Decision Trees

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made
their course materials freely available online. Feel free to reuse or adapt these slides for your own academic
purposes, provided that you include proper attribution. Please send comments and corrections to Eric.



Function Approximation

Problem Setting

e Set of possible instances X

* Set of possible labels YV

e Unknown target function f: X — Y

* Set of function hypotheses H = {h | h : X — YV}

Input: Training examples of unknown target function f

{<a3i7 yi>}?:1 — {<$1, y1> IRLIR <wn7 yn>}

Output: Hypothesis h € H that best approximates f

Based on slide by Tom Mitchell



Sample Dataset

* Columns denote features X,
* Rows denote labeled instances (x;, y;)
* Class label denotes whether a tennis game was played

Predictors Response

Outlook Temperature Humidity Wind Class
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
<','B’L , y’L > Rain Cool Normal Strong No
Overcast Cool Normal Strong  Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong  Yes
Overcast Mild High Strong  Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No



Decision Tree

* A possible decision tree for the data:

Outlook

Sunny Overcast Rain
/ \
Humidity Yes Wind
ZAN ZAN
High Normal Strong Weak
/ N / N
No Yes No Yes

* Each internal node: test one attribute X,
* Each branch from a node: selects one value for X,
* Each leaf node: predictY (or p(Y | « € leaf) )

Based on slide by Tom Mitchell



Decision Tree

* A possible decision tree for the data:

Outlook
Sunny Overcast Rain
/ \
Humidity Yes Wind
ZAN ZAN
High Normal Strong Weak
/ N / N
No Yes No Yes

 What prediction would we make for

<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Based on slide by Tom Mitchell



Decision Tree

* |f features are continuous, internal nodes can
test the value of a feature against a threshold

Sunny

/

Humidity

N

> 75% <="T75%

/ N

No Yes

Outlook

Overcast

Yes

Rain

T~

Wind

N

> 20 <= 20

/ N\

No Yes




Decision Tree Learning

Problem Setting:
« Set of possible instances X

— each instance x in X is a feature vector

— e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
* Unknown target function f: XY

— Y is discrete valued
« Set of function hypotheses H={ h | h: XY }

— each hypothesis 7 is a decision tree
— trees sorts x to leaf, which assigns y ’\

Slide by Tom Mitchell



Stages of (Batch) Machine Learning
Given: labeled training data X,Y = {(x;,y;) }._,

* Assumes each x; ~ D(X) with y; = fiarget(Ti)

XY
Train the model: |
model € classifier.train(X, Y') !

L = model = Yprediction

Apply the model to new data:
 Given: new unlabeled instance @« ~ D(X)
Yorediction < model.predict(x)



Example Application: A Tree to
Predict Caesarean Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Previous_Csection = 0: [767+,81-] .90+ .10-

| Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-

| Fetal_Distress = 0: [334+,47-] .88+ .12-
| | Birth_Weight < 3349: [201+,10.6-] .95+ .
| | Birth_Weight >= 3349: [133+,36.4-] .78+
| | Fetal_Distress = 1: [34+,21-] .62+ .38-

| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

Based on Example by Tom Mitchell



Decision Tree Induced Partition
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Decision Tree — Decision Boundary

* Decision trees divide the feature space into axis-
parallel (hyper-)rectangles

* Each rectangular region is labeled with one label
— or a probability distribution over labels

X2A | 4/X2<3\;
1

6 xl <4 x1<3

1 N N

0 1 x2 <4 I

§ N

Decision
boundary




Expressiveness

e Decision trees can represent any boolean function of
the input attributes

Truth table row = path to leaf

A B AxorB /\
F F F
F
= F F
F A A

* In the worst case, the tree will require exponentially
many nodes




Expressiveness

Decision trees have a variable-sized hypothesis space

* As the #nodes (or depth) increases, the hypothesis
space grows

— Depth 1 (“decision stump”): can represent any boolean
function of one feature

— Depth 2: any boolean fn of two features; some involving
three features (e.g., (x1 A x2) V (mx1 A —x3) )

— etc.
2
i \ x1<0.5
1 1 0 /\
x2 <0.5 x2 <0.5
0 3 | 1 A /\
- 0 1 1 0

0 1 x1

Based on slide by Pedro Domingos



Another Example:
Restaurant Domain (Russell & Norvig)

Model a patron’s decision of whether to wait for a table at a restaurant

Example Attributes Target

Alt| Bar | Fri| Hun | Pat | Price | Rain | Res| Type | Est | Wait
X T| F | F | T |Some| $%$ F T |French| 0-10 T
Xo T | F F T Full $ F F | Thai |30-60 F
X3 F | T F F |Some| $ F F | Burger| 0-10 T
X4 T | F T T Full $ F F | Thai |10-30 T
X5 T | F T F Full | $$% F T |French| >60 F
X F| T | F | T |Some|l $$ T T | ltalian | 0-10 T
X7 F | T F F | None| $ T F | Burger| 0-10 F
Xs F| F | F | T |Some|l $$ T T | Thai | 0-10 T
X, F| T | T F | Full $ T F | Burger| >60 F
X0 T T | T T Full | $%% F T | Italian | 10-30 F
X1 F F F F | None| §$ F F | Thai | 0-10 F
X9 T T | T T Full $ F F | Burger | 30-60 T

~7,000 possible cases




A Decision Tree

Patrons?
None me~_ Full from Introspection
WaitEstimate?
>60 30 |0~ \ 0-10
Alternate? Hungry?
Ws No Yes
Reservation? Fri'Sat? Alternate?
No Yes No Yes Yes
Bar? Raining?
No Yes

Is this the best decision tree?



Preference bias: Ockham’s Razor
* Principle stated by William of Ockham (1285-1347)

— “non sunt multiplicanda entia praeter necessitatem ”
— entities are not to be multiplied beyond necessity
— AKA Occam’s Razor, Law of Economy, or Law of Parsimony

Idea: The simplest consistent explanation is the best

* Therefore, the smallest decision tree that correctly
classifies all of the training examples is best

* Finding the provably smallest decision tree is NP-hard

e ...So instead of constructing the absolute smallest tree
consistent with the training examples, construct one that
is pretty small



Basic Algorithm for Top-Down

Induction of Decision Trees
[ID3, C4.5 by Quinlan]

node = root of decision tree
Main loop:

1.

B >

A €& the “best” decision attribute for the next node.
Assign A as decision attribute for node.

For each value of A, create a new descendant of node.
Sort training examples to leaf nodes.

If training examples are perfectly classified, stop.
Else, recurse over new leaf nodes.

How do we choose which attribute is best?




Choosing the Best Attribute

Key problem: choosing which attribute to split a
given set of examples

 Some possibilities are:
— Random: Select any attribute at random

— Least-Values: Choose the attribute with the smallest
number of possible values

— Most-Values: Choose the attribute with the largest
number of possible values

— Max-Gain: Choose the attribute that has the largest
expected information gain

* i.e., attribute that results in smallest expected size of subtrees
rooted at its children

 The ID3 algorithm uses the Max-Gain method of
selecting the best attribute



Choosing an Attribute

Idea: a good attribute splits the examples into subsets
that are (ideally) “all positive” or “all negative”

000000 000000
000000 000000
Patrons? Type?
NOM\UII Fre ncm rger
000 00 O © 00
00 0000 O @ 00

Which split is more informative: Patrons? or Type?

Based on Slide from M. desJardins & T. Finin



ID3-induced
Decision Tree

Patrons?

None sSom Full

French Burger

Based on Slide from M. desJardins & T. Finin



Compare the Two Decision Trees

Based on Slide from M. desJardins & T. Finin



Information Gain

Which test is more informative?

Split over whether
Balance exceeds 50K

Less or equal 50K Over 50K

Based on slide by Pedro Domingos

Split over whether
applicant is employed

Unemployed Employed

22



Information Gain

Impurity/Entropy (informal)

— Measures the level of impurity in a group of
examples

Based on slide by Pedro Domingos
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Very impure group

Based on slide by Pedro Domingos

Impurity

Less impure

Minimum
impurity

24



Entropy: a common way to measure impurity

# of possible
Entropy H(X) of a randomW TS 0l 2
ne—_
H(X)=-) P(X =1i)logy P(X =1)
i=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Slide by Tom Mitchell



Entropy: a common way to measure impurity

# of possible
Entropy H(X) of a randomW TS ol 26
ne—_
H(X)=-) P(X =1i)logy P(X =1)
i=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Why? Information theory:

» Most efficient code assigns -log,P(X=i) bits to encode
the message X=i
« S0, expected number of bits to code one random X is:

n
> P(X = i)(~loga P(X = 1))
1=1
Slide by Tom Mitchell



Example: Huffman code

* |In 1952 MIT student David Huffman devised, in the course

of doing a homework assignment, an elegant coding
scheme which is optimal in the case where all symbols’

probabilities are integral powers of 1/2.
* A Huffman code can be built in the following manner:
—Rank all symbols in order of probability of occurrence

—Successively combine the two symbols of the lowest
probability to form a new composite symbol; eventually
we will build a binary tree where each node is the
probability of all nodes beneath it

—Trace a path to each leaf, noticing direction at each node

Based on Slide from M. desJardins & T. Finin



Huffman code example

M code length  prob
M P A 000 3 0125 0.375

B 001 3 0.125 0.375

A 125 C 01 2 0.250 0.500
B .125 D 1 1 0500 0.500
C .25 average message length 1.750
D .5

If we use this code to many
messages (A,B,C or D) with this
probability distribution, then, over
time, the average bits/message
should approach 1.75

Based on Slide from M. desJardins & T. Finin



2-Class Cases:

Entropy H(x ZP 1) logy Pz = 1)

e What is the entropy of a group in which all Minimum

examples belong to the same class? Impurity
— entropy=-1log,1=0

not a good training set for learning

e What is the entropy of a group with 50% Maximum

in either class? impurity
— entropy =-0.5 l0g,0.5-0.5 log,0.5 =1

good training set for learning

Based on slide by Pedro Domingos



Slide by Tom Mitchell

Sample Entropy

1.0 "
n
4
§‘ 0.5
A
0.0 0.5 1.0
Ps

e S is a sample of training examples
® p- is the proportion of positive examples in S
® p-, is the proportion of negative examples in S

e Entropy measures the impurity of S

H(S) = —plogy pe — pe logs pe



Information Gain

* We want to determine which attribute in a given set
of training feature vectors is most useful for
discriminating between the classes to be learned.

* Information gain tells us how important a given
attribute of the feature vectors is.

 We will use it to decide the ordering of attributes in
the nodes of a decision tree.

Based on slide by Pedro Domingos
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From Entropy to Information Gain

Entropy H(X) of a random variable X

H(X)=- i P(X =1i)logy P(X = 1)
i=1

Slide by Tom Mitchell



From Entropy to Information Gain

Entropy H(X) of a random variable X

H(X)=- i P(X =1i)logy P(X =1)
i=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

n
H(X[Y =v) = - Y P(X =i|Y =v)logy P(X = i|Y =)
=1

Slide by Tom Mitchell



From Entropy to Information Gain

Entropy H(X) of a random variable X

H(X)=- i P(X =1i)logy P(X = 1)
i=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

n
H(X[Y =v) = - Y P(X =i|Y =v)logy P(X = i]Y =)
=1

Conditional entropy H(X/Y) of X given Y :

H(X|Y) = > P(Y =v)H(X|Y =)
vevalues(Y)

Slide by Tom Mitchell



From Entropy to Information Gain

Entropy H(X) of a random variable X

H(X)=- i P(X =i)logy P(X = 1)
i=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

n
H(X[Y =v) = - Y P(X =i|Y =v)logy P(X = i|Y =)
=1

Conditional entropy H(X/Y) of X given Y :

H(X|Y) = > P(Y =v)H(X|Y =)
vevalues(Y)

Mututal information (aka Information Gain) of X and Y':
I(X,)Y)=H(X)-HX|Y)=H) - HY|X)

Slide by Tom Mitchell



Information Gain

Information Gain is the mutual information between
input attribute A and target variable Y

Information Gain is the expected reduction in entropy
of target variable Y for data sample S, due to sorting
on variable A

Gain(S, A) = Is(A,Y) = Hg(Y) — Hg(Y|A)

[29+, 35—] Al=" [29+4,35-]

t

t

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Slide by Tom Mitchell



Calculating Information Gain
Information Gain = entropy(parent) — [average entropy(children)]

entropy

Entire population (30 instances)

entropy — log, — || — log, 1_)20-391

parent _ E-logzﬂ — E-logzﬁ =0.996
entropy {30 30 30 30

17 13
(Weighted) Average Entropy of Children = (—°0-787)+ [5-0.391} 0.615

Information Gain= 0.996 - 0.615 = 0.38

Based on slide by Pedro Domingos
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Entropy-Based Automatic Decision
Tree Construction

Training Set X

x2=(f21,£22,

xn=(fn1,f22,

x1=(f11,f12,...f1m)

f2m)

f2m)

Node 1
What feature
should be used?

/l\ What values?

Quinlan suggested information gain in his ID3 system
and later the gain ratio, both based on entropy.

Based on slide by Pedro Domingos
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Using Information Gain to Construct
a Decision Tree
Choose the attribute A

Full Training Set X Attribute A with highest information
gain for the full training
vl v2 VK set at the root of the tree.
Construct child nodes
for each value of A. Set X [? . X[?)={x[7]X | value(A)=v1}
Each has an associated
subset of vectors in repe.at
which A has a particular recursively
till when?
value.

Disadvantage of information gain:

* |t prefers attributes with large number of values that split

the data into small, pure subsets
* Quinlan’s gain ratio uses normalization to improve this

40
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Training Examples

Day Outlook Temperature Humidity Wind PlayTen1

D1  Sunny Hot High  Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High  Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High  Strong No




Selecting the Next Attribute

Which attribute is the best classifier?

S: [9+,5-] S [9+,5-]
E=0.940 E=0.940
Humidity Wind

High Normal Weak

[3+.4-] [6+,1-] [6+,2-] [3+.3-]

Slide by Tom Mitchell



Selecting the Next Attribute

Which attribute is the best classifier?

S [9+,5-]
E =0940
Humidity
High Normal
[3+.4-] [6+,1-]
E =0985 E=0.592

Gain (S, Humidity )

940 -(7/14).985 - (7/14).592
151

Slide by Tom Mitchell

S: [9+,5-]
E=0.940

Wind

Weak

[6+,2-] [3+,3-]
E=0.811 E=1.00

Gain (S, Wind )

=.940 -(8/14).811 - (6/14)1.0
=.048



(D1,D2, ..., D14}

[9+.5-]
Outlook
Sunny Overcast Rain
{D1,D2.D8,D9.D11} {D3,D7,D12,.D13} {D4,D5,D6,D10,D 14}
[2+,3-] [4+,0-] [3+,2-

A

? @ ?
/

Which attribute should be tested here?

Ssunny ={D1,.D2,D8.D9.D11}

Gain (Sgyppy » Humidity) = 970 - (3/5)0.0 — (2/5)0.0 = .970
Gain (Ssyppy » Temperature) = 970 — (2/5)0.0 — (2/5) 1.0 — (1/5)0.0 = .570

Gain (S » Wind) = 970 — (2/5)1.0 = (3/5).918 = .019
Slide by Tom Mitchell ( SUm) ) (2/5) (5/5)



Decision Tree Applet

http://webdocs.cs.ualberta.ca/~aixplore/learning/
DecisionTrees/Applet/DecisionTreeApplet.html




Which Tree Should We Output?

* |D3 performs heuristic

J search through space of
/,1{\'{ decision trees
e . ‘ \ |t stops at smallest
%(DR I\; acceptable tree. Why?
- A2 Occam'’s razor: prefer the
L O simplest hypothesis that
+ j fits the data

Slide by Tom Mitchell



The ID3 algorithm builds a decision tree, given a set of non-categorical attributes C1, C2, ..,
Cn, the class attribute C, and a training set T of records

function ID3 (R:input attributes, C:class attribute,
S:training set) returns decision tree;

If S is empty, return single node with value Failure;

If every example 1n S has same value for C, return
single node with that wvalue;

If R is empty, then return a single node with most
frequent of the values of C found in examples S;
# causes errors —-- improperly classified record

Let D be attribute with largest Gain (D,S) among R;
Let {dj| 3=1,2, .., m} be values of attribute Dj;

Let {S3| 3=1,2, .., m} be subsets of S consisting of
records with value dj for attribute D;
Return tree with root labeled D and arcs labeled
dl..dm going to the trees ID3(R-{D},C,S1).
ID3(R-{D},C,Sm);

Based on Slide from M. desJardins & T. Finin



How well does it work?

Many case studies have shown that decision trees
are at least as accurate as human experts.

—A study for diagnosing breast cancer had humans
correctly classifying the examples 65% of the
time; the decision tree classified 72% correct

—British Petroleum designed a decision tree for
gas-oil separation for offshore oil platforms that
replaced an earlier rule-based expert system

—Cessna designed an airplane flight controller using
90,000 examples and 20 attributes per example

Based on Slide from M. desJardins & T. Finin



