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Introduction - Summary

*  Weintroduced the technical part of the class by giving two (very important) examples for learning approaches
to linear discrimination.

*  There are many other solutions.

*  Question 1: Our solution learns a linear function; in principle, the target function may not be linear, and this
will have implications on the performance of our learned hypothesis.

— Can we learn a function that is more flexible in terms of what it does with the feature space?

*  Question 2: Can we say something about the quality of what we learn (sample complexity, time complexity;

quality)
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Decision Trees

* Earlier, we decoupled the generation of the feature space from the learning.

* Argued that we can map the given examples into another space, in which the target
functions are linearly separable.

* Do we always want to do it?
e How do we determine what are good mappings?

Think about the Badges problem

* The study of decision trees may shed some light on this. What's the best learning algorithm?
* Learningis done directly from the given data representation.
 Thealgorithm “transforms” the data itself. . .
X2
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This Lecture

* Decision trees for (binary) classification
— Non-linear classifiers

* Learning decision trees (ID3 algorithm)

— Greedy heuristic (based on information gain)
Originally developed for discrete features

— Some extensions to the basic algorithm

e Overfitting
— Some experimental issues
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Representing Data

 Think about a large table, N attributes, and assume you want to know something about the people
represented as entries in this table.

 E.g.own an expensive car or r
* Simplest way: Histogram on the first attribute — own

* Then, histogram on first and second (own & gender)

 But, what if the # of attributes is larger: N=16 r

« How large are the 1-d histograms (contingency tables) ? 16 numbers

* How large are the 2-d histograms? 16-choose-2 = 120 numbers

e How many 3-d tables? 560 numbers

e  With 100 attributes, the 3-d tables need 161,700 numbers

— We need to figure out a way to represent data in a better way, and figure out what are the important
attributes to look at first.

— Information theory has something to say about it — we will use it to better represent the data.
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Decision Trees

— A hierarchical data structure that represents data by implementing a
divide and conquer strategy

— Can be used as a non-parametric classification and regression method

— Given a collection of examples, learn a decision tree that represents it.

— Use this representation to classify new examples

CIS 419/519 Fall’19
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The Representation

* Decision Trees are classifiers for instances represented as feature vectors

— color={red, blue, green} ; shape={circle, triangle, rectangle}; label= {A, B, C}

* Nodes are tests for feature values Evaluat P
valuation or a

e Thereis one branch for each value of the feature Decision Tree

Learning a
Decision Tree

» Leaves specify the category (labels)
* (Can categorize instances into multiple disjoint categories

C
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Expressivity of Decision Trees
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Decision Trees

* Qutput is a discrete category. Real valued outputs
are possible (regression trees)

* There are efficient algorithms for processing large
amounts of data (but not too many features)

* There are methods for handling noisy data
(classification noise and attribute noise) and for
handling missing attribute values

Shape
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Decision Boundaries

* Usually, instances are represented as attribute-value pairs (color=blue,
shape = square, +)

* Numerical values can be used either by discretizing or by using thresholds
for splitting nodes

* In this case, the tree divides the features space into axis-parallel
rectangles, each labeled with one of the labels

Y X<3
. . . nmes
! Y>7 Y<5
+ + -
5 no yes wes
: * : - | X<
no yes

| 3 X
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Today’s key concepts

* Learning decision trees (ID3 algorithm)

— Greedy heuristic (based on information gain)
Originally developed for discrete features

e Overfitting
— What s it? How do we deal with it?

e Some extensions of DTs

* Principles of Experimental ML

CIS 419/519 Fall’19
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Administration

* Since there is no waiting list anymore; all people that wanted to be
in arein.

* Everyone should have submitted HWO
* Recitations
* Quizzes

« HW 1 will be released on Monday.

— Please start working on it as soon as you can. Don’t wait until the last
couple of days.

e (Questions?
— Please ask/comment during class.

CIS 419/519 Fall’19 13



Learning decision trees (ID3 algorithm
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Decision Trees

 Canrepresent any Boolean Function

 Can be viewed as a way to compactly represent a lot of data.
* Natural representation: (20 questions)

* The evaluation of the Decision Tree Classifier is easy

* Clearly, given data, there are Outlook

many ways to represent it as /’\
a decision tree.

' : Sunny Overcast Rain
« Learning a good representation

. Humidity _ | Wind
from data is the challenge. o Y
High Normal Strong Weak
No Yes No Yes
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Will | play tennis today?

* Features
— Outlook:
— Temperature:
— Humidity:
— Wind:

 Labels

{Sun, Overcast, Rain}
{Hot, Mild, Cool}
{High, Normal, Low}
{Strong, Weak}

— Binary classification task: Y = {+, -}

CIS 419/519 Fall’19
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Will | play tennis today?

o T
I § H
2 S H
3 0 H
4 R M
5 R C
6 R C
7 O C
8 S M
9 § C
I0O R M
s ™M
12 O M
13O0 H
14 R M
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Play?

+

+ + + 4+ +

Outlook:  S(unny),
O(vercast),
R(ainy)

Temperature: H(ot),
M(edium),
C(ool)

Humidity:  H(igh),
N(ormal),
L(ow)

Wind: S(trong),
W (eak)
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Basic Decision Trees Learning Algorithm

O T H W Play? . . .
s wou w7 e Dataisprocessed in Batch (i.e. all the
2.5 H H S - data available) | Algrithm?
30 H H W +
4R M H W * Recursively build a decision tree top
5 R C N W +
6 R C N S down.
70 C N S + Outlook
8 S M H W -
9 S C N W + /’\
:(I) I; m E VSV : Sunny Overcast Rain
20 M H S  + Humidity yq Wind
30 H N W  + N N
14 R M H S High Normal Strong Weak

No Yes No Yes
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Basic Decision Tree Algorithm

* Let Sbe the set of Examples
—  Label is the target attribute (the prediction)
—  Attributes is the set of measured attributes

* |D3(S, Attributes, Label)
If all examples are labeled the same return a single node tree with Label
Otherwise Begin
A = attribute in Attributes that best classifies S (Create a Root node for tree)
for each possible value v of A
Add a new tree branch corresponding to A=v
Let Sv be the subset of examples in S with A=v

if Sv is empty: add leaf node with the common value of Label in S

Else: below this branch add the subtree
ID3(Sv, Attributes - {a}, Label)
End
Return Root

CIS 419/519 Fall’19

Outlook

Sunny Overcast Rain

Humidity Y!es Wind
High Normal Strong Weak
No  Yes No = Yes

why?

For evaluation time
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Picking the Root Attribute

* The goal is to have the resulting decision tree as small as
possible (Occam’s Razor)

— But, finding the minimal decision tree consistent with the data is NP-
hard

* The recursive algorithm is a greedy heuristic search for a
simple tree, but cannot guarantee optimality.

 The main decision in the algorithm is the selection of the next
attribute to condition on.

CIS 419/519 Fall’19 20



Picking the Root Attribute

*  Consider data with two Boolean attributes (A,B).
< (A=0,B=0), - >: 50 examples
< (A=0,B=1),- >: 50 examples
< (A=1,B=0),- >: 0examples
< (A=1,B=1), + >: 100 examples
*  What should be the first attribute we select?

—  Splitting on A: we get purely labeled nodes.
— Splitting on B: we don’t get purely labeled nodes.
— What if we have: <(A=1,B=0), - >: 3 examples?

* (one way to think about it: # of queries required to label a
random data point)

CIS 419/519 Fall’19
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Picking the Root Attribute

 Consider data with two Boolean attributes (A,B).

< (A=0,B=0), - >: 50 examples
< (A=0,B=1),- >: 50 examples
< (A=1,B=0),- >: 0 examples

3 examples

< (A=1,B=1), + >: 100 examples

e  What should be the first attribute we select?

* Trees looks structurally similar; which attribute should we choose?

Advantage A. But...
Need a way to quantify things

One way to think about it: # of queries required to
label a random data point.

If we choose A we have less uncertainty about
the labels.

CIS 419/519 Fall’19
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Picking the Root Attribute

* The goal is to have the resulting decision tree as small as
possible (Occam’s Razor)
— The main decision in the algorithm is the selection of the next
attribute to condition on.
* We want attributes that split the examples to sets that are
relatively pure in one label; this way we are closer to a leaf
node.

— The most popular heuristics is based on information gain, originated
with the ID3 system of Quinlan.

CIS 419/519 Fall’19 23



Entropy

* Entropy (impurity, disorder) of a set of examples, S, relative to a binary
classification is:

Entropy(S) = —p, log(p;) — p- log(p-)
* p, isthe proportion of positive examples in S and
* p_ isthe proportion of negatives examplesin S
— If all the examples belong to the same category: Entropy =0

— If all the examples are equally mixed (0.5, 0.5): Entropy =1
— Entropy = Level of uncertainty.

* Ingeneral, when p;is the fraction of examples labeled i:

k
Entropy(Slpyupy o0 Pil) = _lei log(p;)

* Entropy can be viewed as the number of bits required, on average, to encode
the class of labels. If the probability for + is 0.5, a single bit is required for each
example; if it is 0.8 — can use less then 1 bit.

CIS 419/519 Fall’19 24



Entropy

* Entropy (impurity, disorder) of a set of examples, S, relative to a binary
classification is:
Entropy(S) = —p, log(p;) — p- log(p-)

* p, isthe proportion of positive examples in S and
* p_ isthe proportion of negatives examplesin S

— If all the examples belong to the same category: Entropy =0

— If all the examples are equally mixed (0.5, 0.5): Entropy =1

— Entropy = Level of uncertainty.

A T

CIS 419/519 Fall’19
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Entropy

(Convince yourself that the max value would be log(k) )
(Also note that the base of the log only introduce a constant factor; therefore, we’ll think about base 2)

Kk
Entropy(S[pyupy o Pil) = _lei log(p;)

CIS 419/519 Fall’19



High Entropy — High level of Uncertainty

I nfo r m ati O n G a i n Low Entropy — No Uncertainty.

 The information gain of an attribute a is the expected reduction
in entropy caused by partitioning on this attribute

S
Gain(S,a) = Entropy(S) — z % Entropy(Sy)  outlook

vevalues(S) |51 /’\
* Where:

Rain
— S, is the subset of S for which attribute a has value v, and Sunny  Overcast

— the entropy of partitioning the data is calculated by weighing the
entropy of each partition by its size relative to the original set

* Partitions of low entropy (imbalanced splits) lead to high gain
* Go back to check which of the A, B splits is better

CIS 419/519 Fall’19 27



Will | play tennis today?

O T H
I S H H
2 S H H
30 H H
4 R M H
5 R C N
6 R C N
7 0 C N
8 S M H
9 §S C N
10 R M N
IS ™M N
12 O M H
13O H N
14 R M H
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Play?

+

+ + + + +

Outlook:  S(unny),
O(vercast),
R(ainy)

Temperature: H(ot),
M(edium),
C(ool)

Humidity: H(igh),
N(ormal),
L(ow)

Wind: S(trong),
W (eak)

28



Will | play tennis today?

CIS 419/519 Fall’19

—p; log,(p;) — p- log,(p-)

9, 9 5 5
14 08274~ 1405274

O T H W Play
| S H H W ;
2 S H H S ;
30 H H W + calculate current entropy
4 R M H W + o c
5 R C N W + e = = = —
6 R C N S i Pr = P 14
70 C N S + * Entropy(Play) =
8 S M H W ;
9 s C N W + =
OR M N W +
'S M N S + ~ 0.94
20 M H S +
30 H N W +
4R M H S ;
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Information Gain: Outlook

O T H W Play . 1Sy
1 T W ) Gain(S,a) = Entropy(S) — z ﬁ Entropy(S,)
2'S H H S - vevalues(S)
30 H H W + = sunny:
4 R M H W + py =2/5 p_=3/5 Entropy(O =S)=0.971
5'R C N W + = overcast:
6 R C N S - py =4/4 p_=0 Entropy(O =0)=0
7/0 C N S + = rainy:
8/ M H W - =3/5 p_=2/5  Entropy(O =R)=0.97I
4 p+ =3/5 p / PY( )
IOR M N W +

E ted ent

I's M N S - xpected en éﬁpy
1220 M H S + = Zvaalues(S) s Entropy(Sy)
130 H N W + = (5/14)x0.971 + (4/14)x0 + (5/14)x0.971 = 0.694
14 R M H S -

Information gain = 0.940 — 0.694 = 0.246
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Information Gain: Humidity

Pl;ay? Gain(S,a) = Entropy(S) — Z li,—”' Entropy(S,)
- vevalues(S) | |
+ Humidity = high:
+ py =3/7 p_=4/7 Entropy(H = H) = 0.985
+ Humidity = Normal:

p. =6/7 p_=1/7 Entropy(H = N) = 0.592

+

Expected entropy

- |Svl
- Zvaalues(S) ﬁ Entropy(Sv)
= (7/14)x0.985 + (7/14)x0.592 = 0.7785

+ + + 4+ +

Information gain = 0.940 — 0.694 = 0.246

xOOm;ummO;uwammo
XITIXXXOXOOOXITITTITH
WZIVLZITZIZITVOLUIZIZIVEZ

T W —Oo VO N U WN—
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Which feature to split on?

O T H
'S H H
2'S H H
30 H H
4 R M H
5 R C N
6 R C N
7.0 C N
8'S M H
9§ C N
I0OR ™M N
I11'S ™M N
127G ™M H
13’0 H N
4R M H

CIS 419/519 Fall’19
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Play?

+ + + + +

Information gain:
Outlook: 0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

— Split on Outlook
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An lllustrative Example (lI1)

Outlook

I

CIS 419/519 Fall’19

Gain(S,Humidity)=0.151
Gain(S,Wind) = 0.048
Gain(S, Temperature) = 0.029
Gain(S,0Outlook) = 0.246
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An lllustrative Example (lI1)

CIS 419/519 Fall’19

Outlook

I

Sunny
1,2,8,9,11
2+,3-
?

Overcast
3,7,12,13
4+,0-
Yes

Rain
4,5,6,10,14
3+,2-
?

O 00 N O U1 DA WIN —
wunuOmPmIPmIO LN

— o
w»n 0

12 O
13O
14 R

XITIXXXOXOO0OOXTTTH

IZIZZZIZZZIIIICI
NnZTVLNIITITVLNZITZITZINZE

Play?

+

+ + + + +
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An lllustrative Example (lI1)

CIS 419/519 Fall’19

Outlook

I

Sunny Overcast Rain
1,2,8,9,11 3,7,12,13  4,5,6,10,14
2+,3- 4+,0- 3+,2-
? Yes ?

Continue until:
* Every attribute is included in path, or,
* All examples in the leaf have same label

O 00 N O U1 DA W N —
wunOm®mIPmIO LKL

— o
w O

12 O
130
14 R

XITIXXXOXO0O0OXTTTH

IZIZZZIZZZIIIITI
NnZTVLNIITITVLLITZIZINZE

Play?

+ 0+ 4+ +

+ + + 4+ +
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An lllustrative Example (IV)

Outlook
Sunny Overcast Rain
1,2,8,9,11 3,7,12,13  4,5,6,10,14
2+,3- 4+,0- 3+,2-
? Yes ?

Gain(S ,,,,,Humidity) = 97.(3/5) 0-(2/5) 0 = .97
Gain(S,,,,,Temp) = 97. 0-(2/5) I = .57

Gain(S,,,,, Wind) = 97.(2/5) 1 - (3/5) .92= .02

Split on Humidity
CIS 419/519 Fall'19

— oV ®NOoO LA DN—
m;UmmO;U;U;Ummo

w o
OO
XIXXXOXNOONONXITITAH

14 R

IZIZZZIZZZIIITI
nTLnI2TITnTTnIg

Play?

+ 4+ o

+ 1

+ + + + +
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An lllustrative Example (V)

Outlook

I

Sunny Overcast
1,2,8,9,11 3,7,12,13
2+,3- 4+,0-
? Yes

CIS 419/519 Fall’19

Rain

4,5,6,10,14
3+,2-
?
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An lllustrative Example (V)

CIS 419/519 Fall’19

Outlook
Sunny Overcast Rain
1,2,8,9,11 3,7,12,13 4,5,6,10,14
2+,3- 4+,0- 3+,2-
Humidity Yes ?

N

High Normal
No Yes

38



induceDecisionTree(S)

1. Does S uniquely define a class?
if all s € S have the same label y: return S;

e 2. Find the feature with the most information gain:

i = argmax ; Gain(S, X))

e 3. Add children to S:
for k in Values(X):
Sy={s€S | x,=k}
addChild(s, S,)
induceDecisionTree(S,)
return S;

CIS 419/519 Fall’19
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An lllustrative Example (VI)

CIS 419/519 Fall’19

Outlook
Sunny Overcast Rain
1,2,8,9,11 3,7,12,13 4,5,6,10,14
2+,3- 4+,0- 3+,2-
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes

40



Hypothesis Space in Decision Tree Induction

* Conduct a search of the space of decision trees which can
represent all possible discrete functions. (pros and cons)

* Goal: to find the best decision tree
— Best could be “smallest depth”
— Best could be “minimizing the expected number of tests”

* Finding a minimal decision tree consistent with a set of data is
NP-hard.

* Performs a greedy heuristic search: hill climbing without
backtracking

* Makes statistically based decisions using all data

CIS 419/519 Fall’19 41



History of Decision Tree Research

Hunt and colleagues in Psychology used full search decision tree
methods to model human concept learning in the 60s

— Quinlan developed ID3, with the information gain heuristics in the late 70s to
learn expert systems from examples

— Breiman, Freidman and colleagues in statistics developed CART (classification
and regression trees simultaneously)

A variety of improvements in the 80s: coping with noise, continuous
attributes, missing data, non-axis parallel etc.

— Quinlan’s updated algorithm, C4.5 (1993) is commonly used (New: C5)

Boosting (or Bagging) over DTs is a very good general purpose
algorithm

CIS 419/519 Fall’19 42



Overfitting
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Example

*  Qutlook = Sunny,

* Temp = Hot

*  Humidity = Normal

*  Wind = Strong

 label: NO

* this example doesn’t exist in the tree

CIS 419/519 Fall’19

Outlook
Sunny Overcast Rain
1,2,8,9,11 3,7,12,13 4,5,6,10,14
2+,3- 4+,0- 3+,2-
Humidity Yes Wind

N N

High Normal Strong Weak
No Yes No Yes
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Overfitting - Example

This can always be done Outlook
— may fit noise or other
coincidental regularities
*  Outlook = Sunny, Sunny Overcast Rain
* Temp =Hot 1,2,8,9,11 3,7,12,13 4,5,6,10,14
*  Humidity = Normal 2+,3- 4+,0- 3+,2-
*  Wind = Strong Humidity Yes Wind
° label: NO /\ /\
* this example doesn’t exist in the tree
High Normal Strong Weak
No Wind No Yes

Strong  Weak
No Yes

CIS 419/519 Fall'19 45



Our training data

CIS 419/519 Fall’19
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Overfitting the Data

* Learning a tree that classifies the training data perfectly may not lead to the tree with the best
generalization performance.

— There may be noise in the training data the tree is fitting
— The algorithm might be making decisions based on very little data

* A hypothesis h is said to overfit the training data if there is another hypothesis h’, such that h has a
smaller error than h’ on the training data but h has larger error on the test data than h’.

accuracy

— On training

On testing

Complexity of tree
CIS 419/519 Fall’'l9 P y 48



Reasons for overfitting

 Too much variance in the training data

— Training data is not a representative sample
of the instance space

— We split on features that are actually irrelevant

 Too much noise in the training data
— Noise = some feature values or class labels are incorrect
— We learn to predict the noise

* In both cases, it is a result of our will to minimize the empirical
error when we learn, and the ability to do it (with DTs)

CIS 419/519 Fall’19
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Pruning a decision tree

* Prune = remove leaves and assign majority label of the parent
to all items
* Prune the children of node s if:

— all children are leaves, and

— the accuracy on the validation set does not decrease if we assign the
most frequent class label to all items at s.

CIS 419/519 Fall’19 50



Avoiding Overfitting

How can this be avoided with linear classifiers?

*  Two basic approaches

— Pre-pruning: Stop growing the tree at some point during construction when it is determined that there is
not enough data to make reliable choices.

— Post-pruning: Grow the full tree and then remove nodes that seem not to have sufficient evidence.
 Methods for evaluating subtrees to prune

— Cross-validation: Reserve hold-out set to evaluate utility

— Statistical testing: Test if the observed regularity can be dismissed as likely to occur by chance

— Minimum Description Length: Is the additional complexity of the hypothesis smaller than remembering
the exceptions?

* Thisis related to the notion of regularization that we will see in other contexts — keep the
hypothesis simple.

/ Hand waving, for now.

Next: a brief detour into explaining generalization and overfitting
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Preventing Overfitting

52
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The i.i.d. assumption

* Training and test items are independently and identically
distributed (i.i.d.):
— There is a distribution P(X, Y) from which the data D = {(x, y)} is generated.

* Sometimes it’s useful to rewrite P(X, Y) as P(X)P(Y | X)
Usually P(X, Y) is unknown to us (we just know it exists)

— Training and test data are samples drawn from the same P(X, Y): they are
identically distributed

— Each (x, y) is drawn independently from P(X, Y)

CIS 419/519 Fall’19
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Overfitting

On training data

Accuracy
Why this shape
of curves!? On test data
: >
Size of tree

* A decision tree overfits the training data when its accuracy on
the training data goes up but its accuracy on unseen data goes
down

CIS 419/519 Fall’19 57



Overfitting

Empirical
Error

_‘-—"“"'JT

Model complexity

 Empirical error (= on a given data set):
The percentage of items in this data set are misclassified by
the classifier f.

CIS 419/519 Fall’19 58



Overfitting

Empirical
Error

Model complexity

 Model complexity (informally):
How many parameters do we have to learn?

* Decision trees: complexity = #nodes

CIS 419/519 Fall’19
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Overfitting

Model complexity

What percentage of items drawn from P(x,y) do we expect to
be misclassified by f?

 (That’s what we really care about — generalization)

CIS 419/519 Fall’19 60



Variance of a learner (informally)

A
’\
/’ Variance
’f
- .
e o e e wm == == Model complexity
>

How susceptible is the learner to minor changes in the training data?

(i.e. to different samples from P(X, Y))

* Variance increases with model complexity

Think about extreme cases: a hypothesis space with one function vs. all functions.
Or, adding the “wind” feature in the DT earlier.

The larger the hypothesis space is, the more flexible the selection of the chosen hypothesis is as a
function of the data.

More accurately: for each data set D, you will learn a different hypothesis h(D), that will have a different
true error e(h); we are looking here at the variance of this random variable.
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Bias of a learner (informally)

~ Bias Model complexity

 How likely is the learner to identify the target hypothesis?
* Biasis low when the model is expressive (low empirical error)

* Biasis high when the model is (too) simple
— The larger the hypothesis space is, the easiest it is to be close to the true hypothesis.

— More accurately: for each data set D, you learn a different hypothesis h(D), that has a different true error
e(h); we are looking here at the difference of the mean of this random variable from the true error.
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Impact of bias and variance

Expected
Error

Variance

Bias

- ——— s ---—-

Model complexity

* Expected error = bias + variance

CIS 419/519 Fall’19
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Model complexity

Expected
Error

CIS 419/519 Fall’19

---_—— ---_-

/

Simple models:
High bias and low variance

Variance

Model complexity

Complex models:
High variance and low bias
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Underfitting and Overfitting

CIS 419/519 Fall’19

Underfitting  Overfitting

Expected
Error
Variance
- — - - .
Model complexity
Simple models: Complex models:

High bias and low variance  High variance and low bias

This can be made more accurate for some loss functions.

We will discuss a more precise and general theory that
trades expressivity of models with empirical error
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Avoiding Overfitting

How can this be avoided with linear classifiers?

 Two basic approaches

— Pre-pruning: Stop growing the tree at some point during construction when it is
determined that there is not enough data to make reliable choices.

— Post-pruning: Grow the full tree and then remove nodes that seem not to have
sufficient evidence.

 Methods for evaluating subtrees to prune
— Cross-validation: Reserve hold-out set to evaluate utility

— Statistical testing: Test if the observed regularity can be dismissed as likely to occur
by chance

— Minimum Description Length: Is the additional complexity of the hypothesis
smaller than remembering the exceptions?

* This is related to the notion of regularization that we will see in other
contexts — keep the hypothesis simple.
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Trees and Rules

Decision Trees can be represented

as Rules Outlook
— (outlook = sunny) and (humidity =
normal) then YES
— (outlook = rain) and (wind = strong) Sunny  Overcast Rain
then NO 1,2,8,9,11 3,7,12,13 4,56,10,14
: : 2+,3- 4+,0- 3+,2-
Sometimes Pruning can be done at Humidity  Yes Wind
the rules level PN N
— Rules are generalized by High  Normal Strong Weak
No Yes No Yes

erasing a condition (different!)
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DT Extensions:
continuous attributes and missing
values
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Continuous Attributes

e Real-valued attributes can, in advance, be discretized into ranges, such as
big, medium, small

* Alternatively, one can develop splitting nodes based on thresholds of the
form A<c that partition the data into examples that satisfy A<c and A>=c.

— The information gain for these splits is calculated in the same way and compared to
the information gain of discrete splits.

* How to find the split with the highest gain?

* For each continuous feature A:
— Sort examples according to the value of A
— For each ordered pair (x,y) with different labels

* Check the mid-point as a possible threshold, i.e.
e S _.S

a<x Za>=y
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Continuous Attributes

e Example:
— Length(L): 10 15 21 28 32 40 50
— Class: -+ + -+ 4+ -
— Check thresholds: L<12.5; L<24.5; L<45
— Subset of Examples={...}, Split= k+,j-

 How to find the split with the highest gain ?

— For each continuous feature A:
* Sort examples according to the value of A
* For each ordered pair (x,y) with different labels
— Check the mid-point as a possible threshold. l.e,
- S S

a<x Ya>=y
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Missing Values

* Diagnosis = < fever, blood_pressure,..., blood_test=?,...>

* Many times values are not available for all attributes during
training or testing (e.g., medical diagnosis)

* Training: evaluate Gain(S,a) where in some of the examples a
value for a is not given

CIS 419/519 Fall’19
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. . s,
M ISSl ng Va I u eS Gain(S,a) = Entropy(S) — % Entropy(S,)

Other suggestions? Outlook Gain(ssunny ’Temp) — 97- 0_(2/5) | =.57
/l\ Gain(S,,,, ,Humidity) =
. = Fill in: assign the to s:
Sunny Overcast Rain argmax , P( X, =k):
1,2,8,9,113,7,12,134,5,6,10,14 - 97-(3/5) Ent[+0,-3] -(2/5) Ent[+2,-0] =
2+,3- 4+,0- 3+,2- = Assign P(X, =k)
for each value of X. to s
? Yes ?

.97-(2.5/5) Ent[+0,-2.5] - (2.5/5) Ent[+2,-.5]

Day Outlook Temperature Humidity Wind PlayTennis

| Sunny Hot High Weak No
2 Sunny Hot High Strong No
8 Sunny Mild m Weak No
9 Sunny Cool Normal Weak Yes
N Sunny Mild Normal Strong Yes
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Missing Values

* Diagnosis = < fever, blood_pressure,..., blood_test=?,...>

* Many times values are not available for all attributes during
training or testing (e.g., medical diagnosis)

* Training: evaluate Gain(S,a) where in some of the examples a
value for a is not given

* Testing: classify an example without knowing the value of a
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Missing Values

Outlook = Sunny, Temp = Hot, Humidity = 7?7, Wind = Strong, label =?? Normal/High
Outlook = 7?7, Temp = Hot, Humidity = Normal, Wind = Strong, label =??

Outlook 1/3Yes + 1/3Yes +1/3 No =Yes

Sunny Overcast Rain
1,2,8,9,11 3,7,12,13 4,5,6,10,14
2+,3- 4+,0- 3+,2-
Humidity Yes Wind
RN RN
High Normal Strong Weak
No Yes No Yes
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Other Issues

e Attributes with different costs

— Change information gain so that low cost attribute are preferred
* Dealing with features with different # of values

» Alternative measures for selecting attributes

— When different attributes have different number of values information
gain tends to prefer those with many values

 Oblique Decision Trees
— Decisions are not axis-parallel

* |ncremental Decision Trees induction

— Update an existing decision tree to account for new examples
incrementally (Maintain consistency?)

CIS 419/519 Fall’19
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Summary: Decision Trees

*  Presented the hypothesis class of Decision Trees
— Very expressive, flexible, class of functions

*  Presented a learning algorithm for Decision Tress
—  Recursive algorithm.
— Key step is based on the notion of Entropy

* Discussed the notion of overfitting and ways to address it within DTs
— Inyour problem set — look at the performance on the training vs. test

*  Briefly discussed some extensions
— Real valued attributes
—  Missing attributes

*  Evaluation in machine learning
—  Cross validation
— Statistical significance
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Decision Trees as Features

* Rather than using decision trees to represent the target function it is becoming common to use
small decision trees as features

*  When learning over a large number of features, learning decision trees is difficult and the resulting
tree may be very large

- (over fitting)
* Instead, learn small decision trees, with limited depth.

* Treat them as “experts”; they are correct, but only on a small region in the domain. (what DTs to
learn? same every time?)

* Then, learn another function, typically a linear function, over these as features.

* Boosting (but also other linear learners) are used on top of the small decision trees. (Either
Boolean, or real valued features)

* InHW1 you learn a linear classifier over DTs.

— Not learning the DTs sequentially; all are learned at once.
*  How can you learn multiple DTs?

— Combining them using an SGD algorithm.

CIS 419/519 Fall’19 77


https://www.seas.upenn.edu/%7Ecis519/fall2018/assets/lectures/lecture-2/boost-DT.pdf

Experimental Machine Learning

 Machine Learning is an Experimental Field and we will spend some time
(in Problem sets) learning how to run experiments and evaluate results

— First hint: be organized; write scripts
* Basics:

— Split your data into three sets:
* Training data (often 70-90%)
* Test data (often 10-20%)
* Development data (10-20%)
* You need to report performance on test data, but you are not allowed to
look at it.

— You are allowed to look at the development data (and use it to tune parameters)

CIS 419/519 Fall’19
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Metrics
Methodologies
Statistical Significance
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Metrics

* We train on our training data Train = {x;, y;}; ,
* We test on Test data.
 We often set aside part of the training data as a development set,
especially when the algorithms require tuning.
— Inthe HW we asked you to present results also on the Training; why?

 When we deal with binary classification we often measure performance
simply using Accuracy:

# correct predictions
accuracy =

# test instances

# incorrect predictions

error = 1 — accuracy =

Any possible problems with it? 7 test instances
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Alternative Metrics

Positive negative
* Ifthe Binary classification problem is biased ' !
. false negatives true negatives
— In many problems most examples are negative

*  Or, in multiclass classification

— The distribution over labels is often non-uniform
* Simple accuracy is not a useful metric.

— Often we resort to task specific metrics

* However one important example that is being used often
involves Recall and Precision

*  Recall: # (positive identified = true positives)
# (all positive)

Predicted positive

How many selected How many relevant
items are relevant? items are selected?

* Precision: # (positive identified = true positives)
# (predicted positive)

Precision = Recall = ——
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Example

Positive negative
. 100 examples, 5% are positive. . |
false negatives true negatives
LY ® o (@)

* Justsay NO: your accuracy is 95%
— Recall = precision =0

*  Predict 4+, 96-; 2 of the +s are indeed positive
— Recall:2/5; Precision: 2/4

*  Recall: # (positive identified = true positives)
# (all positive)

selected elements

How many selected How many relevant

* Precision: # (positive identified = true positives) e sre N s sre selecedr
# (predicted positive)

Precision = Recall = ———
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8

3 Confusion Matrix

. Given a dataset of P positive instances and N negative

instances:
Predicted Class
, " Yes No
The notion of a g = TP +TN
confusion matrix can O Yes accuracy = TN
be usefully extended s +
to the multiclass case <'5 Ng
(i,j) cell indicate how
many of the i-labeled . Imagine using classifier to identify positive cases (i.e., for
examples were information retrieval)
predicted to be | recision — P recall = rr
P TP+ FP TP+ FN

Probability that a randomly Probability that a randomly

selected positive prediction selected positive is

is indeed positive identified
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Relevant Metrics

|t makes sense to consider Recall and
Precision together or combine them

into a single metric.

06

e Recall-Precision Curve:

o S5l e O
In(p-value) of 10,75 bbbl LCEDE

Precision
=

187 Pradicled FNR
Binding Sites

e F-Measure:

— A measure that combines precisionand "> = s 0w
recall is the harmonic mean of precision
and reca”' precision - recall

% - precision + recall

Fz=(1+8%-

— F1is the most commonly used metric.

CIS 419/519 Fall’19
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Comparing Classifiers

Say we have two classifiers, C1 and C2, and want to choose the
best one to use for future predictions

Can we use training accuracy to choose between them?
* No!

*  What about accuracy on test data?

CIS 419/519 Fall’19
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N-fold cross validation

* Instead of a single test-training split:

an

* Split data into N equal-sized parts

_NNENE NENEN DN(NED EiEEERC

e Train and test N different classifiers

* Report average accuracy and standard deviation of the
accuracy
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Evaluation: significance tests

* You have two different classifiers, A and B

* You train and test them on the same data set using N-fold
cross-validation

* For the fold:
accuracy(A, n), accuracy(B, n)
= accuracy(A, n) - accuracy(B, n)

_NNEN{E NENEN ER(EED RjEEND
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Hypothesis testing

* You want to show that hypothesis H is true, based on your
data

— (e.g. H ="“classifier A and B are different”)

* Define a null hypothesis H,

— (Hq is the contrary of what you want to show)

H, defines a distribution P(m [H,) over some statistic
— e.g. a distribution over the difference in accuracy between A and B

* (Can you refute (reject) H,?

CIS 419/519 Fall’19 88



Rejecting H,

* H,defines a distribution P(M [H,) over some statistic M

— (e.g. M= the difference in accuracy between A and B)

e Select a significance value S
— (e.g. 0.05, 0.01, etc.)
— You can only reject H, if P(m [H,) €S

 Compute the test statistic m from your data

— e.g. the average difference in accuracy over your N folds
* Compute P(m [H,)
* Refute Hywith p <Sif P(m [H,) <S
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Paired t-test

Null hypothesis (H,; to be refuted):

— There is no difference between A and B, i.e. the expected accuracies of
A and B are the same

That is, the expected difference (over all possible data sets)
between their accuracies is O:

We don’t know the true
e N-fold cross-validation gives us N samples of
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Paired t-test

Null hypothesis

* m: our estimate of . based on N samples of
m=1/N > diff

The estimated variance S?:
$?=1/(N-1) 2., ,, (diff, — m)2

at significance level a if the
liesin (-t N1, oo noa)

JNm

N
S

CIS 419/519 Fall’19
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Decision Trees - Summary

 Hypothesis Space:
— Variable size (contains all functions)
— Deterministic; Discrete and Continuous attributes
e Search Algorithm
— |ID3 - batch
— Extensions: missing values
* |ssues:
— What is the goal?
— When to stop? How to guarantee good generalization?
* Did not address:
— How are we doing? (Correctness-wise, Complexity-wise)
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