CIS519: Applied Machine Learning Fall 2018

Homework 2

Handed Out: October 10", 2018 Due: October 21", 2018, 11:59 PM

e Feel free to talk to other members of the class in doing the homework. We are more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include the names of the
people you consulted with in the course of working on this assignment at the top of your solution.
Please try to keep the solution brief and clear.

e Please use Piazza if you have questions about the homework. Also, come to the recitations and the
office hours.

e While we encourage discussion within and outside the class, cheating and copying code is strictly
discouraged. Copied code will result in the entire assignment being discarded at the very least.

e Handwritten solutions are not allowed. All solutions must be typeset in Latex. Consult the class’
website if you need guidance on using Latex. You will submit your solutions as a single pdf file (in
addition to the package with your code; see instructions in the body of the assignment).

e The homework is due at 11:59 PM on the due date. We will be using Canvas and Gradescope for
collecting the homework assignments. Please do not hand in a hard copy of your write-up. Post on
Piazza and contact the TAs if you are having technical difficulties in submitting the assignment.

e Comment: You are highly encouraged to start on this early because the experiments and graphs
may take some time to generate.

e Here are some resources you will need for this assignment

A Latex template hw2.tex

Jupyter notebook hw2.ipynb

Data - Available on canvas

Scripts for extra credit gen.py add_noise.py

1 Algorithms

In this problem set, you will implement and experiment with several linear learning algo-
rithms: Perceptron, Winnow and Adagrad-Perceptron, along with their averaged versions
and Support Vector Machine (SVM). You will implement the first three update rules, and
their averaged version (making it six algorithms) and will use an existing implementation
for SVM. You will then experiment with these algorithms by comparing their performance
on synthetic and real-world datasets.

The goal is to understand the differences and similarities between the algorithms, and
the impact of the data characteristics on the algorithms’ learning behavior and performance.

All three key algorithms are slight variations of each other. You will implement them
based on the code we provide for the basic version of Perceptron. You will then code the
Averaged scheme as suggested below and use it on top of all three variations. For SVM, you
will use existing library functions.

You will evaluate your algorithms on a synthetic dataset and observe the difference in
behavior of learning algorithms when the target function is sparse or dense. You will also

https://www.seas.upenn.edu/~cis519/fall2018/assets/HW/HW2/hw2.tex
https://www.seas.upenn.edu/~cis519/fall2018/assets/HW/HW2/hw2.ipynb
https://www.seas.upenn.edu/~cis519/fall2018/assets/HW/HW2/gen.py
https://www.seas.upenn.edu/~cis519/fall2018/assets/HW/HW2/add_nois.py

observe that they are robust to a certain amount of noise in training. Finally, you will
use these algorithms to solve a (simplified version of a) real-world problem, named entity
recognition (NER).

For the NER you will also implement the feature extraction part, based on a scheme for
extracting contextual features from the raw text that is given to you. Your model will be
trained on a news dataset that we will give, and tested on both news and email datasets,
which will illustrate the difficulty of adapting to new datasets.

Next we provide the details of the learning algorithms to be used in this problem set.

1.1 Variations of Perceptron

Perceptron is an online and mistake driven algorithm. We will consider different variations
of the Perceptron — basic Perceptron (code provided), Winnow, and Adagrad. In addition,
we will consider the averaged version of these. Since the code for the basic Perceptron is
provided, you only need to slightly change the update rule for the two other versions.

a. Basic Perceptron: This the basic version of the Perceptron Algorithm. In this
version, an update will be performed on the example (z,y) if y(wTz + 6) < 0.

There are two things about the Perceptron algorithm that should be noted.

First, the Perceptron algorithm needs to learn both the bias term 6 and the weight
vector w. When the Perceptron algorithm makes a mistake on the example (z,y), both
w and 6 has to be updated as follows:

Wpew < W+ NYx
and Onew <~ O0+ny

where 7 is the learning rate. See the lecture notes for more information.

Second (and more surprising), if we assume that the order of the examples presented
to the algorithm is fixed, and we initialize [w 9] with a zero vector and learn w and
0 together, then the learning rate 7, in fact, does not have any effect!.

Parameters: Given the second fact above, we can fix n = 1. So there are no param-
eters to tune.

Initialization: w™ = {0,0,--- ,0},0 =0
b. Winnow: We describe the basic version of Winnow. Notice that all the target func-

tions we deal with (in the synthetic data part of the assignment) are monotone func-
tions, so we can use this basic version of Winnow.

When the Winnow algorithm makes a mistake on the example (z,y), w will be updated
in the following way:

-
Wig1,; < Wy 00"

'In fact you can show that, if w; and 6, is the output of the Perceptron algorithm with learning rate
m, then wi/n and 61 /n; will be the result of the Perceptron with learning rate 1 (note that these two
hyperplanes give identical predictions).

where « is promotion/demotion parameter and w;; is the ith component of the weight
vector after ¢ mistakes.

Parameters: Promotion/demotion parameter a (a should be greater than 1)

Initialization: wT = {1,1,---,1},0 = —n (n is the number of features) (0 is fixed
here, we do not update it)

Parameters for tuning: Choose a € {1.1, 1.01, 1.005, 1.0005, 1.0001}.
. Perceptron with AdaGrad: AdaGrad adapts the learning rate based on historical
information, so that frequently changing features get smaller learning rates and stable

features get higher ones. Note that here we have different learning rates for different
features. We will use the hinge loss:

Q((z,y),w) = max(0,1 — y(wTz + 09)).

Since we update both w and 6, we use ¢; to denote the gradient vector of () on the
(n + 1) dimensional vector (w,) at iteration t.

The per-feature notation at iteration ¢ is g; ;. It denotes the jth component of g, (with
respect to w) for j =1,--- ,n. gy ,+1 denotes the gradient with respect to 6.

In order to write down the update rule we first take the gradient of) with respect to
the weight vector (wy, 0;),

_]o if y(wjxz +60) > 1
gt —y(z,1) otherwise

(x,1) is the concatenation of the vector x with 1 to account for bias. So, for the first n
features, that gradient is —yx, and for 0, it is always —y.

Then, for each feature j (j =1,...,n + 1) we keep the sum of the gradients’ squares:

t
_ 2
Gij = E :gk,j
k=1

and the update rule is

Wit1,5 < Wej — ngtj/(Gt,j)lﬂ

By substituting g; into the update rule above, we get the final update rule:

I L if y(wfx +60) > 1
g wy; +nyz;/(Gy,)2 otherwise

where for all ¢ we have z,, .1 = 1.

We can see that AdaGrad with hinge loss updates the weight vector only when y(wTz+
) < 1. The learning rate, though, is changing over time, since G; ; changes with time.

Parameters: 7
Initialization: w™ = {0,0,--- ,0},0 =0
Parameters for tuning: Choose n € {1.5, 0.25, 0.03, 0.005, 0.001}.

d. Averaged Perceptrons: Averaged Perceptron returns a weighted average of a num-
ber of earlier hypotheses. You need to implement Averaged Perceptron for the
three versions described above. (it’s basically the same implementation)
We provide the pseudo code for Averaged Perceptron (following the class notes):

Note: While the prediction of the Averaged Perceptrons is done using a weighted average of
Perceptron decisions made with the weight vectors wy, ..., w1, there is no need to keep all
these weight vectors. This average should be implemented by keeping only two weight
vectors - a cumulative weight vector computed during the training, and the current one.
There are two way of doing the computation even when keeping track of just two weight
vectors. One is a more direct but slow way and the second requires some algebra but will be
much faster to run. The second way should take less than a minute or two for ten iterations
of any of the averaged algorithm. You need to think about this and implement this
yourself.

1.2 SVM

While we have not covered SVM in class yet, you will use given libraries for that, so this
should not be a problem.
We consider soft margin SVMs for non-linearly separable data. You can directly use the
library functions in sklearn for the SVM algorithm. You should use 12 regularization and
hinge loss. See the documentation to figure out which parameters to set for this.

Given training sample S = ((z1,¥1), -, (Tm, Ym)), the objective for SVM is as following;:

. 1 -
AT b g §HwH§ +CY &

i=1
subject to

&>0,i=1,....m
2 Datasets Description

2.1 Synthetic Data

We provide synthetic data for you to evaluate your algorithms. First, we generate examples
that are labeled according to a simple [-of-m-of-n boolean function. That is, the function is

4

defined on the n-dimensional Boolean cube {0,1}", and there is a set of m attributes such
that an example is positive iff at least [of these m are active in the example. [, m and n
define the hidden concept that your algorithms will attempt to learn. The instance space is
{0,1}™ (that is, there are n boolean features in the domain). We provided two versions of
generated synthetic data, sparse and dense. We set [= 10 and m = 20 for both situations.
We set n = 200 for sparse data and n = 40 for dense data, so you can see the performance
of the algorithms both in the sparse and the dense case.

In addition, we added small amount of noise to the training data. The label y is flipped
with probability 0.05 and each attribute is flipped with probability 0.001. Consequently, the
data not linearly separable.

Each of the algorithms (SVM and the six variations of Perceptron), will be evaluated on
both the sparse and the dense data, as described in the evaluation section.

There are 50000 examples in training set, 10000 examples in development set and 10000
examples in test set for both sparse and dense situations.

There is an additional development data set for the dense situation without any noise.

e Extra Credits (10%), we also provide the data generation code (gen.py and
add_ noise.py). You can generate datasets with or without the noise option and then
compare the results to understand the influence of the noise. Report your results to
qualify for the extra credit. You can also use this code to generate easier or more
difficult datasets.

2.1.1 Feature Representation

The features of the synthetic data provided are vectors of Os and 1s. Storing these large
matrices requires lots of memory so we stores them as dictionaries instead. Example, the
vector [0,1,0,0,0,1] can be stored as 'x1’:1, 'x5":1. We have provided you with the code for
parsing and converting the data to this format. You can use these for the all algorithms you
develop except the SVM. Since you will be using the implementation of SVM from sklearn,
you will need to provide a vector to it. You can use sklearn.feature_extraction.DictVectorizer
for converting feature-value dictonaries to vectors.

2.1.2 Evaluation metrics

The synthetic dataset is a balanced dataset with roughly the same number of positive and
negative examples so you will use accuracy to evaluate the synthetic datasets. Accuracy is
simply the proportion of correctly classified examples.

2.2 Real-world Problem

The data given is from the named entity recognition (NER) task. The goal is to iden-
tify whether strings in text represent names of People, Organizations, Locations, etc. The
following text snippets illustrates the annotation for the general NER problem:

For example:

(1) [PER Wolff | | currently a journalist in [LOC Argentina | , played with [PER Del
Bosque | in the final years of the seventies in [ORG Real Madrid | .

In this problem set we simplify the task and treat named entity recognition as a binary
classification task. The goal is to only identify whether a word is in a named entity or not.
We use I to denote that the word is in a named entity and O to mean that the word is not
in any named entity.

Given a sentence S = wy, ..., wy,, you need to predict the {I, O} tags for each word in
the sentence. That is, you will produces the sequence Y = vy, ..., yx, where y; € {I,O}. For
instance, the above example is tagged as follows:

(2) [Wolff 1] [, O] [currently O] [a O] [journalist O] [in O] [Argentina I} [, O] [played O]
[with O] [Del I] [Bosque 1] [in O] [the O] [final O] [years O] [of O] [the O] [seventies O]
[in O] [Real I} [Madrid 1] [.]

2.2.1 Feature Representation

You can represent the features of each instance as a dictionary of active features. This is
illustrated with an example in the next section.

2.2.2 Feature Extraction

The data is provided in column format (that is, each row in the file corresponds to a word
in the text, along with its tag. The details can be found in the readme file in the data
directory.) The sentences are provided as raw text, so you will need to extract features for
the classifier and generate training and test examples.

In this homework, we only consider Boolean contextual features. As you sit on a word
w and generate the (training or test) example for this word, the features types should be:

W_3 ==%2 W_o9 =2 W_1 =% Wi =2 Wyio =2
Wiz =2 | Wa&kw o= 2120 | Wii&wio = 2129 | w1 &wy = 2129

where z, z1, 29 range over all the vocabulary in the training set i.e they can take the value
of any word present in the training set.

w_1 means the word just before the target word and w; means the word just after the
target word. So, [w_; = w] is a Boolean condition that asks whether the word before the
target word is ‘z’.

[w_1&w,1 = z125] is a Boolean condition asking whether the word before the target is z
AND the word after it is z9.

Consequently, each of the 9 types of features described in the table above would generate
a large number of Boolean features. However, in a given example that corresponds to a
word, only up to 9 features will be active (value = 1).

In order to deal with the first three words and the last three words in a sentence, we will
add special symbol ‘SSS’ and ‘EEE’ to the vocabulary to represent the words before the first
word and the words after the last word.

Consider, for example, the sentence “Obama traveled to France and Italy”. Consider the
target word ‘Obama’ (that is, we now generate features for the training example correspond-
ing to the word ‘Obama’). The active features will be (w_3='SSS’, w_,="SSS’, w_;="SSS’,
wy1= ‘traveled’; wyo= ‘to’, wy3= ‘France’, w_1&w_o= ‘SSS SSS’, w,1&w o= ‘traveled to’,
w_1&wy 1= ‘SSS traveled’).

In your implementation you will generate 9 different dictionaries, one for each feature
type, and you will instantiate them using the training data. Notice that in the test data
you may encounter a word that was not observed in training, and therefore is not in your
dictionary. In this case, you cannot generate a feature for it, resulting in less than 9 active
features in some of the test examples.

2.2.3 Evaluation metrics

Unlike the synthetic dataset, the real world dataset is unbalanced. It has very few positive
examples in comparison to negative examples because a sentence/document will have fewer
entities as compared to the rest of the text. For this reason, we cannnot use accuracy to
evaluate the algorithms on the real world data sets. Instead, we will use precision, recall and
F1 measure.

Precision? refers to the fraction of points from those labelled positive by a classifier that
are actually positive. Recall? refers to the fraction of points from those that are actually
positive that the classifier labels positive. The F1 score® is the harmonic mean® of these two
scores. As with accuracy, higher precision, recall, and F1 scores are better; however, these
metrics are less influenced from the fraction of positive examples in the dataset, and thus
offers a fairer comparison between performance on the two datasets.

#(Actual Positive and Labelled Positive)

Precision —
reciston 4 (Labelled Positive)
#(Actual Positive and Labelled Positive)
Recall = >
#(Actual Positive)
Pl 2. Precision - Recall

Precision + Recall

2.2.4 News Dataset (CoNLL)

This dataset contains a collection of news articles. We choose to use the CoNLL dataset °.
We provided a reader to this data as well as features extractors for two of the types. You
will have to implement the other feature types. Please note that this data is available
only for the purpose of this assignment. It is copyrighted so do not distribute
and delete it once you are done with this homework.

Since you are running only the Averaged basic Perceptron and the SVM on this data sets,
no tuning is necessary. You will only train your models in the news dataset and evaluate

https:/ /en.wikipedia.org/wiki/Precision_and _recall
3https://en.wikipedia.org/wiki/F1_score
4https://en.wikipedia.org/wiki/Harmonic_mean
Shttps://www.clips.uantwerpen.be/conl2003 /ner/

it on the development set provided. Finally, you will also submit the prediction on your
trained models on the CoNLL test data.

Note that the training, development and test data contain, respectively, 14987 sentences
(204567 words), 336 sentences (3779 words), 303 sentences (3880 words). The number of
entities in the training and development datasets is 34043 and 772, respectively.

2.2.5 Email Dataset (Enron)

We also provided a different dataset, only for testing. This is an email dataset — the Enron
dataset). You do not need to train on this data set; only evaluate your trained models on
the development set, and compare with the results you got on the CoNLL development set.
This should give you an idea of the difficulty of transfer learning; make sure to present your
findings in the report.

Note that the development and test data contain, respectively, 310 sentences (8541 words)
and 368 sentences (11852 words). The number of entities in the development set is 562.

3 Experiments

You will run two experiments, one with synthetic data, and one with real data (the latter
will use only a two of the seven algorithms: the averaged version of the basic Perceptron, and
SVM.). In each experiment, you will use several algorithms and, for each one, run through
these steps:

a. Training and parameter tuning (leading to the final model you will use in this part)
on train and development set.

b. Generating learning curves using the models you learned in (a), This will necessitate
training each of your algorithms, with the optimal parameter setting chosen in (a)
multiple times, each time on a different number of examples, to produce a learning
curve.

¢. The final model of your learning curve was learned on the training data and will be
your final model. You will then compute it’s performance on development data and
use it to make predictions on the test data given to you.

3.1 Parameter Tuning

One of the goals of this homework is to understand the importance of parameters in a
machine learning algorithm.

We will ask you to tune and report the best parameters you chose. You will do it only
on the synthetic data set, once on the sparse data and once on the dense data. Only two
algorithms, Winnow and Perceptron with AdaGrad, are to be tuned. Basic Perceptron
need not be tuned (see above). Similarly, the SVM will not be tuned; use the default sklearn

Shttps://www.cs.cmu.edu/~enron/

parameters. The Averaged versions will use the same parameter settings as the non-Averaged
versions.

The input to the parameter tuning is a training set, a development set and an algorithm
(that you develop).

3.1.1 Parameter Tuning Procedure

e You are provided with training and development sets; let’s call them Train and Dev
respectively. For each parameter value, as given in the algorithms description above,
train your algorithm on Train. Then, evaluate the resulting model on Dev and record
the accuracy.

e Choose the parameters that results in the highest accuracy on Dev. This is the setting
that you will use in the rest of the experiments; we also ask that you give us your best
parameters in the report.

3.2 Evaluation

You are given three sets of [training, development and test] datasets. The datasets are
explained below and here we just list them:

1. Synthetic Sparse data: training, development, test.

2. Synthetic Dense data: training, development, test, development (no noise)”

3. Real data set: Training = CoNLL; Dvelopment = CoNLL and Enron; Test: CoNLL
and Enron.

Once you tune parameters as mentioned above, using your best parameters, you should
train on the training set, evaluate on development set and predict on the test data. Use
the appropriate evaluation metric depending on the data set, as discussed in the previous
sections on evaluation metrics. Report the results with exactly 10 iterations.

3.2.1 Experiments with Synthetic data

The key experiment you will run on synthetic data is a learning curve experiment. You will
run it twice, for the sparse data and the dense data.

e Learning curves of algorithms
Each of the training sets has 50,000 examples.You will train 11 models, on
500; 10005 1, 5005 . . . ; 5,000; 50, 000 examples, respectively. For 50000 points, which
means the complete training data, do not shuffle the data and use it in the
same order as it has been given.

In each case, evaluate the results on the given Dev set. Report the accuracy of each of
these 11 hypothesis and plot a curve.

"Only specific experiments mentioned later need to be done on the 'no noise’ development set

Since we increase the data by 500 rows initially and then 45000 for the last step, make
sure the increase is visible clearly and the initial points are not condensed together i.e
the x-axis of you graph should look something like the followin with the performance
on all the points distinctly visible.

% " T T T %
— Perceptron

%0 — Winnow %0
— Adagrad
— Perceptron-Avg

BS - — Winnow-Avg 188

Adagrad-Avg
an L — SVM {an
75+ 4173

70 1 . L L 1 L I . I 70
0 1000 2000 3000 4000 5000 43000 45500 50000 50500 51000

In your report, comment on the lessons you can draw from the various learning curves.

Note: For all the six on-line algorithms “training” means running 10 iterations on the
data (for each of the 11 check points above). SVM is a batch learning algorithm and
you only need to run it once for each check point.

e Performance of algorithms
Report the accuracy of each of the 7 algorithms, when trained on all the 50,000 ex-
amples, on the Dev set. (This is the last point in your learning curve).

e Predicted Label
For Averaged basic Perceptron, and SVM, submit the predictions of your final model
on the Test set.

¢ Robustness to noise
All the data sets, including the training set, have some amount as noise as elaborated
upon in the previous section, making it harder for the algorithms to learn the true
hypothesis. Report the accuracy of the 7 algorithms on the development set with no
noise. What do you observe? Are the algorithms robust to the noise in the training
set?

3.2.2 Experiments with Real data

In this case you will only use two algorithms, Averaged basic Perceptron and SVM, which
you will train on the CoNLL training data given to you.
Note that in this case no tuning is needed.

e Performance of algorithms
Report the precision, recall and F1 of each of the two algorithms, when trained on all
the CoNLL training data on the two Dev sets — the CoNLL and the Enron.

10

e Predicted Label
Submit the predictions of the two models on the two test sets — the CoNLL and the
Enron.

11

What we provide

e The code for the basic version of Perceptron.
e The python readers for the synthetic and the real-world data.

e The feature extractors of two feature types, w_; and w; for real-world data.

We will be testing the provided functions so please do not modify any function names,
parameters or return types. Make sure to fill out the functions with the appropriate code.
However, you can add additional methods as needed.

What to submit

e A detailed report of your experiments. The name of the report should be hw2.pdf

— You will have 14 learning curve plots in total from the 7 algorithms evaluated
on the synthetic datasets (sparse and dense). The curves should be in the report
with appropriate titles, axes etc. You can plot all the curves of the sparse data in
one plot and all the curves of the dense data in one plot. This way you will have
only 2 plots and can compare the relative performance of the different algorithms.

— Accuracy of the final model for the 7 algorithms on the sparse and dense dataset.
Accuracy of the same model on 'no noise’ dense dataset

— Accuracy of Averaged basic Perceptron and SVM on two sets in real-world data.

— Include your observation on the results. Discuss differences you see in the per-
formance of the algorithms across target functions and try to explain it. Discuss
the observations on the data without any noise. Make sure you discuss each of
the plots, as well as the final results. Please keep the discussion brief and
to the point

e Your source code as a .py file. This should include the algorithm implementation and
the code that runs the experiments. You must include a README (no extension),
documenting how someone should run your code.

e Provide your prediction on the test data sets provided. You will only evaluate the
Averaged basic Perceptron and the SVM on the four different test datasets. You
should include 2 x 4 = 8 predicted label files in total. The test labels files should be
named as follows:

svm-conll.txt, svm-enron.txt, svm-dense.txt, svm-sparse.txt, p-conll.txt, p-enron.txt,
p-dense.txt, p-sparse.txt.

The labels should be in the provided format, -1,1 (for the synthetic data) and

O,I (for the real data). The label files should have one label per line with no empty
lines. The order of test labels should respect the order of test data.

12

The real data test labels should look like:
I
O
I

And the synthetic data test labels should look like:
-1
1
-1

e Please note that while we are providing some tests on gradescope to help you check
your code, there are additional tests as well that won’t be visible to you

Checklist

Did you
1. Submit your pdf to Canvas
2. Submit your code to Canvas
3. Submit your pdf to Gradescope

4. Comment out any code which is not an import statement or contained in a function
definition, then submit it to Gradescope and pass the autograder.

5. Submit your prediction files to gradescope

13

	Algorithms
	Variations of Perceptron
	SVM

	Datasets Description
	Synthetic Data
	Feature Representation
	Evaluation metrics

	Real-world Problem
	Feature Representation
	Feature Extraction
	Evaluation metrics
	News Dataset (CoNLL)
	Email Dataset (Enron)

	Experiments
	Parameter Tuning
	Parameter Tuning Procedure

	Evaluation
	Experiments with Synthetic data
	Experiments with Real data

