
CIS519: Applied Machine Learning Fall 2019

Homework 2

Handed Out: October 7, 2019 Due: October 21, 2019 at 11:59pm

Version 2

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include at the top of your
document the list of people you consulted with in the course of working on the homework.

• While we encourage discussion within and outside the class, cheating and copying code is strictly not
allowed. Copied code will result in the entire assignment being discarded at the very least.

• Please use Piazza if you have questions about the homework. Also, please come to the TAs recitations
and to the office hours.

• Handwritten solutions are not allowed. All solutions must be typeset in Latex. Consult the class’
website if you need guidance on using Latex. If you don’t have a lot of experience with Latex (or
even if you do), we recommend using Overleaf (https://www.overleaf.com) to write your solutions.
You will submit your solutions as a single pdf file (in addition to the package with your code; see
instructions in the body of the assignment).

• The homework is due at 11:59 PM on the due date. We will be using Gradescope for collecting the
homework assignments. You should have been automatically added to Gradescope. If not, please ask
a TA for assistance. Please do not hand in a hard copy of your write-up. Post on Piazza and contact
the TAs if you are having technical difficulties in submitting the assignment.

• Here are some resources you will need for this assignment

– https://www.seas.upenn.edu/~cis519/fall2019/assets/HW/HW2/hw2-materials.zip

1 Overview

In this homework assignment, you will experiment with several different linear classifiers
and analyze their performances both real and synthetic datasets. The goal is to understand
the differences and similarities between the algorithms and the impact that the dataset
characteristics have on the algorithms’ learning behaviors and performances.

In total, there are seven different learning algorithms which you will implement. Six are
variants of the Perceptron algorithm and the seventh is a support vector machine (SVM).
The details of these models is described in Section 2.

In order to evaluate the performances of these models, you will use several different
datasets. The first two datasets are synthetic datasets that have features and labels that
were programatically generated. They were generated using the same script but use different
input parameters that produced sparse and dense variants. The second two datasets are for
the task of named-entity recognition (NER), identifying the names of people, locations, and
organizations within text. One comes from news text and the other from a corpus of emails.
For these two datasets, you need to implement the feature extraction yourself. All of the
datasets and feature extraction information are described in Section 3.

Finally, you will run two sets of experiments, one on the synthetic data and one on
the NER data. The first set will analyze how the amount of training data impacts model
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performance. The second will look at the consequences of having training and testing data
that come from different domains. The details of the experiments are described in Section 4.

2 Algorithms

This section details the seven different algorithms that you will use in the experiments. For
each of the algorithms, we describe the initialization you should use to start training and
the different parameter settings that you should use for the experiment on the synthetic
datasets. Each of the update functions for the Perceptron, Winnow, and Perceptron with
AdaGrad will be unittested on Gradescope, so please do not edit the function definitions.

2.1 Perceptron Variants

The Perceptron is an online mistake-driven algorithm. We will consider three different
variations of the percepron – the basic Perceptron, Winnow, and Adagrad – and for each
one, you will implement the standard and averaged versions.

Since the code for the basic Perceptron is provided, implementing Winnow and Adagrad
will require minor modifications to the update rule. Similarly, once you have implemented
the averaged basic Perceptron, the averaged versions of the other two algorithms should be
straightforward.

Note that we make a distinction in this section between the parameters and the hyper-
parameters of a model. The parameters are those which are learned (e.g., you update them
according to gradient descent), whereas the hyperparameters are properties of the model or
learning algorithm (e.g., the depth of the decision tree, the learning rate for stochastic gra-
dient descent).

a. Basic Perceptron: This is the basic version of the Perceptron Algorithm. In this
version, an update will be performed on the example (x, y) if y(wᵀx + θ) ≤ 0.

The Perceptron needs to learn both the bias term θ and the weight vector w
parameters. When the Perceptron makes a mistake on the example (x, y), both w
and θ need to be updated using the following update equations:

wnew ← w + η · y · x
θnew ← θ + η · y

where η is the learning rate.

Hyperarameters: Because η does not have any effect, we set η = 1.1 There are no
hyperparameters to tune for this model.

1If we assume that the order of the examples presented to the algorithm is fixed, we initialize w = 0 and
θ = 0, and train both together, then the learning rate η does not have any effect. In fact you can show that,
if w1 and θ1 are the outputs of the Perceptron algorithm with learning rate η1, then w1/η1 and θ1/η1 will be
the result of the Perceptron with learning rate 1 (note that these two hyperplanes give identical predictions).
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Initialization: w = [0, 0, . . . , 0] and θ = 0.

b. Winnow: The Winnow algorithm is a variant of the Perceptron algorithm with mul-
tiplicative updates. Since the algorithm requires that the target function is monotonic,
you will only use it on the synthetic datasets.

The Winnow algorithm only learns parameters w. We will fix θ = −n, where n is
the number of features. When the Winnow algorithm makes a mistake on the example
(x, y), the parameters are updated with the following equation:

wnew
i ← wi · αy·xi (1)

where wi and xi are the ith components of the corresponding vectors. Here, α is a
promotion/demotion hyperparameter.

Hyperparameters: Choose α ∈ {1.1, 1.01, 1.005, 1.0005, 1.0001}.

Initialization: w = [1, 1, . . . , 1] and θ = −n (constant).

c. Perceptron with AdaGrad: AdaGrad is a variant of the Perceptron algorithm that
adapts the learning rate for each parameter based on historical information. The idea is
that frequently changing features get smaller learning rates and stable features higher
ones.

To derive the update equations for this model, we first need to start with the loss
function. Instead of using the hinge loss with the elbow at 0 (like the basic Perceptron
does), we will instead use the standard hinge loss with the elbow at 1:

L(x, y,w, θ) = max {0, 1− y(wᵀx + θ)} (2)

Then, by taking the partial derivative of L with respect to w and θ, we can derive the
respective graidents (make sure you understand how you could derive these gradients
on your own):

∂L
∂w

=

{
0 if y(wᵀx + θ) > 1

−y · x otherwise
(3)

∂L
∂θ

=

{
0 if y(wᵀx + θ) > 1

−y otherwise
(4)

Then for each parameter, we will keep track of the sum of the parameters’ squared
gradients. In the following equations, the k superscript refers to the kth non-zero
gradient (i.e., the kth weight vector/misclassified example) and t is the number of
mistakes seen thus far.

Gt
j =

t∑
k=1

(
∂L
∂wk

j

)2

(5)

H t =
t∑

k=1

(
∂L
∂θk

)2

(6)
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For example, on the 3rd mistake (t = 3), G3
j is the sum of the squares of the first three

non-zero gradients (
(

∂L
∂w1

j

)2
,
(

∂L
∂w2

j

)2
, and

(
∂L
∂w3

j

)2
). Then G3 is used to calculate the

4th value of the weight vector as follows. On example (x, y), if y(wᵀx + θ) ≤ 1, then
the parameters are updated with the following equations:

wt+1 ← wt + η · y · x√
Gt

(7)

θt+1 ← θt + η
y√
H t

(8)

Note that, although we use the hinge loss with the elbow at 1 for training, you still
make the prediction based on whether or not y(wᵀx + θ) ≤ 0 during testing.

Hyperparameters: Choose η ∈ {1.5, 0.25, 0.03, 0.005, 0.001}

Initialization: w = [0, 0, . . . , 0] and θ = 0.

d. Averaged Perceptrons: You will also implement the averaged version of the previous
three algorithms.

During the course of training, each of the above algorithms will have K+1 different
parameter settings for the K different updates it will make during training. The regular
implementation of these algorithms uses the parameter values after the Kth update
as the final ones. Instead, the averaged version use the weighted average of the K + 1
parameter values as the final parameter values. Let mk denote the number of correctly
classified examples by the kth parameter values and M the total number of correctly
classified examples. The final parameter values are

M =
K+1∑
k=1

mk (9)

w← 1

M

K+1∑
k=1

mk ·wk (10)

θ ← 1

M

K+1∑
k=1

mk · θk (11)

(12)

For each of the averaged versions of Perceptron, Winnow, and AdaGrad, use the
same hyperparameters and initialization as before.

Implementation Note: Implementing the averaged variants of these algorithms can
be tricky. While the final parameter values are based on the sum of K different vectors,
there is no need to maintain all of these parameters. Instead, you should implement
these algorithms by keeping only two vectors, one which maintains the cumulative sum
and the current one.
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Additionally, there are two ways of keeping track of these two vectors. One is more
straightforward but prohibitively slow. The second requires some algebra to derive but
is significantly faster to run. Try to analyze how the final weight vector is a function
of the intermediate updates and their corresponding weights. It should take less than
a minute or two for ten iterations for any of the averaged algorithms. You need to
think about how to efficiently implement the averaged algorithms yourself.

Further, the implementation for Winnow is slightly more complicated than the
other two, so if you consistently have low accuracy for the averaged Winnow, take a
closer look at the derivation.

2.2 Support Vector Machines

Although we have not yet covered SVMs in class, you can still train them using the sklearn

library. We will use a soft margin SVM for non-linearly separable data. You should use the
sklearn implementation as follows:

from sklearn.svm import LinearSVC

classifier = LinearSVC(loss=’hinge’)

classifier.fit(X, y)

sklearn requires a different feature representation than what we use for the Perceptron
models. The provided Python template code demonstrates how to convert to the require
representation.

Given training samples S = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the objective for the SVM
is the following:

min
w,b,ξ

1

2
||w||22 + C

m∑
i=1

ξi (13)

subject to the following constraints:

yi(wᵀxi + b) ≥ 1− ξi for i = 1, 2, . . . ,m (14)

ξi ≥ 0 for i = 1, 2, . . . ,m (15)

3 Datasets

In this section, we describe the synthetic and NER datasets that you will use for your
experiments. For the NER datasets, there is also an explanation for the features which you
need to extract from the data.

3.1 Synthetic Data

The synthetic datasets have features and labels which are automatically generated from a
python script. Each instance will have n binary features and are labeled according to a
l-of-m-of-n Boolean function. Specifically, there is a set of m features such that an example
if positive if and only if at least l of these m features are active. The set of m features is the
same for the dataset (i.e., it is not a separate set of m features for each individual instance).
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We provide two versions of the synthetic dataset called sparse and dense. For both
datasets, we set l = 10 and m = 20. We set n = 200 for the sparse data and n = 40 for
the dense data. Additionally, we add noise to the data as follows: With probability 0.05 the
label assigned by the function is changed and with probability 0.001 each feature value is
changed. Consequently, the data is not linearly separable.

We have provided you with three data splits for both sparse and dense with 50,000 train-
ing, 10,000 development, and 10,000 testing examples. Section 4.1 describes the experiments
that you need to run on these datasets.

3.1.1 Feature Representation

The features of the synthetic data provided are vectors of 0s and 1s. Storing these large matri-
ces requires lots of memory so we use a sparse representation that stores them as dictionaries
instead. For example, the vector [0,1,0,0,0,1] can be stored as {"x2":1,"x6":1} (us-
ing 1-based indexing). We have provided you with the code for parsing and converting the
data to this format. You can use these for the all algorithms you develop except the SVM.
Since you will be using the implementation of SVM from sklearn, you will need to provide
a vector to it. You can use sklearn.feature extraction.DictVectorizer for converting
feature-value dictionaries to vectors.

3.2 NER Data

In addition to the synthetic data, we have provided you two datasets for the task of named-
entity recognition (NER). The goal is to identify whether strings in text represent names of
people, organizations, or locations. An example instance looks like the following:

[PER Wolff] , currently a journalist in [LOC Argentina] , played with

[PER del Bosque] in the final years of the seventies in

[ORG Real Madrid] .

In this problem, we will simplify the task to identifying whether a string is named entity
or not (that is, you don’t have to say which type of entity it is). For each token in the input,
we will use the tag I to denote that token is an entity and O otherwise. For example, the
full tagging for the above instace is as follows:

[I Wolff] [O ,] [O currently] [a] [O journalist] [O in] [I Argentina]

[O ,] [O played] [O with] [I del] [I Bosque] [O in] [O the] [O final]

[O years] [O of] [O the] [O seventies] [O in] [I Real] [I Madrid] .

Given a sentence S = w1, w2, . . . , wn, you need to predict the {I, O} tag for each word in
the sentence. That is, you will produce the sequence Y = y1, y2, . . . , yn where yi ∈ {I, O}

3.2.1 Datasets: CoNLL & Enron

We have provided two datasets, the CoNLL dataset which is text from news articles, and
Enron, a corpus of emails. The files contain one word and one tag per line. For CoNLL, there
are training, development, and testing files, whereas Enron only has a test dataset. There
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are 14,987 training sentences (204,567 words), 336 development sentences (3,779 words), and
303 testing sentences (3,880 words) in CoNLL. For Enron there are 368 sentences (11,852
words).

Please note that the CoNLL dataset is available only for the purposes of this
assignment. It is copyrighted, and you are granted access because you are a
Penn student, but please delete it when you are done with the homework.

3.2.2 Feature Extraction

The NER data is provided as raw text, and you are required to extract features for the
classifier. In this assignment, we will only consider binary features based on the context of
the word that is supposed to be tagged.

Assume that there are V unique words in the dataset and each word has been assigned
a unique ID which is a number {1, 2, . . . , V }. Further, w−k and w+k indicate the kth word
before and after the target word. The feature templates that you should use to generate
features are as follows:

Template Number of Features
w−3 V
w−2 V
w−1 V
w+1 V
w+2 V
w+3 V

w−1 & w−2 V × V
w+1 & w+2 V × V
w−1 & w+1 V × V

Each feature template corresponds to a set of features that you will compute (similar to the
features you generated in problem 2 from the first homework assignment). The w−3 feature
template corresponds to V features where the ith feature is 1 if the third word to the left
of the target word has ID i. The w−1&w+1 feature template corresponds to V × V features
where there is one feature for every unique pair words. For example, feature (i− 1)× V + j
is a binary feature that is 1 if the word 1 to the left of the target has ID i and the first word
to the right of the target has ID j. In practice, you will not need to keep track of the feature
IDs. Instead, each feature will be given a name such as “w−1 = the&w+1 = cat”.

In total, all of the above feature templates correspond to a very large number of features.
However, for each word, there will be exactly 9 features which are active (non-zero), so the
feature vector is quite sparse. You will represent this as a dictionary which maps from the
feature name to the value. In the provided Python template, we have implemented a couple
of the features for you to demonstrate how to compute them and what the naming scheme
should look like.

In order to deal with the first two words and the last two words in a sentence, we will
add special symbol “SSS” and “EEE” to the vocabulary to represent the words before the
first word and the words after the last word. Notice that in the test data you may encounter
a word that was not observed in training, and therefore is not in your dictionary. In this
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case, you cannot generate a feature for it, resulting in less than 7 active features in some of
the test examples.

4 Experiments

You will run two sets of experiments, one using the synthetic data and one using the NER
data.

4.1 Synthetic Experiments

This experiment will explore the impact that the amount of training data has on model
performance. First, you will do hyperparameter tuning for Winnow and Perceptron with
AdaGrad (both standard and averaged versions). Then you will generate learning curves
that will plot the size of the training data against the performance. Finally, for each of the
models trained on all of the training data, you will report test scores.

You should use accuracy to compute the performance of the model.

4.1.1 Parameter Tuning

For both the Winnow and Perceptron with AdaGrad (standard and averaged), there are
hyperparameters that you need to choose. (The same is true for SVM, but you should only
use the default settings.) Similarly to cross-validation from Homework 1, we will estimate
how well each model will do on the true test data using the development dataset (we will
not run cross-validation), and choose the hyperparameter settings based on these results.

For each hyperparameter value in Section 2, train a model using that value on the training
data and compute the accuracy on the development dataset. Each model should be trained
for 10 iterations (i.e., 10 passes over the entire dataset).

Make a table with the hyperparameter values and the corresponding accuracies. Repeat
this for both the sparse and dense data.

4.1.2 Learning Curves

Next, you will train all 7 models with different amounts of training data. For Winnow and
Perceptron with AdaGrad (standard and averaged), use the best hyperparameters from the
parameter tuning experiment.

Each of the datasets contains 50,000 training examples. You will train each model 11
times on varying amounts of training data. The first 10 will increase by 500 examples: 500,
1k, 1.5k, 2k, ..., 5k. The 11th model should use all 50k examples. Each Perceptron-based
model should be trained for 10 iterations (e.g., 10 passes over the total number of training
examples available to that model). The SVM can be run until convergence with the default
parameters.

For each model, compute the accuracy on the development dataset and plot the results
using the provided code. There should be a separate plot for the sparse and dense data.
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Answer the following questions:

1. Discuss the trends that you see when comparing the standard version of an algorithm to
the averaged version (e.g., Winnow versus Averaged Winnow). Is there an observable
trend?

2. We provided you with 50,000 training examples. Were all 50,000 necessary to achieve
the best performance for each classifier? If not, how many were necessary? (Rough
estimates, no exact numbers required)

4.1.3 Final Evaluation

Finally, for each of the 7 models, train the models on all of the training data and compute
the accuracy on the actual test dataset. For Winnow and Perceptron with AdaGrad, use
the best hyperparameter settings you found. Report these accuracies in a table.

4.1.4 [Extra Credit] Robustness to Noise

Included in the resources for this homework assignment is the code that we used to generate
the synthetic data. We used a small amount of noise to create the dataset which you ran the
experiments on. For extra credit, vary the amount of noise in either/both of the label and
features. Then, plot the models’ performances as a function of the amount of noise. Discuss
your observations.

4.2 NER Experiment

The experiment with the NER data will analyze how changing the domain of the training
and testing data can impact the performance of a model.

Instead of accuracy, you will use the F1 score to evaluate how well a model does. The F1

score is computed as the harmonic mean of the precision and recall of the classifier. Precision
measures how often the model correctly identifies an entity out of how many times the model
predicted a word is an entity. Recall measures how many of the actual entities the model
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successfully tagged as an entity.

Precision =
#(Actually Entity & Model Predicted Entity)

#(Model Predicted Entity)
(16)

Recall =
#(Actually Entity & Model Predicted Entity)

#(Actually Entity)
(17)

F1 = 2 · Precision× Recall

Precision + Recall
(18)

You need to implement the calulation of F1 yourself using the provided function header. It
will be unit tested on Gradescope.

For this experiment, you will only use the averaged basic Perceptron and SVM. Hence,
no parameter tuning is necessary. Train both models on the CoNLL training data then
compute the F1 on the development and testing data of both CoNLL and Enron. Note that
the model which is used to predict labels for Enron is trained on CoNLL data, not Enron
data. Report the F1 scores in a table.

Comment on the results:

1. Are the F1 scores on CoNLL and Enron are similar?

2. If they dissimilar, explain why you think the F1 score increased/decreased on the Enron
data.

Rubric

[20 Points] Unit Tests

– [3 points] calculate f1

– [2 points] Perceptron implementation (we already did this for you)

– [5 points] Winnow implementation

– [10 points] AdaGrad implementation

[40 Points] Synthetic Experiment

– [15 points] Averaged Implementations

– [5 points] Parameter Tuning

– [15 points] Learning Curves and answers to questions

– [5 points] Final Test Accuracies

– [+10 points extra credit] Noise experiment

[40 Points] NER Experiment

– [30 points] Feature extraction

– [5 point] Final Test Accuracies

– [5 points] F1 discussion
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Submission Instructions

We will be using Gradescope to turn in both the Python code and writeup pdfs. You should
have been automatically added to Gradescope. If you do not have access, please ask the TA
staff on Piazza.

For this homework assignment, there are two Gradescope assignments:

– “Homework 2 - Code”: This is the assignment where you should upload your imple-
mentation of the calculate f1 function and the Perceptron, Winnow, AdaGrad classes
in a filed caled hw2.py. Additionally, you should submit all of your code when you
have finished the assignment (upload the individual Python files, zip them together,
or upload the Jupyter Notebook as a pdf).

– “Homework 2 - PDF”: This is the assignment where you should upload your writeup
as a PDF.

Changelog

Version 2

– For the description of the averaged Perceptron, M was corrected to be the total number
of correctly classified examples, not the total number of examples.

– Added a clarification on the prediction rule for AdaGrad.
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