

Probability Basics

Sources of Uncertainty

The world is a very uncertain place...

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Incomplete deductive inference may be uncertain

Probabilities

 30 years of AI research danced around the fact that the world was inherently uncertain

- Bayesian Inference:
 - Use probability theory and information about independence
 - Reason diagnostically (from evidence (effects) to conclusions (causes))...
 - ...or causally (from causes to effects)

- Probabilistic reasoning only gives probabilistic results
 - i.e., it summarizes uncertainty from various sources

Discrete Random Variables

- Let A denote a random variable
 - -A represents an event that can take on certain values
 - Each value has an associated probability
- Examples of binary random variables:
 - -A = I have a headache
 - -A = Sally will be the US president in 2020
- P(A) is "the fraction of possible worlds in which A is true"
 - We could spend hours on the philosophy of this, but we won't

Visualizing A

- ullet Universe U is the event space of all possible worlds
 - Its area is 1

$$-P(U)=1$$

• P(A) = area of red oval

Therefore:

$$P(A) + P(\neg A) = 1$$
$$P(\neg A) = 1 - P(A)$$

Axioms of Probability

Kolmogorov showed that three simple axioms lead to the rules of probability theory

- de Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- 1. All probabilities are between 0 and 1:

$$0 \le P(A) \le 1$$

2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:

$$P(true) = 1; P(false) = 0$$

3. The probability of a disjunction is given by:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Interpreting the Axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

The area of A can't get any smaller than 0

A zero area would mean no world could ever have A true

Interpreting the Axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

The area of A can't get any bigger than 1

An area of 1 would mean A is true in all possible worlds

Interpreting the Axioms

- $0 \le P(A) \le 1$
- P(true) = 1
- P(false) = 0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

These Axioms are Not to be Trifled With

- There have been attempts to develop different methodologies for uncertainty:
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer
 - Non-monotonic reasoning
- But the axioms of probability are the only system with this property:
 - If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti, 1931]

An Important Theorem

$$0 \le P(A) \le 1$$

 $P(\text{true}) = 1; \quad P(\text{false}) = 0$
 $P(A \lor B) = P(A) + P(B) - P(A \land B)$

From these we can prove:

$$P(\neg A) = 1 - P(A)$$

Proof: Let
$$B = \neg A$$
. Then, we have
$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$
$$P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A)$$
$$P(\text{true}) = P(A) + P(\neg A) - P(\text{false})$$
$$1 = P(A) + P(\neg A) - 0$$
$$P(\neg A) = 1 - P(A) \quad \Box$$

Another Important Theorem

$$0 \le P(A) \le 1$$

 $P(True) = 1; P(False) = 0$
 $P(A \lor B) = P(A) + P(B) - P(A \land B)$

From these we can prove:

$$P(A) = P(A \land B) + P(A \land \neg B)$$

How?

Multi-valued Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ..., v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \quad \text{if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor \dots \lor A = v_k) = 1$$

$$1 = \sum_{i=1}^{k} P(A = v_i)$$

Multi-valued Random Variables

We can also show that:

$$P(B) = P(B \land [A = v_1 \lor A = v_2 \lor \dots \lor A = v_k])$$

$$P(B) = \sum_{i=1}^{k} P(B \land A = v_i)$$

• This is called marginalization over A

Prior and Joint Probabilities

- Prior probability: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

Russell & Norvig's Alarm Domain: (boolean RVs)

- A world has a specific instantiation of variables:
 (alarm Λ burglary Λ ¬earthquake)
- The joint probability is given by:

P(Alarm, Burglary) = burglary 0.09 0.01

burglary 0.1 0.8

Prior probability of burglary: P(Burglary) = 0.1

by marginalization over Alarm

e.g., Boolean variables A, B, C

Recipe for making a joint distribution of d variables:

Recipe for making a joint distribution of d variables:

1. Make a truth table listing all combinations of values of your variables (if there are d Boolean variables then the table will have 2^d rows).

e.g., Boolean variables A, B, C

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Recipe for making a joint distribution of d variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are d Boolean variables then the table will have 2^d rows).
- 2. For each combination of values, say how probable it is.

e.g., Boolean variables A, B, C

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Recipe for making a joint distribution of d variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are d Boolean variables then the table will have 2^d rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

e.g., Boolean variables A, B, C

A	В	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Inferring Prior Probabilities from the Joint

	alarm		¬alarm	
	earthquake	¬earthquake	earthquake	¬earthquake
burglary	0.01	0.08	0.001	0.009
¬burglary	0.01	0.09	0.01	0.79

$$P(alarm) = \sum_{b,e} P(alarm \land Burglary = b \land Earthquake = e)$$
$$= 0.01 + 0.08 + 0.01 + 0.09 = 0.19$$

$$P(burglary) = \sum_{a,e} P(Alarm = a \land burglary \land Earthquake = e)$$

$$= 0.01 + 0.08 + 0.001 + 0.009 = 0.1$$

Conditional Probability

• $P(A \mid B)$ = Fraction of worlds in which B is true that also have A true

What if we already know that B is true?

That knowledge changes the probability of $\cal A$

 Because we know we're in a world where B is true

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

Example: Conditional Probabilities

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

$$\begin{array}{l} P(burglary \mid alarm) = P(burglary \land alarm) \ / \ P(alarm) \\ = 0.09 \ / \ 0.19 = 0.47 \end{array}$$

$$\begin{array}{l} P(alarm \mid burglary) = P(burglary \land alarm) \ / \ P(burglary) \\ = 0.09 \ / \ 0.1 = 0.9 \end{array}$$

P(burglary
$$\land$$
 alarm) = P(burglary | alarm) P(alarm)
= $0.47 * 0.19 = 0.09$

Example: Inference from the Joint Without Explicitly Computing Priors

	alarm		¬alarm	
	earthquake	¬earthquake	earthquake	¬earthquake
burglary	0.01	0.08	0.001	0.009
¬burglary	0.01	0.09	0.01	0.79

```
\begin{array}{l} P(Burglary \mid alarm) = \alpha \; P(Burglary, \, alarm) \\ = \alpha \; \left[ P(Burglary, \, alarm, \, earthquake) + P(Burglary, \, alarm, \, \neg earthquake) \\ = \alpha \; \left[ \; (0.01, \, 0.01) \; + \; (0.08, \, 0.09) \; \right] \\ = \alpha \; \left[ \; (0.09, \, 0.1) \; \right] \end{array}
```

```
Since P(burglary \mid alarm) + P(\neg burglary \mid alarm) = 1, It must be that \alpha = 1/(0.09 + 0.1) = 5.26 (i.e., P(alarm) = 1/\alpha = 0.19)
```

$$P(burglary \mid alarm) = 0.09 * 5.26 = 0.474$$

$$P(\neg burglary \mid alarm) = 0.1 * 5.26 = 0.526$$

Example: Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

Example: Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

Example: Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

```
P(headache) = 1/10 Want to solve for:

P(flu) = 1/40 P(headache \wedge flu) = ?

P(headache | flu) = 1/2 P(flu | headache) = ?

P(headache \wedge flu) = P(headache | flu) x P(flu) = 1/2 x 1/40 = 0.0125

P(flu | headache) = P(headache \wedge flu) / P(headache) = 0.0125 / 0.1 = 0.125
```

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

(Super Easy) Derivation:

$$P(A \wedge B) = P(A \mid B) \times P(B)$$

 $P(B \wedge A) = P(B \mid A) \times P(A)$

these are the same

Just set equal...

$$P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$$
 and solve...

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

Bayes' Rule

- Allows us to reason from evidence to hypotheses
- Another way of thinking about Bayes' rule:

$$P(\text{hypothesis} \mid \text{evidence}) = \frac{P(\text{evidence} \mid \text{hypothesis}) \times P(\text{hypothesis})}{P(\text{evidence})}$$

In the flu example:

$$P(headache) = 1/10 \qquad P(flu) = 1/40$$

P(headache | flu) =
$$1/2$$

Given evidence of headache, what is $P(flu \mid headache)$?

Solve via Bayes rule!

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Trivial question: Someone draws an envelope at random and offers to sell it to you. How much should you pay?

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Interesting question: Before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay?

Suppose it's red: How much should you pay?

Calculation...

Suppose it's black: How much should you pay?

$$P(b \mid win) = 1/2$$

$$P(b | lose) = 2/3$$

$$P(win) = 1/2$$

$$P(\text{win} \mid \text{b}) = \alpha P(\text{b} \mid \text{win}) P(\text{win})$$

= $\alpha 1/2 \times 1/2 = 0.25 \alpha$

$$P(lose \mid b) = \alpha P(b \mid lose) P(lose)$$

= $\alpha 2/3 \times 1/2 = 0.3333\alpha$

$$1 = P(win | b) + P(lose | b) = 0.25\alpha + 0.3333\alpha \rightarrow \alpha = 1.714$$

$$P(win | b) = 0.4286$$

$$P(lose | b) = 0.5714$$

Independence

- When two sets of propositions do not affect each others' probabilities, we call them independent
- Formal definition:

$$A \perp \!\!\! \perp B \quad \leftrightarrow \quad P(A \wedge B) = P(A) \times P(B)$$

 $\leftrightarrow \quad P(A \mid B) = P(A)$

For example, {moon-phase, light-level} might be independent of {burglary, alarm, earthquake}

- Then again, maybe not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
- But if we know the light level, the moon phase doesn't affect whether we are burglarized

Exercise: Independence

	smart		¬smart	
$P(\text{smart } \land \text{ study } \land \text{ prep})$	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

Is *smart* independent of *study*?

Is *prepared* independent of *study*?

Exercise: Independence

	smart		¬smart	
P(smart \(\triangle \) study \(\triangle \) prep)	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

Is *smart* independent of *study*?

Is prepared independent of study?

Conditional Independence

Absolute independence of A and B:

$$A \perp \!\!\! \perp B \quad \leftrightarrow \quad P(A \wedge B) = P(A) \times P(B)$$

 $\leftrightarrow \quad P(A \mid B) = P(A)$

Conditional independence of A and B given C

$$A \bot B \mid C \quad \leftrightarrow \quad P(A \land B \mid C) = P(A \mid C) \times P(B \mid C)$$

- e.g., Moon-Phase and Burglary are conditionally independent given Light-Level
- This lets us decompose the joint distribution:

$$P(A \land B \land C) = P(A \mid C) \times P(B \mid C) \times P(C)$$

 Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint

Take Home Exercise: Conditional independence

	smart		¬smart	
P(smart \(\) study \(\) prep)	study	¬study	study	¬study
prepared	0.432	0.16	0.084	0.008
¬prepared	0.048	0.16	0.036	0.072

Is smart conditionally independent of prepared, given study?

Is study conditionally independent of prepared, given smart?