

Evaluation

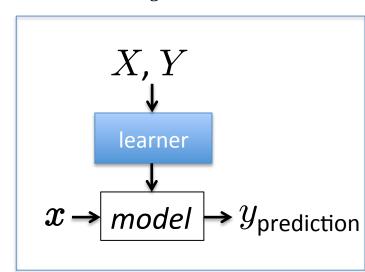
Stages of (Batch) Machine Learning

Given: labeled training data $X, Y = \{\langle \boldsymbol{x}_i, y_i \rangle\}_{i=1}^n$

• Assumes each $\boldsymbol{x}_i \sim \mathcal{D}(\mathcal{X})$ with $y_i = f_{target}(\boldsymbol{x}_i)$

Train the model:

 $model \leftarrow classifier.train(X, Y)$



Apply the model to new data:

• Given: new unlabeled instance $x \sim \mathcal{D}(\mathcal{X})$ $y_{\text{prediction}} \leftarrow \textit{model}. \textit{predict}(x)$

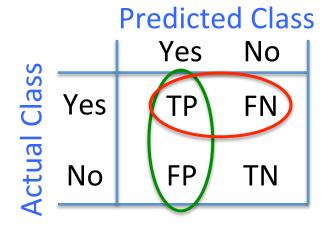
Classification Metrics

$$accuracy = \frac{\# correct predictions}{\# test instances}$$

$$error = 1 - accuracy = \frac{\# incorrect predictions}{\# test instances}$$

Confusion Matrix

• Given a dataset of P positive instances and N negative instances:



$$accuracy = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

Probability that a randomly selected result is relevant

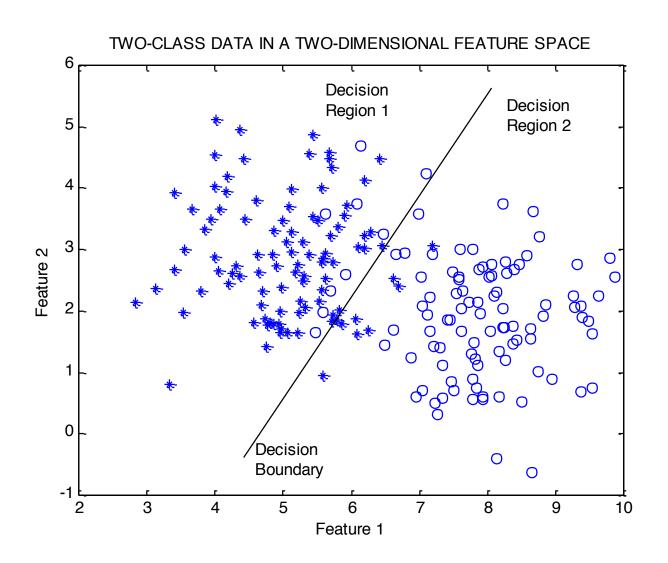
Probability that a randomly selected relevant document is retrieved

Training Data and Test Data

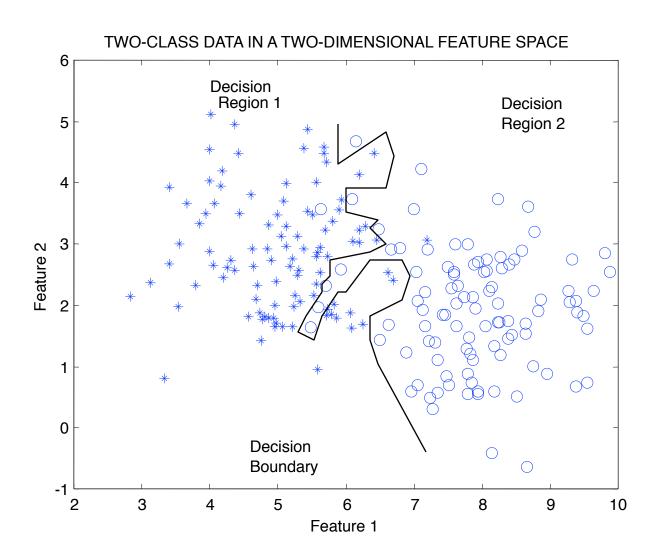
- Training data: data used to build the model
- Test data: new data, not used in the training process

- Training performance is often a poor indicator of generalization performance
 - Generalization is what we <u>really</u> care about in ML
 - Easy to overfit the training data
 - Performance on test data is a good indicator of generalization performance
 - i.e., test accuracy is more important than training accuracy

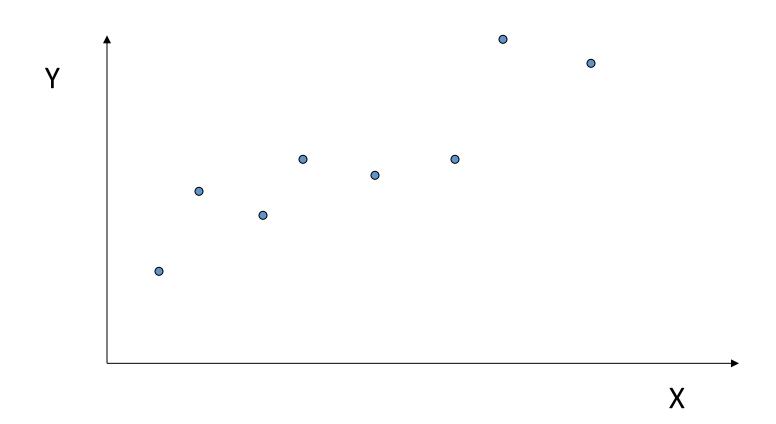
Simple Decision Boundary



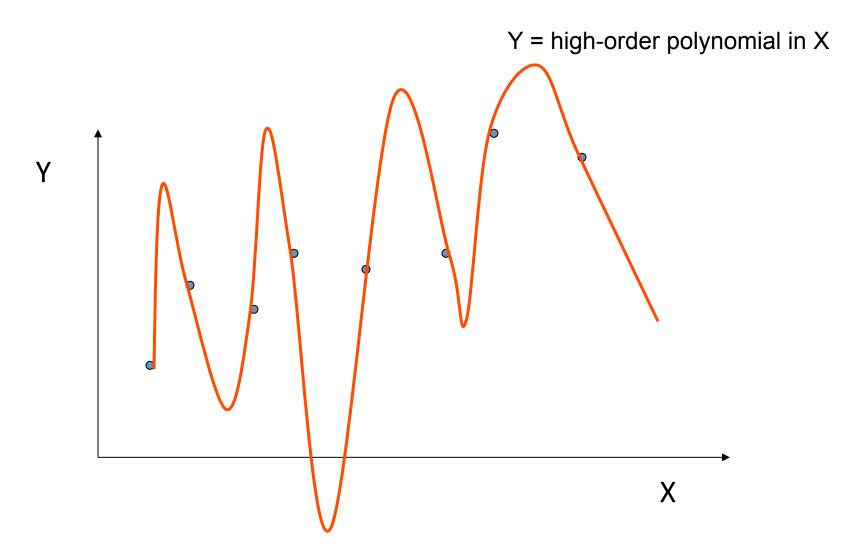
More Complex Decision Boundary



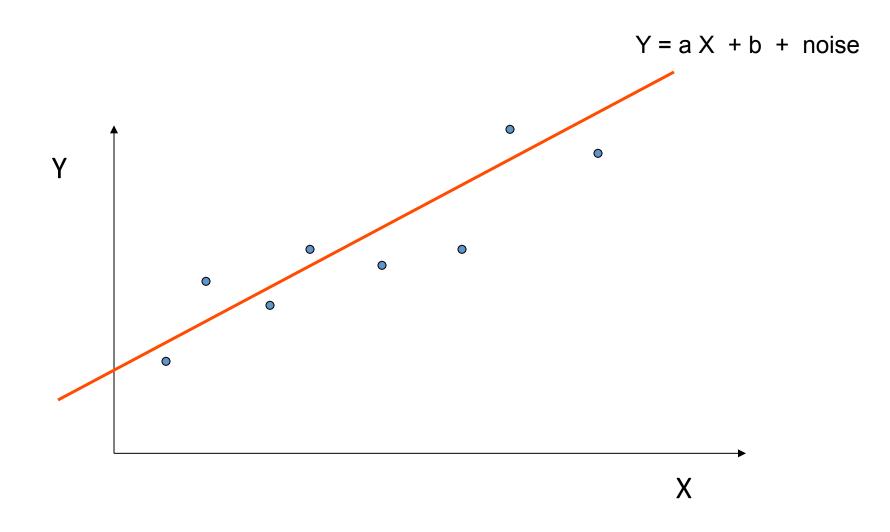
Example: The Overfitting Phenomenon



A Complex Model

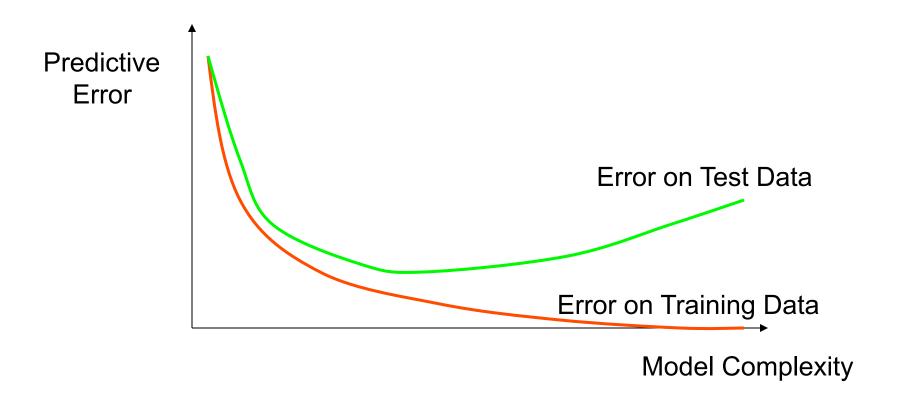


The True (simpler) Model

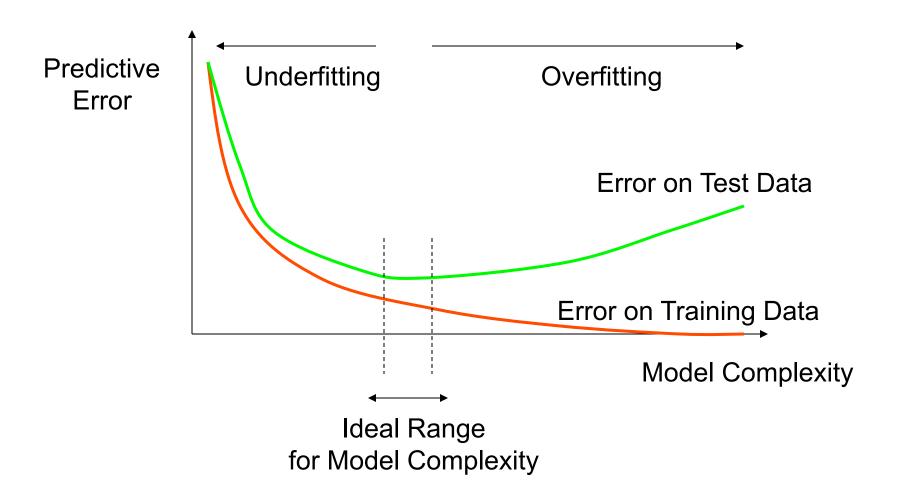


How Overfitting Affects Prediction

How Overfitting Affects Prediction



How Overfitting Affects Prediction



Comparing Classifiers

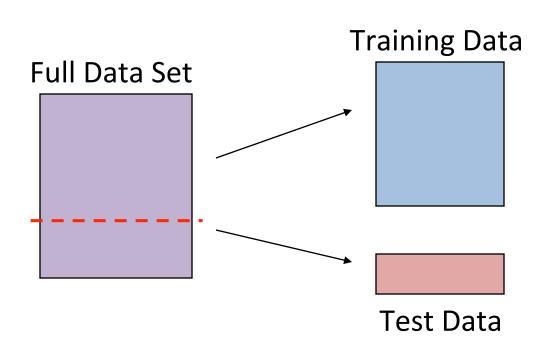
Say we have two classifiers, C1 and C2, and want to choose the best one to use for future predictions

Can we use training accuracy to choose between them?

- No!
 - e.g., C1 = pruned decision tree, C2 = 1-NN training_accuracy(1-NN) = 100%, but may not be best

Instead, choose based on test accuracy...

Training and Test Data



Idea:

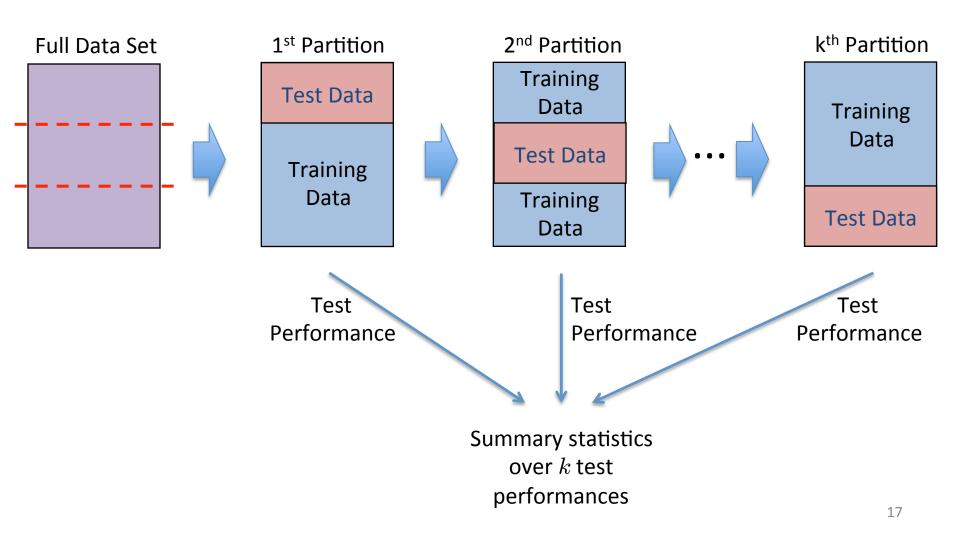
Train each model on the "training data"...

...and then test each model's accuracy on the test data

k-Fold Cross-Validation

- Why just choose one particular "split" of the data?
 - In principle, we should do this multiple times since performance may be different for each split
- k-Fold Cross-Validation (e.g., k=10)
 - randomly partition full data set of n instances into \underline{k} disjoint subsets (each roughly of size n/k)
 - Choose each fold in turn as the test set; train model on the other folds and evaluate
 - Compute statistics over k test performances, or choose best of the k models
 - Can also do "leave-one-out CV" where k = n

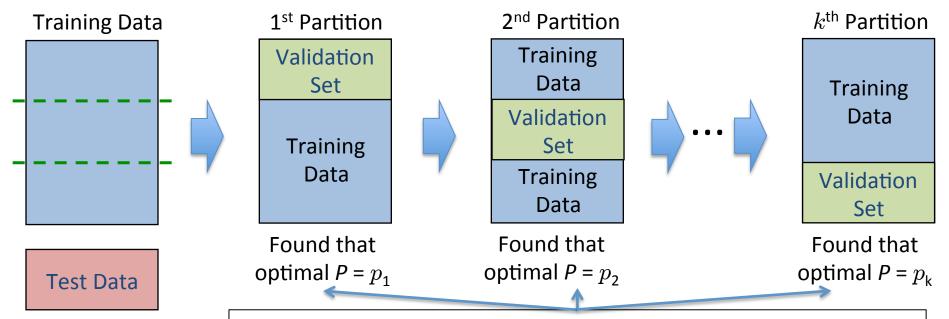
Example 3-Fold CV



Optimizing Model Parameters

Can also use CV to choose value of model parameter P

- Search over space of parameter values $p \in values(P)$
 - Evaluate model with P = p on validation set
- Choose value p' with highest validation performance
- Learn model on full training set with P = p'



Choose value of p of the model with the best validation performance

More on Cross-Validation

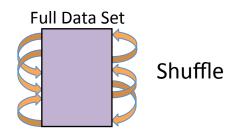
- Cross-validation generates an approximate estimate of how well the classifier will do on "unseen" data
 - As $k \rightarrow n$, the model becomes more accurate (more training data)
 - ...but, CV becomes more computationally expensive
 - Choosing k < n is a compromise
- Averaging over different partitions is more robust than just a single train/validate partition of the data

It is an even better idea to do CV repeatedly!

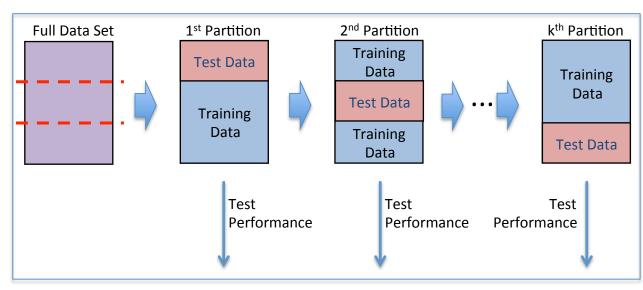
Multiple Trials of k-Fold CV

1.) Loop for t trials:

a.) Randomize
Data Set



b.) Perform k-fold CV



2.) Compute statistics over $t \times k$ test performances

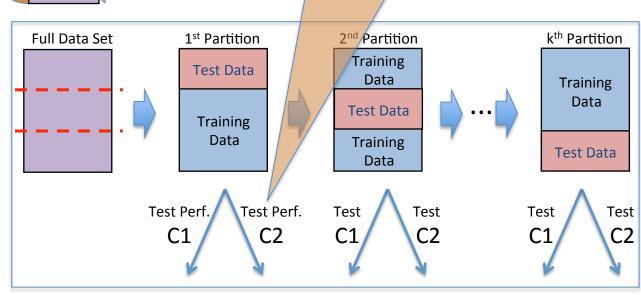
Comparing Multiple Classifiers

1.) Loop for t trials:

a.) Randomize Data Set Full Data Set
Shuffle

Test each candidate learner on same training/testing splits

b.) Perform k-fold CV

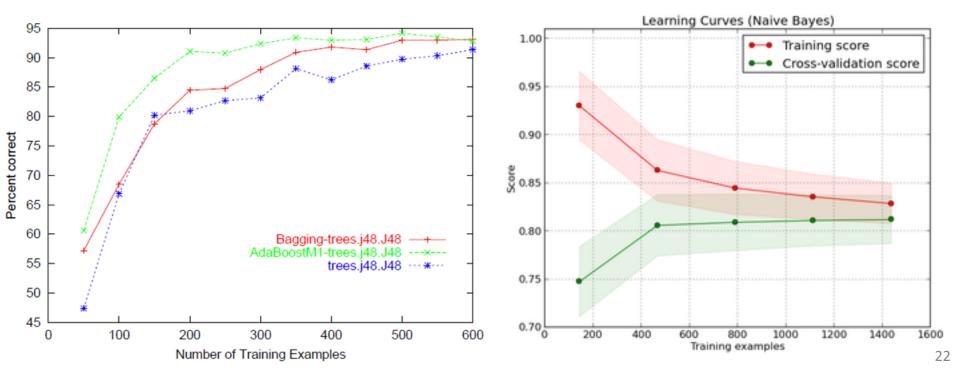


2.) Compute statistics over $t \times k$ test performances

Allows us to do paired summary statistics (e.g., paired t-test)

Learning Curve

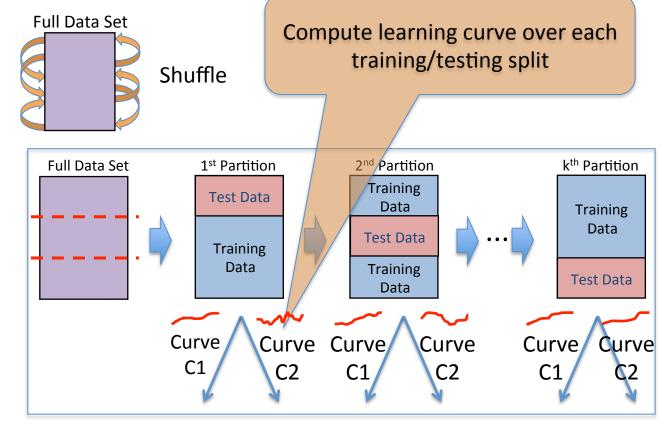
- Shows performance versus the # training examples
 - Compute over a single training/testing split
 - Then, average across multiple trials of CV



Building Learning Curves

1.) Loop for t trials:

b.) Perform k-fold CV



2.) Compute statistics over $t \times k$ learning curves