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Sources of Uncertainty

The world is a very uncertain place...

* Uncertain inputs
— Missing data
— Noisy data

* Uncertain knowledge
— Multiple causes lead to multiple effects
— Incomplete enumeration of conditions or effects
— Incomplete knowledge of causality in the domain
— Stochastic effects

* Uncertain outputs
— Abduction and induction are inherently uncertain
— Incomplete deductive inference may be uncertain



Probabilities

e 30 years of Al research danced around the fact that
the world was inherently uncertain

* Bayesian Inference:

— Use probability theory and information about
independence

— Reason diagnostically (from evidence (effects) to
conclusions (causes))...

— ...or causally (from causes to effects)

* Probabilistic reasoning only gives probabilistic results

— i.e., it summarizes uncertainty from various sources



Discrete Random Variables

* Let A denote a random variable
— A represents an event that can take on certain values
— Each value has an associated probability

 Examples of binary random variables:

— A =1 have a headache
— A =Sally will be the US president in 2020

« P(A) is “the fraction of possible worlds in which
A is true”

— We could spend hours on the philosophy of this,
but we won't

Adapted from slide by Andrew Moore



Visualizing A

 Universe U is the event space of all possible worlds
— Itsareais 1

- P(0) = 1
U

 P(A) = area of red oval . .
worlds in which

A is true

* Therefore:
P(A)+ P(—A) =1
P(—A) =1 — P(A) worlds in which A is false




Axioms of Probability

Kolmogorov showed that three simple axioms lead to the
rules of probability theory

— de Finetti, Cox, and Carnap have also provided compelling
arguments for these axioms

1. All probabilities are between 0 and 1:
0<P(A4)<1

2. Valid propositions (tautologies) have probability 1, and
unsatisfiable propositions have probability O:

P(true) =1; P(false)=0

3. The probability of a disjunction is given by:
P(Av B) =P(A) + P(B) — P(A A B)



Interpreting the Axioms
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- P(Av B)=P(A) + P(B) - P(A A B)

[ The area of A can’t get
any smaller than 0

A zero area would
mean nho world could
ever have A true
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Interpreting the Axioms

< P(A) <1
P(true) =

(false) =0
(Av B) =P(A) + P(B) - P(4 A B)

°
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The area of A can’t get
any bigger than 1

An area of 1 would
mean A is true in all
possible worlds
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Interpreting the Axioms

¢« 0SP(A) <1
* P(true) =1

« P(false) =0

« P(Av B) = P(A) + P(B) —P(A A B)

A AAB




These Axioms are Not to be Trifled With

* There have been attempts to develop different
methodologies for uncertainty:

* Fuzzy Logic

* Three-valued logic

* Dempster-Shafer

* Non-monotonic reasoning

e But the axioms of probability are the only system
with this property:

If you gamble using them you can’t be unfairly exploited by an
opponent using some other system [di Finetti, 1931]

Slide © Andrew Moore



An Important Theorem

0<P(A)<1
P(true) = 1; P(false) = 0
P(A v B) = P(A) + P(B) - P(A A B)

From these we can prove:
P(-A)=1- P(A)

Proof: Let B = —A. Then, we have




Another Important Theorem

0<P(A4) <1
P(True) = 1; P(False) =0
P(A v B) = P(A) + P(B) - P(A A B)

From these we can prove:

P(A)=P(ANB)+ P(AAN—B)
How?

Slide © Andrew Moore



Multi-valued Random Variables

e Suppose A can take on more than 2 values

o Aisarandom variable with arity k if it can take on
exactly one value out of {v,v,, ..., v,

* Thus...
P(AZ%;/\A:U]'):O 1f@#]
PA=vyVA=uvV...VA=1v) =1

Based on slide by Andrew Moore



Multi-valued Random Variables

e We can also show that:
P(B)=P(BANA=v1VA=v2V...VA=u1g|)

k
P(B)=)» P(BNA=u)

1=1

* This is called marginalization over A



Prior and Joint Probabilities

* Prior probability: degree of belief without any other

evidence

* Joint probability: matrix of combined probabilities of

a set of variables

Russell & Norvig’s Alarm Domain: (boolean Rvs)

* A world has a specific instantiation of variables:

(alarm A burglary A —earthquake)
* The joint probability is given by:

P(Alarm, Burglary) =

burglary

—burglary

alarm

0.09 0.01
0.1 0.8

—alarm

Prior probability
of burglary:

P(Burglary) = 0.1

by marginalization
over Alarm

15



The Joint Distribution

e.qg., Boolean variables A, B, C
Recipe for making a joint
distribution of d variables:
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The Joint Distribution

e.qg., Boolean variables A, B, C

Recipe for making a joint A B C
distribution of d variables: 0 0 0

0 0 1

1. Make a truth table listing all 0 1 0
combinations of values of 0 ! !
your variables (if there are d 1 g (1)
Boolean variables then the " " 5
table will have 2¢rows). ] 1 i
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The Joint Distribution

e.qg., Boolean variables A, B, C

Recipe for making a joint A B C Prob
distribution of d variables: 0 0 0 0.30
0 0 1 0.05
1. Make a truth table listing all 0 1 0 0.10
combinations of values of 0 ! L 0.05
your variables (if there are d i 2 (1) 2(1)2
Boolean variables then the ; " . e
table will have 2¢rows). 1 1 1 0.10

2. For each combination of
values, say how probable it is.
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The Joint Distribution

e.qg., Boolean variables A, B, C

Recipe for making a joint A B C Prob
distribution of d variables: 0 0 0 0.30
0 0 1 0.05
1. Make a truth table listing all 0 1 0 0.10
combinations of values of 0 ! L 0.05
your variables (if there are d i 2 (1) 3(1)2
Boolean variables then the ; " . e
table will have 2¢rows). 1 1 1 0.10

2. For each combination of
values, say how probable it is.

3. If you subscribe to the axioms
of probability, those numbers
must sum to 1.

Slide © Andrew Moore




Inferring Prior Probabilities from the Joint

alarm —alarm

carthquake | —earthquake | earthquake —earthquake
burglary 0.01 0.08 0.001 0.009
—burglary 0.01 0.09 0.01 0.79

P(alarm) = Z P(alarm A Burglary = b A Earthquake = e)
b,e

= 0.01 +0.08 + 0.01 +0.09 = 0.19

P(burglary) = Z P(Alarm = a A burglary A Earthquake = e)

a,e

= 0.01 4 0.08 4 0.001 4- 0.009 = 0.1
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Conditional Probability

 P(A | B) = Fraction of worlds in which Bis true
that also have A true

U What if we already know
that B is true?

A ’ That knowledge changes

the probability of A
e Because we know we’re in a
world where B is true

P(A A B)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =



Example: Conditional Probabilities

P(A A B)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =

alarm —alarm
P(Alarm, Burglary) = | burglary | 0.09 0.01
—burglary | 0.1 0.8

P(burglary | alarm) = P(burglary A alarm) / P(alarm)
= 0.09 / 0.19 = 0.47

P(alarm | burglary) = P(burglary A alarm) / P(burglary)
~0.09 /0.1 =0.9

P(burglary A alarm) = P(burglary | alarm) P(alarm)
= 0.47 * 0.19 = 0.09



Example: Inference from the Joint
Without Explicitly Computing Priors

alarm —alarm

earthquake —earthquake | earthquake —earthquake
burglary 0.01 0.08 0.001 0.009
—burglary 0.01 0.09 0.01 0.79

P(Burglary | alarm) = o P(Burglary, alarm)
= o |P(Burglary, alarm, earthquake) + P(Burglary, alarm, —earthquake)

— o[ (0.01,0.01) + (0.08, 0.09) |
= o | (0.09, 0.1) |

Note: (d,,d,) represents a prob. distribution
Burglary = true Burglary = false

Since P(burglary | alarm) + P(=burglary | alarm) = 1,
It must be that o = 1/(0.09+0.1) = 5.26 (i.e., P(alarm) = 1/a = 0.19)

P(burglary | alarm) = 0.09 * 5.26 = 0.474
P(=burglary | alarm) = 0.1 * 5.26 = 0.526



Example: Inference from Conditional Probability

P(A A B)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =

P(headache) = 1/10
U P(fu) = 1/40

P(headache | flu) =1/2
Headache y
Headaches are rare and flu is rarer, but
if you’re coming down with the flu

there’s a 50-50 chance you’ll have a
headache.”

Based on slide by Andrew Moore



Example: Inference from Conditional Probability

P(A A B)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =

P(headache) = 1/10
U P(fu) = 1/40

P(headache | flu) =1/2
Headache
One day you wake up with a headache.

You think: “Drat! 50% of flus are
associated with headaches so | must have
a 50-50 chance of coming down with flu.”

Is this reasoning good?

Based on slide by Andrew Moore



Example: Inference from Conditional Probability

(AN B)
P(B)
P(AANB)=P(A| B) x P(B)

P(A|B) =L

P(headache) = 1/10 Want to solve for:
P(flu) = 1/40 P(headache A flu) = ?
P(headache | flu) = 1/2 P(flu | headache) = 7?

P(headache A flu) = P(headache | flu) x P(flu)
= 1/2 x 1/40 = 0.0125

P(flu | headache) = P(headache A flu) / P(headache)
= 0.0125/0.1 =0.125

Based on example by Andrew Moore



Bayes’ Rule

P(B | A) x P(A)
P(B)

P(A| B) =

e Exactly the process we just used

 The most important formula in
probabilistic machine learning

(Super Easy) Derivation:
P(ANAB)|= P(A| B) x P(B)
P(BAA) = P(B|A) x P(A)

these are the same

J ust set eq ud I e Bayes, Thomas (1763) An :ay towards

P(A | B) X P(B) — P(B | A) X P(A) solving a problem in the doctrine of

chances. Philosophical Transactions of
an d SO IVe cee the Royal Society of London, 53:370-418




Bayes’ Rule

* Allows us to reason from evidence to hypotheses
* Another way of thinking about Bayes’ rule:

P(evidence | hypothesis) x P(hypothesis)

P(hypothesis | evidence) = Plevidence)
viden

In the flu example:
P(headache) = 1/10 P(flu) = 1/40
P(headache | flu) = 1/2
Given evidence of headache, what is P(flu | headache) ?

Solve via Bayes rule!




Using Bayes Rule to Gamble

00
The “Win” envelope has a The “Lose” envelope has
dollar and four beads in it three beads and no money

Trivial question: Someone draws an envelope at
random and offers to sell it to you.
How much should you pay?

Slide © Andrew Moore



Using Bayes Rule to Gamble

00
The “Win” envelope has a The “Lose” envelope has
dollar and four beads in it three beads and no money

Interesting question: Before deciding, you are allowed
to see one bead drawn from the envelope.
Suppose it’s black: How much should you pay?
Suppose it’'sred: How much should you pay?

Slide © Andrew Moore
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Suppose it’s black: How much should you pay?
P(b | win) = 1/2 P(b | lose) = 2/3
P(win) = 1/2

P(win | b) = a P(b | win) P(win)
= a1/2x1/2 = 0.25a

P(lose | b) = o P(b | lose) P(lose)
= o 2/3x1/2 = 0.3333

1 = P(win | b) 4+ P(lose | b) = 0.25a + 0.33330 = o = 1.714

P(win | b) = 0.4286 P(lose | b) = 0.5714

Based on example by Andrew Moore



Independence

 When two sets of propositions do not affect each

others’ probabilities, we call them independent

e Formal definition:

ALB ¢ P(AAB)=P(A) x P(B)
< P(A|B) = P(A)

For example, {moon-phase, light-level} might be
independent of {burglary, alarm, earthquake}

Then again, maybe not: Burglars might be more likely to burglarize
houses when there’s a new moon (and hence little light)

But if we know the light level, the moon phase doesn’t affect whether
we are burglarized



Exercise: Independence

smart —smart
P(smart A study A prep) study —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072

Is smart independent of study?

Is prepared independent of study?




Exercise: Independence

smart —~smart
P(smart A study A prep) study —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072
Is smart independent of study?
P(study A smart) = 0.432 + 0.048 =|0.48

P(study) = 0.432 + 0.048 + 0.084 + 0.036
P(smart) = 0.432 + 0.048 + 0.16 + 0.16 = 0.

P(study) x P(smart) = 0.6 x 0.8 =
Is prepared independent of study?

0.48 |«

0.6

So yes!



Conditional Independence

* Absolute independence of A and B:
ALB <+ P(AANB)=P(A)x P(B)

& P(A|B) = P(A)

Conditional independence of A and B given
AILB|C < PAANB|C)=PA|C)xP(B|C)

 e.g., Moon-Phase and Burglary are conditionally independent
given Light-Level

* This lets us decompose the joint distribution:
P(ANBANC)=PA|C)x P(B|C)x P(C)
— Conditional independence is weaker than absolute
independence, but still useful in decomposing the full joint




Take Home Exercise:
Conditional independence

smart —smart
P(smart A study A prep) study —study study —study
prepared 0.432 0.16 0.084 0.008
—prepared 0.048 0.16 0.036 0.072

Is smart conditionally independent of prepared, given study?

Is study conditionally independent of prepared, given smart?




