
CIS419/519 Fall ’18

CIS 519/419
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

1

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton
for CIS519/419 at Penn, or from other authors who have made their ML slides available.

http://www.seas.upenn.edu/%7Ecis519
mailto:danroth@seas.upenn.edu
http://www.cis.upenn.edu/%7Edanroth/

CIS419/519 Fall ’18

Course Overview
 Introduction: Basic problems and questions
 A detailed example: Linear classifiers; key algorithmic idea
 Two Basic Paradigms:

 Discriminative Learning & Generative/Probablistic Learning

 Learning Protocols:
 Supervised; Unsupervised; Semi-supervised

 Algorithms
 Gradient Descent
 Decision Trees
 Linear Representations: (Perceptron; SVMs; Kernels)
 Neural Networks/Deep Learning
 Probabilistic Representations (naïve Bayes)
 Unsupervised /Semi supervised: EM
 Clustering; Dimensionality Reduction

 Modeling; Evaluation; Real world challenges
 Ethics

2

CIS419/519 Fall ’18

CIS519 Admin
 Check our class website:

 Schedule, slides, videos, policies
 http://www.seas.upenn.edu/~cis519/fall2018/

 Sign up, participate in our Piazza forum:
 Announcements and discussions
 http://piazza.com/upenn/fall2018/cis419519

 Check out our team
 Office hours

 Canvas:
 Notes, homework and videos will be open.

 [Optional] Discussion Sessions:
 Starting this week: Wednesday 4pm, Thursday 5pm: Python Tutorial
 Check the website for the location

3

Registration to Class

We start today

HW0 is mandatory!

http://www.seas.upenn.edu/%7Ecis519/fall2018/
http://piazza.com/upenn/fall2018/cis419519

CIS419/519 Fall ’18

What is Learning
 The Badges Game……

 This is an example of the key learning protocol: supervised learning

 First question: Are you sure you got it?
 Why?

4

https://www.seas.upenn.edu/%7Ecis519/fall2018/assets/lectures/lecture-0/game.html

CIS419/519 Fall ’18

Training data

5

+ Naoki Abe
- Myriam Abramson
+ David W. Aha
+ Kamal M. Ali
- Eric Allender
+ Dana Angluin
- Chidanand Apte
+ Minoru Asada
+ Lars Asker
+ Javed Aslam
+ Jose L. Balcazar
- Cristina Baroglio

+ Peter Bartlett
- Eric Baum
+ Welton Becket
- Shai Ben-David
+ George Berg
+ Neil Berkman
+ Malini Bhandaru
+ Bir Bhanu
+ Reinhard Blasig
- Avrim Blum
- Anselm Blumer
+ Justin Boyan

+ Carla E. Brodley
+ Nader Bshouty
- Wray Buntine
- Andrey Burago
+ Tom Bylander
+ Bill Byrne
- Claire Cardie
+ John Case
+ Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken

CIS419/519 Fall ’18

The Badges game

 Conference attendees to the 1994 Machine Learning
conference were given name badges labeled with + or −.

 What function was used to assign these labels?

6

+ Naoki Abe - Eric Baum

CIS419/519 Fall ’18

Raw test data

7

Shivani Agarwal
Gerald F. DeJong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jiarong Hong

J. R. Quinlan
Priscilla Rasmussen
Dan Roth
Yoram Singer
Lyle H. Ungar

CIS419/519 Fall ’18

Labeled test data

8

? Shivani Agarwal
+ Gerald F. DeJong
- Chris Drummond
+ Yolanda Gil
- Attilio Giordana
+ Jiarong Hong

- J. R. Quinlan
- Priscilla Rasmussen
+ Dan Roth
+ Yoram Singer
- Lyle H. Ungar

CIS419/519 Fall ’18

What is Learning
 The Badges Game……

 This is an example of the key learning protocol: supervised learning

 First question: Are you sure you got it?
 Why?

 Issues:
 Which problem was easier?
 Prediction or Modeling?
 Representation
 Problem setting
 Background Knowledge
 When did learning take place?
 Algorithm: can you write a program that takes this data as input and

predicts the label for your name?

9

https://www.seas.upenn.edu/%7Ecis519/fall2018/assets/lectures/lecture-0/game.html

CIS419/519 Fall ’18

Output

y∈Y
An item y

drawn from an
output space Y

Input

x∈X
An item x

drawn from an
input space X

System
y = f(x)

Supervised Learning

 We consider systems that apply a function f()
to input items x and return an output y = f(x).

10

CIS419/519 Fall ’18

Output

y∈Y
An item y

drawn from an
output space Y

Input

x∈X
An item x

drawn from an
input space X

System
y = f(x)

Supervised Learning

 In (supervised) machine learning, we deal with
systems whose f(x) is learned from examples.

11

CIS419/519 Fall ’18

Why use learning?

 We typically use machine learning when the function f(x)
we want the system to apply is unknown to us, and we
cannot “think” about it. The function could actually be
simple.

12

CIS419/519 Fall ’18

Output

y∈Y

An item y
drawn from a label

space Y

Input

x∈X

An item x
drawn from an

instance space X

Learned Model
y = g(x)

Supervised learning

13

Target function
y = f(x)

CIS419/519 Fall ’18

Supervised learning: Training

 Give the learner examples in D train

 The learner returns a model g(x)
14

Labeled Training
Data
D train

(x1, y1)
(x2, y2)

…
(xN, yN)

Learned
model

g(x)

Learning
Algorithm

Can you suggest other
learning protocols?

g(x) is the model we’ll
use in our application

CIS419/519 Fall ’18

Supervised learning: Testing

 Reserve some labeled data for testing

15

Labeled
Test Data

D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M)

CIS419/519 Fall ’18

Supervised learning: Testing
Labeled

Test Data
D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M)

Test
Labels
Y test

y’1

y’2

...
y’M

Raw Test
Data
X test

x’1
x’2
….

x’M

16

CIS419/519 Fall ’18

Test
Labels
Y test

y’1

y’2

...
y’M

Raw Test
Data
X test

x’1
x’2
….

x’M

Supervised learning: Testing
 Apply the model to the raw test data
 Evaluate by comparing predicted labels against the test labels

17

Learned
model

g(x)

Predicted
Labels

g(X test)
g(x’1)
g(x’2)

….
g(x’M)

Can you use the test
data otherwise?

CIS419/519 Fall ’18

Supervised Learning : Examples

 Disease diagnosis
 x: Properties of patient (symptoms, lab tests)
 f : Disease (or maybe: recommended therapy)

 Part-of-Speech tagging
 x: An English sentence (e.g., The can will rust)
 f : The part of speech of a word in the sentence

 Face recognition
 x: Bitmap picture of person’s face
 f : Name the person (or maybe: a property of)

 Automatic Steering
 x: Bitmap picture of road surface in front of car
 f : Degrees to turn the steering wheel

18

Many problems
that do not seem
like classification
problems can be
decomposed to
classification
problems.

CIS419/519 Fall ’18

Course Overview
 Introduction: Basic problems and questions
 A detailed example: Linear classifiers; key algorithmic idea
 Two Basic Paradigms:

 Discriminative Learning & Generative/Probablistic Learning

 Learning Protocols:
 Supervised; Unsupervised; Semi-supervised

 Algorithms
 Gradient Descent
 Decision Trees
 Linear Representations: (Perceptron; SVMs; Kernels)
 Neural Networks/Deep Learning
 Probabilistic Representations (naïve Bayes)
 Unsupervised /Semi supervised: EM
 Clustering; Dimensionality Reduction

 Modeling; Evaluation; Real world challenges
 Ethics

19

CIS419/519 Fall ’18

Key Issues in Machine Learning
 Modeling

 How to formulate application problems as machine learning
problems ? How to represent the data?

 Learning Protocols (where is the data & labels coming from?)

 Representation
 What functions should we learn (hypothesis spaces) ?
 How to map raw input to an instance space?
 Any rigorous way to find these? Any general approach?

 Algorithms
 What are good algorithms?
 How do we define success?
 Generalization vs. over fitting
 The computational problem

20

CIS419/519 Fall ’18

Using supervised learning

 What is our instance space?
 Gloss: What kind of features are we using?

 What is our label space?
 Gloss: What kind of learning task are we dealing with?

 What is our hypothesis space?
 Gloss: What kind of functions (models) are we learning?

 What learning algorithm do we use?
 Gloss: How do we learn the model from the labeled data?

 What is our loss function/evaluation metric?
 Gloss: How do we measure success? What drives learning?

21

CIS419/519 Fall ’18

Output

y∈Y
An item y

drawn from a label
space Y

Input

x∈X
An item x

drawn from an
instance space X

Learned
Model
y = g(x)

1. The instance space X

 Designing an appropriate instance space X
is crucial for how well we can predict y.

22

CIS419/519 Fall ’18

1. The instance space X
 When we apply machine learning to a task, we first need

to define the instance space X.
 Instances x ∈ X are defined by features:

 Boolean features:
 Is there a folder named after the sender?
 Does this email contains the word ‘class’?
 Does this email contains the word ‘waiting’?
 Does this email contains the word ‘class’ and the word ‘waiting’?

 Numerical features:
 How often does ‘learning’ occur in this email?
 What long is email?
 How many emails have I seen from this sender over the last

day/week/month?
 Bag of tokens

 Just list all the tokens in the input

23

Does it add anything?

CIS419/519 Fall ’18

What’s X for the Badges game?

 Possible features:
 Gender/age/country of the person?
 Length of their first or last name?
 Does the name contain letter ‘x’?
 How many vowels does their name contain?
 Is the n-th letter a vowel?
 Height;
 Shoe size

24

CIS419/519 Fall ’18

X as a vector space

 X is an N-dimensional vector space (e.g. < N)
 Each dimension = one feature.

 Each x is a feature vector (hence the boldface x).
 Think of x = [x1 … xN] as a point in X :

25
x1

x2

CIS419/519 Fall ’18

Good features are essential

 The choice of features is crucial for how well a task can be
learned.
 In many application areas (language, vision, etc.), a lot of work

goes into designing suitable features.
 This requires domain expertise.

 Think about the badges game – what if you were focusing
on visual features?

 We can’t teach you what specific features
to use for your task.
 But we will touch on some general principles

27

CIS419/519 Fall ’18

Output

y∈Y
An item y

drawn from a label
space Y

Input

x∈X
An item x

drawn from an
instance space X

Learned
Model
y = g(x)

2. The label space Y

 The label space Y determines what kind of
supervised learning task we are dealing with

28

CIS419/519 Fall ’18

Supervised learning tasks I

 Output labels y∈Y are categorical:
 Binary classification: Two possible labels
 Multiclass classification: k possible labels

 Output labels y∈Y are structured objects (sequences of labels,
parse trees, etc.)

 Structure learning

29

CIS419/519 Fall ’18

Supervised learning tasks II

 Output labels y∈Y are numerical:
 Regression (linear/polynomial):

 Labels are continuous-valued
 Learn a linear/polynomial function f(x)

 Ranking:
 Labels are ordinal
 Learn an ordering f(x1) > f(x2) over input

30

CIS419/519 Fall ’18

Output

y∈Y
An item y

drawn from a label
space Y

Input

x∈X
An item x

drawn from an
instance space X

Learned
Model
y = g(x)

3. The model g(x)

 We need to choose what kind of model
we want to learn

31

CIS419/519 Fall ’18

A Learning Problem

32

y = f (x1, x2, x3, x4)Unknown
function

x1
x2
x3
x4

Example x1 x2 x3 x4 y
1 0 0 1 0 0

3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

2 0 1 0 0 0
Can you learn this function?

What is it?

CIS419/519 Fall ’18

Hypothesis Space

Complete Ignorance:
There are 216 = 65536 possible functions
over four input features.

We can’t figure out which one is
correct until we’ve seen every
possible input-output pair.

After observing seven examples we still
have 29 possibilities for f

Is Learning Possible?

33

Example x1 x2 x3 x4 y

16 1 1 1 1 ?

1 0 0 0 0 ?

1 0 0 0 ?

1 0 1 1 ?
1 1 0 0 0
1 1 0 1 ?

1 0 1 0 ?
1 0 0 1 1

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 ?

0 0 1 1 1
0 0 1 0 0

2 0 0 0 1 ?

1 1 1 0 ?

 There are |Y||X| possible
functions f(x) from the instance
space X to the label space Y.

 Learners typically consider only
a subset of the functions from X
to Y, called the hypothesis
space H . H ⊆|Y||X|

CIS419/519 Fall ’18

Hypothesis Space (2)

Simple Rules: There are only 16 simple conjunctive rules
of the form y=xi ˄ xj ˄ xk

No simple rule explains the data. The same is true for simple clauses (disjunctions).
34

1 0 0 1 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

2 0 1 0 0 0

y=c

x1 1100 0
x2 0100 0
x3 0110 0
x4 0101 1
x1 Λ x2 1100 0
x1 Λ x3 0011 1
x1 Λ x4 0011 1

Rule Counterexample
x2 Λ x3 0011 1
x2 Λ x4 0011 1
x3 Λ x4 1001 1
x1 Λ x2 Λ x3 0011 1
x1 Λ x2 Λ x4 0011 1
x1 Λ x3 Λ x4 0011 1
x2 Λ x3 Λ x4 0011 1
x1 Λ x2 Λ x3 Λ x4 0011 1

Rule Counterexample

CIS419/519 Fall ’18

Notation: 2 variables from the set on the
left. Value: Index of the counterexample.

Hypothesis Space (3)

m-of-n rules: There are 32 possible rules
of the form ``y = 1 if and only if at least m
of the following n variables are 1”

35

1 0 0 1 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

2 0 1 0 0 0

{x1} 3 - - -
{x2} 2 - - -
{x3} 1 - - -
{x4} 7 - - -
{x1,x2} 2 3 - -
{x1, x3} 1 3 - -
{x1, x4} 6 3 - -
{x2,x3} 2 3 - -

variables 1-of 2-of 3-of 4-of
{x2, x4} 2 3 - -
{x3, x4} 4 4 - -
{x1,x2, x3} 1 3 3 -
{x1,x2, x4} 2 3 3 -
{x1,x3,x4} 1 ∗ ∗ ∗ 3 -
{x2, x3,x4} 1 5 3 -
{x1, x2, x3,x4} 1 5 3 3

variables 1-of 2-of 3-of 4-of

Don’t worry, this function is
actually a neural network…

Found a consistent hypothesis!

CIS419/519 Fall ’18

Views of Learning

 Learning is the removal of our remaining uncertainty:
 Suppose we knew that the unknown function was an m-of-n

Boolean function, then we could use the training data to infer
which function it is.

 Learning requires guessing a good hypothesis class:
 We can start with a very small class and enlarge it until it contains

an hypothesis that fits the data.

 We could be wrong !
 Our prior knowledge might be wrong:

 y=x4 Λ one-of (x1, x3) is also consistent
 Our guess of the hypothesis space could be wrong

 If this is the unknown function, then we will make errors when we are
given new examples, and are asked to predict the value of the
function

36

CIS419/519 Fall ’18

General strategies for Machine
Learning

 Develop flexible hypothesis spaces:
 Decision trees, neural networks, nested collections.
 Constraining the hypothesis space is done algorithmically

 Develop representation languages for restricted classes of
functions:
 Serve to limit the expressivity of the target models
 E.g., Functional representation (n-of-m); Grammars; linear

functions; stochastic models;
 Get flexibility by augmenting the feature space

 In either case:
 Develop algorithms for finding a hypothesis in our hypothesis

space, that fits the data
 And hope that they will generalize well

37

CIS419/519 Fall ’18

Administration
 The class is still full.

 There will be some changes until midnight tonight.
 But there will be chances to petition and get in as people drop.

 You all need to complete HW0!
 1st quiz was due last night.
 HW 1 will be released next week.
 Questions?

 Please ask/comment during class.

 No Class on Wednesday
 Office hours, as usual;

 I will have one today, but not on Wednesday.

40

CIS419/519 Fall ’18

Key Issues in Machine Learning
 Modeling

 How to formulate application problems as machine learning
problems ? How to represent the data?

 Learning Protocols (where is the data & labels coming from?)

 Representation
 What functions should we learn (hypothesis spaces) ?
 How to map raw input to an instance space?
 Any rigorous way to find these? Any general approach?

 Algorithms
 What are good algorithms?
 How do we define success?
 Generalization Vs. over fitting
 The computational problem

41

CIS419/519 Fall ’18

An Example: Context Sensitive Spelling

I don’t know {whether, weather} to laugh or cry

How can we make this a learning problem?

 We will look for a function
f: Sentences {whether, weather}

 We need to define the domain of this function better.

 An option: For each word w in English define a Boolean feature xw :
[xw =1] iff w is in the sentence

 This maps a sentence to a point in {0,1}50,000

 In this space: some points are whether points
some are weather points

42

Learning Protocol?

Supervised? Unsupervised?

This is the Modeling Step

What is the hypothesis space?

Input/Instance space?

CIS419/519 Fall ’18

Linear = linear in the feature space
x= data representation; w = the classifier
(w, x, column vectors of dimensionality n)

y = sgn {wTx}

Representation Step: What’s Good?

43

sgn(z) =0 if z<0;
1 otherwise

Memorizing vs. Learning
Accuracy vs. Simplicity

How well will you do?
On what?

Impact on Generalization

𝑤𝑤𝑇𝑇 � 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

 Learning problem:
Find a function that

best separates the data

 What function?
 What’s best?
 (How to find it?)

 A possibility: Define the learning problem to be:
 A (linear) function that best separates the data

CIS419/519 Fall ’18

Expressivity

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }
 Many functions are Linear

 Conjunctions:
 y = x1 ˄ x3 ˄ x5

 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 3}; w = (1, 0, 1, 0, 1) θ=3
 At least m of n:

 y = at least 2 of {x1 ,x3, x5 }
 y = sgn{1 � x1 + 1 � x3 + 1 � x5 - 2} }; w = (1, 0, 1, 0, 1) θ=2

 Many functions are not
 Xor: y = (x1 ˄ x2) ˅ (¬𝑥𝑥1 ˄ ¬ x2)
 Non trivial DNF: y = (x1 ˄ x2) ˅ (x3 ˄ x4)

 But can be made linear
 Note: all the variables above are Boolean variables

44

Probabilistic Classifiers as well

CIS419/519 Fall ’18

Functions Can be Made Linear

 Data points are not linearly separable in one dimension
 Not separable if you insist on using a specific class of

functions (e.g., linear)

45

x

CIS419/519 Fall ’18

Blown Up Feature Space

 Data are separable in <x, x2> space

46

x

x2

Key issue: Representation:
what features to use.

Computationally, can be
done implicitly (kernels)

Not always ideal.

CIS419/519 Fall ’18

Exclusive-OR (XOR)

 (x1 ˄ x2) ˅ (¬{x1} ˄ ¬{x2})
 In general: a parity function.

 xi ∈ {0,1}
 f(x1, x2,…, xn) = 1

iff ∑ xi is even

This function is not
linearly separable.

47

x1

x2

CIS419/519 Fall ’18

Functions Can be Made Linear
Discrete Case

48

x1 x2 x4 ˅ x2 x4 x5 ˅ x1 x3 x7

Space: X= x1, x2,…, xn

Input Transformation
New Space: Y = {y1,y2,…} = {xi,xi xj, xi xj xj,…}

Weather

Whether

y3 ˅ y4 ˅ y7
New discriminator is
functionally simpler

A real Weather/Whether
example

http://cogcomp.cs.illinois.edu/Data/Spell/

CIS419/519 Fall ’18

Representation (1)

49

Feature Types:
(what does the algorithm know about the input):
1,2. relative position (+/-1) has this pos/w
3. Conjunctions of size two
4. word w occurs in (-2,+2) window around target

Note: 4 feature types; many features

Some statistics (not
part of the learning
process; just for the
understanding of the
problem)

The feature resulting from instantiating the
type in the given data

CIS419/519 Fall ’18

Representation (2)

50

Extracting features from the data:
(what does the algorithm know about the input):
1,2. relative position (+/-1); pos/w
3. Conjunctions of size two
4. Occurrence of a word in a window around the target

Note: 2 feature types; many features
For each feature type, the data gives rise to multiple
features; you don’t know which, before you see the data.

CIS419/519 Fall ’18

Representation (3)

51

Each example corresponds to one target occurrence;
all the features for this target are collected into a
vector, and the label is added.
Here:
- Sparse Representation of the feature vector. Why?
- Variable size: Why?

Here the first index
(0/1) is the label)

CIS419/519 Fall ’18

Administration
 “Easy” Registration Period is over.

 But there will be chances to petition and get in as people drop.
 If you want to switch 419/519, talk with Nicholas Mancuso

nmancuso@seas.upenn.edu

 You all need to complete HW0!
 2nd quiz was due last night.
 HW 1 will be released on Wednesday this week.
 Questions?

 Please ask/comment during class.

 Change in my office hours:
 Today: 3-4 pm; Wednesday 1:30-2:30

52

mailto:nmancuso@seas.upenn.edu

CIS419/519 Fall ’18

Third Step: How to Learn?
 A possibility: Local search

 Start with a linear threshold function.
 See how well you are doing.
 Correct
 Repeat until you converge.

 There are other ways that
do not search directly in
the hypotheses space
 Directly compute the

hypothesis

53

CIS419/519 Fall ’18

A General Framework for
Learning

 Goal: predict an unobserved output value y 2 Y
based on an observed input vector x 2 X

 Estimate a functional relationship y~f(x)
from a set {(x,y)i}i=1,n

 Most relevant - Classification: y ∈ {0,1} (or y ∈ {1,2,…k})
 (But, within the same framework can also talk about Regression, y 2 <)

 What do we want f(x) to satisfy?
 We want to minimize the Risk: L(f()) = E X,Y([f(x)≠y])
 Where: E X,Y denotes the expectation with respect to the true

distribution.

54

Simple loss function: # of mistakes
[…] is a indicator function

CIS419/519 Fall ’18

A General Framework for
Learning (II)

 We want to minimize the Loss: L(f()) = E X,Y([f(X)≠Y])
 Where: E X,Y denotes the expectation with respect to the true distribution.

 We cannot minimize this loss
 Instead, we try to minimize the empirical classification error.
 For a set of training examples {(xi,yi)}i=1,m

 Try to minimize: L’(f()) = 1/m Σi [f(xi)≠yi] (m=# of examples)
 (Issue I: why/when is this good enough? Not now)

 This minimization problem is typically NP hard.
 To alleviate this computational problem, minimize a new function – a convex

upper bound of the (real) classification error function:
I(f(x),y) =[f(x) ≠y] = {1 when f(x)≠y; 0 otherwise}

55

Side note: If the distribution over X£ Y is known,
predict: y = argmaxy P(y|x)
This is the best possible (the optimal Bayes' error).

CIS419/519 Fall ’18

Algorithmic View of Learning: an
Optimization Problem

 A Loss Function L(f(x),y) measures the penalty incurred by
a classifier f on example (x,y).

 There are many different loss functions one could define:
 Misclassification Error:

L(f(x),y) = 0 if f(x) = y; 1 otherwise
 Squared Loss:

L(f(x),y) = (f(x) – y)2

 Input dependent loss:

L(f(x),y) = 0 if f(x)= y; c(x)otherwise.

56

A continuous convex loss
function allows a simpler
optimization algorithm.

f(x) –y

L

CIS419/519 Fall ’18

Loss

57

Here f(x) is the prediction 2 <
y 2 {-1,1} is the correct value

0-1 Loss L(y,f(x))= ½ (1-sgn(yf(x)))
Log Loss 1/ln2 log (1+exp{-yf(x)})
Hinge Loss L(y, f(x)) = max(0, 1 - y f(x))
Square Loss L(y, f(x)) = (y - f(x))2

0-1 Loss x axis = yf(x)
Log Loss = x axis = yf(x)
Hinge Loss: x axis = yf(x)
Square Loss: x axis = (y - f(x)+1)

CIS419/519 Fall ’18

Example

Putting it all together:

A Learning Algorithm

CIS419/519 Fall ’18

Third Step: How to Learn?
 A possibility: Local search

 Start with a linear threshold function.
 See how well you are doing.
 Correct
 Repeat until you converge.

 There are other ways that
do not search directly in
the hypotheses space
 Directly compute the

hypothesis

59

CIS419/519 Fall ’18

Learning Linear Separators
(LTU=Linear Threshold Unit)

f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }
 xT= (x1 ,x2,… ,xn) ∈ {0,1}n

is the feature based
encoding of the data point

 wT= (w1 ,w2,… ,wn) ∈ R n

is the target function.

 θ determines the shift
with respect to the origin

60

w

θ

CIS419/519 Fall ’18

Canonical Representation
f(x) = sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 - θ }

 Note: sgn {𝑤𝑤𝑇𝑇 � 𝑥𝑥- θ} = sgn {𝑤𝑤′𝑇𝑇 � 𝑥𝑥′}
 Where:

 x’ = (x, -1) and w’ = (w, θ)

 Moved from an n dimensional representation to an (n+1)
dimensional representation, but now can look for
hyperplanes that go through the origin.

 Basically, that means that we learn both w and θ

61

CIS419/519 Fall ’18

The Risk (Err) E:
a function of w

General Learning Principle

 Our goal is to find a w that
minimizes the expected risk
E(w) = E X,Y Q(x, y, w)

 We cannot do it.
 Instead, we approximate E(w)

using a finite training set of
independent samples (xi, yi)

E(w) ~=~ 1/m ∑1,m Q(xi ,yi, w)
 To find the minimum, we use a

batch gradient descent algorithm
 That is, we successively compute

estimates wt of the optimal parameter vector w:
wt+1 = wt - r E(w) = wt - 1/m ∑1,m r Q(xi ,yi, w)

62

w

θ

The loss Q: a function of x, w and y

t here is “time”
or “iteration” #

To find a local minimum
of a function using
gradient descent, we
take steps proportional
to the negative of the
gradient of the function
at the current point.

CIS419/519 Fall ’18

Gradient Descent
 We use gradient descent to determine the weight vector that

minimizes E(w) (= Err (w)) ;
 Fixing the set D of examples, E=Err is a function of w
 At each step, the weight vector is modified in the direction that

produces the steepest descent along the error surface.

63

E(w)

w
w4 w3 w2 w1

To find a local minimum
of a function using
gradient descent, we
take steps proportional
to the negative of the
gradient of the function
at the current point.

CIS419/519 Fall ’18

LMS: An Optimization Algorithm

 Our Hypothesis Space is the collection of Linear Threshold Units

 Loss function:
 Squared loss: LMS (Least Mean Square, L2)
 Q(x, y, w) = ½ (wT x – y)2

64

w

θ

CIS419/519 Fall ’18

LMS: An Optimization Algorithm
 (i (subscript) – vector component; j (superscript) - time; d – example #)

 Let w(j) be the current weight vector we have
 Our prediction on the d-th example x is:

𝑂𝑂𝑑𝑑 = 𝑤𝑤(𝑗𝑗)𝑇𝑇 � 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑖𝑖

 Let td be the target value for this example
 The error the current hypothesis makes on the data set is:

𝐸𝐸(𝑤𝑤) = Err(𝑤𝑤𝑗𝑗) = 1
2
∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)2

65

Assumption: x ∈ Rn; u ∈ Rn is the target weight vector;
the target (label) is td = u𝑇𝑇 � 𝑥𝑥 Noise has been added; so,
possibly, no weight vector is consistent with the data.

CIS419/519 Fall ’18

Gradient Descent

 To find the best direction in the weight space w we compute
the gradient of E with respect to each of the components of

𝛻𝛻𝐸𝐸 𝑤𝑤 = [𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

, … 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑛𝑛

]

 This vector specifies the direction that produces the steepest
increase in E;

 We want to modify 𝑤𝑤 in the direction of -𝛻𝛻𝐸𝐸 𝑤𝑤

 Where (with a fixed step size R):
𝑤𝑤𝑡𝑡 = 𝑤𝑤𝑡𝑡−1 + Δw
Δw = -R 𝛻𝛻𝐸𝐸 𝑤𝑤

66

CIS419/519 Fall ’18

Gradient Descent: LMS

 We have: 𝐸𝐸(𝑤𝑤) = Err(𝑤𝑤𝑗𝑗) = 1
2
∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)2

 Therefore:

67

))(-xo(t idd
Dd

d −= ∑
∈

=•−
∂
∂

−= ∑
∈

)xw(t
w

)o2(t
2
1

ddd
i

d
Dd

d

)o(t
w2

1 2
d

Dd
d

i
=−

∂
∂

= ∑
∈

)o(t
2
1

ww
E 2

d
Dd

d
ii

=−
∂
∂

=
∂
∂ ∑

∈

CIS419/519 Fall ’18

Alg1: Gradient Descent: LMS

 Weight update rule:

Δwi = 𝑅𝑅∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)𝑥𝑥𝑖𝑖𝑑𝑑
 Gradient descent algorithm for training linear units:

 Start with an initial random weight vector
 For every example d with target value td do:

 Evaluate the linear unit 𝑂𝑂𝑑𝑑 = 𝑤𝑤(𝑗𝑗)𝑇𝑇 � 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑖𝑖

 Update w by adding Δwi to each component
 Continue until E below some threshold

This algorithm always converges to a local minimum of E(w), for small enough steps.
Here (LMS for linear regression), the surface contains only a single global minimum,
so the algorithm converges to a weight vector with minimum error, regardless of
whether the examples are linearly separable.
The surface may have local minimum if the loss function is different.

68

CIS419/519 Fall ’18

Alg 2: Incremental (Stochastic) Gradient Descent:
(LMS)

 Weight update rule:
Δwi = 𝑅𝑅 𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑 𝑥𝑥𝑖𝑖𝑑𝑑

 Gradient descent algorithm for training linear units:
 Start with an initial random weight vector
 For every example d with target value td do:

 Evaluate the linear unit 𝑂𝑂𝑑𝑑 = 𝑤𝑤(𝑗𝑗)𝑇𝑇 � 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑖𝑖

 update w by incrementally by adding Δwi to each component
(update without summing over all data)

 Continue until E below some threshold

 In general - does not converge to global minimum
 But, on-line algorithms are sometimes advantageous…
 Decreasing R with time guarantees convergence

69

Dropped the averaging operation.
Instead of averaging the gradient of
the loss over the complete training

set, choose at random a sample
(x,y) (or a subset of examples) and

update wt

CIS419/519 Fall ’18

Learning Rates and Convergence

 In the general (non-separable) case the learning rate R
must decrease to zero to guarantee convergence.

 The learning rate is called the step size. There are more
sophisticated algorithms that choose the step size
automatically and converge faster.

 Choosing a better starting point also has impact.

 The gradient descent and its stochastic version are very
simple algorithms, but almost all the algorithms we will
learn in the class can be traced back to gradient decent
algorithms for different loss functions and different
hypotheses spaces.

70

CIS419/519 Fall ’18

Computational Issues
 Assume the data is linearly separable.
 Sample complexity:

 Suppose we want to ensure that our LTU has an error rate (on new examples) of
less than ε with high probability (at least (1-δ))

 How large does m (the number of examples) must be in order to achieve this ? It
can be shown that for n dimensional problems

m = O(1/ ε [ln(1/ δ) + (n+1) ln(1/ ε)].

 Computational complexity: What can be said?
 It can be shown that there exists a polynomial time algorithm for finding

consistent LTU (by reduction from linear programming).
 [Contrast with the NP hardness for 0-1 loss optimization]
 (On-line algorithms have inverse quadratic dependence on the margin)

71

CIS419/519 Fall ’18

Other Methods for LTUs

 Fisher Linear Discriminant:
 A direct computation method

 Probabilistic methods (naïve Bayes):
 Produces a stochastic classifier that can be viewed as a linear

threshold unit.

 Winnow/Perceptron
 A multiplicative/additive update algorithm with some sparsity

properties in the function space (a large number of irrelevant
attributes) or features space (sparse examples)

 Logistic Regression, SVM…many other algorithms

72

	�CIS 519/419 �Applied Machine Learning�www.seas.upenn.edu/~cis519 ��
	Course Overview
	CIS519 Admin
	What is Learning
	Training data
	The Badges game
	Raw test data
	Labeled test data
	What is Learning
	Supervised Learning
	Supervised Learning
	Why use learning?
	Supervised learning
	Supervised learning: Training
	Supervised learning: Testing
	Supervised learning: Testing
	Supervised learning: Testing
	Supervised Learning : Examples�
	Course Overview
	Key Issues in Machine Learning
	Using supervised learning
	1. The instance space X
	1. The instance space X
	What’s X for the Badges game?
	X as a vector space
	Good features are essential
	2. The label space Y
	Supervised learning tasks I
	Supervised learning tasks II
	3. The model g(x)
	A Learning Problem
	Hypothesis Space
	Hypothesis Space (2)
	Hypothesis Space (3)
	Views of Learning�
	General strategies for Machine Learning
	Administration
	Key Issues in Machine Learning
	An Example: Context Sensitive Spelling
	Representation Step: What’s Good?
	Expressivity
	Functions Can be Made Linear
	Blown Up Feature Space
	Exclusive-OR (XOR)
	Functions Can be Made Linear�Discrete Case
	Representation (1)
	Representation (2)
	Representation (3)
	Administration
	Third Step: How to Learn?
	A General Framework for Learning
	A General Framework for Learning (II)
	Algorithmic View of Learning: an Optimization Problem
	Loss
	Example
	Third Step: How to Learn?
	Learning Linear Separators� (LTU=Linear Threshold Unit)
	Canonical Representation
	General Learning Principle
	�Gradient Descent�
	LMS: An Optimization Algorithm�
	LMS: An Optimization Algorithm
	Gradient Descent
	Gradient Descent: LMS
	Alg1: Gradient Descent: LMS
	Alg 2: Incremental (Stochastic) Gradient Descent: (LMS)
	Learning Rates and Convergence
	Computational Issues
	Other Methods for LTUs

