem 30.7. The finite dimensionality of
Rn also plays a crucial role. The differentiability of the function J is also crucial. Examples
where the method loops forever if J is not differentiable can be given; see Ciarlet [30]
(Chapter 8, Section 8.4). The proof of Proposition 30.8 yields an a priori bound on the error
‖u− uk‖. If J is a quadratic functional

J(v) =
1

2
v>Av − b>v,

where A is a symmetric positive definite matrix, then ∇Jv = Av− b, so the above system to
solve for uk+1 in terms of uk becomes the Gauss–Seidel method for solving a linear system;
see Section 8.3.
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We now discuss gradient methods. The intuition behind these methods is that the con-
vergence of an iterative method ought to be better if the difference J(uk) − J(uk+1) is as
large as possible during every iteration step. To achieve this, it is natural to pick the descent
direction to be the one in the opposite direction of the gradient vector ∇Juk . This choice is
justified by the fact that we can write

J(uk + w) = J(uk) + 〈∇Juk , w〉+ ε(w) ‖w‖ , with limw 7→0 ε(w) = 0.

If ∇Juk 6= 0, the first-order part of the variation of the function J is bounded in absolute
value by ‖∇Juk‖ ‖w‖ (by the Cauchy–Schwarz inequality), with equality if ∇Juk and w are
collinear.

Gradient descent methods pick the direction of descent to be dk = −∇Juk , so that we
have

uk+1 = uk − ρk∇Juk ,
where we put a negative sign in front of of the variable ρk as a reminder that the descent
direction is opposite to that of the gradient; a positive value is expected for the scalar ρk.

There are three standard methods to pick ρk:

(1) Gradient method with fixed stepsize parameter . This is the simplest and cheapest
method which consists of using the same constant ρk = ρ for all iterations.

(2) Gradient method with variable stepsize parameter . In this method, the parameter ρk
is adjusted in the course of iterations according to various criteria.

(3) Gradient method with optimal stepsize parameter , also called steepest descent method
for the Euclidean norm. This is a version of method 2 in which ρk is determined by
the following line search:

J(uk − ρk∇Juk) = inf
ρ∈R

J(uk − ρ∇Juk).

This optimization problem only succeeds if the above minimization problem has a
unique solution.

We have the following useful result about the convergence of the gradient method with
optimal parameter.

Proposition 30.9. Let J : Rn → R be an elliptic functional. Then the gradient method with
optimal stepsize parameter converges.

Proof. Since J is elliptic, by Theorem 30.7, the functional J has a unique minimum u
characterized by ∇Ju = 0. Our goal is to prove that the sequence (uk)k≥0 constructed using
the gradient method with optimal parameter converges to u, started from any initial vector
u0. Without loss of generality we may assume that uk+1 6= uk and ∇Juk 6= 0 for all k, since
otherwise the method converges in a finite number of steps.
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Step 1 . Any two consecutive descent directions are orthogonal, and

J(uk)− J(uk+1) ≥ α

2
‖uk − uk+1‖2 .

Let ϕk : R→ R be the function given by

ϕk(ρ) = J(uk − ρ∇Juk).

Since the function ϕk is strictly convex and coercive, it has a unique minimum ρk which is
the unique solution of the equation ϕ′k(ρ) = 0. By the chain rule

ϕ′k(ρ) = dJuk−ρ∇Juk (−∇Juk)
= −〈∇Juk−ρ∇Juk ,∇Juk〉,

and since uk+1 = uk − ρk∇Juk we get

〈∇Juk+1
,∇Juk〉 = 0,

which shows that two consecutive descent directions are orthogonal.

Since uk+1 = uk − ρk∇Juk and we assumed that that uk+1 6= uk, we have ρk 6= 0, and we
also get

〈∇Juk+1
, uk+1 − uk〉 = 0.

By the inequality of Theorem 30.7(1) we have

J(uk)− J(uk+1) ≥ α

2
‖uk − uk+1‖2 .

Step 2 . limk 7→∞ ‖uk − uk+1‖ = 0.

It follows from the inequality proved in Step 1 that the sequence (J(uk))k≥0 is decreasing
and bounded below (by J(u), where u is the minimum of J), so it converges and we conclude
that

lim
k 7→∞

(J(uk)− J(uk+1)) = 0,

which combined with the preceding inequality shows that

lim
k 7→∞
‖uk − uk+1‖ = 0.

Step 3 . ‖∇Juk‖ ≤
∥∥∇Juk −∇Juk+1

∥∥.

Using the orthogonality of consecutive descent directions, by Cauchy–Schwarz we have

‖∇Juk‖2 = 〈∇Juk ,∇Juk −∇Juk+1
〉

≤ ‖∇Juk‖
∥∥∇Juk −∇Juk+1

∥∥ ,
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so that
‖∇Juk‖ ≤

∥∥∇Juk −∇Juk+1

∥∥ .
Step 4 . limk 7→∞ ‖∇Juk‖ = 0.

Since the sequence (J(uk))k≥0 is decreasing and the functional J is coercive, the sequence
(uk)k≥0 must be bounded. By hypothesis, the derivative dJ is of J is continuous, so it is
uniformly continuous over compact subsets of Rn; here, we are using the fact that Rn is finite
dimensional. Hence, we deduce that for every ε > 0, if ‖uk − uk+1‖ < ε then∥∥dJuk − dJuk+1

∥∥
2
< ε.

But by definition of the operator norm and using the Cauchy–Schwarz inequality∥∥dJuk − dJuk+1

∥∥
2

= sup
‖w‖≤1

|dJuk(w)− dJuk+1
(w)|

= sup
‖w‖≤1

|〈∇Juk −∇Juk+1
, w〉|

≤
∥∥∇Juk −∇Juk+1

∥∥ .
But we also have∥∥∇Juk −∇Juk+1

∥∥2
= 〈∇Juk −∇Juk+1

,∇Juk −∇Juk+1
〉

= dJuk(∇Juk −∇Juk+1
)− dJuk+1

(∇Juk −∇Juk+1
)

≤
∥∥dJuk − dJuk+1

∥∥2

2
,

and so ∥∥dJuk − dJuk+1

∥∥
2

=
∥∥∇Juk −∇Juk+1

∥∥ .
It follows that if

lim
k 7→∞
‖uk − uk+1‖ = 0

then
lim
k 7→∞

∥∥∇Juk −∇Juk+1

∥∥ = lim
k 7→∞

∥∥dJuk − dJuk+1

∥∥
2

= 0,

and using the fact that
‖∇Juk‖ ≤

∥∥∇Juk −∇Juk+1

∥∥ ,
we obtain

lim
k 7→∞
‖∇Juk‖ = 0.

Step 5 . Finally we can prove the convergence of the sequence (uk)k≥0.

Since J is elliptic and since ∇Ju = 0 (since u is the minimum of J over Rn), we have

α ‖uk − u‖2 ≤ 〈∇Juk −∇Ju, uk − u〉
= 〈∇Juk , uk − u〉
≤ ‖∇Juk‖ ‖uk − u‖ .



784 CHAPTER 30. GENERAL RESULTS OF OPTIMIZATION THEORY

Hence, we obtain

‖uk − u‖ ≤
1

α
‖∇Juk‖ ,

and since we showed that
lim
k 7→∞
‖∇Juk‖ = 0,

we see that the sequence (uk)k≥0 converges to the mininum u.

Remarks: As with the previous proposition, the assumption of finite dimensionality is
crucial. The proof provides an a priori bound on the error ‖uk − u‖.

If J is a an elliptic quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

we can use the orthogonality of the descent directions ∇Juk and ∇Juk+1
to compute ρk.

Indeed, we have ∇Jv = Av − b, so

0 = 〈∇Juk+1
,∇Juk〉 = 〈A(uk − ρk(Auk − b))− b, Auk − b〉,

which yields

ρk =
‖wk‖2

〈Awk, wk〉
, with wk = Auk − b = ∇Juk .

Consequently, a step of the iteration method takes the following form:

(1) Compute the vector
wk = Auk − b.

(2) Compute the scalar

ρk =
‖wk‖2

〈Awk, wk〉
.

(3) Compute the next vector uk+1 by

uk+1 = uk − ρkwk.

This method is of particular interest when the computation of Aw for a given vector w is
cheap, which is the case if A is sparse.

For a particular illustration of this method, we turn to the example provided by Shewchuk,

with A =

(
3 2
2 6

)
and b =

(
2
−8

)
, namely

J(x, y) =
1

2

(
x y

)(3 2
2 6

)(
x
y

)
−
(
2 −8

)(x
y

)
=

3

2
x2 + 2xy + 3y2 − 2x+ 8y.
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Figure 30.2: The ellipsoid J(x, y) = 3
2
x2 + 2xy + 3y2 − 2x+ 8y.

This quadratic ellipsoid, which is illustrated in Figure 30.2, has a unique minimum at
(2,−2). In order to find this minimum via the gradient descent with optimal step size
parameter, we pick a starting point, say uk = (−2,−2), and calculate the search direction
wk = ∇J(−2,−2) = (−12,−8). Note that

∇J(x, y) = (3x+ 2y − 2, 2x+ 6y + 8) =

(
3 2
2 6

)(
x
y

)
−
(

2
−8

)
is perpendicular to the appropriate elliptical level curve; see Figure 30.3. We next perform

x
K4 K2 0 2 4

y

K4

K2

2

4

Figure 30.3: The level curves of J(x, y) = 3
2
x2 + 2xy + 3y2 − 2x + 8y and the associated

gradient vector field ∇J(x, y) = (3x+ 2y − 2, 2x+ 6y + 8).

the line search along the line given by the equation −8x+ 12y = −8 and determine ρk. See
Figures 30.4 and 30.5. In particular, we find that
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x
K4 K2 0 2 4

y

K4

K2

2

4

Figure 30.4: The level curves of J(x, y) = 3
2
x2 + 2xy+ 3y2− 2x+ 8y and the red search line

with direction ∇J(−2,−2) = (−12,−8)

ρk =
‖wk‖2

〈Awk, wk〉
=

13

75
.

This in turn gives us the new point

uk+1 = uk −
13

75
wk = (−2,−2)− 13

75
(−12,−8) =

(
2

25
,−46

75

)
,

and we continue the procedure by searching along the gradient direction∇J(2/25,−46/75) =
(−224/75, 112/25). Observe that uk+1 = ( 2

25
,−46

75
) has a gradient vector which is perpen-

dicular to the search line with direction vector wk = ∇J(−2,−2) = (−12 − 8); see Figure
30.5. Geometrically this procedure corresponds to intersecting the plane −8x + 12y =
−8 with the ellipsoid J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x + 8y to form the parabolic curve

f(x) = 25/6x2− 2/3x− 4 and then locating the x-coordinate of its apex which occurs when
f ′(x) = 0, i.e when x = 2/25; see Figure 30.6. After 31 iterations, this procedure stabi-
lizes to point (2,−2), which as we know, is the unique minimum of the quadratic ellipsoid
J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x+ 8y.

We now give a sufficient condition for the gradient method with variable stepsize param-
eter to converge. In addition to requiring J to be an elliptic functional, we add a Lipschitz
condition on the gradient of J . This time, the space V can be infinite dimensional.

Proposition 30.10. Let J : V → R be a continuously differentiable functional defined on a
Hilbert space V . Suppose there exists two constants α > 0 and M > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V ,
and

‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V .
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x
K4 K2 0 2 4

y

K4

K2

2

4

(-2,-2)

(2/25, -46/75)

Figure 30.5: Let uk = (−2,−2). When traversing along the red search line, we look for
the green perpendicular gradient vector. This gradient vector, which occurs at uk+1 =
(2/25,−46/75), provides a minimal ρk, since it has no nonzero projection on the search line.

If there exists two real numbers a, b ∈ R such that

0 < a ≤ ρk ≤ b ≤ 2α

M2
for all k ≥ 0,

then the gradient method with variable stepsize parameter converges. Furthermore, there is
some constant β > 0 (depending on α,M, a, b) such that

β < 1 and ‖uk − u‖ ≤ βk ‖u0 − u‖ ,

where u ∈M is the unique minimum of J .

Proof. By hypothesis the functional J is elliptic, so by Theorem 30.7 it has a unique minimum
u characterized by the fact that ∇Ju = 0. Then since uk+1 = uk − ρk∇Juk we can write

uk+1 − u = (uk − u)− ρk〈∇Juk −∇Ju〉.

Using the inequalities
〈∇Juk −∇Ju, uk − u〉 ≥ α ‖uk − u‖2

and
‖∇Juk −∇Ju‖ ≤M ‖uk − u‖ ,

and assuming that ρk > 0, it follows that

‖uk+1 − u‖2 = ‖uk − u‖2 − 2ρk〈∇Juk −∇Ju, uk − u〉+ ρ2
k ‖∇Juk −∇Ju‖2

≤
(

1− 2αρk +M2ρ2
k

)
‖uk − u‖2 .
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Figure 30.6: Two views of the intersection between the plane −8x + 12y = −8 and the
ellipsoid J(x, y) = 3

2
x2 + 2xy + 3y2 − 2x + 8y. The point uk+1 is the minimum of the

parabolic intersection.

Consider the function
T (ρ) = M2ρ2 − 2αρ+ 1.

Its graph is a parabola intersecting the y-axis at y = 1 for ρ = 0, it has a minimum for
ρ = α/M2, and it also has the value y = 1 for ρ = 2α/M2; see Figure 30.7. Therefore if we
pick a, b and ρk such that

0 < a ≤ ρk ≤ b <
2α

M2
,

we ensure that for ρ ∈ [a, b] we have

T (ρ)1/2 = (M2ρ2 − 2αρ+ 1)1/2 ≤ (max{T (a), T (b)})1/2 = β < 1.

Then by induction we get
‖uk+1 − u‖ ≤ βk+1 ‖u0 − u‖ ,

which proves convergence.

Remarks: In the proof of Proposition 30.10, it is the fact that V is complete which plays
a crucial role. If J is twice differentiable, the hypothesis

‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V
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(0,1)

a b
α

M
2

α

M
2

α

M
2( 1 -, )

α
M

2
2

y = 1

Figure 30.7: The parabola T (ρ) used in the proof of Proposition 30.10.

can be expressed as
sup
v∈V

∥∥∇2Jv
∥∥ ≤M.

In the case of a quadratic elliptic functional defined over Rn,

J(v) = 〈Av, v〉 − 〈b, v〉,

the upper bound 2α/M2 can be improved. In this case we have

∇Jv = Av − b,

and we know that we α = λ1 and M = λn do the job, where λ1 is the eigenvalue of A and
λn is the largest eigenvalue of A. Hence we can pick a, b such that

0 < a ≤ ρk ≤ b <
2λ1

λ2
n

.

Since uk+1 = uk − ρk∇Juk and ∇Juk = Auk − b, we have

uk+1 − u = (uk − u)− ρk(Auk − u) = (I − ρkA)(uk − u),

so we get
‖uk+1 − u‖ ≤ ‖I − ρkA‖2 ‖uk − u‖ .

However, since I − ρkA is a symmetric matrix, ‖I − ρkA‖2 is the largest absolute value of
its eigenvalues, so

‖I − ρkA‖2 ≤ max{|1− ρkλ1|, |1− ρkλn|}.
The function

µ(ρ) = max{|1− ρλ1|, |1− ρλn|}
is a piecewise affine function, and it is easy to see that if we pick a, b such that

0 < a ≤ ρk ≤ b ≤ 2

λn
,
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then

max
ρ∈[a,b]

µ(ρ) ≤ max{µ(a), µ(b)} < 1.

Therefore, the upper bound 2λ1/λ
2
n can be replaced by 2/λn, which is typically much larger.

A “good” pick for ρk is 2/(λ1 + λn) (as opposed to λ1/λ
2
n for the first version). In this case

|1− ρkλ1| = |1− ρkλn| =
λm − λ1

λm + λ1

,

so we get

β =
λm − λ1

λm + λ1

=
λm
λ1
− 1

λm
λ1

+ 1
=

cond2(A)− 1

cond2(A) + 1
,

where cond2(A) = λm/λ1 is the condition number of the matrix A with respect to the
spectral norm. Thus we see that the largest the condition number of A is, the slowest
the convergence of the method will be. This is not surprising since we already know that
linear systems involving ill-conditioned matrices (matrices with a large condition number)
are problematic, and prone to numerical unstability. One way to deal with this problem is
to use a method known as preconditioning.

We only described the most basic gradient descent methods. There are numerous variants,
and we only mention a few of these methods.

The method of scaling consists in using −ρkDk∇Juk as descent direction, where Dk is
some suitably chosen symmetric positive definite matrix.

In the gradient method with extrapolation, uk+1 is determined by

uk+1 = uk − ρk∇Juk + βk(uk − uk−1).

Another rule for choosing the stepsize is Armijo’s rule.

These methods, and others, are discussed in detail in Berstekas [14]. Boyd and Vanden-
berghe discuss steepest descent methods for various types of norms besides the Euclidean
norm; see Boyd and Vandenberghe [22] (Section 9.4).

Lax also discusses other methods in which the step ρk is chosen using roots of Chebyshev
polynomials; see Lax [67], Chapter 17, Sections 2–4.

Contrary to intuition, the descent direction dk = −∇Juk given by the opposite of the
gradient is not optimal. In the next section, we will see how a better direction can be picked;
this is the method of conjugate gradients .
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30.3 Conjugate Gradient Methods for Unconstrained

Problems

The conjugate gradient method due to Hestenes and Stiefel (1952) is a gradient descent
method that applies to an elliptic quadratic functional J : Rn → R given by

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

where A is an n × n symmetric positive definite matrix. Although it is presented as an
iterative method, it terminates in at most n steps.

As usual, the conjugate gradient method starts with some arbitrary initial vector u0 and
proceeds through a sequence of iteration steps generating (better and better) approximations
uk of the optimal vector u minimizing J . During an iteration step, two vectors need to be
determined:

(1) The descent direction dk.

(2) The next approximation uk+1. To find uk+1, we need to find the stepsize ρk > 0 and
then

uk+1 = uk − ρkdk.
Typically, ρk is found by performing a line search along the direction dk, namely we
find ρk as the real number such that the function ρ 7→ J(uk − ρdk) is minimized.

We saw in Proposition 30.9 that during execution of the gradient method with optimal
stepsize parameter that any two consecutive descent directions are orthogonal. The new
twist with the conjugate gradient method is that given u0, u1, . . . , uk, the next approximation
uk+1 is obtained as the solution of the problem which consists in minimizing J over the affine
subspace uk + Gk, where Gk is the subspace of Rn spanned by the gradients

∇Ju0 ,∇Ju1 , . . . ,∇Juk .

We may assume that ∇Ju` 6= 0 for ` = 0, . . . , k, since the method terminates as soon as
∇Juk = 0. A priori the subspace Gk has dimension ≤ k + 1, but we will see that in fact it
has dimension k + 1. Then we have

uk + Gk =

{
uk +

k∑
i=0

αi∇Jui

∣∣∣∣∣ αi ∈ R, 0 ≤ i ≤ k

}
,

and our minimization problem is to find uk+1 such that

uk+1 ∈ uk + Gk and J(uk+1) = inf
v∈uk+Gk

J(v).
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In the gradient method with optimal stepsize parameter the descent direction dk is pro-
portional to the gradient ∇Juk , but in the conjugate gradient method, dk is equal to ∇Juk
corrected by some multiple of dk−1.

The conjugate gradient method is superior to the gradient method with optimal stepsize
parameter for the following reasons proved correct later:

(a) The gradients∇Jui and∇Juj are orthogonal for all i, j with 0 ≤ i < j ≤ k. This implies
that if ∇Jui 6= 0 for i = 0, . . . , k, then the vectors ∇Jui are linearly independent, so
the method stops in at most n steps.

(b) If we write ∆` = u`+1 − u` = −ρ`d`, the second remarkable fact about the conjugate
gradient method is that the vectors ∆` satisfy the following conditions:

〈A∆`,∆i〉 = 0 0 ≤ i < ` ≤ k.

The vectors ∆` and ∆i are said to be conjugate with respect to the matrix A (or
A-conjugate). As a consequence, if ∆` 6= 0 for ` = 0, . . . , k, then the vectors ∆` are
linearly independent.

(c) There is a simple formula to compute dk+1 from dk, and to compute ρk.

We now prove the above facts. We begin with (a).

Proposition 30.11. Assume that ∇Jui 6= 0 for i = 0, . . . , k. Then the minimization prob-
lem, find uk+1 such that

uk+1 ∈ uk + Gk and J(uk+1) = inf
v∈uk+Gk

J(v),

has a unique solution, and the gradients ∇Jui and ∇Juj are orthogonal for all i, j with
0 ≤ i < j ≤ k.

Proof. The affine space u` + G` is closed and convex, and since J is a quadratic elliptic
functional it is coercise and strictly convex, so by Theorem 30.7(2) it has a unique minimum
in u` + G`. This minimum u`+1 is also the minimum of the problem, find u`+1 such that

u`+1 ∈ u` + G` and J(u`+1) = inf
v∈G`

J(u` + v),

and since G` is a vector space, by Theorem 21.8 we must have

dJu`(w) = 0 for all w ∈ G`,

that is
〈∇Ju` , w〉 = 0 for all w ∈ G`.

Since G` is spanned by (∇Ju0 ,∇Ju1 , . . . ,∇Ju`), we obtain

〈∇Ju` ,∇Juj〉 = 0, 0 ≤ j < `,
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and since this holds for ` = 0, . . . , k, we get

〈∇Jui ,∇Juj〉 = 0, 0 ≤ i < j ≤ k,

which shows the second part of the proposition.

As a corollary of Proposition 30.11, if ∇Jui 6= 0 for i = 0, . . . , k, then the vectors ∇Jui are
linearly independent and Gk has dimension k+ 1. Therefore, the conjugate gradient method
terminates in at most n steps. Here is an example of a problem for which the gradient
descent with optimal stepsize parameter does not converge in a finite number of steps.

Example 30.1. Let J : R2 → R be the function given by

J(v1, v2) =
1

2
(α1v

2
1 + α2v

2
2),

where 0 < α1 < α2. The minimum of J is attained at (0, 0). Unless the initial vector
u0 = (u0

1, u
0
2) has the property that either u0

1 = 0 or u0
2 = 0, we claim that the gradient

descent with optimal stepsize parameter does not converge in a finite number of steps.
Observe that

∇J(v1,v2) =

(
α1v1

α2v2

)
.

As a consequence, given uk, the line search for finding ρk and uk+1 yields uk+1 = (0, 0) iff
there is some ρ ∈ R such that

uk1 = ρα1u
k
1 and uk2 = ρα2u

k
2.

Since α1 6= α2, this is only possible if either uk1 = 0 or uk2 = 0. The formulae given just before
Proposition 30.10 yield

uk+1
1 =

α2
2(α2 − α1)uk1(uk2)2

α3
1(uk1)2 + α3

2(uk2)2
, uk+1

2 =
α2

1(α1 − α2)uk2(uk1)2

α3
1(uk1)2 + α3

2(uk2)2
,

which implies that if uk1 6= 0 and uk2 6= 0, then uk+1
1 6= 0 and uk+1

2 6= 0, so the method runs
forever from any initial vector u0 = (u0

1, u
0
2) such that u0

1 6= 0 and, u0
2 6= 0.

We now prove (b).

Proposition 30.12. Assume that ∇Jui 6= 0 for i = 0, . . . , k, and let ∆` = u`+1 − u`, for
` = 0, . . . , k. Then ∆` 6= 0 for ` = 0, . . . , k, and

〈A∆`,∆i〉 = 0, 0 ≤ i < ` ≤ k.

The vectors ∆0, . . . ,∆k are linearly independent.
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Proof. Since J is a quadratic functional we have

∇Jv+w = A(v + w)− b = Av − b+ Aw = ∇Jv + Aw.

It follows that
∇Ju`+1

= ∇Ju`+∆`
= ∇Ju` + A∆`, 0 ≤ ` ≤ k. (∗1)

By Proposition 30.11, since

〈∇Jui ,∇Juj〉 = 0, 0 ≤ i < j ≤ k,

we get
0 = 〈∇Ju`+1,∇Ju`〉 = ‖∇Ju`‖2 + 〈A∆`,∇Ju`〉, ` = 0, . . . , k,

and since by hypothesis ∇Jui 6= 0 for i = 0, . . . , k, we deduce that

∆` 6= 0, ` = 0, . . . , k.

If k ≥ 1, for i = 0, . . . , `− 1 and ` ≤ k we also have

0 = 〈∇Ju`+1
,∇Jui〉 = 〈∇Ju` ,∇Jui〉+ 〈A∆`,∇Jui〉

= 〈A∆`,∇Jui〉.

Since ∆j = uj+1 − uj ∈ Gj and Gj is spanned by (∇Ju0 ,∇Ju1 , . . . ,∇Juj), we obtain

〈A∆`,∆j〉 = 0, 0 ≤ j < ` ≤ k.

For the last statement of the proposition, let w0, w1, . . . , wk be any k+ 1 nonzero vectors
such that

〈Awi, wj〉 = 0, 0 ≤ i < j ≤ k.

We claim that w0, w1, . . . , wk are linearly independent.

If we have a linear dependence
∑k

i=0 λiwi = 0, then we have

0 =

〈
A

( k∑
i=0

λiwi

)
, wj

〉
=

k∑
i=0

λi〈Awi, wj〉 = λj〈Awj, wj〉.

Since A is symmetric positive definite (because J is a quadratic elliptic functional) and
wj 6= 0, we must have λj = 0 for j = 0, . . . , k. Therefore the vectors w0, w1, . . . , wk are
linearly independent.

Remarks:

(1) Since A is symmetric positive definite, the bilinear map (u, v) 7→ 〈Au, v〉 is an inner
product 〈−,−〉A on Rn. Consequently, two vectors u, v are conjugate with respect to
the matrix A (or A-conjugate), which means that 〈Au, v〉 = 0, iff u and v are orthogonal
with respect to the inner product 〈−,−〉A.
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(2) By picking the descent direction to be −∇Juk , the gradient descent method with
optimal stepsize parameter treats the level sets {u | J(u) = J(uk)} as if they were
spheres. The conjugate gradient method is more subtle, and takes the “geometry”
of the level set {u | J(u) = J(uk)} into account, through the notion of conjugate
directions.

(3) The notion of conjugate direction has its origins in the theory of projective conics and
quadrics where A is a 2 × 2 or a 3 × 3 matrix and where u and v are conjugate iff
u>Av = 0.

(4) The terminology conjugate gradient is somewhat misleading. It is not the gradients
who are conjugate directions, but the descent directions.

By definition of the vectors ∆` = u`+1 − u`, we can write

∆` =
∑̀
i=0

δ`i ∇Jui , 0 ≤ ` ≤ k. (∗2)

In matrix form, we can write

(
∆0 ∆1 · · · ∆k

)
=
(
∇Ju0 ∇Ju1 · · · ∇Juk

)

δ0

0 δ1
0 · · · δk−1

0 δk0
0 δ1

1 · · · δk−1
1 δk1

0 0 · · · δk−1
2 δk2

...
...

. . .
...

...
0 0 · · · 0 δkk

 ,

which implies that δ`` 6= 0 for ` = 0, . . . , k.

In view of the above fact, since ∆` and d` are collinear, it is convenient to write the
descent direction d` as

d` =
`−1∑
i=0

λ`i ∇Jui +∇Ju` , 0 ≤ ` ≤ k. (∗3)

Our next goal is to compute uk+1, assuming that the coefficients λki are known for i =
0, . . . , k, and then to find simple formulae for the λki .

The problem reduces to finding ρk such that

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk),

and then uk+1 = uk − ρkdk. In fact, by (∗2), since

∆k =
k∑
i=0

δki ∇Jui = δkk

(k−1∑
i=0

δki
δkk
∇Jui +∇Juk

)
,
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we must have
∆k = δkkdk and ρk = −δkk . (∗4)

Remarkably, the coefficients λki and the descent directions dk can be computed easily
using the following formulae.

Proposition 30.13. Assume that ∇Jui 6= 0 for i = 0, . . . , k. If we write

d` =
`−1∑
i=0

λ`i ∇Jui +∇Ju` , 0 ≤ ` ≤ k,

then we have

(†)



λki =
‖∇Juk‖2

‖∇Jui‖2 , 0 ≤ i ≤ k − 1,

d0 = ∇Ju0

d` = ∇Ju` +
‖∇Ju`‖2∥∥∇Ju`−1

∥∥2 d`−1, 1 ≤ ` ≤ k.

Proof. Since by (∗4) we have ∆k = δkkdk, δ
k
k 6= 0, (by Proposition 30.12) we have

〈A∆`,∆i〉 = 0, 0 ≤ i < ` ≤ k,

by (∗1) we have ∇Ju`+1
= ∇Ju` + A∆`, and A is a symmetric matrix, we have

0 = 〈Adk,∆`〉 = 〈dk, A∆`〉 = 〈dk,∇Ju`+1
−∇Ju`〉,

for ` = 0, . . . , k − 1, and since

dk =
k−1∑
i=0

λki ∇Jui +∇Juk ,

we have 〈k−1∑
i=0

λki ∇Jui +∇Juk ,∇Ju`+1
−∇Ju`

〉
= 0, 0 ≤ ` ≤ k − 1.

Since by Proposition 30.11 the gradients ∇Jui are pairwise orthogonal, the above equations
yield

−λkk−1

∥∥∇Juk−1

∥∥2
+ ‖∇Jk‖2 = 0

−λk` ‖∇Ju`‖2 + λk`+1 ‖∇J`+1‖2 = 0, 0 ≤ ` ≤ k − 2, k ≥ 2,

and an easy induction yields

λki =
‖∇Juk‖2

‖∇Jui‖2 , 0 ≤ i ≤ k − 1.
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Consequently, using (∗3) we have

dk =
k−1∑
i=0

‖∇Juk‖2

‖∇Jui‖2 ∇Jui +∇Juk

= ∇Juk +
‖∇Juk‖2∥∥∇Juk−1

∥∥2

(
k−2∑
i=0

∥∥∇Juk−1

∥∥2

‖∇Jui‖2 ∇Jui +∇Juk−1

)

= ∇Juk +
‖∇Juk‖2∥∥∇Juk−1

∥∥2 dk−1,

which concludes the proof.

It remains to compute ρk, which is the solution of the line search

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk).

Since J is a quadratic functional, the function to be minimized is

ρ 7→ ρ2

2
〈Adk, dk〉 − ρ〈∇Juk , dk〉+ J(uk),

whose mininum is obtained when its derivative is zero, that is,

ρk =
〈∇Juk , dk〉
〈Adk, dk〉

. (∗5)

In summary, the conjugate gradient method finds the minimum u of the elliptic quadratic
functional

J(v) =
1

2
〈Av, a〉 − 〈b, v〉

by computing the sequence of vectors u1, d1, . . . , uk−1, dk−1, uk, starting from any vector u0,
with

d0 = ∇Ju0 .
If ∇Ju0 = 0, then the algorithm terminates with u = u0. Otherwise, for k ≥ 0, assuming
that ∇Jui 6= 0 for i = 1, . . . , k, compute

(∗6)



ρk =
〈∇Juk , dk〉
〈Adk, dk〉

uk+1 = uk − ρkdk

dk+1 = ∇Juk+1
+

∥∥∇Juk+1

∥∥2

‖∇Juk‖2 dk.

If ∇Juk+1
= 0, then the algorihm terminate with u = uk+1.
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As we showed before, the algorithm terminates in at most n iterations.

Hestenes and Stiefel realized that the equations (∗6) can be modified to make the com-
putations more efficient, by having only one evaluation of the matrix A on a vector, namely
dk. The idea is to compute ∇uk inductively.

Since by (∗1) and (∗4) we have ∇Ju`+1
= ∇Ju` + A∆` = ∇Ju` − ρkAdk, the gradient

∇Ju`+1
can be computed iteratively:

∇J0 = Au0 − b
∇Ju`+1

= ∇Ju` − ρkAdk.

Since by Proposition 30.13 we have

dk = ∇Juk +
‖∇Juk‖2∥∥∇Juk−1

∥∥2 dk−1

and since dk−1 is a linear combination of the gradients ∇Jui for i = 0, . . . , k − 1, which are
all orthogonal to ∇Juk , we have

ρk =
〈∇Juk , dk〉
〈Adk, dk〉

=
‖∇Juk‖2

〈Adk, dk〉
.

It is customary to introduce the term rk defined as

∇Juk = Auk − b (∗7)

and to call it the residual . Then the conjugate gradient method consists of the following
steps. We inititialize the method starting from any vector u0 and set

d0 = r0 = Au0 − b.

The main iteration step is (k ≥ 0):

(∗8)



ρk =
‖rk‖2

〈Adk, dk〉
uk+1 = uk − ρkdk
rk+1 = rk − ρkAdk

βk+1 =
‖rk+1‖2

‖rk‖2

dk+1 = rk+1 + βk+1 dk.

� Beware that some authors define the residual rk as rk = b−Auk and the descent direction
dk as −dk. In this case, the second equation becomes

uk+1 = uk + ρkdk.
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Since d0 = r0, the equations

rk+1 = rk − ρkAdk
dk+1 = rk+1 − βk+1dk

imply by induction that the subspace Gk spanned by (r0, r1, . . . , rk) and (d0, d1, . . . , dk) is
the subspace spanned by

(r0, Ar0, A
2r0, . . . , A

kr0).

Such a subspace is called a Krylov subspace.

If we define the error ek as ek = uk − u, then e0 = u0 − u and Ae0 = Au0 − Au =
Au0 − b = d0 = r0, and then because

uk+1 = uk − ρkdk
we see that

ek+1 = ek − ρkdk.
Since dk belongs to the subspace spanned by (r0, Ar0, A

2r0, . . . , A
kr0) and r0 = Ae0, we see

that dk belongs to the subspace spanned by (Ae0, A
2e0, A

3e0, . . . , A
k+1e0), and then by induc-

tion we see that ek+1 belongs to the subspace spanned by (e0, Ae0, A
2e0, A

3e0, . . . , A
k+1e0).

This means that there is a polynomial Pk of degree ≤ k such that Pk(0) = 1 and

ek = Pk(A)e0.

This is an important fact because it allows an analysis of the convergence of the conjugate
gradient method; see Trefethen and Bau [106] (Lecture 38). For this, since A is symmetric
positive definite, we know that 〈u, v〉A = 〈Av, u〉 is an inner product on Rn whose associated
norm is denoted by ‖v‖A. Then observe that if e(v) = v − u, then

‖e(v)‖2
A = 〈Av − Au, v − u〉

= 〈Av, v〉 − 2〈Au, v〉+ 〈Au, u〉
= 〈Av, v〉 − 2〈b, v〉+ 〈b, u〉
= 2J(v) + 〈b, u〉.

It follows that v = uk minimizes ‖e(v)‖A on uk−1 +Gk−1 since uk minimizes J on uk−1 +Gk−1.
Since ek = Pk(A)e0 for some polynomial Pk of degree ≤ k such that Pk(0) = 1, if we let Pk
be the set of polynomials P (t) of degree ≤ k such that P (0) = 1, then we have

‖ek‖A = inf
P∈Pk

‖P (A)e0‖A .

Since A is a symmetric positive definite matrix it has real positive eigenvalues λ1, . . . , λn and
there is an orthonomal basis of eigenvectors h1, . . . , hn so that if we write e0 =

∑n
j=1 ajhj.

then we have

‖e0‖2
A = 〈Ae0, e0〉 =

〈 n∑
i=1

aiλihi,
n∑
j=1

ajhj

〉
=

n∑
j=1

a2
jλj
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and

‖P (A)e0‖2
A = 〈AP (A)e0, P (A)e0〉 =

〈 n∑
i=1

aiλiP (λi)hi,
n∑
j=1

ajP (λj)hj

〉
=

n∑
j=1

a2
jλj(P (λj))

2.

These equations imply that

‖ek‖A ≤
(

inf
P∈Pk

max
1≤i≤n

|P (λi)|
)
‖e0‖A .

It can be shown that the conjugate gradient method requires of the order of

n3 additions,

n3 multiplications,

2n divisions.

In theory, this is worse than the number of elementary operations required by the
Cholesky method. Even though the conjugate gradient method does not seem to be the
best method for full matrices, it usually outperforms other methods for sparse matrices.
The reason is that the matrix A only appears in the computation of the vector Adk. If the
matrix A is banded (for example, tridiagonal), computing Adk is very cheap and there is no
need to store the entire matrix A, in which case the conjugate gradient method is fast. Also,
although in theory, up to n iterations may be required, in practice, convergence may occur
after a much smaller number of iterations.

Using the inequality

‖ek‖A ≤
(

inf
P∈Pk

max
1≤i≤n

|P (λi)|
)
‖e0‖A ,

by choosing P to be shifted Chebyshev polynomial, it can be shown that

‖ek‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖e0‖A ,

where κ = cond2(A); see Trefethen and Bau [106] (Lecture 38, Theorem 38.5). Thus the
rate of convergence of the conjugate gradient method is governed by the ratio√

cond2(A)− 1√
cond2(A) + 1

,

where cond2(A) = λm/λ1 is the condition number of the matrix A. Since A is positive
definite, λ1 is its smallest eigenvalue and λm is its largest eigenvalue.

The above fact leads to the process of preconditioning , a method which consists in replac-
ing the matrix of a linear system Ax = b by an “equivalent” one for example M−1A (since



30.4. GRADIENT PROJECTION FOR CONSTRAINED OPTIMIZATION 801

M is invertible, the system Ax = b is equivalent to the system M−1Ax = M−1b), where M is
chosen so that M−1A is still symmetric positive definite and has a smaller condition number
than A; see Trefethen and Bau [106] (Lecture 40) and Demmel [33] (Section 6.6.5).

The method of conjugate gradients can be generalized to functionals that are not neces-
sarily quadratic. The stepsize parameter ρk is still determined by a line search which consists
in finding ρk such that

J(uk − ρkdk) = inf
ρ∈R

J(uk − ρdk).

This is more difficult than in the quadratic case and in general there is no guarantee that ρk
is unique, so some criterion to pick ρk is needed. Then

uk+1 = uk − ρkdk,

and the next descent direction can be chosen in two ways:

(1) (Polak–Ribière)

dk = ∇Juk +
〈∇Juk ,∇Juk −∇Juk−1

〉∥∥∇Juk−1

∥∥2 dk−1,

(2) (Fletcher–Reeves)

dk = ∇Juk +
‖∇Juk‖2∥∥∇Juk−1

∥∥2 dk−1.

Consecutive gradients are no longer orthogonal so these methods may run forever. There
are various sufficient criteria for convergence. In practice, the Polak–Ribière method con-
verges faster. There no longer any guarantee that these methods converge to a global mini-
mum.

30.4 Gradient Projection Methods for Constrained

Optimization

We now consider the problem of finding the minimum of a convex functional J : V → R over
a nonempty convex subset U of a Hilbert space V . By Theorem 21.11(3), the functional J
has a minimum at u ∈ U iff

dJu(v − u) ≥ 0 for all v ∈ U,

which can be expressed as

〈∇Ju, v − u〉 ≥ 0 for all v ∈ U.



802 CHAPTER 30. GENERAL RESULTS OF OPTIMIZATION THEORY

On the other hand, by the projection lemma (Proposition 29.5), the condition for a vector
u ∈ U to be the projection of an element w ∈ V onto U is

〈u− w, v − u〉 ≥ 0 for all v ∈ U.

These conditions are obviously analogous, and we can make this analogy more precise as
follows. If pU : V → U is the projection map onto U , we have the following chain of equiva-
lences:

u ∈ U and J(u) = inf
v∈U

J(v) iff

u ∈ U and 〈∇Ju, v − u〉 ≥ 0 for every v ∈ U , iff

u ∈ U and 〈u− (u− ρ∇Ju), v − u〉 ≥ 0 for every v ∈ U and every ρ > 0, iff

u = pU(u− ρ∇Ju) for every ρ > 0.

In other words, for every ρ > 0, u ∈ V is a fixed-point of the function g : V → U given by

g(v) = pU(v − ρ∇Jv).

The above suggests finding u by the method of successive approximations for finding the
fixed-point of a contracting mapping, namely given any initial u0 ∈ V , to define the sequence
(uk)k≥0 such that

uk+1 = pU(uk − ρk∇Juk),
where the parameter ρk > 0 is chosen at each step. This method is called the projected-
gradient method with variable stepsize parameter . Observe that if U = V , then this is just the
gradient method with variable stepsize. We have the following result about the convergence
of this method.

Proposition 30.14. Let J : V → R be a continuously differentiable functional defined on
a Hilbert space V , and let U be nonempty, convex, closed subset of V . Suppose there exists
two constants α > 0 and M > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V ,

and
‖∇Jv −∇Ju‖ ≤M ‖v − u‖ for all u, v ∈ V .

If there exists two real nunbers a, b ∈ R such that

0 < a ≤ ρk ≤ b ≤ 2α

M2
for all k ≥ 0,

then the projected-gradient method with variable stepsize parameter converges. Furthermore,
there is some constant β > 0 (depending on α,M, a, b) such that

β < 1 and ‖uk − u‖ ≤ βk ‖u0 − u‖ ,

where u ∈M is the unique minimum of J .
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Proof. For every ≥ 0, define the function gk : V → U by

gk(v) = pU(v − ρk∇Jv).

By Proposition 29.6, the projection map pU has Lipschitz constant 1, so using the inequalities
assumed to hold in the proposition, we have

‖gk(v1)− gk(v2)‖2 = ‖pU(v1 − ρk∇Jv1)− pU(v2 − ρk∇Jv2)‖2

≤ ‖(v1 − v2)− ρk(∇Jv1 −∇Jv2)‖2

= ‖v1 − v2‖2 − 2ρk〈∇Jv1 −∇Jv2 , v1 − v2〉+ ρ2
k ‖∇Jv1 −∇Jv2‖2

≤
(

1− 2αρk +M2ρ2
k

)
‖v1 − v2‖2 .

As in the proof of Proposition 30.10, we know that if a and b satisfy the conditions 0 < a ≤
ρk ≤ b ≤ 2α

M2 , then there is some β such that(
1− 2αρk +M2ρ2

k

)1/2

≤ β < 1 for all k ≥ 0.

Since the minimizing point u ∈ U is a fixed point of gk for all k, by letting v1 = uk and
v2 = u, we get

‖uk+1 − u‖ = ‖gk(uk)− gk(u)‖ ≤ β ‖uk − u‖ ,
which proves the convergence of the sequence (uk)k≥0.

In the case of an elliptic quadratic functional

J(v) =
1

2
〈Av, a〉 − 〈b, v〉

defined on Rn, the reasoning just after the proof of Proposition 30.10 can be immediately
adapted to show that convergence takes pkace as long as a, b and ρk are chosen such that

0 < a ≤ ρk ≤ b ≤ 2

λn
.

In theory, Proposition 30.14 gives a guarantee of the convergence of the projected-gradient
method. Unfortunately, because computing the projection pU(v) effectively is generally
impossible, the range of practical applications of Proposition 30.14 is rather limited. One
exception is the case where U is a product

∏m
i=1[ai, bi] of closed intervals (where ai = −∞

or bi = +∞ is possible). In this case, it is not hard to show that

pU(v)i =


ai if wi < ai

wi if ai ≤ wi ≤ bi

bi if bi < wi.
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In particular, this is the case if

U = Rn
+ = {v ∈ Rn | v ≥ 0}

and if

J(v) =
1

2
〈Av, a〉 − 〈b, v〉

is an elliptic quadratic functional on Rn. Then the vector uk+1 = (uk+1
1 , . . . , uk+1

n ) is given
in terms of uk = (uk1, . . . , u

k
n) by

uk+1
i = max{uki − ρk(Auk − b)i, 0}, 1 ≤ i ≤ n.

30.5 Penalty Methods for Constrained Optimization

In the case where V = Rn, another method to deal with constrained optimization is to
incorporate the domain U into the objective function J by adding a penalty function.

Definition 30.6. Given a nonempty closed convex subset U of Rn, a function ψ : Rn → R is
called a penalty function for U if ψ is convex and continuous and if the following conditions
hold:

ψ(v) ≥ 0 for all v ∈ Rn, and ψ(v) = 0 iff v ∈ U.

The following proposition shows that the use of penalty functions reduces a constrained
optimization problem to a sequence of unconstrained optimzation problems.

Proposition 30.15. Let J : Rn → R be a continuous, coercive, strictly convex function, U
be a nonempty, convex, closed subset of Rn, ψ : Rn → R be a penalty function for U , and let
Jε : Rn → R be the penalized objective function given by

Jε(v) = J(v) +
1

ε
ψ(v) for all v ∈ Rn.

Then, for every ε > 0, there exists a unique element uε ∈ Rn such that

Jε(uε) = inf
v∈Rn

Jε(v).

Furthermore, if u ∈ U is the unique minimizer of J over U , so that J(u) = infv∈U J(v), then

lim
ε7→0

uε = u.

Proof. Observe that since J is coercive, since ψ(v) ≥ 0 for all v ∈ Rn, and Jε = J + (1/ε)ψ,
we have Jε(v) ≥ J(v) for all v ∈ Rn, so Jε is also coercive. Since J is strictly convex and
(1/ε)ψ is convex, it is immediately checked that Jε = J + (1/ε)ψ is also strictly convex.
Then by Proposition 30.1 (and the fact that J and Jε are strictly convex), J has a unique
minimizer u ∈ U , and Jε has a unique minimizer uε ∈ Rn.
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Since ψ(u) = 0 iff u ∈ U , and ψ(v) ≥ 0 for all v ∈ Rn, we have Jε(u) = J(u), and since
uε is the minimizer of Jε we have Jε(uε) ≤ Jε(u), so we obtain

J(uε) ≤ J(uε) +
1

ε
ψ(uε) = Jε(uε) ≤ Jε(u) = J(u),

that is,

Jε(uε) ≤ J(u). (∗1)

Since J is coercive, the family (uε)ε>0 is bounded. By compactness (since we are in Rn),
there exists a subsequence (uε(i))i≥0 with limi 7→∞ ε(i) = 0 and some element u′ ∈ Rn such
that

lim
i 7→∞

uε(i) = u′.

From the inequality J(uε) ≤ J(u) proved in (∗1) and the continuity of J , we deduce that

J(u′) = lim
i 7→∞

J(uε(i)) ≤ J(u). (∗2)

By definition of Jε(uε) and (∗1), we have

0 ≤ ψ(uε(i)) ≤ ε(i)(J(u)− J(uε(i))),

and since the sequence (uε(i))i≥0 converges, the numbers J(u) − J(uε(i)) are bounded inde-
pendently of i. Consequently, since limi 7→∞ ε(i) = 0 and since the function ψ is continuous,
we have

0 = lim
i 7→∞

ψ(uε(i)) = ψ(u′),

which shows that u′ ∈ U . Since by (∗2) we have J(u′) ≤ J(u), and since both u, u′ ∈ U
and u is the unique minimizer of J over U we must have u′ = u. Therfore u′ is the unique
minimizer of J over U . But then the whole family (uε)ε>0 converges to u since we can use
the same argument as above for every subsequence of (uε)ε>0.

Note that a convex function ψ : Rn → R is automatically continuous, so the assumption
of continuity is redundant.

As an application of Proposition 30.15, if U is given by

U = {v ∈ Rn | ϕi(v) ≤ 0, i = 1, . . . ,m},

where the functions ϕi : Rn → R are convex, we can take ψ to be the function given by

ψ(v) =
m∑
i=1

max{ϕi(v), 0}.
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In practice, the applicability of the penalty-function method is limited by the difficulty
to construct effectively “good” functions ψ, for example, differentiable ones. Note that in
the above example the function ψ is not diferentiable. A better penalty function is

ψ(v) =
m∑
i=1

(max{ϕi(v), 0})2.

Another way to deal with constrained optimization problems is to use duality . This
approach is investigated in Chapter 31.

30.6 Summary

The main concepts and results of this chapter are listed below:

•



Chapter 31

Introduction to Nonlinear
Optimization

In Chapter 21 we investigated the problem of determining when a function J : Ω→ R defined
on some open subset Ω of a normed vector space E has a local extremum in a subset U of
Ω defined by equational constraints, namely

U = {x ∈ Ω | ϕi(x) = 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω → R are continuous (and usually, differentiable). Theorem 21.3
gives a necessary condition in terms of the Lagrange multipliers. In Section 21.3, we assume
that U is a convex subset of Ω and Theorem 21.8 gives us a necessary condition for the
function J : Ω→ R to have a local minimum at u with respect to U if dJu exists, namely

dJu(v − u) ≥ 0 for all v ∈ U.

Our first goal is to find a necessary criterion for a function J : Ω→ R to have a minimum
on a subset U , even is this subset is not convex. This can be done by introducing a notion
of “tangent cone” at a point u ∈ U .

Our approach is very much inspired by Ciarlet [30] because we find it one of the more
direct, and it is general enough to accomodate Hilbert spaces. The field of nonlinear opti-
mization and convex optimization is vast and there are many books on the subject. Among
those we recommend (in alphabetic order) Bertsekas [13, 14, 15], Bertsekas, Nedić, and
Ozdaglar [16], Boyd and Vandenberghe [22], Luenberger [69], and Luenberger and Ye [70].

31.1 The Cone of Feasible Directions

Let V be a normed vector space and let U be a nonempty subset of V . For any point u ∈ U ,
consider any converging sequence (uk)k≥0 of vectors uk ∈ U having u as their limit, with

807
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uk 6= u for all k ≥ 0, and look at the sequence of “unit chords,”

uk − u
‖uk − u‖

.

This sequence could oscillate forever, or it could have a limit, some unit vector ŵ ∈ V . In
the second case, all nonzero vectors λŵ for all λ > 0, belong to the cone of feasible directions
at u, which is defined as follows.

Definition 31.1. Let V be a normed vector space and let U be a nonempty subset of V .
For any point u ∈ U , the cone C(u) of feasible directions at u is the union of {0} and the
set of all nonzero vectors w ∈ V for which there exists some convergent sequence (uk)k≥0 of
vectors, such that

(1) uk ∈ U and uk 6= u for all k ≥ 0, and limk 7→∞ = u.

(2) limk 7→∞
uk − u
‖uk − u‖

=
w

‖w‖ , with w 6= 0.

Condition (2) can also be expressed as follows: there is a sequence (δk)k≥0 of vectors δk ∈ V
such that

uk = u+ ‖uk − u‖
w

‖w‖ + ‖uk − u‖ δk, lim
k 7→∞

δk = 0, w 6= 0.

Figure 31.1 illustrates the construction of w in C(u).

U
uu1

u1

u

- u

u1 - u
u1 - u

u - uk

u2

u - u2

u - u2

k

u - uk

w
w

Figure 31.1: Let U be the pink region in R2 with fuchsia point u ∈ U . For any sequence
(uk)k≥0 of points in U which converges to u, form the chords uk − u and take the limit to
construct the red vector w.

The set C(u) is a cone with apex 0, a notion defined as follows.

Definition 31.2. Given a vector space V , a nonempty subset C ⊆ V is a cone with apex 0
(for short, a cone), if for any v ∈ V , if v ∈ C, then λv ∈ C for all λ > 0 (λ ∈ R). For any
u ∈ V , a cone with apex u is any nonempty subset of the form u + C = {u + v | v ∈ C},
where C is a cone with apex 0; see Figure 31.2.
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(0,0,1)

V

C

(0,0,0)

(0.25, 0.5, 0.5) = u

(0.25, 0.5, 1.5)

u + C

Figure 31.2: Let C be the cone determined by the bold orange curve through (0, 0, 1) in the
plane z = 1. Then u+C, where u = (0.25, 0.5, 0.5), is the affine translate of C via the vector
u.

Observe that a cone with apex 0 (or u) is not necessarily convex, and that 0 does not
necessarily belong to C (resp. u does not necessarily belong to u+C), although in the case
of the cone of feasible directions C(u) we have 0 ∈ C(u) (and u ∈ u+C(u)). The condition
for being a cone only asserts that if a nonzero vector v belongs to C, then the open ray
{λv | λ > 0} (resp. the affine open ray u+ {λv | λ > 0}) also belongs to C.

Clearly, the cone C(u) of feasible directions at u is a cone with apex 0, and u+C(u) is a
cone with apex u. Obviously, it would be desirable to have conditions on U that imply that
C(u) is a convex cone. Such conditions will be given later on.

Observe that the cone C(u) of feasible directions at u contains the velocity vectors at u of
all curves γ in U through u. If γ : (−1, 1)→ U is such a curve with γ(0) = u, and if γ′(u) 6= 0
exists, then there is a sequence (uk)k≥0 of vectors in U converging to u as in Definition 31.1,
with uk = γ(tk) for some sequence (tk)k≥0 of reals tk > 0 such that limk 7→∞ tk = 0, so that

uk − u = tkγ
′(0) + tkεk, lim

k 7→∞
εk = 0,

and we get

lim
k 7→∞

uk − u
‖uk − u‖

=
γ′(0)

‖γ′(0)‖ .

For an illustration of this paragraph in R2, see Figure 31.3.
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0

0

ttt 12k

t1t2tk

uuuu
12k

u1 u2

uk

(i.)

(0)γ ‘

(0)γ ‘

γ

γ

C(u)

(ii.)

U

Figure 31.3: Let U be purple region in R2 and u be the designated point on the boundary of
U . Figure (i.) illustrates two curves through u and two sequences (uk)k≥0 converging to u.
The limit of the chords uk − u corresponds to the tangent vectors for the appropriate curve.
Figure (ii.) illustrates the half plane C(u) of feasible directions.

Example 31.1. In V = R2, let ϕ1 and ϕ2 be given by

ϕ1(u1, u2) = −u1 − u2

ϕ2(u1, u2) = u1(u2
1 + u2

2)− (u2
1 − u2

2),

and let
U = {(u1, u2) ∈ R2 | ϕ1(u1, u2) ≤ 0, ϕ2(u1, u2) ≤ 0}.

The region U shown in Figure 31.4 is bounded by the curve given by the equation ϕ1(u1, u2) =
0, that is, −u1 − u2 = 0, the line of slope −1 through the origin, and the curve given by
the equation u1(u2

1 + u2
2) − (u2

1 − u2
2) = 0, a nodal cubic through the origin. We obtain a

parametric definition of this curve by letting u2 = tu1, and we find that

u1(t) =
1− t2
1 + t2

, u2(t) =
t(1− t2)

1 + t2
.
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The tangent vector at t is given by (u′1(t), u′2(t)) with

u′1(t) =
−2t(1 + t2)− (1− t2)2t

(1 + t2)2
=

−4t

(1 + t2)2

and

u′2(t) =
(1− 3t2)(1 + t2)− (t− t3)2t

(1 + t2)2
=

1− 2t2 − 3t4 − 2t2 + 2t4

(1 + t2)2
=

1− 4t2 − t4
(1 + t2)2

.

The nodal cubic passes through the origin for t = ±1, and for t = −1 the tangent vector is
(1,−1), and for t = 1 the tangent vector is (−1,−1). The cone of feasible directions C(0)
at the origin is given by

C(0) = {(u1, u2) ∈ R2 | u1 + u2 ≥ 0, |u1| ≥ |u2|}.

This is not a convex cone since it contains the sector delimited by the lines u2 = u1 and
u2 = −u1, but also the ray supported by the vector (−1, 1).

(i.)

(ii.)

Figure 31.4: Figure (i.) illustrates U as the shaded gray region which lies between the line
y = −x and nodal cubic. Figure (ii.) shows the cone of feasible directions, C(0), as the
union of turquoise triangular cone and the turquoise the directional ray (−1, 1).

The two crucial properties of the cone of feasible directions are shown in the following
proposition.

Proposition 31.1. Let U be any nonempty subset of a normed vector space V .
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(1) For any u ∈ U , the cone C(u) of feasible directions at u is closed.

(2) Let J : Ω→ R be a function defined on an open subset Ω containing U . If J has a local
minimum with respect to the set U at a point u ∈ U , and if J ′u exists at u, then

J ′u(v − u) ≥ 0 for all v ∈ u+ C(u).

Proof. (1) Let (wn)n≥0 be a sequence of points wn ∈ C(u) converging to a limit w ∈ V . We
may assume that w 6= 0, since 0 ∈ C(u) by definition, and thus we may also assume that
wn 6= 0 for all n ≥ 0. By definition, for every n ≥ 0, there is a sequence (unk)k≥0 of points in
V and some wn 6= 0 such that

(1) unk ∈ U and unk 6= u for all k ≥ 0, and limk 7→∞ unk = u.

(2) There is a sequence (δnk )k≥0 of vectors δnk ∈ V such that

unk = u+ ‖unk − u‖
wn
‖wn‖

+ ‖unk − u‖ δnk , lim
k 7→∞

δnk = 0, wn 6= 0.

Let (εn)n≥0 be a sequence of real numbers εn > 0 such that limn7→∞ εn = 0 (for example,
εn = 1/(n + 1)). Due to the convergence of the sequences (unk) and (δnk ) for every fixed n,
there exist an integer k(n) such that∥∥unk(n) − u

∥∥ ≤ εn,
∥∥δnk(n)

∥∥ ≤ εn.

Consider the sequence (unk(n))n≥0. We have

unk(n) ∈ U, unk(n) 6= 0, for all n ≥ 0, lim
n7→∞

unk(n) = u,

and we can write

unk(n) = u+
∥∥unk(n) − u

∥∥ w

‖w‖ +
∥∥unk(n) − u

∥∥(δnk(n) +

(
wn
‖wn‖

− w

‖w‖

))
.

Since limk 7→∞(wn/ ‖wn‖) = w/ ‖w‖, we conclude that w ∈ C(u). See Figure 31.5.

(2) Let w = v−u be any nonzero vector in the cone C(u), and let (uk)k ≥0 be a sequence
of points in U − {u} such that

(1) limk 7→∞ uk = u.

(2) There is a sequence (δk)k≥0 of vectors δk ∈ V such that

uk − u = ‖uk − u‖
w

‖w‖ + ‖uk − u‖ δk, lim
k 7→∞

δk = 0, w 6= 0,

(3) J(u) ≤ J(uk) for all k ≥ 0.
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w1

w2

wn

w

u1

u1
1

2

u1k

w1

w1

w

u2

uk
2

2

u21

uk
n

un
un2

1

w

u

U

Figure 31.5: Let U be the mint green region in R2 with u = (0, 0). Let (wn)n≥0 be a sequence
of points along the upper dashed curve which converge to w. By following the dashed orange
longitudinal curves, and selecting an appropriate point, we construct the dark green curve
in U , which passes through u, and at u has tangent vector proportional to w.

Since J is differentiable at u, we have

0 ≤ J(uk)− J(u) = J ′u(uk − u) + ‖uk − u‖ εk, (∗)

for some sequence (εk)k≥0 such that limk 7→∞ εk = 0. Since J ′u is linear and continuous, and

uk − u = ‖uk − u‖
w

‖w‖ + ‖uk − u‖ δk, lim
k 7→∞

δk = 0, w 6= 0,

(∗) implies that

0 ≤ ‖uk − u‖‖w‖ (J ′u(w) + ηk),

with
ηk = ‖w‖ (J ′u(δk) + εk),

and since J ′u is continuous, we have limk 7→∞ ηk = 0. But then, J ′u(w) ≥ 0, since if J ′u(w) < 0,
then for k large enough the expression J ′u(w) + ηk would be negative, and since uk 6= u, the
expression
(‖uk − u‖ / ‖w‖)(J ′u(w) + ηk) would also be negative, a contradiction.

From now on, we assume that U is defined by a set of inequalities, that is

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where the functions ϕi : Ω→ R are continuous (and usually, differentiable). As we explained
earlier, an equality constraint ϕi(x) = 0 is treated as the conjunction of the two inequalities
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ϕi(x) ≤ 0 and −ϕi(x) ≤ 0. Later on, we will see that when the functions ϕi are convex,
since −ϕi is not necessarily convex, it is desirable to treat equality constraints separately,
but for the time being we won’t.

Our next goal is find sufficient conditions for the cone C(u) to be convex, for any u ∈ U .
For this, we assume that the functions ϕi are differentiable at u. It turns out that the
constraints ϕi that matter are those for which ϕi(u) = 0, namely the constraints that are
tight, or as we say, active.

Definition 31.3. Given m functions ϕi : Ω → R defined on some open subset Ω of some
vector space V , let U be the set defined by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m}.
For any u ∈ U , a constraint ϕi is said to be active at u if ϕi(u) = 0, else inactive at u if
ϕi(u) < 0.

If a constraint ϕi is active at u, this corresponds to u being on a piece of the boundary
of U determined by some of the equations ϕi(u) = 0; see Figure 31.6.

Definition 31.4. For any u ∈ U , with

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},
we define I(u) as the set of indices

I(u) = {i ∈ {1, . . . ,m} | ϕi(u) = 0}
where the constraints are active. Since each (ϕ′i)u is a linear form, the subset

C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}
is the intersection of half spaces passing through the origin, so it is a convex set and obviously
it is a cone. If I(u) = ∅, then C∗(u) = V .

The special kinds of H-polyhedra of the form C∗(u) cut out by hyperplanes through the
origin are called H-cones . It can be shown that every H-cone is a polyhedral cone (also
called a V-cone), and conversely. The proof is nontrivial; see Gallier [45] and Ziegler [114].

We will prove shortly that we always have the inclusion

C(u) ⊆ C∗(u).

However, the inclusion can be strict, as in Example 31.1. Indeed for u = (0, 0) we have
I(0, 0) = {1, 2} and since

(ϕ′1)(u1,u2) = (−1 − 1), (ϕ′2)(u1,u2) = (3u2
1 + u2

2 − 2u1 2u1u2 + 2u2),

we have (ϕ′2)(0,0) = (0 0), and thus C∗(0) = {(u1, u2) ∈ R2 | u1 + u2 ≥ 0} as illustrated in
Figure 31.7.

The conditions stated in the following definition are sufficient conditions that imply that
C(u) = C∗(u), as we will prove next.
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y   =  x2

y = x 2

(1,1)

(1/4, 1/2)

y -
 1/2

 ≤
 x 

- 1
/4

w

y - 1 ≤ 1/2(x-1)

y 
- 1

 ≥
2(

x-
1)

w

(i.)

(ii.)

Figure 31.6: Let U be the light purple planar region which lies between the curves y = x2 and
y2 = x. Figure (i.) illustrates the boundary point (1, 1) given by the equalities y−x2 = 0 and
y2−x = 0. The affine translate of cone of feasible directions, C(1, 1), is illustrated by the pink
triangle whose sides are the tangent lines to the boundary curves. Figure (ii.) illustrates
the boundary point (1/4, 1/2) given by the equality y2 − x = 0. The affine translate of
C(1/4, 1/2) is the lilac half space bounded by the tangent line to y2 = x through (1/4, 1/2).

Definition 31.5. For any u ∈ U , with

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

if the functions ϕi are differentiable at u (in fact, we only this for i ∈ I(u)), we say that the
constraints are qualified at u if the following conditions hold:

(a) Either the constraints ϕi are affine for all i ∈ I(u), or

(b) There is some nonzero vector w ∈ V such that the following conditions hold for all
i ∈ I(u):

(i) (ϕ′i)u(w) ≤ 0.
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1
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C  (u)*

C(u)

Figure 31.7: For u = (0, 0), C∗(u) is the sea green half space given by u1 + u2 ≥ 0. This half
space strictly contains C(u), namely union the turquoise triangular cone and directional ray
(−1, 1).

(ii) If ϕi is not affine, then (ϕ′i)u(w) < 0.

Condition (b)(ii) implies that u is not a critical point of ϕi for every i ∈ I(u), so there
is no singularity at u in the zero locus of ϕi. Intuitively, if the constraints are qualified at u
then the boundary of U near u behaves “nicely.”

The boundary points illustrated in Figure 31.6 are qualified. Observe that U = {x ∈
R2 | ϕ1(x, y) = y2 − x ≤ 0, ϕ2(x, y) = x2 − y ≤ 0}. For u = (1, 1), I(u) = {1, 2},
(ϕ′1)(1,1) = (−1 2), (ϕ′2)(1,1) = (2 − 1), and w = (−1, 1) ensures that (ϕ′1)(1,1) and (ϕ′1)(1,1)

satisfy Condition (b) of Definition 31.5. For u = (1/4, 1/2), I(u) = {1}, (ϕ′1)(1,1) = (−1 1),
and w = (−1, 0) will satisfy Condition (b).

In Example 31.1, the constraint ϕ2(u1, u2) = 0 is not qualified at the origin because
(ϕ′2)(0,0) = (0, 0); in fact, the origin is a self-intersection. In the example below, the origin is
also a singular point, but for a different reason.

Example 31.2. Consider the region U ⊆ R2 determined by the two curves given by

ϕ1(u1, u2) = u2 −max(0, u3
1)

ϕ2(u1, u2) = u4
1 − u2.

We have I(0, 0) = {1, 2}, and since (ϕ1)′(0,0)(w1, w2) = (0 1)
(
w1

w2

)
= w2 and (ϕ′2)(0,0)(w1, w2) =

(0 − 1)
(
w1

w2

)
= −w2, we have C∗(0) = {(u1, u2) ∈ R2 | u2 = 0}, but the constraints are

not qualified at (0, 0) since it is impossible to have simultaneously (ϕ′1)(0,0)(w1, w2) < 0 and
(ϕ′2)(0,0)(w1, w2) < 0, so in fact C(0) = {(u1, u2) ∈ R2 | u1 ≥ 0, u2 = 0} is strictly contained
in C∗(0); see Figure 31.8.
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Figure 31.8: Figures (i.) and (ii.) illustrate the purple moon shaped region associated with
Example 31.2. Figure (i.) also illustrates C(0), the cone of feasible directions, while Figure
(ii.) illustrates the strict containment of C(0) in C∗(0).

Proposition 31.2. Let u be any point of the set

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where Ω is an open subset of the normed vector space V , and assume that the functions ϕi
are differentiable at u (in fact, we only this for i ∈ I(u)). Then the following facts hold:

(1) The cone C(u) of feasible directions at u is contained in the convex cone C∗(u); that
is,

C(u) ⊆ C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}.

(2) If the constraints are qualified at u (and the functions ϕi are continuous at u for all
i /∈ I(u) if we only assume ϕi differentiable at u for all i ∈ I(u)), then

C(u) = C∗(u).
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Proof. (1) For every i ∈ I(u), since ϕi(v) ≤ 0 for all v ∈ U and ϕi(u) = 0, the function −ϕi
has a local minimum at u with respect to U , so by Proposition 31.1, we have

(−ϕ′i)u(v) ≥ 0 for all v ∈ C(u),

which is equivalent to (ϕ′i)u(v) ≤ 0 for all v ∈ C(u) and for all i ∈ I(u), that is, u ∈ C∗(u).

(2)(a) First, let us assume that ϕi is affine for every i ∈ I(u). Recall that ϕi must be
given by ϕi(v) = hi(v) + ci for all v ∈ V , where hi is a linear form and ci ∈ R. Since the
derivative of a linear map at any point is itself,

(ϕ′i)u(v) = hi(v) for all v ∈ V .

Pick any nonzero w ∈ C∗(u), which means that (ϕ′i)u(w) ≤ 0 for all i ∈ I(u). For any
sequence (εk)k≥0 of reals εk > 0 such that limk 7→∞ εk = 0, let (uk)k≥0 be the sequence of
vectors in V given by

uk = u+ εkw.

We have uk−u = εkw 6= 0 for all k ≥ 0 and limk 7→∞ uk = u. Furthermore, since the functions
ϕi are continuous for all i /∈ I, we have

0 > ϕi(u) = lim
k 7→∞

ϕi(uk),

and since ϕi is affine and ϕi(u) = 0 for all i ∈ I, we have ϕi(u) = hi(u) + ci = 0, so

ϕi(uk) = hi(uk) + ci = hi(uk)− hi(u) = hi(uk − u) = (ϕ′i)u(uk − u) = εk(ϕ
′
i)u(w) ≤ 0,

which implies that uk ∈ U for all k large enough. Since

uk − u
‖uk − u‖

=
w

‖w‖ for all k ≥ 0,

we conclude that w ∈ C(u). See Figure 31.9.

(2)(b) Let us now consider the case where some function ϕi is not affine for some i ∈ I(u).
Let w 6= 0 be some vector in V such that Condition (b) of Definition 31.5 holds, namely: for
all i ∈ I(u), we have

(i) (ϕ′i)u(w) ≤ 0.

(ii) If ϕi is not affine, then (ϕ′i)u(w) < 0.

Pick any nonzero vector v ∈ C∗(u), which means that (ϕ′i)u(v) ≤ 0 for all i ∈ I(u), and let
δ > 0 be any positive real number such that v + δw 6= 0. For any sequence (εk)k≥0 of reals
εk > 0 such that limk 7→∞ εk = 0, let (uk)k≥0 be the sequence of vectors in V given by

uk = u+ εk(v + δw).
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Figure 31.9: Let U be the peach triangle bounded by the lines y = 0, x = 0, and y = −x+1.
Let u satisfy the affine constraint ϕ(x, y) = y+ x− 1. Since ϕ′(x,y) = (1 1), set w = (−1,−1)
and approach u along the line u+ tw.

We have uk − u = εk(v + δw) 6= 0 for all k ≥ 0 and limk 7→∞ uk = u. Furthermore, since the
functions ϕi are continuous for all i /∈ I(u), we have

0 > ϕi(u) = lim
k 7→∞

ϕi(uk) for all i /∈ I(u), (∗1)

and as in the previous case, for all i ∈ I(u) such that ϕi is affine, since (ϕ′i)u(v) ≤ 0,
(ϕ′i)u(w) ≤ 0, and εk, δ > 0, we have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w)) ≤ 0 for all i ∈ I(u) and ϕi affine, (∗2)

and since ϕi is differentiable and ϕi(u) = 0 for all i ∈ I(u), if ϕi is not affine we have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w)) + εk ‖uk − u‖ ηk(uk − u)

with lim‖uk−u‖7→0 ηk(uk − u) = 0, so if we write αk = ‖uk − u‖ ηk(uk − u), we have

ϕi(uk) = εk((ϕ
′
i)u(v) + δ(ϕ′i)u(w) + αk)

with limk 7→∞ αk = 0, and since (ϕ′i)u(v) ≤ 0, we obtain

ϕi(uk) ≤ εk(δ(ϕ
′
i)u(w) + αk) for all i ∈ I(u) and ϕi not affine. (∗3)

The Equations (∗1), (∗2), (∗3) show that uk ∈ U for k sufficiently large, where in (∗3), since
(ϕ′i)u(w) < 0 and δ > 0, even if αk > 0, when limk 7→∞ αk = 0, we will have δ(ϕ′i)u(w)+αk < 0
for k large enough, and thus εk(δ(ϕ

′
i)u(w) + αk) < 0 for k large enough.

Since
uk − u
‖uk − u‖

=
v + δw

‖v + δw‖
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for all k ≥ 0, we conclude that v+ δw ∈ C(u) for δ > 0 small enough. But now the sequence
(vn)n≥0 given by

vn = v + εnw

converges to v, and for n large enough vn ∈ C(u). Since by Proposition 31.1, the cone C(u)
is closed, we conclude that v ∈ C(u). See Figure 31.10.

w

v

u1
u2

u3
uk

w

v

δ

w

v

u

δw

v

u

φ

φ

‘

‘

1

1

(

(

)

)

u

u
≤

≤ 0

0

(i.)

(ii.)

Figure 31.10: Let U be the pink lounge in R2. Let u satisfy the non-affine constraint ϕ1(u).
Choose vectors v and w in the half space (ϕ′1)u ≤ 0. Figure (i.) approaches u along the line
u + t(δw + v) and shows that v + δw ∈ C(u) for fixed δ. Figure (ii.) varies δ in order that
the purple vectors approach v as δ →∞.

In all cases, we proved that C∗(u) ⊆ C(u), as claimed.

In the case of m affine constraints aix ≤ bi, for some linear forms ai and some bi ∈ R,
for any point u ∈ Rn such that aiu = bi for all i ∈ I(u), the cone C(u) consists of all v ∈ Rn

such that aiv ≤ 0, so u+ C(u) consists of all points u+ v such that

ai(u+ v) ≤ bi for all i ∈ I(u),
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which is the cone cut out by the hyperplanes determining some face of the polyhedron defined
by the m constraints aix ≤ bi.

We are now ready to prove one of the most important results of nonlinear optimization.

31.2 The Karush–Kuhn–Tucker Conditions

If the domain U is defined by inequality constraints satisfying mild differentiability conditions
and if the constraints at u are qualified, then there is a necessary condition for the function J
to have a local minimum at u ∈ U involving generalized Lagrange multipliers. The proof uses
a version of Farkas Lemma. In fact, the necessary condition stated next holds for infinite-
dimensional vector spaces because there a version of Farkas Lemma holding for real Hilbert
spaces, but we will content ourselves with the version holding for finite dimensional normed
vector spaces. For the more general version, see Theorem 29.11 (or Ciarlet [30], Chapter 9).

We will be using the following version of Farkas Lemma.

Proposition 31.3. (Farkas Lemma, Version I) Let A be an m × n matrix and let b ∈ Rm

be any vector. The linear system Ax = b has no solution x ≥ 0 iff there is some nonzero
linear form y ∈ (Rm)∗ such that yA ≥ 0>n and yb < 0.

We will use the version of Farkas Lemma obtained by taking a contrapositive, namely:
if yA ≥ 0>n implies yb ≥ 0 for all linear forms y ∈ (Rm)∗, then linear system Ax = b some
solution x ≥ 0.

Actually, it is more convenient to use a version of Farkas Lemma applying to a Euclidean
vector space (with an inner product denoted 〈−,−〉). This version also applies to an infinite
dimensional real Hilbert space; see Theorem 29.11. Recall that in a Euclidean space V the
inner product induces an isomorphism between V and its dual V ∗. In our case, we need
the isomorphism ] from V ∗ to V defined such that for every linear form ω ∈ V ∗, the vector
ω] ∈ V is uniquely defined by the equation

ω(v) = 〈v, ω]〉 for all v ∈ V .

In Rn, the isomorphism between Rn and (Rn)∗ amounts to transposition: if y ∈ (Rn)∗ is
a linear form and v ∈ Rn is a vector, then

yv = v>y>.

The version of the Farkas–Minskowski lemma in term of an inner product is as follows.

Proposition 31.4. (Farkas–Minkowski) Let V be a Euclidean space of finite dimension with
inner product 〈−,−〉 (more generally, a Hilbert space). For any finite family (a1, . . . , am) of
m vectors ai ∈ V and any vector b ∈ V , for any v ∈ V ,

if 〈ai, v〉 ≥ 0 for i = 1, . . . ,m implies that 〈b, v〉 ≥ 0,
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then there exist λ1, . . . , λm ∈ R such that

λi ≥ 0 for i = 1, . . . ,m, and b =
m∑
i=1

λiai,

that is, b belong to the polyhedral cone cone(a1, . . . , am).

Proposition 31.4 is the special case of Theorem 29.11 which holds for real Hilbert spaces.

We can now prove the following theorem.

Theorem 31.5. Let ϕi : Ω→ R be m constraints defined on some open subset Ω of a finite-
dimensional Euclidean vector space V (more generally, a real Hilbert space V ), let J : Ω→ R
be some function, and let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m}.

For any u ∈ U , let
I(u) = {i ∈ {1, . . . ,m} | ϕi(u) = 0},

and assume that the functions ϕi are differentiable at u for all i ∈ I(u) and continuous at u
for all i /∈ I(u). If J is differentiable at u, has a local minimum at u with respect to U , and
if the constraints are qualified at u, then there exist some scalars λi(u) ∈ R for all i ∈ I(u),
such that

J ′u +
∑
i∈I(u)

λi(u)(ϕ′i)u = 0, and λi(u) ≥ 0 for all i ∈ I(u).

The above conditions are called the Karush–Kuhn–Tucker optimality conditions. Equiva-
lently, in terms of gradients, the above conditions are expressed as

∇Ju +
∑
i∈I(u)

λi(u)∇(ϕi)u = 0, and λi(u) ≥ 0 for all i ∈ I(u).

Proof. By Proposition 31.1, we have

J ′u(w) ≥ 0 for all w ∈ C(u), (∗1)

and by Proposition 31.2, we have C(u) = C∗(u), where

C∗(u) = {v ∈ V | (ϕ′i)u(v) ≤ 0, i ∈ I(u)}, (∗2)

so (∗1) can be expressed as: for all w ∈ V ,

if w ∈ C∗(u) then J ′u(w) ≥ 0,

or
if − (ϕ′i)u(w) ≥ 0 for all i ∈ I(u) then J ′u(w) ≥ 0. (∗3)
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Under the isomorphism ], the vector (J ′u)
] is the gradient ∇Ju, so that

J ′u(w) = 〈w,∇Ju〉, (∗4)

and the vector ((ϕ′i)u)
] is the gradient ∇(ϕi)u, so that

(ϕ′i)u(w) = 〈w,∇(ϕi)u〉. (∗5)

Using the Equations (∗4) and (∗5), the Equation (∗3) can be written as: for all w ∈ V ,

if 〈w,−∇(ϕi)u〉 ≥ 0 for all i ∈ I(u) then 〈w,∇Ju〉 ≥ 0. (∗6)

By the Farkas–Minkowski proposition (Proposition 31.4), there exist some sacalars λi(u) for
all i ∈ I(u), such that λi(u) ≥ 0 and

∇Ju =
∑
i∈I(u)

λi(u)(−∇(ϕi)u),

that is
∇Ju +

∑
i∈I(u)

λi(u)∇(ϕi)u = 0,

and using the inverse of the isomorphism ] (which is linear), we get

J ′u +
∑
i∈I(u)

λi(u)(ϕ′i)u = 0,

as claimed.

Since the constraints are inequalities of the form ϕi(x) ≤ 0, there is a way of expressing
the Karush–Kuhn–Tucker optimality conditions, often abbreviated as KKT conditions , in a
way that does not refer explicitly to the index set I(u):

J ′u +
m∑
i=1

λi(u)(ϕ′i)u = 0, (KKT1)

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m. (KKT2)

Indeed, if we have the strict inequality ϕi(u) < 0 (the constraint ϕi is inactive at u), since
all the terms λi(u)ϕi(u) are nonpositive, we must have λi(u) = 0; that is, we only need to
consider the λi(u) for all i ∈ I(u). Yet another way to express the conditions in (KKT2) is

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m. (KKT′2)
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In other words, for any i ∈ {1, . . . ,m}, if ϕi(u) < 0, then λi(u) = 0; that is, if the constraint
ϕi is inactive at u, then λi(u) = 0. By contrapositive, if λi(u) 6= 0, then ϕi(u) = 0; that is,
if λi(u) 6= 0, then the constraint ϕi is active at u. The conditions in (KKT′2) are referred to
as complementary slackness conditions.

The scalars λi(u) are often called generalized Lagrange multipliers . If V = Rn, the
necessary conditions of Theorem 31.5 are expressed as the following system of equations and
inequalities in the unknowns (u1, . . . , un) ∈ Rn and (λ1, . . . , λm) ∈ Rm

+ :

∂J

∂x1

(u) + λ1
∂ϕ1

∂x1

(u) + · · ·+ λm
∂ϕm
∂x1

(u) = 0

...
...

∂J

∂xn
(u) + λ1

∂ϕn
∂x1

(u) + · · ·+ λm
∂ϕm
∂xn

(u) = 0

λ1ϕ1(u) + · · ·+ λmϕm(u) = 0

ϕ1(u) ≤ 0

...
...

ϕm(u) ≤ 0

λ1, . . . , λm ≥ 0.

Example 31.3. Let J , ϕ1 and ϕ2 be the functions defined on R by

J(x) = x

ϕ1(x) = −x
ϕ2(x) = x− 1.

In this case
U = {x ∈ R | −x ≤ 0, x− 1 ≤ 0} = [0, 1].

Since the constraints are affine, they are automatically qualified for any u ∈ [0, 1]. The
system of equations and inequalities shown above becomes

1− λ1 + λ2 = 0

−λ1x+ λ2(x− 1) = 0

−x ≤ 0

x− 1 ≤ 0

λ1, λ2 ≥ 0.

The last four equations imply that either x = 0 or x = 1.

If x = 0, by the second equation we get λ2 = 0, so λ1 = 1 ≥ 0. Indeed x = 0 is the
minimun of J(x) = x over [0, 1].

If x = 1, by the second equation we get λ1 = 0, so λ2 = −1, a contradiction. Indeed, 1
is a maximum, and not a minimum of J(x) = x over [0, 1].
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Remark: Unless the linear forms (ϕ′i)u for i ∈ I(u) are linearly independent, the λi(u) are
generally not unique. Also, if I(u) = ∅, then the KKT conditions reduce to J ′u = 0. This is
not surprising because in this case u belongs to the relative interior of U .

If the constraints are all affine equality constraints, then the KKT conditions are a bit
simpler. We will consider this case shortly.

The conditions for the qualification of nonaffine constraints are hard (if not impossible)
to use in practice, because they depend on u ∈ U and on the derivatives (ϕ′i)u. Thus it is
desirable to find simpler conditions. Fortunately, this is possible if the nonaffine functions
ϕi are convex.

Definition 31.6. Let U ⊆ Ω ⊆ V be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

where Ω is an open subset of the Euclidean vector space V . If the functions ϕi : Ω→ R are
convex, we say that the constraints are qualified if the following conditions hold:

(a) Either the constraints ϕi are affine for all i = 1, . . . ,m and U 6= ∅, or

(b) There is some vector v ∈ Ω such that the following conditions hold for i = 1, . . . ,m:

(i) ϕi(v) ≤ 0.

(ii) If ϕi is not affine, then ϕi(v) < 0.

The above qualification conditions are known as Slater’s conditions .

Condition (b)(i) also implies that U has nonempty relative interior. If Ω is convex, then
U is also convex. This is because for all u, v ∈ Ω, if u ∈ U and v ∈ U , that is ϕi(u) ≤ 0 and
ϕi(v) ≤ 0 for i = 1, . . . ,m, since the functions ϕi are convex, for all θ ∈ [0, 1] we have

ϕi((1− θ)u+ θv) ≤ (1− θ)ϕi(u) + θϕi(v) since ϕi is convex

≤ 0 since 1− θ ≥ 0, θ ≥ 0, ϕi(u) ≤ 0, ϕi(v) ≤ 0,

and any intersection of convex sets is convex.

� It is important to observe that a nonaffine equality constraint ϕi(u) = 0 is never qualified.

Indeed, ϕi(u) = 0 is equivalent to ϕi(u) ≤ 0 and −ϕi(u) ≤ 0, so if these constraints
are qualified and if ϕi is not affine then there is some nonzero vector v ∈ Ω such that both
ϕi(v) < 0 and −ϕi(v) < 0, which is impossible. For this reason, equality constraints are
often assumed to be affine.

The following theorem yields a more flexible version of Theorem 31.5 for constraints given
by convex functions. If in addition, the function J is also convex, then the KKT conditions
are also a sufficient condition for a local minimum.
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Theorem 31.6. Let ϕi : Ω→ R be m convex constraints defined on some open convex subset
Ω of a finite-dimensional Euclidean vector space V (more generally, a real Hilbert space V ),
let J : Ω→ R be some function, let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, 1 ≤ i ≤ m},

and let u ∈ U be any point such that the functions ϕi and J are differentiable at u.

(1) If J has a local minimum at u with respect to U , and if the constraints are qualified,
then there exist some scalars λi(u) ∈ R, such that the KKT condition hold:

J ′u +
m∑
i=1

λi(u)(ϕ′i)u = 0

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑
i=1

λi(u)∇(ϕi)u = 0,

and
m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.

(2) Conversely, if the restriction of J to U is convex and if there exist scalars (λ1, . . . , λm) ∈
Rm

+ such that the KKT conditions hold, then the function J has a (global) minimum at u
with respect to U .

Proof. (1) It suffices to prove that if the convex constraints are qualified according to Def-
inition 31.6, then they are qualified according to Definition 31.5, since in this case we can
apply Theorem 31.5.

If v ∈ Ω is a vector such that Condition (b) of Definition 31.6 holds and if v 6= u, for any
i ∈ I(u), since ϕi(u) = 0 and since ϕi is convex, by Proposition 21.9,

ϕi(v) ≥ ϕi(u) + (ϕ′i)u(v − u) = (ϕ′i)u(v − u),

so if we let w = v − u then
(ϕ′i)u(w) ≤ ϕi(v),

which shows that the nonaffine constraints ϕi for i ∈ I(u) are qualified according to Definition
31.5, by Condition (b) of Definition 31.6.
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If v = u, then the constraints ϕi for which ϕi(u) = 0 must be affine (otherwise, Condition
(b)(ii) of Definition 31.6 would be false), and in this case we can pick w = 0.

(2) Let v be any arbitrary point in the convex subset U . Since ϕi(v) ≤ 0 and λi ≥ 0 for
i = 1, . . . ,m, we have

∑m
i=1 λiϕi(v) ≤ 0, and using the fact that

m∑
i=1

λi(u)ϕi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m,

we have λi = 0 if i /∈ I(u) and ϕi(u) = 0 if i ∈ I(u), so we have

J(u) ≤ J(u)−
m∑
i=1

λiϕi(v)

≤ J(u)−
∑
i∈I(u)

λi(ϕi(v)− ϕi(u)) λi = 0 if i /∈ I(u), ϕi(u) = 0 if i ∈ I(u)

≤ J(u)−
∑
i∈I(u)

λi(ϕ
′
i)u(v − u) (by Proposition 21.9)

≤ J(u) + J ′u(v − u) (by the KKT conditions)

≤ J(v) (by Proposition 21.9),

and this shows that u is indeed a (global) minimum of J over U .

It is important to note that when both the constraints, the domain of definition Ω, and
the objective function J are convex , if the KKT conditions hold for some u ∈ U and some
λ ∈ Rm

+ , then Theorem 31.6 implies that J has a (global) minimum at u with respect to U ,
independently of any assumption on the qualification of the constraints.

The above theorem suggests introducing the function L : Ω× Rm
+ → R given by

L(v, λ) = J(v) +
m∑
i=1

λiϕi(v),

with λ = (λ1, . . . , λm). The function L is called the Lagrangian of the minimization problem
(P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m.

The KKT conditions of Theorem 31.6 imply that for any u ∈ U , if the vector λ =
(λ1, . . . , λm) is known and if u is a minimum of J on U , then

∂L

∂u
(u) = 0

J(u) = L(u, λ).
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The Lagrangian technique “absorbs” the constraints into the new objective function L and
reduces the problem of finding a constrained minimum of the function J , to the problem
of finding an unconstrained minimum of the function L(v, λ). This is the main point of
Lagrangian duality which will be treated in the next section.

A case that arises often in practice is the case where the constraints ϕi are affine. If so,
the m constraints aix ≤ bi can be expressed in matrix form as Ax ≤ b, where A is an m× n
matrix whose ith row is the row vector ai. The KKT conditions of Theorem 31.6 yield the
following corollary.

Proposition 31.7. If U is given by

U = {x ∈ Ω | Ax ≤ b},

where Ω is an open convex subset of Rn and A is an m× n matrix, and if J is differentiable
at u and J has a local minimum at u, then there exist some vector λ ∈ Rm, such that

∇Ju + A>λ = 0

λi ≥ 0 and if aiu < bi, then λi = 0, i = 1, . . . ,m.

If the function J is convex, then the above conditions are also sufficient for J to have a
minimum at u ∈ U .

Another case of interest is the generalization of the minimization problem involving the
affine constraints of a linear program in standard form, that is, equality constraints Ax = b
with x ≥ 0, where A is an m× n matrix. In our formalism, this corresponds to the 2m+ n
constraints

aix− bi ≤ 0, i = 1, . . . ,m

−aix+ bi ≤ 0, i = 1, . . . ,m

−xj ≤ 0, i = 1, . . . , n.

In matrix form, they can be expressed as A
−A
−In


x1

...
xn

 ≤
 b
−b
0n

 .

If we introduce the generalized Lagrange multipliers λ+
i and λ−i for i = 1, . . . ,m and µj

for j = 1, . . . , n, then the KKT conditions are

∇Ju +
(
A> −A> −In

)λ+

λ−

µ

 = 0n,
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that is,
∇Ju + A>λ+ − A>λ− − µ = 0,

and λ+, λ−, µ ≥ 0, and if aiu < bi then λ+
i = 0, if −aiu < −bi then λ−i = 0, and if −uj < 0,

then µj = 0. But the constraints aiu = bi hold for i = 1, . . . ,m, so this places no restriction
on the λ+

i and λ−i , and if we write λi = λ+
i − λ−i , then we have

∇Ju + A>λ = µ,

with µj ≥ 0, and if uj > 0 then µj = 0, for j = 1, . . . , n.

Thus we proved the following proposition (which is slight generalization of Proposition
8.7.2 in Matousek and Gardner [73]).

Proposition 31.8. If U is given by

U = {x ∈ Ω | Ax = b, x ≥ 0},

where where Ω is an open convex subset of Rn and A is an m × n matrix, and if J is
differentiable at u and J has a local minimum at u, then there exist two vectors λ ∈ Rm

µ ∈ Rn, such that
∇Ju + A>λ = µ,

with µj ≥ 0, and if uj > 0 then µj = 0, for j = 1, . . . , n. Equivalently, there exists a vector
λ ∈ Rm such that

(∇Ju)j + (Aj)>λ

{
= 0 if uj > 0

≥ 0 if uj = 0,

where Aj is the jth column of A. If the function J is convex, then the above conditions are
also sufficient for J to have a minimum at u ∈ U .

Yet another special case that arises frequently in practice is the minimization problem
involving the affine equality constraints Ax = b, where A is an m × n matrix, with no
restriction on x. Reviewing the proof of Proposition 31.8, we obtain the following proposition.

Proposition 31.9. If U is given by

U = {x ∈ Ω | Ax = b},

where Ω is an open convex subset of Rn and A is an m× n matrix, and if J is differentiable
at u and J has a local minimum at u, then there exist some vector λ ∈ Rm such that

∇Ju + A>λ = 0.

Equivalently, there exists a vector λ ∈ Rm such that

(∇Ju)j + (Aj)>λ = 0,

where Aj is the jth column of A. If the function J is convex, then the above conditions are
also sufficient for J to have a minimum at u ∈ U .



830 CHAPTER 31. INTRODUCTION TO NONLINEAR OPTIMIZATION

Observe that in Proposition 31.9, the λi are just standard Lagrange multipliers, with
no restriction of positivity. Thus, Proposition 31.9 is a slight generalization of Theorem
21.3 that requires A to have rank m, but in the case of equational affine constraints, this
assumption is unnecessary.

Here is an application of Proposition 31.9 to the interior point method in linear program-
ming.

Example 31.4. In linear programming, the interior point method using a central path uses
a logarithmic barrier function to keep the solutions x ∈ Rn of the equation Ax = b away
from boundaries by forcing x > 0, which means that xi > 0 for all i; see Matousek and
Gardner [73] (Section 7.2). Write

Rn
++ = {x ∈ Rn | xi > 0, i = 1, . . . , n}.

Observe that Rn
++ is open and convex. For any µ > 0, we define the function fµ defined on

Rn
++ by

fµ(x) = c>x+ µ
n∑
i=1

lnxi,

where c ∈ Rn.

We would like to find necessary condition for fµ to have a maximum on

U = {x ∈ Rn
++ | Ax = b},

or equivalently to solve the following problem:

maximize fµ(x)

subject to

Ax = b

x > 0.

By Proposition 31.9 if x is an optimal of the above problem then there is some y ∈ Rm

such that
∇fµ(x) + A>y = 0.

Since

∇fµ(x) =

c1 + µ
x1

...
cn + µ

xn

 ,

we obtain the equation

c+ µ


1
x1
...
1
xn

 = −A>y.
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To obtain a more convenient formulation, we define s ∈ Rn
++ such that

s = µ


1
x1
...
1
xn


which implies that (

s1x1 · · · snxn
)

= µ1>n ,

we rename −y as y (which does not make any difference since y ∈ Rm), and we obtain the
following necessary conditions for fµ to have a maximum:

Ax = b

A>y − s = c(
s1x1 · · · snxn

)
= µ1>n

s, x > 0.

It is not hard to show that if the primal linear program with objective function c>x
and equational constraints Ax = b and the dual program with objective function b>y and
inequality constraints A>y ≥ c have interior feasible points x and y, which means that x > 0
and s > 0 (where s = A>y − c), then the above system of equations has a unique solution
such that x is the unique maximizer of fµ on U ; see Matousek and Gardner [73] (Section
7.2, Lemma 7.2.1).

We now give an example illustrating Proposition 31.7, the Support Vector Machine (ab-
breviated as SVM).

31.3 Hard Margin Support Vector Machine; Version I

In this section we describe the following classification problem, or perhaps more accurately,
separation problem (into two classes). Suppose we have two nonempty disjoint finite sets of
p blue points {ui}pi=1 and q red points {vj}qj=1 in Rn (for simplicity, you may assume that
these points are in the plane, that is, n = 2). Our goal is to find a hyperplane H of equation
w>x− b = 0 (where w ∈ Rn is a nonzero vector and b ∈ R), such that all the blue points ui
are in one of the two open half-spaces determined by H, and all the red points vj are in the
other open half-space determined by H; see Figure 31.11.

Without loss of generality, we may assume that

w>ui − b > 0 for i = 1, . . . , p

w>vj − b < 0 for j = 1, . . . , q.
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w
   x - b = 0

u

u
u

u

1
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3
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3
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u1

u2

v
1

q

qv

v
2
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Figure 31.11: Two examples of the SVM separation problem. The left figure is SVM in R2,
while the right figure is SVM in R3.

Of course, separating the blue and the red points may be impossible, as we see in Figure
31.12 for four points where the line segments (u1, u2) and (v1, v2) intersect. If a hyper-
plane separating the two subsets of blue and red points exists, we say that they are linearly
separable.

Remark: Write m = p + q. The reader should be aware that in machine learning the
classification problem is usually defined as follows. We assign m so-called class labels yk = ±1
to the data points in such a way that yi = +1 for each blue point ui, and yp+j = −1 for
each red point vj, and we denote the m points by xk, where xk = uk for k = 1, . . . , p and
xk = vk−p for k = p+ 1, . . . , p+ q. Then the classification constraints can be written as

yk(w
>xk − b) > 0 for k = 1, . . . ,m.

The set of pairs {(x1, y1), . . . , (xm, ym)} is called a set of training data (or training set).

In the sequel, we will not use the above method, and we will stick to our two subsets of
p blue points {ui}pi=1 and q red points {vj}qj=1.

Since there are infinitely many hyperplanes separating the two subsets (if indeed the two
subsets are linearly separable), we would like to come up with a “good” criterion for choosing
such a hyperplane.

The idea that was advocated by Vapnik (see Vapnik [111]) is to consider the distances
d(ui, H) and d(vj, H) from all the points to the hyperplane H, and to pick a hyperplane
H that maximizes the smallest of these distances. In machine learning this strategy is
called finding a maximal margin hyperplane, or hard margin support vector machine, which
definitely sounds more impressive.
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uv
1
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2

2

Figure 31.12: Two examples in which it is impossible to find purple hyperplanes which
separate the red and blue points.

Since the distance from a point x to the hyperplane H of equation w>x− b = 0 is

d(x,H) =
|w>x− b|
‖w‖ ,

(where ‖w‖ =
√
w>w is the Euclidean norm of w), it is convenient to temporarily assume

that ‖w‖ = 1, so that
d(x,H) = |w>x− b|.

See Figure 31.13. Then with our sign convention, we have

d(ui, H) = w>ui − b i = 1, . . . , p

d(vj, H) = −w>vj + b j = 1, . . . , q.

If we let
δ = min{d(ui, H), d(vj, H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q},

then the hyperplane H should chosen so that

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q,

and such that δ > 0 is maximal. The distance δ is called the margin associated with the
hyperplane H. This is indeed one way of formulating the two-class separation problem as an
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x

H

x0

d(x, H) w

proj   
x - x0
w

Figure 31.13: In R3, the distance from a point to the plane w>x − b = 0 is given by the
projection onto the normal w.

optimization problem with a linear objective function J(δ, w, b) = δ, and affine and quadratic
constraints (SVMh1):

maximize δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖ ≤ 1.

Observe that the Problem (SVMh1) has an optimal solution δ > 0 iff the two subsets are
linearly separable. We used the constraint ‖w‖ ≤ 1 rather than ‖w‖ = 1 because the former
is qualified, whereas the latter is not.

Actually, if (w, b, δ) is an optimal solution of Problem (SVMh1), so in particular δ > 0,
then we claim that we must have ‖w‖ = 1. First, if w = 0, then we get the two inequalities

−b ≥ δ, b ≥ δ,

which imply that b ≤ −δ and b ≥ δ for some positive δ, which is impossible. But then, if
w 6= 0 and ‖w‖ < 1, by dividing both sides of the inequalities by ‖w‖ < 1 we would obtain
the better solution (w/ ‖w‖ , b/ ‖w‖ , δ/ ‖w‖), since ‖w‖ < 1 implies that δ/ ‖w‖ > δ.

We now prove that if the two subsets are linearly separable, then Problem (SVMh1) has
a unique optimal solution.

Theorem 31.10. If two disjoint subsets of p blue points {ui}pi=1 and q red points {vj}qj=1

are linearly separable, then Problem (SVMh1) has a unique optimal solution consisting of a
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hyperplane of equation w>x − b = 0 separating the two subsets with maximum margin δ.
Furthermore, if we define c1(w) and c2(w) by

c1(w) = min
1≤i≤p

w>ui

c2(w) = max
1≤j≤q

w>vj,

then w is the unique maximum of the function

ρ(w) =
c1(w)− c2(w)

2

over the convex subset U of Rn given by the inequalities

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q

‖w‖ ≤ 1,

and

b =
c1(w) + c2(w)

2
.

Proof. Our proof is adapted from Vapnik [111] (Chapter 10, Theorem 10.1). For any sepa-
rating hyperplane H, since

d(ui, H) = w>ui − b i = 1, . . . , p

d(vj, H) = −w>vj + b j = 1, . . . , q,

and since the smallest distance to H is

δ = min{d(ui, H), d(vj, H) | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
= min{w>ui − b, −w>vj + b | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
= min{min{w>ui − b | 1 ≤ i ≤ p},min{−w>vj + b | 1 ≤ j ≤ q}}
= min{min{w>ui | 1 ≤ i ≤ p} − b},min{−w>vj | 1 ≤ j ≤ q}+ b}
= min{min{w>ui | 1 ≤ i ≤ p} − b},−max{w>vj | 1 ≤ j ≤ q}+ b}
= min{c1(w)− b,−c2(w) + b},

in order for δ to be maximal we must have

c1(w)− b = −c2(w) + b,

which yields

b =
c1(w) + c2(w)

2
.
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In this case,

c1(w)− b =
c1(w)− c2(w)

2
= −c2(w) + b,

so the maximum margin δ is indeed obtained when ρ(w) = (c1(w) − c2(w))/2 is maximal
over U . Conversely, it is easy to see that any hyperplane of equation w>x− b = 0 associated
with a w maximizing ρ over U and b = (c1(w) + c2(w))/2 is an optimal solution.

It remains to show that an optimal separating hyperplane exists and is unique. Since the
unit ball is compact, U is compact, and since the function w 7→ ρ(w) is continuous, it achieves
its maximum for some w0 such that ‖w0‖ ≤ 1. Actually, we must have ‖w0‖ = 1, since
otherwise, by a familiar reasoning w0/ ‖w0‖ would be an even better solution. Therefore, w0

is on the boundary of U . But ρ is a concave function (as an infimum of affine functions),
so if it had two distinct maxima w0 and w′0 with ‖w0‖ = ‖w′0‖ = 1, these would be global
maxima since U is also convex, so we would have ρ(w0) = ρ(w′0) and then ρ would also have
the same value along the segment (w0, w

′
0) and in particular at (w0 +w′0)/2, an interior point

of U , a contradiction.

We can proceed with the above formulation (SVMh1) but there is a way to reformulate
the problem so that the constraints are all affine, which might be preferable since they will
be automatically qualified.

31.4 Hard Margin Support Vector Machine; Version II

Since δ > 0 (otherwise the data would not be separable into two disjoint sets), we can divide
the affine constraints by δ to obtain

w′>ui − b′ ≥ 1 i = 1, . . . , p

−w′>vj + b′ ≥ 1 j = 1, . . . , q,

except that now, w′ is not necessarily a unit vector. To obtain the distances to the hyperplane
H, we need to divide by ‖w′‖ and then we have

w′>ui − b′
‖w′‖ ≥ 1

‖w′‖ i = 1, . . . , p

−w′>vj + b′

‖w′‖ ≥ 1

‖w′‖ j = 1, . . . , q,

which means that the shortest distance from the data points to the hyperplane is 1/ ‖w′‖.
Therefore, we wish to maximize 1/ ‖w′‖, that is, to minimize ‖w′‖, so we obtain the following
optimization problem (SVMh2):
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Hard margin SVM (SVMh2):

minimize
1

2
‖w‖2

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q.

The objective function J(w) = 1/2 ‖w‖2 is convex, so Proposition 31.7 applies and gives
us a necessary and sufficient condition for having a minimum in terms of the KKT conditions.
First observe that the trivial solution w = 0 is impossible, because the blue constraints would
be

−b ≥ 1,

that is b ≤ −1, and the red constraints would be

b ≥ 1,

but these are contradictory. Our goal is to find w and b, and optionally, δ. We proceed in
four steps first demonstrated on the following example.

Suppose that p = q = n = 2, so that we have two blue points

u>1 = (u11, u12) u>2 = (u21, u22),

two red points

v>1 = (v11, v12) v>2 = (v21, v22),

and

w> = (w1, w2).

Step 1: Write the constraints in matrix form. Let

C =


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1

 d =


−1
−1
−1
−1

 . (M)

The constraints become

C

(
w
b

)
=


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1


w1

w2

b

 ≤

−1
−1
−1
−1

 . (C)
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Step 2: Write the objective function in matrix form.

J(w1, w2, b) =
1

2

(
w1 w2 b

)1 0 0
0 1 0
0 0 0

w1

w2

b

 . (O)

Step 3: Apply Proposition 31.7 to solve for w in terms of λ and µ. We obtain

w1

w2

0

+

−u11 −u21 v11 v21

−u12 −u22 v12 v22

1 1 −1 −1



λ1

λ2

µ1

µ2

 =

0
0
0

 ,

i.e.

∇J(w,b) + C>
(
λ
µ

)
= 0n+1.

Then w1

w2

0

 =

u11 u21 −v11 −v21

u12 u22 −v12 −v22

−1 −1 1 1



λ1

λ2

µ1

µ2

 ,

which implies

w =

(
w1

w2

)
= λ1

(
u11

u12

)
+ λ2

(
u21

u22

)
− µ1

(
v11

v12

)
− µ2

(
u21

u22

)
(∗1)

with respect to

µ1 + µ2 − λ1 − λ2 = 0. (∗2)

Step 4: Rewrite the constraints at (C) using (∗1). In particular C

(
w
b

)
≤ d becomes


−u11 −u12 1
−u21 −u22 1
v11 v12 −1
v21 v22 −1


u11 u21 −v11 −v21 0
u12 u22 −v21 −v22 0
0 0 0 0 1



λ1

λ2

µ1

µ2

b

 ≤

−1
−1
−1
−1

 .

Rewriting the previous equation in “block” format gives us

−


−u11 −u12

−u21 −u22

v11 v12

v21 v22

(−u11 −u21 v11 v21

−u12 −u22 v21 v22

)
λ1

λ2

µ1

µ2

+ b


1
1
−1
−1

+


1
1
1
1

 ≤


0
0
0
0

 ,
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which with the definition

X =

(
−u11 −u21 v11 v21

−u12 −u22 v21 v22

)
yields

−X>X
(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q ≤ 0p+q. (∗3)

Let us now consider the general case.

Step 1: Write the constraints in matrix form. First we rewrite the constraints as

−u>i w + b ≤ −1 i = 1, . . . , p

v>j w − b ≤ −1 j = 1, . . . , q,

and we get the (p+ q)× (n+ 1) matrix C and the vector d ∈ Rp+q given by

C =



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


, d =

−1
...
−1

 ,

so the set of inequality constraints is

C

(
w
b

)
≤ d.

Step 2: The objective function in matrix form is given by

J(w, b) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
.

Note that the corresponding matrix is symmetric positive semidefinite, but it is not invertible.
Thus the function J is convex but not strictly convex. This will cause some minor trouble
in finding the dual function of the problem.

Step 3: If we introduce the generalized Lagrange multipliers λ ∈ Rp and µ ∈ Rq,
according to Proposition 31.7, the first KKT condition is

∇J(w,b) + C>
(
λ
µ

)
= 0n+1,

with λ ≥ 0, µ ≥ 0. By the result of Example 20.4,

∇J(w,b) =

(
In 0n
0>n 0

)(
w
b

)
=

(
w
0

)
,
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so we get (
w
0

)
= −C>

(
λ
µ

)
,

that is, (
w
0

)
=

(
u1 · · · up −v1 · · · −vq
−1 · · · −1 1 · · · 1

)(
λ
µ

)
.

Consequently,

w =

p∑
i=1

λiui −
q∑
j=1

µjvj, (∗1)

and
q∑
j=1

µj −
p∑
i=1

λi = 0. (∗2)

Step 4: Rewrite the constrainst using (∗1). Plugging the above expression for w into

the constraints C

(
w
b

)
≤ d we get



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


(
u1 · · · up −v1 · · · −vq 0n
0 · · · 0 0 · · · 0 1

)λµ
b

 ≤
−1

...
−1

 ,

so if let X be the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
,

we obtain

w = −X
(
λ
µ

)
, (∗′1)

and the above inequalities are written in matrix form as

(
X>

1p
−1q

)(
−X 0n
0>p+q 1

)λµ
b

 ≤ −1p+q;

that is,

−X>X
(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q ≤ 0p+q. (∗3)
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Equivalently, the ith inequality is

−
p∑
j=1

u>i ujλj +

q∑
k=1

u>i vkµk + b+ 1 ≤ 0 i = 1, . . . , p,

and the (p+ j)th inequality is

p∑
i=1

v>j uiλi −
q∑

k=1

v>j vkµk − b+ 1 ≤ 0 j = 1, . . . , q.

We also have λ ≥ 0, µ ≥ 0. Furthermore, if the ith inequality is inactive then λi = 0, and if
the (p+ j)th inequality is inactive then µj = 0. Since the constraints are affine and since J
is convex, if we can find λ ≥ 0, µ ≥ 0, and b such that the inequalities in (∗3) are satisfied,
and λi = 0 and µj = 0 when the corresponding constraint is inactive, then by Proposition
31.7 we have an optimum solution.

Remark: The second KKT condition can be written as(
λ> µ>

)(
−X>X

(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q

)
= 0;

that is,

−
(
λ> µ>

)
X>X

(
λ
µ

)
+ b
(
λ> µ>

)( 1p
−1q

)
+
(
λ> µ>

)
1p+q = 0.

Since (∗2) says that
∑p

i=1 λi =
∑q

j=1 µj, the second term is zero, and by (∗′1) we get

w>w =
(
λ> µ>

)
X>X

(
λ
µ

)
=

p∑
i=1

λi +

q∑
j=1

µj.

Thus we obtain a simple expression for ‖w‖2 in terms of λ and µ.

The vectors ui and vj for which the i-th inequality is active and the (p+ j)th inequality
is active are called support vectors . For every vector ui or vj that is not a support vector,
the corresponding inequality is inactive so λi = 0 and µj = 0. Thus we see that only the
support vectors contribute to a solution. If we can guess which vectors ui and vj are support
vectors, namely, those for which λi 6= 0 and µj 6= 0, then for each support vector ui we have
an equation

−
p∑
j=1

u>i ujλj +

q∑
k=1

u>i vkµk + b+ 1 = 0,

and for each support vector vj we have an equation

p∑
i=1

v>j uiλi −
q∑

k=1

v>j vkµk − b+ 1 = 0,
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with λi = 0 and µj = 0 for all non-support vectors, so together with the Equation (∗2) we
have a linear system with an equal number of equations and variables, which is solvable if
our separation problem has a solutio. Thus,in principle we can find λ, µ, and b by solving a
linear system.

Remark: We can first solve for λ and µ (by eliminating b), and by (∗1) and since w 6= 0,
there is a least some nonzero λi0 and thus some nonzero µj0 , so the corresponding inequalities
are equations

−
p∑
j=1

u>i0ujλj +

q∑
k=1

u>i0vkµk + b+ 1 = 0

p∑
i=1

v>j0uiλi −
q∑

k=1

v>j0vkµk − b+ 1 = 0,

so b is given in terms of λ and µ by

b =
1

2
(u>i0 + v>j0)

(
p∑
i=1

λiui −
p∑
j=1

µjvj

)
.

Using the dual of the Lagrangian, we can solve for λ and µ, but typically b is not determined,
so we use the above method to find b.

The above nondeterministic procedure in which we guess which vectors are support vec-
tors is not practical. We will see later that a practical method for solving for λ and µ consists
in maximizing the dual of the Lagrangian.

If w is an optimal solution, then δ = 1/ ‖w‖ is the shortest distance from the support
vectors to the separating hyperplane Hw,b of equation w>x − b = 0. If we consider the two
hyperplanes Hw,b+1 and Hw,b−1 of equations

w>x− b− 1 = 0 and w>x− b+ 1 = 0,

then Hw,b+1 and Hw,b−1 are two hyperplanes parallel to the hyperplane Hw,b and the distance
between them is 2δ. Furthermore, Hw,b+1 contains the support vectors ui, Hw,b−1 contains
the support vectors vj, and there are no data points ui or vj in the open region between
these two hyperplanes containing the separating hyperplane Hw,b (called a “slab” by Boyd
and Vandenberghe; see [22], Section 8.6). This situation is illustrated in Figure 31.14.

Even if p = 1 and q = 2, a solution is not obvious. In the plane, there are four possibilities:

(1) If u1 is on the segment (v1, v2), there is no solution.

(2) If the projection h of u1 onto the line determined by v1 and v2 is between v1 and v2,
that is h = (1− α)v1 + α2v2 with 0 ≤ α ≤ 1, then it is the line parallel to v2 − v1 and
equidistant to u and both v1 and v2, as illustrated in Figure 31.15.
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Figure 31.14: In R3, the solution to the hard margin SVM is the purple plane sandwiched
between the red plane w>x− b + 1 = 0 and the blue plane w>x− b− 1 = 0, each of which
contains the appropriate support vectors ui and vj.

(3) If the projection h of u1 onto the line determined by v1 and v2 is to the right of v2, that
is h = (1− α)v1 + α2v2 with α > 1, then it is the bisector of the line segment (u1, v2).

(4) If the projection h of u1 onto the line determined by v1 and v2 is to the left of v1, that
is h = (1− α)v1 + α2v2 with α < 0, then it is the bisector of the line segment (u1, v1).

If p = q = 1, we can find a solution explicitly. Then (∗2) yields

λ = µ,

and if we guess that the constraints are active, the corresponding equality constraints are

−u>uλ+ u>vµ+ b+ 1 = 0

u>vλ− v>vµ− b+ 1 = 0,

so we get

(−u>u+ u>v)λ+ b+ 1 = 0

(u>v − v>v)λ− b+ 1 = 0,

Adding up the two equations we find

(2u>v − u>u− v>v)λ+ 2 = 0,
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u

v2

v1

Figure 31.15: The purple line, which is the bisector of the altitude of the isosceles triangle,
separates the two red points from the blue point in a manner which satisfies the hard margin
SVM.

that is

λ =
2

(u− v)>(u− v)
.

By subtracting the first equation from the second, we find

(u>u− v>v)λ− 2b = 0,

which yields

b = λ
(u>u− v>v)

2
=

u>u− v>v
(u− v)>(u− v)

.

Then by (∗1) we obtain

w =
2(u− v)

(u− v)>(u− v)
.

We verify easily that

2(u1 − v1)x1 + · · ·+ 2(un − vn)xn = (u2
1 + · · ·+ u2

n)− (v2
1 + · · ·+ v2

n)

is the equation of the bissector hyperplane between u and v; see Figure 31.16.

In the next section we will derive the dual of the optimization problem discussed in this
section. We will also consider a more flexible solution invovling a soft margin.

31.5 Lagrangian Duality and Saddle Points

In this section we investigate methods to solve the minimization problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m.
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u

p

v

Figure 31.16: In R3, the solution to the hard margin SVM for the points u and v is the
purple perpendicular planar bisector of u− v.

It turns out that under certain conditions the original problem (P ), called primal problem,
can be solved in two stages with the help another problem (D), called the dual problem. The
dual problem (D) is a maximization problem involving a function G, called the Lagrangian
dual , and it is obtained by minimizing the Lagrangian L(v, µ) of Problem (P ) over the
variable v ∈ Rn, holding µ fixed, where L : Ω× Rm

+ → R is given by

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),

with µ ∈ Rm
+ .

The two steps of the method are:

(1) Find the dual function µ 7→ G(µ) explictly by solving the minimization problem of
finding the minimum of L(v, µ) with respect to v ∈ Ω, holding µ fixed. This is an
unconstrained minimization problem (with v ∈ Ω). If we are lucky, a unique minimizer
uµ such that G(µ) = L(uµ, µ) can be found. We will address the issue of uniqueness
later on.

(2) Solve the maximization problem of finding the maximum of the function µ 7→ G(µ)
over all µ ∈ Rm

+ . This is basically an unconstrained problem, except for the fact that
µ ∈ Rm

+ .

If steps (1) and (2) are successful, under some suitable conditions on the function J and
the constraints ϕi (for example, if they are convex), for any solution λ ∈ Rm

+ obtained in
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step (2), the vector uλ obtained in step (1) is an optimal solution of Problem (P ). This is
proved in Theorem 31.14.

In order to prove Theorem 31.14, which is our main result, we need two intermediate
technical results of independent interest involving the notion of saddle point.

The local minima of a function J : Ω → R over a domain U defined by inequality con-
straints are saddle points of the Lagrangian L(u, µ) associated with J and the constraints
ϕi. Then, under some mild hypotheses, the set of solutions of the minimization problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

coincides with the set of first arguments of the saddle points of the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v).

This is proved in Theorem 31.12. To prove Theorem 31.14, we also need Proposition 31.11,
a basic property of saddle points.

Definition 31.7. Let L : Ω×M → R be a function defined on a set of the form Ω×M . A
point (u, λ) ∈ Ω×M is a saddle point of L if u is a minimum of the function L(−, λ) : Ω→ R
given by v 7→ L(v, λ) for all v ∈ Ω and λ fixed, and λ is a maximum of the function
L(u,−) : M → R given by µ 7→ L(u, µ) for all µ ∈M and u fixed; equivalently,

sup
µ∈M

L(u, µ) = L(u, λ) = inf
v∈Ω

L(v, λ).

Note that the order of the arguments u and λ is important. The second set M will be
the set of generalized multipliers, and this is why we use the symbol M

A saddle point is often depicted as a mountain pass, which explains the terminology; see
Figure 31.17. However, this is a bit misleading since other situations are possible; see Figure
31.18.

Proposition 31.11. If (u, λ) is a saddle point of a function L : Ω×M → R, then

sup
µ∈M

inf
v∈Ω

L(v, µ) = L(u, λ) = inf
v∈Ω

sup
µ∈M

L(v, µ).

Proof. First we prove that the following inequality always holds:

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ inf
v∈Ω

sup
µ∈M

L(v, µ). (∗1)

Pick any w ∈ Ω and any ρ ∈ M . By definition of inf (the greatest lower bound) and sup
(the least upper bound), we have

inf
v∈Ω

L(v, ρ) ≤ L(w, ρ) ≤ sup
µ∈M

L(w, µ).



31.5. LAGRANGIAN DUALITY AND SADDLE POINTS 847

> > 

x
y

L(u, λ)

Figure 31.17: A three-dimensional rendition of a saddle point L(u, λ) for the function
L(u, λ) = u2 − λ2. The plane x = u provides a maximum as the apex of a downward
opening parabola, while the plane y = λ provides a minimum as the apex of an upward
opening parabola.

The cases where infv∈Ω L(v, ρ) = −∞ or where supµ∈M L(w, µ) = +∞ may arise, but this is
not a problem. Since

inf
v∈Ω

L(v, ρ) ≤ sup
µ∈M

L(w, µ)

and the right-hand side is independent of ρ, it is an upper bound of the left-hand side for
all ρ, so

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ sup
µ∈M

L(w, µ).

Since the left-hand side is independent of w, it is a lower bound for the right-hand side for
all w, so we obtain (∗1):

sup
µ∈M

inf
v∈Ω

L(v, µ) ≤ inf
v∈Ω

sup
µ∈M

L(v, µ).

To obtain the reverse inequality, we use the fact that (λ, µ) is a saddle point, so

inf
v∈Ω

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

L(u, µ) = L(u, λ)

and
L(u, λ) = inf

v∈Ω
L(v, λ) ≤ sup

µ∈M
inf
v∈Ω

L(v, µ),

and these imply that
inf
v∈Ω

sup
µ∈M

L(v, µ) ≤ sup
µ∈M

inf
v∈Ω

L(v, µ), (∗2)

as desired.
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Figure 31.18: Let Ω = {[t, 0, 0] | 0 ≤ t ≤ 1} and M = {[0, t, 0] | 0 ≤ t ≤ 1}. In Figure (i.),
L(u, λ) is the blue slanted quadrilateral whose forward vertex is a saddle point. In Figure
(ii.), L(u, λ) is the planar green rectangle composed entirely of saddle points.

We now return to our main minimization problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints ϕi : Ω → R are some functions defined on some open
subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert
space V ).

Definition 31.8. The Lagrangian of the minimization problem (P ) defined above is the
function L : Ω× Rm

+ → R given by

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),
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with µ = (µ1, . . . , µm). The numbers µi are called generalized Lagrange multipliers .

The following theorem shows that under some suitable conditions, every solution u of
the Problem (P ) is the first argument of a saddle point (u, λ) of the Lagrangian L, and
conversely, if (u, λ) is a saddle point of the Lagrangian L, then u is a solution of the Problem
(P ).

Theorem 31.12. Consider Problem (P ) defined above where J : Ω→ R and the constraints
ϕi : Ω → R are some functions defined on some open subset Ω of some finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ). The following facts hold.

(1) If (u, λ) ∈ Ω×Rm
+ is a saddle point of the Lagrangian L associated with Problem (P ),

then u ∈ U , u is a solution of Problem (P ), and J(u) = L(u, λ).

(2) If Ω is convex (open), if the functions ϕi (1 ≤ i ≤ m) and J are convex and differen-
tiable at the point u ∈ U , if the constraints are qualified, and if u ∈ U is a minimum of
Problem (P ), then there exists some vector λ ∈ Rm

+ such that the pair (u, λ) ∈ Ω×Rm
+

is a saddle point of the Lagrangian L.

Proof. (1) Since (u, λ) is a saddle point of L we have supµ∈M L(u, µ) = L(u, λ) which implies
that L(u, µ) ≤ L(u, λ) for all µ ∈ Rm

+ , which means that

J(u) +
m∑
i=1

µiϕi(u) ≤ J(u) +
m∑
i=1

λiϕi(u),

that is,
m∑
i=1

(µi − λi)ϕi(u) ≤ 0 for all µ ∈ Rm
+ .

If we let each µi be large enough, then µi − λi > 0, and if we had ϕi(u) > 0 then the term
(µi − λi)ϕi(u) could be made arbitrarily large and positive, so we conclude that ϕi(u) ≤ 0
for i = 1, . . . ,m, and consequently, u ∈ U . For µ = 0, we conclude that

∑m
i=1 λiϕi(u) ≥ 0,

while since λi ≥ 0 and ϕi(u) ≤ 0 we have
∑m

i=1 λiϕi(u) ≤ 0, so we must have u ∈ U and

m∑
i=1

λiϕi(u) = 0. (∗1)

This shows that J(u) = L(u, λ). Since the inequality L(u, λ) ≤ L(v, λ) is

J(u) +
m∑
i=1

λiϕi(u) ≤ J(v) +
m∑
i=1

λiϕi(v),

by (∗1) we obtain

J(u) ≤ J(v) +
m∑
i=1

λiϕi(v) for all v ∈ Ω

≤ J(v) for all v ∈ U (since ϕi(v) ≤ 0 and λi ≥ 0),
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which shows that u is a minimum of J on U .

(2) The hypotheses required to apply Theorem 31.6(1) are satisfied. Consequently if
u ∈ U is a solution of Problem (P ), then there exists some vector λ ∈ Rm

+ such that the
KKT conditions hold:

J ′(u) +
m∑
i=1

λi(ϕ
′
i)u = 0 and

m∑
i=1

λiϕi(u) = 0.

The second equation yields

L(u, µ) = J(u) +
m∑
i=1

µiϕi(u) ≤ J(u) = J(u) +
m∑
i=1

λiϕi(u) = L(u, λ),

that is,
L(u, µ) ≤ L(u, λ) for all µ ∈ Rm

+ (∗2)

(since ϕi(u) ≤ 0 as u ∈ U), and since the function v 7→ J(v) +
∑

i=1 λiϕi(v) = L(v, λ) is
convex as a sum of convex functions, by Theorem 21.11(4), the first equation is a sufficient
condition for the existence of minimum. Consequently,

L(u, λ) ≤ L(v, λ) for all v ∈ Ω, (∗3)

and (∗2) and (∗3) show that (u, λ) is a saddle point of L.

To recap what we just proved, under some mild hypotheses, the set of solutions of the
minimization Problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

coincides with the set of first arguments of the saddle points of the Lagrangian

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),

and for any optimum u ∈ U of Problem (P ) we have J(u) = L(u, λ).

Therefore, if we knew some particular second argument λ of these saddle points, then
the constrained problem (P ) would be replaced by the unconstrained problem (Pλ):

find uλ ∈ Ω such that

L(uλ, λ) = inf
v∈Ω

L(v, λ).

How do we find such an element λ ∈ Rm
+ ?
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For this, remember that for a saddle point (uλ, λ), by Proposition 31.11, we have

L(uλ, λ) = inf
v∈Ω

L(v, λ) = sup
µ∈Rm+

inf
v∈Ω

L(v, µ),

so we are naturally led to introduce the function G : Rm
+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

and then λ will be a solution of the problem

find λ ∈ Rm
+ such that

G(λ) = sup
µ∈Rm+

G(µ),

which is equivalent to the maximization problem (D):

maximize G(µ)

subject to µ ∈ Rm
+ .

Definition 31.9. Given the minimization problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where J : Ω → R and the constraints ϕi : Ω → R are some functions defined on some open
subset Ω of some finite-dimensional Euclidean vector space V (more generally, a real Hilbert
space V ), the function G : Rm

+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

is called the Lagrange dual function (or simply dual function). The problem (D)

maximize G(µ)

subject to µ ∈ Rm
+

is called the Lagrange dual problem. The problem (P ) is often called the primal problem,
and (D) is the dual problem. The variable µ is called the dual variable. The variable µ ∈ Rm

+

is said to be dual feasible if G(µ) is defined (not −∞). If λ ∈ Rm
+ is a maximum of G, then

we call it a dual optimal or an optimal Lagrange multiplier .

Since

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v),
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the function G(µ) = infv∈Ω L(v, µ) is the pointwise infimum of some affine functions of µ,
so it it concave, even if the ϕi are not convex. One of the main advantages of the dual
problem over the primal problem is that it is a convex optimization problem, since we wish
to maximize a concave objective function G (thus minimize −G, a convex function), and the
constraints µ ≥ 0 are convex. In a number of practical situations the dual function G can
indeed be computed.

To be perfectly rigorous we should mention that the dual function G is actually a partial
function, because it takes the value −∞ when the map v 7→ L(v, µ) is unbounded below.

Example 31.5. Consider the linear program (P )

minimize c>x

subject to Ax ≤ b, x ≥ 0,

where A is an m×n matrix. The constraints x ≥ 0 are rewritten as −xi ≤ 0, so we introduce
Lagrange multipliers µ ∈ Rm

+ and ν ∈ Rn
+, and we have the Lagrangian

L(v, µ, ν) = c>v + µ>(Av − b)− ν>v
= −b>µ+ (c+ A>µ− ν)>v.

The linear function v 7→ (c + A>µ − ν)>v is unbounded below unless c + A>µ − ν = 0, so
the dual function G(µ, ν) = infv∈Rn L(v, µ, ν) is given for all µ ≥ 0 and ν ≥ 0 by

G(µ, ν) =

{
−b>µ if A>µ− ν + c = 0,

−∞ otherwise.

The domain of G is a proper subset of Rm
+ × Rn

+.

Observe that the value G(µ, ν) of the function G, when it is defined, is independent of
the second argument ν. Since we are interested in maximizing G, this suggests introducing
the function Ĝ of the single argument µ given by

Ĝ(µ) = −b>µ,

which is defined for all µ ∈ Rm
+ .

Of course, supµ∈Rm+ Ĝ(µ) and sup(µ,ν)∈Rm+×Rn+ G(µ ν) are generally different, but note that

Ĝ(µ) = G(µ, ν) iff there is some ν ∈ Rn
+ such that A>µ−ν+c = 0 iff A>µ+c ≥ 0. Therefore,

finding sup(µ,ν)∈Rm+×Rn+ G(µ, ν) is equivalent to the constrained problem (D1)

maximize − b>µ
subject to A>µ ≥ −c, µ ≥ 0.

The above problem is the dual of the linear program (P ).
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In summary, the dual function G of a primary problem (P ) often contains hidden inequal-
ity constraints that define its domain, and sometimes it is possible to make these domain
constraints ψ1(µ) ≤ 0, . . . , ψp(µ) ≤ 0 explicit, to define a new function Ĝ that depends only
on q < m of the variables µi and is defined for all values µi ≥ 0 of these variables, and to
replace the maximization problem (D), find supµ∈Rm+ G(µ), by the constrained problem (D1)

maximize Ĝ(µ)

subject to ψi(µ) ≤ 0, i = 1, . . . , p.

Problem (D1) is different from the dual program (D), but it is equivalent to (D) as a
maximization problem.

Another important property of the dual function G is that it provides a lower bound on
the value of the objective function J . Indeed, we have

G(µ) ≤ L(u, µ) ≤ J(u) for all u ∈ U and all µ ∈ Rm
+ , (†)

since µ ≥ 0 and ϕi(u) ≤ 0 for i = 1, . . . ,m, so

G(µ) = inf
v∈Ω

L(v, µ) ≤ L(u, µ) = J(u) +
m∑
i=1

µiϕi(u) ≤ J(u).

If the primal problem (P ) has a minimum denoted p∗ and the dual problem (D) has a
maximum denoted d∗, then the above inequality implies that

d∗ ≤ p∗ (†w)

known as weak duality . Equivalently, for every optimal solution λ∗ of the dual problem and
every optimal solution u∗ of the primal problem, we have

G(λ∗) ≤ J(u∗). (†w′)

In particular, if p∗ = −∞, which means that the primal problem is unbounded below, then
the dual problem is unfeasible. Conversely, if d∗ = +∞, which means that the dual problem
is unbounded above, then the primal problem is unfeasible.

The difference p∗ − d∗ ≥ 0 is called the optimal duality gap. If the duality gap is zero,
that is, p∗ = d∗, then we say that strong duality holds. Even when the duality gap is strictly
positive, the inequality (†w) can be helpful to find a lower bound on the optimal value of a
primal problem that is difficult to solve, since the dual problem is always convex.

If the primal problem and the dual problem are feasible and if the optimal values p∗ and
d∗ are finite and p∗ = d∗ (no duality gap), then the complementary slackness conditions hold
for the inequality constraints.
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Proposition 31.13. (Complementary Slackness) Given the minimization problem (P )

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

and its dual problem (D)

maximize G(µ)

subject to µ ∈ Rm
+ ,

if both (P ) and (D) are feasible, u ∈ U is an optimal solution of (P ), λ ∈ Rm
+ is an optimal

solution of (D), and J(u) = G(λ), then

m∑
i=1

λiϕi(u) = 0.

In other words, if the constraint ϕi is inactive at u, then λi = 0.

Proof. Since J(u) = G(λ) we have

J(u) = G(λ)

= inf
v∈Ω

(
J(v) +

m∑
i=1

λiϕi(v)

)
by definition of G

≤ J(u) +
m∑
i=1

λiϕi(u) the greatest lower bound is a lower bound

≤ J(u) since λi ≥ 0, ϕi(u) ≤ 0.

which implies that
∑m

i=1 λiϕi(u) = 0.

Going back to Example 31.5, we see that weak duality says that for any feasible solution
u of the primal problem (P ), that is, some u ∈ Rn such that

Au ≤ b, u ≥ 0,

and for any feasible solution µ ∈ Rm of the dual problem (D1), that is,

A>µ ≥ −c, µ ≥ 0,

we have
−b>µ ≤ c>u.

Actually, if u and λ are optimal, then we know that strong duality holds, namely−b>µ = c>u,
but the proof of this fact is nontrivial.

The following theorem establishes a link between the solutions of the primal problem (P )
and those of the dual problem (D). It also gives sufficient conditions for the duality gap to
be zero.
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Theorem 31.14. Consider the minimization problem (P ):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where the functions J and ϕi are defined on some open subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ).

(1) Suppose the functions ϕi : Ω → R are continuous, and that for every µ ∈ Rm
+ , the

problem (Pµ):

minimize L(v, µ)

subject to v ∈ Ω,

has a unique solution uµ, so that

L(uµ, µ) = inf
v∈Ω

L(v, µ) = G(µ),

and the function µ 7→ uµ is continuous (on Rm
+ ). If λ is any solution of problem (D):

maximize G(µ)

subject to µ ∈ Rm
+ ,

then the solution uλ of the corresponding problem (Pλ) is a solution of Problem (P ).

(2) Assume Problem (P ) has some solution u ∈ U , and that Ω is convex (open), the
functions ϕi (1 ≤ i ≤ m) and J are convex and differentiable at u, and that the
constraints are qualified. Then Problem (D) has a solution λ ∈ Rm

+ , and J(u) = G(λ);
that is, the duality gap is zero.

Proof. (1) Our goal is to prove that for any solution λ of Problem (D), the pair (uλ, λ) is a
saddle point of L. By Theorem 31.12(1), the point uλ ∈ U is a solution of Problem (P ).

Since λ ∈ Rm
+ is a solution of Problem (D), by definition of G(λ) and since uλ satisfies

Problem (Pλ), we have
G(λ) = inf

v∈Ω
L(v, λ) = L(uλ, λ),

which is one of the two equations characterizing a saddle point. In order to prove the second
equation characterizing a saddle point,

sup
µ∈Rm+

L(uµ, µ) = L(uλ, λ),

we will begin by proving that the function G is differentiable for any µ ∈ Rm
+ , in order to be

able to apply Theorem 21.8 to conclude that since G has a maximum at λ, that is, −G has
minimum at λ, then −G′λ(µ− λ) ≥ 0 for all µ ∈ Rm

+ . In fact, we prove that

G′µ(ξ) =
m∑
i=1

ξiϕi(uµ) for all ξ ∈ Rm.
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Consider any two points µ and µ+ ξ in Rm
+ . By definition of uµ we have

L(uµ, µ) ≤ L(uµ+ξ, µ),

which means that

J(uµ) +
m∑
i=1

µiϕi(uµ) ≤ J(uµ+ξ) +
m∑
i=1

µiϕi(uµ+ξ), (∗1)

and since G(µ) = L(uµ, µ) = J(uµ) +
∑m

i=1 µiϕi(uµ) and G(µ + ξ) = L(uµ+ξ, µ + ξ) =
J(uµ+ξ) +

∑m
i=1(µi + ξi)ϕi(uµ+ξ), we have

G(µ+ ξ)−G(µ) = J(uµ+ξ)− J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ)−
m∑
i=1

µiϕi(uµ), (∗2)

and since (∗1) can be written as

0 ≤ J(uµ+ξ)− J(uµ) +
m∑
i=1

µiϕi(uµ+ξ)−
m∑
i=1

µiϕi(uµ),

by adding
∑m

i=1 ξiϕi(uµ+ξ) to both sides of the above inequality and using (∗2) we get

m∑
i=1

ξiϕi(uµ+ξ) ≤ G(µ+ ξ)−G(µ). (∗3)

By definition of uµ+ξ we have

L(uµ+ξ, µ+ ξ) ≤ L(uµ, µ+ ξ),

which means that

J(uµ+ξ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ) ≤ J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ), (∗4)

which can be written as

J(uµ+ξ)− J(uµ) +
m∑
i=1

(µi + ξi)ϕi(uµ+ξ)−
m∑
i=1

(µi + ξi)ϕi(uµ) ≤ 0,

and by adding
∑m

i=1 ξiϕi(uµ) to both sides of the above inequality and using (∗2) we get

G(µ+ ξ)−G(µ) ≤
m∑
i=1

ξiϕi(uµ). (∗5)
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Putting (∗3) and (∗5) together we obtain

m∑
i=1

ξiϕi(uµ+ξ) ≤ G(µ+ ξ)−G(µ) ≤
m∑
i=1

ξiϕi(uµ). (∗6)

Consequently there is some θ ∈ [0, 1] such that

G(µ+ ξ)−G(µ) = (1− θ)
( m∑
i=1

ξiϕi(uµ)

)
+ θ

( m∑
i=1

ξiϕi(uµ+ξ)

)
=

m∑
i=1

ξiϕi(uµ) + θ

( m∑
i=1

ξi(ϕi(uµ+ξ)− ϕi(uµ))

)
.

Since by hypothesis the functions µ 7→ uµ (from Rm
+ to Ω) and ϕi : Ω → R are continuous,

for any µ ∈ Rm
+ we can write

G(µ+ ξ)−G(µ) =
m∑
i=1

ξiϕi(uµ) + ‖ξ‖ ε(ξ), with limξ 7→0 ε(ξ) = 0, (∗7)

for any ‖ ‖ norm on Rm. Equation (∗)7 show that G is differentiable for any µ ∈ Rm
+ , and

that

G′µ(ξ) =
m∑
i=1

ξiϕi(uµ) for all ξ ∈ Rm. (∗8)

Actually there is a small problem, namely that the notion of derivative was defined for a
function defined on an open set, but Rm

+ is not open. The difficulty only arises to ensure
that the derivative is unique, but in our case we have a unique expression for the derivative
so there is no problem as far as defining the derivative. There is still a potential problem,
which is that we would like to apply Theorem 21.8 to conclude that since G has a maximum
at λ, that is, −G has minimum at λ, then

−G′λ(µ− λ) ≥ 0 for all µ ∈ Rm
+ , (∗9)

but the hypotheses of Theorem 21.8 require the domain of the function to be open. Fortu-
nately, close examination of the proof of Theorem 21.8 shows that the proof still holds with
U = Rm

+ . Therefore, (∗8) holds, equivalently

G′λ(µ− λ) ≤ 0 for all µ ∈ Rm
+ , (∗10)

which, using the expression for G′λ given in (∗8) gives

m∑
i=1

µiϕi(uλ) ≤
m∑
i=1

λiϕi(uλ), for all µ ∈ Rm
+ . (∗11)
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As a consequence of (∗11), we obtain

L(uλ, µ) = J(uλ) +
m∑
i=1

µiϕi(uλ)

≤ J(uλ) +
m∑
i=1

λiϕi(uλ) = L(uλ, λ),

for all µ ∈ Rm
+ , that is,

L(uλ, µ) ≤ L(uλ, λ), for all µ ∈ Rm
+ , (∗12)

which implies the second inequality

sup
µ∈Rm+

L(uµ, µ) = L(uλ, λ)

stating that (uλ, λ) is a saddle point. Therefore, (uλ, λ) is a saddle point of L, as claimed.

(2) The hypotheses are exactly those required by Theorem 31.12(2), thus there is some
λ ∈ Rm

+ such that (u, λ) is a saddle point of the Lagrangian L, and by Theorem 31.12(1) we
have J(u) = L(u, λ). By Proposition 31.11, we have

J(u) = L(u, λ) = inf
v∈Ω

L(v, λ) = sup
µ∈Rm+

inf
v∈Ω

L(v, µ),

which can be rewritten as
J(u) = G(λ) = sup

µ∈Rm+
G(µ),

in other words, Problem (D) has a solution, and J(u) = G(λ).

Remark: If (u, λ) is a saddle point of the Lagrangian L (defined on Ω × Rm
+ ), then by

Proposition 31.11 the vector λ is a solution of Problem (D). Conversely, under the hypotheses
of Part (1) of Theorem 31.14, if λ is a solution of Problem (D), then (uλ, λ) is a saddle point
of L. Consequently, under the above hypotheses, the set of solutions of the dual problem
(D) coincide with the set of second arguments λ of the saddle points (u, λ) of L. In some
sense, this result is the “dual” of the result stated in Theorem 31.12, namely that the set of
solutions of Problem (P ) coincides with set of first arguments u of the saddle points (u, λ)
of L.

Informally, in Theorem 31.14(1), the hypotheses say that if G(µ) can be “computed
nicely,” in the sense that there is a unique minimizer uµ of L(v, µ) (with v ∈ Ω) such that
G(µ) = L(uµ, µ), and if a maximizer λ of G(µ) (with µ ∈ Rm

+ ) can be determined, then uλ
yields the minimum value of J , that is, p∗ = J(uλ). If the constraints are qualified and if
the functions J and ϕi are convex and differentiable, then since the KKT conditions hold,
the duality gap is zero; that is,

G(λ) = L(uλ, λ) = J(uλ).
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Example 31.6. Going back to Example 31.5 where we considered the linear program (P )

minimize c>x

subject to Ax ≤ b, x ≥ 0,

with A an m× n matrix, the Lagrangian L(µ, ν) is given by

L(v, µ, ν) = −b>µ+ (c+ A>µ− ν)>v,

and we found that the dual function G(µ, ν) = infv∈Rn L(v, µ, ν) is given for all µ ≥ 0 and
ν ≥ 0 by

G(µ, ν) =

{
−b>µ if A>µ− ν + c = 0,

−∞ otherwise.

The hypotheses of Theorem 31.14(1) certainly fail since there are infinitely uµ,ν ∈ Rn such
that G(µ, ν) = infv∈Rn L(v, µ, ν) = L(uµ,ν , µ, ν). Therefore, the dual function G is no help
in finding a solution of the primal (P ). As we saw earlier, if we consider the modified dual
Problem (D1) then strong duality holds, but this does not follow from Theorem 31.14, and
a different proof is required.

Thus we have the somewhat counter-intuitive situation that the general theory of La-
grange duality does not apply, at least directly, to linear programming, a fact that is not
sufficiently emphasized in many expositions. A separate treatment of duality if required.

Unlike the case of linear programming, which needs a separate treatment, Theorem 31.14
applies to the optimization problem involving a convex quadratic objective function and a set
of affine inequality constraints. So in some sense, convex quadratic programming is simpler
than linear programming!

Example 31.7. Consider the quadratic objective function

J(v) =
1

2
v>Av − v>b,

where A is an n×n matrix which is symmetric positive definite, b ∈ Rn, and the constraints
are affine inequality constraints of the form

Cx ≤ d,

where C is an m× n matrix and d ∈ Rm. For the time being, we do not assume that C has
rank m. Since A is symmetric positive definite, J is strictly convex, as implied by Proposition
21.9 (see Example 21.1). The Lagrangian of this quadratic optimization problem is given by

L(v, µ) =
1

2
v>Av − v>b+ (Cv − d)>µ

=
1

2
v>Av − v>(b− C>µ)− µ>d.
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Since A is symmetric positive definite, by Proposition 23.2, the function v 7→ L(v, µ) has a
unique minimum obtained for the solution uµ of the linear system

Av = b− C>µ;

that is,
uµ = A−1(b− C>µ).

This shows that the Problem (Pµ) has a unique solution which depends continuously on µ.
Then for any solution λ of the dual problem, uλ = A−1(b − C>λ) is an optimal solution of
the primal problem.

We compute G(µ) as follows:

G(µ) = L(uµ, µ) =
1

2
u>µAuµ − u>µ (b− C>µ)− µ>d

=
1

2
u>µ (b− C>µ)− u>µ (b− C>µ)− µ>d

= −1

2
u>µ (b− C>µ)− µ>d

= −1

2
(b− C>µ)>A−1(b− C>µ)− µ>d

= −1

2
µ>CA−1C>µ+ µ>(CA−1b− d)− 1

2
b>A−1b.

Since A is symmetric positive definite, the matrix CA−1C> is symmetric positive semidef-
inite. Since A−1 is also symmetric positive definite, µ>CA−1C>µ = 0 iff (C>µ)>A−1(C>µ) =
0 iff C>µ = 0 implies µ = 0, that is, KerC> = (0), which is equivalent to Im(C) = Rm,
namely if C has rank m (in which case, m ≤ n). Thus CA−1C> is symmetric positive definite
iff C has rank m.

We showed just after Theorem 30.7 that the functional v 7→ (1/2)v>Av is elliptic iff
A is symmetric positive definite, and Theorem 30.7 shows that an elliptic functional is
coercive, which is the hypothesis used in Theorem 30.3. Therefore, by Theorem 30.3, if the
inequalities Cx ≤ d have a solution, the primal problem has a unique solution. In this case,
as a consequence, by Theorem 31.14(2), the function −G(µ) always has a minimum, which
is unique if C has rank m. The fact that −G(µ) has a minimum is not obvious when C has
rank < m, since in this case CA−1C> is not invertible.

We also verify easily that the gradient of G is given by

∇Gµ = Cuµ − d = −CA−1C>µ+ CA−1b− d.

Observe that since CA−1C> is symmetric positive semidefinite, −G(µ) is convex.

Therefore, if C has rank m, a solution of Problem (P ) is obtained by finding the unique
solution λ of the equation

−CA−1C>µ+ CA−1b− d = 0,
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and then the minimum uλ of Problem (P ) is given by

uλ = A−1(b− C>λ).

If C has rank < m, then we can find λ ≥ 0 by finding a feasible solution of the linear program
whose set of constraints is given by

−CA−1C>µ+ CA−1b− d = 0,

using the standard method of adding nonnegative slack variables ξ1, . . . , ξm and maximizing
−(ξ1 + · · ·+ ξm).

31.6 Handling Equality Constraints Explicitly

Sometimes it is desirable to handle equality constraints explicitly (for instance, this is what
Boyd and Vandenberghe do, see [22]). The only difference is that the Lagrange multipliers
associated with equality constraints are not required to be nonnegative, as we now show.

Consider the optimization problem (P ′)

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

ψj(v) = 0, j = 1, . . . , p.

We treat each equality constraint ψj(u) = 0 as the conjunction of the inequalities ψj(u) ≤ 0
and −ψj(u) ≤ 0, and we associate Lagrange multipliers λ ∈ Rm

+ , and ν+, ν− ∈ Rp
+. The

KKT conditions are

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

ν+
j (ψ′j)u −

p∑
j=1

ν−j (ψ′j)u = 0,

and
m∑
i=1

λiϕi(u) +

p∑
j=1

ν+
j ψj(u)−

p∑
j=1

ν−j ψj(u) = 0,

with λ ≥ 0, ν+ ≥ 0, ν− ≥ 0. Since ψj(u) = 0 for j = 1, . . . , p, these equations can be
rewritten as

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

(ν+
j − ν−j )(ψ′j)u = 0,

and
m∑
i=1

λiϕi(u) = 0
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with λ ≥ 0, ν+ ≥ 0, ν− ≥ 0, and if we introduce νj = ν+
j − ν−j we obtain the following KKT

conditions for programs with explicit equality constraints:

J ′u +
m∑
i=1

λi(ϕ
′
i)u +

p∑
j=1

νj(ψ
′
j)u = 0,

and
m∑
i=1

λiϕi(u) = 0

with λ ≥ 0 and ν ∈ Rp arbitrary.

Let us now assume that the functions ϕi and ψj are convex. As we explained just after
Definition 31.6, nonaffine equality constraints are never qualified. Thus, in order to generalize
Theorem 31.6 to explicit equality constraints, we assume that the equality constraints ψj are
affine.

Theorem 31.15. Let ϕi : Ω → R be m convex inequality constraints and ψj : Ω → R be
p affine equality constraints defined on some open convex subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ), let J : Ω → R be some
function, let U be given by

U = {x ∈ Ω | ϕi(x) ≤ 0, ψj(x) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ p},

and let u ∈ U be any point such that the functions ϕi and J are differentiable at u, and the
functions ψj are affine.

(1) If J has a local minimum at u with respect to U , and if the constraints are qualified,
then there exist some vectors λ ∈ Rm

+ and ν ∈ Rp, such that the KKT condition hold:

J ′u +
m∑
i=1

λi(u)(ϕ′i)u +

p∑
j=1

νj(ψ
′
j)u = 0,

and
m∑
i=1

λi(u)ϕi(u) = 0, λi ≥ 0, i = 1, . . . ,m.

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑
i=1

λi∇(ϕi)u +

p∑
j=1

νj∇(ψj)u = 0

and
m∑
i=1

λi(u)ϕi(u) = 0, λi ≥ 0, i = 1, . . . ,m.
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(2) Conversely, if the restriction of J to U is convex and if there exist vectors λ ∈ Rm
+ and

ν ∈ Rp such that the KKT conditions hold, then the function J has a (global) minimum at
u with respect to U .

The Lagrangian L(v, λ, ν) of Problem (P ′) is defined as

L(v, µ, ν) = J(v) +
m∑
i=1

µiϕi(v) +

p∑
j=1

νiψj(v),

where v ∈ Ω, µ ∈ Rm
+ , and ν ∈ Rp.

The function G : Rm
+ × Rp → R given by

G(µ, ν) = inf
v∈Ω

L(v, µ, ν) µ ∈ Rm
+ , ν ∈ Rp

is called the Lagrange dual function (or dual function), and the dual problem (D′) is

maximize G(µ, ν)

subject to µ ∈ Rm
+ , ν ∈ Rp.

Observe that the Lagrange multipliers ν are not restricted to be nonnnegative.

Theorem 31.12 and Theorem 31.14 are immediately generalized to Problem (P ′). We
only state the new version of 31.14, leaving the new version of Theorem 31.12 as an exercise.

Theorem 31.16. Consider the minimization problem (P ′):

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m

ψj(v) = 0, j = 1, . . . , p.

where the functions J , ϕi are defined on some open subset Ω of a finite-dimensional Euclidean
vector space V (more generally, a real Hilbert space V ), and the functions ψj are affine.

(1) Suppose the functions ϕi : Ω→ R are continuous, and that for every µ ∈ Rm
+ and every

ν ∈ Rp, the problem (Pµ,ν):

minimize L(v, µ, ν)

subject to v ∈ Ω,

has a unique solution uµ,ν, so that

L(uµ,ν , µ, ν) = inf
v∈Ω

L(v, µ, ν) = G(µ, ν),

and the function (µ, ν) 7→ uµ,ν is continuous (on Rm
+ ×Rp). If (λ, η) is any solution of

problem (D):

maximize G(µ, ν)

subject to µ ∈ Rm
+ , ν ∈ Rp,

then the solution uλ,η of the corresponding problem (Pλ,η) is a solution of Problem (P ′).
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(2) Assume Problem (P ′) has some solution u ∈ U , and that Ω is convex (open), the
functions ϕi (1 ≤ i ≤ m) and J are convex, differentiable at u, and that the constraints
are qualified. Then Problem (D′) has a solution (λ, η) ∈ Rm

+ ×Rp, and J(u) = G(λ, η);
that is, the duality gap is zero.

In the next example we derive the dual function and the dual program of the optimization
problem of Section 31.4 (Hard margin SVM), which involves both inequality and equality
constraints. We also derive the KKT conditions associated with the dual program.

Example 31.8. Recall the Hard margin SVM problem (SVMh2):

minimize
1

2
‖w‖2

subject to

w>ui − b ≥ 1 i = 1, . . . , p

− w>vj + b ≥ 1 j = 1, . . . , q.

We proceed in six steps.

Step 1: Write the constraints in matrix form.

The inequality constraints are written as

C

(
w
b

)
≤ d,

where C is a (p+ q)× (n+ 1) matrix C and d ∈ Rp+q is the vector given by

C =



−u>1 1
...

...
−u>p 1
v>1 −1
...

...
v>q −1


, d =

−1
...
−1

 = −1p+q.

If let X be the n× (p+ q) matrix given by

X =
(
−u1 · · · −up v1 · · · vq

)
,

then

C =

(
X>

1p
−1q

)
and so

C> =

(
X

1>p −1>q

)
.
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Step 2: Write the objective function in matrix form.

The objective function is given by

J(w, b) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
.

Note that the corresponding matrix is symmetric positive semidefinite, but it is not invertible.
Thus the function J is convex but not strictly convex.

Step 3: Write the Lagrangian in matrix form.

As in Example 31.7, we obtain the Lagrangian

L(w, b, λ, µ) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
−
(
w> b

)(
0n+1 − C>

(
λ
µ

))
+
(
λ> µ>

)
1p+q,

that is,

L(w, b, λ, µ) =
1

2

(
w> b

)(In 0n
0>n 0

)(
w
b

)
+
(
w> b

) X

(
λ
µ

)
1>p λ −1>q µ

+
(
λ> µ>

)
1p+q.

Step 4: Find the dual function G(λ, µ).

In order to find the dual function G(λ, µ) we need to minimize L(w, b, λ, µ) with respect
to w and b and for this, since the objective function J is convex and since Rn+1 is convex
and open, we can apply Theorem 21.11, which gives a necessary and sufficient condition for
a minimum. The gradient of L(w, b, λ, µ) with respect to w and b is

∇Lw,b =

(
In 0n
0>n 0

)(
w
b

)
+

 X

(
λ
µ

)
1>p λ −1>q µ


=

(
w
0

)
+

 X

(
λ
µ

)
1>p λ −1>q µ

 .

The necessary and sufficient condition for a minimum is

∇Lw,b = 0,

which yields

w = −X
(
λ
µ

)
(∗1)

and
1>p λ− 1>q µ = 0. (∗2)
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The second equation can be written as

p∑
i=1

λi =

q∑
j=1

µj. (∗3)

Plugging back w from (∗1) into the Lagrangian and using (∗2) we get

G(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q; (∗4)

of course,
(
λ> µ>

)
1p+q =

∑p
i=1 λi +

∑q
j=1 µj. Actually, to be perfectly rigorous G(λ, µ) is

only defined on the intersection of the hyperplane of equation
∑p

i=1 λi =
∑q

j=1 µj with the

convex octant in Rp+1 given by λ ≥ 0, µ ≥ 0, so for all λ ∈ Rp
+ and all µ ∈ Rq

+, we have

G(λ, µ) =

−
1
2

(
λ> µ>

)
X>X

(
λ

µ

)
+
(
λ> µ>

)
1p+q if

∑p
i=1 λi =

∑q
j=1 µj

−∞ otherwise.

Note that the condition
p∑
i=1

λi =

q∑
j=1

µj

is Condition (∗2) of Example 31.4, which is not surprising.

Step 5: Write the dual program in matrix form.

Maximizing the dual function G(λ, µ) over its domain of definition is equivalent to max-
imizing

Ĝ(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to the constraint
p∑
i=1

λi =

q∑
j=1

µj,

so we formulate the dual program as,

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

λ ≥ 0, µ ≥ 0,
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or equivalently,

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

λ ≥ 0, µ ≥ 0.

The constraints of the dual program are a lot simpler than the constraints(
X>

1p
−1q

)(
w
b

)
≤ −1p+q

of the primal program because these constraints have been “absorbed” by the objective
function Ĝ(λ, ν) of the dual program which involves the matrix X>X. The matrix X>X is
symmetric positive semidefinite, but not invertible in general.

Step 6: Solve the dual program.

This step involves using numerical procedures typically based on gradient descent to find
λ and µ. Once λ and µ are determined, w is determined by (∗1) and b is determined as in
Section 31.4 using the fact that there is at least some i0 such that λi0 > 0 and some j0 such
that µj0 > 0.

Remarks:

(1) Since the constraints are affine and the objective function is convex, by Theorem
31.16(2) the duality gap is zero, so for any minimum w of J(w, b) = (1/2)w>w and
any maximum (λ, µ) of G, we have

J(w, b) =
1

2
w>w = G(λ, µ).

But by (∗1)

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

so (
λ> µ>

)
X>X

(
λ
µ

)
= w>w,

and we get

1

2
w>w = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q = −1

2
w>w +

(
λ> µ>

)
1p+q,
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so

w>w =
(
λ> µ>

)
1p+q =

p∑
i=1

λi +

q∑
j=1

µj,

which yields

G(λ, µ) =
1

2

(
p∑
i=1

λi +

q∑
j=1

µj

)
.

The above formulae are stated in Vapnik [111] (Chapter 10, Section 1).

(2) It is instructive to compute the Lagrangian of the dual program and to derive the KKT
conditions for this Lagrangian.

The conditions λ ≥ 0 being equivalent to −λ ≤ 0, and the conditions µ ≥ 0 being
equivalent to −µ ≤ 0, we introduce Lagrange multipliers α ∈ Rp

+ and β ∈ Rq
+ as well

as a multiplier ρ ∈ R for the equational constraint, and we form the Lagrangian

L(λ, µ, α, β, ρ) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

−
p∑
i=1

αiλi −
q∑
j=1

βjµj + ρ

( q∑
j=1

µj −
p∑
i=1

λi

)
.

It follows that the KKT conditions are

X>X

(
λ
µ

)
− 1p+q −

(
α
β

)
+ ρ

(
−1p
1q

)
= 0p+q, (∗4)

and αiλi = 0 for i = 1, . . . , p and βjµj = 0 for j = 1, . . . , q.

But (∗4) is equivalent to

−X>X
(
λ
µ

)
+ ρ

(
1p
−1q

)
+ 1p+q +

(
α
β

)
= 0p+q,

which is precisely the result of adding α ≥ 0 and β ≥ 0 as slack variables to the
inequalities (∗3) of Example 31.4, namely

−X>X
(
λ
µ

)
+ b

(
1p
−1q

)
+ 1p+q ≤ 0p+q,

to make them equalities, where ρ plays the role of b.

When the constraints are affine, the dual function G(λ, ν) can be expressed in terms of
the conjugate of the objective function J .
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31.7 Conjugate Function and Legendre Dual Function

The notion of conjugate function goes back to Legendre and plays an important role in
classical mechanics for converting a Lagrangian to a Hamiltonian; see Arnold [4] (Chapter
3, Sections 14 and 15).

Definition 31.10. Let f : A → R be a function defined on some subset A of Rn. The
conjugate f ∗ of the function f is the partial function f ∗ : Rn → R defined by

f ∗(y) = sup
x∈A

(y>x− f(x)), y ∈ Rn.

The conjugate of a function is also called the Fenchel conjugate, or Legendre transform when
f is differentiable.

As the pointwise supremum of a family of affine functions in y, the conjugate function
f ∗ is convex, even if the original function f is not convex.

The domain of f ∗ can be very small, even if the domain of f is big. For example, if
f : R → R is the affine function given by f(x) = ax + b (with a, b ∈ R), then the function
x 7→ yx− ax− b is unbounded above unless y = a, so

f ∗(y) =

{
−b if y = a

+∞ otherwise.

The domain of f ∗ can also be bigger than the domain of f ; see Example 31.9(3).

The conjugate of many functions that come up in optimization are derived in Boyd and
Vandenberghe; see [22], Section 3.3. We mention a few that will be used in this chapter.

Example 31.9.

(1) Negative logarithm: f(x) = − log x, with dom(f) = {x ∈ R | x > 0}. The function
x 7→ yx+ log x is unbounded above if y ≥ 0, and when y < 0, its maximum is obtained
iff its derivative is zero, namely

y +
1

x
= 0.

Substituting for x = −1/y in yx + log x, we obtain −1 + log(−1/y) = −1 − log(−y),
so we have

f ∗(y) = − log(−y)− 1,

with dom(f ∗) = {y ∈ R | y < 0}.

(2) Exponential : f(x) = ex, with dom(f) = R. The function x 7→ yx− ex is unbounded if
y < 0. When y > 0, it reaches a maximum iff its derivative is zero, namely

y − ex = 0.
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Substituting for x = log y in yx− ex, we obtain y log y − y, so we have

f ∗(y) = y log y − y,

with dom(f ∗) = {y ∈ R | y ≥ 0}, with the convention that 0 log 0 = 0.

(3) Negative Entropy : f(x) = x log x, with dom(f) = {x ∈ R | x ≥ 0}, with the convention
that 0 log 0 = 0. The function x 7→ yx− x log x is bounded above for all y > 0, and it
attains its maximum when its derivative is zero, namely

y − log x− 1 = 0.

Substituting for x = ey−1 in yx− x log x, we obtain yey−1 − ey−1(y − 1) = ey−1, which
yields

f ∗(y) = ey−1,

with dom(f) = R.

(4) Strictly convex quadratic function: f(x) = 1
2
x>Ax, where A is an n × n symmetric

positive definite matrix, with dom(f) = Rn. The function x 7→ y>x − 1
2
x>Ax has a

unique minimum when is gradient is zero, namely

y = Ax.

Substituting for x = A−1y in y>x− 1
2
x>Ax, we obtain

y>A−1y − 1

2
y>A−1y = −1

2
y>A−1y,

so

f ∗(y) = −1

2
y>A−1y

with dom(f ∗) = Rn.

(5) Log-determinant : f(X) = log det(X−1), whereX is an n×n symmetric positive definite
matrix. Then

f(Y ) = log det((−Y )−1)− n,
where Y is an n× n symmetric negative definite matrix; see Boyd and Vandenberghe;
see [22], Section 3.3.1, Example 3.23.

(6) Norm on Rn: f(x) = ‖x‖ for any norm ‖ ‖ on Rn, with dom(f) = Rn. Recall from
Section 12.6 that the dual norm ‖ ‖D of the norm ‖ ‖ (with respect to the canonical
inner product x · y = y>x on Rn is given by

‖y‖D = sup
‖x‖=1

|y>x|,
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and that
|y>x| ≤ ‖x‖ ‖y‖D .

We have

f ∗(y) = sup
x∈Rn

(y>x− ‖x‖)

= sup
x∈Rn,x 6=0

(
y>

x

‖x‖ − 1

)
‖x‖

≤ sup
x∈Rn,x 6=0

(‖y‖D − 1) ‖x‖ ,

so if ‖y‖D > 1 this last term goes to +∞, but if ‖y‖D ≤ 1, then its maximum is 0.
Therefore,

f ∗(y) = ‖y‖∗ =

{
0 if ‖y‖D ≤ 1

+∞ otherwise.

(7) Norm squared : f(x) = 1
2
‖x‖2 for any norm ‖ ‖ on Rn, with dom(f) = Rn. Since

|y>x| ≤ ‖x‖ ‖y‖D, we have

y>x− (1/2) ‖x‖2 ≤ ‖y‖D ‖x‖ − (1/2) ‖x‖2 .

The right-hand side is a quadratic function of ‖x‖ which achieves its maximum at
‖x‖ = ‖y‖D, with maximum value (1/2)(‖y‖D)2. Therefore

y>x− (1/2) ‖x‖2 ≤ (1/2)
(
‖y‖D

)2

for all x, which shows that

f ∗(y) ≤ (1/2)
(
‖y‖D

)2

.

By definition of the dual norm and because the unit sphere is compact, for any y ∈ Rn

there is some x ∈ Rn such that ‖x‖ = 1 and y>x = ‖y‖D, so multiplying both sides by
‖y‖D we obtain

y> ‖y‖D x =
(
‖y‖D

)2

and for z = ‖y‖D x, since ‖x‖ = 1 we have ‖z‖ = ‖y‖D ‖x‖ = ‖y‖D, so we get

y>z − (1/2)(‖z‖)2 =
(
‖y‖D

)2

− (1/2)
(
‖y‖D

)2

= (1/2)
(
‖y‖D

)2

,

which shows that the upper bound (1/2)
(
‖y‖D

)2

is achieved. Therefore,

f ∗(y) =
1

2

(
‖y‖D

)2

,

and dom(f ∗) = Rn.
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(8) Log-sum-exp function: f(x) = log

(∑n
i=1 e

xi

)
, where x = (x1, . . . , xn) ∈ Rn. To

determine the values of y ∈ Rn for which the maximum of g(x) = y>x − f(x) over
x ∈ Rn is attained, we compute its gradient and we find

∇gx =


y1 −

ex1∑n
i=1 e

xi

...

yn −
exn∑n
i=1 e

xi

 .

Therefore, (y1, . . . , yn) must satisfy the system of equations

yj =
exj∑n
i=1 e

xi
, j = 1, . . . , n. (∗)

The condition
∑n

i=1 yi = 1 is obviously necessary, as well as the conditions yi > 0, for
i = 1, . . . , n. Conversely, if 1>y = 1 and y > 0, then xj = log yi for i = 1, . . . , n is a
solution. Since (∗) implies that

xi = log yi + log

( n∑
i=1

exi
)
, (∗∗)

we get

y>x− f(x) =
n∑
i=1

yixi − log

( n∑
i=1

exi
)

=
n∑
i=1

yi log yi +
n∑
i=1

yi log

( n∑
i=1

exi
)
− log

( n∑
i=1

exi
)

by (∗∗)

=
n∑
i=1

yi log yi +

( n∑
i=1

yi − 1

)
log

( n∑
i=1

exi
)

=
n∑
i=1

yi log yi since
∑n

i=1 yi = 1.

Consequently, if f ∗(y) is defined, then f ∗(y) =
∑n

i=1 yi log yi. If we agree that 0 log 0 =
0, then it is an easy exercise (or, see Boyd and Vandenberghe [22], Section 3.3, Example
3.25) to show that

f ∗(y) =

{∑n
i=1 yi log yi if 1>y = 1 and y ≥ 0

∞ otherwise.

Thus we obtain the negative entropy restricted to the domain 1>y = 1 and y ≥ 0.
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By definition of f ∗ we have
f(x) + f ∗(y) ≥ x>y,

whenever the left-hand side is defined. The above is known as Fenchel’s inequality (or
Young’s inequality if f is differentiable).

If f : A→ R is convex (so A is convex) and if epi(f) is closed, then it can be shown that
f ∗∗ = f . In particular, this is true if A = Rn.

If f : Rn → R is convex and differentiable, then x∗ maximizes x>y−f(x) iff x∗ minimizes
−x>y + f(x) iff

∇fx∗ = y,

and so
f ∗(y) = (x∗)>∇fx∗ − f(x∗).

Consequently, if we can solve the equation

∇fz = y

for z given y, then we obtain f ∗(y).

It can be shown that if f is twice differentiable, strictly convex, and surlinear, which
means that

lim
‖y‖7→+∞

f(y)

‖y‖ = +∞,

then there is a unique xy such that ∇fxy = y, so that

f ∗(y) = x>y∇fxy − f(xy),

and f ∗ is differentiable with
∇f ∗y = xy.

We now return to our optimization problem.

Proposition 31.17. Consider the problem (P ),

minimize J(v)

subject to Ax ≤ b

Cx = d,

with affine inequality and equality constraints (with A an m× n matrix, C an p× n matrix,
b ∈ Rm, d ∈ Rp). The dual function G(λ, ν) is given by

G(λ, ν) =

{
−b>λ− d>ν − J∗(−A>λ− C>ν) if −A>λ− C>ν ∈ dom(J∗),

−∞ otherwise,

for all λ ∈ Rm
+ and all ν ∈ Rp, where J∗ is the conjugate of J .



874 CHAPTER 31. INTRODUCTION TO NONLINEAR OPTIMIZATION

Proof. The Lagrangian associated with the above program is

L(v, λ, ν) = J(v) + (Av − b)>λ+ (Cv − d)>ν

= −b>λ− d>ν + J(v) + (A>λ+ C>ν)>v,

with λ ∈ Rm
+ and ν ∈ Rp. By definition

G(λ, ν) = −b>λ− d>ν + inf
v∈Rn

(J(v) + (A>λ+ C>ν)>v)

= −b>λ− d>ν − sup
v∈Rn

(−(A>λ+ C>ν)>v − J(v))

= −b>λ− d>ν − J∗(−A>λ− C>ν).

Therefore, for all λ ∈ Rm
+ and all ν ∈ Rp, we have

G(λ, ν) =

{
−b>λ− d>ν − J∗(−A>λ− C>ν) if −A>λ− C>ν ∈ dom(J∗),

−∞ otherwise,

as claimed.

As application of this result, consider the following example.

Example 31.10. Consider the following problem:

minimize ‖v‖
subject to Av = b,

where ‖ ‖ is any norm on Rn. Using the result of Example 31.9, we obtain

G(ν) = −b>ν −
∥∥−A>ν∥∥∗ ,

that is,

G(ν) =

{
−b>ν if

∥∥A>ν∥∥D ≤ 1

−∞ otherwise.

In the special case where ‖ ‖ = ‖ ‖2, we also have ‖ ‖D = ‖ ‖2.

Another interesting application is to the entropy minimization problem.

Example 31.11. Consider the following problem known as entropy minimization:

minimize f(x) =
n∑
i=1

xi log xi

subject to Ax ≤ b

1>x = 1,
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where dom(f) = {x ∈ Rn | x ≥ 0}. By Example 31.9(3), the conjugate of the negative
entropy function u log u is ev−1, so we easily see that

f ∗(y) =
n∑
i=1

eyi−1,

which is defined on Rn. Using our above result, the dual function G(λ, µ) of the entropy
minimization problem is given by

G(λ, µ) = −b>λ− µ− e−µ−1

n∑
i=1

e−(Ai)>λ,

for all λ ∈ Rn
+ and all µ ∈ R, where Ai is the ith column of A. It follows that the dual

program is:

maximize − b>λ− µ− e−µ−1

n∑
i=1

e−(Ai)>λ

subject to λ ≥ 0.

We can simplify this problem by maximizing over the variable µ ∈ R. For fixed λ, the
objective function is maximized when the derivative is zero, that is,

−1 + e−µ−1

n∑
i=1

e−(Ai)>λ = 0,

which yields

µ = log

( n∑
i=1

e−(Ai)>λ

)
− 1.

Plugging the above value back into the objective function of the dual we obtain the following
program:

maximize − b>λ− log

( n∑
i=1

e−(Ai)>λ

)
subject to λ ≥ 0.

The entropy minimization problem is another problem for which Theorem 31.15 applies,
and thus can be solved using the dual program. Indeed, the Lagrangian of the primal
program is given by

L(x, λ, µ) =
n∑
i−1

xi log xi + λ>(Ax− b) + µ(1>x− 1).
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Using the second derivative criterion for convexity, we see that L(x, λ, µ) is strictly convex
for x ∈ Rn

+ and is bounded below, so it has a unique minimum which is obtain by settting
the Laplacian ∇Lx to zero. We have

∇Lx =

 log x1 + 1 + (A1)>λ+ µ
...

log xn + 1 + (An)>λ+ µ.


so by setting ∇Lx to 0 we obtain

xi = e−((An)>λ+µ+1), i = 1, . . . , n. (∗)

By Theorem 31.15, since the objective function is convex and the constraints are affine, if
the primal has a solution then so does the dual, and λ and µ constitute an optimal solution
of the dual, then x = (x1, . . . , xn) given by the equations in (∗) is an optimal solution of the
primal.

Other examples are given in Boyd and Vandenberghe; see [22], Section 5.1.6.

The derivation of the dual function of Problem (SVMh1) from Section 31.3 involves a
similar type of reasoning.

Example 31.12. Consider the hard margin Problem (SVMh1):

maximize δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖2 ≤ 1,

which is converted to the following minimization problem:

minimize − 2δ

subject to

w>ui − b ≥ δ i = 1, . . . , p

− w>vj + b ≥ δ j = 1, . . . , q

‖w‖2 ≤ 1,

We replaced δ by 2δ because this will make it easier to find a nice geometric interpretation.
Recall from Section 31.3 that Problem (SVMh1) has a an optimal solution iff δ > 0, in which
case ‖w‖ = 1.
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The corresponding Lagrangian with λ ∈ Rp
+, µ ∈ Rq

+, γ ∈ R+, is

L(w, b, δ, λ, µ, γ) = −2δ +

p∑
i=1

λi(δ + b− w>ui) +

q∑
j=1

µj(δ − b+ w>vj) + γ(‖w‖2 − 1)

= w>
(
−

p∑
i=1

λiui +

q∑
j=1

µjvj

)
+ γ ‖w‖2 +

( p∑
i=1

λi −
q∑
j=1

µj

)
b

+

(
−2 +

p∑
i=1

λi +

q∑
j=1

µj

)
δ − γ.

Next to find the dual function G(λ, µ, γ) we need to minimize L(w, b, δ, λ, µ, γ) with respect
to w, b and δ, so its gradient with respect to w, b and δ must be zero. This implies that

p∑
i=1

λi −
q∑
j=1

µj = 0

−2 +

p∑
i=1

λi +

q∑
j=1

µj = 0,

which yields
p∑
i=1

λi =

q∑
j=1

µj = 1.

Our minimization problem is reduced to: find

inf
w,‖w‖≤1

(
w>
( q∑
j=1

µjvj −
p∑
i=1

λiui

)
+ γ ‖w‖2 − γ

)

= −γ − γ inf
w,‖w‖≤1

(
−w> 1

γ

( q∑
j=1

µjvj −
p∑
i=1

λiui

)
+ ‖−w‖2

)

=

−γ if

∥∥∥∥ 1
γ

(∑q
j=1 µjvj −

∑p
i=1 λiui

)∥∥∥∥D
2

≤ 1

−∞ otherwise

by definition of ‖ ‖∗2

=

{
−γ if

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
≤ γ

−∞ otherwise.
since ‖ ‖D2 = ‖ ‖2 and γ > 0

It is immediately verified that the above formula is still correct if γ = 0. Therefore

G(λ, µ, γ) =

{
−γ if

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
≤ γ

−∞ otherwise.
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Since
∥∥∥∑q

j=1 µjvj −
∑p

i=1 λiui

∥∥∥
2
≤ γ iff −γ ≤ −

∥∥∥∑q
j=1 µjvj −

∑p
i=1 λiui

∥∥∥
2
, the dual pro-

gram, maximizing G(λ, µ, γ), is equivalent to

maximize −
∥∥∥∥∥

q∑
j=1

µjvj −
p∑
i=1

λiui

∥∥∥∥∥
2

subject to
p∑
i=1

λi = 1, λ ≥ 0

q∑
j=1

µj = 1, µ ≥ 0,

equivalently

minimize

∥∥∥∥∥
q∑
j=1

µjvj −
p∑
i=1

λiui

∥∥∥∥∥
2

subject to
p∑
i=1

λi = 1, λ ≥ 0

q∑
j=1

µj = 1, µ ≥ 0.

Geometrically,
∑p

i=1 λiui with
∑p

i=1 λi = 1 and λ ≥ 0 is a convex combinations of the uis,
and

∑q
j=1 µjvj with

∑q
j=1 µj = 1 and µ ≥ 0 is a convex combination of the vjs, so the dual

program is to minimize the distance between the polyhedron conv(u1, . . . , up) (the convex
hull of the uis) and the polyhedron conv(v1, . . . , vq) (the convex hull of the vjs). Since both
polyhedra are compact, the shortest distance between then is achieved. In fact, there is some
vertex ui such that if P (ui) is its projection onto conv(v1, . . . , vq) (which exists by Hilbert
space theory), then the length of the line segment (ui, P (ui)) is the shortest distance between
the two polyhedra (and similarly there is some vertex vj such that if P (vj) is its projection
onto conv(u1, . . . , up) then the length of the line segment (vj, P (vj)) is the shortest distance
between the two polyhedra).

If the two subsets are separable, in which case Problem (SVMh1) has an optimal solution
δ > 0, because the objective function is convex and the convex constraint ‖w‖2 ≤ 1 is quali-
fied since δ may be negative, by Theorem 31.14(2) the duality gap is zero, so δ is half of the
minimum distance between the two convex polyhedra conv(u1, . . . , up) and conv(v1, . . . , vq);
see Figure 31.19.

It should be noted that the constraint ‖w‖ ≤ 1 yields a formulation of the dual problem
which has the advantage of having a nice geometric interpretation: finding the minimal
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Figure 31.19: In R2 the convex hull of the uis, namely the blue hexagon, is separated from
the convex hull of the vjs, i.e. the red square, by the purple hyperplane (line) which is
the perpendicular bisector to the blue line segment between ui and v1, where this blue line
segment is the shortest distance between the two convex polygons.

distance between the convex polyhedra conv(u1, . . . , up) and conv(v1, . . . , vq). Unfortunately
this formulation is not useful for actually solving the problem. However, if the equivalent
constraint ‖w‖2 (= w>w) ≤ 1 is used, then the dual problem is much more useful as a solving
tool.

In Chapter 34 we consider the case where the sets of points {u1, . . . , up} and {v1, . . . , vq}
are not linearly separable.

31.8 Some Techniques to Obtain a More Useful Dual

Program

In some cases, it is advantageous to reformulate a primal optimization problem to obtain a
more useful dual problem. Three different reformulations are proposed in Boyd and Van-
denberghe; see [22], Section 5.7:

(1) Introducing new variables and associated equality constraints.

(2) Replacing the objective function with an increasing function of the the original func-
tion.

(3) Making explicit constraints implicit, that is, incorporating them into the domain of
the objective function.

We only give illustrations of (1) and (2), and refer the reader to Boyd and Vandenberghe
[22] (Section 5.7) for more examples of these techniques.
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Consider the unconstrained program:

minimize f(Ax+ b),

where A is an m × n matrix and b ∈ Rm. While the conditions for a zero duality gap are
satisfied, the Lagrangian is

L(x) = f(Ax+ b),

so the dual function G is the constant function whose value is

G = inf
x∈Rn

f(Ax+ b),

which is not useful at all.

Let us reformulate the problem as

minimize f(y)

subject to

Ax+ b = y,

where we introduced the new variable y ∈ Rm and the equality constraint Ax+ b = y. The
two problems are obviously equivalent. The Lagrangian of the reformulated problem is

L(x, y, µ) = f(y) + µ>(Ax+ b− y)

where µ ∈ Rm. To find the dual function G(µ) we minimize L(x, y, µ) over x and y. Mini-
mizing over x we see that G(µ) = −∞ unless A>µ = 0, in which case we are left with

G(µ) = b>µ+ inf
y

(f(y)− µ>y) = b>µ− inf
y

(µ>y − f(y)) = b>µ− f ∗(µ),

where f ∗ is the conjugate of f . It follows that the dual program can be expressed as

maximize b>µ− f ∗(µ)

subject to

A>µ = 0.

This formulation of the dual is much more useful than the dual of the original program.

Example 31.13. As a concrete example, consider the following unconstrained program:

minimize f(x) = log

( n∑
i=1

e(ai)>x+bi

)
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where ai is a column vector in Rn. We reformulate the problem by introducing new variables
and equality constraints as follows:

minimize f(y) = log

( n∑
i=1

eyi
)

subject to

Ax+ b = y,

where A is the matrix whose columns are the vectors ai and b = (b1, . . . , bn). Since by

Example 31.9(8) the conjugate of the log-sum-exp function f(y) = log

(∑n
i=1 e

yi

)
is

f ∗(µ) =

{∑n
i=1 µi log µi if 1>µ = 1 and µ ≥ 0

∞ otherwise,

the dual of the reformulated problem can be expressed as

maximize b>µ− log

( n∑
i=1

µi log µi

)
subject to

1>µ = 1

A>µ = 0

µ ≥ 0,

an entropy maximization problem.

Example 31.14. Similarly the unconstrained norm minimization problem

minimize ‖Ax− b‖ ,

where ‖ ‖ is any norm on Rm, has a dual function which is a constant, and is not useful.
This problem can be reformulated as

minimize ‖y‖
subject to

Ax− b = y.

By Example 31.9(6), the conjugate of the norm is given by

‖y‖∗ =

{
0 if ‖y‖D ≤ 1

+∞ otherwise,
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so the dual of the reformulated program is:

maximize b>µ

subject to

‖µ‖D ≤ 1

A>µ = 0.

Here is now an example of (2), replacing the objective function with an increasing function
of the the original function.

Example 31.15. The norm minimization of Example 31.14 can be reformulated as

minimize
1

2
‖y‖2

subject to

Ax− b = y.

This program is obviously equivalent to the original one. By Example 31.9(7), the conjugate
of the square norm is given by

1

2

(
‖y‖D

)2

,

so the dual of the reformulated program is

maximize − 1

2

(
‖µ‖D

)2

+ b>µ

subject to

A>µ = 0.

Note that this dual is different from the dual obtained in Example 31.14.

The objective function of the dual program in Example 31.14 is linear, but we have
the nonlinear constraint ‖µ‖D ≤ 1. On the other hand, the objective function of the dual
program of Example 31.15 is quadratic, whereas its constraints are affine. We have other
examples of this trade-off with the Programs (SVMh2) (quadratic objective function, affine
constraints), and (SVMh1) (linear objective function, one nonlinear constraint).

Sometimes, it is also helpful to replace a constraint by an increasing function of this
constraint; for example, to use the constraint ‖w‖2

2 (= w>w) ≤ 1 instead of ‖w‖2 ≤ 1.

In Chapter 32 we revisit the problem of solving an overdetermined or underdetermined
linear system Ax = b considered in Section 17.1 from a different point of view.
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31.9 Uzawa’s Method

Let us go back to our minimization problem

minimize J(v)

subject to ϕi(v) ≤ 0, i = 1, . . . ,m,

where the functions J and ϕi are defined on some open subset Ω of a finite-dimensional
Euclidean vector space V (more generally, a real Hilbert space V ). As usual, let

U = {v ∈ V | ϕi(v) ≤ 0, 1 ≤ i ≤ m}.

If the functional J satisfies the inequalities of Proposition 30.14 and if the functions ϕi are
convex, in theory, the projected-gradient method converges to the unique minimizer of J
over U . Unfortunately, it is usually impossible to compute the projection map pU : V → U .

On the other hand, the domain of the Lagrange dual function G : Rm
+ → R given by

G(µ) = inf
v∈Ω

L(v, µ) µ ∈ Rm
+ ,

is Rm
+ , where

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v)

is the Lagrangian of our problem. Now the projection p+ from Rm to Rm
+ is very simple,

namely

(p+(λ))i = max{λi, 0}, 1 ≤ i ≤ m.

It follows that the projection-gradient method should be applicable to the dual problem (D):

maximize G(µ)

subject to µ ∈ Rm
+ .

If the hypotheses of Theorem 31.14 hold, then a solution λ of the dual program (D) yields
a solution uλ of the primal problem.

Uzawa’s method is essentially the gradient method with fixed stepsize applied to the dual
problem (D). However, it is designed to yield a solution of the primal problem.

Uzawa’s method:

Given an arbitrary initial vectors λ0 ∈ Rm
+ , two sequences (λk)k≥0 and (uk)k≥0 are con-

structed, with λk ∈ Rm
+ and uk ∈ V .

Assuming that λ0, λ1, . . . , λk are known, uk and λk+1 are determined as follows:
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uk is the unique solution of the minimization problem, find uk ∈ V such that

(UZ)

 J(uk) +
m∑
i=1

λkiϕi(u
k) = inf

v∈V

(
J(v) +

m∑
i=1

λkiϕi(v)

)
; and

λk+1
i = max{λki + ρϕi(u

k), 0}, 1 ≤ i ≤ m,

where ρ > 0 is a suitably chosen parameter.

Recall that the proof of Theorem 31.14 shows that

G′λk(ξ) = 〈∇Gλk , ξ〉 =
m∑
i=1

ξiϕi(u
k),

which means that (∇Gλk)i = ϕi(u
k). Then the second equation in (UZ) corresponds to the

gradient-projection step

λk+1 = p+(λk + ρ∇Gλk).

Note that because the problem is a maximization problem we use a positive sign instead of
a negative sign. Uzawa’s method is indeed a gradient method.

Basically, Uzawa’s method replaces a constrained optimization problem by a sequence of
unconstrained optimization problems involving the Lagrangian of the (primal) problem.

Interestingly, under certain hypotheses, it is possible to prove that the sequence of ap-
proximate solutions (uk)k≥0 converges to the minimizer u of J over U , even if the sequence
(λk)k≥0 does not converge. We prove such a result when the constraints ϕi are affine.

Theorem 31.18. Suppose J : Rn → R is an elliptic functional, which means that J is
continuously differentiable on Rn, and there is some constant α > 0 such that

〈∇Jv −∇Ju, v − u〉 ≥ α ‖v − u‖2 for all u, v ∈ V ,

and that U is a nonempty closed convex subset given by

U = {v ∈ Rn | Cv ≤ d},

where C is a real m× n matrix and d ∈ Rm. If the scalar ρ satisfies the condition

0 < ρ <
2α

‖C‖2
2

,

where ‖C‖2 is the spectral norm of C, then the sequence (uk)k≥0 computed by Uzawa’s method
converges to the unique minimizer u ∈ U of J .

Furthermore, if C has rank m, then the sequence (λk)k≥0 converges to the unique maxi-
mizer of the dual problem (D).
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Proof.

Step 1 . We establish algebraic conditions relating the unique minimizer u ∈ U of J over
U and some λ ∈ Rm

+ such that (u, λ) is a saddle point.

Since J is elliptic and U is nonempty closed and convex, by Theorem 30.7, the functional
J is strictly convex, so it has a unique minimizer u ∈ U . Since J is convex and the constraints
are affine, by Theorem 31.14(2) the dual problem (D) has at least one solution. By Theorem
31.12(2), there is some λ ∈ Rm

+ such that (u, λ) is a saddle point of the Lagrangian L.

If we define the affine function ϕ by

ϕ(v) = (ϕ1(v), . . . , ϕm(v)) = Cv − d,

then the Lagrangian L(v, µ) can be written as

L(v, µ) = J(v) +
m∑
i=1

µiϕi(v) = J(v) + 〈C>µ, v〉 − 〈µ, d〉.

Since
L(u, λ) = inf

v∈Rn
L(v, λ),

by Theorem 21.11(4) we must have

∇Ju + C>λ = 0, (∗1)

and since
G(λ) = L(u, λ) = sup

µ∈Rm+
L(u, µ),

by Theorem 21.11(3) (and since maximing a function g is equivalent to minimizing −g), we
must have

G′λ(µ− λ) ≤ 0 for all µ ∈ Rm
+ ,

and since ∇Gλ = ϕ(u), we get

〈ϕ(u), µ− λ〉 ≤ 0 for all µ ∈ Rm
+ . (∗2)

As in the proof of Proposition 30.14, (∗2) can be expressed as follows for every ρ > 0:

〈λ− (λ+ ρϕ(u)), µ− λ〉 ≥ 0 for all µ ∈ Rm
+ , (∗∗2)

which shows that λ can be viewed as the projection onto Rm
+ of the vector λ + ρϕ(u). In

summary we obtain the equations

(†1)

{
∇Ju + C>λ = 0

λ = p+(λ+ ρϕ(u)).
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Step 2 . We establish algebraic conditions relating the unique solution uk of the mini-
mization problem arising during an iteration of Uzawa’s method in (UZ) and λk.

Observe that the Lagrangian L(v, µ) is strictly convex as a function of v (as the sum of
a strictly convex function and an affine function). As in the proof of Theorem 30.7, we have

J(v) + 〈C>µ, v〉 ≥ J(0) + 〈∇J0, v〉+
α

2
‖v‖2 + 〈C>µ, v〉

≥ J(0)− ‖∇J0‖ ‖v‖ −
∥∥C>µ∥∥ ‖v‖+

α

2
‖v‖2 ,

and the term (−‖∇J0‖ −
∥∥C>µ∥∥ ‖v‖ + α

2
‖v‖) ‖v‖ goes to +∞ when ‖v‖ tends to +∞, so

L(v, µ) is coercive as a function of v. Therefore, the minimization problem find uk such that

J(uk) +
m∑
i=1

λkiϕi(u
k) = inf

v∈Rn

(
J(v) +

m∑
i=1

λkiϕi(v)

)
has a unique solution uk ∈ Rn. It follows from Theorem 21.11(4) that the vector uk must
satisfy the equation

∇Juk + C>λk = 0, (∗3)

and since by definition of Uzawa’s method

λk+1 = p+(λk + ρϕ(uk)), (∗4)

we obtain the equations

(†2)

{
∇Juk + C>λk = 0

λk+1 = p+(λk + ρϕ(uk)).

Step 3 . By subtracting the first of the two equations of (†1) and (†2) we obtain

∇Juk −∇Ju + C>(λk − λ) = 0,

and by subtracting the second of the two equations of (†1) and (†2) and using Proposition
29.6, we obtain ∥∥λk+1 − λ

∥∥ ≤ ∥∥λk − λ+ ρC(uk − u)
∥∥ .

In summary, we proved

(†)
{
∇Juk −∇Ju + C>(λk − λ) = 0∥∥λk+1 − λ

∥∥ ≤ ∥∥λk − λ+ ρC(uk − u)
∥∥ .

Step 4 . Convergence of the sequence (uk)k≥0 to u.

Squaring both sides of the inequality in (†) we obtain∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2
+ 2ρ〈C>(uk − u), uk − u〉+ ρ2

∥∥uk − u∥∥2
.
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Using the equation in (†) and the inequality

〈∇Juk −∇Ju, uk − u〉 ≥ α
∥∥uk − u∥∥2

,

we get ∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2 − 2ρ〈∇Juk −∇Ju, uk − u〉+ ρ2
∥∥uk − u∥∥2

≤
∥∥λk − λ∥∥2 − ρ(2α− ρ ‖C‖2

2)
∥∥uk − u∥∥2

.

Consequently, if

0 ≤ ρ ≤ 2α

‖C‖2
2

,

we have ∥∥λk+1 − λ
∥∥ ≤ ∥∥λk − λ∥∥ , for all k ≥ 0. (∗5)

By (∗5), the sequence (
∥∥λk − λ∥∥)k≥0 is nonincreasing and bounded below by 0, so it con-

verges, which implies that

lim
k 7→∞

(∥∥λk+1 − λ
∥∥− ∥∥λk − λ∥∥) = 0,

and since ∥∥λk+1 − λ
∥∥2 ≤

∥∥λk − λ∥∥2 − ρ(2α− ρ ‖C‖2
2)
∥∥uk − u∥∥2

,

we also have
ρ(2α− ρ ‖C‖2

2)
∥∥uk − u∥∥2 ≤

∥∥λk − λ∥∥2 −
∥∥λk+1 − λ

∥∥2
,

so if

0 < ρ <
2α

‖C‖2
2

,

then ρ(2α− ρ ‖C‖2
2) > 0, and we conclude that

lim
k 7→∞

∥∥uk − u∥∥ = 0,

that is, the sequence (uk)k≥0 converges to u.

Step 5 . Convergence of the sequence (λk)k≥0 to λ if C has rank m.

Since the sequence (
∥∥λk − λ∥∥)k≥0 is nonincreasing the sequence (λk)k≥0 is bounded, and

thus it has a convergent subsequence (λi(k))i≥0 whose limit is some λ′ ∈ Rm
+ . Since J ′ is

continuous, by (†2) we have

∇Ju + C>λ′ = lim
i 7→∞

(∇Jui(k) + C>λi(k)) = 0. (∗6)

If C has rank m, then Im(C) = Rm, which is equivalent to Ker (C>) = (0), so C> is
injective and since by (†1) we also have ∇Ju+C>λ = 0, we conclude that λ′ = λ. The above
reasoning applies to any subsequence of (λk)k≥0, so (λk)k≥0 converges to λ.
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In the special case where J is an elliptic quadratic functional

J(v) =
1

2
〈Av, v〉 − 〈b, v〉,

where A is symmetric positive definite, an iteration of Uzawa’s method gives

Auk − b+ C>λk = 0

λk+1
i = max{(λk + ρ(Cuk − d))i, 0}, 1 ≤ i ≤ m.

Theorem 31.18 implies that Uzawa’s method converges if

0 < ρ <
2λ1

‖C‖2
2

,

where λ1 is the smallest eigenvalue of A.

If we solve for uk using the first equation, we get

λk+1 = p+(λk + ρ(−CA−1C>λk + CA−1b− d)). (∗7)

In Example 31.7 we showed that the gradient of the dual function G is given by

∇Gµ = Cuµ − d = −CA−1C>µ+ CA−1b− d,

so (∗7) can be written as
λk+1 = p+(λk + ρ∇λk);

this shows that Uzawa’s method is indeed the gradient method with fixed stepsize applied
to the dual program.

31.10 Summary

The main concepts and results of this chapter are listed below:

• The cone of feasible directions.

• Cone with apex.

• Active and inactive constraints.

• Qualified constraint at u.

• Farkas lemma.

• Farkas–Minkowski lemma.

• Karush–Kuhn–Tucker optimality conditions (or KKT-conditions).
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• Complementary slackness conditions.

• Generalized Lagrange multipliers.

• Qualified convex constraint.

• Lagrangian of a minimization problem.

• Hard margin support vector machine

• Training data

• Linearly separable sets of points.

• Maximal margin hyperplane.

• Support vectors

• Lagrangian duality.

• Saddle points.

• Lagrange dual function.

• Lagrange dual program.

• Duality gap.

• Weak duality.

• Strong Duality.

• Handling equality constaints in the Lagrangian.

• Dual of the Hard margin SVM (SVMh2).

• Conjugate functions and Legendre dual functions.

• Dual of the Hard margin SVM (SVMh1).
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Chapter 32

Ridge Regression and Lasso
Regression

32.1 Ridge Regression

The problem of solving an overdetermined or underdetermined linear system Ax = y arises
as a “learning problem” in which we observe a sequence of data ((a1, y1), . . . , (am, ym)), where
ai ∈ Rn and yi ∈ R, viewed as input-output pairs of some unknown function f that we are
trying to infer. The simplest kind of function is a linear function f(x) = x>w, where w ∈ Rn

is a vector of coefficients usually called a weight vector . Since the problem is overdetermined
and since our observations may be subject to errors, we can’t solve for w exactly as the
solution of the system Aw = y, so instead we solve the least-square problem of minimizing
‖Aw − y‖2.

In Section 17.1 we showed that this problem can be solved using the pseudo-inverse. We
know that the minimizers w are solutions of the normal equations A>Aw = A>y, but when
A>A is not invertible, such a solution is not unique so some criterion has to be used to choose
among these solutions.

The pseudo-inverse does so in a specific way that sets some of the components to 0. This
is not always desirable and another way is to control the size of w by adding a regularization
term to ‖Aw − y‖2, and a natural candidate is ‖w‖2. It is also customary to view each row
of the matrix A as the transpose of an input vector xi ∈ Rn, and to define the m×n matrix
X as

X =

x
>
1
...
x>m

 ,

where the row vectors x>i are the rows of X, and thus the xi ∈ Rn are column vectors. Our
optimization problem, called ridge regression, is the problem (RR1):

minimize ‖y −Xw‖2 +K ‖w‖2 ,

893
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which by introducing the new variable ξ = y −Xw can be rewritten as (RR2):

minimize ξ>ξ +Kw>w

subject to

y −Xw = ξ,

where K > 0 is some constant determining the influence of the regularizing term w>w.

The objective function of the first version of our minimization problem can be expressed
as

J(w) = ‖y −Xw‖2 +K ‖w‖2

= (y −Xw)>(y −Xw) +Kw>w

= y>y − 2w>X>y + w>X>Xw +Kw>w

= w>(X>X +KIn)w − 2w>X>y + y>y.

The matrixX>X is symmetric positive semidefinite andK > 0, so the matrixX>X+KIn
is positive definite. It follows that

J(w) = w>(X>X +KIn)w − 2w>X>y + y>y

is strictly convex, so it has a unique minimum iff ∇Jw = 0. Since

∇Jw = 2(X>X +KIn)w − 2X>y,

we deduce that
w = (X>X +KIn)−1X>y. (∗wp)

The dual function of the first formulation of our problem is a constant function (with
value the minimum of J) so it is not useful, but the second formulation of our problem yields
an interesting dual problem. The Lagrangian is

L(ξ, w, λ) = ξ>ξ +Kw>w + (y −Xw − ξ)>λ
= ξ>ξ +Kw>w − w>X>λ− ξ>λ+ λ>y.

with λ, ξ, y ∈ Rm.

To derive the dual function G(λ) we minimize L(ξ, w, λ) with respect to ξ and w, and
for this we set the gradient ∇Lξ,w to zero. Since

∇Lξ,w =

(
2ξ − λ

2Kw −X>λ

)
,

we get

λ = 2ξ

w =
1

2K
X>λ = X>

ξ

K
.
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The above suggests defining the variable α so that ξ = Kα, so we have λ = 2Kα and
w = X>α. Then we obtain the dual function as a function of α by substituting the above
values of ξ, λ and w back in the Lagrangian and we get

G(α) = K2α>α +Kα>XX>α− 2Kα>XX>α− 2K2α>α + 2Kα>y

= −Kα>(XX> +KIm)α + 2Kα>y.

This is a strictly concave function so its maximum is achieved iff ∇Gα = 0, that is,

2K(XX> +KIm)α = 2Ky,

which yields

α = (XX> +KIm)−1y.

Putting everything together we obtain

α = (XX> +KIm)−1y

w = X>α

ξ = Kα,

which yields

w = X>(XX> +KIm)−1y. (∗wd)
Earlier in (∗wp) we found that

w = (X>X +KIn)−1X>y,

and it is easy to check that

(X>X +KIn)−1X> = X>(XX> +KIm)−1.

It is easy to adapt the above method to learn an affine function f(w) = x>w+ b instead
of a linear function f(w) = x>w, where b ∈ R. We have the following optimization program
(RR3):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ,

with y, ξ,1 ∈ Rm and w ∈ Rn. Note that in program (RR3), minimization is only performed
over ξ and w, but not over the variable b. The Lagrangian associated with this program is

L(ξ, w, b, λ) = ξ>ξ +Kw>w − w>X>λ− ξ>λ− b1>λ+ λ>y.
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By setting the gradient ∇Lξ,b,w to zero, we get

λ = 2ξ

1>λ = 0

w =
1

2K
X>λ = X>

ξ

K
.

As before, if we set ξ = Kα, we obtain w = X>α and

G(α) = −Kα>(XX> +KIm)α + 2Kα>y.

Since K > 0 and λ = 2Kα, the dual to ridge regression is the following program (DRR3):

minimize α>(XX> +KIm)α− 2α>y

subject to

1>α = 0.

Observe that up to the factor 1/2, this problem satisfies the conditions of Proposition
23.3 with A = (XX> + KIm)−1, b = y, B = 1m, f = 0, and x renamed as α. Therefore, it
has a unique solution α (beware that λ = 2Kα is not the λ used in Proposition 23.3, which
we rename as µ). Since the solution given by Proposition 23.3 is

µ = (B>AB)−1(B>Ab− f), α = A(b−Bµ),

we get

µ = (1>(XX> +KIm)−11)−11>(XX> +KIm)−1y, α = (XX> +KIm)−1(y − µ1).

Note that the matrix B>AB is the scalar 1>(XX> +KIm)−11.

Once α, ξ = Kα, and w = X>α are determined, b is given by the equation

b1 = y −Xw − ξ = y −Xw −Kα.

Since 1>1 = m and 1>α = 0, we get

b =
1

m
1>y − 1

m
1>Xw − 1

m
K1>α = y −

n∑
j=1

Xjwj,

where y is the mean of y and Xj is the mean of the jth column of X. Therefore,

b = y −
n∑
j=1

Xjwj = y − (X1 · · · Xn)w,
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where (X1 · · · Xn) is the 1× n row vector whose jth entry is Xj. Since w = X>α, we can
also write

b = y − 1

m
1>XX>α.

The expression
b = y − (X1 · · · Xn)w

suggests looking for an intercept term b (also called bias) of the above form, namely the
program (RR4):

minimize ξ>ξ +Kw>w

subject to

y −Xw − b1 = ξ

b = b̂+ y − (X1 · · · Xn)w,

with b̂ ∈ R. Again, in program (RR4), minimization is only performed over ξ and w. Since

b1 = b̂1 + y1− (X11 · · · Xn1)w,

if X = (X11 · · · Xn1) is the m × n matrix whose jth column is the vector Xj1, then the
above program is equivalent to the program (RR5):

minimize ξ>ξ +Kw>w

subject to

y −Xw − y1 +Xw − b̂1 = ξ.

If we write ŷ = y − y1 and X̂ = X −X, then the above program becomes (RR6):

minimize ξ>ξ +Kw>w

subject to

ŷ − X̂w − b̂1 = ξ.

If the solution to this program is ŵ, then b̂ is given by

b̂ = ŷ − (X̂1 · · · X̂n)ŵ = 0,

since the data ŷ and X̂ are centered. Therefore (RR6) is equivalent to ridge regression

without an intercept term applied to the centered data ŷ = y−y1 and X̂ = X−X, program
(RR6′):

minimize ξ>ξ +Kw>w

subject to

ŷ − X̂w = ξ.
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If ŵ is the optimal solution of this program given by

ŵ = X̂>(X̂X̂> +KIm)−1ŷ,

then b is given by
b = y − (X1 · · · Xn)ŵ.

Remark: Although this is not obvious a priori, the optimal solution w∗ of the program
(RR3) is equal to the optimal solution ŵ of program (RR6′). However, in practice, since
solving the dual (DRR3) is harder than solving the program (RR6′), because the dual
program has the extra constraint 1>α = 0, the program (RR6′) involving the centered data
is the preferred one.

It is natural to wonder what happens if we also minimize with respect to b in program
(RR3). Let us add the term Kb2 to the objective function. Then we obtain the program

minimize ξ>ξ +Kw>w +Kb2

subject to

y −Xw − b1 = ξ.

This suggests treating b an an extra component of the weight vector w and by forming
the m × (n + 1) matrix [X 1] obtained by adding a column of 1’s (of dimension m) to the
matrix X, we obtain the program (RR3b):

minimize ξ>ξ +Kw>w +Kb2

subject to

y − [X 1]

(
w
b

)
= ξ.

This program is solved just as program (RR2) and, we get

α = ([X 1][X 1]> +KIm)−1y(
w
b

)
= [X 1]>α

ξ = Kα.

Thus
b = 1>α.

Observe that [X 1][X 1]> = XX> + 11>. Since we also have the equation

y −Xw − b1 = ξ,

we obtain
1

m
1>y − 1

m
1>Xw − 1

m
b1>1 =

1

m
1>Kα,
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so

y − (X1 · · · Xn)ŵ − b =
1

m
Kb,

which yields

b =
m

m+K
(y − (X1 · · · Xn)w).

The exact same derivation holds with K repalced by an arbitrary constant C > 0, and we
obtain

b =
m

m+ C
(y − (X1 · · · Xn)w).

As pointed out by Hastie, Tibshirani, and Friedman [53] (Section 3.4), a defect of the
approach where b is also penalized is that the solution for b is not invariant under adding a
constant c to each value yi. This is not the case for the approach using program (RR6′).

One interesting aspect of the dual (of either (RR2) or (RR3)) is that it shows that the
solution w being of the form X>α, is a linear combination

w =
m∑
i=1

αixi

of the data points xi, with the coefficients αi corresponding to the dual variable λ = 2Kα
of the dual function, and with

α = (XX> +KIm)−1y.

If m is smaller than n, then it is more advantageous to solve for α. But what really makes
the dual interesting is that with our definition of X as

X =

x
>
1
...
x>m

 ,

the matrix XX> consists of the inner products x>i xj, and similarly the function learned
f(x) = w>x can be expressed as

f(x) =
m∑
i=1

αix
>
i x,

namely that both w and f(x) are given in terms of the inner products x>i xj and x>i x.

This fact is the key to a generalization to ridge regression in which the input space Rn

is embedded in a larger (possibly infinite dimensional) Euclidean space F (with an inner
product 〈−,−〉) usually called a feature space, using a function

ϕ : Rn → F.
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The problem becomes (kernel ridge regression) (KRR2):

minimize ξ>ξ +K〈w,w〉
subject to

yi − 〈w,ϕ(xi)〉 = ξi, i = 1, . . . ,m.

Note that w ∈ F . This problem is discussed in Shawe–Taylor and Christianini [97] (Section
7.3).

We will show below that the solution is exactly the same:

α = (G +KIm)−1y

w =
m∑
i=1

αiϕ(xi)

ξ = Kα,

where G is the Gram matrix given by Gij = 〈ϕ(xi), ϕ(xj)〉. This matrix is also called the
kernel matrix and is often denoted by K instead of G.

In this framework, we have to be a little careful in using gradients since the inner product
〈−,−〉 on F is involved and F could be infinite dimensional, but this causes no problem
because we can use derivatives, and by Proposition 20.5 we have

d〈−,−〉(u,v)(x, y) = 〈x, v〉+ 〈u, y〉.
This implies that the derivative of the map u 7→ 〈u, u〉 is

d〈−,−〉u(x) = 2〈x, u〉.
Since the map u 7→ 〈u, v〉 (with v fixed) is linear, its derivative is

d〈−, v〉u(x) = 〈x, v〉.
The derivative of the Lagrangian

L(ξ, w, λ) = ξ>ξ +K〈w,w〉 −
m∑
i=1

λi〈ϕ(xi), w〉 − ξ>λ+ λ>y

with respect to ξ and w is

dLξ,w
(
ξ̃, w̃

)
= 2(ξ̃)>ξ − (ξ̃)>λ+

〈
2Kw −

m∑
i=1

λiϕ(xi), w̃

〉
.

We have dLξ,w
(
ξ̃, w̃

)
= 0 for all ξ̃ and w̃ iff

2Kw =
m∑
i=1

λiϕ(xi)

λ = 2ξ.
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Again we define ξ = Kα, so we have λ = 2Kα, and

w =
m∑
i=1

αiϕ(xi).

Plugging back into the Lagrangian we get

G(α) = K2α>α +K

m∑
i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉 − 2K
m∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉

− 2K2α>α + 2Kα>y

= −K2α>α−K
m∑

i,j=1

αiαj〈ϕ(xi), ϕ(xj)〉+ 2Kα>y.

If G is the matrix given by Gij = 〈ϕ(xi), ϕ(xj)〉, then we have

G(α) = −Kα>(G +KIm)α + 2Kα>y.

The function G is strictly concave and has a maximum for

α = (G +KIm)−1y,

as claimed earlier.

As in the standard case of ridge regression, if F = Rn (but the inner product 〈−,−〉
is arbitrary), we can adapt the above method to learn an affine function f(w) = x>w + b
instead of a linear function f(w) = x>w, where b ∈ R. This time we assume that b is of the
form

b = y − 〈w, (X1 · · · Xn)〉,
where Xj is the j column of the m × n matrix X whose ith row is the transpose of the
column vector ϕ(xi), and where (X1 · · · Xn) is viewed as a column vector. We have the
minimization problem (KRR6′):

minimize ξ>ξ +K〈w,w〉
subject to

ŷi − 〈w, ϕ̂(xi)〉 = ξi, i = 1, . . . ,m,

where ϕ̂(xi) is the n-dimensional vector ϕ(xi)− (X1 · · · Xn).

The solution is given in terms of the matrix Ĝ defined by

Ĝij = 〈ϕ̂(xi), ϕ̂(xj)〉,

as before. We get
α = (Ĝ +KIm)−1ŷ,
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and according to a previous computation, b is given by

b = y − 1

m
1Ĝα.

We explain in Section 33.3 how to compute the matrix Ĝ from the matrix G.

Since the dimension of the feature space F may be very large, one might worry that
computing the inner products 〈ϕ(xi), ϕ(xj)〉 might be very expensive. This is where kernel
functions come to the rescue. A kernel function κ for an embedding ϕ : Rn → F is a map
κ : Rn × Rn → R with the property that

κ(u, v) = 〈ϕ(u), ϕ(v)〉 for all u, v ∈ Rn.

If κ(u, v) can be computed in a reasonably cheap way, and if ϕ(u) can be computed cheaply,
then the inner products 〈ϕ(xi), ϕ(xj)〉 (and 〈ϕ(xi), ϕ(x)〉) can be computed cheaply. For-
tunately there are good kernel functions. Two very good sources on kernel methods are
Schölkopf and Smola [86] and Shawe–Taylor and Christianini [97]. We will investigate ker-
nels in Chapter 33.

32.2 Lasso Regression (`1-Regularized Regression)

The main weakness of ridge regression is that the estimated weight vector w usually has
many nonzero coefficients. As a consequence, ridge regression does not scale up well. In
practice, we need methods capable of handling millions of parameters, or more. A way to
encourage sparsity of the vector w, which means that many coordinates of w are zero, is to
replace the quadratic penalty function Kw>w = K ‖w‖2

2 by the penalty function K ‖w‖1,
with the 2-norm repaced by the 1-norm.

This method was first proposed by Tibshirani arround 1996, under the name lasso, which
stands for “least absolute selection and shrinkage operator.” This method is also known as
`1-regularized regression, but this is not as cute as “lasso,” which is used predominantly.

Given a set of training data {(x1, y1), . . . , (xm, ym)}, with xi ∈ Rn and yi ∈ R, if X is the
m× n matrix

X =

x
>
1
...
x>m

 ,

in which the row vectors x>i are the rows of X, then lasso regression if the following opti-
mization problem (lasso1):

minimize
1

2
ξ>ξ +K ‖w‖1

subject to

y −Xw = ξ,
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where K > 0 is some constant determining the influence of the regularizing term ‖w‖1.

The difficulty with the regularizing term ‖w‖1 = |w1| + · · · + |wn| is that the map w 7→
‖w‖1 is not differentiable for all w. This difficulty can be overcome by using subgradients,
but the dual of the above program can also be obtained in an elementary fashion by using
a trick that we already used, which is that if x ∈ R, then

|x| = max{x,−x}.
Using this trick, by introducing a vector ε ∈ Rn of nonnegative variables, we can rewrite
lasso minimization as follows:

lasso regularization (lasso2):

minimize
1

2
ξ>ξ +K1>ε

subject to

y −Xw = ξ

w ≤ ε

− w ≤ ε

ε ≥ 0,

with y, ξ ∈ Rm and w, ε,1 ∈ Rn.

The constraints w ≤ ε and −w ≤ ε are equivalent to |wi| ≤ εi for i = 1, . . . , n, and for
an optimal solution, we must have |wi| = εi, that is, ‖w‖1 = ε1 + · · ·+ εn.

The Lagrangian L(ξ, w, ε, λ, α+, α−, β) is given by

L(ξ, w, ε, λ, α+, α−, β) =
1

2
ξ>ξ +K1>ε+ λ>(y −Xw − ξ)

+ α>+(w − ε) + α>−(−w − ε)− β>ε

=
1

2
ξ>ξ − ξ>λ+ λ>y

+ ε>(K1− α+ − α− − β) + w>(α+ − α− −X>λ),

with λ ∈ Rm and α+, α−, β ∈ Rn
+. Since the objective function is convex and the constraints

are affine (and thus qualified), the Lagrangian L has a minimum with respect to the primal
variables, ξ, w, ε iff ∇Lξ,w,ε = 0. Since the gradient ∇Lξ,w,ε is given by

∇Lξ,w,ε =

 ξ − λ
α+ − α− −X>λ
K1− α+ − α− − β

 ,

we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = K1− β.
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Using these equations, the dual function G(λ, α+, α−, β) = minξ,w,ε L is given by

G(λ, α+, α−, β) =
1

2
ξ>ξ − ξ>λ+ λ>y

=
1

2
λ>λ− λ>λ+ λ>y

= −1

2
λ>λ+ λ>y

= −1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
.

Since β ≥ 0, the constraint α+ + α− = K1− β is equivalent to

α+ + α− ≤ K1.

Since α+, α− ≥ 0, for any i ∈ {1, . . . , n} the minimum of (α+)i − (α−)i is −K , and the
maximum is K. If we recall that for any z ∈ Rn,

‖z‖∞ = max
1≤i≤n

|zi|,

it follows that the constraints

α+ + α− ≤ K1

X>λ = α+ − α−

are equivalent to ∥∥X>λ∥∥∞ ≤ K.

The above is equivalent to the 2n constraints

−K ≤ (X>λ)i ≤ K, 1 ≤ i ≤ n.

Therefore, the dual lasso program is given by

maximize − 1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
subject to ∥∥X>λ∥∥∞ ≤ K,

which (since ‖y‖2
2 is a constant term) is equivalent to (Dlasso2):

minimize ‖y − λ‖2
2

subject to ∥∥X>λ∥∥∞ ≤ K.
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In view of the constraint y −Xw = ξ and the fact that for an optimal solution we must
have ξ = λ, the following condition must hold:∥∥X>(Xw − y)

∥∥
∞ ≤ K. (∗)

Also observe that for an optimal solution, we have

1

2
‖y −Xw‖2

2 + w>X>(y −Xw) =
1

2
‖y‖2 − w>X>y +

1

2
w>X>Xw + w>X>y − w>X>Xw

=
1

2

(
‖y‖2

2 − ‖Xw‖
2
2

)
=

1

2

(
‖y‖2

2 − ‖y − λ‖
2
2

)
= G(λ).

Since the objective function is convex and the constaints are qualified, the duality gap is
zero, so for optimal solutions of the primal and the dual, G(λ) = L(ξ, w, ε), that is

1

2
‖y −Xw‖2

2 + w>X>(y −Xw) =
1

2
‖ξ‖2

2 +K ‖w‖1 =
1

2
‖y −Xw‖2

2 +K ‖w‖1 ,

which yields the equation
w>X>(y −Xw) = K ‖w‖1 . (∗∗)

The above is the inner product of w and X>(y − Xw), so whenever wi 6= 0, since
‖w‖1 = |w1|+ · · ·+ |wn|, in view of (∗), we must have (X>(y −Xw))i = Ksgn(wi). If

S = {i ∈ {1, . . . , n} | wi 6= 0},

if XS denotes the matrix consisting of the columns of X indexed by S, and if wS denotes
the vector consisting of the nonzero components of w, then we have

X>S (y −XSwS) = Ksgn(wS).

We also have ∥∥X>
S

(y −XSwS)
∥∥
∞ ≤ K

where S is the complement of S.

The first equation yields

X>SXSwS = X>S y −Ksgn(wS),

so if X>SXS is invertible (which will be the case if the columns of X are linearly independent),
we get

wS = (X>SXS)−1(X>S y −Ksgn(wS)).

In theory, if we know the support of w and the signs of its components, then wS is
determined, but in practice, this is useless since the problem is to find the support and the
sign of the solution.
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One way to solve lasso regression is to use the dual program to find λ = ξ, and then to
use linear programming to find w by solving the linear program arising from the lasso primal
by holding ξ constant. There are also a number of variations of gradient descent; see Hastie,
Tibshirani, and Wainwright [54].

In the preceding discussion, we made the simplifying assumption that we were trying to
learn a linear function f(x) = w>x. To learn an affine function f(x) = w>x + b, we solve
the following optimization problem (lasso3):

minimize
1

2
ξ>ξ +K1>n ε

subject to

y −Xw − b1m = ξ

w ≤ ε

− w ≤ ε

ε ≥ 0.

Observe that as in the case of ridge regression, we are not minimizing over b.

The Lagrangian associated with this optimization problem is

L(ξ, w, ε, b, λ, α+, α−, β) =
1

2
ξ>ξ − ξ>λ+ λ>y − b1>λ

+ ε>(K1− α+ − α− − β) + w>(α+ − α− −X>λ),

so by setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = K1− β
1>λ = 0,

Using these equations, we find that the dual function is also given by

G(λ, α+, α−, β) = −1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
,

and the dual lasso program is given by

maximize − 1

2

(
‖y − λ‖2

2 − ‖y‖
2
2

)
subject to ∥∥X>λ∥∥∞ ≤ K

1>λ = 0,
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which is equivalent to (Dlasso3):

minimize ‖y − λ‖2
2

subject to ∥∥X>λ∥∥∞ ≤ K

1>λ = 0.

Once λ = ξ and w are determined, we obtain b using the equation

b1 = y −Xw − ξ,

and since 1>1 = m and 1>ξ = 1>λ = 0, the above yields

b =
1

m
1>y − 1

m
1>Xw − 1

m
1>ξ = y −

n∑
j=1

Xjwj,

where y is the mean of y and Xj is the mean of the jth column of X. The equation

b = b̂+ y −
n∑
j=1

Xjwj = b̂+ y − (X1 · · · Xn)w,

can be used, as in ridge regression (see Section 32.1), to show that the program (lasso3) is
equivalent to applying lasso regression (lasso2) without an intercept term to the centered

data, by replacing y by ŷ = y − y1 and X by X̂ = X −X. Then b is given by

b = y − (X1 · · · Xn)ŵ,

where ŵ is the solution given by (lasso2). This is the method described by Hastie, Tibshirani,
and Wainwright [54] (Section 2.2).

Another way to find b is to add the term (C/2)b2 to the objective function, for some
positive constant C obtaining the program (lasso4). This time the Lagrangian is

L(ξ, w, ε, b, λ, α+, α−, β) =
1

2
ξ>ξ − ξ>λ+ λ>y +

C

2
b2 − b1>λ

+ ε>(K1− α+ − α− − β) + w>(α+ − α− −X>λ),

so by setting the gradient ∇Lξ,w,ε,b to zero we obtain the equations

ξ = λ

α+ − α− = X>λ

α+ + α− = K1− β
Cb = 1>λ.
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Thus b is also determined, and the dual lasso program is identical to the first lasso dual
(Dlasso2), namely

minimize ‖y − λ‖2
2

subject to ∥∥X>λ∥∥∞ ≤ K.

Since the equations ξ = λ and

y −Xw − b1 = ξ

hold, from Cb = 1>λ we get

1

m
1>y − 1

m
1>Xw − b 1

m
1>1 =

1

m
1>λ,

that is

y − (X1 · · · Xn)w − b =
C

m
b,

which yields

b =
m

m+ C
(y − (X1 · · · Xn)w).

As in the case of ridge regression, a defect of the approach where b is also penalized is that
the solution for b is not invariant under adding a constant c to each value yi

32.3 Summary

The main concepts and results of this chapter are listed below:

• Ridge regression.

• Kernel ridge regression.

• Kernel functions.

• Lasso regression.



Chapter 33

Positive Definite Kernels

33.1 Basic Properties of Positive Definite Kernels

Let X be a nonempty set. If the set X represents a set of highly nonlinear data, it may
be advantageous to map X into a space H of much higher dimension called the feature
space, using a function ϕ : X → H called a feature map. This idea is that ϕ “unwinds” the
description of the objects in X, in an attempt to make it linear. The space H is usually a
vector space equipped with an inner product 〈−,−〉. If H is infinite dimensional, then we
assume that it is a Hilbert space.

Many algorithms to analyze or classify data make use of the inner products 〈ϕ(x), ϕ(y)〉,
where x, y ∈ X. Thus it is natural to make the following definition.

Definition 33.1. Let X be a nonempty set, let H be a (complex) Hilbert space, and let
ϕ : X → H be a function called a feature map. The function κ : X ×X → C given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X,
is called a kernel function.

Remark: A feature map is often called a feature embedding , but this terminology is a bit
misleading because it suggests that such a map is injective, which is not necessarily the case.
Unfortunately, this terminology is used by most people.

Example 33.1. Suppose we have two feature maps ϕ1 : X → Rn1 and ϕ2 : X → Rn2 , and let
κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 and κ2(x, y) = 〈ϕ2(x), ϕ2(y)〉 be the corresponding kernel functions
(where 〈−,−〉 is the standard inner product on Rn). Define the feature map ϕ : X → Rn1+n2

by
ϕ(x) = (ϕ1(x), ϕ2(x)),

an (n1 + n2)-tuple. We have

〈ϕ(x), ϕ(y)〉 = 〈(ϕ1(x), ϕ2(x)), (ϕ1(y), ϕ2(y))〉 = 〈ϕ1(x), ϕ1(y)〉+ 〈ϕ2(x), ϕ2(y)〉
= κ1(x, y) + κ2(x, y),

909



910 CHAPTER 33. POSITIVE DEFINITE KERNELS

which shows that the map κ given by

κ(x, y) = κ1(x, y) + κ2(x, y)

is the kernel function corresponding to the feature map ϕ : X → Rn1+n2 .

Example 33.2. Let X be a subset of R2, and let ϕ1 : X → R3 be the map given by

ϕ1(x1, x2) = (x2
1, x

2
2,
√

2x1x2).

Observe that linear relations in the feature space H = R3 correspond to quadratic rela-
tions in the input space (of data). We have

〈ϕ1(x), ϕ1(y)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (y2
1, y

2
2,
√

2y1y2)〉
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)2 = 〈x, y〉2,

where 〈x, y〉 is the usual inner product on R2. Hence the function

κ(x, y) = 〈x, y〉2

is a kernel function associated with the feature space R3.

If we now consider the map ϕ2 : X → R4 given by

ϕ2(x1, x2) = (x2
1, x

2
2, x1x2, x1x2),

we check immediately that

〈ϕ2(x), ϕ2(y)〉 = κ(x, z) = 〈x, y〉2,

which shows that the same kernel can arise from different maps into different feature spaces.

Example 33.3. Example 33.2 can be generalized as follows. Suppose we have a feature map
ϕ1 : X → Rn and let κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 be the corresponding kernel function (where
〈−,−〉 is the standard inner product on Rn). Define the feature map ϕ : X → Rn × Rn by
its n2 components

ϕ(x)(i,j) = (ϕ1(x))i(ϕ1(x))j, 1 ≤ i, j ≤ n,

with the inner product on Rn × Rn given by

〈u, v〉 =
n∑

i,j=1

u(i,j)v(i,j).
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Then we have

〈ϕ(x), ϕ(y)〉 =
n∑

i,j=1

ϕ(i,j)(x)ϕ(i,j)(y)

=
n∑

i,j=1

(ϕ1(x))i(ϕ1(x))j(ϕ1(y))i(ϕ1(y))j

=
n∑
i=1

(ϕ1(x))i(ϕ1(y))i

n∑
j=1

(ϕ1(x))j(ϕ1(y))j

= (κ1(x, y))2.

Thus the map κ given by κ(x, y) = (κ1(x, y))2 is a kernel map associated with the feature
map ϕ : X → Rn × Rn. The feature map ϕ is a direct generalization of the feature map ϕ2

of Example 33.2.

The above argument is immediately adapted to show that if ϕ1 : X → Rn1 and ϕ2 : X →
Rn2 are two feature maps and if κ1(x, y) = 〈ϕ1(x), ϕ1(y)〉 and κ2(x, y) = 〈ϕ2(x), ϕ2(y)〉 are
the corresponding kernel functions, then the map defined by

κ(x, y) = κ1(x, y)κ2(x, y)

is a kernel function, for the feature space Rn1 × Rn2 and the feature map

ϕ(x)(i,j) = (ϕ1(x))i(ϕ2(x))j, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Example 33.4. Note that the feature map ϕ : X → Rn×Rn is not very economical because
if i 6= j then the components ϕ(i,j)(x) and ϕ(j,i)(x) are both equal to (ϕ1(x))i(ϕ1(x))j.

Therefore we can define the more economical embedding ϕ′ : X → R(n+1
2 ) given by

ϕ′(x)(i,j) =

{
(ϕ1(x))2

i i = j,√
2(ϕ1(x))i(ϕ1(x))j i < j,

where the pairs (i, j) with 1 ≤ i ≤ j ≤ n are ordered lexicographically. The feature map ϕ
is a direct generalization of the feature map ϕ1 of Example 33.2.

Observe that ϕ′ can also be defined in the following way which makes it easier to come
up with the generalization to any power:

ϕ′(i1,...,in)(x) =

(
2

i1 · · · in

)1/2

(ϕ1(x))i11 (ϕ1(x))i21 · · · (ϕ1(x))in1 , i1 + i2 + · · ·+ in = 2, ij ∈ N,

where the n-tuples (i1, . . . , in) are ordered lexicographically. Recall that for any m ≥ 1 and
any (i1, . . . , in) ∈ Nm such that i1 + i2 + · · ·+ in = m, we have(

m

i1 · · · in

)
=

m!

i1! · · · in!
.
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More generally, for any m ≥ 2, using the multinomial theorem, we can define a feature

embedding ϕ : X → R(n+m−1
m ) defining the kernel function κ given by κ(x, y) = (κ1(x, y))m,

with ϕ given by

ϕ(i1,...,in)(x) =

(
m

i1 · · · in

)1/2

(ϕ1(x))i11 (ϕ1(x))i21 · · · (ϕ1(x))in1 , i1 + i2 + · · ·+ in = m, ij ∈ N,

where the n-tuples (i1, . . . , in) are ordered lexicographically.

Example 33.5. For any positive real constant R > 0, the constant function κ(x, y) = R is
a kernel function corresponding to the feature map ϕ : X → R given by ϕ(x, y) =

√
R.

By definition, the function κ′1 : Rn → R given by κ′1(x, y) = 〈x, y〉 is a kernel function
(the feature map is the identity map from Rn to itself). We just saw that for any positive
real constant R > 0, the constant κ′2(x, y) = R is a kernel function. By Example 33.1, the
function κ′3(x, y) = κ′1(x, y) + κ′2(x, y) is a kernel function, and for any integer d ≥ 1, by
Example 33.3, the function κd given by

κd(x, y) = (κ′3(x, y))d = (〈x, y〉+R)d,

is a kernel function on Rn. By the binomial formula,

κd(x, y) =
d∑

m=0

Rd−m〈x, y〉m.

By Example 33.1, the feature map of this kernel function is the concatenation of the features
of the d+ 1 kernel maps Rd−m〈x, y〉m. By Example 33.3, the components of the feature map
of the kernel map Rd−m〈x, y〉m are reweightings of the functions

ϕ(i1,...,in)(x) = xi11 x
i2
2 · · ·xinn , i1 + i2 + · · ·+ in = m,

with (i1, . . . , in) ∈ Nn. Thus the components of the feature map of the kernel function κd
are reweightings of the functions

ϕ(i1,...,in)(x) = xi11 x
i2
2 · · ·xinn , i1 + i2 + · · ·+ in ≤ d,

with (i1, . . . , in) ∈ Nn. It is easy to see that the dimension of this feature space is
(
m+d
d

)
.

There are a number of variations of the polynomial kernel κd; all-subsets embedding
kernels, ANOVA kernels; see Shawe–Taylor and Christianini [97], Chapter III.

In the next example, the set X is not a vector space.

Example 33.6. Let D be a finite set and let X = 2D be its power set. If |D| = n,
let H = RX ∼= R2n . We are assuming that the subsets of D are enumerated in some
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fashion so that each coordinate of R2n corresponds to one of these subsets. For example, if
D = {1, 2, 3, 4}, let

U1 = ∅ U2 = {1} U3 = {2} U4 = {3}
U5 = {4} U6 = {1, 2} U7 = {1, 3} U8 = {1, 4}
U9 = {2, 3} U10 = {2, 4} U11 = {3, 4} U12 = {1, 2, 3}
U13 = {1, 2, 4} U14 = {1, 3, 4} U15 = {2, 3, 4} U16 = {1, 2, 3, 4}.

Let ϕ : X → H be the feature map defined as follows: for any subsets A,U ∈ X,

ϕ(A)U =

{
1 if U ⊆ A

0 otherwise.

For example, if A1 = {1, 2, 3}, we obtain the vector

ϕ({1, 2, 3}) = (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0),

and if A2 = {2, 3, 4}, we obtain the vector

ϕ({2, 3, 4}) = (1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0).

For any two subsets A1 and A2 of D, it is easy to check that

〈ϕ(A1), ϕ(A2)〉 = 2|A1∩A2|,

the number of common subsets of A1 and A2. For example, A1 ∩ A2 = {2, 3}, and

〈ϕ(A1), ϕ(A2)〉 = 4.

Therefore, the function κ : X ×X → R given by

κ(A1, A2) = 2|A1∩A2|, A1, A2 ⊆ D

is a kernel function.

Kernel functions have the following important property.

Proposition 33.1. Let X be any nonempty set, let H be any (complex) Hilbert space, let
ϕ : X → H be any function, and let κ : X ×X → C be the kernel given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉, x, y ∈ X.

For any finite subset S = {x1, . . . , xp} of X, if KS is the p× p matrix

KS = (κ(xj, xi))1≤i,j≤p = (〈ϕ(xj), ϕ(xi)〉)1≤i,j≤p,

then we have
u∗KS u ≥ 0, for all u ∈ Cp.
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Proof. We have

u∗KS u = u>K>S u =

p∑
i,j=1

κ(xi, xj)uiuj

=

p∑
i,j=1

〈ϕ(x), ϕ(y)〉uiuj

=

〈
p∑
i=1

uiϕ(xi),

p∑
j=1

ujϕ(xj)

〉
=

∥∥∥∥∥
p∑
i=1

uiϕ(xi)

∥∥∥∥∥
2

≥ 0,

as claimed.

Proposition 33.1 suggests a second approach to kernel functions which does not assume
that a feature space and a feature map are provided. We will see in Section 33.2 that the
two approaches are equivalent. The second approach is useful in practice because it is often
difficult to define a feature space and a feature map in a simple manner.

Definition 33.2. Let X be a nonempty set. A function κ : X×X → C is a positive definite
kernel if for every finite subset S = {x1, . . . , xp} of X, if KS is the p× p matrix

KS = (κ(xj, xi))1≤i,j≤p

called a Gram matrix , then we have

u∗KS u =

p∑
i,j=1

κ(xi, xj)uiuj ≥ 0, for all u ∈ Cp.

Observe that Definition 33.2 does not require that u∗KS u > 0 if u 6= 0, so the terminology
positive definite is a bit abusive, and it would be more appropriate to use the terminology
positive semidefinite. However, it seems customary to use the term positive definite kernel ,
or even positive kernel .

Proposition 33.2. Let κ : X ×X → C be a positive definite kernel. Then κ(x, x) ≥ 0 for
all x ∈ X, and for any finite subset S = {x1, . . . , xp} of X, the p× p matrix KS given by

KS = (κ(xj, xi))1≤i,j≤p

is hermitian, that is, K∗S = KS.

Proof. The first property is obvious by choosing S = {x}. We have

(u+ v)∗KS(u+ v) = u∗KSu+ u∗KSv + v∗KSu+ v∗KSv,
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and since (u+ v)∗KS(u+ v), u∗KSu, v
∗KSv ≥ 0, we deduce that

2A = u∗KSv + v∗KSu (1)

must be real. By replacing u by iu, we see that

2B = −iu∗Ksv + iv∗KSu (2)

must also be real, By multiplying Equation (2) by i and adding it to Equation (1) we get

u∗KSv = A+ iB. (3)

By subtracting Equation (3) from Equation (1) we get

v∗KSu = A− iB.
Then

u∗K∗Sv = v∗KSu = A− iB = A+ iB = u∗KSv,

for all u, v ∈ C∗, which implies K∗S = KS.

If the map κ : X ×X → R is real-valued, then we have the following criterion for κ to be
a positive definite kernel that only involves real vectors.

Proposition 33.3. If κ : X ×X → R, then κ is a positive definite kernel iff for any finite
subset S = {x1, . . . , xp} of X, the p× p real matrix KS given by

KS = (κ(xk, xj))1≤j,k≤p

is symmetric, that is, K>S = KS, and

u>KS u =

p∑
j,k=1

κ(xj, xk)ujuk ≥ 0, for all u ∈ Rp.

Proof. If κ is a real-valued positive definite kernel, then the proposition is a trivial conse-
quence of Proposition 33.2.

For the converse, assume that κ is symmetric and that it satisfies the second condition of
the proposition. We need to show that κ is a positive definite kernel with respect to complex
vectors. If we write uk = ak + ibk, then

u∗KS u =

p∑
j,k=1

κ(xj, xk)(aj + ibj)(ak − ibk)

=

p∑
j,k=1

(ajak + bjbk)κ(xj, xk) + i

p∑
j,k=1

(bjak − ajbk)κ(xj, xk)

=

p∑
j,k=1

(ajak + bjbk)κ(xj, xk) + i
∑

1≤j<k≤p
bjak(κ(xj, xk)− κ(xk, xj)).

Thus u∗KSu is real iff KS is symmetric.
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Consequently we make the following definition.

Definition 33.3. Let X be a nonempty set. A function κ : X ×X → R is a (real) positive
definite kernel if κ(x, y) = κ(y, x) for all x, y ∈ X, and for every finite subset S = {x1, . . . , xp}
of X, if KS is the p× p real symmetric matrix

KS = (κ(xi, xj))1≤i,j≤p,

then we have

u>KS u =

p∑
i,j=1

κ(xi, xj)uiuj ≥ 0, for all u ∈ Rp.

Among other things, the next proposition shows that a positive definite kernel satisfies
the Cauchy–Schwarz inequality.

Proposition 33.4. A hermitian 2× 2 matrix

A =

(
a b
b d

)
is positive semidefinite if and only if a ≥ 0, d ≥ 0, and ad− |b|2 ≥ 0.

Let κ : X ×X → C be a positive definite kernel. For all x, y ∈ X, we have

|κ(x, y)|2 ≤ κ(x, x)κ(y, y).

Proof. For all x, y ∈ C, we have(
x y

)(a b
b d

)(
x
y

)
=
(
x y

)(ax+ by
bx+ dy

)
= a|x|2 + bxy + bxy + d|y|2.

If A is positive semidefinite, then we already know that a ≥ 0 and d ≥ 0. If a = 0, then
we must have b = 0, since otherwise we can make bxy + bxy, which is twice the real part of
bxy, as negative as we want. In this case, ad− |b|2 = 0.

If a > 0, then

a|x|2 + bxy + bxy + d|y|2 = a

∣∣∣∣x+
b

a
y

∣∣∣∣2 +
|y|2
a

(ad− |b|2).

If ad−|b|2 < 0, we can pick y 6= 0 and x = −(by)/a, so that the above expression is negative.
Therefore, ad− |b|2 ≥ 0. The converse is trivial.

If x = y, the inequality |κ(x, y)|2 ≤ κ(x, x)κ(y, y) is trivial. If x 6= y, the inequality
follows by applying the criterion for being positive semidefinite to the matrix(

κ(x, x) κ(x, y)
κ(x, y) κ(y, y)

)
,

as claimed.
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The following property due to I. Schur (1911) shows that the pointwise product of two
positive definite kernels is also a positive definite kernel.

Proposition 33.5. (I. Schur) If κ1 : X × X → C and κ2 : X × X → C are two positive
definite kernels, then the function κ : X ×X → C given by κ(x, y) = κ1(x, y)κ2(x, y) for all
x, y ∈ X is also a positive definite kernel.

Proof. It suffices to prove that if A = (ajk) and B = (bjk) are two hermitian positive
semidefinite p × p matrices, then so is their pointwise product C = A ◦ B = (ajkbjk) (also
known as Hadamard or Schur product). Recall that a hermitian positive semidefinite matrix
A can be diagonalized as A = UΛU∗, where Λ is a diagonal matrix with nonnegative entries
and U is a unitary matrix. Let Λ1/2 be the diagonal matrix consisting of the positive square
roots of the diagonal entries in Λ. Then we have

A = UΛU∗ = UΛ1/2Λ1/2U∗ = UΛ1/2(UΛ1/2)∗.

Thus if we set R = UΛ1/2, we have
A = RR∗,

which means that

ajk =

p∑
h=1

rjhrkh.

Then for any u ∈ Cp, we have

u∗(A ◦B)u =

p∑
j,k=1

ajkbjkujuk

=

p∑
j,k=1

p∑
h=1

rjhrkhbjkujuk

=

p∑
h=1

p∑
j,k=1

bjkujrjhukrkh.

Since B is positive semidefinite, for each fixed h, we have

p∑
j,k=1

bjkujrjhukrkh =

p∑
j,k=1

bjkzjzk ≥ 0,

as we see by letting z = (u1r1h, . . . , uprph),

In contrast, the ordinary product AB of two symmetric positive semidefinite matrices A
and B may not be symmetric positive semidefinite; see Section 6.8 for an example.

Here are other ways of obtaining new positive definite kernels from old ones.
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Proposition 33.6. Let κ1 : X×X → C and κ2 : X×X → C be two positive definite kernels,
f : X → C be a function, ψ : X → RN be a function, κ3 : RN ×RN → C be a positive definite
kernel, and a ∈ R be any positive real. Then the following functions are positive definite
kernels:

(1) κ(x, y) = κ1(x, y) + κ2(x, y).

(2) κ(x, y) = aκ1(x, y).

(3) κ(x, y) = f(x)f(y).

(4) κ(x, y) = κ3(ψ(x), ψ(y)).

(5) If B is a symmetric positive semidefinite n× n matrix, then the map
κ : Rn × Rn → R given by

κ(x, y) = x>By

is a positive definite kernel.

Proof. (1) For every finite subset S = {x1, . . . , xp} of X, if K1 is the p× p matrix

K1 = (κ1(xk, xj))1≤j,k≤p

and if if K2 is the p× p matrix

K2 = (κ2(xk, xj))1≤j,k≤p,

then for any u ∈ Cp, we have

u∗(K1 +K2)u = u∗K1u+ u∗K2u ≥ 0,

since u∗K1u ≥ 0 and u∗K2u ≥ 0 because κ2 and κ2 are positive definite kernels, which means
that K1 and K2 are positive semidefinite.

(2) We have
u∗(aK1)u = au∗K1u ≥ 0,

since a > 0 and u∗K1u ≥ 0.

(3) For every finite subset S = {x1, . . . , xp} of X, if K is the p× p matrix

K = (κ(xk, xj))1≤j,k≤p = (f(xk)f(xj))1≤j,k≤p

then we have

u∗Ku =

p∑
j,k=1

κ(xj, xk)ujuk =

p∑
j,k=1

ujf(xj)ukf(xk) =

∣∣∣∣∣
p∑
j=1

ujf(xj)

∣∣∣∣∣
2

≥ 0.
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(4) For every finite subset S = {x1, . . . , xp} of X, the p× p matrix K given by

K = (κ(xk, xj))1≤j,k≤p = (κ3(ψ(xk), ψ(xj)))1≤j,k≤p

is symmetric positive semidefinite since κ3 is a positive definite kernel.

(5) As in the proof of Proposition 33.5 (adapted to the real case) there is a matrix R
such that

B = RR>,

so
κ(x, y) = x>By = x>RR>y = (R>x)>R>y = 〈R>x,R>y〉,

so κ is the kernel function given by the feature map ϕ(x) = R>x from Rn to itself, and by
Proposition 33.1, it is a symmetric positive definite kernel.

Proposition 33.7. Let κ1 : X × X → C be a positive definite kernel, and let p(z) be a
polynomial with nonnegative coefficients. Then the following functions κ defined below are
also positive definite kernels.

(1) κ(x, y) = p(κ1(x, y)).

(2) κ(x, y) = eκ1(x,y).

(3) If X is real Hilbert space with inner product 〈−,−〉X and corresponding norm ‖ ‖X ,

κ(x, y) = e−
‖x−y‖2X

2σ2

for any σ > 0.

Proof. (1) If p(z) = amz
m + · · ·+ a1z + a0, then

p(κ1(x, y)) = amκ1(x, y)m + · · ·+ a1κ1(x, y) + a0.

Since ak ≥ 0 for k = 0, . . . ,m, by Proposition 33.5 and Proposition 33.6(2), each func-
tion akκi(x, y)k with 1 ≤ k ≤ m is a positive definite kernel, by Proposition 33.6(3) with
f(x) =

√
a0, the constant function a0 is a positive definite kernel, and by Proposition 33.6(1),

p(κ1(x, y)) is a positive definite kernel.

(2) We have

eκ1(x,y) =
∞∑
k=0

κ1(x, y)k

k!
.

By (1), the partial sums
m∑
k=0

κ1(x, y)k

k!
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are positive definite kernels, and since eκ1(x,y) is the (uniform) pointwise limit of positive
definite kernels, it is also a positive definite kernel.

(3) By Proposition 33.6(2), since the map (x, y) 7→ 〈x, y〉X is obviously a positive definite
kernel (the feature map is the identity) and since σ 6= 0, the function (x, y) 7→ 〈x, y〉X/σ2 is
a positive definite kernel, so by (2),

κ1(x, y) = e
〈x,y〉X
σ2

is a positive definite kernel. Let f : X → R be the function given by

f(x) = e−
‖x‖2

2σ2 .

Then by Proposition 33.6(3),

κ2(x, y) = f(x)f(y) = e−
‖x‖2

2σ2 e−
‖y‖2

2σ2 = e−
‖x‖2X+‖y‖2X

2σ2

is a positive definite kernel. By Proposition 33.5, the function κ1κ2 is a positive definite
kernel, that is

κ1(x, y)κ2(x, y) = e
〈x,y〉X
σ2 e−

‖x‖2X+‖y‖2X
2σ2 = e

〈x,y〉X
σ2

− ‖x‖
2
X+‖y‖2X
2σ2 = e−

‖x−y‖2X
2σ2

is a positive definite kernel.

The positive definite kernel

κ(x, y) = e−
‖x−y‖2X

2σ2

is called a Gaussian kernel . This kernel requires a feature map in an infinite-dimensional
space because it is an infinite sum of distinct kernels.

Remark: If κ1 is a positive definite kernel, the proof of Proposition 33.7(3) is immediately
adapted to show that

κ(x, y) = e−
κ1(x,x)+κ1(y,y)−2κ1(x,y)

2σ2

is a positive definite kernel.

Next we prove that every positive definite kernel arises from a feature map in a Hilbert
space which is a function space.

33.2 Hilbert Space Representation of a Positive

Definite Kernel

The following result shows how to construct a so-called reproducing kernel Hilbert space, for
short RKHS, from a positive definite kernel.
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Theorem 33.8. Let κ : X ×X → C be a positive definite kernel on a nonempty set X. For
every x ∈ X, let κx : X → C be the function given by

κx(y) = κ(x, y), y ∈ X.

Let H0 be the subspace of the vector space CX of functions from X to C spanned by the
family of functions (κx)∈X , and let ϕ : X → H0 be the map given by ϕ(x) = κx. There is a
hermitian inner product 〈−,−〉 on H0 such that

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

The completion H of H0 is a Hilbert space, and the map η : H → CX given by

η(f)(x) = 〈f, κx〉, x ∈ X,

is linear and injective, so H can be identified with a subspace of CX . We also have

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

For all f ∈ H0 and all x ∈ X,

〈f, κx〉 = f(x),

a property known as the reproducing property.

Proof. For any two linear combinations f =
∑p

j=1 αjκxj and g =
∑q

k=1 βkκyk in H0, with
xj, yk ∈ X and αj, βk ∈ C, define 〈f, g〉 by

〈f, g〉 =

p∑
j=1

q∑
k=1

αjβkκ(xj, yk). (†)

At first glance, the above expression appears to depend on the expression of f and g as linear
combinations, but since κ(xj, yk) = κ(yk, xj), observe that

q∑
k=1

βkf(yk) =

p∑
j=1

q∑
k=1

αjβkκ(xj, yk) =

p∑
j=1

αjg(xj), (∗)

and since the first and the third term are equal for all linear combinations representing f
and g, we conclude that (†) depends only on f and g and not on their representation as a
linear combination.

Obviously (†) defines a hermitian sequilinear form. For every f ∈ H0, we have

〈f, f〉 =

p∑
j,k=1

αjαkκ(xj, xk) ≥ 0,
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since κ is a positive definite kernel. For any finite subset {f1, . . . , fn} of H0 and any z ∈ Cn,
we have

n∑
j,k=1

〈fj, fk〉zjzk =

〈
n∑
j=1

zjfj,

n∑
j=1

zjfj

〉
≥ 0,

which shows that the map (f, g) 7→ 〈f, g〉 from H0 ×H0 to C is a positive definite kernel.

Observe that for all f ∈ H0 and all x ∈ X, (†) implies that

〈f, κx〉 =
k∑
j=1

αjκ(xj, x) = f(x),

a property known as the reproducing property . The above implies that

〈κx, κy〉 = κ(x, y). (∗∗)

By Proposition 33.4 applied to the positive definite kernel (f, g) 7→ 〈f, g〉, we have

|〈f, κx〉|2 ≤ 〈f, f〉〈κx, κx〉,

that is,
|f(x)|2 ≤ 〈f, f〉κ(x, x),

so 〈f, f〉 = 0 implies that f(x) = 0 for all x ∈ X, which means that 〈−,−〉 as defined by (†)
is positive definite. Therefore, 〈−,−〉 is a hermitian inner product on H0, and by (∗∗) and
since ϕ(x) = κx, we have

κ(x, y) = 〈ϕ(x), ϕ(y)〉, for all x, y ∈ X.

Let H be the Hilbert space which is the completion of H0, so that H0 is dense in H. The
map η : H → CX given by

η(f)(x) = 〈f, κx〉
is obviously linear, and it is injective because the family (κx)x∈X spans H0 which is dense in
H, thus it is also dense in H, so if 〈f, κx〉 = 0 for all x ∈ X, then f = 0.

If we identify a function f ∈ H with the function η(f), then we have the reproducing
property

〈f, κx〉 = f(x), for all f ∈ H and all x ∈ X.
If X is finite, then CX is finite-dimensional. If X is a separable topological space and if κ is
continuous, then it can be shown that H is a separable Hilbert space.

Also, if κ : X × X → R is a real symmetric positive definite kernel, then we see im-
mediately that Theorem 33.8 holds with H0 a real Euclidean space and H a real Hilbert
space.
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Remark: If X = G, where G is a locally compact group, then a function p : G → C (not
necessarily continuous) is positive semidefinite if for all s1, . . . , sn ∈ G and all ξ1, . . . , ξn ∈ C,
we have

n∑
j,k=1

p(s−1
j sk)ξkξj ≥ 0.

So if we define κ : G×G→ C by

κ(s, t) = p(t−1s),

then κ is a positive definite kernel on G. If p is continuous, then it is known that p arises
from a unitary representation U : G → U(H) of the group G in a Hilbert space H with
inner product 〈−,−〉 (a homomorphism with a certain continuity property), in the sense
that there is some vector x0 ∈ H such that

p(s) = 〈U(s)(x0), x0〉, for all s ∈ G.
Since the U(s) are unitary operators on H,

p(t−1s) = 〈U(t−1s)(x0), x0〉 = 〈U(t−1)(U(s)(x0)), x0〉
= 〈U(t)∗(U(s)(x0)), x0〉 = 〈U(s)(x0)), U(t)(x0)〉,

which shows that
κ(s, t) = 〈U(s)(x0)), U(t)(x0)〉,

so the map ϕ : G→ H given by
ϕ(s) = U(s)(x0)

is a feature map into the feature space H. This theorem is due to Gelfand and Raikov (1943).

The proof of Theorem 33.8 is essentially identical to part of Godement’s proof of the
above result about the correspondence between functions of positive type and unitary rep-
resentations; see Helgason [55], Chapter IV, Theorem 1.5. Theorem 33.8 is a little more
general since it does not assume that X is a group, but when G is a group, the feature map
arises from a unitary representation.

Kernels on collections of sets can be defined in terms of measures.

Example 33.7. Let (D,A) be a measurable space, where D is a nonempty set and A is a
σ-algebra on D (the measurable sets). Let X be a subset of A. If µ is a positive measure
on (D,A) and if µ is finite, which means that µ(D) is finite, then we can define the map
κ1 : X ×X → R given by

κ1(A1, A2) = µ(A1 ∩ A2), A1, A2 ∈ X.
We can show that κ is a kernel function as follows. Let H = L2

µ(D,A,R) be the Hilbert
space of µ-square-integrable functions, with the inner product

〈f, g〉 =

∫
D

f(s)g(s) dµ(s),
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and let ϕ : X → H be the feature embedding given by

ϕ(A) = χA, A ∈ X,

the characteristic function of A. Then we have

κ1(A1, A2) = µ(A1 ∩ A2) =

∫
D

χA1∩A2(s) dµ(s)

=

∫
D

χA1(s)χA2(s) dµ(s) = 〈χA1 , χA2〉

= 〈ϕ(A1), ϕ(A2)〉.

The above kernel is called the intersection kernel . If we assume that µ is normalized so
that µ(D) = 1, then we also have the union complement kernel :

κ2(A1, A2) = µ(A1 ∩ A2) = 1− µ(A1 ∪ A2).

The sum κ3 of the kernels κ1 and κ2 is the agreement kernel :

κs(A1, A2) = 1− µ(A1 − A2)− µ(A2 − A1).

Many other kinds of kernels can be designed, in particular, graph kernels. For com-
prehensive presentations of kernels, see Schölkopf and Smola [86] and Shawe–Taylor and
Christianini [97].

33.3 Kernel PCA

As an application of kernel functions, we discuss a generalization of the method of principal
component analysis (PCA). Suppose we have a set of data S = {x1, . . . , xn} in some input
space X , and pretend that we have an embedding ϕ : X → F of X in a (real) feature space
(F, 〈−,−〉), but that we only have access to the kernel function κ(x, y) = 〈ϕ(x), ϕ(y)〉. We
would like to do PCA analysis on the set ϕ(S) = {ϕ(x1), . . . , ϕ(xn)}.

There are two obstacles:

(1) We need to center the data and compute the inner products of pairs of centered data.
More precisely, if the centroid of ϕ(S) is

µ =
1

n
(ϕ(x1) + · · ·+ ϕ(xn)),

then we need to compute the inner products 〈ϕ(x)− µ, ϕ(y)− µ〉.
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(2) Let us assume that F = Rd with the standard Euclidean inner product and that the
data points ϕ(xi) are expressed as row vectors Xi of an n × d matrix X (as it is
cutomary). Then the inner products κ(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 are given by the kernel
matrix K = XX>. Be aware that with this representation, ϕ(xi) is a d-dimensional
column vector and that ϕ(xi) = X>i . However, the jth component (Yk)j of the principal
component Yk (viewed as a n-dimensional column vector) is given by the projection of

X̂j = Xj − µ onto the direction uk (viewing µ as a d-dimensional row vector), which

is a unit eigenvector of the matrix (X − µ)>(X − µ) (where X̂ = X − µ is the matrix

whose jth row is X̂j = Xj − µ), is given by the inner product

〈Xj − µ, uk〉 = (Yk)j;

see Definition 17.2 and Theorem 17.11. The problem is that we know what the matrix
(X − µ)(X − µ)> is from (1), because it can be expressed in terms of K, but we don’t

know what (X − µ)>(X − µ) is, because we don’t have access to X̂ = X − µ.

Both difficulties are easily overcome. For (1), we have

〈ϕ(x)− µ, ϕ(y)− µ〉 =

〈
ϕ(x)− 1

n

n∑
k=1

ϕ(xk), ϕ(y)− 1

n

n∑
k=1

ϕ(xk)

〉

= κ(x, y)− 1

n

n∑
i=1

κ(x, xi)−
1

n

n∑
j=1

κ(xj, y) +
1

n2

n∑
i,j=1

κ(xi, xj).

For (2), if K is the kernel matrix K = (κ(xi, xj)), then the kernel matrix K̂ corresponding
to the kernel function κ̂ given by

κ̂(x, y) = 〈ϕ(x)− µ, ϕ(y)− µ〉

can be expressed in terms of K. Let 1 be the column vector (of dimension n) whose entries
are all 1. Then 11> is the n×n matrix whose entries are all 1. If A is an n×n matrix, then
1>A is the row vector consisting of the sums of the columns of A, A1 is the column vector
consisting of the sums of the rows of A, and 1>A1 is the sum of all the entries in A. Then
it is easy to see that the kernel matrix corresponding to the kernel function κ̂ is given by

K̂ = K− 1

n
11>K− 1

n
K11> +

1

n2
(1>K1)11>.

Suppose X̂ = X − µ has rank r. To overcome the second problem, note that if

X̂ = V DU>

is an SVD for X̂, then
X̂> = UD>V >
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is an SVD for X̂>, and the r×r submatrix of D> consisting of the first r rows and r columns
of D> (and D), is the diagonal Σr matrix consisting of the singular values σ1 ≥ · · · ≥ σr of

X̂, so we can express the matrix Ur consisting of the first r columns uk of U in terms of the
matrix Vr consisting of the first r columns vk of V (1 ≤ k ≤ r) as

Ur = X̂>VrΣ
−1
r .

Furthermore, σ2
1 ≥ · · · ≥ σ2

r are the nonzero eigenvalues of K̂ = X̂X̂>, and the columns of

Vr are corresponding unit eigenvectors of K̂. From

Ur = X̂>VrΣ
−1
r

the kth column uk of Ur (which is a unit eigenvector of X̂>X̂ associated with the eigenvalue
σ2
k) is given by

uk =
n∑
i=1

σ−1
k (vk)iX̂

>
i =

n∑
i=1

σ−1
k (vk)iϕ̂(xi), 1 ≤ k ≤ r,

so the projection of ϕ̂(x) onto uk is given by

〈ϕ̂(x), uk〉 =

〈
ϕ̂(x),

n∑
i=1

σ−1
k (vk)iϕ̂(xi)

〉

=
n∑
i=1

σ−1
k (vk)i

〈
ϕ̂(x), ϕ̂(xi)

〉
=

n∑
i=1

σ−1
k (vk)iκ̂(x, xi).

Therefore, the jth component of the principal component Yk in the principal direction uk is
given by

(Yk)j = 〈Xj − µ, uk〉 =
n∑
i=1

σ−1
k (vk)iκ̂(xj, xi) =

n∑
i=1

σ−1
k (vk)iK̂ij.

The generalization of kernel PCA to a general embedding ϕ : X → F of X in a (real)
feature space (F, 〈−,−〉) with the kernel matrix K given by

Kij = 〈ϕ(xi), ϕ(xj)〉,

goes as follows. Let r be the rank of K̂, where

K̂ = K− 1

n
11>K− 1

n
K11> +

1

n2
(1>K1)11>,

let σ2
1 ≥ · · · ≥ σ2

r be the nonzero eigenvalues of K̂, and let v1, . . . , vr be corresponding unit
eigenvectors. The notation

αk = σ−1
k vk
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is often used, where the αk are called the dual variables . The column vector Yk (1 ≤ k ≤ r)
defined by

Yk =

(
n∑
i=1

(αk)iK̂ij

)n

j=1

is called the kth kernel principal component (for short kth kernel PCA) of the data set

S = {x1, . . . , xn} in the direction uk =
∑n

i=1 σ
−1
k (vk)iX̂

>
i (even though the matrix X̂ is not

known).

In the next section, we give another illustration of the use of kernel functions in a gener-
alization of ridge regression (see Section 32.1).

33.4 ν-SV Regression

Let {(x1, y1), . . . , (xm, ym)} be a set of observed data usually called a set of training data,
with xi ∈ Rn and yi ∈ R. Our goal is to learn an affine function f of the form f(x) = w>x−b
that fits the set of training data, but does not penalize errors below some given ε ≥ 0. Thus
we try to fit a tube with radius ε to the data, but we also allow errors , in the sense that
some data xi may satisfy the equality f(xi) − yi = ε + ξi for some ξi > 0, or the equality
−(f(xi)− yi) = ε+ ξ′i for some ξ′i > 0. In this case, xi lies outside of the tube with radius ε.
The trade off between the size of ε and the size of the slack variables ξi and ξ′i is achieved by
using two constants ν ≥ 0 and C > 0. The method of ν-support vector regression, for short
ν-SV regression, is specified by the following minimization problem:

ν-SV Regression:

minimize
1

2
w>w + C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
subject to

w>xi − b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− w>xi + b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m

ε ≥ 0,

minimizing over the variables w, b, ε, ξ, and ξ′. The constraints are affine.

First, observe that the equations

w>xi − b− yi = ε+ ξi

−w>xi + b+ yi = ε+ ξ′i

can only hold simultaneously if

ε+ ξi = −ε− ξ′,
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that is,
2ε+ ξi + ξ′i = 0,

and since ε, ξi, ξ
′
i ≥ 0, this can happen only if ε = ξi = ξ′i = 0, and then

w>xi − b = yi.

In particular, if ε > 0, then the equations

w>xi − b− yi = ε+ ξi

−w>xi + b+ yi = ε+ ξ′i

cannot hold simultaneously. Also, since −w>xi + b+ yi = −(w>xi − b− yi), for an optimal
solution, if w>xi − b− yi ≥ 0, then ξ′i = 0 since the inequality

−w>xi + b+ yi ≤ ε+ ξ′i

is trivially satisfied (because ε, ξ′i ≥ 0), and if w>xi − b − yi ≤ 0, then similarly ξi = 0.
Therefore, we have the equations

ξiξ
′
i = 0, i = 1, . . . ,m. (ξξ′)

Observe that if ν > 1, then an optimal solution of the above program must yield ε = 0.
Indeed, if ε > 0, we can reduce it by a small amount δ > 0 and increase ξi + ξ′i by δ to still
satisfy the constraints, but the objective function changes by the amount −νδ + δ, which is
negative since ν > 1, so ε > 0 is not optimal.

Driving ε to zero is not the intented goal, because typically the data is not noise free so
very few pairs (xi, yi) will satisfy the equation w>xi − b = yi, and then many pair (xi, yi)
will correspond to an error (ξi > 0 or ξ′i > 0). Thus, typically we assume that 0 < ν ≤ 1.

To construct the Lagrangian, we assign Lagrange multipliers αi ≥ 0 to the constraints
w>xi− b−yi ≤ ε+ ξi, Lagrange multipliers α′i ≥ 0 to the constraints −w>xi+ b+yi ≤ ε+ ξ′i,
Lagrange multipliers ηi ≥ 0 to the constraints ξi ≥ 0, Lagrange multipliers η′i ≥ 0 to
the constraints ξ′i ≥ 0, and the Lagrange multiplier β ≥ 0 to the constraint ε ≥ 0. The
Lagrangian is

L(w, b, α, α′, β, ξ, ξ′, ε, η, η′) =
1

2
w>w + C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
− βε−

m∑
i=1

(ηiξi + η′iξ
′
i)

+
m∑
i=1

αi(w
>xi − b− yi − ε− ξi)

+
m∑
i=1

α′i(−w>xi + b+ yi − ε− ξ′i),
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The Lagrangian can also be written as

L(w, b, α, α′, β, ξ, ξ′, ε, η, η′) =
1

2
w>w + w>

(
m∑
i=1

(αi − α′i)xi
)

+ ε

(
Cν − β −

m∑
i=1

(αi + α′i)

)

+
m∑
i=1

ξi

(
C

m
− αi − ηi

)
+

m∑
i=1

ξ′i

(
C

m
− α′i − η′i

)

− b
(

m∑
i=1

(αi − α′i)
)
−

m∑
i=1

(αi − α′i)yi.

To find the dual function G(α, α′, η, η′, β), we minimize L(w, b, α, α′, β, ξ, ξ′, ε, η, η′) with
respect to the primal variables w, ε, b, ξ and ξ′. Observe that the Lagrangian is convex, and
since (w, ε, ξ, ξ′) ∈ Rn×R×Rm×Rm, a convex open set, by Theorem 21.11, the Lagrangian
has a minimum iff ∇Lw,ε,b,ξ,ξ′ = 0, so we compute the gradient ∇Lw,ε,b,ξ,ξ′ . We obtain

∇Lw,ε,b,ξ,ξ′ =



w +
∑m

i=1(αi − α′i)xi
Cν − β −∑m

i=1(αi + α′i)∑m
i=1(αi − α′i)
C
m
− α− η

C
m
− α′ − η′


,

where (
C

m
− α− η

)
i

=
C

m
− αi − ηi, and

(
C

m
− α′ − η′

)
i

=
C

m
− α′i − η′i.

Consequently, if we set ∇Lw,ε,b,ξ,ξ′ = 0, we obtain the equations

w =
m∑
i=1

(α′i − αi)xi, (∗w)

Cν − β −
m∑
i=1

(αi + α′i) = 0

m∑
i=1

(αi − α′i) = 0

C

m
− α− η = 0,

C

m
− α′ − η′ = 0.
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Substituting the above equations in the second expression for the Lagrangian, we find
that the dual function G is independent of the variables β, η, η′ and is given by

G(α, α′) = −1

2

m∑
i,j=1

(α′i − αi)(α′j − αj)x>i xj −
m∑
i=1

(αi − α′i)yi

if

Cν − β −
m∑
i=1

(αi + α′i) = 0

m∑
i=1

(αi − α′i) = 0

C

m
− α− η = 0,

C

m
− α′ − η′ = 0,

and −∞ otherwise.

The dual program is obtained by maximizing G(α, α′) or equivalently by minimizing
−G(α, α′), over α, α′ ∈ Rm

+ . Taking into account the fact that η, η′ ≥ 0 and β ≥ 0, we obtain
the following dual program:

minimize
1

2

m∑
i,j=1

(α′i − αi)(α′j − αj)x>i xj +
m∑
i=1

(αi − α′i)yi

subject to
m∑
i=1

(αi + α′i) ≤ Cν

m∑
i=1

(αi − α′i) = 0

0 ≤ αi ≤
C

m
, 0 ≤ α′i ≤

C

m
, i = 1, . . . ,m.

The KKT conditions (for the primal program) are

αi(w
>xi − b− yi − ε− ξi) = 0, i = 1, . . . ,m

α′i(−w>xi + b+ yi − ε− ξ′i) = 0, i = 1, . . . ,m

βε = 0

ηiξi = 0, i = 1, . . . ,m

η′iξ
′
i = 0, i = 1, . . . ,m.
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If ε > 0, since the equations

w>xi − b− yi = ε+ ξi

−w>xi + b+ yi = ε+ ξ′i

cannot hold simultaneously, we must have

αiα
′
i = 0, i = 1, . . . ,m. (αα′)

From the equations

C

m
− αi − ηi = 0,

C

m
− α′i − η′i = 0, ηiξi = 0, η′iξ

′
i = 0,

we get the equations(
C

m
− αi

)
ξi = 0,

(
C

m
− α′i

)
ξ′i = 0, i = 1, . . . ,m. (∗)

These equations show that if ξi > 0, then αi = C
m

, so we have the active constraint

w>xi − b− yi = ε+ ξi

and xi is an error, and similarly, if ξ′i > 0, then α′i = C
m

, so we have the active constraint

−w>xi + b+ yi = ε+ ξ′i

and xi is an error.

If the primal has an optimal solution with w 6= 0 and ε > 0, then by (∗w) and since

m∑
i=1

(αi − α′i) = 0 and αiα
′
i = 0,

there is there is some i0 such that αi0 > 0 and some j0 6= i0 such that α′j0 > 0. Under the

mild hypothesis that there is some i0 such that 0 < αi0 <
C
m

and there is some j0 such that
0 < α′j0 <

C
m

, then by (∗) we have ξi0 = 0, ξ′j0 = 0, and we have the two equations

w>xi0 − b− yi0 = ε

−w>xj0 + b+ yj0 = ε,

so b and ε can be computed. In particular,

b =
1

2

(
w>(xi0 + xj0)− (yi0 + yj0)

)
.
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The function f(x) = w>x− b (often called regression estimate) is given by

f(x) =
m∑
i=1

(α′i − αi)x>i xj − b.

The constraints

m∑
i=1

(αi + α′i) ≤ Cν

0 ≤ αi ≤
C

m

0 ≤ α′i ≤
C

m

imply that at most a fraction ν of the data can have αi = C
m

or α′i = C
m

. If follows that if
ε > 0 and 0 < ν ≤ 1, then ν is an upper bound on the fraction of errors.

The KKT conditions imply that if ε > 0, then β = 0, in which case

m∑
i=1

(αi + α′i) = Cν.

Since αiα
′
i = 0, and since support vectors correspond to 0 < αi, α

′
i ≤ C

m
, we see that ν is a

lower bound on the fraction of support vectors.

Since the formulae for w, b, and f(x),

w =
m∑
i=1

(α′i − αi)xi

b =
1

2

(
w>(xi0 + xj0)− (yi0 + yj0)

)
f(x) =

m∑
i=1

(α′i − αi)x>i xj − b,

only involve inner products among the data points xi, and since the objective function
−G(α, α′) of the dual program also only involves inner products among the data points xi,
we can kernelize the ν-SV regression method.

As in the previous section, we assume that our data points {x1, . . . , xm} belong to a set X
and we pretend that we have feature space (F, 〈−,−〉) and a feature embedding map ϕ : X →
F , but we only have access to the kernel function κ(xi, xj) = 〈ϕ(xi), ϕ(xj)〉. We wish to
perform ν-SV regression in the feature space F on the data set {(ϕ(x1), y1), . . . , (ϕ(xm), ym)}.
Going over the previous computation, we see that the primal program is given by
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kernel ν-SV Regression:

minimize
1

2
〈w,w〉+ C

(
νε+

1

m

m∑
i=1

(ξi + ξ′i)

)
subject to

〈w,ϕ(xi)〉 − b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− 〈w,ϕ(xi)〉+ b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m

ε ≥ 0,

minimizing over the variables w, ε, b, ξ, and ξ′. The Lagrangian is given by

L(w, b, α, α′, β, ξ, ξ′, ε, η, η′) =
1

2
〈w,w〉+

〈
w,

m∑
i=1

(αi − α′i)ϕ(xi)

〉

+ ε

(
Cν − β −

m∑
i=1

(αi + α′i)

)

+
m∑
i=1

ξi

(
C

m
− αi − ηi

)
+

m∑
i=1

ξ′i

(
C

m
− α′i − η′i

)

− b
(

m∑
i=1

(αi − α′i)
)
−

m∑
i=1

(αi − α′i)yi.

Setting the gradient ∇Lw,ε,b,ξ,ξ′ of the Lagrangian to zero, we also obtain the equations

w =
m∑
i=1

(α′i − αi)ϕ(xi), (∗w)

Cν − β −
m∑
i=1

(αi + α′i) = 0

m∑
i=1

(αi − α′i) = 0

C

m
− α− η = 0,

C

m
− α′ − η′ = 0.

Using the above equations, we find that the dual functionG is independent of the variables
β, η, η′, and we obtain the following dual program:
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minimize
1

2

m∑
i,j=1

(α′i − αi)(α′j − αj)κ(xi, xj) +
m∑
i=1

(αi − α′i)yi

subject to
m∑
i=1

(αi + α′i) ≤ Cν

m∑
i=1

(αi − α′i) = 0

0 ≤ αi ≤
C

m
, 0 ≤ α′i ≤

C

m
, i = 1, . . . ,m.

Everything we said before also applies to the kernel ν-SV regression method, except that
xi is replaced by ϕ(xi) and that the inner product 〈−,−〉 must be used, and we have the
formulae

w =
m∑
i=1

(α′i − αi)ϕ(xi)

b =
1

2

(
m∑
i=1

(α′i − αi)(κ(xixi0) + κ(xi, xj0))− (yi0 + yj0)

)

f(x) =
m∑
i=1

(α′i − αi)κ(xi, xj)− b,

expressions that only involve κ.

Remark: There is a variant of ν-SV regression obtained by setting ν = 0 and holding ε > 0
fixed. This method is called ε-SV regression or (linear) ε-insensitive SV regression. The
corresponding optimization program is

ε-SV Regression:

minimize
1

2
w>w +

C

m

m∑
i=1

(ξi + ξ′i)

subject to

w>xi − b− yi ≤ ε+ ξi, ξi ≥ 0 i = 1, . . . ,m

− w>xi + b+ yi ≤ ε+ ξ′i, ξ′i ≥ 0 i = 1, . . . ,m,

minimizing over the variables w, b, ξ, and ξ′.

It is easy to see that the dual program is
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minimize
1

2

m∑
i,j=1

(α′i − αi)(α′j − αj)x>i xj +
m∑
i=1

(αi − α′i)yi + ε
m∑
i=1

(αi + α′i)

subject to
m∑
i=1

(αi − α′i) = 0

0 ≤ αi ≤
C

m
, 0 ≤ α′i ≤

C

m
, i = 1, . . . ,m.

The constraint
m∑
i=1

(αi + α′i) ≤ Cν

is gone but the extra term ε
∑m

i=1(αi + α′i) has been added to the dual function, to prevent
αi and α′i from blowing up.

There is an obvious kernelized version of ε-SV regression. It is easy to show that ν-SV
regression subsumes ε-SV regression, in the sense that if ν-SV regression succeeds and yields
w, b, ε > 0, then ε-SV regression with the same C and the same value of ε also succeeds
and returns the same pair (w, b). For more details on these methods, see Schölkopf, Smola,
Williamson, and Bartlett [88].

Remark: The linear penalty function
∑m

i=1(ξi+ξ
′
i) can be repaced by the quadratic penalty

function
∑m

i=1(ξ2
i + ξ′2i ); see Shawe–Taylor and Christianini [97] (Chapter 7).

Yet another variant of ν-SV regression is to add the term 1
2
b2 to the objective function.

The new Lagrangian is

L(w, b, α, α′, β, ξ, ξ′, ε, η, η′) =
1

2
w>w + w>

(
m∑
i=1

(αi − α′i)xi
)

+ ε

(
Cν − β −

m∑
i=1

(αi + α′i)

)

+
m∑
i=1

ξi

(
C

m
− αi − ηi

)
+

m∑
i=1

ξ′i

(
C

m
− α′i − η′i

)

+
1

2
b2 − b

(
m∑
i=1

(αi − α′i)
)
−

m∑
i=1

(αi − α′i)yi.

We obtain the new equation

b =
m∑
i=1

(αi − α′i)
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determining b, which replaces the equation

m∑
i=1

(αi − α′i) = 0.

The new dual program is

minimize
1

2

m∑
i,j=1

(α′i − αi)(α′j − αj)(x>i xj + 1) +
m∑
i=1

(αi − α′i)yi

subject to
m∑
i=1

(αi + α′i) ≤ Cν

0 ≤ αi ≤
C

m
, 0 ≤ α′i ≤

C

m
, i = 1, . . . ,m.



Chapter 34

Soft Margin Support Vector Machines

If the sets of points {u1, . . . , up} and {v1, . . . , vq} are not linearly separable (with ui, vj ∈
Rn), we can use a trick from linear programming, which is to introduce nonnegative “slack
variables” ε = (ε1, . . . , εp) ∈ Rp and ξ = (ξ1, . . . , ξq) ∈ Rq to relax the “hard” constraints

w>ui − b ≥ δ i = 1, . . . , p

−w>vj + b ≥ δ j = 1, . . . , q

of Problem (SVMh1) from Section 31.3 to the “soft” constraints

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

−w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q.

Recall that w ∈ Rn and b, δ ∈ R.

If εi > 0, the point ui may be misclassified, in the sense that it can belong to the margin
(the slab), or even to the wrong half-space classifying the negative (red) points. See Figures
34.1 (2) and (3). Similarly, if ξj > 0, the point vj may be misclassified, in the sense that it
can belong to the margin (the slab), or even to the wrong half-space classifying the positive
(blue) points. We can think of εi as a measure of how much the constraint w>ui − b ≥ δ
is violated, and similarly of ξj as a measure of how much the constraint −w>vj + b ≥ δ is
violated. If ε = 0 and ξ = 0, then we recover the original constraints. By making ε and ξ
large enough, these constraints can always be satisfied. We add the constraint w>w ≤ 1 and
we minimize −δ.

If instead of the constraints of Problem (SVMh1) we use the hard constraints

w>ui − b ≥ 1 i = 1, . . . , p

−w>vj + b ≥ 1 j = 1, . . . , q

of Problem (SVMh2) (see Example 31.4), then we relax to the soft constraints

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

−w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

937
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In this case, there is no constraint on w, but we minimize (1/2)w>w.

Ideally we would like to find a separating hyperplane that minimizes the number of
misclassified points , which means that the variables εi and ξj should be as small as possible,
but there is a trade-off in maximizing the margin (the thickness of the slab), and minimizing
the number of misclassified points. This is reflected in the choice of the objective function,
and there are several options, depending on whether we minimize a linear function of the
variables εi and ξj, or a quadratic functions of these variables, or whether we include the term
(1/2)b2 in the objective function. These methods are known as support vector classification
algorithms (for short SVC algorithms).

SVC algorithms seek an “optimal” separating hyperplane H of equation w>x− b = 0. If
some new data x ∈ Rn comes in, we can classify it by determining in which of the two half
spaces determined by the hyperplane H they belong, by computing the sign of the quantity
w>x− b. The function sgn: R→ {−1, 1} is given by

sgn(x) =

{
+1 if x ≥ 0

−1 if x < 0.

Then we define the (binary) classification function associated with the hyperplane H of
equation w>x− b = 0 as

f(x) = sgn(w>x− b).

Remarkably, all the known optimization problems for finding this hyperplane share the
property that the weight vector w and the constant b are given by expressions that only
involves inner products of the input data points ui and vj, and so does the classification
function

f(x) = sgn(w>x− b).
This is a key fact that allows a far reaching generalization of the support vector machine

using the method of kernels .

The method of kernels consists in assuming that the input space Rn is embedded in
a larger (possibly infinite dimensional) Euclidean space F (with an inner product 〈−,−〉)
usually called a feature space, using a function

ϕ : Rn → F

called a feature map. The function κ : Rn × Rn → R given by

κ(x, y) = 〈ϕ(x), ϕ(y)〉

is the kernel function associated with the embedding ϕ; see Chapter 33. The idea is that
the feature map ϕ “unwinds” the input data, making it somehow more linear in the higher
dimensional space F . Now even if we don’t know what the feature space F is and what the
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embedding map ϕ is, we can pretend to solve our separation problem in F for the embedded
data points ϕ(ui) and ϕ(vj). Thus we seek a hyperplane H of equation

〈w, ζ〉 − b = 0, ζ ∈ F,

in the feature space F , to attempt to separate the points ϕ(ui) and the points ϕ(vj). As we
said, it turns out that w and b are given by expression involving only the inner products
κ(ui, uj) = 〈ϕ(ui), ϕ(uj)〉, κ(ui, vj) = 〈ϕ(ui), ϕ(vj)〉, and κ(vi, vj) = 〈ϕ(vi), ϕ(vj)〉, which
form the symmetric (p+ q)× (p+ q) matrix K (a kernel matrix) given by

Kij =


κ(ui, uj) 1 ≤ i ≤ p, 1 ≤ j ≤ q

−κ(ui, vj−p) 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q

−κ(vi−p, uj) p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p

κ(vi−p, vj−q) p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q.

Then the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

for points in the original data space Rn is also expressed solely in terms of the matrix K and
the inner products κ(ui, x) = 〈ϕ(ui), ϕ(x)〉 and κ(vj, x) = 〈ϕ(vj), ϕ(x)〉. As a consequence,
in the original data space Rn, the hypersurface

S = {x ∈ Rn | 〈w,ϕ(x)〉 − b = 0}

separates the data points ui and vj, but it is not an affine subspace of Rn. The classification
function f tells us on which “side” of S is a new data point x ∈ Rn. Thus, we managed
to separate the data points ui and vj that are not separable by an affine hyperplane, by a
nonaffine hypersurface S, by assuming that an embdedding ϕ : Rn → F exists, even though
we don’t know what it is, but having access to F through the kernel function κ : Rn×Rn → R
given by the inner products κ(x, y) = 〈ϕ(x), ϕ(y)〉.

In practice, the art of using the kernel method is to choose the right kernel (as the knight
says in Indiana Jones, to “choose wisely.”).

The method of kernels is very flexible. It also applies to the soft margin versions of SVM,
but also to regression problems, and to principal component analysis (PCA), and to other
problems arising in machine learning.

Comprehensive presentations of the method of kernels are found in Schölkopf and Smola
[86] and Shawe–Taylor and Christianini [97]. See also Bishop [18].

We first consider the soft margin SVM arising from Problem (SVMh1).
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34.1 Soft Margin Support Vector Machines; (SVMs1)

In this section we derive the dual function G associated with the following version of the
soft margin SVM coming from Problem (SVMh1), where the maximization of the margin δ
has been replaced by the minimization of −δ, and where we added a “regularizing term”

K
(∑p

i=1 εi +
∑q

j=1 ξj

)
whose purpose is to make ε ∈ Rp and ξ ∈ Rq sparse (that is, try to

make εi and ξj have as many zeros as possible), where K > 0 is a fixed constant that can be
adjusted to determine the influence of this regularizing term. If the primal problem (SVMs1)
has an optimal solution (w, δ, b, ε, ξ), we attempt to use the dual function G to obtain it, but
we will see that with this particular formulation of the problem, the constraint w>w ≤ 1
causes troubles, even though it is convex.

Soft margin SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

w>w ≤ 1.

It is customary to write ` = p+ q.

For this problem, the primal problem may have an optimal solution (w, δ, b, ε, ξ) with
‖w‖ = 1 and δ > 0, but if the sets of points are not linearly separable then an optimal
solution of the dual may not yield w.

The objective function of our problem is affine and the only nonaffine constraint w>w ≤ 1
is convex. This constraint is qualified because for any w 6= 0 such that w>w < 1 and for
any δ > 0 and any b we can pick ε and ξ large enough so that the constaints are satisfied.
Consequently, by Theorem 31.14(2) if the primal problem (SVMs1) has an optimal solution,
then the dual problem has a solution too, and the duality gap is zero.

Unfortunately this does not imply that an optimal solution of the dual yields an optimal
solution of the primal because the hypotheses of Theorem 31.14(1) fail to hold. In general,
there may not be a unique vector (w, ε, ξ, b, δ) such that

inf
w,ε,ξ,b,δ

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = G(λ, µ, α, β, γ).

If the sets {ui} and {vj} are not linearly separable, then the dual problem may have a
solution for which γ = 0,

p∑
i=1

λi =

q∑
j=1

µj =
1

2
,



34.1. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs1) 941

and
p∑
i=1

λiui =

q∑
j=1

µjvj,

so that the dual function G(λ, µ, α, β, γ), which is a partial function, is defined and has the
value G(λ, µ, α, β, 0) = 0. Such a pair (λ, µ) corresponds to the coefficients of two convex
combinations

p∑
i=1

2λiui =

q∑
j=1

2µjvj

which correspond to the same point in the (nonempty) intersection of the convex hulls
conv(u1, . . . , up) and conv(v1, . . . , vq). It turns out that the only connection between w
and the dual function is the equation

2γw =

p∑
i=1

λiui −
q∑
j=1

µjvj,

and when γ = 0 this is equation is 0 = 0, so the dual problem is useless to determine w.
This point seems to have been missed in the literature (for example, in Shawe–Taylor and
Christianini [97], Section 7.2). What the dual problem does show is that δ ≥ 0. However, if
γ 6= 0, then w is determined by any solution (λ, µ) of the dual.

It still remains to compute δ and b, which can be done under a mild hypothesis that we
call the Standard Margin Hypothesis.

If (w, δ, b, ε, ξ) is an optimal solution of Problem (SVMs1), then the points ui and vj are
classified as follows:

(1) If εi = 0, then the point ui is correctly classified and is either on the blue margin (the
hyperplane Hw,b+η of equation w>x = b+ η) or on the correct side of the blue margin
(the blue side). Similarly, if ξj = 0, then the point vj is correctly classified and is either
on the red margin (the hyperplane Hw,b−η of equation w>x = b− η) or on the correct
side of the red margin (the red side).

(2) If 0 < εi ≤ η, then the point ui lies inside the margin (the slab), but on the correct side
of the separating hyperplane (the blue side). If εi = η, then ui lies on the separating
hyperplane. Similarly, if 0 < ξj ≤ η, then the point vj lies inside the margin (the slab),
but on the correct side of the separating hyperplane (the red side). If ξj = η, then vj
lies on the separating hyperplane.

(3) If εi > η, then the point ui lies on the wrong side of the separating hyperplane (the
red side); it is misclassified. Similarly, if ξj > η, then the point vj lies on the wrong
side of the separating hyperplane (the blue side); it is misclassified.
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Let λ ∈ Rp
+ be the Lagrange multipliers associated with the inequalities w>ui−b ≥ δ−εi,

let µ ∈ Rq
+ be the Lagrange multipliers are associated with the inequalities−w>vj+b ≥ δ−ξj,

let α ∈ Rp
+ be the Lagrange multipliers associated with the inequalities εi ≥ 0, β ∈ Rq

+ be
the Lagrange multipliers associated with the inequalities ξj ≥ 0, and let γ ∈ R+ be the
Lagrange multiplier associated with the inequality w>w ≤ 1.

The linear constraints are given by the 2(p + q)× (n + p + q + 2) matrix given in block
form by

C =

 X> −Ip+q 1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

 ,

where X is the n× (p+ q) matrix

X =
(
−u1 · · · −up v1 · · · vq

)
,

and the linear constraints are expressed by

 X> −Ip+q 1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q



w
ε
ξ
b
δ

 ≤
(

0p+q
0p+q

)
.

More explicitly, C is the following matrix:

C =



−u>1 −1 · · · 0 0 · · · 0 1 1
...

...
. . .

...
...

. . .
...

...
...

−u>p 0 · · · −1 0 · · · 0 1 1
v>1 0 · · · 0 −1 · · · 0 −1 1
...

...
. . .

...
...

. . .
...

...
...

v>q 0 · · · 0 0 · · · −1 −1 1
0 −1 · · · 0 0 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · −1 0 · · · 0 0 0
0 0 · · · 0 −1 · · · 0 0 0
...

...
. . .

...
...

. . .
...

...
...

0 0 · · · 0 0 · · · −1 0 0



.

The objective function is given by

J(w, ε, ξ, b, δ) = −δ +K
(
ε> ξ>

)
1p+q.



34.1. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs1) 943

The Lagrangian L(w, ε, ξ, b, δ, λ, µ, α, β, γ) with λ, α ∈ Rp
+, µ, β ∈ Rq

+, and γ ∈ R+ is given
by

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = −δ +K
(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b δ

)
C>


λ
µ
α
β

+ γ(w>w − 1).

Since

(
w>

(
ε> ξ>

)
b δ

)
C>


λ
µ
α
β

 = w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ)

+ δ(1>p λ+ 1>q µ),

the Lagrangian can be written as

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = −δ +K(ε>1p + ξ>1q) + w>X

(
λ
µ

)
+ γ(w>w − 1)

− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ) + δ(1>p λ+ 1>q µ)

= (1>p λ+ 1>q µ− 1)δ + w>X

(
λ
µ

)
+ γ(w>w − 1)

+ ε>(K1p − (λ+ α)) + ξ>(K1q − (µ+ β)) + b(1>p λ− 1>q µ).

To find the dual function G(λ, µ, α, β, γ) we minimize L(w, ε, ξ, b, δ, λ, µ, α, β, γ) with
respect to w, ε, ξ, b, and δ. Since the Lagrangian is convex and (w, ε, ξ, b, δ) ∈ Rn×Rp×Rq×
R×R, a convex open set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b, δ)
iff ∇Lw,ε,ξ,b,δ = 0, so we compute the gradient with respect to w, ε, ξ, b, δ and we get

∇Lw,ε,ξ,b,δ =


X

(
λ
µ

)
+ 2γw

K1p − (λ+ α)
K1q − (µ+ β)

1>p λ− 1>q µ
1>p λ+ 1>q µ− 1

 .

By setting ∇Lw,ε,ξ,b,δ = 0 we get the equations

2γw = −X
(
λ
µ

)
(∗w)



944 CHAPTER 34. SOFT MARGIN SUPPORT VECTOR MACHINES

and

λ+ α = K1p

µ+ β = K1q

1>p λ = 1>q µ

1>p λ+ 1>q µ = 1.

The second and third equations are equivalent to the inequalities

0 ≤ λi, µj ≤ K, i = 1, . . . , p, j = 1, . . . , q,

often called box constraints , and the fourth and fifth equations yield

1>p λ = 1>q µ =
1

2
.

First let us consider the singular case γ = 0. In this case, (∗w) implies that

X

(
λ
µ

)
= 0,

and the term γ(w>w − 1) is missing from the Lagrangian, which in view of the other four
equations above reduces to

L(w, ε, ξ, b, δ, λ, µ, α, β, 0) = w>X

(
λ
µ

)
= 0.

In summary, we proved that if γ = 0, then

G(λ, µ, α, β, 0) =


0 if


∑p

i=1 λi =
∑q

j=1 µj = 1
2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise

and
∑p

i=1 λiui −
∑q

j=1 µjuj = 0.

Geometrically, (λ, µ) corresponds to the coefficients of two convex combinations

p∑
i=1

2λiui =

q∑
j=1

2µjvj

which correspond to the same point in the intersection of the convex hulls conv(u1, . . . , up)
and conv(v1, . . . , vq), iff the sets {ui} and {vj} are not linearly separable. If the sets {ui}
and {vj} are linearly separable, then the convex hulls conv(u1, . . . , up) and conv(v1, . . . , vq)
are disjoint, which implies that γ > 0.
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Let us now assume that γ > 0. Plugging back w from equation (∗w) into the Lagrangian,
after simplifications we get

G(λ, µ, α, β, γ) = − 1

2γ

(
λ> µ>

)
X>X

(
λ
µ

)
+

γ

4γ2

(
λ> µ>

)
X>X

(
λ
µ

)
− γ

= − 1

4γ

(
λ> µ>

)
X>X

(
λ
µ

)
− γ,

so if γ > 0 the dual function is independent of α, β and is given by

G(λ, µ, α, β, γ) =


− 1

4γ

(
λ> µ>

)
X>X

(
λ

µ

)
− γ if


∑p

i=1 λi =
∑q

j=1 µj = 1
2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise.

Since X>X is symmetric positive definite and γ ≥ 0, obviously

G(λ, µ, α, β, γ) ≤ 0

for all γ > 0.

The dual program is given by

maximize − 1

4γ

(
λ> µ>

)
X>X

(
λ
µ

)
− γ if γ > 0

0 if γ = 0

subject to
p∑
i=1

λi =

q∑
j=1

µj =
1

2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

Also, if γ = 0 then X

(
λ
µ

)
= 0.

Maximizing with respect to γ > 0 yields

γ2 =
1

4

(
λ> µ>

)
X>X

(
λ
µ

)
,

so we obtain

G(λ, µ) = −
((
λ> µ>

)
X>X

(
λ
µ

))1/2

.
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Finally, since G(λ, µ) = 0 and X

(
λ
µ

)
= 0 if γ = 0, the dual program is equivalent to

the following minimization program:

minimize
(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj =
1

2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

Observe that the constraints imply that K must be chosen so that

K ≥ max

{
1

2p
,

1

2q

}
.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ.

If the optimal value is 0, then γ = 0 and X

(
λ
µ

)
= 0, so in this case it is not possible

to determine w. However, if the optimal value is > 0, then once a solution for λ and µ is
obtained, by (∗w), we have

γ =
1

2

((
λ> µ>

)
X>X

(
λ
µ

))1/2

w =
1

2γ

( p∑
i=1

λiui −
q∑
j=1

µjvj

)
,

so we get

w =

p∑
i=1

λiui −
q∑
j=1

µjvj((
λ> µ>

)
X>X

(
λ
µ

))1/2
,

which is the result of making
∑p

i=1 λiui −
∑q

j=1 µjvj a unit vector, since

X =
(
−u1 · · · −up v1 · · · vq

)
.

It remains to find b and δ, which are not given by the dual program.
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The complementary slackness conditions yield a classification of the points in terms of
the values of λ and µ. Indeed, we have εiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q.
Also, if λi > 0, then corresponding constraint is active, and similarly if µj > 0. Since
λi + αi = K, it follows that εiαi = 0 iff εi(K − λi) = 0, and since µj + βj = K, we have
ξjβj = 0 iff ξj(K − µj) = 0. Thus if εi > 0 then λi = K, and if ξj > 0, then µj = K.
Consequently, if λi < K then εi = 0 and ui is correctly classified, and similarly if µj < K
then ξj = 0 and vj is correctly classified. We have the following classification:

(1) If 0 < λi < K then ui is on the margin and is classified correctly. Similarly, if
0 < µj < K then vj is on the margin and is classified correctly.

(2) If λi = K, then if εi ≤ δ the point ui may be classified correctly or it lies within the
margin on the correct side, but if εi > δ then it is misclassifed. Similarly, if µj = K,
then if ξj ≤ δ the point vj may be classified correctly or it lies within the margin on
the correct side, but if ξj > δ then it is misclassifed.

(3) If λi = 0 then ui is classified correctly. Similarly, if µj = 0 then vj is classified correctly.

The equations
p∑
i=1

λi =

q∑
j=1

µj =
1

2

imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0, but a priori,
nothing prevents the situation where λi = K for all nonzero λi or µj = K for all nonzero
µj. If this happens, we can rerun the optimization method with a larger value of K. If the
following mild hypothesis holds then b and δ can be found.

Standard Margin Hypothesis for (SVMs1). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is
correctly classified and on the blue margin, and some vj0 is correctly classified and on the
red margin.

If the Standard Margin Hypothesis for (SVMs1) holds then εi0 = 0 and µj0 = 0, and
then we have the active equations

w>ui0 − b = δ and − w>vj0 + b = δ,

and we obtain the value of b and δ as

b =
1

2
(w>ui0 + w>vj0)

δ =
1

2
(w>ui0 − w>vj0).

As we said earlier, the hypotheses of Theorem 31.14(2) hold, so if the primal problem
(SVMs1) has an optimal solution with w 6= 0, then the dual problem has a solution too, and
the duality gap is zero. Therefore, for optimal solutions we have

L(w, ε, ξ, b, δ, λ, µ, α, β, γ) = G(λ, µ, α, β, γ),
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which means that

−δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −

((
λ> µ>

)
X>X

(
λ
µ

))1/2

,

so we get

δ = K

( p∑
i=1

εi +

q∑
j=1

ξj

)
+

((
λ> µ>

)
X>X

(
λ
µ

))1/2

.

Therefore, we confirm that δ ≥ 0.

It is important to note that the objective function of the dual program

−G(λ, µ) =

((
λ> µ>

)
X>X

(
λ
µ

))1/2

only involves the inner products of the ui and the vj through the matrix X>X, and similarly,
the equation of the optimal hyperplane can be written as

p∑
i=1

λiu
>
i x−

q∑
j=1

µjv
>
j x−

((
λ> µ>

)
X>X

(
λ
µ

))1/2

b = 0,

an expression that only involves inner products of x with the ui and the vj and inner products
of the ui and the vj.

As explained at the beginning of this chapter, this is a key fact that allows a generalization
of the support vector machine using the method of kernels . We can define the following
“kernelized” version of Problem (SVMs1):

Soft margin kernel SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

〈w,ϕ(ui)〉 − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

〈w,w〉 ≤ 1.

Tracing through the computation that led us to the dual program with ui replaced by
ϕ(ui) and vj replaced by ϕ(vj), we find the following version of the dual program:
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minimize
(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj =
1

2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

where K is the `× ` kernel symmetric matrix (with ` = p+ q) given by

Kij =


κ(ui, uj) 1 ≤ i ≤ p, 1 ≤ j ≤ q

−κ(ui, vj−p) 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q

−κ(vi−p, uj) p+ 1 ≤ i ≤ p+ q, 1 ≤ j ≤ p

κ(vi−p, vj−q) p+ 1 ≤ i ≤ p+ q, p+ 1 ≤ j ≤ p+ q.

We also find that

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj)((
λ> µ>

)
K

(
λ
µ

))1/2
.

Under the Standard Margin Hypothesis, there is some index i0 such that 0 < λi0 < K
and there is some index j0 such that 0 < µj0 < K, and we obtain the value of b and δ as

b =
1

2
(〈w,ϕ(ui0〉+ 〈w,ϕ(vj0)〉)

δ =
1

2
(〈w,ϕ(ui0)〉 − 〈w,ϕ(vj0)〉).

Using the above value for w, we obtain

b =

∑p
i=1 λi(κ(ui, ui0) + κ(ui, vj0))−

∑q
j=1 µj(κ(vj, ui0) + κ(vj, vj0))

2

((
λ> µ>

)
K

(
λ
µ

))1/2
.

It follows that the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)
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is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
,

which is solely expressed in terms of the kernel κ.

Kernel methods for SVM are discussed in Schölkopf and Smola [86] and Shawe–Taylor
and Christianini [97].

Since the constraint w>w ≤ 1 causes troubles, we trade it for a different objective function
in which −δ is replaced by (1/2) ‖w‖2

2. This way we are left with purely affine constraints.
In the next section we discuss a generalization of Problem (SVMh2) obtained by adding a
linear regularizing term.

34.2 Soft Margin Support Vector Machines; (SVMs2)

In this section we consider the generalization of Problem (SVMh2) where we minimize

(1/2)w>w by adding the “regularizing term” K
(∑p

i=1 εi +
∑q

j=1 ξj,
)

for some K > 0.

Recall that the margin δ is given by δ = 1/ ‖w‖.
Soft margin SVM (SVMs2):

minimize
1

2
w>w +K

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

This is the classical problem discussed in all books on machine learning or pattern anal-
ysis, for instance Vapnik [111], Bishop [18], and Shawe–Taylor and Christianini [97]. The
trivial solution where all variables are 0 is ruled out because of the presence of the 1 in the
inequalities, but it is not clear that if (w, b, ε, ξ) is an optimal solution, then w 6= 0.

We prove that if the primal problem has an optimal solution (w, ε, ξ, b) with w 6= 0, then
w is determined by any optimal solution (λ, µ) of the dual. We also prove that there is some
i for which λi > 0 and some j for which µj > 0. Under a mild hypothesis that we call the
Standard Margin Hypothesis, b can be found.

If (w, ε, ξ, b) is an optimal solution of Problem (SVMs2), then the points ui and vj are
classified as follows:



34.2. SOFT MARGIN SUPPORT VECTOR MACHINES; (SVMs2) 951

(1) If εi = 0, then the point ui is correctly classified and is either on the margin or on
the correct side of the margin (the blue side). Similarly, if ξj = 0, then the point vj
is correctly classified and is either on the margin or on the correct side of the margin
(the red side). See Figure 34.1 (1).

(2) If 0 < εi ≤ 1, then the point ui lies inside the margin (the slab), but on the correct side
of the separating hyperplane (the blue side). If εi = 1, then ui lies on the separating
hyperplane. Similarly, if 0 < ξj ≤ 1, then the point vj lies inside the margin (the slab),
but on the correct side of the separating hyperplane (the red side). If ξj = 1, then vj
lies on the separating hyperplane. See Figure 34.1 (2).

(3) If εi > 1, then the point ui lies on the wrong side of the separating hyperplane (the red
side); it is misclassified. Similarly, if ξj > 1, then the point vj lies on the wrong side of
the separating hyperplane (the blue side); it is misclassified. See Figure 34.1 (3).
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Figure 34.1: Figure (1) illustrates the case of ui contained in the margin and occurs when
ε1 = 0. The left illustration of Figure (2) is when ui is inside the margin yet still on the
correct side of the separating hyperplane w>x−b = 0; this occurs when 0 < ε1 < 1. The right
illustration depicts ui on the separating hyperplane whenever ε1 = 1. Figure (3) illustrations
a misclassification of ui and occurs when ε1 > 1.

Points for which εi > 0 (or ξj > 0) are called margin-errors ; they either lie within the
slab or they are misclassified.
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Note that this framework is still somewhat sensitive to outliers because the penalty for
misclassification is linear in ε and ξ.

First we write the constraints in matrix form. The 2(p + q)× (n + p + q + 1) matrix C
is written in block form as

C =

 X> −Ip+q 1p
−1q

0p+q,n −Ip+q 0p+q

 ,

and the constraints are expressed by X> −Ip+q 1p
−1q

0p+q,n −Ip+q 0p+q



w
ε
ξ
b

 ≤ (−1p+q
0p+q

)
.

The objective function J(w, ε, ξ, b) is given by

J(w, ε, ξ, b) =
1

2
w>w +K

(
ε> ξ>

)
1p+q.

The Lagrangian L(w, ε, ξ, b, λ, µ, α, β) with λ, α ∈ Rp
+ and with µ, β ∈ Rq

+ is given by

L(w, ε, ξ, b, λ, µ, α, β) =
1

2
w>w +K

(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

+
(
1>p+q 0>p+q

)
λ
µ
α
β

 .

Since

(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

 =
(
w>

(
ε> ξ>

)
b
) X 0n,p+q

−Ip+q −Ip+q
1>p −1>q 0>p+q



λ
µ
α
β


we get

(
w>

(
ε> ξ>

)
b
)
C>


λ
µ
α
β

 =
(
w>

(
ε> ξ>

)
b
)


X

(
λ
µ

)
−
(
λ+ α
µ+ β

)
1>p λ− 1>q µ


= w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ),
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and since

(
1>p+q 0>p+q

)
λ
µ
α
β

 = 1>p+q

(
λ
µ

)
=
(
λ> µ>

)
1p+q,

the Lagrangian can be rewritten as

L(w, ε, ξ, b, λ, µ, α, β) =
1

2
w>w + w>X

(
λ
µ

)
+ ε>(K1p − (λ+ α)) + ξ>(K1q − (µ+ β))

+ b(1>p λ− 1>q µ) +
(
λ> µ>

)
1p+q.

To find the dual function G(λ, µ, α, β) we minimize L(w, ε, ξ, b, λ, µ, α, β) with respect to
w, ε, ξ and b. Since the Lagrangian is convex and (w, ε, ξ, b) ∈ Rn × Rp × Rq × R, a convex
open set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b) iff ∇Lw,ε,ξ,b = 0,
so we compute its gradient with respect to w, ε, ξ and b and we get

∇Lw,ε,ξ,b =


w +X

(
λ
µ

)
K1p − (λ+ α)
K1q − (µ+ β)

1>p λ− 1>q µ

 .

By setting ∇Lw,ε,ξ,b = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

and

λ+ α = K1p

µ+ β = K1q

1>p λ = 1>q µ.

The first and the fourth equation are identical to the equations (∗1) and (∗2) that we obtained
in Example 31.8. Since λ, µ, α, β ≥ 0, the second and the third equation are equivalent to
the box constraints

0 ≤ λi, µj ≤ K, i = 1, . . . , p, j = 1, . . . , q.

Using the equations that we just derived, after simplifications we get

G(λ, µ, α, β) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q,
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which is independent of α and β and is identical to the dual function obtained in (∗4) of
Example 31.8. To be perfectly rigorous,

G(λ, µ) =


−1

2

(
λ> µ>

)
X>X

(
λ

µ

)
+
(
λ> µ>

)
1p+q if


∑p

i=1 λi =
∑q

j=1 µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q

−∞ otherwise.

As in Example 31.8, the the dual program can be formulated as

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
+
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,

or equivalently

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ.

Remark: The hard margin Problem (SVMh2) corresponds to the special case of Problem
(SVMs2) in which ε = 0, ξ = 0, and K = +∞. Indeed, in Problem (SVMh2) the terms
involving ε and ξ are missing from the Lagrangian and the effect is that the box constraints
are missing; we simply have λi ≥ 0 and µj ≥ 0.

We can use the dual program to solve the primal. Once λ ≥ 0, µ ≥ 0 have been found,
w is given by

w =

p∑
i=1

λiui −
q∑
j=1

µjvj.
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The complementary slackness conditions yield a classification of the points in terms of
the values of λ and µ. Indeed, we have εiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q.
Also, if λi > 0, then corresponding constraint is active, and similarly if µj > 0. Since
λi + αi = K, it follows that εiαi = 0 iff εi(K − λi) = 0, and since µj + βj = K, we have
ξjβj = 0 iff ξj(K − µj) = 0. Thus if εi > 0 then λi = K, and if ξj > 0, then µj = K.
Consequently, if λi < K then εi = 0 and ui is correctly classified, and similarly if µj < K
then ξj = 0 and vj is correctly classified. We have the following classification:

(1) If 0 < λi < K then ui is on the margin and is classified correctly. Similarly, if
0 < µj < K then vj is on the margin and is classified correctly.

(2) If λi = K, then if εi ≤ 1 the point ui may be classified correctly or it lies within the
margin on the correct side, but if εi > 1 then it is misclassifed. Similarly, if µj = K,
then if ξj ≤ 1 the point vj may be classified correctly or it lies within the margin on
the correct side, but if ξj > 1 then it is misclassifed.

(3) If λi = 0 then ui is classified correctly. Similarly, if µj = 0 then vj is classified correctly.

If the primal has a solution w 6= 0, then the equation

w =

p∑
i=1

λiui −
q∑
j=1

µjvj

implies that either there is some index i0 such that λi0 > 0 or there is some index j0 such
that µj0 > 0. The constraint

p∑
i=1

λi =

q∑
j=1

µj

implies that there is some index i0 such that λi0 > 0 and there is some index j0 such that
µj0 > 0. However, a priori, nothing prevents the situation where λi = K for all nonzero λi
or µj = K for all nonzero µj. If this happens, we can rerun the optimization method with a
larger value of K. Observe that the equation

p∑
i=1

λi =

q∑
j=1

µj

implies that if there is some index i0 such that 0 < λi0 < K, then there is some index j0

such that 0 < µj0 < K, and vice-versa. If the following mild hypothesis holds, then b can be
found.

Standard Margin Hypothesis for (SVMs2). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is
correctly classified and on the blue margin, and some vj0 is correctly classified and on the
red margin.
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If the Standard Margin Hypothesis for (SVMs2) holds then εi0 = 0 and µj0 = 0, and
then we have the active equations

w>ui0 − b = 1 and − w>vj0 + b = 1,

and we obtain

b =
1

2
(w>ui0 + w>vj0).

Remark: There is a cheap version of Problem (SVM)s2) which consists in dropping the
term (1/2)w>w from the objective function:

Soft margin classifier (SVMs2l):

minimize

p∑
i=1

εi +

q∑
j=1

ξj

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

The above program is a linear program that minimizes the number of misclassified points
but does not care about enforcing a minimum margin. An example of its use is given in
Boyd and Vandenberghe; see [22], Section 8.6.1.

The “kernelized” version of Problem (SVMs2) is the following:

Soft margin kernel SVM (SVMs2):

minimize
1

2
〈w,w〉+K

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

Redoing the computation of the dual function, we find that the dual program is given by

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q,
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where K is the ` × ` kernel symmetric matrix (with ` = p + q) given at the end of Section
34.1. We also find that

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj),

so

b =
1

2

( p∑
i=1

λi(κ(ui, ui0) + κ(ui, vj0))−
q∑
j=1

µj(κ(vj, ui0) + κ(vj, vj0))

)
,

and the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
.

34.3 Soft Margin Support Vector Machines; (SVMs2′)

In this section we consider a generalization of Problem (SVMs2) for a version of the soft
margin SVM coming from Problem (SVMh2), by adding an extra degree of freedom, namely
instead of the margin δ = 1/ ‖w‖, we use the margin δ = η/ ‖w‖ where η is some positive
constant that we wish to maximize. To do so, we add a term −Kmη to the objective function

(1/2)w>w as well as the “regularizing term” Ks

(∑p
i=1 εi +

∑q
j=1 ξj

)
whose purpose is to

make ε and ξ sparse, where Km > 0 and Ks > 0 are fixed constants that can be adjusted to
determine the influence of η and the regularizing term.

Soft margin SVM (SVMs2′):

minimize
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0.

This version of the SVM problem was first discussed in Schölkopf, Smola, Williamson,
and Bartlett [88] under the name of ν-SVC (or ν-SVM ), and also used in Schölkopf, Platt,



958 CHAPTER 34. SOFT MARGIN SUPPORT VECTOR MACHINES

Shawe–Taylor, and Smola [87]. The ν-SVC method is also presented in Schölkopf and Smola
[86] (which contains much more). The difference between the ν-SVC method and the method
presented in Section 34.2, sometimes called the C-SVM method, was thoroughly investigated
by Chan and Lin [27].

For this problem, it is no longer clear that if (w, η, b, ε, ξ) is an optimal solution, then
w 6= 0 and η > 0. In fact, if the sets of points are not linearly separable and if Ks is chosen
too big, Problem (SVMs2′) may fail to have an optimal solution.

We show that in order for the problem to have a solution we must pick Km and Ks so
that

Km ≤ min{2pKs, 2qKs}.
If we define ν by

ν =
Km

(p+ q)Ks

,

then Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min

{
2p

p+ q
,

2q

p+ q

}
≤ 1.

The reason for introducing ν is that ν(p+q)/2 can be interpreted as a the maximum number
of points failing to achieve the margin η. If the sets {ui} and {vj} are not linearly separable,
then we must pick ν so that ν ≥ 2/(p + q) for the method to have an optiomal solution.
If ν < 3/(p + q) and at least three points are misclassified then we have some interesting
guarantees; see Proposition 34.5 and Proposition 34.6.

The objective function of our problem is convex and the constraints are affine. Conse-
quently, by Theorem 31.14(2) if the primal problem (SVMs2′) has an optimal solution, then
the dual problem has a solution too, and the duality gap is zero. This does not immediately
imply that an optimal solution of the dual yields an optimal solution of the primal because
the hypotheses of Theorem 31.14(1) fail to hold.

We show that if the primal problem has an optimal solution (w, η, ε, ξ, b) with w 6= 0,
then any optimal solution of the dual problem determines λ and µ, which in turn determine
w via the equation

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj, (∗w)

and η ≥ 0.

It remains to determine b, η, ε and ξ. The solution of the dual does not determine b, η, ε, ξ
directly, and we are not aware of necessary and sufficient conditions that ensure that they
can be determined. The best we can do is to use the KKT conditions.

The simplest sufficient condition is what we call the
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Standard Margin Hypothesis for (SVMs2′): There is some i0 such that 0 < λi0 < Ks and
there is some µj0 such that 0 < µj0 < Ks. This means that some ui0 is correctly classified
and on the blue margin, and some vj0 is correctly classified and on the red margin.

In this case, then by complementary slackness it can be shown that εi0 = 0, ξi0 = 0, and
the corresponding inequalities are active, that is we have the equations

w>ui0 − b = η, −w>vj0 + b = η,

so we can solve for b and η. Then, since by complementary slackness if εi > 0 then λi = Ks

and if ξj > 0 then µj = Ks, all inequalities corresponding to such εi > 0 and µj > 0 are
active, and we can solve for εi and ξj.

If 2/(p + q) ≤ ν < 3/(p + q) and at least three points are misclassified then we can
guarantee that either there is some i0 such that the constraint w>ui0 − b = η is active or
there is some j0 such that the constraint −w>vj0 + b = η is active.

If (w, η, ε, ξ, b) is an optimal solution of Problem (SVMs2′) with w 6= 0, then the points
ui and vj are classified as follows:

(1) If εi = 0, then the point ui is correctly classified and is either on the blue margin (the
hyperplane Hw,b+η of equation w>x = b+ η) or on the correct side of the blue margin
(the blue side). Similarly, if ξj = 0, then the point vj is correctly classified and is either
on the red margin (the hyperplane Hw,b−η of equation w>x = b− η) or on the correct
side of the red margin (the red side).

(2) If 0 < εi ≤ η, then the point ui lies inside the margin (the slab), but on the correct side
of the separating hyperplane (the blue side). If εi = η, then ui lies on the separating
hyperplane. Similarly, if 0 < ξj ≤ η, then the point vj lies inside the margin (the slab),
but on the correct side of the separating hyperplane (the red side). If ξj = η, then vj
lies on the separating hyperplane.

(3) If εi > η, then the point ui lies on the wrong side of the separating hyperplane (the
red side); it is misclassified. Similarly, if ξj > η, then the point vj lies on the wrong
side of the separating hyperplane (the blue side); it is misclassified.

Points for which εi > 0 (or ξj > 0) are called margin-errors ; they either lie within the
slab or they are misclassified.

The linear constraints are given by the (2(p + q) + 1) × (n + p + q + 2) matrix given in
block form by

C =

 X> −Ip+q 1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

0>n 0>p+q 0 −1

 ,
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and the linear constraints are expressed by

 X> −Ip+q 1p
−1q

1p+q

0p+q,n −Ip+q 0p+q 0p+q

0>n 0>p+q 0 −1



w
ε
ξ
b
η

 ≤
0p+q

0p+q
0

 .

The objective function is given by

J(w, ε, ξ, b, η) =
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q.

The Lagrangian L(w, ε, ξ, b, η, λ, µ, α, β, γ) with λ, α ∈ Rp
+, µ, β ∈ Rq

+, and γ ∈ R+ is given
by

L(w, ε, ξ, b, η, λ, µ, α, β, γ) =
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

+
(
w>

(
ε> ξ>

)
b η

)
C>


λ
µ
α
β
γ

 .

Since

(
w>

(
ε> ξ>

)
b η

)
C>


λ
µ
α
β
γ

 = w>X

(
λ
µ

)
− ε>(λ+ α)− ξ>(µ+ β) + b(1>p λ− 1>q µ)

+ η(1>p λ+ 1>q µ)− γη,

the Lagrangian can be written as

L(w, ε, ξ, b, η, λ, µ, α, β, γ) =
1

2
w>w −Kmη +Ks(ε

>1p + ξ>1q) + w>X

(
λ
µ

)
− ε>(λ+ α)

− ξ>(µ+ β) + b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)− γη,

=
1

2
w>w + w>X

(
λ
µ

)
+ (1>p λ+ 1>q µ−Km − γ)η

+ ε>(Ks1p − (λ+ α)) + ξ>(Ks1q − (µ+ β)) + b(1>p λ− 1>q µ).

To find the dual function G(λ, µ, α, β, γ) we minimize L(w, ε, ξ, b, η, λ, µ, α, β, γ) with
respect to w, ε, ξ, b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×
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R×R, a convex open set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b, η)
iff ∇Lw,ε,ξ,b,η = 0, so we compute its gradient with respect to w, ε, ξ, b, η and we get

∇Lw,ε,ξ,b,η =


X

(
λ
µ

)
+ w

Ks1p − (λ+ α)
Ks1q − (µ+ β)

1>p λ− 1>q µ
1>p λ+ 1>q µ−Km − γ

 .

By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

λ+ α = Ks1p

µ+ β = Ks1q

1>p λ = 1>q µ,

and

1>p λ+ 1>q µ = Km + γ. (∗γ)

The second and third equations are equivalent to the box constraints

0 ≤ λi, µj ≤ Ks, i = 1, . . . , p, j = 1, . . . , q,

and since γ ≥ 0 equation (∗γ) is equivalent to

1>p λ+ 1>q µ ≥ Km.

Plugging back w from (∗w) into the Lagrangian, after simplifications we get

G(λ, µ, α, β) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
X>X

(
λ
µ

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

so the dual function is independent of α, β and is given by

G(λ, µ) = −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
.
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The dual program is given by

maximize − 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization program:

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ. Once a solution
for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj.

As we said earlier, the hypotheses of Theorem 31.14(2) hold, so if the primal problem
(SVMs2′) has an optimal solution with w 6= 0, then the dual problem has a solution too, and
the duality gap is zero. Therefore, for optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β, γ) = G(λ, µ, α, β, γ),

which means that

1

2
w>w −Kmη +Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,
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and since

w = −X
(
λ
µ

)
we get

1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−Kmη +Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

which yields

η =
Ks

Km

( p∑
i=1

εi +

q∑
j=1

ξj

)
+

1

Km

(
λ> µ>

)
X>X

(
λ
µ

)
. (∗)

Therefore, η ≥ 0.

Remarks:

(1) The objective function of Problem (SVMs2′) is half of the objective function of Problem
(SVMs1), but some of the constraints are different. However, the major advantage of
Problem (SVMs2′) is that w is always determined.

(2) Since we proved that if the primal problem (SVMs2′) has an optimal solution with
w 6= 0 then η ≥ 0, one might wonder why the constraint η ≥ 0 was included. If we
delete this constraint, it is easy to see that the only difference is that instead of the
equation

1>p λ+ 1>q µ = Km + γ

we obtain the equation

1>p λ+ 1>q µ = Km.

Since the equation

1>p λ = 1>q µ

holds, in the first case we obtain

1>p λ = 1>q µ =
Km

2
+
γ

2
(∗1)

and in the second case, we obtain

1>p λ = 1>q µ =
Km

2
. (∗2)

If η > 0, then by complementary slackness γ = 0, in which case (∗1) and (∗2) are
equivalent. But if η = 0, then γ could be strictly positive.
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It not clear that the option to include the constraint η ≥ 0 in the primal is advanta-
geous, except perhaps for the fact that in the dual program the equation and inequality

1>p λ = 1>q µ

1>p λ+ 1>q µ ≥ Km

are included rather than the equations

1>p λ = 1>q µ =
Km

2
.

Perhaps the use of an inequality makes it easier to solve the dual. To settle this issue
it seems that we need to run practical solvers on some test data.

Returning to Problem (SVMs2′), the complementary slackness conditions yield a classifi-
cation of the points in terms of the values of λ and µ. Indeed, we have εiαi = 0 for i = 1, . . . , p
and ξjβj = 0 for j = 1, . . . , q. Also, if λi > 0, then the corresponding constraint is active,
and similarly if µj > 0. Since λi + αi = Ks, it follows that εiαi = 0 iff εi(Ks − λi) = 0, and
since µj + βj = Ks, we have ξjβj = 0 iff ξj(Ks − µj) = 0. Thus if εi > 0 then λi = Ks, and
if ξj > 0, then µj = Ks. Consequently, if λi < Ks then εi = 0 and ui is correctly classified,
and similarly if µj < Ks then ξj = 0 and vj is correctly classified.

In addition to the constraints

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks,

we also have the constraints

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

which imply that
p∑
i=1

λi ≥
Km

2
and

q∑
j=1

µj ≥
Km

2
. (†)

Since λ, µ are all nonnegative, if λi = Ks for all i and if µj = Ks for all j then

Km

2
≤

p∑
i=1

λi ≤ pKs

and
Km

2
≤

q∑
j=1

µj ≤ qKs,
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so these constraints are not satisfied unless Km ≤ min{2pKs, 2qKs}, so we assume that
Km ≤ min{2pKs, 2qKs}. The equations in (†) also imply that there is some i0 such that
λi0 > 0 and some j0 such that µj0 > 0.

We have the following classification (recall that η > 0):

(1) If 0 < λi < Ks then ui is on the margin and is classified correctly. Similarly, if
0 < µj < Ks then vj is on the margin and is classified correctly.

(2) If λi = Ks, then we can’t say more without looking at εi. If εi = 0 then the point ui
is on the margin and is classified correctly, and if 0 < εi ≤ η, then ui lies within the
margin on the correct side, but if εi > η then it is misclassifed. Similarly, if µj = Ks,
then we can’t say more without looking at ξj. If ξj = 0 then the point vj is on the
margin and is classified correctly, and if 0 < ξj ≤ η, then vj lies within the margin on
the correct side, but if ξj > η then it is misclassifed.

(3) If λi = 0 then ui is classified correctly. Similarly, if µj = 0 then vj is classified correctly.
There is no way to tell whether ui is on the margin or not, and similarly for vj.

We find it convenient to define ν > 0 such that

Km = (p+ q)Ks ν,

that is

ν =
Km

(p+ q)Ks

,

so that the objective function J(w, ε, ξ, b, η) is given by

J(w, ε, ξ, b, η) =
1

2
w>w +K

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
,

with K = (p+ q)Ks, and so Km = Kν and Ks = K/(p+ q).

Observe that the condition Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min

{
2p

p+ q
,

2q

p+ q

}
≤ 1,

and the condition Ks ≤ Km/2 is equivalent to

2

p+ q
≤ ν.

Since we obtain an equivalent problem by rescaling by a common positive factor, it is
convenient to normalize Ks as

Ks =
1

p+ q
,
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in which case Km = ν. This method is called the ν-support vector machine.

Under the Standard Margin Hypothesis for (SVMs2′), there is some i0 such that
0 < λi0 < Ks and some j0 such that 0 < µj0 < Ks, and by the complementary slackness
conditions εi0 = 0 and ξj0 = 0, so we have the two active constraints

w>ui0 − b = η, −w>vj0 + b = η,

and we can solve for b and η and we get

b =
w>ui0 + w>vj0

2

η =
w>ui0 − w>vj0

2
.

The equations (†) and the box inequalities

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks

also imply the following facts:

Proposition 34.1. If Problem (SVMs2′) has an optimal solution with w 6= 0 and η > 0,
then the following facts hold:

(1) At most ν(p+q)/2 points ui fail to achieve the margin η, and at most ν(p+q)/2 points
vj fail to achieve the margin η.

(2) At least ν(p+ q)/2 points ui have margin at most η, and at least ν(q+ q)/2 points have
margin at most η.

Proof. (1) Recall that for an optimal solution with w 6= 0 and η > 0, we have γ = 0, so by
(∗γ) we have the equations

p∑
i=1

λi =
Km

2
and

q∑
j=1

µj =
Km

2
.

If ui fails to achieve the margin η, then εi > 0, and by complementary slackness λi = Ks =
Km/(ν(p+ q)), so if there are pf such points then

Km

2
=

p∑
i=1

λi ≥
Kmpf
ν(p+ q)

,

so

pf ≤
ν(p+ q)

2
.

A similar reasoning applies if vj fails to achieve the margin η with
∑p

i=1 λi replaced by∑q
j=1 µj (and where qf is the number of points vj that fail to achieve the margin η).
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(2) A point ui has margin at most η iff λi > 0. If

Im = {i ∈ {1, . . . , p} | λi > 0} and pm = |Im|,

then
Km

2
=

p∑
i=1

λi =
∑
i∈Im

λi,

and since λi ≤ Ks = Km/(ν(p+ q)), we have

Km

2
=
∑
i∈Im

λi ≤
Kmpm
ν(p+ q)

,

which yields

pm ≥
ν(p+ q)

2
.

A similar reasoning applies if a point vj has margin at most η.

Note that if ν is chosen so that ν < 2/(p+q), then ν(p+q)/2 < 1, which means that none
of the data points are misclassified; in other words, the uis and vjs are linearly separable.
Thus again, we see that if the uis and vjs are not linearly separable we must pick ν such
that 2/(p+ q) ≤ ν ≤ min{2p/(p+ q), 2q/(p+ q)} for the method to succeed.

The following proposition clarifies the role of the constant ν in establishing the trade-off
between the width of the margin and the number of margin-error points. In particular, it
shows that if Problem (SVMs2′) has an optimal solution with w 6= 0 and if
ν < min{2p/(p + q), 2q/(p + q)}, then at least some ui or some vj is classified correctly.
Obviously we have 2/(p+ q) ≤ min{2p/(p+ q), 2q/(p+ q)}.

Proposition 34.2. Suppose (w, b, η, ε, ξ) is an optimal solution of Problem (SVMs2′) with
w 6= 0 and η > 0, and let pf be the number of points ui that are misclassified (εi > 0)
and qf be the number of points vj that are misclassified (ξj > 0). If pf + qf ≥ 3 and if
2/(p + q) ≤ ν < (pf + qf )/(p + q), then either there is some i such that εi = 0 and the
constraint w>ui − b = η is active, or there is some j such that ξj = 0 and the constraint
−w>vj + b = η is active.

Proof. (1) We may assume that Ks = 1/(p + q). We proceed by contradiction. Thus we
assume that for all i ∈ {1, . . . , p}, if εi = 0 then the constraint w>ui − b ≥ η is not active,
namely w>ui− b > η, and for all j ∈ {1, . . . , q}, if ξj = 0 then the constraint −w>vj + b ≥ η
is not active, namely −w>vj + b > η.

Let I = {i ∈ {1, . . . , p} | εi > 0}, let J = {j ∈ {1, . . . , q} | ξj > 0}, and let pf = |I| and
qf = |J | (of course, η > 0).
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Assume that pf + qf ≥ 3. By complementary slackness all the constraints for which i ∈ I
and j ∈ J are active, so our hypotheses are

w>ui − b = η − εi εi > 0 i ∈ I
−w>vj + b = η − ξj ξj > 0 j ∈ J
w>ui − b > η i /∈ I
−w>vj + b > η j /∈ J.

For any θ > 0 such that

θ < min{εi, ξj, η | i ∈ {1, . . . , p}, j ∈ {1, . . . , q}},

we can write

w>ui − b = η − θ − (εi − θ) εi − θ ≥ 0 i ∈ I
−w>vj + b = η − θ − (ξj − θ) ξj − θ ≥ 0 j ∈ J
w>ui − b > η − θ i /∈ I
−w>vj + b > η − θ j /∈ J.

The original value of the objective function is

ω(0) =
1

2
w>w − νη +

1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
,

and the new value is

ω(θ) =
1

2
w>w − ν(η − θ) +

1

p+ q

(∑
i∈I

(εi − θ) +
∑
j∈J

(ξj − θ)
)

=
1

2
w>w − νη +

1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
−
(
pf + qf
p+ q

− ν
)
θ.

Since by hypothesis pf + qf ≥ 3, if

2

p+ q
≤ ν <

pf + qf
p+ q

,

then the term involving θ is negative so

ω(θ) < ω(0),

and by the choice of θ we have η − θ > 0, so (w, b, η − θ, ε − θ, ξ − θ) is a feasible solution,
contradicting the optimality of the solution (w, b, η, ε, ξ); here we write ε − θ for the vector
(ε1 − θ, . . . , εp − θ), and similarly for ξ − θ.
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Note that if pf + qf = p + q and ν < min{2p/(p + q), 2q/(p + q)} ≤ 1, then Proposition
34.5 yields a contradiction. Therefore pf + qf < p+ q, that is, at least some ui or some vj is
classified correctly

Remark: If the the sets {ui} and {vj} are linearly separable, then we know from Theorem
31.10 that some ui is on the blue margin and some vj is on the red margin.

We also have the following proposition that gives a sufficient condition implying that η
and b can be found in terms of an optimal solution (λ, µ) of the dual.

Proposition 34.3. If (w, b, η, ε, ξ) is an optimal solution of Problem (SVMs2′) with w 6= 0
and η > 0, and if 2/(p + q) ≤ ν < 4/(p + q) and pf , qf ≥ 2, then η and b can always be
determined from an optimal solution (λ, µ) of the dual.

Proof. Since pf + qf ≥ 4, by Proposition 34.5, either there is some i0 such that εi0 = 0 and
the constraint w>ui0−b = η is active, or there is some j0 such that ξj0 = 0 and the constraint
−w>vj0 + b = η is active As we already explained, Problem (SVMs2′) satisfies the conditions
for having a zero duality gap. Therefore, for optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β) = G(λ, µ, α, β),

which means that

1

2
w>w − νη +

1

p+ q

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
,

and since

w = −X
(
λ
µ

)
,

we get

1

p+ q

( p∑
i=1

εi +

q∑
j=1

ξj

)
= νη −

(
λ> µ>

)
X>X

(
λ
µ

)
. (∗)

Let I = {i ∈ {1, . . . , p} | εi > 0} and J = {j ∈ {1, . . . , q} | ξj > 0}. By hypothesis |I| ≥ 2
and |J | ≥ 2. We know that λi = 1/(p + q) for all i ∈ I and µj = 1/(p + q) for all j ∈ J , so
the following equations are active:

w>ui − b = η − εi i ∈ I
−w>vj + b = η − ξj j ∈ J.

But (∗) can be written as

1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
= νη −

(
λ> µ>

)
X>X

(
λ
µ

)
, (∗∗)
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and since

εi = η − w>ui + b i ∈ I
ξj = η + w>vj − b j ∈ J,

by substituting in the equation (∗∗) we get( |I|+ |J |
p+ q

− ν
)
η =
|J | − |I|
p+ q

b+
1

p+ q
w>
(∑
i∈I

ui −
∑
j∈J

vj

)
−
(
λ> µ>

)
X>X

(
λ
µ

)
.

We also know that either w>ui0−b = η or −w>vj0 +b = η. In the first case, b = −η+w>ui0 ,
and by substituting b in the above equation we get an equation of the form( |I|+ |J |

p+ q
− ν
)
η = −|J | − |I|

p+ q
η + T1,

that is, (
2|J |
p+ q

− ν
)
η = T1.

In the second case b = η + w>vj0 , and we get an equation of the form( |I|+ |J |
p+ q

− ν
)
η =
|J | − |I|
p+ q

η + T2,

that is, (
2|I|
p+ q

− ν
)
η = T2.

We need to choose ν such that 2|I|/(p+ q)| − ν 6= 0 and 2|J |/(p+ q)− ν 6= 0. Since |I| ≥ 2
and |J | ≥ 2, this will be the case if ν < 4/(p+ q). If this condition is satisfied we can solve
for η, and then we find b from either b = −η + w>ui0 or b = η + w>vj0 .

Remark: If the the sets {ui} and {vj} are linearly separable, then we know from Theorem
31.10 that some ui is on the blue margin and some vj is on the red margin, so b and δ can
be determined. Although we can ensure that some ui is classified correctly or some vj is
classified correctly, it does not seem possible to prove that the corresponding constraints are
active without additional hypotheses (such as pf + qf ≥ 3).

Among its advantages, the support vector machinery is condusive to finding interesting
statistical bounds in terms of the VC dimension, a notion invented by Vapnik and Cher-
novenkis. We will not go into this here and instead refer the reader to Vapnik [111] (especially,
Chapter 4 and Chapters 9-13).

The “kernelized” version of Problem (SVMs2′) is the following:
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Soft margin kernel SVM (SVMs2′):

minimize
1

2
〈w,w〉 − νη +

1

p+ q

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0.

Tracing through the derivation of the dual program, we obtain

minimize
1

2

(
λ> µ>

)
K

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 34.1.

As in Section 34.2, we obtain

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj),

so

b =
1

2

( p∑
i=1

λi(κ(ui, ui0) + κ(ui, vj0))−
q∑
j=1

µj(κ(vj, ui0) + κ(vj, vj0))

)
,

and the classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(2κ(ui, x)− κ(ui, ui0)− κ(ui, vj0))

−
q∑
j=1

µj(2κ(vj, x)− κ(vj, ui0)− κ(vj, vj0))

)
.
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34.4 Soft Margin SVM; (SVMs3)

In this section we consider the version of Problem (SVMs2′) in which instead of using the

function K

(∑p
i=1 εi +

∑q
j=1 ξj

)
as a regularizing function we use the quadratic function

K(‖ε‖2
2 + ‖ξ‖2

2).

Soft margin SVM (SVMs3):

minimize
1

2
w>w − νη +K(ε>ε+ ξ>ξ)

subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q

η ≥ 0,

where ν and K are two given positive constants. As we saw earlier, it is convenient to pick
K = 1/(p+ q).

The new twist with this formulation of the problem is that if εi < 0, then the correspond-
ing inequality w>ui − b ≥ η − εi implies the inequality w>ui − b ≥ η obtained by setting
εi to zero while reducing the value of ‖ε‖2, and similarly if ξj < 0, then the corresponding
inequality −w>vj + b ≥ η−ξj implies the inequality −w>vj + b ≥ η obtained by setting ξj to
zero while reducing the value of ‖ξ‖2. Therefore, if (w, b, ε, ξ) is an optimal solution of Prob-
lem (SVMs3) it is not necessary to restrict the slack variables εi and ξj to the nonnegative,
which simplifies matters a bit.

One of the advantages of this methods is that ε is determined by λ and ξ is determined
by µ. We could also omit the constraint η ≥ 0, because for an optimal solution it can be
shown using duality that η ≥ 0.

The Lagrangian is given by

L(w, ε, ξ, b, η, λ, µ, γ) =
1

2
w>w − νη +K(ε>ε+ ξ>ξ) + w>X

(
λ
µ

)
− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)− γη

=
1

2
w>w + w>X

(
λ
µ

)
+ η(1>p λ+ 1>q µ− ν − γ)

+K(ε>ε+ ξ>ξ)− ε>λ− ξ>µ+ b(1>p λ− 1>q µ).

To find the dual function G(λ, µ, γ) we minimize L(w, ε, ξ, b, η, λ, µ, γ) with respect to w, ε, ξ,
b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×R×R, a convex
open set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff∇Lw,ε,ξ,b,η = 0,



34.4. SOFT MARGIN SVM; (SVMs3) 973

so we compute ∇Lw,ε,ξ,b,η. The gradient ∇Lw,ε,ξ,b,η is given by

∇Lw,ε,ξ,b,η =


w +X

(
λ
µ

)
2Kε− λ
2Kξ − µ

1>p λ− 1>q µ
1>p λ+ 1>q µ− ν − γ


By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

and

2Kε = λ

2Kξ = µ

1>p λ = 1>q µ

1>p λ+ 1>q µ = ν + γ.

The last two equations are identical to the last two equations obtained in Problem
(SVMs2′). We can use the other equations to obtain the following expression for the dual
function G(λ, µ, γ),

G(λ, µ, γ) = − 1

4K
(λ>λ+ µ>µ)− 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
= −1

2

(
λ> µ>

)(
X>X +

1

2K
Ip+q

)(
λ
µ

)
.

Consequently the dual program is equivalent to the minimization program

minimize
1

2

(
λ> µ>

)(
X>X +

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.
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The above program is similar to the program that was obtained for Problem (SVMs2′)
but the matrix X>X is replaced by the matrix X>X+(1/2K)Ip+q, which is positive definite
since K > 0, and also the inequalities λi ≤ K and µj ≤ K no longer hold. However, the
constraints imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ. We obtain w
from λ and µ, and γ, as in Problem (SVMs2′); namely,

w =

p∑
i=1

λiui −
q∑
j=1

µjvj.

Since the variables εi and µj are not restricted to be nonnegative we no longer have
complementary slackness conditions involving them, but we know that

ε =
λ

2K
, ξ =

µ

2K
.

Also since the constraints
p∑
i=1

λi ≥
ν

2
and

q∑
j=1

µj ≥
ν

2

imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0, we have εi0 > 0
and ξj0 > 0, which means that at least two points are misclassified, so Problem (SVMs3)
should only be used when the sets {ui} and {vj} are not linearly separable. We can solve
for b and η using the active constraints corresponding to any i0 such that λi0 > 0 and any
j0 such that µj0 > 0 and we get

b =
w>ui0 + w>vj0

2

η =
w>ui0 − w>vj0

2
.

We can also use the fact that the optimality gap is 0 to find η. We have

1

2
w>w − νη +K(ε>ε+ ξ>ξ) = −1

2

(
λ> µ>

)(
X>X +

1

2K
Ip+q

)(
λ
µ

)
,

and since

w = −X
(
λ
µ

)
we get

νη = K(λ>λ+ µ>µ) +
(
λ> µ>

)(
X>X +

1

4K
Ip+q

)(
λ
µ

)
.

The above confirms that at optimality we have η ≥ 0.
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The “kernelized” version of Problem (SVMs3) is the following:

Soft margin kernel SVM (SVMs3):

minimize
1

2
〈w,w〉 − νη +

1

p+ q
(ε>ε+ ξ>ξ)

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, j = 1, . . . , q

η ≥ 0.

By going over the derivation of the dual program, we obtain

minimize
1

2

(
λ> µ>

)(
K +

p+ q

2
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 34.1. Then w, b, and f(x) are obtained exactly as
in Section 34.3.

34.5 Soft Margin Support Vector Machines; (SVMs4)

In this section we consider a variation of Problem (SVMs2′) by adding the term (1/2)b2 to
the objective function. The result is that in minimizing the Lagrangian to find the dual
function G, not just w but also b is determined. We also suppress the constraint η ≥ 0 which
turns out to be redundant.

Soft margin SVM (SVMs4):

minimize
1

2
w>w +

1

2
b2 +K

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q.
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To simplify the presentation we assume that K = 1 and we write Ks for 1/(p+ q).

The Lagrangian L(w, ε, ξ, b, η, λ, µ, α, β) with λ, α ∈ Rp
+, µ, β ∈ Rq

+ is given by

L(w, ε, ξ, b, η, λ, µ, α, β) =
1

2
w>w + w>X

(
λ
µ

)
+
b2

2
− νη +Ks(ε

>1p + ξ>1q)− ε>(λ+ α)

− ξ>(µ+ β) + b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ),

=
1

2
w>w + w>X

(
λ
µ

)
+
b2

2
+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ− ν)

+ ε>(Ks1p − (λ+ α)) + ξ>(Ks1q − (µ+ β)).

To find the dual function G(λ, µ, α, β), we minimize L(w, ε, ξ, b, η, λ, µ, α, β) with respect
to w, ε, ξ, b, and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×R×R,
a convex open set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff
∇Lw,ε,ξ,b,η = 0, so we compute its gradient with respect to w, ε, ξ, b, η and we get

∇Lw,ε,ξ,b,η =


X

(
λ
µ

)
+ w

Ks1p − (λ+ α)
Ks1q − (µ+ β)
b+ 1>p λ− 1>q µ
1>p λ+ 1>q µ− ν

 .

By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

λ+ α = Ks1p

µ+ β = Ks1q

1>p λ+ 1>q µ = ν,

and
b = −(1>p λ− 1>q µ). (∗b)

The second and third equations are equivalent to the box constraints

0 ≤ λi, µj ≤ Ks, i = 1, . . . , p, j = 1, . . . , q.

Since we assumed that the primal problem has an optimal solution with w 6= 0, we have

X

(
λ
µ

)
6= 0.
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Plugging back w from (∗w) and b from (∗b) into the Lagrangian, we get

G(λ, µ, α, β) =
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
X>X

(
λ
µ

)
+

1

2
b2 − b2

= −1

2

(
λ> µ>

)
X>X

(
λ
µ

)
− 1

2
b2

= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
,

so the dual function is independent of α, β and is given by

G(λ, µ) = −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

The dual program is given by

maximize − 1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

Finally, the dual program is equivalent to the following minimization program:

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ. Once a solution
for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj.
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As we said earlier, the hypotheses of Theorem 31.14(2) hold, so if the primal problem
(SVMs4) has an optimal solution with w 6= 0, then the dual problem has a solution too, and
the duality gap is zero. Therefore, for optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β) = G(λ, µ, α, β),

which means that

1

2
w>w+

b2

2
− νη+Ks

( p∑
i=1

εi +

q∑
j=1

ξj

)
= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
and since

1

2
w>w +

b2

2
=

1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
,

we get

η =
Ks

ν

( p∑
i=1

εi +

q∑
j=1

ξj

)
+

1

ν

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
. (∗)

Since

X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
is positive semidefinite, so we confirm that η ≥ 0.

Since Ks = 1/(p+ q), in order for the constraints

p∑
i=1

λi +

q∑
j=1

µj = ν

and 0 ≤ λi, µj ≤ 1/(p+ q) to be satisfied we must have

ν ≤ 1.

The equation
p∑
i=1

λi +

q∑
j=1

µj = ν

also implies that either there is some i0 such that λi0 > 0 or there is some j0 such that
µj0 > 0.

Under the Standard Margin Hypothesis for (SVMs4), either there is some i0 such
that 0 < λi0 < Ks or there is some j0 such that 0 < µj0 < Ks, and by the complementary
slackness conditions εi0 = 0 or ξj0 = 0, so we have

w>ui0 − b = η, or − w>vj0 + b = η,
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and we can solve for η.

The equations (†) and the box inequalities

0 ≤ λi ≤ Ks, 0 ≤ µj ≤ Ks

also imply the following facts:

Proposition 34.4. If Problem (SVMs4) has an optimal solution with w 6= 0 and η > 0 then
the following facts hold:

(1) At most ν(p+ q) points ui and vj fail to achieve the margin η.

(2) At least ν(p+ q) points ui and vj have margin at most η.

Proof. (1) Recall that for an optimal solution with w 6= 0 and η > 0 we have the equation

p∑
i=1

λi +

q∑
j=1

µj = ν.

If ui fails to achieve the margin η, then εi > 0, and by complementary slackness λi = Ks =
1/(p + q). Similarly, if vj fails to achieve the margin then ξj > 0, and by complementary
slackness µj = Ks = 1/(p+ q). Assume that pf points ui fail the margin and that qf points
vj fail the margin. Then

ν =

p∑
i=1

λi +

q∑
j=1

µj ≥
pf + qf
p+ q

,

so
pf + qf ≤ ν(p+ q).

(2) A point ui has margin at most η iff λi > 0 and a point vj has margin at most η iff
µj > 0. If

Im = {i ∈ {1, . . . , p} | λi > 0} and pm = |Im|
and

Jm = {j ∈ {1, . . . , q} | µj > 0} and qm = |Jm|
then

ν =

p∑
i=1

λi +

q∑
j=1

µj =
∑
i∈Im

λi +
∑
j∈Jm

µj,

and since λi, µj ≤ Ks = 1/(p+ q), we have

ν =
∑
i∈Im

λi +
∑
j∈Jm

µj ≤
pm + qn
p+ q

,

which yields
pm + qm ≥ ν(p+ q).
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Note that if ν is chosen so that ν < 1/(p+ q), then ν(p+ q) < 1, which means that none
of the data points are misclassified; in other words, the uis and vjs are linearly separable.
Thus we see that if the uis and vjs are not linearly separable we must pick ν such that
1/(p+ q) ≤ ν ≤ 1 for the method to succeed.

The following proposition clarifies the role of the constant ν in establishing the trade-off
between the width of the margin and the number of margin-error points. In particular, it
shows that if Problem (SVMs4) has an optimal solution with w 6= 0 and η > 0, and if ν < 1,
then at least some ui or some vj is classified correctly. Obviously we have 1/(p+ q) ≤ 1.

Proposition 34.5. Suppose (w, b, η, ε, ξ) is an optimal solution of Problem (SVMs4) with
w 6= 0 and η > 0, and let pf be the number of points ui that are misclassified (εi > 0)
and qf be the number of points vj that are misclassified (ξj > 0). If pf + qf ≥ 2 and if
1/(p + q) ≤ ν < (pf + qf )/(p + q), then either there is some i such that εi = 0 and the
constraint w>ui − b = η is active, or there is some j such that ξj = 0 and the constraint
−w>vj + b = η is active.

Proof. (1) We may assume that Ks = 1/(p + q). We proceed by contradiction. Thus we
assume that for all i ∈ {1, . . . , p}, if εi = 0 then the constraint w>ui − b ≥ η is not active,
namely w>ui− b > η, and for all j ∈ {1, . . . , q}, if ξj = 0 then the constraint −w>vj + b ≥ η
is not active, namely −w>vj + b > η.

Let I = {i ∈ {1, . . . , p} | εi > 0}, let J = {j ∈ {1, . . . , q} | ξj > 0}, and let pf = |I| and
qf = |J | (of course, η > 0).

Assume that pf + qf ≥ 2. By complementary slackness all the constraints for which i ∈ I
and j ∈ J are active, so our hypotheses are

w>ui − b = η − εi εi > 0 i ∈ I
−w>vj + b = η − ξj ξj > 0 j ∈ J
w>ui − b > η i /∈ I
−w>vj + b > η j /∈ J.

For any θ > 0 such that

θ < min{εi, ξj, η | i ∈ {1, . . . , p}, j ∈ {1, . . . , q}},

we can write

w>ui − b = η − θ − (εi − θ) εi − θ ≥ 0 i ∈ I
−w>vj + b = η − θ − (ξj − θ) ξj − θ ≥ 0 j ∈ J
w>ui − b > η − θ i /∈ I
−w>vj + b > η − θ j /∈ J.
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The original value of the objective function is

ω(0) =
1

2
w>w − νη +

1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
,

and the new value is

ω(θ) =
1

2
w>w − ν(η − θ) +

1

p+ q

(∑
i∈I

(εi − θ) +
∑
j∈J

(ξj − θ)
)

=
1

2
w>w − νη +

1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
−
(
pf + qf
p+ q

− ν
)
θ.

Since by hypothesis pf + qf ≥ 2, if

1

p+ 1
≤ ν <

pf + qf
p+ q

,

then the term involving θ is negative so

ω(θ) < ω(0),

and by the choice of θ we have η − θ > 0, so (w, b, η − θ, ε − θ, ξ − θ) is a feasible solution,
contradicting the optimality of the solution (w, b, η, ε, ξ); here we write ε − θ for the vector
(ε1 − θ, . . . , εp − θ), and similarly for ξ − θ.

Note that if pf + qf = p + q and ν < 1, then Proposition 34.5 yields a contradiction.
Therefore pf + qf < p+ q, that is, at least some ui or some vj is classified correctly

Remark: If the the sets {ui} and {vj} are linearly separable, then we know from Theorem
31.10 that some ui is on the blue margin and some vj is on the red margin.

We also have the following proposition that gives a sufficient condition implying that η
can be found in terms of an optimal solution (λ, µ) of the dual.

Proposition 34.6. If (w, b, η, ε, ξ) is an optimal solution of Problem (SVMs4) with w 6= 0
and η > 0, if 1/(p + q) ≤ ν < 2/(p + q) and pf + qf ≥ 2, then η can always be determined
from an optimal solution (λ, µ) of the dual.

Proof. As we already explained, Problem (SVMs4) satisfies the conditions for having a zero
duality gap. Therefore, for optimal solutions we have

L(w, ε, ξ, b, η, λ, µ, α, β) = G(λ, µ, α, β),

which means that

νη =
1

p+ q

( p∑
i=1

εi +

q∑
j=1

ξj

)
+
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
. (∗)
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Let I = {i ∈ {1, . . . , p} | εi > 0} and J = {j ∈ {1, . . . , q} | ξj > 0}. If I = J = ∅, then

η =
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

Assume that |I| + |J | ≥ 2. Then we know that λi = 1/(p + q) for all i ∈ I and
µj = 1/(p+ q) for all j ∈ J , so the following equations are active:

w>ui − b = η − εi i ∈ I
−w>vj + b = η − ξj j ∈ J.

But (∗) can be written as

νη =
1

p+ q

(∑
i∈I

εi +
∑
j∈J

ξj

)
+
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
, (∗∗)

and since

εi = η − w>ui + b i ∈ I
ξj = η + w>vj − b j ∈ J,

by substituting in the equation (∗∗) we get( |I|+ |J |
p+ q

− ν
)
η =
|J | − |I|
p+ q

b+
1

p+ q
w>
(∑
i∈I

ui −
∑
j∈J

vj

)
−
(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
.

We need to choose ν such that (|I| + |J |)/(p + q)| − ν 6= 0 Since we are assuming that
|I|+ |J | ≥ 2, this will be the case if 1/(p+ q) ≤ ν < 2/(p+ q). If this condition is satisfied
we can solve for η.

Remark: If the the sets {ui} and {vj} are linearly separable, then we know from Theorem
31.10 that some ui is on the blue margin and some vj is on the red margin, so b and δ can
be determined. Although we can ensure that some ui is classified correctly or some vj is
classified correctly, it does not seem possible to prove that the corresponding constraints are
active without additional hypotheses (such as pf + qf ≥ 2).

The “kernelized” version of Problem (SVMs4) is the following:

Soft margin kernel SVM (SVMs4):

minimize
1

2
〈w,w〉+

1

2
b2 − νη +

1

p+ q

(
ε> ξ>

)
1p+q

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q.
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Tracing through the derivation of the dual program, we obtain

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q,

where K is the kernel matrix of Section 34.1.

We obtain

w =

p∑
i=1

λiϕ(ui)−
q∑
j=1

µjϕ(vj)

b = −
p∑
i=1

λi +

q∑
j=1

µj.

The classification function

f(x) = sgn(〈w,ϕ(x)〉 − b)

is given by

f(x) = sgn

( p∑
i=1

λi(κ(ui, x) + 1)−
q∑
j=1

µj(κ(vj, x) + 1)

)
.

34.6 Soft Margin SVM; (SVMs5)

In this section we consider the version of Problem (SVMs3) in which we add the term (1/2)b2

to the objective function. We also drop the constraint η ≥ 0 which is redundant.

Soft margin SVM (SVMs5):

minimize
1

2
w>w +

1

2
b2 − νη +K(ε>ε+ ξ>ξ)

subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q,
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where ν and K are two given positive constants. As we saw earlier, it is convenient to pick
K = 1/(p+ q).

The Lagrangian is given by

L(w, ε, ξ, b, η, λ, µ) =
1

2
w>w +

1

2
b2 − νη +K(ε>ε+ ξ>ξ) + w>X

(
λ
µ

)
− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) + η(1>p λ+ 1>q µ)

=
1

2
w>w + w>X

(
λ
µ

)
+ η(1>p λ+ 1>q µ)

+K(ε>ε+ ξ>ξ)− ε>λ− ξ>µ+ b(1>p λ− 1>q µ) +
1

2
b2.

To find the dual function G(λ, µ) we minimize L(w, ε, ξ, b, η, λ, µ) with respect to w, ε, ξ, b,
and η. Since the Lagrangian is convex and (w, ε, ξ, b, η) ∈ Rn×Rp×Rq×R×R, a convex open
set, by Theorem 21.11, the Lagrangian has a minimum in (w, ε, ξ, b, η) iff ∇Lw,ε,ξ,b,η = 0, so
we compute ∇Lw,ε,ξ,b,η. The gradient ∇Lw,ε,ξ,b,η is given by

∇Lw,ε,ξ,b,η =


w +X

(
λ
µ

)
2Kε− λ
2Kξ − µ

b+ 1>p λ− 1>q µ
1>p λ+ 1>q µ− ν


By setting ∇Lw,ε,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

and

2Kε = λ

2Kξ = µ

b = −(1>p λ− 1>q µ)

1>p λ+ 1>q µ = ν.

The last two equations are identical to the last two equations obtained in Problem
(SVMs4). We can use the other equations to obtain the following expression for the dual
function G(λ, µ, γ),

G(λ, µ, γ) = − 1

4K
(λ>λ+ µ>µ)− 1

2

(
λ> µ>

)
X>X

(
λ
µ

)
− b2

2

= −1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2K
Ip+q

)(
λ
µ

)
.
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Consequently the dual program is equivalent to the minimization program

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

The dual program is solved by making use of numerical procedures based on gradient
descent. If the primal problem is solvable, this yields solutions for λ and µ.

The constraints imply that either there is some i0 such that λi0 > 0 or there is some j0

such that µj0 > 0. We obtain w and b from λ and µ, as in Problem (SVMs4); namely,

w =

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj.

Since the variables εi and µj are not restricted to be nonnegative we no longer have
complementary slackness conditions involving them, but we know that

ε =
λ

2K
, ξ =

µ

2K
.

Also since the constraint
p∑
i=1

λi +

q∑
j=1

µj = ν

implies that either there is some i0 such that λi0 > 0 or there is some j0 such that µj0 > 0,
we have εi0 > 0 or ξj0 > 0, which means that at least one point is misclassified, so Problem
(SVMs5) should only be used when the sets {ui} and {vj} are not linearly separable. We
can solve for η using the active constraints corresponding to any i0 such that λi0 > 0 or any
j0 such that µj0 > 0.

We can also use the fact that the optimality gap is 0 to find η. We have

1

2
w>w+

b2

2
−νη+K(ε>ε+ξ>ξ) = −1

2

(
λ> µ>

)(
X>X+

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2K
Ip+q

)(
λ
µ

)
,

so we get

νη = K(λ>λ+ µ>µ) +
(
λ> µ>

)(
X>X

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

4K
Ip+q

)(
λ
µ

)
.
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The above confirms that at optimality we have η ≥ 0.

The “kernelized” version of Problem (SVMs5) is the following:

Soft margin kernel SVM (SVMs5):

minimize
1

2
〈w,w〉+

1

2
b2 − νη +

1

p+ q
(ε>ε+ ξ>ξ)

subject to

〈w,ϕ(ui)〉 − b ≥ η − εi, i = 1, . . . , p

− 〈w,ϕ(vj)〉+ b ≥ η − ξj, j = 1, . . . , q.

Tracing through the derivation of the dual program, we obtain

minimize
1

2

(
λ> µ>

)(
K +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+
p+ q

2
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q,

where K is the kernel matrix of Section 34.1. Then w, b, and f(x) are obtained exactly as
in Section 34.5.

34.7 Summary and Comparison of the SVM Methods

In this chapter we considered six variants for solving the soft margin binary classification
problem for two sets of points {ui}pi=1 and {vj}qj=1 using support vector classification meth-

ods. The objective is to find a separating hyperplane Hw,b of equation w>x − b = 0. We
also try to find two “margin hyperplanes” Hw,b+δ of equation w>x− b− δ = 0 and Hw,b−δ of
equation w>x−b+δ = 0 such that δ is as big as possible and yet the number of misclassified
points is minimized, which is achieved by allowing an error εi ≥ 0 for every point ui, in the
sense that the constraint

w>ui − b ≥ δ − εi
should hold, and an error ξj ≥ 0 for every point vj, in the sense that the constraint

−w>vj + b ≥ δ − ξj

should hold.
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The goal is to design an objective function that minimizes ε and ξ and maximizes δ.
The optimization problem should also solve for w and b, and for this some constraint has to
be placed on w. Another goal is to try to use the dual program to solve the optimization
problem, because the solutions involve inner products, and thus the problem is amenable to
a generalization using kernel functions.

The first attempt, which is to use the objective function

J(w, ε, ξ, b, δ) = −δ +K
(
ε> ξ>

)
1p+q

and the constraint w>w ≤ 1 does not work very well, because this constraint needs to be
guarded by a Lagrange multiplier γ ≥ 0, and as a result, minimizing the Lagrangian L to
find the dual function G gives an equation for solving w of the form

2γw = −X>
(
λ
µ

)
,

but if the sets {ui}pi=1 and {vj}qj=1 are not linearly separable, then an optimal solution may
occurs for γ = 0, in which case it is impossible to determine w. This is Problem (SVMs1)
considered in Section 34.1.

Soft margin SVM (SVMs1):

minimize − δ +K

( p∑
i=1

εi +

q∑
j=1

ξj

)
subject to

w>ui − b ≥ δ − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ δ − ξj, ξj ≥ 0 j = 1, . . . , q

w>w ≤ 1.

It is customary to write ` = p+ q.

It is shown in Section 34.1 that the dual program is equivalent to the following minimiza-
tion program:

minimize
(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj =
1

2

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.
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Observe that the constraints imply that K must be chosen so that

K ≥ max

{
1

2p
,

1

2q

}
.

If the optimal value is 0, then γ = 0 and X

(
λ
µ

)
= 0, so in this case it is not possible

to determine w. However, if the optimal value is > 0, then once a solution for λ and µ is
obtained, we have

γ =
1

2

((
λ> µ>

)
X>X

(
λ
µ

))1/2

w =
1

2γ

( p∑
i=1

λiui −
q∑
j=1

µjvj

)
,

so we get

w =

p∑
i=1

λiui −
q∑
j=1

µjvj((
λ> µ>

)
X>X

(
λ
µ

))1/2
,

If the following mild hypothesis holds then b and δ can be found.

Standard Margin Hypothesis for (SVMs1). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0 is
correctly classified and on the blue margin, and some vj0 is correctly classified and on the
red margin.

If the Standard Margin Hypothesis for (SVMs1) holds then εi0 = 0 and µj0 = 0, and
then we have the active equations

w>ui0 − b = δ and − w>vj0 + b = δ,

and we obtain the value of b and δ as

b =
1

2
(w>ui0 + w>vj0)

δ =
1

2
(w>ui0 − w>vj0).

The second more successful approach is to add the term (1/2)w>w to the objective
function and to drop the constraint w>w ≤ 1. Then there are several variants of this method,
depending on the choice of the regularizing term involving ε and ξ (linear or quadratic), how
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the margin is delt with (implicitly with the term 1 or expliclity with a term η), and whether
the term (1/2)b2 is added to the objective function or not.

These methods all share the property that if the primal problem has an optimal solution
with w 6= 0, then the dual problem always determines w, and then under mild conditions
that we call standard margin hypotheses, b and η can be determined. Then ε and ξ can be
determined using the constraints that are active. When (1/2)b2 is added to the objective
function, b is determined by the equation

b = −(1>p λ− 1>q µ).

All these problems are convex and the constraints are qualified, so the duality gap is zero,
and if the primal has an optimal solution with w 6= 0, then it follows that η ≥ 0.

We now consider five variants in more details.

(1) Basic soft margin SVM : (SVMs2).

This is the optimization problem in which the regularization term K
(
ε> ξ>

)
1p+q is

linear and the margin δ is given by δ = 1/ ‖w‖:

minimize
1

2
w>w +K

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ 1− εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ 1− ξj, ξj ≥ 0 j = 1, . . . , q.

This problem is the classical one discussed in all books on machine learning or pattern
analysis, for instance Vapnik [111], Bishop [18], and Shawe–Taylor and Christianini
[97]. It is shown in Section 34.2 that the dual program is

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
−
(
λ> µ>

)
1p+q

subject to
p∑
i=1

λi =

q∑
j=1

µj

0 ≤ λi ≤ K, i = 1, . . . , p

0 ≤ µj ≤ K, j = 1, . . . , q.

We can use the dual program to solve the primal. Once λ ≥ 0, µ ≥ 0 have been found,
w is given by

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,
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but b is not determined by the dual.

The complementary slackness conditions imply that if εi > 0 then λi = K, and if
ξj > 0, then µj = K. Consequently, if λi < K then εi = 0 and ui is correctly classified,
and similarly if µj < K then ξj = 0 and vj is correctly classified.

A priori nothing prevents the situation where λi = K for all nonzero λi or µj = K for
all nonzero µj. If this happens, we can rerun the optimization method with a larger
value of K. If the following mild hypothesis holds then b can be found.

Standard Margin Hypothesis for (SVMs2). There is some index i0 such that 0 <
λi0 < K and there is some index j0 such that 0 < µj0 < K. This means that some ui0
is correctly classified and on the blue margin, and some vj0 is correctly classified and
on the red margin.

If the Standard Margin Hypothesis for (SVMs2) holds then εi0 = 0 and µj0 = 0,
and then we have the active equations

w>ui0 − b = 1 and − w>vj0 + b = 1,

and we obtain

b =
1

2
(w>ui0 + w>vj0).

(2) Basic Soft margin ν-SVM Problem (SVMs2′).

This a generalization of Problem (SVMs2) for a version of the soft margin SVM coming
from Problem (SVMh2), obtained by adding an extra degree of freedom, namely instead
of the margin δ = 1/ ‖w‖, we use the margin δ = η/ ‖w‖ where η is some positive
constant that we wish to maximize. To do so, we add a term −Kmη to the objective
function. We have the following optimization problem:

minimize
1

2
w>w −Kmη +Ks

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q

η ≥ 0,

where Km > 0 and Ks > 0 are fixed constants that can be adjusted to determine the
influence of η and the regularizing term.

This version of the SVM problem was first discussed in Schölkopf, Smola, Williamson,
and Bartlett [88] under the name of ν-SVC , and also used in Schölkopf, Platt, Shawe–
Taylor, and Smola [87].
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In order for the problem to have a solution we must pick Km and Ks so that

Km ≤ min{2pKs, 2qKs}.

It is shown in Section 34.3 that the dual program is

minimize
1

2

(
λ> µ>

)
X>X

(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.

If the primal problem has an optimal solution with w 6= 0, then using the fact that the
duality gap is zero we can show that η ≥ 0. Thus constraint η ≥ 0 could be omitted.
As in the previous case w is given by

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

but b and η are not determined by the dual.

If we drop the constraint η ≥ 0, then the inequality

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

is replaced by the equation
p∑
i=1

λi +

q∑
j=1

µj = Km.

It convenient to define ν > 0 such that

Km = (p+ q)Ks ν,

that is

ν =
Km

(p+ q)Ks

,
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so that the objective function J(w, ε, ξ, b, η) is given by

J(w, ε, ξ, b, η) =
1

2
w>w +K

(
−νη +

1

p+ q

(
ε> ξ>

)
1p+q

)
,

with K = (p+ q)Ks, and so Km = Kν and Ks = K/(p+ q).

Observe that the condition Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min

{
2p

p+ q
,

2q

p+ q

}
≤ 1.

Since we obtain an equivalent problem by rescaling by a common positive factor, it is
convenient to normalize Ks as

Ks =
1

p+ q
,

in which case Km = ν. This method is called the ν-support vector machine.

Under the Standard Margin Hypothesis for (SVMs2′), there is some i0 such that
0 < λi0 < Ks and some j0 such that 0 < µj0 < Ks, and by the complementary slackness
conditions εi0 = 0 and ξj0 = 0, so we have the two active constraints

w>ui0 − b = η, −w>vj0 + b = η,

and we can solve for b and η and we get

b =
w>ui0 + w>vj0

2
η =

w>ui0 − w>vj0
2

.

Proposition 34.1 gives an upper bound on the number of points ui and the number
of points vj that fail to achieve the margin, and that have margin at most η. As a
consequence, if the uis and vjs are not linearly separable we must pick ν such that
2/(p+ q) ≤ ν ≤ min{2p/(p+ q), 2q/(p+ q)} for the method to succeed.

We also investigate conditions on ν that ensure that either some point ui is correctly
classified or some point vi is correctly classified, and the corresponding constraint
is active (so that ui is on the margin, resp. vj is on the margin). If there are pf
misclassified points ui and qf misclassified points vj, then if pf +qf ≥ 3 and 2/(p+q) <
(pf + qf )/(p + q), then the above property holds; see Proposition 34.2. We also show
that if pf , qf ≥ 2 and if 2/(p + q) < 4/(p + q), then b and η can be found without
reference to the standard margin hypothesis; see Proposition 34.3.

(3) Basic Quadratic Soft margin ν-SVM Problem (SVMs3). This is the version of Problem
(SVMs2′) in which instead of using the linear functionKs

(
ε> ξ>

)
1p+q as a regularizing
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function we use the quadratic function K(‖ε‖2
2 + ‖ξ‖2

2). The optimization problem is

minimize
1

2
w>w − νη +K(ε>ε+ ξ>ξ)

subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q

η ≥ 0,

where ν and K are two given positive constants. As we saw earlier, it is convenient to
pick K = 1/(p+ q).

In this method, it is no longer necessary to require ε ≥ 0 and ξ ≥ 0, because an optimal
solution satisfies these conditions. We can also omit the constraint η ≥ 0, because for
an optimal solution it can be shown using duality that η ≥ 0. It is shown in Section
34.4 that the dual is given by

minimize
1

2

(
λ> µ>

)(
X>X +

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi =

q∑
j=1

µj

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

The above program is similar to the program that was obtained for Problem (SVMs2′)
but the matrix X>X is replaced by the matrix X>X + (1/2K)Ip+q, which is positive
definite since K > 0, and also the inequalities λi ≤ K and µj ≤ K no longer hold.
However, the constraints imply that there is some i0 such that λi0 > 0 and some j0

such that µj0 > 0. If the constraint η ≥ 0 is dropped, then the inequality

p∑
i=1

λi +

q∑
j=1

µj ≥ ν

is replaced by the equation
p∑
i=1

λi +

q∑
j=1

µj = ν.
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We obtain w from λ and µ, and γ, as in Problem (SVMs2′); namely,

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj,

but the dual does not determine b and η. However, ε and ξ are determined by

ε =
λ

2K
, ξ =

µ

2K
.

Also since the constraints
p∑
i=1

λi ≥
ν

2
and

q∑
j=1

µj ≥
ν

2

imply that there is some i0 such that λi0 > 0 and some j0 such that µj0 > 0, we have
εi0 > 0 and ξj0 > 0, which means that at least two points are misclassified, so Problem
(SVMs3) should only be used when the sets {ui} and {vj} are not linearly separable.
We can solve for b and η using the active constraints corresponding to any i0 such
that λi0 > 0 and any j0 such that µj0 > 0. With this method, there is no need for a
standard margin hypothesis.

(4) Soft margin ν-SVM Problem (SVMs4). This is the variation of Problem (SVMs2′)
obgtained by adding the term (1/2)b2 to the objective function. The result is that
in minimizing the Lagrangian to find the dual function G, not just w but also b is
determined. We also suppress the constraint η ≥ 0 which turns out to be redundant.
The optimization problem is

minimize
1

2
w>w +

1

2
b2 − νη +Ks

(
ε> ξ>

)
1p+q

subject to

w>ui − b ≥ η − εi, εi ≥ 0 i = 1, . . . , p

− w>vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q,

with Ks = 1/(p+ q).

It is shown in Section 34.5 that the dual is given by

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

))(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

0 ≤ λi ≤ Ks, i = 1, . . . , p

0 ≤ µj ≤ Ks, j = 1, . . . , q.
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Once a solution for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj,

but η is not determined by the dual. Note that the constraint

p∑
i=1

λi =

q∑
j=1

µj

occurring in the dual of Program (SVMs2′) has been traded for the equation

b = −
p∑
i=1

λi +

q∑
j=1

µj

determining b. This seems to be an advantage of Problem (SVMs4).

It is also shown that if the primal problem (SVMs4) has an optimal solution with
w 6= 0, then η ≥ 0. In order for the primal to have a solution we must have

ν ≤ 1.

Under the Standard Margin Hypothesis for (SVMs4), either there is some i0 such
that 0 < λi0 < Ks or there is some j0 such that 0 < µj0 < Ks, and by the complemen-
tary slackness conditions εi0 = 0 or ξj0 = 0, so we have

w>ui0 − b = η, or − w>vj0 + b = η,

and we can solve for η.

Proposition 34.4 gives an upper bound on the number of points ui and the number
of points vj that fail to achieve the margin, and that have margin at most η. As a
consequence, if the uis and vjs are not linearly separable we must pick ν such that
1/(p+ q) ≤ ν ≤ 1 for the method to succeed.

We also investigate conditions on ν that ensure that either some point ui is correctly
classified or some point vi is correctly classified, and the corresponding constraint
is active (so that ui is on the margin, resp. vj is on the margin). If there are pf
misclassified points ui and qf misclassified points vj, then if pf +qf ≥ 2 and 1/(p+q) <
(pf + qf )/(p + q), then the above property holds. See Proposition 34.5; this is a
slight improvement over Proposition 34.2. We also show that if pf + qf ≥ 2 and if
1/(p + q) < 3/(p + q), then η can be found without requiring the standard margin
hypothesis; see Proposition 34.6. This is also a slight improvement over Proposition
34.3.
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(5) Quadratic Soft margin ν-SVM Problem (SVMs5). This is the variant of Problem
(SVMs3) in which we add the term (1/2)b2 to the objective function. We also drop the
constraint η ≥ 0 which is redundant. We have the following optimization problem:

minimize
1

2
w>w +

1

2
b2 − νη +K(ε>ε+ ξ>ξ)

subject to

w>ui − b ≥ η − εi, i = 1, . . . , p

− w>vj + b ≥ η − ξj, j = 1, . . . , q,

where ν and K are two given positive constants. As we saw earlier, it is convenient to
pick K = 1/(p+ q).

It is shown in Section 34.6 that the dual of Program (SVMs5) is given by

minimize
1

2

(
λ> µ>

)(
X>X +

(
1p1

>
p −1p1

>
q

−1q1
>
p 1q1

>
q

)
+

1

2K
Ip+q

)(
λ
µ

)
subject to

p∑
i=1

λi +

q∑
j=1

µj = ν

λi ≥ 0, i = 1, . . . , p

µj ≥ 0, j = 1, . . . , q.

This time we obtain w, b, ε and ξ from λ and µ:

w =

p∑
i=1

λiui −
q∑
j=1

µjvj

b = −
p∑
i=1

λi +

q∑
j=1

µj

ε =
λ

2K

ξ =
µ

2K
.

The constraint
p∑
i=1

λi =

q∑
j=1

µj

occurring in the dual of Program (SVMs3) has been traded for the equation

b = −
p∑
i=1

λi +

q∑
j=1

µj
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determining b. This seems to be an advantage of Problem (SVMs5).

The constraint
p∑
i=1

λi +

q∑
j=1

µj = ν

implies that either there is some i0 such that λi0 > 0 or there is some j0 such that
µj0 > 0, we have εi0 > 0 or ξj0 > 0, which means that at least one point is misclassified,
so Problem (SVMs5) should only be used when the sets {ui} and {vj} are not linearly
separable. We can solve for η using the active constraints corresponding to any i0 such
that λi0 > 0 or any j0 such that µj0 > 0. Using duality, it can be shown that if the
primal has an optimal solution with w 6= 0, then η ≥ 0.

These methods all have a kernelized version.

In summary, from a theoretical point of view, Problems (SVMs4) and (SVMs5) seem to
have more advantages than the others since they determine at least w and b, but this remains
to be verified experimentally.
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Appendix A

Total Orthogonal Families in Hilbert
Spaces

A.1 Total Orthogonal Families (Hilbert Bases),

Fourier Coefficients

We conclude our quick tour of Hilbert spaces by showing that the notion of orthogonal basis
can be generalized to Hilbert spaces. However, the useful notion is not the usual notion of
a basis, but a notion which is an abstraction of the concept of Fourier series. Every element
of a Hilbert space is the “sum” of its Fourier series.

Definition A.1. Given a Hilbert space E, a family (uk)k∈K of nonnull vectors is an or-
thogonal family iff the uk are pairwise orthogonal, i.e., 〈ui, uj〉 = 0 for all i 6= j (i, j ∈ K),
and an orthonormal family iff 〈ui, uj〉 = δi, j, for all i, j ∈ K. A total orthogonal family (or
system) or Hilbert basis is an orthogonal family that is dense in E. This means that for
every v ∈ E, for every ε > 0, there is some finite subset I ⊆ K and some family (λi)i∈I of
complex numbers, such that ∥∥∥v −∑

i∈I
λiui

∥∥∥ < ε.

Given an orthogonal family (uk)k∈K , for every v ∈ E, for every k ∈ K, the scalar ck =
〈v, uk〉 /‖uk‖2 is called the k-th Fourier coefficient of v over (uk)k∈K .

Remark: The terminology Hilbert basis is misleading, because a Hilbert basis (uk)k∈K is
not necessarily a basis in the algebraic sense. Indeed, in general, (uk)k∈K does not span E.
Intuitively, it takes linear combinations of the uk’s with infinitely many nonnull coefficients
to span E. Technically, this is achieved in terms of limits. In order to avoid the confusion
between bases in the algebraic sense and Hilbert bases, some authors refer to algebraic bases
as Hamel bases and to total orthogonal families (or Hilbert bases) as Schauder bases .

1001
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Given an orthogonal family (uk)k∈K , for any finite subset I of K, we often call sums of
the form

∑
i∈I λiui partial sums of Fourier series , and if these partial sums converge to a

limit denoted as
∑

k∈K ckuk, we call
∑

k∈K ckuk a Fourier series .

However, we have to make sense of such sums! Indeed, when K is unordered or uncount-
able, the notion of limit or sum has not been defined. This can be done as follows (for more
details, see Dixmier [35]):

Definition A.2. Given a normed vector space E (say, a Hilbert space), for any nonempty
index set K, we say that a family (uk)k∈K of vectors in E is summable with sum v ∈ E iff
for every ε > 0, there is some finite subset I of K, such that,∥∥∥v −∑

j∈J
uj

∥∥∥ < ε

for every finite subset J with I ⊆ J ⊆ K. We say that the family (uk)k∈K is summable
iff there is some v ∈ E such that (uk)k∈K is summable with sum v. A family (uk)k∈K is a
Cauchy family iff for every ε > 0, there is a finite subset I of K, such that,∥∥∥∑

j∈J
uj

∥∥∥ < ε

for every finite subset J of K with I ∩ J = ∅,

If (uk)k∈K is summable with sum v, we usually denote v as
∑

k∈K uk. The following
technical proposition will be needed:

Proposition A.1. Let E be a complete normed vector space (say, a Hilbert space).

(1) For any nonempty index set K, a family (uk)k∈K is summable iff it is a Cauchy family.

(2) Given a family (rk)k∈K of nonnegative reals rk ≥ 0, if there is some real number B > 0
such that

∑
i∈I ri < B for every finite subset I of K, then (rk)k∈K is summable and∑

k∈K rk = r, where r is least upper bound of the set of finite sums
∑

i∈I ri (I ⊆ K).

Proof. (1) If (uk)k∈K is summable, for every finite subset I of K, let

uI =
∑
i∈I

ui and u =
∑
k∈K

uk

For every ε > 0, there is some finite subset I of K such that

‖u− uL‖ < ε/2

for all finite subsets L such that I ⊆ L ⊆ K. For every finite subset J of K such that
I ∩ J = ∅, since I ⊆ I ∪ J ⊆ K and I ∪ J is finite, we have

‖u− uI∪J‖ < ε/2 and ‖u− uI‖ < ε/2,
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and since
‖uI∪J − uI‖ ≤ ‖uI∪J − u‖+ ‖u− uI‖

and uI∪J − uI = uJ since I ∩ J = ∅, we get

‖uJ‖ = ‖uI∪J − uI‖ < ε,

which is the condition for (uk)k∈K to be a Cauchy family.

Conversely, assume that (uk)k∈K is a Cauchy family. We define inductively a decreasing
sequence (Xn) of subsets of E, each of diameter at most 1/n, as follows: For n = 1, since
(uk)k∈K is a Cauchy family, there is some finite subset J1 of K such that

‖uJ‖ < 1/2

for every finite subset J of K with J1 ∩ J = ∅. We pick some finite subset J1 with the above
property, and we let I1 = J1 and

X1 = {uI | I1 ⊆ I ⊆ K, I finite}.

For n ≥ 1, there is some finite subset Jn+1 of K such that

‖uJ‖ < 1/(2n+ 2)

for every finite subset J of K with Jn+1 ∩ J = ∅. We pick some finite subset Jn+1 with the
above property, and we let In+1 = In ∪ Jn+1 and

Xn+1 = {uI | In+1 ⊆ I ⊆ K, I finite}.

Since In ⊆ In+1, it is obvious that Xn+1 ⊆ Xn for all n ≥ 1. We need to prove that each Xn

has diameter at most 1/n. Since Jn was chosen such that

‖uJ‖ < 1/(2n)

for every finite subset J of K with Jn ∩ J = ∅, and since Jn ⊆ In, it is also true that

‖uJ‖ < 1/(2n)

for every finite subset J of K with In ∩ J = ∅ (since In ∩ J = ∅ and Jn ⊆ In implies that
Jn ∩ J = ∅). Then, for every two finite subsets J, L such that In ⊆ J, L ⊆ K, we have

‖uJ−In‖ < 1/(2n) and ‖uL−In‖ < 1/(2n),

and since
‖uJ − uL‖ ≤ ‖uJ − uIn‖+ ‖uIn − uL‖ = ‖uJ−In‖+ ‖uL−In‖,

we get
‖uJ − uL‖ < 1/n,
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which proves that δ(Xn) ≤ 1/n. Now, if we consider the sequence of closed sets (Xn), we
still have Xn+1 ⊆ Xn, and by Proposition 29.4, δ(Xn) = δ(Xn) ≤ 1/n, which means that
limn→∞ δ(Xn) = 0, and by Proposition 29.4,

⋂∞
n=1 Xn consists of a single element u. We

claim that u is the sum of the family (uk)k∈K .

For every ε > 0, there is some n ≥ 1 such that n > 2/ε, and since u ∈ Xm for all m ≥ 1,
there is some finite subset J0 of K such that In ⊆ J0 and

‖u− uJ0‖ < ε/2,

where In is the finite subset of K involved in the definition of Xn. However, since δ(Xn) ≤
1/n, for every finite subset J of K such that In ⊆ J , we have

‖uJ − uJ0‖ ≤ 1/n < ε/2,

and since

‖u− uJ‖ ≤ ‖u− uJ0‖+ ‖uJ0 − uJ‖,

we get

‖u− uJ‖ < ε

for every finite subset J of K with In ⊆ J , which proves that u is the sum of the family
(uk)k∈K .

(2) Since every finite sum
∑

i∈I ri is bounded by the uniform bound B, the set of these
finite sums has a least upper bound r ≤ B. For every ε > 0, since r is the least upper bound
of the finite sums

∑
i∈I ri (where I finite, I ⊆ K), there is some finite I ⊆ K such that∣∣∣∣∣r −∑

i∈I
ri

∣∣∣∣∣ < ε,

and since rk ≥ 0 for all k ∈ K, we have∑
i∈I

ri ≤
∑
j∈J

rj

whenever I ⊆ J , which shows that∣∣∣∣∣r −∑
j∈J

rj

∣∣∣∣∣ ≤
∣∣∣∣∣r −∑

i∈I
ri

∣∣∣∣∣ < ε

for every finite subset J such that I ⊆ J ⊆ K, proving that (rk)k∈K is summable with sum∑
k∈K rk = r.
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Remark: The notion of summability implies that the sum of a family (uk)k∈K is independent
of any order on K. In this sense, it is a kind of “commutative summability”. More precisely,
it is easy to show that for every bijection ϕ : K → K (intuitively, a reordering of K), the
family (uk)k∈K is summable iff the family (ul)l∈ϕ(K) is summable, and if so, they have the
same sum.

The following proposition gives some of the main properties of Fourier coefficients. Among
other things, at most countably many of the Fourier coefficient may be nonnull, and the
partial sums of a Fourier series converge. Given an orthogonal family (uk)k∈K , we let Uk =
Cuk, and pUk : E → Uk is the projection of E onto Uk.

Proposition A.2. Let E be a Hilbert space, (uk)k∈K an orthogonal family in E, and V the
closure of the subspace generated by (uk)k∈K. The following properties hold:

(1) For every v ∈ E, for every finite subset I ⊆ K, we have∑
i∈I
|ci|2 ≤ ‖v‖2,

where the ck are the Fourier coefficients of v.

(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, the following
conditions are equivalent:

(2a) v ∈ V
(2b) The family (ckuk)k∈K is summable and v =

∑
k∈K ckuk.

(2c) The family (|ck|2)k∈K is summable and ‖v‖2 =
∑

k∈K |ck|2;

(3) The family (|ck|2)k∈K is summable, and we have the Bessel inequality:∑
k∈K
|ck|2 ≤ ‖v‖2.

As a consequence, at most countably many of the ck may be nonzero. The family
(ckuk)k∈K forms a Cauchy family, and thus, the Fourier series

∑
k∈K ckuk converges

in E to some vector u =
∑

k∈K ckuk. Furthermore, u = pV (v).

Proof. (1) Let

uI =
∑
i∈I

ciui

for any finite subset I of K. We claim that v−uI is orthogonal to ui for every i ∈ I. Indeed,

〈v − uI , ui〉 =

〈
v −

∑
j∈I

cjuj, ui

〉
= 〈v, ui〉 −

∑
j∈I

cj 〈uj, ui〉

= 〈v, ui〉 − ci‖ui‖2

= 〈v, ui〉 − 〈v, ui〉 = 0,
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since 〈uj, ui〉 = 0 for all i 6= j and ci = 〈v, ui〉 /‖ui‖2. As a consequence, we have

‖v‖2 =
∥∥∥v −∑

i∈I
ciui +

∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I
ciui

∥∥∥2

+
∥∥∥∑
i∈I

ciui

∥∥∥2

=
∥∥∥v −∑

i∈I
ciui

∥∥∥2

+
∑
i∈I
|ci|2,

since the ui are pairwise orthogonal, that is,

‖v‖2 =
∥∥∥v −∑

i∈I
ciui

∥∥∥2

+
∑
i∈I
|ci|2.

Thus, ∑
i∈I
|ci|2 ≤ ‖v‖2,

as claimed.

(2) We prove the chain of implications (a)⇒ (b) ⇒ (c) ⇒ (a).

(a)⇒ (b): If v ∈ V , since V is the closure of the subspace spanned by (uk)k∈K , for every
ε > 0, there is some finite subset I of K and some family (λi)i∈I of complex numbers, such
that ∥∥∥v −∑

i∈I
λiui

∥∥∥ < ε.

Now, for every finite subset J of K such that I ⊆ J , we have∥∥∥v −∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J
cjuj +

∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

=
∥∥∥v −∑

j∈J
cjuj

∥∥∥2

+
∥∥∥∑
j∈J

cjuj −
∑
i∈I

λiui

∥∥∥2

,

since I ⊆ J and the uj (with j ∈ J) are orthogonal to v−∑j∈J cjuj by the argument in (1),
which shows that ∥∥∥v −∑

j∈J
cjuj

∥∥∥ ≤ ∥∥∥v −∑
i∈I

λiui

∥∥∥ < ε,

and thus, that the family (ckuk)k∈K is summable with sum v, so that

v =
∑
k∈K

ckuk.
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(b)⇒ (c): If v =
∑

k∈K ckuk, then for every ε > 0, there some finite subset I of K, such
that ∥∥∥v −∑

j∈J
cjuj

∥∥∥ < √ε,
for every finite subset J of K such that I ⊆ J , and since we proved in (1) that

‖v‖2 =
∥∥∥v −∑

j∈J
cjuj

∥∥∥2

+
∑
j∈J
|cj|2,

we get

‖v‖2 −
∑
j∈J
|cj|2 < ε,

which proves that (|ck|2)k∈K is summable with sum ‖v‖2.

(c) ⇒ (a): Finally, if (|ck|2)k∈K is summable with sum ‖v‖2, for every ε > 0, there is
some finite subset I of K such that

‖v‖2 −
∑
j∈J
|cj|2 < ε2

for every finite subset J of K such that I ⊆ J , and again, using the fact that

‖v‖2 =
∥∥∥v −∑

j∈J
cjuj

∥∥∥2

+
∑
j∈J
|cj|2,

we get ∥∥∥v −∑
j∈J

cjuj

∥∥∥ < ε,

which proves that (ckuk)k∈K is summable with sum
∑

k∈K ckuk = v, and v ∈ V .

(3) Since
∑

i∈I |ci|2 ≤ ‖v‖2 for every finite subset I of K, by Proposition A.1, the family
(|ck|2)k∈K is summable. The Bessel inequality∑

k∈K
|ck|2 ≤ ‖v‖2

is an obvious consequence of the inequality
∑

i∈I |ci|2 ≤ ‖v‖2 (for every finite I ⊆ K). Now,
for every natural number n ≥ 1, if Kn is the subset of K consisting of all ck such that
|ck| ≥ 1/n, the number of elements in Kn is at most∑

k∈Kn
|nck|2 ≤ n2

∑
k∈K
|ck|2 ≤ n2‖v‖2,

which is finite, and thus, at most a countable number of the ck may be nonzero.
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Since (|ck|2)k∈K is summable with sum c, for every ε > 0, there is some finite subset I of
K such that ∑

j∈J
|cj|2 < ε2

for every finite subset J of K such that I ∩ J = ∅. Since∥∥∥∑
j∈J

cjuj

∥∥∥2

=
∑
j∈J
|cj|2,

we get ∥∥∥∑
j∈J

cjuj

∥∥∥ < ε.

This proves that (ckuk)k∈K is a Cauchy family, which, by Proposition A.1, implies that
(ckuk)k∈K is summable, since E is complete. Thus, the Fourier series

∑
k∈K ckuk is summable,

with its sum denoted u ∈ V .

Since
∑

k∈K ckuk is summable with sum u, for every ε > 0, there is some finite subset I1

of K such that ∥∥∥u−∑
j∈J

cjuj

∥∥∥ < ε

for every finite subset J of K such that I1 ⊆ J . By the triangle inequality, for every finite
subset I of K, ∥∥∥u− v∥∥∥ ≤ ∥∥∥u−∑

i∈I
ciui

∥∥∥+
∥∥∥∑
i∈I

ciui − v
∥∥∥.

By (2), every w ∈ V is the sum of its Fourier series
∑

k∈K λkuk, and for every ε > 0, there
is some finite subset I2 of K such that∥∥∥w −∑

j∈J
λjuj

∥∥∥ < ε

for every finite subset J of K such that I2 ⊆ J . By the triangle inequality, for every finite
subset I of K, ∥∥∥v −∑

i∈I
λiui

∥∥∥ ≤ ‖v − w‖+
∥∥∥w −∑

i∈I
λiui

∥∥∥.
Letting I = I1 ∪ I2, since we showed in (2) that∥∥∥v −∑

i∈I
ciui

∥∥∥ ≤ ∥∥∥v −∑
i∈I

λiui

∥∥∥
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for every finite subset I of K, we get

‖u− v‖ ≤
∥∥∥u−∑

i∈I
ciui

∥∥∥+
∥∥∥∑
i∈I

ciui − v
∥∥∥

≤
∥∥∥u−∑

i∈I
ciui

∥∥∥+
∥∥∥∑
i∈I

λiui − v
∥∥∥

≤
∥∥∥u−∑

i∈I
ciui

∥∥∥+ ‖v − w‖+
∥∥∥w −∑

i∈I
λiui

∥∥∥,
and thus

‖u− v‖ ≤ ‖v − w‖+ 2ε.

Since this holds for every ε > 0, we have

‖u− v‖ ≤ ‖v − w‖

for all w ∈ V , i.e. ‖v − u‖ = d(v, V ), with u ∈ V , which proves that u = pV (v).

A.2 The Hilbert Space l2(K) and the Riesz-Fischer

Theorem

Proposition A.2 suggests looking at the space of sequences (zk)k∈K (where zk ∈ C) such that
(|zk|2)k∈K is summable. Indeed, such spaces are Hilbert spaces, and it turns out that every
Hilbert space is isomorphic to one of those. Such spaces are the infinite-dimensional version
of the spaces Cn under the usual Euclidean norm.

Definition A.3. Given any nonempty index set K, the space l2(K) is the set of all sequences
(zk)k∈K , where zk ∈ C, such that (|zk|2)k∈K is summable, i.e.,

∑
k∈K |zk|2 <∞.

Remarks:

(1) When K is a finite set of cardinality n, l2(K) is isomorphic to Cn.

(2) When K = N, the space l2(N) corresponds to the space l2 of Example 2 in Section
12.1. In that example, we claimed that l2 was a Hermitian space, and in fact, a Hilbert
space. We now prove this fact for any index set K.

Proposition A.3. Given any nonempty index set K, the space l2(K) is a Hilbert space
under the Hermitian product

〈(xk)k∈K , (yk)k∈K〉 =
∑
k∈K

xkyk.

The subspace consisting of sequences (zk)k∈K such that zk = 0, except perhaps for finitely
many k, is a dense subspace of l2(K).



1010 APPENDIX A. TOTAL ORTHOGONAL FAMILIES IN HILBERT SPACES

Proof. First, we need to prove that l2(K) is a vector space. Assume that (xk)k∈K and
(yk)k∈K are in l2(K). This means that (|xk|2)k∈K and (|yk|2)k∈K are summable, which, in
view of Proposition A.1, is equivalent to the existence of some positive bounds A and B
such that

∑
i∈I |xi|2 < A and

∑
i∈I |yi|2 < B, for every finite subset I of K. To prove that

(|xk + yk|2)k∈K is summable, it is sufficient to prove that there is some C > 0 such that∑
i∈I |xi + yi|2 < C for every finite subset I of K. However, the parallelogram inequality

implies that ∑
i∈I
|xi + yi|2 ≤

∑
i∈I

2(|xi|2 + |yi|2) ≤ 2(A+B),

for every finite subset I of K, and we conclude by Proposition A.1. Similarly, for every
λ ∈ C, ∑

i∈I
|λxi|2 ≤

∑
i∈I
|λ|2|xi|2 ≤ |λ|2A,

and (λkxk)k∈K is summable. Therefore, l2(K) is a vector space.

By the Cauchy-Schwarz inequality,∑
i∈I
|xiyi| ≤

∑
i∈I
|xi||yi| ≤

(∑
i∈I
|xi|2

)1/2(∑
i∈I
|yi|2

)1/2 ≤
∑
i∈I

(|xi|2 + |yi|2)/2 ≤ (A+B)/2,

for every finite subset I of K. Here, we used the fact that

4CD ≤ (C +D)2,

which is equivalent to
(C −D)2 ≥ 0.

By Proposition A.1, (|xkyk|)k∈K is summable. The customary language is that (xkyk)k∈K
is absolutely summable. However, it is a standard fact that this implies that (xkyk)k∈K is
summable (For every ε > 0, there is some finite subset I of K such that∑

j∈J
|xjyj| < ε

for every finite subset J of K such that I ∩ J = ∅, and thus

|
∑
j∈J

xjyj| ≤
∑
i∈J
|xjyj| < ε,

proving that (xkyk)k∈K is a Cauchy family, and thus summable). We still have to prove that
l2(K) is complete.

Consider a sequence ((λnk)k∈K)n≥1 of sequences (λnk)k∈K ∈ l2(K), and assume that it is a
Cauchy sequence. This means that for every ε > 0, there is some N ≥ 1 such that∑

k∈K
|λmk − λnk |2 < ε2
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for all m,n ≥ N . For every fixed k ∈ K, this implies that

|λmk − λnk | < ε

for all m,n ≥ N , which shows that (λnk)n≥1 is a Cauchy sequence in C. Since C is complete,
the sequence (λnk)n≥1 has a limit λk ∈ C. We claim that (λk)k∈K ∈ l2(K) and that this is
the limit of ((λnk)k∈K)n≥1.

Given any ε > 0, the fact that ((λnk)k∈K)n≥1 is a Cauchy sequence implies that there is
some N ≥ 1 such that for every finite subset I of K, we have∑

i∈I
|λmi − λni |2 < ε/4

for all m,n ≥ N . Let p = |I|. Then,

|λmi − λni | <
√
ε

2
√
p

for every i ∈ I. Since λi is the limit of (λni )n≥1, we can find some n large enough so that

|λni − λi| <
√
ε

2
√
p

for every i ∈ I. Since
|λmi − λi| ≤ |λmi − λni |+ |λni − λi|,

we get

|λmi − λi| <
√
ε√
p
,

and thus, ∑
i∈I
|λmi − λi|2 < ε,

for all m ≥ N . Since the above holds for every finite subset I of K, by Proposition A.1, we
get ∑

k∈K
|λmk − λk|2 < ε,

for all m ≥ N . This proves that (λmk − λk)k∈K ∈ l2(K) for all m ≥ N , and since l2(K) is a
vector space and (λmk )k∈K ∈ l2(K) for all m ≥ 1, we get (λk)k∈K ∈ l2(K). However,∑

k∈K
|λmk − λk|2 < ε

for all m ≥ N , means that the sequence (λmk )k∈K converges to (λk)k∈K ∈ l2(K). The fact
that the subspace consisting of sequences (zk)k∈K such that zk = 0 except perhaps for finitely
many k is a dense suspace of l2(K) is left as an easy exercise.
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Remark: The subspace consisting of all sequences (zk)k∈K such that zk = 0, except perhaps
for finitely many k, provides an example of a subspace which is not closed in l2(K). Indeed,
this space is strictly contained in l2(K), since there are countable sequences of nonnull
elements in l2(K) (why?).

We just need two more propositions before being able to prove that every Hilbert space
is isomorphic to some l2(K).

Proposition A.4. Let E be a Hilbert space, and (uk)k∈K an orthogonal family in E. The
following properties hold:

(1) For every family (λk)k∈K ∈ l2(K), the family (λkuk)k∈K is summable. Furthermore,
v =

∑
k∈K λkuk is the only vector such that ck = λk for all k ∈ K, where the ck are the

Fourier coefficients of v.

(2) For any two families (λk)k∈K ∈ l2(K) and (µk)k∈K ∈ l2(K), if v =
∑

k∈K λkuk and
w =

∑
k∈K µkuk, we have the following equation, also called Parseval identity:

〈v, w〉 =
∑
k∈K

λkµk.

Proof. (1) The fact that (λk)k∈K ∈ l2(K) means that (|λk|2)k∈K is summable. The proof
given in Proposition A.2 (3) applies to the family (|λk|2)k∈K (instead of (|ck|2)k∈K), and yields
the fact that (λkuk)k∈K is summable. Letting v =

∑
k∈K λkuk, recall that ck = 〈v, uk〉 /‖uk‖2.

Pick some k ∈ K. Since 〈−,−〉 is continuous, for every ε > 0, there is some η > 0 such that

| 〈v, uk〉 − 〈w, uk〉 | < ε‖uk‖2

whenever
‖v − w‖ < η.

However, since for every η > 0, there is some finite subset I of K such that∥∥∥v −∑
j∈J

λjuj

∥∥∥ < η

for every finite subset J of K such that I ⊆ J , we can pick J = I ∪ {k}, and letting
w =

∑
j∈J λjuj, we get ∣∣∣∣∣〈v, uk〉 −

〈∑
j∈J

λjuj, uk

〉∣∣∣∣∣ < ε‖uk‖2.

However,

〈v, uk〉 = ck‖uk‖2 and

〈∑
j∈J

λjuj, uk

〉
= λk‖uk‖2,

and thus, the above proves that |ck − λk| < ε for every ε > 0, and thus, that ck = λk.
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(2) Since 〈−,−〉 is continuous, for every ε > 0, there are some η1 > 0 and η2 > 0, such
that

| 〈x, y〉 | < ε

whenever ‖x‖ < η1 and ‖y‖ < η2. Since v =
∑

k∈K λkuk and w =
∑

k∈K µkuk, there is some
finite subset I1 of K such that ∥∥∥v −∑

j∈J
λjuj

∥∥∥ < η1

for every finite subset J of K such that I1 ⊆ J , and there is some finite subset I2 of K such
that ∥∥∥w −∑

j∈J
µjuj

∥∥∥ < η2

for every finite subset J of K such that I2 ⊆ J . Letting I = I1 ∪ I2, we get∣∣∣∣∣
〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉∣∣∣∣∣ < ε.

Furthermore,

〈v, w〉 =

〈
v −

∑
i∈I

λiui +
∑
i∈I

λiui, w −
∑
i∈I

µiui +
∑
i∈I

µiui

〉

=

〈
v −

∑
i∈I

λiui, w −
∑
i∈I

µiui

〉
+
∑
i∈I

λiµi,

since the ui are orthogonal to v−∑i∈I λiui and w−∑i∈I µiui for all i ∈ I. This proves that
for every ε > 0, there is some finite subset I of K such that∣∣∣∣∣〈v, w〉 −∑

i∈I
λiµi

∣∣∣∣∣ < ε.

We already know from Proposition A.3 that (λkµk)k∈K is summable, and since ε > 0 is
arbitrary, we get

〈v, w〉 =
∑
k∈K

λkµk.

The next proposition states properties characterizing Hilbert bases (total orthogonal
families).

Proposition A.5. Let E be a Hilbert space, and let (uk)k∈K be an orthogonal family in E.
The following properties are equivalent:
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(1) The family (uk)k∈K is a total orthogonal family.

(2) For every vector v ∈ E, if (ck)k∈K are the Fourier coefficients of v, then the family
(ckuk)k∈K is summable and v =

∑
k∈K ckuk.

(3) For every vector v ∈ E, we have the Parseval identity:

‖v‖2 =
∑
k∈K
|ck|2.

(4) For every vector u ∈ E, if 〈u, uk〉 = 0 for all k ∈ K, then u = 0.

Proof. The equivalence of (1), (2), and (3), is an immediate consequence of Proposition A.2
and Proposition A.4.

(4) If (uk)k∈K is a total orthogonal family and 〈u, uk〉 = 0 for all k ∈ K, since u =∑
k∈K ckuk where ck = 〈u, uk〉/‖uk‖2, we have ck = 0 for all k ∈ K, and u = 0.

Conversely, assume that the closure V of (uk)k∈K is different from E. Then, by Propo-
sition 29.7, we have E = V ⊕ V ⊥, where V ⊥ is the orthogonal complement of V , and V ⊥ is
nontrivial since V 6= E. As a consequence, there is some nonnull vector u ∈ V ⊥. But then,
u is orthogonal to every vector in V , and in particular,

〈u, uk〉 = 0

for all k ∈ K, which, by assumption, implies that u = 0, contradicting the fact that u 6=
0.

Remarks:

(1) If E is a Hilbert space and (uk)k∈K is a total orthogonal family in E, there is a simpler
argument to prove that u = 0 if 〈u, uk〉 = 0 for all k ∈ K, based on the continuity
of 〈−,−〉. The argument is to prove that the assumption implies that 〈v, u〉 = 0 for
all v ∈ E. Since 〈−,−〉 is positive definite, this implies that u = 0. By continuity of
〈−,−〉, for every ε > 0, there is some η > 0 such that for every finite subset I of K,
for every family (λi)i∈I , for every v ∈ E,∣∣∣∣∣〈v, u〉 −

〈∑
i∈I

λiui, u

〉∣∣∣∣∣ < ε

whenever ∥∥∥v −∑
i∈I

λiui

∥∥∥ < η.
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Since (uk)k∈K is dense in E, for every v ∈ E, there is some finite subset I of K and
some family (λi)i∈I such that ∥∥∥v −∑

i∈I
λiui

∥∥∥ < η,

and since by assumption,
〈∑

i∈I λiui, u
〉

= 0, we get

|〈v, u〉| < ε.

Since this holds for every ε > 0, we must have 〈v, u〉 = 0

(2) If V is any nonempty subset of E, the kind of argument used in the previous remark
can be used to prove that V ⊥ is closed (even if V is not), and that V ⊥⊥ is the closure
of V .

We will now prove that every Hilbert space has some Hilbert basis. This requires using
a fundamental theorem from set theory known as Zorn’s Lemma, which we quickly review.

Given any set X with a partial ordering ≤, recall that a nonempty subset C of X is a
chain if it is totally ordered (i.e., for all x, y ∈ C, either x ≤ y or y ≤ x). A nonempty subset
Y of X is bounded iff there is some b ∈ X such that y ≤ b for all y ∈ Y . Some m ∈ X is
maximal iff for every x ∈ X, m ≤ x implies that x = m. We can now state Zorn’s Lemma.
For more details, see Rudin [83], Lang [63], or Artin [6].

Proposition A.6. Given any nonempty partially ordered set X, if every (nonempty) chain
in X is bounded, then X has some maximal element.

We can now prove the existence of Hilbert bases. We define a partial order on families
(uk)k∈K as follows: For any two families (uk)k∈K1 and (vk)k∈K2 , we say that

(uk)k∈K1 ≤ (vk)k∈K2

iff K1 ⊆ K2 and uk = vk for all k ∈ K1. This is clearly a partial order.

Proposition A.7. Let E be a Hilbert space. Given any orthogonal family (uk)k∈K in E,
there is a total orthogonal family (ul)l∈L containing (uk)k∈K.

Proof. Consider the set S of all orthogonal families greater than or equal to the family
B = (uk)k∈K . We claim that every chain in S is bounded. Indeed, if C = (Cl)l∈L is a chain
in S, where Cl = (uk,l)k∈Kl , the union family

(uk)k∈⋃l∈LKl , where uk = uk,l whenever k ∈ Kl,

is clearly an upper bound for C, and it is immediately verified that it is an orthogonal family.
By Zorn’s Lemma A.6, there is a maximal family (ul)l∈L containing (uk)k∈K . If (ul)l∈L is
not dense in E, then its closure V is strictly contained in E, and by Proposition 29.7, the
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orthogonal complement V ⊥ of V is nontrivial since V 6= E. As a consequence, there is some
nonnull vector u ∈ V ⊥. But then, u is orthogonal to every vector in (ul)l∈L, and we can form
an orthogonal family strictly greater than (ul)l∈L by adding u to this family, contradicting
the maximality of (ul)l∈L. Therefore, (ul)l∈L is dense in E, and thus, it is a Hilbert basis.

Remark: It is possible to prove that all Hilbert bases for a Hilbert space E have index sets
K of the same cardinality. For a proof, see Bourbaki [21].

Definition A.4. A Hilbert space E is separable if its Hilbert bases are countable.

At last, we can prove that every Hilbert space is isomorphic to some Hilbert space l2(K)
for some suitable K.

Theorem A.8. (Riesz-Fischer) For every Hilbert space E, there is some nonempty set K
such that E is isomorphic to the Hilbert space l2(K). More specifically, for any Hilbert basis
(uk)k∈K of E, the maps f : l2(K)→ E and g : E → l2(K) defined such that

f ((λk)k∈K) =
∑
k∈K

λkuk and g(u) =
(
〈u, uk〉/‖uk‖2

)
k∈K = (ck)k∈K ,

are bijective linear isometries such that g ◦ f = id and f ◦ g = id.

Proof. By Proposition A.4 (1), the map f is well defined, and it it clearly linear. By Propo-
sition A.2 (3), the map g is well defined, and it is also clearly linear. By Proposition A.2
(2b), we have

f(g(u)) = u =
∑
k∈K

ckuk,

and by Proposition A.4 (1), we have

g(f ((λk)k∈K)) = (λk)k∈K ,

and thus g ◦ f = id and f ◦ g = id. By Proposition A.4 (2), the linear map g is an isometry.
Therefore, f is a linear bijection and an isometry between l2(K) and E, with inverse g.

Remark: The surjectivity of the map g : E → l2(K) is known as the Riesz-Fischer theorem.

Having done all this hard work, we sketch how these results apply to Fourier series.
Again, we refer the readers to Rudin [83] or Lang [65, 66] for a comprehensive exposition.

Let C(T ) denote the set of all periodic continuous functions f : [−π, π]→ C with period
2π. There is a Hilbert space L2(T ) containing C(T ) and such that C(T ) is dense in L2(T ),
whose inner product is given by

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.
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The Hilbert space L2(T ) is the space of Lebesgue square-integrable periodic functions (of
period 2π).

It turns out that the family (eikx)k∈Z is a total orthogonal family in L2(T ), because it is
already dense in C(T ) (for instance, see Rudin [83]). Then, the Riesz-Fischer theorem says
that for every family (ck)k∈Z of complex numbers such that∑

k∈Z
|ck|2 <∞,

there is a unique function f ∈ L2(T ) such that f is equal to its Fourier series

f(x) =
∑
k∈Z

cke
ikx,

where the Fourier coefficients ck of f are given by the formula

ck =
1

2π

∫ π

−π
f(t)e−iktdt.

The Parseval theorem says that

+∞∑
k=−∞

ckdk =
1

2π

∫ π

−π
f(t)g(t)dt

for all f, g ∈ L2(T ), where ck and dk are the Fourier coefficients of f and g.

Thus, there is an isomorphism between the two Hilbert spaces L2(T ) and l2(Z), which is
the deep reason why the Fourier coefficients “work”. Theorem A.8 implies that the Fourier
series

∑
k∈Z cke

ikx of a function f ∈ L2(T ) converges to f in the L2-sense, i.e., in the mean-
square sense. This does not necessarily imply that the Fourier series converges to f pointwise!
This is a subtle issue, and for more on this subject, the reader is referred to Lang [65, 66] or
Schwartz [93, 94].

We can also consider the set C([−1, 1]) of continuous functions f : [−1, 1]→ C. There is a
Hilbert space L2([−1, 1]) containing C([−1, 1]) and such that C([−1, 1]) is dense in L2([−1, 1]),
whose inner product is given by

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx.

The Hilbert space L2([−1, 1]) is the space of Lebesgue square-integrable functions over [−1, 1].
The Legendre polynomials Pn(x) defined in Example 5 of Section 10.2 (Chapter 10) form a
Hilbert basis of L2([−1, 1]). Recall that if we let fn be the function

fn(x) = (x2 − 1)n,
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Pn(x) is defined as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)
n (x),

where f
(n)
n is the nth derivative of fn. The reason for the leading coefficient is to get

Pn(1) = 1. It can be shown with much efforts that

Pn(x) =
∑

0≤k≤n/2
(−1)k

(2(n− k))!

2n(n− k)!k!(n− 2k)!
xn−2k.
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son, 1981.

[22] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, first edition, 2004.

[23] Glen E Bredon. Topology and Geometry. GTM No. 139. Springer Verlag, first edition,
1993.

[24] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Universitext. Springer-Verlag, first edition, 2011.

[25] G. Cagnac, E. Ramis, and J. Commeau. Mathématiques Spéciales, Vol. 3, Géométrie.
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