
CIS419/519 Fall ’18

CIS 519/419 
Applied Machine Learning

www.seas.upenn.edu/~cis519

Dan Roth
danroth@seas.upenn.edu
http://www.cis.upenn.edu/~danroth/
461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton 
for CIS519/419 at Penn, or from other authors who have made their ML slides available. 

http://www.seas.upenn.edu/%7Ecis519
mailto:danroth@seas.upenn.edu
http://www.cis.upenn.edu/%7Edanroth/


CIS419/519 Fall ’18

Administration (1)
 Surveys: 

 Please do it.
 If 80% of the students complete it, we’ll give extra credit! 

 Projects:

 Come to my office hours at least once to discuss the project.
 Posters for the projects will be presented on the last meeting of the 

class, December 10, 12:00-1:30.
 Final reports will only be due after the Final exam,  on December 18

 Specific instructions are on the web page and will be sent also on Piazza.

 HW4: Out now. We had a problem with the template latex; fixed. 
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Administration (2)
 Exam:

 The exam will take place on the originally assigned date, 12/17. 
 CHEM 102
 Structured similarly to the midterm.
 120 minutes; closed books.

 What is covered:
 Cumulative!
 Slightly more focus on the material covered after the previous mid-term.
 However, notice that the ideas in this class are cumulative!!
 Everything that we present in class and in the homework assignments
 Material that is in the slides but is not discussed in class is not part of the 

material required for the exam.
• Example 1: We talked about Boosting. But not about boosting the confidence.
• Example 2: We talked about multiclass classification: OvA, AvA, but not Error 

Correcting codes,  and not about constraint classification (in the slides).

 We will give practice exams. HW5 will also serve as preparation. 
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Applied Machine Learning 
• The exams are mostly about 

understanding Machine Learning.
• HW is about applying machine 

learning.

Go to Bayesian Learning
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Recap: Error Driven Learning 
 Consider a distribution D over space X×Y
 X - the instance space;   Y - set of labels. (e.g. +/-1)

 Can think about the data generation process as governed by D(x), and 
the labeling process as governed by D(y|x), such that 

D(x,y)=D(x) D(y|x)

 This can be used to model both the case where labels are generated 
by a function y=f(x), as well as noisy cases and probabilistic generation 
of the label. 

 If the distribution D is known, there is no learning. We can simply 
predict y = argmaxy D(y|x)

 If we are looking for a hypothesis, we can simply find the one that 
minimizes the probability of mislabeling:

h = argminh E(x,y)~D [[h(x)≠ y]]
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Recap: Error Driven Learning (2)
 Inductive learning comes into play when the distribution is 

not known. 
 Then, there are two basic approaches to take.

 Discriminative (direct) learning  

 and  
 Bayesian Learning (Generative) 

 Running example: Text Correction:
 “I saw the girl it the park”  I saw the girl in the park
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1: Direct Learning
 Model the problem of text correction as a problem of 

learning from examples.
 Goal: learn directly how to make predictions.

PARADIGM
 Look at many (positive/negative) examples.
 Discover some regularities in the data.
 Use these to construct a prediction policy.
 A policy (a function, a predictor) needs to be specific.

[it/in] rule: if the occurs after the target ⇒in
 Assumptions comes in the form of a hypothesis class.

Bottom line: approximating h : X → Y is estimating P(Y|X).
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Direct Learning (2)
 Consider a distribution D over space X×Y
 X - the instance space;   Y - set of labels. (e.g. +/-1)
 Given a sample {(x,y)}1

m
,, and a loss function L(x,y)          

 Find  h∈H that minimizes   
Σi=1,mD(xi,yi)L(h(xi),yi) + Reg

 L can be:   L(h(x),y)=1, h(x)≠y, o/w L(h(x),y) = 0 (0-1 loss)

L(h(x),y)=(h(x)-y)2 ,                  (L2 ) 

L(h(x),y)= max{0,1-y h(x)}       (hinge loss)

L(h(x),y)= exp{- y h(x)}             (exponential loss)

 Guarantees: If we find an algorithm that minimizes loss on the 
observed data, then learning theory guarantees good future behavior 
(as a function of |H|).
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The model is called 
“generative” since it 
makes an assumption 
on how data X is 
generated given y

2: Generative Model
 Model the problem of text correction as that of generating 

correct sentences.
 Goal: learn a model of the language; use it to predict.

PARADIGM
 Learn a probability distribution over all sentences

 In practice: make assumptions on the distribution’s type

 Use it to estimate which sentence is more likely. 
 Pr(I saw the girl it the park) <>   Pr(I saw the girl in the park)

 In practice: a decision policy depends on the assumptions

 Guarantees: We need to assume the “right”  probability distribution

8

Bottom line: the generating paradigm approximates 
P(X,Y) = P(X|Y) P(Y).
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Probabilistic Learning
 There are actually two different notions.
 Learning probabilistic concepts 

 The learned concept is a function c:X→[0,1]
 c(x) may be interpreted as the probability that the label 1 is 

assigned to x
 The learning theory that we have studied before is applicable 

(with some extensions).

 Bayesian Learning: Use of a probabilistic criterion in 
selecting a hypothesis
 The hypothesis can be deterministic, a Boolean function.

 It’s not the hypothesis – it’s the process.
 In practice, as we’ll see, we will use the same principles as before, 

often similar justifications, and similar algorithms.

9
Remind yourself of basic probability

Go to Bayesian Learning
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Probabilities
 30 years of AI research danced around the fact that the 

world was inherently uncertain

 Bayesian Inference:
 Use probability theory and information about independence 
 Reason diagnostically (from evidence (effects) to conclusions 

(causes))...
 ...or causally (from causes to effects)

 Probabilistic reasoning only gives probabilistic results
 i.e., it summarizes uncertainty from various sources

 We will only use it as a tool in Machine Learning.
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Concepts
 Probability, Probability Space and Events
 Joint Events
 Conditional Probabilities
 Independence

 Next week’s recitation will provide a refresher on probability
 Use the material we provided on-line

 Next I will give a very quick refresher 

11
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(1) Discrete Random Variables

 Let X denote a random variable
 X is a mapping from a space of outcomes to R.

 [X=x] represents an event (a possible outcome) and, 
 Each event has an associated probability

 Examples of binary random variables:
 A = I have a headache
 A = Sally will be the US president in 2020

 P(A=True) is “the fraction of possible worlds in which 
A is true”
 We could spend hours on the philosophy of this,    but we 

won’t

12
Adapted from slide by Andrew Moore
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 Universe U is the event space of all possible worlds
 Its area is 1
 P(U) = 1

 P(A) = area of red oval

 Therefore:

U

Visualizing A

worlds in which A is false

worlds in which 
A is true

13
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Axioms of Probability
Kolmogorov showed that three simple axioms lead to 
the rules of probability theory

 de Finetti, Cox, and Carnap have also provided compelling 
arguments for these axioms

1. All probabilities are between 0 and 1:
0 ≤ P(A) ≤ 1

2. Valid propositions (tautologies) have probability 1, 
and unsatisfiable propositions have probability 0:

P(true) = 1 ;    P(false) = 0

3. The probability of a disjunction is given by:
P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

14
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Interpreting the Axioms
 0 ≤ P(A) ≤ 1
 P(true) = 1
 P(false) = 0
 P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

 From these you can prove other 
properties:





A∧BA B

15
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Multi-valued Random Variables

 A is a random variable with arity k if it can take on exactly one 
value out of {v1,v2, ..., vk }

 Think about tossing a die
 Thus…

Based on slide by Andrew Moore
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Multi-valued Random Variables

 We can also show that:

 This is called marginalization over A

17
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(2) Joint Probabilities
 Joint probability: matrix of combined probabilities of a set 

of variables

Russell & Norvig’s Alarm Domain: (boolean RVs)

 A world has a specific instantiation of variables:
(alarm ∧ burglary ∧ ¬earthquake)

 The joint probability is given by:

P(Alarm, Burglary) =
alarm ¬alarm

burglary 0.09 0.01
¬burglary 0.1 0.8

Probability of 
burglary:

P(Burglary) = 0.1

by marginalization 
over Alarm



CIS419/519 Fall ’18

The Joint Distribution

Recipe for making a joint 
distribution of d variables:

Slide © Andrew Moore

e.g., Boolean variables A, B, C
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The Joint Distribution

Recipe for making a joint 
distribution of d variables:

1. Make a truth table listing all 
combinations of values of 
your variables (if there are d
Boolean variables then the 
table will have 2d rows).

A B C
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Slide © Andrew Moore

e.g., Boolean variables A, B, C
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The Joint Distribution

Recipe for making a joint 
distribution of d variables:

1. Make a truth table listing all 
combinations of values of 
your variables (if there are d
Boolean variables then the 
table will have 2d rows).

1. For each combination of 
values, say how probable it is.

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

Slide © Andrew Moore

e.g., Boolean variables A, B, C
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The Joint Distribution

Recipe for making a joint 
distribution of d variables:

1. Make a truth table listing all 
combinations of values of 
your variables (if there are d
Boolean variables then the 
table will have 2d rows).

1. For each combination of 
values, say how probable it is.

2. If you subscribe to the axioms 
of probability, those numbers 
must sum to 1.

A B C Prob
0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

A

B

C0.050.25

0.10 0.050.05

0.10

0.10
0.30

e.g., Boolean variables A, B, C

Slide © Andrew Moore
22



CIS419/519 Fall ’18

Inferring Probabilities from the Joint
alarm ¬alarm
earthquake ¬earthquake earthquake ¬earthquake

burglary 0.01 0.08 0.001 0.009
¬burglary 0.01 0.09 0.01 0.79
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(3) Conditional Probability
 P(A | B) =  Fraction of worlds in which B is true that also 

have A true

24

U

A
B

What if we already know 
that B is true?

That knowledge changes 
the probability of A
• Because we know we’re in a 

world where B is true
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Example:  Conditional Probabilities

P(Alarm, Burglary) =

25

alarm ¬alarm
burglary 0.09 0.01
¬burglary 0.1 0.8

P(burglary | alarm) 

P(alarm | burglary) 

P(burglary ∧ alarm)  

= P(burglary ∧ alarm) / P(alarm)
= 0.09 / 0.19 = 0.47

= P(burglary ∧ alarm) / P(burglary)
= 0.09 / 0.1 = 0.9

= P(burglary | alarm) P(alarm) 
= 0.47 * 0.19 = 0.09
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(4) Independence
 When two event do not affect each others’ probabilities, we call 

them independent
 Formal definition:

26
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Exercise: Independence

Is smart independent of study?

Is prepared independent of study?

P(smart ∧ study ∧ prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072

27
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Exercise: Independence

Is smart independent of study?
P(study ∧ smart) = 0.432 + 0.048 = 0.48
P(study) = 0.432 + 0.048 + 0.084 + 0.036 = 0.6 
P(smart) = 0.432 + 0.048 + 0.16 + 0.16 = 0.8
P(study) x P(smart) = 0.6 x 0.8 = 0.48

Is prepared independent of study?

P(smart ∧ study ∧ prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072

So yes!
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Conditional Independence
 Absolute independence of A and B:

Conditional independence of A and B given C

 This lets us decompose the joint distribution:
 Conditional independence is different than absolute independence, 

but still useful in decomposing the full joint
 P(A,B,C) = [Always] P(A,B|C) P(C) = 

= [Independence] P(A|C) P(B|C) P(C)

29
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Exercise: Independence

Is smart independent of study?

Is prepared independent of study?

P(smart ∧ study ∧ prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072
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Take Home Exercise: 
Conditional independence

Is smart conditionally independent of prepared, given study?

Is study conditionally independent of prepared, given smart?

P(smart ∧ study ∧ prep)
smart ¬smart

study ¬study study ¬study

prepared 0.432 0.16 0.084 0.008

¬prepared 0.048 0.16 0.036 0.072

31
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Summary: Basic Probability
 Product Rule:   P(A,B) = P(A|B)P(B) = P(B|A)P(A)
 If A and B are independent:   

 P(A,B) = P(A)P(B);   P(A|B)= P(A), P(A|B,C)=P(A|C)

 Sum Rule: P(A∨B) = P(A)+P(B)-P(A,B)
 Bayes Rule: P(A|B)  = P(B|A) P(A)/P(B)
 Total Probability: 

 If events A1, A2,…An are mutually exclusive: Ai ∧Å Aj = Φ, ∑i P(Ai)= 1
 P(B) = ∑ P(B , Ai) = ∑i P(B|Ai) P(Ai)

 Total Conditional Probability: 
 If events A1, A2,…An are mutually exclusive: Ai ∧Å Aj = Φ, ∑ i P(Ai)= 1
 P(B|C) = ∑ P(B , Ai|C) = ∑i P(B|Ai,C) P(Ai|C)                   

32
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Summary: The Monty Hall problem

 Suppose you're on a game show, and 
you're given the choice of three doors.
 Behind one door is a car; behind the others, 

goats. 
 You pick a door, say No. 1, and the host, 

who knows what's behind the doors, opens 
another door, say No. 3, which has a goat.

 He then says to you, "Do you want to switch 
to door No. 2?" 

 Is it to your advantage to switch your 
choice?

 Try to develop an argument using the 
concepts we discussed. 

33
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Bayes, Thomas (1763) An essay towards 
solving a problem in the doctrine of 
chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418

Bayes’ Rule

 Exactly the process we just used
 The most important formula in 

probabilistic machine learning

(Super Easy) Derivation:

Just set equal... 

and solve...
34



CIS419/519 Fall ’18

Using Bayes Rule to Gamble

The “Win” envelope has a 
dollar and four beads in it

The “Lose” envelope has 
three beads and no money

Trivial question: Someone draws an envelope at 
random and offers to sell it to you. 
How much should you pay?

Slide © Andrew Moore
35
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Using Bayes Rule to Gamble

The “Win” envelope has a 
dollar and four beads in it

The “Lose” envelope has 
three beads and no money

A question: Before deciding, you are allowed to see one 
bead drawn randomly from the chosen envelope.
- Will that help?
- Suppose it’s black:  How much should you pay? 

Slide © Andrew Moore
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Calculation…
 Suppose it’s black:  How much should you pay?
 We know: 

 P(win) = 1/2 ; P(b | win) = 1/2 P(b | lose) = 2/3  

 P(win | b) = P(b | win) P(win)/P(b) = 
 = 1/2 x 1/2 α = 0.25α
 P(lose | b) = P(b | lose) P(lose)/P(b)
 = 2/3 x 1/2 α = 0.3333α
 We can compute p(b):

 1 = P(win | b) + P(lose | b) = 0.25α + 0.3333α  α = 1.714
 (Try a direct way of computing p(b))? 

 We get: 
 P(win | b)  = 0.4286 ; P(lose | b) = 0.5714


Based on example by Andrew Moore
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Bayes’ Rule for Machine Learning
 Allows us to reason from evidence to hypotheses
 Another way of thinking about Bayes’ rule:

38
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Basics of Bayesian Learning

39

 Goal: find the best hypothesis from some space H of 
hypotheses, given the observed data (evidence) D.

 Define best to be: most probable hypothesis in H

 In order to do that, we need to assume a probability 
distribution over the class H.

 In addition, we need to know something about the relation 
between the data observed and the hypotheses (E.g., a coin 
problem.)

 As we will see, we will be Bayesian about other things, e.g., the 
parameters of the model 
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Basics of Bayesian Learning

40

 P(h) - the prior probability of a hypothesis h
Reflects background knowledge; before data is observed. If no 
information - uniform distribution.

 P(D) - The probability that this sample of the Data is observed. 
(No knowledge of the hypothesis)

 P(D|h): The probability of observing the sample D, given that 
hypothesis h is the target

 P(h|D): The posterior probability of  h. The probability that h is 
the target, given that D has been observed. 
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Bayes Theorem

41

 P(h|D) increases with P(h) and with P(D|h)

 P(h|D) decreases with P(D)

P(D)
P(h)h)|P(DD)|P(h =
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 P(h|D)  = P(D|h) P(h)/P(D)

 The learner considers a set of candidate hypotheses H 
(models), and attempts to find the most probable one h ∈H, 
given the observed data.

 Such maximally probable hypothesis is called maximum a 
posteriori hypothesis (MAP); Bayes theorem is used to 
compute it:

hMAP = argmaxh Є H P(h|D)  = argmaxh Є H P(D|h) P(h)/P(D) 

= argmaxh Є H P(D|h) P(h)

Learning Scenario

42
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Learning Scenario (2)

43

hMAP = argmaxh Є H P(h|D)  = argmaxh Є H P(D|h) P(h)

 We may assume that a priori,  hypotheses are equally 
probable:                 P(hi) = P(hj) ∀ hi, hj 2 H

 We get the Maximum Likelihood hypothesis: 

hML = argmaxh Є H P(D|h)

 Here we just look for the hypothesis that best explains the 
data 
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Examples

44

 hMAP = argmaxh Є H P(h|D)  =  argmaxh Є H P(D|h) P(h)

 A given coin is either fair or has a 60% bias in favor of Head.
 Decide what is the bias of the coin [This is a learning problem!]

 Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 
 Now we need Data. 1st Experiment: coin toss is H.
 P(D|h):

P(D|h1)=0.5 ; P(D|h2) =0.6
 P(D):      

P(D)=P(D|h1)P(h1) +  P(D|h2)P(h2 ) 
=  0.5  • 0.75  +     0.6 • 0.25  = 0.525

 P(h|D):
P(h1|D) = P(D|h1)P(h1)/P(D) = 0.5•0.75/0.525 = 0.714
P(h2|D) = P(D|h2)P(h2)/P(D) = 0.6•0.25/0.525 = 0.286
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Examples(2)

45

 hMAP = argmaxh Є H P(h|D)  =  argmaxh Є H P(D|h) P(h)

 A given coin is either fair or has a 60% bias in favor of Head.
 Decide what is the bias of the coin [This is a learning problem!]

 Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 

 After 1st coin toss is H we still think that the coin is more likely to be fair

 If we were to use Maximum Likelihood approach (i.e., assume equal priors) 
we would think otherwise. The data supports  the biased coin better.

 Try: 100 coin tosses; 70 heads. 
 You will believe that the coin is biased.
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Examples(2)

46

 hMAP = argmaxh Є H P(h|D)  =  argmaxh Є H P(D|h) P(h)

 A given coin is either fair or has a 60% bias in favor of Head.
 Decide what is the bias of the coin [This is a learning problem!]

 Two hypotheses:  h1: P(H)=0.5;   h2: P(H)=0.6
 Prior: P(h): P(h1)=0.75   P(h2 )=0.25 

 Case of  100 coin tosses; 70 heads. 

P(D) = P(D|h1) P(h1) + P(D|h2) P(h2) = 
= 0.5100 x 0.75 + 0.670 x 0.430 x 0.25 = 
= 7.9 x 10-31 x 0.75 + 3.4 x 10-28 x 0.25

0.0057 = P(h1|D) = P(D|h1) P(h1)/P(D) << P(D|h2) P(h2) /P(D) = P(h2|D) =0.9943
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Maximum Likelihood Estimate

48

 Assume that you toss a (p,1-p) coin m times and get k Heads, 
m-k Tails.  What is p?

 If p is the probability of Head, the probability of the data 
observed is:    

P(D|p) = pk (1-p)m-k

 The log Likelihood:
L(p) = log P(D|p) = k log(p) + (m-k)log(1-p)

 To maximize, set the derivative w.r.t. p equal to 0:

dL(p)/dp = k/p – (m-k)/(1-p) 

 Solving this for p, gives:      p=k/m

2. In practice, smoothing is advisable – deriving the 
right smoothing can be done by assuming a prior. 

1. The model we assumed is binomial. You could assume a different model! 
Next we will consider other models and see how to learn their parameters.
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 Bernoulli Distribution:  
 Random Variable X takes values {0, 1} s.t  P(X=1) = p = 1 – P(X=0)
 (Think of tossing a coin)

 Binomial Distribution: 
 Random Variable X takes values {1, 2,…, n} representing  the number of 

successes (X=1) in n Bernoulli trials.
 P(X=k) = f(n, p, k) = Cn

k pk (1-p)n-k

 Note that if X ~ Binom(n, p) and Y ~ Bernulli (p),    X = ∑i=1,n Y
 (Think of multiple coin tosses) 

Probability Distributions

49
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 Categorical Distribution:  
 Random Variable X takes on values in {1,2,…k}  s.t P(X=i) = pi and  ∑1

k pi = 1
 (Think of a dice) 

 Multinomial Distribution:
 Let the random variables Xi (i=1, 2,…, k) indicates the number of times 

outcome i was observed over the n trials. 
 The vector X = (X1, ..., Xk) follows a multinomial distribution (n,p) where 

p = (p1, ..., pk) and ∑1
k pi = 1 

 f(x1, x2,…xk, n, p) = P(X1= x1, … Xk = xk) =
 (Think of n tosses of a k sided dice)

Probability Distributions(2)

50
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Our eventual goal will be: Given a document, 
predict whether it’s “good” or “bad”

 We are given a collection of documents written in a three word language {a, b, c}. All the 
documents have exactly n words (each word can be either a, b or c). 

 We are given a labeled document collection {D1, D2 ... , Dm}. The label yi of document Di is 
1 or 0, indicating whether Di is “good” or “bad”.

 Our generative model uses the multinominal distribution. It first decides whether to 
generate a good or a bad document (with P(y

i
=1) = 𝜂𝜂). Then, it places words in the 

document; let ai (bi, ci, resp.) be the number of times word a (b, c, resp.) appears in 
document Di. That is, we have ai + bi + ci = |Di| = n.

 In this generative model, we have: 
P(Di|y = 1) =n!/(ai! bi! ci!) 𝛼𝛼1

ai 𝛽𝛽1
bi 𝛾𝛾1

ci

where 𝛼𝛼1 (𝛽𝛽1, 𝛾𝛾1 resp.) is the probability that a (b , c) appears in a “good”  document. 
 Similarly, P(Di|y = 0) =n!/(ai! bi! ci!) 𝛼𝛼 0

ai 𝛽𝛽0
bi 𝛾𝛾0

ci

 Note that: 𝛼𝛼0 +𝛽𝛽0 + 𝛾𝛾0=𝛼𝛼1 +𝛽𝛽1 + 𝛾𝛾1 =1

A Multinomial Bag of Words

51

Unlike the discriminative case, the “game” here is different: 
 We make an assumption on how the data is being generated. 

 (multinomial, with 𝜂𝜂, 𝛼𝛼i , 𝛽𝛽i, 𝛾𝛾i ) 
 We observe documents, and estimate these parameters (that’s the learning problem). 
 Once we have the parameters, we can predict the corresponding label. 

How do we model it?
What is the learning problem?
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A Multinomial Bag of Words (2)
 We are given a collection of documents written in a three word language {a, b, c}. All the 

documents have exactly n words (each word can be either a, b or c). 
 We are given a labeled document collection {D1, D2 ... , Dm}. The label yi of document Di is 

1 or 0, indicating whether Di is “good” or “bad”.

 The classification problem: given a document D, determine if it is good or bad; that is, 
determine P(y|D). 

 This can be determined via Bayes rule: P(y|D)  = P(D|y) P(y)/P(D)

 But, we need to know the parameters of the model to compute that. 
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A Multinomial Bag of Words (3)

53

 How do we estimate the parameters?
 We derive the most likely value of the parameters defined above, by maximizing the log 

likelihood of the observed data. 
 PD = Πi P(yi , Di )  =  Πi P(Di |y

i
) P(y

i
)  = 

 We denote by P(y
i
=1) = 𝜂𝜂 the probability  that an example is “good” (yi=1; otherwise yi=0).     

Then:
 Πi P(y, Di ) = Πi [(𝜂𝜂 n!/(ai! bi! ci!) 𝛼𝛼1

ai 𝛽𝛽1
bi 𝛾𝛾1

ci )yi ∙((1 - 𝜂𝜂)  n!/(ai! bi! ci!) 𝛼𝛼 0
ai 𝛽𝛽0

bi 𝛾𝛾0
ci )1-yi]

 We want to maximize it with respect to each of the parameters. We first compute log (PD) 
and then differentiate: 

 log(PD) =∑
i
yi [ log(𝜂𝜂) + C + ai log(𝛼𝛼1) + bi log(𝛽𝛽1) + ci log(𝛾𝛾1)] +            
(1- yi) [log(1- 𝜂𝜂) + C’ + ai log(𝛼𝛼0) + bi log(𝛽𝛽0) + ci log(𝛾𝛾0) ]

 dlogPD/𝜂𝜂 = ∑i [yi / 𝜂𝜂 - (1-yi)/(1- 𝜂𝜂)] = 0  ∑i (yi - 𝜂𝜂) = 0     𝜂𝜂 = ∑i yi /m

 The same can be done for the other 6 parameters. However, notice that they are not 
independent: 𝛼𝛼0+ 𝛽𝛽0+ 𝛾𝛾0=𝛼𝛼1+ 𝛽𝛽1+ 𝛾𝛾1 =1 and also ai + bi + ci = |Di| = n.

Labeled data, assuming that the 
examples are independent

Notice that this is an important trick to write down the 
joint probability without knowing what the outcome of the 

experiment is. The ith expression evaluates to p(Di , yi)
(Could be written as a sum with multiplicative yi but less convenient) 

Makes sense?
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 Consider data over 5 characters, x=a, b, c, d, e,  and 2 states s=B, I
 Think about chunking a sentence to phrases; B is the Beginning of each phrase, I is Inside 

a phrase. 
 (Or: think about being in one of two rooms, observing x in it, moving to the other)

 We generate characters according to:
 Initial state prob: p(B)= 1; p(I)=0
 State transition prob:

 p(B→B)=0.8 p(B→I)=0.2
 p(I→B)=0.5 p(I→I)=0.5

 Output prob:
 p(a|B) = 0.25,p(b|B)=0.10, p(c|B)=0.10,…. 
 p(a|I) = 0.25,p(b,I)=0,…

 Can follow the generation process to get the observed sequence.

Other Examples (HMMs)

P(B)=1
P(I) = 0

P(x|B)
B I

0.8
0.2

0.5

0.5
P(x|I)

0.8
0.2

0.5

0.5

a

B I BII

ddc

1
0.2 0.50.50.5

0.40.250.250.250.25

a

 We can do the same exercise we did before. 

 Data: {(x1 ,x2,…xm ,s1 ,s2,…sm)}1
n

 Find the most likely parameters of the model:
P(xi |si), P(si+1 |si), p(s1)

 Given an unlabeled example (observation)
x = (x1, x2,…xm)

 use Bayes rule to predict the label  l=(s1, s2,…sm):

l* = argmaxl P(l|x) = argmaxl P(x|l) P(l)/P(x)

 The only issue is computational: there are 2m possible 
values of l (labels) 

 This is an HMM model (but nothing was hidden; the 
si were given in training. It’s also possible to solve 
when the s1 ,s2,…sm are hidden, via EM.

54
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Bayes Optimal Classifier

55

 How should we use the general formalism?
 What should H be?

 H can be a collection of functions. Given the training data, 
choose an optimal function. Then, given new data, evaluate 
the selected function on it.

 H can be a collection of possible predictions. Given the data, 
try to directly choose the optimal prediction. 

 Could be different!
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Bayes Optimal Classifier

56

 The first formalism suggests to learn a good hypothesis and 
use it. 

 (Language modeling, grammar learning, etc. are here)

 The second one suggests to directly choose a decision.[it/in]:
 This is the issue of “thresholding” vs. entertaining all options 

until the last minute. (Computational Issues) 

h)P(h)|P(DargmaxD)|P(hargmaxh HhHhMAP ∈∈ ==
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Bayes Optimal Classifier: Example

 Assume a space of 3 hypotheses:
 P(h1|D) = 0.4; P(h2|D) = 0.3; P(h3|D) = 0.3 hMAP = h1

 Given a new instance x, assume that
 h1(x) = 1                h2(x) = 0                 h3(x) = 0

 In this case, 
 P(f(x) =1 ) = 0.4   ; P(f(x) = 0) = 0.6    but    hMAP (x) =1

 We want to determine the most probable classification by 
combining the prediction of all hypotheses, weighted by 
their posterior probabilities

 Think about it as deferring your commitment – don’t 
commit to the most likely hypothesis until you have to 
make a decision (this has computational consequences) 
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Bayes Optimal Classifier: Example(2)

 Let V be a set of possible classifications

 Bayes Optimal Classification: 

 In the example: 

 and the optimal prediction is indeed 0.
 The key example of using a “Bayes optimal Classifier” is 

that of the Naïve Bayes algorithm.
58

D)|)P(hh | P(v D)|)P(hD,h | P(v D)|P(v iHh ijiHh ijj
ii

∑∑ ∈∈
==

D)|)P(hh | P(vargmax  D)|P(vargmax v iHh ijVvjVv
ijj ∑ ∈∈∈ ==

0.40.30 0.30 0.41 D)|)P(hh | P(1 D)|P(1 iHh i
i

=•+•+•== ∑ ∈

0.60.31 0.31 0.40 D)|)P(hh | P(0 D)|P(0 iHh i
i

=•+•+•== ∑ ∈
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f:X→V,  finite set of values
Instances x∈X can be described as a collection of features 

x = (x1, x2, … xn)    xi Є {0,1} 
Given an example, assign it the most probable value in V 
Bayes Rule:  

Notational convention: P(y) means P(Y=y)

)x,...,x,x|P(vargmax x)|P(vargmax v n21jVvjVvMAP jj ∈∈ ==

  

 

vMAP =  argmaxv j ∈V

P(x1,x2,...,xn | vj )P(vj)
P(x1,x2,...,xn )

 

       =  argmaxv j ∈VP(x1,x2,...,xn | vj )P(vj)

Bayesian Classifier

59
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Bayesian Classifier
VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Given training data we can estimate the two terms.

Estimating  P(v) is easy. E.g., under the binomial distribution 
assumption, count the number of times v appears in the training data. 

However, it is not feasible to estimate P(x1, x2, …, xn | v )

In this case we have to estimate, for each target value,  the probability 
of each instance (most of which will not occur).

In order to use a Bayesian classifiers in practice, we need to make 
assumptions that will allow us to estimate these quantities.
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∏ =
=

=
=

=

=

=

n

1i ji

jnjn43jn32jn21

jn3jn32jn21

jn2jn21

jn21

)v|P(x    

v|P(xv,x,...,x |P(xv,x,...,x|)P(xv,x,...,x|P(x    
    

v|x,...,P(xv,x,...,x|)P(xv,x,...,x|P(x     
v|x,...,)P(xv,x,...,x|P(x    

)v|x,...,x,P(x

))...)
.......

))
)

VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target value

Naive Bayes

61



CIS419/519 Spring’18

Naive Bayes (2)
VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target 
value

P(x1 = b1, x2 = b2,…,xn = bn | v = vj ) ∏𝑖𝑖=1
𝑛𝑛 P(xi= bi | v = vj )

Generative model:
First choose a value vj ∈V                        according to P(v)
For each vj :  choose x1 x2, …, xn according to P(xk |vj )
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Naive Bayes (3)
VMAP = argmaxv P(x1, x2, …, xn | v )P(v)

Assumption: feature values are independent given the target value
P(x1 = b1, x2 = b2,…,xn = bn | v = vj ) = ∏𝑖𝑖=1

𝑛𝑛 P(xi =bi | v = vj )

Learning method: Estimate n|V| + |V| parameters and use them to make 
a prediction.  (How to estimate?)

Notice that this is learning without search. Given a collection of training 
examples, you just compute the best hypothesis (given the assumptions). 

This is learning without trying to achieve consistency or even approximate 
consistency.
Why does it work?
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• Notice that the features values are conditionally independent 
given the target value, and are not required to be independent.

• Example: The Boolean features are x and y. 
We define the label to be  l = f(x,y)=x∧y
over the product distribution:     p(x=0)=p(x=1)=1/2 and    p(y=0)=p(y=1)=1/2 
The distribution is defined so that x and y are independent:   p(x,y) = p(x)p(y)  

That is:   

• But, given that l =0:
p(x=1| l =0) = p(y=1| l =0) = 1/3

while:             p(x=1,y=1 | l =0) = 0
so x and y are not conditionally independent.

Conditional Independence

64

X=0 X=1
Y=0 ¼ (l = 0) ¼ (l = 0)

Y=1 ¼ (l = 0) ¼ (l = 1)



CIS419/519 Spring’18

• The other direction also does not hold. 
x and y can be conditionally independent but not independent.

Example: We define a distribution s.t.:
l =0:   p(x=1| l =0) =1,  p(y=1| l =0) = 0
l =1:   p(x=1| l =1) =0,  p(y=1| l =1) = 1  
and assume, that:    p(l =0) = p(l =1)=1/2

• Given the value of l,      x and y are independent (check)
• What about unconditional independence ?
p(x=1) = p(x=1| l =0)p(l =0)+p(x=1| l =1)p(l =1) = 0.5+0=0.5 
p(y=1) = p(y=1| l =0)p(l =0)+p(y=1| l =1)p(l =1) = 0+0.5=0.5
But,
p(x=1, y=1)=p(x=1,y=1| l =0)p(l =0)+p(x=1,y=1| l =1)p(l =1) = 0 

so x and y are not independent.

Conditional Independence

65

X=0 X=1
Y=0 0 (l= 0) ½   (l= 0)

Y=1 ½ (l= 1) 0    (l= 1)
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Day    Outlook    Temperature      Humidity    Wind PlayTennis

1       Sunny            Hot              High          Weak            No
2       Sunny            Hot              High         Strong           No
3       Overcast        Hot              High          Weak            Yes
4       Rain              Mild              High          Weak            Yes
5       Rain              Cool             Normal       Weak            Yes
6       Rain              Cool             Normal      Strong           No
7       Overcast        Cool             Normal      Strong          Yes 
8       Sunny            Mild             High          Weak             No
9       Sunny            Cool             Normal      Weak            Yes
10      Rain              Mild              Normal      Weak            Yes 
11      Sunny            Mild              Normal     Strong           Yes
12      Overcast        Mild              High         Strong           Yes
13      Overcast         Hot              Normal     Weak             Yes
14      Rain               Mild              High        Strong            No 

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Naïve Bayes Example
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• How do we estimate                                 ?

∏ == ∈ i ino}{yes,vNB v)|nobservatioP(xP(v)argmax v

 v)|ionP(observat

Estimating Probabilities

67
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• Compute P(PlayTennis= yes);  P(PlayTennis= no)
• Compute P(outlook= s/oc/r      | PlayTennis= yes/no) (6 numbers)
• Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
• Compute P(humidity= hi/nor    | PlayTennis= yes/no) (4 numbers)
• Compute P(wind= w/st            | PlayTennis= yes/no) (4 numbers)

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Example
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• Compute P(PlayTennis= yes);  P(PlayTennis= no)
• Compute P(outlook= s/oc/r      | PlayTennis= yes/no) (6 numbers)
• Compute P(Temp= h/mild/cool | PlayTennis= yes/no) (6 numbers)
• Compute P(humidity= hi/nor    | PlayTennis= yes/no) (4 numbers)
• Compute P(wind= w/st            | PlayTennis= yes/no) (4 numbers)

•Given a new instance:
(Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

• Predict: PlayTennis= ?

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Example
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•Given: (Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

P(PlayTennis= yes)=9/14=0.64            P(PlayTennis= no)=5/14=0.36

P(outlook = sunny | yes)= 2/9         P(outlook = sunny | no)= 3/5 
P(temp = cool | yes)    = 3/9             P(temp = cool | no)  = 1/5
P(humidity = hi |yes)    = 3/9             P(humidity = hi | no)  =  4/5
P(wind = strong | yes)  = 3/9            P(wind = strong | no)= 3/5

P(yes, …..) ~ 0.0053                          P(no, …..) ~ 0.0206 

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Example
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•Given: (Outlook=sunny;  Temperature=cool; Humidity=high; Wind=strong)

P(PlayTennis= yes)=9/14=0.64            P(PlayTennis= no)=5/14=0.36

P(outlook = sunny | yes)= 2/9         P(outlook = sunny | no)= 3/5 
P(temp = cool | yes)    = 3/9             P(temp = cool | no)  = 1/5
P(humidity = hi |yes)    = 3/9             P(humidity = hi | no)  =  4/5
P(wind = strong | yes)  = 3/9            P(wind = strong | no)= 3/5

P(yes, …..) ~ 0.0053                          P(no, …..) ~ 0.0206 
P(no|instance) = 0.0206/(0.0053+0.0206)=0.795

What if we were asked about Outlook=OC ?

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Example
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VNB = argmaxv ∏𝑖𝑖 P(xi | v) P(v)

• How do we estimate P(xi | v) ?
• As we suggested before, we made a Binomial assumption; then:
•
•P(𝑥𝑥𝑖𝑖 = 1 𝑣𝑣 = #(𝑥𝑥𝑖𝑖=1 𝑖𝑖𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 𝑖𝑖𝑛𝑛 𝑡𝑡𝑛𝑛 𝑒𝑒𝑥𝑥𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑡𝑡𝑙𝑙𝑒𝑒𝑒𝑒𝑙𝑙 𝑣𝑣)

#(𝑣𝑣 𝑒𝑒𝑡𝑡𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 𝑒𝑒𝑥𝑥𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
= 𝑛𝑛𝑖𝑖
𝑛𝑛

• Sparsity of data is a problem
 if n is small, the estimate is not accurate
 if ni is 0, it will dominate the estimate: we will never predict v 

if a  word that never appeared in training (with v)
appears in the test data 

Estimating Probabilities
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• This process is called smoothing.
• There are many ways to do it, some better justified than others;
• An empirical issue.

Here:  
• nk is # of occurrences of the k-th feature given the label v
• n is # of occurrences of the label v
• p is a prior estimate of v (e.g., uniform)
• m is equivalent sample size (# of labels)

• Is this a reasonable definition?

 
mn
mpn  v)|P(x k

k +
+

=

∏ == ∈ i iidislike}{like,vNB v)|wordP(xP(v)argmax v
Robust Estimation of Probabilities
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Smoothing: 

Common values: 

Laplace Rule for the Boolean case, p=1/2 , m=2 

 
2n
1n  v)|P(x k

k +
+

=

 
mn
mpn  v)|P(x k

k +
+

=

Robust Estimation of Probabilities
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• In practice, we will typically work in the log space:

• 𝑽𝑽𝑵𝑵𝑵𝑵 = argmax 𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷 𝒗𝒗𝒋𝒋 ∏𝒊𝒊𝑷𝑷 𝒙𝒙𝒊𝒊 𝒗𝒗𝒋𝒋 =

= argmax [ log 𝑷𝑷 𝒗𝒗𝒋𝒋 + ∑𝒊𝒊 𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷 𝒙𝒙𝒊𝒊 𝒗𝒗𝒋𝒋 ]

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

Another comment on estimation
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• Notice that the naïve Bayes method gives a method for predicting
rather than an explicit classifier.

• In the case of two classes,  v∈{0,1} we predict that v=1 iff:

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

1
0)v|P(x0)P(v

1)v|P(x1)P(v
n

1i jij

n

1i jij >
=•=

=•=

∏
∏

=

=

Naïve Bayes: Two Classes

77

Why do things work?
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• Notice that the naïve Bayes method gives a method for predicting 
rather than an explicit classifier.

• In the case of two classes,  v∈{0,1} we predict that v=1 iff:

∏∈=
i jijVvNB )v|P(x)P(vargmax v

j

1
0)v|P(x0)P(v

1)v|P(x1)P(v
n

1i jij

n

1i jij >
=•=

=•=

∏
∏

=

=

1
q-(1q0)P(v

p-(1p1)P(v

0)v|1P(xq   1),v|1P(xp 

ii
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x-1
i

x
ij

x-1
i
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ij

iiii

>
•=
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======

∏
∏

=

=
n
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i

1

1

)
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:Denote

Naïve Bayes: Two Classes
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•In the case of two classes,  v∈{0,1} we predict that v=1 iff:

1
)

q-1
q)(q-(10)P(v

)
p-1

p)(p-(11)P(v

)q-(1q0)P(v

)p-(1p1)P(v
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=
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=

=

Naïve Bayes: Two Classes
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1
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•In the case of two classes,  v∈{0,1} we predict that v=1 iff:
Naïve Bayes: Two Classes
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•In the case of two classes,  v∈{0,1} we predict that v=1 iff:

• We get that naive Bayes is a linear separator with 

1
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wi = log pi

1 - pi

− log qi

1 - qi

= log pi

qi

1 - qi

1 - pi

if pi = qi then wi = 0 and the feature is irrelevant

Naïve Bayes: Two Classes
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• In the case of two classes we have that:

• but since

• We get: 

• Which is simply the logistic function.

• The linearity of NB provides a better explanation for why it works.

bxw
)x  |0P(v
)x  |1P(v

log ii i
j

j −=
=

=
∑

)x  |0P(v-1)x  |1P(v jj ===

b)xwexp(-1
1)x  |1P(v

ii i
j ++

==
∑

Naïve Bayes: Two Classes
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We have: 
A = 1-B; Log(B/A) = -C. 
Then:
Exp(-C) = B/A = 
= (1-A)/A = 1/A – 1 
= 1  + Exp(-C) = 1/A 

A  = 1/(1+Exp(-C))
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Why Does it Work? 
Learning Theory 
 Probabilistic predictions are done via Linear Models 

 The low expressivity explains Generalization + Robustness

Expressivity (1: Methodology) 
 Is there a reason to believe that these hypotheses minimize the empirical error?

 In General, No. (Unless some probabilistic assumptions happen to hold).    
 But: if the hypothesis does not  fit the training data, 

 Experimenters will augment set of features  (in fact, add dependencies)

 But now, this actually follows the Learning Theory Protocol: 
 Try to learn a hypothesis that is consistent with the data
 Generalization will be a function of the low expressivity

Expressivity (2: Theory)
 (a) Product distributions are “dense” in the space of all distributions. 

 Consequently, the resulting predictor’s error is actually close to optimal classifier. 

 (b) NB classifiers cannot express all linear functions; but they converge faster to 
what they can express. 

|S| /|} lh(x)|Sx  {|(h)ErrS ≠∈=
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What’s Next? 
(1) If probabilistic hypotheses are actually like other linear 
functions, can we interpret the outcome of other linear learning 
algorithms probabilistically?
 Yes

(2) If probabilistic hypotheses are actually like other linear 
functions, can you train them similarly (that is, 
discriminatively)?
 Yes.
 Classification: Logistics regression/Max Entropy
 HMM: can be learned as a linear model, e.g., with a version of 

Perceptron (Structured Models class)
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Recall: Naïve Bayes, Two Classes

85

In the case of two classes we have:

but since

We get (plug in (2) in (1); some algebra): 

Which is simply the logistic (sigmoid) function used in the 
neural network representation.

bxw
)x  |0P(v
)x  |1P(v

log ii i
j

j −=
=

=
∑

)x  |0P(v-1)x  |1P(v jj ===

b)xwexp(-1
1)x  |1P(v

ii i
j ++

==
∑
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Conditional Probabilities

86

(1) If probabilistic hypotheses are actually like other 
linear functions, can we interpret the outcome of 
other linear learning algorithms probabilistically?
 Yes

General recipe
 Train a classifier f using your favorite algorithm (Perceptron, 

SVM, Winnow, etc). Then:

 Use Sigmoid1/1+exp{-(AwTx + B)} to get an estimate for  P(y 
| x)

 A, B can be tuned using a held out that was not used for 
training.

 Done in LBJava, for example
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(2) If probabilistic hypotheses are actually like other linear 
functions, can you actually train them similarly (that is, 
discriminatively)?
The logistic regression model assumes the following model:

P(y= +1 | x,w)= [1+exp(-y(wTx + b)]-1

This is the same model we derived for naïve Bayes, only that 
now we will not assume any independence assumption. We 
will directly find the best w. 
Therefore training will be more difficult. However, the weight 
vector derived will be more expressive.
 It can be shown that the naïve Bayes algorithm cannot represent all 

linear threshold functions.
 On the other hand, NB converges to its performance faster. 

Logistic Regression

87

How?
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Logistic Regression (2)
Given the model:

P(y= +1 | x,w)= [1+exp(-y(wTx + b)]-1

The goal is to find the (w, b) that maximizes the log likelihood of 
the data: {x1,x2… xm}.
We are looking for (w,b) that minimizes the negative log-
likelihood

minw,b ∑1m log P(y= +1 | x,w)= minw,b ∑1m log[1+exp(-yi(wTxi + b)]

This optimization problem is called Logistics Regression

Logistic Regression is sometimes called the Maximum Entropy 
model in the NLP community (since the resulting distribution is 
the one that has the largest entropy among all those that 
activate the same features).

88
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Logistic Regression (3)
Using the standard mapping to linear separators through the 
origin, we would like to minimize: 
minw ∑1

m log P(y= +/-1 | x,w)= minw, ∑1
m log[1+exp(-yi(wTxi)]

To get good generalization, it is common to add a regularization 
term, and the regularized logistics regression then becomes:

minw f(w) = ½ wTw + C ∑1
m log[1+exp(-yi(wTxi)], 

Where C is a user selected parameter that balances the two terms. 

89

Empirical lossRegularization term
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Comments on discriminative Learning

minw f(w) = ½ wTw + C ∑1
m log[1+exp(-yiwTxi)], 

Where C is a user selected parameter that balances the two terms. 

Since the second term is the loss function
Therefore, regularized logistic regression can be  related to other learning 
methods, e.g., SVMs. 
L1 SVM solves the following optimization problem:

minw f1(w) = ½ wTw + C ∑1
m max(0,1-yi(wTxi) 

L2 SVM solves the following optimization problem: 
minw f2(w) = ½ wTw + C ∑1

m (max(0,1-yiwTxi))2

90

Empirical lossRegularization term
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A few more NB examples

91
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• Instance space X: Text documents
• Instances are labeled according to f(x)=like/dislike

• Goal: Learn this function such that, given a new document
you can use it to decide if you like it or not

• How to represent the document ? 
• How to estimate the probabilities ? 
• How to classify?

∏∈=
i iVvNB v)|P(xP(v)argmax v

Example: Learning to Classify Text

92
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• Instance space X: Text documents
• Instances are labeled according to y = f(x) = like/dislike
• How to represent the document ? 
• A document will be represented as a list of its words 
• The representation question can be viewed as the generation question   

• We have a dictionary of n words  (therefore 2n parameters)
• We have documents of size N: can account for word position & count
• Having a parameter for each word & position may be too much: 

• # of parameters: 2 x N x n (2 x 100 x 50,000 ~ 107) 
• Simplifying Assumption:

• The probability of observing a word in a document is independent of its location
• This still allows us to think about two ways of generating the document

Document Representation

93
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• We want to compute 
argmaxy P(y|D)  = argmaxy P(D|y) P(y)/P(D) = 

= argmaxy P(D|y)P(y) 

• Our assumptions will go into estimating P(D|y):
1. Multivariate Bernoulli

I. To generate a document, first decide if it’s good (y=1) or bad (y=0).
II. Given that, consider your dictionary of words and choose w into your 

document with probability p(w |y), irrespective of anything else. 
III. If the size of the dictionary is |V|=n, we can then write         

P(d|y) =∏1
𝑛𝑛 P(wi=1|y)bi P(wi=0|y)1−bi ¦

• Where: 
p(w=1/0|y): the probability that w appears/does-not in a y-labeled document. 
bi ∈{0,1} indicates whether word wi occurs in document d

• 2n+2 parameters: 
Estimating P(wi =1|y) and P(y) is done in the ML way as before (counting).

Classification via Bayes Rule (B)

94

Parameters:
1. Priors: P(y=0/1) 
2. ∀ wi Є Dictionary

p(wi =0/1 |y=0/1)
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• We want to compute 
argmaxy P(y|D)  = argmaxy P(D|y) P(y)/P(D) = 

= argmaxy P(D|y)P(y) 

• Our assumptions will go into estimating P(D|y):
2. Multinomial

I. To generate a document, first decide if it’s good (y=1) or bad (y=0).
II. Given that, place N words into d, such that wi is placed with probability           

P(wi|y), and ∑i
N P(wi|y) =1.

III. The Probability of a document is: 
P(d|y) =  N!/n1!...nk!  P(w1|y)n1…p(wk|y)nk

• Where ni is the # of times wi appears in the document.
• Same # of parameters: 2n+2, where n = |Dictionary|, but the estimation is 

done a bit differently. (HW).

A Multinomial Model 

95

Parameters:
1. Priors: P(y=0/1) 
2. ∀ wi Є Dictionary

p(wi =0/1 |y=0/1)
N dictionary items are  
chosen into D
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• The generative model in these two cases is different

label

AppearDocuments d

µ ¯

Words w

Bernoulli: A binary variable corresponds 
to a document d and a dictionary word 
w, and it takes the value 1 if w appears in 
d. Document topic/label is governed by a 
prior µ, its topic (label), and the variable 
in the intersection of the plates is 
governed by µand the Bernoulli 
parameter ¯ for the dictionary word w  

label

Appear (d)Documents d

µ ¯

Position p

Multinomial: Words do not correspond 
to dictionary words but to positions 
(occurrences) in the document d. The 
internal variable is then W(D,P). These 
variables are generated from the same 
multinomial distribution ¯, and depend 
on the topic/label. 

Model Representation

96
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• We assume a mixture probability model, parameterized by µ.
• Different components {c1,c2,… ck} of the model are parameterize by disjoint 
subsets of µ.

The generative story: A document d is created by 
(1) selecting a component according to the priors, P(cj |µ), then 
(2) having the mixture component generate a document according to its 

own parameters, with distribution P(d|cj, µ)
• So we have: 

P(d|µ) = ∑1k P(cj|µ) P(d|cj,µ)
• In the case of document classification, we assume a one to one 
correspondence between components and labels.

General NB Scenario

97



CIS419/519 Spring’18

• Xi can be continuous
• We can still use 

• And

Naïve Bayes: Continuous Features

98
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• Xi can be continuous
• We can still use 

• And

• Naïve Bayes classifier:

Naïve Bayes: Continuous Features
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• Xi can be continuous
• We can still use 

• And

• Naïve Bayes classifier:

• Assumption: P(Xi|Y) has a Gaussian distribution  

Naïve Bayes: Continuous Features

100
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The Gaussian Probability Distribution

  

p(x) =
1

σ 2π
e

− (x −µ )2

2σ2
gaussian

x

• Gaussian probability distribution also called normal distribution.
• It is a continuous distribution with pdf:

µ = mean of distribution
σ2 = variance of distribution
x is a continuous variable (-∞ ≤ x ≤ ∞)

• Probability of x being in the range [a, b] cannot be evaluated
analytically (has to be looked up in a table)

2

2

2
)(

2
1)( σ

µ

πσ

−
−

=
x

exp
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• P(Xi|Y) is Gaussian

• Training: estimate mean and standard deviation

Naïve Bayes: Continuous Features

102

Note that the following slides abuse notation significantly. 
Since P(x) =0 for continues distributions, we think of 
P (X=x| Y=y), not as a classic probability distribution, but 
just as a function f(x) = N(x, 𝜇𝜇, 𝜎𝜎¾2).
f(x) behaves as a probability distribution in the sense that 
8 x, f(x) ¸ 0 and the values add up to 1. Also, note that 
f(x) satisfies Bayes Rule, that is, it is true that: 

fY(y|X = x) = fX (x|Y = y) fY (y)/fX(x)
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• P(Xi|Y) is Gaussian

• Training: estimate mean and standard deviation

X1 X2 X3 Y
2         3         1         1

-1.2        2        .4         1
2       0.3        0         0

2.2      1.1        0         1     

Naïve Bayes: Continuous Features

103
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• P(Xi|Y) is Gaussian

• Training: estimate mean and standard deviation

X1 X2 X3 Y
2         3         1         1

-1.2        2        .4         1
2       0.3        0         0

2.2      1.1        0         1     

Naïve Bayes: Continuous Features

104
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•In the case of two classes we have that:

•but since

•We get: 

• Which is simply the logistic function (also used in the neural network
representation)

• The same formula can be written for continuous features

bxw
)x  |0P(v
)x  |1P(vlog ii i −=

=
= ∑

)x  |0P(v-1)x  |1P(v ===

b)xwexp(-1
1)x  |1P(v

ii i ++
==

∑

Recall: Naïve Bayes, Two Classes
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• Logistic function for Gaussian features

Logistic Function: Continuous Features

106

Note that we are 
using ratio of 

probabilities, since x 
is a continuous 

variable.
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