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Administration (1)
 Surveys: 

 Please do it.
 If 80% of the students complete it, we’ll give extra credit! 

 Projects:

 Come to my office hours at least once to discuss the project.
 Posters for the projects will be presented on the last meeting of the 

class, December 10, 12:00-1:30.
 Final reports will only be due after the Final exam,  on December 18

 Specific instructions are on the web page and will be sent also on Piazza.

 HW4: Out now. 
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Administration (2)
 Exam:

 The exam will take place on the originally assigned date, 12/17. 
 CHEM 102, 12-2pm
 Structured similarly to the midterm.
 120 minutes; closed books.

 What is covered:
 Cumulative!
 Slightly more focus on the material covered after the previous mid-term.
 However, notice that the ideas in this class are cumulative!!
 Everything that we present in class and in the homework assignments
 Material that is in the slides but is not discussed in class is not part of the 

material required for the exam.
• Example 1: We talked about Boosting. But not about boosting the confidence.
• Example 2: We talked about multiclass classification: OvA, AvA, but not Error 

Correcting codes,  and not about constraint classification (in the slides).

 We will give practice exams. HW5 will also serve as preparation. 
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Summary: Basic Probability
 Product Rule:   P(A,B) = P(A|B)P(B) = P(B|A)P(A)
 If A and B are independent:   

 P(A,B) = P(A)P(B);   P(A|B)= P(A), P(A|B,C)=P(A|C)

 Sum Rule: P(A∨B) = P(A)+P(B)-P(A,B)
 Bayes Rule: P(A|B)  = P(B|A) P(A)/P(B)
 Total Probability: 

 If events A1, A2,…An are mutually exclusive: Ai ∧ Aj = Φ, ∑i P(Ai)= 1
 P(B) = ∑ P(B , Ai) = ∑i P(B|Ai) P(Ai)

 Total Conditional Probability: 
 If events A1, A2,…An are mutually exclusive: Ai ∧ Aj = Φ, ∑ i P(Ai)= 1
 P(B|C) = ∑ P(B , Ai|C) = ∑i P(B|Ai,C) P(Ai|C)                   
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Expectation of a Random Variable

 Let X be a random variable with arity k that takes the 
values  {x1,x2, ..., xk } with probabilities {p1,p2, ..., pk }, 
respectively,
with ∑𝑖𝑖=1𝑘𝑘 𝑝𝑝𝑖𝑖 = 1

 Then, the expectation of the random variable X is:
 E[X] =  ∑𝑖𝑖=1𝑘𝑘 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖

 Important property: 
 Linearity:          E[X+Y] = E[X] + E[Y]
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Semi-Supervised Learning
 Consider the problem of Prepositional Phrase Attachment. 

 Buy car with money             ; buy car with wheel 

 There are several ways to generate features. Given the 
limited representation, we can assume that all possible 
conjunctions of the 4 attributes are used. (15 feature in 
each example). 

 Assume we will use naïve Bayes for learning to decide 
between [n,v]

 Examples are:  (x1,x2,…xn,[n,v])
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Using naïve Bayes
 To use naïve Bayes, we need to use the data to estimate:        

P(n)                      P(v)
P(x1|n)                P(x1|v)
P(x2|n)                P(x2|v)

……
P(xn|n)                P(xn|v)

 Then, given an example (x1,x2,…xn,?), compare:
P(n|x)~=P(n) P(x1|n) P(x2|n)… P(xn|n)

and
P(v|x)~=P(v) P(x1|v) P(x2|v)… P(xn|v)
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Using naïve Bayes
 After seeing 10 examples, we have:   
 P(n) =0.5; P(v)=0.5

P(x1|n)=0.75;P(x2|n) =0.5; P(x3|n) =0.5; P(x4|n) =0.5 
P(x1|v)=0.25; P(x2|v) =0.25;P(x3|v) =0.75;P(x4|v) =0.5

 Then, given an example x=(1000), we have:
Pn(x)~=0.5 0.75 0.5 0.5 0.5 = 3/64
Pv(x)~=0.5 0.25 0.75 0.25 0.5=3/256 

 Now, assume that in addition to the 10 labeled examples, 
we also have 100 unlabeled examples.

 Will that help? 
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Using naïve Bayes
 For example, what can be done with the example (1000)  ?

 We have an estimate for its label…
 But, can we use it to improve the classifier (that is, the estimation 

of the probabilities that we will use in the future)?

 Option 1: We can make predictions, and believe them
 Or some of them (based on what?)

 Option 2: We can assume the example x=(1000) is a 
 An n-labeled example with probability  Pn(x)/(Pn(x) + Pv(x))
 A v-labeled example with probability  Pv(x)/(Pn(x) + Pv(x))

 Estimation of probabilities does not require working with 
integers!
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Using Unlabeled Data
The discussion suggests several algorithms:

1. Use a threshold. Chose examples labeled with high 
confidence. Label them [n,v]. Retrain.

2. Use fractional examples. Label the examples with 
fractional labels [p of n, (1-p) of v]. Retrain.
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Comments on Unlabeled Data
 Both algorithms suggested can be used iteratively.

 Both algorithms can be used with other classifiers, not  only naïve 
Bayes. The only requirement – a robust confidence measure in the 
classification.

 There are other approaches to Semi-Supervised learning: 
 Most are conceptually similar: bootstrapping algorithms
 Some are “graph-based” algorithms: assume “similar” examples have “similar 

labels”.

 What happens if instead of 10 labeled examples we start with 0
labeled examples?

 Make a Guess; continue as above; a version of EM 
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EM
 EM is a class of algorithms that is used to estimate a 

probability distribution in the presence of missing 
attributes. 

 Using it requires an assumption on the underlying 
probability distribution.

 The algorithm can be very sensitive to this assumption 
and to the starting point (that is, the initial guess of 
parameters. 

 In general, known to converge to a local maximum of the 
maximum likelihood function. 
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Three Coin Example
 We observe a series of coin tosses generated in the 

following way: 
 A person has three coins.

 Coin 0: probability of Head is α
 Coin 1: probability of Head p 
 Coin 2: probability of Head q

 Consider the following coin-tossing scenarios:
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Estimation Problems
 Scenario I: Toss one of the coins four times.

Observing  HHTH
Question: Which coin is more likely to produce this sequence ? 

 Scenario II: Toss coin 0. If Head – toss coin 1; otherwise – toss coin 2
Observing the sequence  HHHHT,  THTHT, HHHHT, HHTTH, THTTH
produced by Coin 0 , Coin1 and Coin2
Question: Estimate most likely values for p, q (the probability of H in 

each coin) and the probability to use each of the coins (α)

 Scenario III: Toss coin 0. If Head – toss coin 1, o/w – toss coin 2
Observing the sequence  HHHT,  HTHT, HHHT, HTTH, HTTH
each 4 consecutive tosses are produced by Coin 1 or Coin 2 
Question: Estimate most likely values for p, q and α

14

There is no known analytical solution to this problem (general 
setting). That is, it is not known how to compute the values of 
the parameters so as to maximize the likelihood of the data.

Coin 0

1st toss 2nd toss 4th  toss
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Key Intuition (1)
 If we knew which of the data points (HHHT), (HTHT), (HTTH)  came 

from Coin1 and which from Coin2, there was no problem.

 Recall that the “simple” estimation is the ML estimation:
 Assume that you toss a (p,1-p) coin m times and get k Heads m-k 

Tails.

log[P(D|p)] = log [ pk (1-p)m-k ]= k log p + (m-k) log (1-p) 

 To maximize, set the derivative w.r.t. p equal to 0:

d log P(D|p)/dp = k/p – (m-k)/(1-p) = 0

 Solving this for p, gives:      p=k/m

15



CIS419/519 Fall ’18

Key Intuition (2)
 If we knew which of the data points (HHHT), (HTHT), (HTTH)  came 

from Coin1 and which from Coin2, there was no problem.
 Instead, use an iterative approach for estimating the parameters:

 Guess the probability that a given data point came from Coin 1 or 2;   
Generate fictional labels, weighted according to this probability.

 Now, compute the most likely value of the parameters. [recall NB 
example]

 Compute the likelihood of the data given this model.
 Re-estimate the initial parameter setting: set them to maximize  the 

likelihood of the data.

(Labels Model Parameters) Likelihood of the data
 This process can be iterated and can be shown to converge to a local 

maximum of the likelihood function
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EM Algorithm (Coins) -I
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 We will assume (for a minute) that we know the parameters             
and use it to estimate which Coin it is (Problem 1)

 Then, we will use this “label” estimation of the observed tosses, to 
estimate the most likely parameters 
 and so on...

 Notation: n data points; in each one: m tosses each, hi heads in the i-
th data point Di

 What is the probability that the ith data point, Di, came from Coin1 ?
 STEP 1 (Expectation Step):                                                         (Here h=hi )

α~~~ ,q,p
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EM Algorithm (Coins) - II
 Now, we would like to compute the likelihood of the data, and find 

the parameters that maximize it.
 We will maximize the log likelihood of the data (n data points)  

 LL = ∑1,n logP(Di |p,q,α)
 But, one of the variables – the coin’s name - is hidden. We can 

marginalize:
 LL=  ∑i=1,n log ∑y=0,1 P(Di, y | p,q, α) 

 However, the sum is inside the log, making ML solution difficult. 
 Instead of maximizing the LL we will maximize the expectation of 

the LL of the data (over the coin’s name, y).
 Explanation:

 Since the variable y is not observed, we cannot use the complete-data log 
likelihood. Instead, we use the expectation of the complete-data log likelihood 
under the posterior distribution of y to approximate log p(Di| p,q,®) [see above]

 We think of the likelihood logP(Di|p,q,α) as a random variable that depends on 
the value y of the coin in the ith toss. Therefore, instead of maximizing the LL we 
will maximize the expectation of this random variable (over the coin’s name).  
[Justified using Jensen’s Inequality; later & above] 

18

LL= ∑i=1,n log ∑y=0,1 P(Di, y | p,q, α) =
= ∑i=1,n log ∑y=0,1 P(Di|p,q, α )P(y|Di,p,q,α) = 
= ∑i=1,n log E_y P(Di |p,q, α) ≥
≥ ∑i=1,n E_y log P(Di |p,q, α)

Where the inequality is due to Jensen’s Inequality.
We maximize a lower bound on the Likelihood. 
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EM Algorithm (Coins) - III

 We maximize the expectation of this random variable (over 
the coin name).

E[LL] = E[∑i=1,n log P(Di| p,q, α)] = ∑i=1,nE[log P(Di| p,q, α)] = (some math; see above)     

=  ∑i=1,n P1i log P(Di, 1 | p,q, α)] + (1-P1i) log P(Di, 0 | p,q, α)]  
- P1i log P1i - (1-P1i) log (1- P1i )     

(Does not matter when we maximize)

 This is due to the linearity of the expectation and the 
random variable definition
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EM Algorithm (Coins) - IV

20

 Explicitly, we get:

 𝑬𝑬 ∑𝒊𝒊 𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝑫𝑫𝒊𝒊|�𝒑𝒑, �𝒒𝒒 �,α ≃
≃ ∑𝒊𝒊 𝑷𝑷𝟏𝟏𝒊𝒊 𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝟏𝟏,𝑫𝑫𝒊𝒊|�𝒑𝒑, �𝒒𝒒 �, α ) +∑𝒊𝒊 (𝟏𝟏 − 𝑷𝑷𝟏𝟏𝒊𝒊 )𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝟎𝟎,𝑫𝑫𝒊𝒊|�𝒑𝒑, �𝒒𝒒 �,α ) =   
= ∑𝒊𝒊 𝑷𝑷𝟏𝟏𝒊𝒊 𝒍𝒍𝒍𝒍𝒍𝒍 �α 𝒑𝒑𝒉𝒉𝒊𝒊 (𝟏𝟏 − 𝒑𝒑)𝒎𝒎−𝒉𝒉𝒊𝒊 +∑𝒊𝒊 𝑷𝑷𝟏𝟏𝒊𝒊 𝒍𝒍𝒍𝒍𝒍𝒍 (𝟏𝟏 − �α )𝒒𝒒𝒉𝒉𝒊𝒊 (𝟏𝟏 − 𝒒𝒒)𝒎𝒎−𝒉𝒉𝒊𝒊= 

= ∑𝒊𝒊 𝑷𝑷𝟏𝟏𝒊𝒊 (𝒍𝒍𝒍𝒍𝒍𝒍�α + 𝒉𝒉𝒊𝒊𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑 + (𝒎𝒎− 𝒉𝒉𝒊𝒊) log (𝟏𝟏 − 𝒑𝒑) ) 

+∑𝒊𝒊 (𝟏𝟏 − 𝑷𝑷𝟏𝟏𝒊𝒊 )(𝒍𝒍𝒍𝒍𝒍𝒍 (𝟏𝟏 − �α) + 𝒉𝒉𝒊𝒊𝒍𝒍𝒍𝒍𝒍𝒍𝒒𝒒 + (𝒎𝒎− 𝒉𝒉𝒊𝒊) log (𝟏𝟏 − 𝒒𝒒) )
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EM Algorithm (Coins) - V

α~~~ ,q,p
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 Finally, to find the most likely parameters, we maximize the 
derivatives with respect to             : 

 STEP 2: Maximization Step
 (Sanity check: Think of the weighted fictional points)
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When computing the derivatives, notice P1i here is a constant; 
it was computed using the current parameters in the E step

Given old parameters we labeled 
the data. Now we compute the 
likelihood of the complete data 

(with the labels; as in the previous 
slide) and next we will find the new 
set of parameters that maximizes 

this likelihood.
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The General EM Procedure 

26
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EM Summary (so far)
 EM is a general procedure for learning in the presence of  

unobserved variables. 

 We have shown how to use it in order to estimate the most likely 
density function for a mixture of (Bernoulli) distributions. 

 EM is an iterative algorithm that can be shown to converge to a local 
maximum of the likelihood function.

 It depends on assuming a family of probability distributions.
 In this sense, it is a family of algorithms. The update rules you will 

derive depend on the model assumed.
 It has been shown to be quite useful in practice, when the 

assumptions made on the probability distribution are correct,  but 
can fail otherwise.
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EM Summary (so far)
 EM is a general procedure for learning in the presence of  

unobserved variables. 

 The (family of ) probability distribution is known; the problem is to 
estimate its parameters  

 In the presence of hidden variables, we can often think about it as a 
problem of a mixture of distributions – the participating 
distributions are known, we need to estimate:  
 Parameters of the distributions 
 The mixture policy

 Our previous example: Mixture of Bernoulli distributions
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Example: K-Means Algorithm

29

K- means is a clustering algorithm.
We are given data points, known to be sampled independently 
from  a mixture of k Normal distributions, with 
means  µi, i=1,…k and the same standard variation   σ

x

p(x)

1µ2µ

Standard k-means clustering: 
• Guess k centers.
• Repeat: 

• Place each point in its 
center, based on distance. 

• Re-estimate centers for 
each cluster.

• Re-place points
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Example: K-Means Algorithm

30

First, notice that if we knew that all the data points are taken 
from a normal distribution with mean µ , finding its most likely 
value is easy.

We get many data points, D = {x1,…,xm}

Maximizing the log-likelihood is equivalent to minimizing: 

Calculate the derivative with respect to µ,  we get that the 
minimal point, that is, the most likely mean is
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A mixture of Distributions

31

As in the coin example, the problem is that data is sampled from a 
mixture of k different normal distributions, and we do not know, 
for a given data point xi, where is it  sampled from. 

Assume that we observe data point xi ;what is the probability that it 
was sampled from the distribution µj ?
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A Mixture of Distributions

32

As in the coin example, the problem is that data is sampled from a 
mixture of k different normal distributions, and we do not know, 
for a given each data point xi, where is it  sampled from. 

For a data point xi, define k binary hidden variables, zi1,zi2,…,zik, s.t 
zij =1 iff xi is sampled from the j-th distribution. 
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Example: K-Means Algorithms

33

Expectation: (here: h =                              ) 

Computing the likelihood given the observed data  D = {x1,…,xm} 
and the hypothesis h  (w/o the constant coefficient)
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Given old parameters (h’) we labeled 
the data. Now we compute the 

likelihood of the complete data (with 
the labels) and next we will find the 

new set of parameters (h) that 
maximizes this likelihood.

Example: K-Means Algorithms

34

Maximization: Maximizing

with respect to      we get that:

Which yields:
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Summary: K-Means Algorithms

35

Given a set D = {x1,…,xm} of data points,
guess initial parameters
Compute (for all i,j)

and a new set of means:

repeat to convergence
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Notice that this algorithm will find the best k means in the 
sense of minimizing the sum of square distance.

Recall: Standard k-means clustering
• Guess k centers.
• Repeat: 

• Place each point in its 
center, based on distance. 

• Re-estimate centers for 
each cluster.

• Re-place points

Difference: now we place 
“fractional” points into 

clusters. 
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Summary: EM
 EM is a general procedure for learning in the presence of   

unobserved variables. 
 We have shown how to use it in order to estimate the most likely 

density function for a mixture of probability distributions.
 EM is an iterative algorithm that can be shown to converge to a local 

maximum of the likelihood function. Thus, might requires many 
restarts.

 It depends on assuming a family of probability distributions.
 It has been shown to be quite useful in practice, when the 

assumptions made on the probability distribution are correct,  but can 
fail otherwise.

 As examples, we have derived an important clustering algorithm,  the 
k-means algorithm and have shown how to use it in order to estimate 
the most likely density function for a mixture of probability 
distributions. 
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More Thoughts about EM

 Training: a sample of data points, (x0, x1 ,…, xn) 2 {0,1}n+1

 Task: predict the value of x0, given assignments to all n 
variables. 
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More Thoughts about EM
 Assume that a set xi Є {0,1}n+1 of data points is  generated 

as follows:
 Postulate a hidden variable Z, with k values, 1 ≤ z ≤ k 

with probability αz, ∑1,k αz = 1
 Having randomly chosen a value z for the hidden variable, 

we choose the value  xi for each observable  Xi to be 1 
with probability pi

z and 0 otherwise, [i = 0, 1, 2, ….n]

 Training: a sample of data points, (x0, x1 ,…, xn) Є {0,1}n+1

 Task: predict the value of x0, given assignments to all n 
variables. 
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More Thoughts about EM
 Two options:
 Parametric:   estimate the model using EM.                  

Once a model is known, use it to make predictions.
 Problem: Cannot use EM directly without an additional 

assumption on the way data is generated.

 Non-Parametric:  Learn x0 directly as a function of the 
other variables.
 Problem: which function to try and learn? 

 x0 turns out to be a linear function of the other variables, 
when k=2   (what does it mean)?

 When k is known, the EM approach performs well; if an 
incorrect value is assumed the estimation fails; the linear 
methods performs better [Grove & Roth 2001]
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Another important distinction to attend to is the fact that, once you 
estimated all the parameters with EM, you can answer many prediction 
problems e.g., p(x0, x7,…,x8 |x1, x2 ,…, xn) while with Perceptron (say) 
you need to learn separate models for each prediction problem.
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