
Reinforcement 
Learning 

Slides based on those used in Berkeley's AI class taught by Dan Klein 



Reinforcement Learning 
§  Basic idea: 

§  Receive feedback in the form of rewards 
§  Agent’s utility is defined by the reward function 
§  Must (learn to) act so as to maximize expected rewards 



Grid World 
§  The agent lives in a grid 
§  Walls block the agent’s path 
§  The agent’s actions do not always 

go as planned: 
§  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

§  10% of the time, North takes the 
agent West; 10% East 

§  If there is a wall in the direction the 
agent would have been taken, the 
agent stays put 

§  Small “living” reward each step 
§  Big rewards come at the end 
§  Goal: maximize sum of rewards* 



Grid Futures 
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Markov Decision Processes 
§  An MDP is defined by: 

§  A set of states s ∈ S 
§  A set of actions a ∈ A 
§  A transition function T(s,a,s’) 

§  Prob that a from s leads to s’ 
§  i.e., P(s’ | s,a) 
§  Also called the model 

§  A reward function R(s, a, s’)  
§  Sometimes just R(s) or R(s’) 

§  A start state (or distribution) 
§  Maybe a terminal state 

§  MDPs are a family of non-
deterministic search problems 
§  Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions 
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Keepaway 

§  http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swf/learn360.swf 

§  SATR  
§  S0, S0 
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What is Markov about MDPs? 
§  Andrey Markov (1856-1922) 

§  “Markov” generally means that given 
the present state, the future and the 
past are independent 

§  For Markov decision processes, 
“Markov” means: 

 



Solving MDPs 
§  In deterministic single-agent search problems, want an 

optimal plan, or sequence of actions, from start to a goal 
§  In an MDP, we want an optimal policy π*: S → A 

§  A policy π gives an action for each state 
§  An optimal policy maximizes expected utility if followed 
§  Defines a reflex agent 

Optimal policy when 
R(s, a, s’) = -0.03 for all 
non-terminals s 



Example Optimal Policies 

R(s) = -2.0 R(s) = -0.4 

R(s) = -0.03 R(s) = -0.01 
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MDP Search Trees 
§  Each MDP state gives an expectimax-like search tree 

a 

s 

s’ 

s, a 

(s,a,s’) called a transition 

T(s,a,s’) = P(s’|s,a) 

R(s,a,s’) 
s,a,s’ 

s is a state 

(s, a) is a 
q-state 
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Utilities of Sequences 
§  In order to formalize optimality of a policy, need to 

understand utilities of sequences of rewards 
§  Typically consider stationary preferences: 

§  Theorem: only two ways to define stationary utilities 
§  Additive utility: 

§  Discounted utility: 
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Infinite Utilities?! 
§  Problem: infinite state sequences have infinite rewards 

§  Solutions: 
§  Finite horizon: 

§  Terminate episodes after a fixed T steps (e.g. life) 
§  Gives nonstationary policies (π depends on time left) 

§  Absorbing state: guarantee that for every policy, a terminal state 
will eventually be reached  

§  Discounting: for 0 < γ < 1 

§  Smaller γ means smaller “horizon” – shorter term focus 
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Discounting 

§  Typically discount 
rewards by γ < 1 
each time step 
§  Sooner rewards 

have higher utility 
than later rewards 

§  Also helps the 
algorithms 
converge 
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Recap: Defining MDPs 
§  Markov decision processes: 

§  States S 
§  Start state s0 
§  Actions A 
§  Transitions P(s’|s,a) (or T(s,a,s’)) 
§  Rewards R(s,a,s’) (and discount γ) 

§  MDP quantities so far: 
§  Policy = Choice of action for each state 
§  Utility (or return) = sum of discounted rewards 

a

s

s, a 

s,a,s’ 
s’ 
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Optimal Utilities 
§  Fundamental operation: compute 

the values (optimal expectimax 
utilities) of states s 

§  Why?  Optimal values define 
optimal policies! 

§  Define the value of a state s: 
V*(s) = expected utility starting in s 

and acting optimally 

§  Define the value of a q-state (s,a): 
Q*(s,a) = expected utility starting in s, 

taking action a and thereafter 
acting optimally 

 
§  Define the optimal policy: 

π*(s) = optimal action from state s 

a

s

s, a 

s,a,s’ 
s’ 

15 



The Bellman Equations 
§  Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 
amongst optimal utility values: 

  

 Optimal rewards = maximize over first 
action and then follow optimal policy 

§  Formally: 

a

s

s, a 

s,a,s’ 
s’ 
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Solving MDPs 
§  We want to find the optimal policy π* 

§  Proposal 1: modified expectimax search, starting from 
each state s: 

a

s

s, a 

s,a,s’ 
s’ 
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Why Not Search Trees? 
§  Why not solve with expectimax? 

§  Problems: 
§  This tree is usually infinite (why?) 
§  Same states appear over and over (why?) 
§  We would search once per state (why?) 

§  Idea: Value iteration 
§  Compute optimal values for all states all at 

once using successive approximations 
§  Will be a bottom-up dynamic program 

similar in cost to memoization 
§  Do all planning offline, no replanning 

needed! 
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Value Estimates 

§  Calculate estimates Vk
*(s) 

§  Not the optimal value of s! 
§  The optimal value 

considering only next k 
time steps (k rewards) 

§  As k → ∞, it approaches 
the optimal value 

§  Almost solution: recursion 
(i.e. expectimax) 

§  Correct solution: dynamic 
programming 
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Value Iteration 
§  Idea: 

§  Start with V0
*(s) = 0, which we know is right (why?) 

§  Given Vi
*, calculate the values for all states for depth i+1: 

§  This is called a value update or Bellman update 
§  Repeat until convergence 

§  Theorem: will converge to unique optimal values 
§  Basic idea: approximations get refined towards optimal values 
§  Policy may converge long before values do 
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Example: Bellman Updates 

21 

max happens for 
a=right, other 
actions not shown 

Example: γ=0.9, living 
reward=0, noise=0.2 



Example: Value Iteration 

§  Information propagates outward from terminal 
states and eventually all states have correct 
value estimates 

V2 V3 
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Convergence* 
§  Define the max-norm: 

§  Theorem: For any two approximations U and V 

§  I.e. any distinct approximations must get closer to each other, 
so, in particular, any approximation must get closer to the true U 
and value iteration converges to a unique, stable, optimal 
solution 

§  Theorem: 

§  I.e. once the change in our approximation is small, it must also 
be close to correct 

23 



Practice: Computing Actions 

§  Which action should we chose from state s: 
§  Given optimal values V? 

§  Given optimal q-values Q? 

§  Lesson: actions are easier to select from Q’s! 
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Utilities for Fixed Policies 
§  Another basic operation: compute 

the utility of a state s under a fix 
(general non-optimal) policy 

§  Define the utility of a state s, under a 
fixed policy π: 
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π 

§  Recursive relation (one-step look-
ahead / Bellman equation): 

π(s) 

s

s, π(s) 

s, π(s),s’ 

s’ 
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Value Iteration 
§  Idea: 

§  Start with V0
*(s) = 0, which we know is right (why?) 

§  Given Vi
*, calculate the values for all states for depth i+1: 

§  This is called a value update or Bellman update 
§  Repeat until convergence 

§  Theorem: will converge to unique optimal values 
§  Basic idea: approximations get refined towards optimal values 
§  Policy may converge long before values do 

27 



Policy Iteration 
§  Problem with value iteration: 

§  Considering all actions each iteration is slow: takes |A| times longer 
than policy evaluation 

§  But policy doesn’t change each iteration, time wasted 

§  Alternative to value iteration: 
§  Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal 

utilities!) until convergence (fast) 
§  Step 2: Policy improvement: update policy using one-step lookahead 

with resulting converged (but not optimal!) utilities (slow but infrequent) 
§  Repeat steps until policy converges 

§  This is policy iteration 
§  It’s still optimal! 
§  Can converge faster under some conditions 
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Policy Iteration 
§  Policy evaluation: with fixed current policy π, find values 

with simplified Bellman updates: 
§  Iterate until values converge 

§  Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 
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Comparison 
§  In value iteration: 

§  Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy) 

§  In policy iteration: 
§  Several passes to update utilities with frozen policy 
§  Occasional passes to update policies 

§  Hybrid approaches (asynchronous policy iteration): 
§  Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often 

31 



Reinforcement Learning 

§  Reinforcement learning: 
§  Still assume an MDP: 

§  A set of states s ∈ S 
§  A set of actions (per state) A 
§  A model T(s,a,s’) 
§  A reward function R(s,a,s’) 

§  Still looking for a policy π(s) 

§  New twist: don’t know T or R 
§  i.e. don’t know which states are good or what the actions do 
§  Must actually try actions and states out to learn 
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Passive Learning 

§  Simplified task 
§  You don’t know the transitions T(s,a,s’) 
§  You don’t know the rewards R(s,a,s’) 
§  You are given a policy π(s) 
§  Goal: learn the state values 
§  … what policy evaluation did 

§  In this case: 
§  Learner “along for the ride” 
§  No choice about what actions to take 
§  Just execute the policy and learn from experience 
§  We’ll get to the active case soon 
§  This is NOT offline planning!  You actually take actions in the 

world and see what happens… 
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Example: Direct Evaluation 

§  Episodes: 

x 

y 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done) 
V(2,3) ~ (96 + -103) / 2 = -3.5 

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3 

γ = 1, R = -1  

+100 

-100 
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Recap: Model-Based Policy Evaluation 

§  Simplified Bellman updates to 
calculate V for a fixed policy: 
§  New V is expected one-step-look-

ahead using current V 
§  Unfortunately, need T and R 
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π(s) 

s

s, π(s) 

s, π(s),s’ 

s’ 



Model-Based Learning 
§  Idea: 

§  Learn the model empirically through experience 
§  Solve for values as if the learned model were correct 

§  Simple empirical model learning 
§  Count outcomes for each s,a 
§  Normalize to give estimate of T(s,a,s’) 
§  Discover R(s,a,s’) when we experience (s,a,s’) 

§  Solving the MDP with the learned model 
§  Iterative policy evaluation, for example 
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π(s) 

s

s, π(s) 

s, π(s),s’ 

s’ 



Example: Model-Based Learning 

§  Episodes: 

x 

y 

T(<3,3>, right, <4,3>) = 1 / 3 

T(<2,3>, right, <3,3>) = 2 / 2 

+100 

-100 

γ = 1 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100  

(done) 
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Model-Free Learning 
§  Want to compute an expectation weighted by P(x): 

§  Model-based: estimate P(x) from samples, compute expectation 

§  Model-free: estimate expectation directly from samples 

§  Why does this work?  Because samples appear with the right 
frequencies! 
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Sample-Based Policy Evaluation? 

§  Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) 
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π(s) 

s

s, π(s) 

s1’ s2’ s3’ 
s, π(s),s’ 

s’ 

Almost!  But we only 
actually make progress 
when we move to i+1. 



Temporal-Difference Learning 
§  Big idea: learn from every experience! 

§  Update V(s) each time we experience (s,a,s’,r) 
§  Likely s’ will contribute updates more often 
 

§  Temporal difference learning 
§  Policy still fixed! 
§  Move values toward value of whatever 

successor occurs: running average! 
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π(s) 

s

s, π(s) 

s’ 

Sample of V(s): 

Update to V(s): 

Same update: 



Exponential Moving Average 
§  Exponential moving average  

§  Makes recent samples more important 

§  Forgets about the past (distant past values were wrong anyway) 
§  Easy to compute from the running average  

 

§  Decreasing learning rate can give converging averages 
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Example: TD Policy Evaluation 

Take γ = 1, α = 0.5 

(1,1) up -1 

(1,2) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(3,3) right -1 

(4,3) exit +100 

(done) 

(1,1) up -1 

(1,2) up -1 

(1,3) right -1 

(2,3) right -1 

(3,3) right -1 

(3,2) up -1 

(4,2) exit -100 

(done) 
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Problems with TD Value Learning 

§  TD value leaning is a model-free way 
to do policy evaluation 

§  However, if we want to turn values into 
a (new) policy, we’re sunk: 

§  Idea: learn Q-values directly 
§  Makes action selection model-free too! 

a

s

s, a 

s,a,s’ 
s’ 
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Active Learning 

§  Full reinforcement learning 
§  You don’t know the transitions T(s,a,s’) 
§  You don’t know the rewards R(s,a,s’) 
§  You can choose any actions you like 
§  Goal: learn the optimal policy 
§  … what value iteration did! 

§  In this case: 
§  Learner makes choices! 
§  Fundamental tradeoff: exploration vs. exploitation 
§  This is NOT offline planning!  You actually take actions in the 

world and find out what happens… 
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The Story So Far: MDPs and RL 

§  If we know the MDP 
§  Compute V*, Q*, π* exactly 
§  Evaluate a fixed policy π 

§  If we don’t know the MDP 
§  We can estimate the MDP then solve 

§  We can estimate V for a fixed policy π 
§  We can estimate Q*(s,a) for the 

optimal policy while executing an 
exploration policy 
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§  Model-based DPs 
§  Value and policy 

Iteration 
§  Policy evaluation 

§  Model-based RL 

§  Model-free RL: 
§  Value learning 
§  Q-learning 

Things we know how to do: Techniques: 



Q-Learning 
§  Q-Learning: sample-based Q-value iteration 
§  Learn Q*(s,a) values 

§  Receive a sample (s,a,s’,r) 
§  Consider your old estimate: 
§  Consider your new sample estimate: 

§  Incorporate the new estimate into a running average: 
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Q-Learning Properties 
§  Amazing result: Q-learning converges to optimal policy 

§  If you explore enough 
§  If you make the learning rate small enough 
§  … but not decrease it too quickly! 
§  Basically doesn’t matter how you select actions (!) 

§  Neat property: off-policy learning 
§  learn optimal policy without following it (some caveats) 

S E S E
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Exploration / Exploitation 

§  Several schemes for forcing exploration 
§  Simplest: random actions (ε greedy) 

§ Every time step, flip a coin 
§ With probability ε, act randomly 
§ With probability 1-ε, act according to current policy 

§  Problems with random actions? 
§ You do explore the space, but keep thrashing 

around once learning is done 
§ One solution: lower ε over time 
§ Another solution: exploration functions 
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Exploration Functions 
§  When to explore 

§  Random actions: explore a fixed amount 
§  Better idea: explore areas whose badness is not (yet) 

established 

§  Exploration function 
§  Takes a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important) 
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Q-Learning 

§  Q-learning produces tables of q-values: 

56 



Q-Learning 

§  In realistic situations, we cannot possibly learn 
about every single state! 
§  Too many states to visit them all in training 
§  Too many states to hold the q-tables in memory 

§  Instead, we want to generalize: 
§  Learn about some small number of training states 

from experience 
§  Generalize that experience to new, similar states 
§  This is a fundamental idea in machine learning, and 

we’ll see it over and over again 
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Example: Pacman 

§  Let’s say we discover 
through experience 
that this state is bad: 

§  In naïve q learning, we 
know nothing about 
this state or its q 
states: 

§  Or even this one! 
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Feature-Based Representations 
§  Solution: describe a state using 

a vector of features 
§  Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state 

§  Example features: 
§  Distance to closest ghost 
§  Distance to closest dot 
§  Number of ghosts 
§  1 / (dist to dot)2 

§  Is Pacman in a tunnel? (0/1) 
§  …… etc. 

§  Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food) 
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Linear Feature Functions 

§  Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights: 

§  Advantage: our experience is summed up in a 
few powerful numbers 

§  Disadvantage: states may share features but 
be very different in value! 
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Function Approximation 

§  Q-learning with linear q-functions: 

§  Intuitive interpretation: 
§  Adjust weights of active features 
§  E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features 

§  Formal justification: online least squares 
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Example: Q-Pacman 
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Policy Search 

http://heli.stanford.edu/ 
69 



Policy Search 
§  Problem: often the feature-based policies that work well 

aren’t the ones that approximate V / Q best 
§  E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions 

§  We’ll see this distinction between modeling and prediction again 
later in the course 

§  Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards 

§  This is the idea behind policy search, such as what 
controlled the upside-down helicopter 
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Policy Search 

§  Simplest policy search: 
§  Start with an initial linear value function or q-function 
§  Nudge each feature weight up and down and see if 

your policy is better than before 

§  Problems: 
§  How do we tell the policy got better? 
§  Need to run many sample episodes! 
§  If there are a lot of features, this can be impractical 
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Policy Search* 

§  Advanced policy search: 
§  Write a stochastic (soft) policy: 

§  Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (details in the book, but you don’t have 
to know them) 

§  Take uphill steps, recalculate derivatives, etc. 
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