
CIS519: Applied Machine Learning Fall 2019

Homework 4

Handed Out: November 18, 2019 Due: December 2, 2019 at 11:59pm

Version 2

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please include at the top of your
document the list of people you consulted with in the course of working on the homework.

• While we encourage discussion within and outside the class, cheating and copying code is strictly not
allowed. Copied code will result in the entire assignment being discarded at the very least.

• Please use Piazza if you have questions about the homework. Also, please come to the TAs recitations
and to the office hours.

• Handwritten solutions are not allowed. All solutions must be typeset in Latex. Consult the class’
website if you need guidance on using Latex. If you don’t have a lot of experience with Latex (or
even if you do), we recommend using Overleaf (https://www.overleaf.com) to write your solutions.
You will submit your solutions as a single pdf file (in addition to the package with your code; see
instructions in the body of the assignment).

• The homework is due at 11:59 PM on the due date. We will be using Gradescope for collecting the
homework assignments. You should have been automatically added to Gradescope. If not, please ask
a TA for assistance. Please do not hand in a hard copy of your write-up. Post on Piazza and contact
the TAs if you are having technical difficulties in submitting the assignment.

• Here are some resources you will need for this assignment

– Latex template, Python template, and data can all be found here: https://www.seas.upenn.
edu/~cis519/fall2019/assets/HW/HW4/hw4-materials.zip

1 Document Classification [60 Points]

In this problem, you will develop Naive Bayes-based models to do text classification. The
task of text classification is label a piece of text with one class out of a predefined set of
classes.

1.1 Dataset

The dataset you will use for the experiments will be a sentiment analysis dataset from IMDb.
Each document is a review of a movie and has been labeled as either a positive or negative
review. We have provided for you training, validation, and testing splits and the Python
code to load the documents into memory. Each document has been pre-processed with
tokenization1 and lemmatization.2

1We say “token” instead of “word” because it is more general and covers symbols like punctuation which
we treat as their own tokens separate from the surrounding words. “Tokenization” is splitting raw text into
individual tokens.

2https://en.wikipedia.org/wiki/Lemmatisation

1

https://www.overleaf.com
https://www.seas.upenn.edu/~cis519/fall2019/assets/HW/HW4/hw4-materials.zip
https://www.seas.upenn.edu/~cis519/fall2019/assets/HW/HW4/hw4-materials.zip
https://en.wikipedia.org/wiki/Lemmatisation

1.2 Document Representation

You will experiment with three different ways to represent the documents. “Representation”
means how you convert the raw text of a document to a feature vector. Similar to Homework
2, you will use a sparse representation of the feature vectors which is based on a dictionary
that maps from the feature name to the feature value. For each representation, there will
be exactly 1 feature per unique token in the vocabulary, but the value of that feature will
change.

Vocabulary Creation The vocabulary is the set of tokens that you will use to compute
features. There is some nuance to how to select which tokens from the dataset should be
part of the vocabulary. If you use all of the tokens in the training data, there could be a
token that appears for the first time in the test set, and it’s not clear what to do with that
token. A common solution to this problem is to map infrequent words in the training data
to a token called <unk>, compute the features with the <unk> tokens, then map the novel
test words to <unk>. You will do exactly that.

For each of the experiments below, you should create the vocabulary by taking all of the
tokens in the training data which appear more than once plus a special <unk> token. You
should still estimate probabilities for the <unk> token. At test time, any unknown words
should be treated as <unk>s.

Representations We will use fd(v) to be the value for feature v and document d.
The three ways that you should represent each document (and the corresponding Python

functions to implement) are described below.

1. Binary Bag-of-Words Each document should be represented with binary features,
one for each token in the vocabulary.

fd(v) =

{
1 if v ∈ d
0 otherwise

(1)

Since you are using a sparse representation, you do not need to remember which
tokens are not present in each document, only those which are present.

2. Count Bag-of-Words Instead of having a binary feature for each token, you should
keep count of how many times the token appears in the document, a quantity known
as term frequency and denoted tf(d, v).

fd(v) = tf(d, v) (2)

3. TF-IDF Model The final representation will use the TF-IDF score of each token.
The TF-IDF score combines how frequently the word appears in the document as well
as how infrequently that word appears in the document collection as a whole. First,
the inverse document frequency (IDF) of a token is defined as

idf(v) = log
|D|

|{d : v ∈ d, d ∈ D}|
(3)

2

Here, D is the set of documents3 and the denominator is the number of documents
that the token v appears in. Use the numpy.log() function to compute the log. Then,
the TF-IDF feature you should use is

fd(v) = tf(d, v)× idf(v) (4)

1.3 Naive Bayes Experiment [40 Points]

In the first experiment, you will build three Naive Bayes classifiers, each one using one of
the above document representations, and compare their performances on the test dataset.

Recall that the prediction rule for Naive Bayes is

arg max
y
P (d | y) · P (y) (5)

and so you need to compute those two quantities. The simpler of the two quantities P (y)
can be computed by counting the number of times each label appears divided by the total
number of instances.

P (y) =
|{d : yd = y}|

|D|
(6)

The other quantity can be computed as follows. Under the Naive Bayes assumption,
P (d | y) is defined as

P (d | y) =
∏
v∈d

P (v | y) (7)

For this question, you will use the features to compute P (v | y) as follows:

P (v | y) =

∑
d∈D:yd=y fd(v)∑

w∈V
∑

d∈D:yd=y fd(w)
(8)

The summands in the numerator and inner summand of the denominator are over all of the
documents in the training data that have label y. The outer summand of the denominator
is over all of the words in the vocabulary.

Finally, as you saw in class, you will implement Laplace smoothing on P (v | y) as follows:

P (v | y) =
k +

∑
d∈D:yd=y fd(v)

k · |V|+
∑

w∈V
∑

d∈D:yd=y fd(w)
(9)

where k is a hyperparameter which controls the strength of the smoothing. This is the final
equation which you should implement to build your Naive Bayes classifier.

3You should use only the training documents to compute the IDF score. (A previous version of this
assignment said you should use the training, validation, and testing. It is OK if you do either of these two
options.)

3

Implementation Details When you are computing the values for the prediction rule
(Equation 5), you need to multiply many probabilities together, which may result in under-
flow. Instead, you should implement the classifier in log-space. That is, instead of computing
with probabilities P (v | y), you should compute with logP (v | y) and use the following equa-
tion as the prediction rule:

arg max
y
P (d | y) · P (y) =

∏
v∈d

P (v | y) · P (y) (10)

=
∑
v∈d

logP (v | y) + logP (y) (11)

Note that there is a term in the summand for each token in the document, so if a token
appears twice, you will add the corresponding term twice.

What to Report For each of the three document representations, run a hyperparameter
sweep over the smoothing parameter k ∈ {0.001, 0.01, 0.1, 1.0, 10.0} using the training and
validation data. Then, using the best value of k for each representation, report and compare
the test performance. Use accuracy to evaluate the models. Note that the most complicated
document representation may not get the best results.

Answer the following question: As the value of k goes to infinity, what will happen to
P (y | d)?

1.4 Semi-Supervised Learning Experiment [20 Points]

In this experiment, you will implement a semi-supervised learning algorithm to learn from
both labeled and unlabeled data. The high-level idea is as follows. You will start with two
sets of data, a labeled set (SX , SY) and an unlabeled set UX . Then you will repeatedly
learn a model using the labeled data, predict labels on the unlabeled data, assume that the
unlabeled instances the model labeled with high confidence were correctly labeled, then add
those high-confidence unlabeled instances with the model predictions to the supervised set,
then repeat. The exact implementation is provided in Algorithm 1.

In order to select the instances to add to the supervised set from the unsupervised set, you
need to compute a confidence score. You should not use P (d | y) because longer documents
will be unfairly penalized (think about why). Instead, you should compute the confidence
as follows:

confidence = max
y
P (y | d) (12)

Then, you will experiment with two different ways of selecting instances based on their
confidence scores as follows (these should be used to implement the “filter” function in the
pseudocode):

1. Threshold Add all instances from U to S that have a confidence score above a pre-
defined threshold.

2. Top-K Add the top-K most-confidence instances in U to S.

4

Algorithm 1 Semi-Supervised Classifier

1: procedure Semi-Supervised Classifier
2: Input: SX , SY , UX
3: while not terminated do
4: model ← train naive bayes classifier(SX , SY)
5: UY , PY ← predict(model, UX)
6: Snew

X , Snew
Y ← filter(UX , UY , PY)

7: if |Snew
X | = 0 then

8: return model
9: end if

10: SX ← SX ∪ SnewX

11: SY ← SY ∪ SnewY

12: UX ← UX \ SnewX

13: end while
14: end procedure

What to Report For each of the two filtering techniques, run the semi-supervised algo-
rithm with 50, 500, and 5000 random training instances in S and the rest in U . Report
the initial accuracy (using just the starting S) and the final accuracy (when the algorithm
terminates) on the validation dataset. Additionally report the accuracy after the algorithm
terminates on the test dataset.

Use k = 0.1 for the Naive Bayes smoothing parameter. Use 0.98 as the confidence score
filtering threshold. Use K = 10000 as the number of instances to take in the top-K selection
method. The accuracy may not always go up, and that is OK, but for some settings it should
increase. The entire experiment should take around 5 minutes to run.

2 Theory [40 points]

2.1 Multivariate Exponential näıve Bayes [30 points]

In this question, we consider the problem of classifying piazza posts (Y) into two categories:
student posts (A), and instructor posts (B). For every post, we have two attributes: number
of words (X1), and number of mathematical symbols (X2). We assume that each attribute
(Xi, i = 1, 2) is related to a post category (A/B) via an Exponential distribution4 with a
particular mean (λ−1A;i/λ

−1
B;i). That is

P (Xi = x | Y = A) = e−xλA;iλA;i and P (Xi = x | Y = B) = e−xλB;iλB;i for i = 1, 2

4http://en.wikipedia.org/wiki/Exponential distribution

5

X1 X2 Y
0 3 A
4 8 A
2 4 A
6 2 B
3 5 B
2 1 B
5 4 B

Table 1: Dataset for Exponential näıve Bayes

Assume that the given data in Table 1 is generated by a Exponential näıve Bayes model.
You will use this data to develop a näıve Bayes predictor over the Exponential distribution.

P (Y=A) = P (Y=B) =
λA;1 = λB;1 =
λA;2 = λB;2 =

Table 2: Parameters for Exponential näıve Bayes

1. [10 points] Compute the prior probabilities (P (Y = A) and P (Y = B)). Use max-
imum likelihood estimation to find the corresponding λ parameter values. Fill in the
results in Table 2. Please show all the intermediate steps and results.

2. [10 points] Based on the parameter values from Table 2, compute

P (X1=2, X2=3|Y=A)

P (X1=2, X2=3|Y=B)

Write the full expression. You do not need to simplify.

3. [5 points] Write the decision rule for the Exponential Naive Bayes predictor based on
the previous equation. The answer we are looking for uses an if statement based on
the value of the previous ratio and an additional probability term.

4. [5 points] Using the parameter values you estimated in the previous steps and the
decision rule, what will the classifier predict as the value of Y , given the data point:
X1=2, X2=3?

2.2 Coin Toss [10 points]

Consider the following way to generate a series of Heads and Tails. For each element in the
series, first a coin is tossed. If it comes up as a T , it is shown to the user. On the other
hand, if the coin toss comes up as an H, then the coin is tossed the second time, and the
outcome of this toss is shown to the user.
Assume that the probability of a coin toss coming up as an H is p (and hence, the probability

6

of it coming up as a T is 1 − p). Suppose you see a sequence TTHTHHTHTT generated
based on the scheme given above. What is the most likely value of p?
(Assume a Bernoulli model to compute probability of the coin toss sequence.)

Submission Instructions

We will be using Gradescope to turn in both the Python code and writeup pdfs. You should
have been automatically added to Gradescope. If you do not have access, please ask the TA
staff on Piazza.

For this homework assignment, there are two Gradescope assignments:

– “Homework 4 - Code”: This is the assignment where you should up-
load your a python version of your Jupyter Notebook and your implemen-
tations of BBoWFeaturizer, CBoWFeaturizer, TFIDFFeaturizer, compute idf,
get vocabulary, train naive bayes, and predict naive bayes for unit testing.
Please name your file hw4.py

– “Homework 4 - PDF”: This is the assignment where you should upload your writeup
as a PDF.

Changelog

Version 2

1. Added the “log” to the IDF equation

2. Changed the footnote about which documents should be used to compute the IDF
score. The original note said to use training, validation, and testing when it should
really only be the training documents. It is OK if you do not update your code to only
use the training documents.

7

	Document Classification [60 Points]
	Dataset
	Document Representation
	Naive Bayes Experiment [40 Points]
	Semi-Supervised Learning Experiment [20 Points]

	Theory [40 points]
	Multivariate Exponential naïve Bayes [30 points]
	Coin Toss [10 points]

