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GradsUndergrads

Midterm Exams
 Overall (142):
 Mean: 55.36  
 Std Dev: 14.9 
 Max: 98.5, Min: 1
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• Solutions will be available 
tomorrow. 

• Midterms will be made 
available at the recitations,  
Wednesday and Thursday.

• This will also be a good 
opportunity to ask the TAs 
questions about the grading.

Questions?

Class is curved; B+ will be around here
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Projects
 Please start working!

 Come to my office hours at least once in the next 3 weeks to discuss 
the project.

 HW2 Grades are out too.

 HW3 is out.
 You can only do part of it now. Hopefully can do it all by Wednesday.
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PDF (40) Code (60) Total (100) EC (10)
Mean 35.96 54.79 88.51 0.74
Stdev 6.8 12.75 23.12 2.47
Max 40 60 100 10
Min 1.5 0 0 0
# 
submissions 143 139 - -
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COLT approach to explaining 
Learning

 No Distributional Assumption
 Training Distribution is the same as the Test Distribution

 Generalization bounds depend
on this view and affects 
model selection.  

ErrD(h) < ErrTR(h)   +   
P(VC(H), log(1/ϒ),1/m)

 This is also called the 
“Structural Risk Minimization” principle. 

4
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COLT approach to explaining 
Learning

 No Distributional Assumption
 Training Distribution is the same as the Test Distribution

 Generalization bounds depend on this view and affect model 
selection.  

ErrD(h) < ErrTR(h)   +   P(VC(H), log(1/ϒ),1/m)

 As presented, the VC dimension is a combinatorial parameter that is 
associated with a class of functions. 

 We know that the class of linear functions has a lower VC dimension 
than the class of quadratic functions. 

 But, this notion can be refined to depend on a given data set, and this 
way directly affect the hypothesis chosen for a given data set.

5
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Data Dependent VC dimension

 So far we discussed VC dimension in the context of a fixed class of 
functions.  

 We can also parameterize the class of functions in interesting ways. 

 Consider the class of linear functions, parameterized by their margin.  
Note that this is a data dependent notion.

6
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Linear Classification
 Let X = R2, Y = {+1, -1}
 Which of these classifiers would be likely to generalize 

better?

7

h1 h2
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VC and Linear Classification
 Recall the VC based generalization bound:

Err(h) · errTR(h) + Poly{VC(H), 1/m, log(1/ϒ)}

 Here we get the same bound for both classifiers: 
 ErrTR (h1) = ErrTR (h2)= 0
 h1, h2 2 Hlin(2), VC(Hlin(2)) =  3

 How, then, can we explain our intuition that h2 should give better 
generalization than h1?

8
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Linear Classification
 Although both classifiers separate the data, the distance 

with which the separation is achieved is different: 

9

h1 h2
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Concept of Margin
 The margin ϒi of a point xi Є Rn with respect to a linear 

classifier h(x) = sign(wT ∙ x +b) is defined as the distance of 
xi from the hyperplane wT ∙ x +b = 0:

ϒi = |(wT ∙ xi +b)/||w||| 
 The margin of a set of points {x1,…xm} with respect to a 

hyperplane w, is defined as the margin of the point closest
to the hyperplane:

ϒ = min
i
ϒi = mini|(wT ∙ xi +b)/||w||| 

10
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VC and Linear Classification
 Theorem: 

If Hϒ is the space of all linear classifiers in Rn that 
separate the training data with margin at least ϒ, 
then: 

VC(Hϒ) ≤ min(R2/ ϒ2, n) +1,
 Where R is the radius of the smallest sphere (in Rn) that 

contains the data.
 Thus, for such classifiers, we have a bound of the form: 

Err(h) · errTR(h) + { (O(R2/ϒ2) + log(4/δ))/m }1/2

11
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Towards Max Margin Classifiers 
 First observation:
 When we consider the class Hϒ of linear hypotheses that separate a 

given data set with a margin ϒ,
 We see that 

 Large Margin ϒ Small VC dimension of Hϒ

 Consequently, our goal could be to find a separating hyperplane w  
that maximizes the margin of the set S of examples. 

 A second observation that drives an algorithmic approach is that:
Small ||w||  Large Margin

 Together, this leads to an algorithm: from among all those w’s that 
agree with the data, find the one with the minimal size ||w|| 
 But, if w separates the data, so does w/7….
 We need to better understand the relations between w and the margin

12

But, how can we do it algorithmically? 
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Maximal Margin
This discussion motivates the notion of a maximal margin.
The maximal margin of a data set S is define as:

ϒ(S) = max||w||=1 min(x,y) Є S |y wT x|

13

1. For a given w: Find the 
closest point.  

2. Then, find the point that gives 
the maximal margin value across 
all w’s (of size 1). 
Note: the selection of the point  is in 
the min and therefore  the max does 
not change if we scale w, so it’s okay 
to only deal with normalized w’s. 

The distance between a point x and the hyperplane defined by (w; b) is:   |wT x + b|/||w||

How does it help us to derive these h’s? 

argmax||w||=1 min(x,y) Є S |y wT x|

A hypothesis (w,b) 
has many names

Interpretation 1: among all w’s, 
choose the one that maximizes 

the margin. 
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Recap: Margin and VC dimension
 Theorem (Vapnik): If Hϒ is the space of all linear classifiers 

in Rn that separate the training data with margin at least ϒ, 
then

VC(Hϒ) ≤ R2/ϒ2

 where R is the radius of the smallest sphere (in Rn) that 
contains the data.

 This is the first observation that will lead to an algorithmic 
approach.

 The second observation is that: 
Small ||w||  Large Margin

 Consequently: the algorithm will be: from among all those
w’s that agree with the data, find the one with the 
minimal size ||w||

14

Believe

We’ll 
show
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Interpretation 2: among all w’s 
that separate the data with 

margin 1, choose the one with 
minimal size. 

From Margin to ||W||
 We want to choose the hyperplane that achieves the largest margin. 

That is, given a data set S, find: 
 w* = argmax||w||=1 min(x,y) Є S |y wT x|

 How to find this w*?

 Claim: Define w0 to be the solution of the optimization problem:
w0 = argmin {||w||2 : ∀ (x,y) Є S, y wT x ≥ 1 }.
Then:
w 0/||w0|| = argmax||w||=1 min(x,y) Є S y wT x

That is, the normalization of w0 corresponds to the largest  margin 
separating hyperplane.  

15
The next slide will show that the two interpretations 

are equivalent



CIS419/519 Fall ’18

From Margin to ||W||(2)
 Claim: Define w0 to be the solution of the optimization problem:

w0 = argmin {||w||2 : ∀ (x,y) Є S, y wT x ≥ 1 }    (**)
Then:
w 0/||w0|| = argmax||w||=1 min(x,y) Є S y wT x

That is, the normalization of w0 corresponds to the largest  margin 
separating hyperplane.  
 Proof: Define w’ = w 0/||w0|| and let w* be the largest-margin 

separating hyperplane of size 1.  We need to show that w’ = w*. 
Note first that  w*/ϒ(S) satisfies the constraints in (**); 
therefore:       ||w0|| ≤ ||w*/ ϒ(S)||  = 1/ ϒ(S) . 

 Consequently:
∀ (x,y) Є S   y w’T x  = 1/||w0|| y w0

T x ≥ 1/||w0|| ≥ ϒ(S)
But since ||w’|| = 1 this implies that w’ corresponds to the largest 
margin, that is w’= w*

16

Def. of w’ Def. of w0
Prev. ineq.

Def. of w0
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Margin of a Separating Hyperplane

17

 A separating hyperplane: wT x+b = 0
Distance between 
wT x+b = +1 and -1 is 2 / ||w||
What we did: 
1. Consider all possible w with 

different angles
2. Scale w such that the 

constraints are tight
3. Pick the one with largest 

margin/minimal size

wT x+b = 0
wT x+b = -1

wT xi +b¸ 1   if  yi = 1
wT xi +b· -1  if  yi = -1

=> 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1

Assumption: data is linearly separable
Let (x0 ,y0) be a point on wTx+b = 1
Then its distance to the separating plane wT

x+b = 0 is: |wT x0 +b|/||w||= 1/||w||
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Hard SVM Optimization
 We have shown that the sought after weight vector w is 

the solution of the following optimization problem:

SVM Optimization:  (***)
Minimize:  ½ ||w||2

Subject to: ∀ (x,y) Є S:     y wT x ≥ 1 

 This is a quadratic optimization problem in (n+1) variables, 
with |S|=m inequality constraints.   

 It has a unique solution.

19
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Maximal Margin

20

The margin of a linear 
separator
wT x+b = 0 is 2 / ||w||

max 2 / ||w|| = min ||w|| 
= min ½ wTw

min
𝑤𝑤,𝑏𝑏

1
2
𝑤𝑤𝑇𝑇𝑤𝑤

s.t yi(wTxi + 𝑏𝑏) ≥ 1,∀ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ 𝑆𝑆
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Support Vector Machines
 The name “Support Vector Machine” stems from the fact 

that w* is supported by (i.e. is the linear span of) the 
examples that are exactly at a distance 1/||w*|| from the 
separating hyperplane. These vectors are therefore called 
support vectors. 

 Theorem: Let w* be the minimizer of
the SVM optimization problem (***)
for S = {(xi, yi)}.    Let I= {i: w*Txi = 1}. 
Then there exists coefficients ®i >0 such that:

w* = ∑i Є I αi yi xi

21

This representation 
should ring a bell…
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Duality
 This, and other properties of Support Vector Machines are 

shown by moving to the dual problem.

 Theorem: Let w* be the minimizer of
the SVM optimization problem (***)
for S = {(xi, yi)}.   
Let I= {i: yi (w*Txi +b)= 1}. 
Then there exists coefficients αi >0 
such that:

w* = ∑i Є I αi yi xi

22
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Footnote about the threshold

25

 Similar to Perceptron, we can augment vectors to handle the bias term
�̅�𝑥 ⇐ 𝑥𝑥 , 1 ; �𝑤𝑤 ⇐ 𝑤𝑤 , 𝑏𝑏 so that �𝑤𝑤𝑇𝑇�̅�𝑥 = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏

 Then consider the following formulation 

min
�𝑤𝑤

1
2
�𝑤𝑤𝑇𝑇 �𝑤𝑤 s.t yi �𝑤𝑤T�̅�𝑥i ≥ 1,∀ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ S

 However, this formulation is slightly different from (***), because it is 
equivalent to

min
𝑤𝑤,𝑏𝑏

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 1

2
𝑏𝑏2 s.t yi(𝑤𝑤Txi + 𝑏𝑏) ≥ 1,∀ 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ∈ S

The bias term is included in the regularization. 
This usually doesn’t matter

For simplicity, we ignore the bias term
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Key Issues

26

 Computational Issues
 Training of an SVM used to be is very time consuming – solving 

quadratic program.
 Modern methods are based on Stochastic Gradient Descent and 

Coordinate Descent and are much faster.

 Is it really optimal? 
 Is the objective function we are optimizing the “right” one?
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Real Data  

27

17,000 dimensional context sensitive spelling 
Histogram of distance of points from the hyperplane

In practice, even in the separable 
case, we may not want to depend 
on the points closest to the 
hyperplane but rather on the 
distribution of the distance. If 
only a few are close, maybe we 
can dismiss them.
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Soft SVM

 The hard SVM formulation assumes linearly separable data.
 A natural relaxation: 

 maximize the margin while minimizing the # of examples that violate the margin 
(separability) constraints. 

 However, this leads to non-convex problem that is hard to solve. 
 Instead, we relax in a different way, that results in optimizing a 

surrogate loss function that is convex.  

28
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Soft SVM

 Notice that the relaxation of the constraint:                                                      
yiwTxi ≥ 1

 Can be done by introducing a slack variable 𝜉𝜉𝑖𝑖 (per 
example) and requiring:    

yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0
 Now, we want to solve: 

29

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

A large value of C means 
that misclassifications 

are bad – we focus on a 
small training error (at 

the expense of margin). 
A small C results in more 

training error, but 
hopefully better true 

error.
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Soft SVM (2)

 Now, we want to solve: 

 Which can be written as:

min
𝑤𝑤

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�

𝑖𝑖

max(0, 1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖) .

 What is the interpretation of this?

30

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwTxi ≥ 1 − 𝜉𝜉𝑖𝑖 ; 𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

In  optimum, ξi = max(0, 1 − yiwTxi)

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t 𝜉𝜉𝑖𝑖 ≥ 1 − yiwTxi; 𝜉𝜉𝑖𝑖≥ 0 ∀𝑖𝑖
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SVM Objective Function

31

 The problem we solved is:
Min ½ ||w||2 + c ∑ 𝜉𝜉𝑖𝑖

 Where 𝜉𝜉𝑖𝑖 > 0 is called a slack variable, and is defined by:
 𝜉𝜉𝑖𝑖 = max(0, 1 – yi wtxi)
 Equivalently, we can say that: yi wtxi ¸ 1 - 𝜉𝜉𝑖𝑖; 𝜉𝜉𝑖𝑖 ≥ 0

 And this can be written as:
Min  ½ ||w||2 +             c ∑ 𝜉𝜉𝑖𝑖

 General Form of a learning algorithm:
 Minimize empirical loss, and Regularize (to avoid over fitting) 
 Theoretically motivated improvement over the original algorithm we’ve seen 

at the beginning of the semester.

Can be replaced by other loss functionsCan be replaced by other regularization 
functions

Empirical lossRegularization term
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Balance between regularization and empirical 
loss
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Balance between regularization and empirical 
loss

33
(DEMO)

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Underfitting Overfitting

Model complexity

Expected
Error

Underfitting and Overfitting

34

 Simple models: 
High bias and low variance

Variance
Bias

Complex models: 
High variance and low bias 

Smaller C Larger C
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What Do We Optimize?

35
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What Do We Optimize(2)?

36

 We get an unconstrained problem. We can use the gradient 
descent algorithm! However, it is quite slow.

 Many other methods
 Iterative scaling; non-linear conjugate gradient; quasi-Newton 

methods; truncated Newton methods; trust-region newton method.
 All methods are iterative methods, that generate a sequence wk that 

converges to the optimal solution of the optimization problem above.

 Currently: Limited memory BFGS is very popular 
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Optimization: How to Solve

37

 1. Earlier methods used Quadratic Programming. Very slow.
 2. The soft SVM problem is an unconstrained optimization problems. It is 

possible to use the gradient descent algorithm.
 Many options within this category: 

 Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; 
truncated Newton methods; trust-region newton method.

 All methods are iterative methods, that generate a sequence wk that 
converges to the optimal solution of the optimization problem above.

 Currently: Limited memory BFGS is very popular 

 3. 3rd generation algorithms are based on Stochastic Gradient Decent 
 The runtime does not depend on n=#(examples); advantage when n is very large. 
 Stopping  criteria is a problem: method tends to be too aggressive at the beginning and 

reaches a moderate accuracy quite fast, but it’s convergence becomes slow if we are 
interested in more accurate solutions.

 4. Dual Coordinated Descent (& Stochastic Version)
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SGD for SVM

38

 Goal:   min
𝑤𝑤

𝑓𝑓 𝑤𝑤 ≡ 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶

𝑚𝑚
∑𝑖𝑖 max 0, 1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 . m: data size

 Compute sub-gradient of 𝑓𝑓 𝑤𝑤 :
𝛻𝛻𝑓𝑓 𝑤𝑤 = 𝑤𝑤 − 𝐶𝐶𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 if  1 − 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 ≥ 0 ; otherwise 𝛻𝛻𝑓𝑓 𝑤𝑤 = 𝑤𝑤

1. Initialize 𝑤𝑤 = 0 ∈ 𝑅𝑅𝑛𝑛

2. For every example xi, yi ∈ 𝐷𝐷

If 𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 ≤ 1 update the weight vector to 

𝑤𝑤 ← 1 − 𝛾𝛾 𝑤𝑤 + 𝛾𝛾𝐶𝐶𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 (𝛾𝛾 - learning rate)

Otherwise    𝑤𝑤 ← (1 − 𝛾𝛾)𝑤𝑤

3. Continue until convergence is achieved
This algorithm 
should ring a bell…

Convergence can be proved for a slightly 
complicated version of SGD (e.g, Pegasos)

m is here for mathematical correctness, it 
doesn’t matter in the view of modeling.
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Nonlinear SVM

39

 We can map data to a high dimensional space: x → 𝜙𝜙 𝑥𝑥 (DEMO)

 Then use Kernel trick: 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 𝜙𝜙 𝑥𝑥𝑖𝑖 𝑇𝑇 𝜙𝜙 𝑥𝑥𝑗𝑗 (DEMO2)

Primal: 

min
𝑤𝑤,𝜉𝜉𝑖𝑖

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑𝑖𝑖 𝜉𝜉𝑖𝑖

s.t yiwT𝜙𝜙 𝑥𝑥𝑖𝑖 ≥ 1 − 𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 ≥ 0 ∀𝑖𝑖

Dual:

min
𝛼𝛼

1
2
𝛼𝛼𝑇𝑇Q𝛼𝛼 − 𝑒𝑒𝑇𝑇𝛼𝛼

s.t 0 ≤ 𝛼𝛼 ≤ 𝐶𝐶 ∀𝑖𝑖

Q𝑖𝑖𝑗𝑗 = 𝑦𝑦𝑖𝑖 𝑦𝑦𝑗𝑗𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
Theorem: Let w* be the minimizer of the primal 
problem, 𝛼𝛼∗ be the minimizer of the dual problem.
Then w∗ = ∑𝑖𝑖 𝛼𝛼∗ yixi

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/js-toy/example.html
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Nonlinear SVM
 Tradeoff between training time and accuracy
 Complex model v.s. simple model

40

From: 
http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly_journal.pdf
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