
Reinforcement
Learning

Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning
§  Basic idea:

§  Receive feedback in the form of rewards
§  Agent’s utility is defined by the reward function
§  Must (learn to) act so as to maximize expected rewards

Grid World
§  The agent lives in a grid
§  Walls block the agent’s path
§  The agent’s actions do not always

go as planned:
§  80% of the time, the action North

takes the agent North
(if there is no wall there)

§  10% of the time, North takes the
agent West; 10% East

§  If there is a wall in the direction the
agent would have been taken, the
agent stays put

§  Small “living” reward each step
§  Big rewards come at the end
§  Goal: maximize sum of rewards*

Grid Futures

4

Deterministic Grid World Stochastic Grid World

X

X

 E N S W

X

E N S W

?

X

X X

Markov Decision Processes
§  An MDP is defined by:

§  A set of states s ∈ S
§  A set of actions a ∈ A
§  A transition function T(s,a,s’)

§  Prob that a from s leads to s’
§  i.e., P(s’ | s,a)
§  Also called the model

§  A reward function R(s, a, s’)
§  Sometimes just R(s) or R(s’)

§  A start state (or distribution)
§  Maybe a terminal state

§  MDPs are a family of non-
deterministic search problems
§  Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

5

Keepaway

§  http://www.cs.utexas.edu/~AustinVilla/sim/
keepaway/swf/learn360.swf

§  SATR
§  S0, S0

6

What is Markov about MDPs?
§  Andrey Markov (1856-1922)

§  “Markov” generally means that given
the present state, the future and the
past are independent

§  For Markov decision processes,
“Markov” means:

Solving MDPs
§  In deterministic single-agent search problems, want an

optimal plan, or sequence of actions, from start to a goal
§  In an MDP, we want an optimal policy π*: S → A

§  A policy π gives an action for each state
§  An optimal policy maximizes expected utility if followed
§  Defines a reflex agent

Optimal policy when
R(s, a, s’) = -0.03 for all
non-terminals s

Example Optimal Policies

R(s) = -2.0 R(s) = -0.4

R(s) = -0.03 R(s) = -0.01

9

MDP Search Trees
§  Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

10

Utilities of Sequences
§  In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
§  Typically consider stationary preferences:

§  Theorem: only two ways to define stationary utilities
§  Additive utility:

§  Discounted utility:

11

Infinite Utilities?!
§  Problem: infinite state sequences have infinite rewards

§  Solutions:
§  Finite horizon:

§  Terminate episodes after a fixed T steps (e.g. life)
§  Gives nonstationary policies (π depends on time left)

§  Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached

§  Discounting: for 0 < γ < 1

§  Smaller γ means smaller “horizon” – shorter term focus

12

Discounting

§  Typically discount
rewards by γ < 1
each time step
§  Sooner rewards

have higher utility
than later rewards

§  Also helps the
algorithms
converge

13

Recap: Defining MDPs
§  Markov decision processes:

§  States S
§  Start state s0
§  Actions A
§  Transitions P(s’|s,a) (or T(s,a,s’))
§  Rewards R(s,a,s’) (and discount γ)

§  MDP quantities so far:
§  Policy = Choice of action for each state
§  Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

14

Optimal Utilities
§  Fundamental operation: compute

the values (optimal expectimax
utilities) of states s

§  Why? Optimal values define
optimal policies!

§  Define the value of a state s:
V*(s) = expected utility starting in s

and acting optimally

§  Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s,

taking action a and thereafter
acting optimally

§  Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

15

The Bellman Equations
§  Definition of “optimal utility” leads to a

simple one-step lookahead relationship
amongst optimal utility values:

 Optimal rewards = maximize over first
action and then follow optimal policy

§  Formally:

a

s

s, a

s,a,s’
s’

16

Solving MDPs
§  We want to find the optimal policy π*

§  Proposal 1: modified expectimax search, starting from
each state s:

a

s

s, a

s,a,s’
s’

17

Why Not Search Trees?
§  Why not solve with expectimax?

§  Problems:
§  This tree is usually infinite (why?)
§  Same states appear over and over (why?)
§  We would search once per state (why?)

§  Idea: Value iteration
§  Compute optimal values for all states all at

once using successive approximations
§  Will be a bottom-up dynamic program

similar in cost to memoization
§  Do all planning offline, no replanning

needed!

18

Value Estimates

§  Calculate estimates Vk
*(s)

§  Not the optimal value of s!
§  The optimal value

considering only next k
time steps (k rewards)

§  As k → ∞, it approaches
the optimal value

§  Almost solution: recursion
(i.e. expectimax)

§  Correct solution: dynamic
programming

19

Value Iteration
§  Idea:

§  Start with V0
*(s) = 0, which we know is right (why?)

§  Given Vi
*, calculate the values for all states for depth i+1:

§  This is called a value update or Bellman update
§  Repeat until convergence

§  Theorem: will converge to unique optimal values
§  Basic idea: approximations get refined towards optimal values
§  Policy may converge long before values do

20

Example: Bellman Updates

21

max happens for
a=right, other
actions not shown

Example: γ=0.9, living
reward=0, noise=0.2

Example: Value Iteration

§  Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

22

Convergence*
§  Define the max-norm:

§  Theorem: For any two approximations U and V

§  I.e. any distinct approximations must get closer to each other,
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal
solution

§  Theorem:

§  I.e. once the change in our approximation is small, it must also
be close to correct

23

Practice: Computing Actions

§  Which action should we chose from state s:
§  Given optimal values V?

§  Given optimal q-values Q?

§  Lesson: actions are easier to select from Q’s!

24

Utilities for Fixed Policies
§  Another basic operation: compute

the utility of a state s under a fix
(general non-optimal) policy

§  Define the utility of a state s, under a
fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§  Recursive relation (one-step look-
ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

26

Value Iteration
§  Idea:

§  Start with V0
*(s) = 0, which we know is right (why?)

§  Given Vi
*, calculate the values for all states for depth i+1:

§  This is called a value update or Bellman update
§  Repeat until convergence

§  Theorem: will converge to unique optimal values
§  Basic idea: approximations get refined towards optimal values
§  Policy may converge long before values do

27

Policy Iteration
§  Problem with value iteration:

§  Considering all actions each iteration is slow: takes |A| times longer
than policy evaluation

§  But policy doesn’t change each iteration, time wasted

§  Alternative to value iteration:
§  Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal

utilities!) until convergence (fast)
§  Step 2: Policy improvement: update policy using one-step lookahead

with resulting converged (but not optimal!) utilities (slow but infrequent)
§  Repeat steps until policy converges

§  This is policy iteration
§  It’s still optimal!
§  Can converge faster under some conditions

29

Policy Iteration
§  Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:
§  Iterate until values converge

§  Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

30

Comparison
§  In value iteration:

§  Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

§  In policy iteration:
§  Several passes to update utilities with frozen policy
§  Occasional passes to update policies

§  Hybrid approaches (asynchronous policy iteration):
§  Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

31

Reinforcement Learning

§  Reinforcement learning:
§  Still assume an MDP:

§  A set of states s ∈ S
§  A set of actions (per state) A
§  A model T(s,a,s’)
§  A reward function R(s,a,s’)

§  Still looking for a policy π(s)

§  New twist: don’t know T or R
§  i.e. don’t know which states are good or what the actions do
§  Must actually try actions and states out to learn

36

Passive Learning

§  Simplified task
§  You don’t know the transitions T(s,a,s’)
§  You don’t know the rewards R(s,a,s’)
§  You are given a policy π(s)
§  Goal: learn the state values
§  … what policy evaluation did

§  In this case:
§  Learner “along for the ride”
§  No choice about what actions to take
§  Just execute the policy and learn from experience
§  We’ll get to the active case soon
§  This is NOT offline planning! You actually take actions in the

world and see what happens…
37

Example: Direct Evaluation

§  Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

38

Recap: Model-Based Policy Evaluation

§  Simplified Bellman updates to
calculate V for a fixed policy:
§  New V is expected one-step-look-

ahead using current V
§  Unfortunately, need T and R

39

π(s)

s

s, π(s)

s, π(s),s’

s’

Model-Based Learning
§  Idea:

§  Learn the model empirically through experience
§  Solve for values as if the learned model were correct

§  Simple empirical model learning
§  Count outcomes for each s,a
§  Normalize to give estimate of T(s,a,s’)
§  Discover R(s,a,s’) when we experience (s,a,s’)

§  Solving the MDP with the learned model
§  Iterative policy evaluation, for example

40

π(s)

s

s, π(s)

s, π(s),s’

s’

Example: Model-Based Learning

§  Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

41

Model-Free Learning
§  Want to compute an expectation weighted by P(x):

§  Model-based: estimate P(x) from samples, compute expectation

§  Model-free: estimate expectation directly from samples

§  Why does this work? Because samples appear with the right
frequencies!

42

Sample-Based Policy Evaluation?

§  Who needs T and R? Approximate the
expectation with samples (drawn from T!)

43

π(s)

s

s, π(s)

s1’ s2’ s3’
s, π(s),s’

s’

Almost! But we only
actually make progress
when we move to i+1.

Temporal-Difference Learning
§  Big idea: learn from every experience!

§  Update V(s) each time we experience (s,a,s’,r)
§  Likely s’ will contribute updates more often

§  Temporal difference learning
§  Policy still fixed!
§  Move values toward value of whatever

successor occurs: running average!

44

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average
§  Exponential moving average

§  Makes recent samples more important

§  Forgets about the past (distant past values were wrong anyway)
§  Easy to compute from the running average

§  Decreasing learning rate can give converging averages

45

Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

46

Problems with TD Value Learning

§  TD value leaning is a model-free way
to do policy evaluation

§  However, if we want to turn values into
a (new) policy, we’re sunk:

§  Idea: learn Q-values directly
§  Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

47

Active Learning

§  Full reinforcement learning
§  You don’t know the transitions T(s,a,s’)
§  You don’t know the rewards R(s,a,s’)
§  You can choose any actions you like
§  Goal: learn the optimal policy
§  … what value iteration did!

§  In this case:
§  Learner makes choices!
§  Fundamental tradeoff: exploration vs. exploitation
§  This is NOT offline planning! You actually take actions in the

world and find out what happens…

48

The Story So Far: MDPs and RL

§  If we know the MDP
§  Compute V*, Q*, π* exactly
§  Evaluate a fixed policy π

§  If we don’t know the MDP
§  We can estimate the MDP then solve

§  We can estimate V for a fixed policy π
§  We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

49

§  Model-based DPs
§  Value and policy

Iteration
§  Policy evaluation

§  Model-based RL

§  Model-free RL:
§  Value learning
§  Q-learning

Things we know how to do: Techniques:

Q-Learning
§  Q-Learning: sample-based Q-value iteration
§  Learn Q*(s,a) values

§  Receive a sample (s,a,s’,r)
§  Consider your old estimate:
§  Consider your new sample estimate:

§  Incorporate the new estimate into a running average:

52

Q-Learning Properties
§  Amazing result: Q-learning converges to optimal policy

§  If you explore enough
§  If you make the learning rate small enough
§  … but not decrease it too quickly!
§  Basically doesn’t matter how you select actions (!)

§  Neat property: off-policy learning
§  learn optimal policy without following it (some caveats)

S E S E

53

Exploration / Exploitation

§  Several schemes for forcing exploration
§  Simplest: random actions (ε greedy)

§ Every time step, flip a coin
§ With probability ε, act randomly
§ With probability 1-ε, act according to current policy

§  Problems with random actions?
§ You do explore the space, but keep thrashing

around once learning is done
§ One solution: lower ε over time
§ Another solution: exploration functions

54

Exploration Functions
§  When to explore

§  Random actions: explore a fixed amount
§  Better idea: explore areas whose badness is not (yet)

established

§  Exploration function
§  Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

55

Q-Learning

§  Q-learning produces tables of q-values:

56

Q-Learning

§  In realistic situations, we cannot possibly learn
about every single state!
§  Too many states to visit them all in training
§  Too many states to hold the q-tables in memory

§  Instead, we want to generalize:
§  Learn about some small number of training states

from experience
§  Generalize that experience to new, similar states
§  This is a fundamental idea in machine learning, and

we’ll see it over and over again

57

Example: Pacman

§  Let’s say we discover
through experience
that this state is bad:

§  In naïve q learning, we
know nothing about
this state or its q
states:

§  Or even this one!

58

Feature-Based Representations
§  Solution: describe a state using

a vector of features
§  Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§  Example features:
§  Distance to closest ghost
§  Distance to closest dot
§  Number of ghosts
§  1 / (dist to dot)2

§  Is Pacman in a tunnel? (0/1)
§  …… etc.

§  Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

59

Linear Feature Functions

§  Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

§  Advantage: our experience is summed up in a
few powerful numbers

§  Disadvantage: states may share features but
be very different in value!

60

Function Approximation

§  Q-learning with linear q-functions:

§  Intuitive interpretation:
§  Adjust weights of active features
§  E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

§  Formal justification: online least squares
61

Example: Q-Pacman

62

Policy Search

http://heli.stanford.edu/
69

Policy Search
§  Problem: often the feature-based policies that work well

aren’t the ones that approximate V / Q best
§  E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

§  We’ll see this distinction between modeling and prediction again
later in the course

§  Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

§  This is the idea behind policy search, such as what
controlled the upside-down helicopter

70

Policy Search

§  Simplest policy search:
§  Start with an initial linear value function or q-function
§  Nudge each feature weight up and down and see if

your policy is better than before

§  Problems:
§  How do we tell the policy got better?
§  Need to run many sample episodes!
§  If there are a lot of features, this can be impractical

71

Policy Search*

§  Advanced policy search:
§  Write a stochastic (soft) policy:

§  Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, but you don’t have
to know them)

§  Take uphill steps, recalculate derivatives, etc.

72

