Why Machine Learning Works:

Explaining Generalization

Dan Roth

danroth@seas.upenn.edu | http://www.cis.upenn.edu/~danroth/|461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric
Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides
available.

L )]

yow Penn
Y Engl'neering

1



Administration

* Midterm Exam next on 10/28

— In class

Questions

e Closed books
* Examples are on the web site
e All the material covered in class and HW

— Go to the recitations

* HW2

— Efficiency
— Go to office hours
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Where are we?

e Algorithmically:
— Perceptron + Variations
— (Stochastic) Gradient Descent

* Models:
— Online Learning; Mistake Driven Learning

 What do we know about Generalization? (to previously unseen

examples?)
— How will your algorithm do on the next example?
»° Next we develop a theory of Generalization.

— We will come back to the same (or very similar) algorithms and show how
the new theory sheds light on appropriate modifications of them, and
provides guarantees.
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Computational Learning Theory

 What general laws constrain inductive learning ?
— What learning problems can be solved ?
— When can we trust the output of a learning algorithm ?

« We seek theory to relate
— Probability of successful Learning
— Number of training examples
— Complexity of hypothesis space
— Accuracy to which target concept is approximated
— Manner in which training examples are presented
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Qu a ntifyi ng Pe rfo rm a n Ce Recall what we did earlier:

* We want to be able to say something rigorous about the
performance of our learning algorithm.

* We will concentrate on discussing the number of examples
one needs to see before we can say that our learned
hypothesis is good.
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Learning Conjunctions

* There is a hidden conjunction the learner (you) is to learn
[ =X, ANx3 ANX4 A Xs A Xqp0
* How many examples are needed to learn it ? How ?
— Protocol I:

* The learner proposes instances as queries to the teacher
— Protocol Il:

* The teacher (who knows f) provides training examples
— Protocol llI:

* Some random source (e.g., Nature) provides training examples; the
Teacher (Nature) provides the labels (f(x))
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Learning Conjunctions

* Protocol I: The learner proposes instances as queries to the
teacher

* Since we know we are after a monotone conjunction:
— Isx190in? < (1,1,1,...,1,0),?> f(x) = 0 (conclusion: Yes)
— Isxg9in? < (1,1,...,1,0,1),?> f(x) =1 (conclusion: No)
— Isx;in?<(0,1,..,1,1,1),?> f(x) = 1 (conclusion: No)

* A straight forward algorithm requires n = 100 queries, and
will produce as a result the hidden conjunction (exactly).

h — xZ /\ x3 /\ x4 /\ x5 /\ xlOO What happens here if the conjunction

is not known to be monotone?
If we know of a positive example,

CIS 419/519 Fall’l9 the same algorithm works. 7



Learning Conjunctions

* Protocol ll: The teacher (who knows f) provides training examples
e < (0,1,1,1,1,0, veey 0,1), 1 > (We learned a superset of the good variables)

* To show you that all these variables are required...
<(0,0,1,1,1,0,...,0,1), 0> need x,

Modeling Teaching is tricky
<(0,1,0,1,1,0,...,0,1), 0> need x5

<(0,1,1,1,1,0,...,0,0), 0> need x4

e A straight forward algorithm requires k = 6 examples to produce
the hidden conjunction (exactly).

[ =Xy Ax3 AXy A X5 A X100
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Learning Conjunctions (lll)  [r=xannrsnsase

* Protocol lll: Some random source (e.g., Nature) provides training examples
» Teacher (Nature) provides the labels (f(x))

- <(1,1,1,0,0,0,..,0,0),0 >

- <(1,1,1,1,10,..,0,1,1),1 >

- <(1,01,1,1,0,..,0,1,1),0 >

- <(1,1,1,1,10,..,0,0,1),1 >

- <(,0,1,0,0,0,..,0,1,1),0 >

- <(1,1,1,11,1,..,0,1),1 >

- <(0,1,0,1,0,0,...,0,1,1),0 >

e How should we learn?
e Skip
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Learning Conjunctions (lIl)

f=x2 /\X3 /\X4/\XS/\X100

* Protocol lll: Some random source (e.g., Nature) provides

training examples
— Teacher (Nature) provides the labels (f (x))

 Algorithm: Elimination

— Start with the set of all literals as candidates

— Eliminate a literal that is not active (0) in a positive example

CIS 419/519 Fall’19
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Learning Conjunctions(lll)

* Protocol lll: Some random source (e.g., Nature) provides training examples

f=x2 /\X3/\X4/\X5 /\x100

— Teacher (Nature) provides the labels (f (x))

e Algorithm: Elimination

— Start with the set of all literals as candidates

— Eliminate a literal that is not active (0) in a positive example

<(1,1,1,1,1,1,..,1,1), 1>
<(1,1,1,0,0,0,...,0,0), 0>
<(1,1,1,1,1,0,...0,1,1), 1>
<(1,0,1,1,0,0,...0,0,1), 0>
<(1,1,1,1,1,0,...0,0,1), 1>
<(1,0,1,0,0,0,...0,1,1), O>
<(1,1,1,1,1,1,..,0,1), 1>
<(0,1,0,1,0,0,...0,1,1), O>

CIS 419/519 Fall’19

learned nothing
learned nothing

Final hypothesis:
h = xl/\xz /\X3 /\X4/\X5 /\Xloo

* Isit good?
* Performance ?
* # of examples?
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Learning Conjunctions () [ 7=xnxnmasmas.

e Protocol lll: Some random source (e.g., Nature) provides training
examples e Isic good
— Teacher (Nature) provides the labels (f (x)) * Performance ?

o Algorithm. * # of examples ?
<(1,1,1,1,1,1,..,1,1), 1> » With the given data, we only learned an
<(1,1,1,0,0,0,...,0,0), 0> “approximation” to the true concept

o * We don’t know how many examples
<(1,1,1,1,1,0,..0,1,1), 1> we need to see to learn exactly. (do we
<(1,0,1,1,0,0,...0,0,1), O> care?)
<(1,1,1,1,1,0,...0,0,1), 1> * But we know that we can make a limited
<(1,0,1,0,0,0,...0,1,1), 0> Final hypothesis: # of mistakes.
<(1,1,1,1,1,1,..,0,1), 1> h=x1 Axy; Ax3 AXx4 A X5 A X100
<(0,1,0,1,0,0,...0,1,1), 0>
<(0,1,0,1,0,0,...0,1,1), 0>
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Two Directions

ma) — Can continue to analyze the probabilistic intuition:
* Never saw Xx; in positive examples, maybe we’ll never see it?

* And if we will, it will be with small probability, so the concepts we learn
may be pretty good

* Good: in terms of performance on future data
e PAC framework
— Mistake Driven Learning algorithms

* Update your hypothesis only when you make mistakes

* Good: in terms of how many mistakes you make before you stop, happy
with your hypothesis.

* Note: not all on-line algorithms are mistake driven, so performance
measure could be different.

CIS 419/519 Fall’19
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Prototypical Concept Learning

* Instance Space: X
— Examples
 Concept Space: C
— Set of possible target functions: f eC is the hidden target function
— All n-conjunctions; all n-dimensional linear functions
* Hypothesis Space:
— H:set of possible hypotheses
* Training instances Sy {0,1}:
— positive and negative examples of the target concept feC
< xq, f(x1) >, < X, f(x3) >, ., < xp, f () >
* Determine:
— A hypothesis heH such that h(x) = f(x)
— Ahypothesis heH such that h(x) = f(x) forall xeS ?
— Ahypothesis heH such that h(x) = f(x) forall xeX ?

h=x1 Axy Ax3 Axy AXs A X190
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Prototypical Concept Learning

— Instance Space: X
* Examples
— Concept Space: C
» Set of possible target functions: f €C is the hidden target function
e All n-conjunctions; all n-dimensional linear functions.
— Hypothesis Space:
* H:set of possible hypotheses
— Training instances Sy {0,1}:

* positive and negative examples of the target concept f €C . Training instances are
generated by a fixed unknown probability distribution D over X

< xq, f(xg) >,<x9, f(x3) >, ., < xp, f(x) >
— Determine:

* A hypothesis he H that estimates f, evaluated by its performance on subsequent instances
xeX drawn according to D

h=x1 ANxy ANx3 AX4 N\ Xs A X190

CIS 419/519 Fall’19 15



PAC Learning — Intuition

e \We have seen many examples
(drawn according to D ). Since in all
the positive examples x; was active,
it is very likely that it will be active in
future positive examples. If not, in
any case, x, is active only in a small
percentage of the examples so our
error will be small

e Errorp = xfzrD[f(x) #+ h(x)]

e h=Xx1AX, NX3 ANXy N X5 N\ X100

CIS 419/519 Fall’'l9

f and h disagree
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The notion of error

e Can we bound the Error?
Errorp = Pr [f(x) + h(x)]
X €D

given what we know about the
training instances?

h=x{ ANxy ANx3 AXx4 N\ Xs A Xqgg

CIS 419/519 Fall’'l9

f and h disagree




Learning Conjunctions— Analysis (1)

* Let z bealliteral. Let p(2) be the probability that, in D-sampling
an example, it is positive and z is false in it. Then:

Error(h) <), 0 (2)

— During learning p(2) is the probability that a randomly chosen example is
positive and z is deleted from h.

— If zisin the target concept, than p(z) = 0.
e Claim: h will make mistakes only on positive examples. h

— A mistake is made only if a literal z, that is in h but notin f, is falseina -
positive example. In this case, h will say NEG, but the example is POS.

* Thus, p(2) is also the probability that z causes h to make a

mistake on a randomly drawn example from D .

 There may be overlapping reasons for mistakes, but the sum
clearly bounds it.

h=x1 Axy Ax3 Axy AXs A X190
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Learning Conjunctions— Analysis (2)

Call a literal z in the hypothesis h bad if p(z) > %

A bad literal is a literal that is not in the target concept and has a significant probability to appear false
with a positive example.

Claim: If there are no bad literals, than error(h) < €. Reason: Error(h) <., ., p(2)

What if there are bad literals ?
— Letz be a bad literal.
— What is the probability that it will not be eliminated by a given example?

Pr(z survives one example) = 1 — Pr(z is eliminated by one example)
<1-p2<1 —%

The probability that z will not be eliminated by m examples is therefore:

m
Pr(z survives m independent examples) = (1 — p(z))m < (1 — %)

There are at most n bad literals, so the probability that some bad literal survives m examples is
bounded by n(1 — ¢/n)™

CIS 419/519 Fall’'l9 19



Learning Conjunctions— Analysis (3)

«  We want this probability to be small. Say, we want to choose m large enough such that the
probability that some z survives m examples is less than 9.

 (lLe., thatzremainsin h, and makes it different from the target function)

€ m
Pr(z survives m example) = n (1 —;) <é

e Usingl —x <e ™ (x> 0) itissufficient to requirethat ne » < §
*  Therefore, we need :

n 1
m > E{ln(n) + In <§>}

examples to guarantee a probability of failure (error > €) of less than 6.
* | Theorem: If mis as above, then:
— With probability > 1 — 9§, there are no bad literals; equivalently,
—  With probability > 1 — §, Err(h) < ¢
With o = 0.1, = 0.1, and n = 100, we need 6907 examples.
With o = 0.1, = 0.1, and n = 10, we need only 460 example, only 690 for 6 = 0.01

CIS 419/519 Fall’'l9 20



Administration

e Midterm Exam on 10/28
— Inclass

* Closed books
 Examples are on the web site

Questions?

* All the material covered in class, HW][0-2], quizzes

— Go to the recitations
e HW2 is due today

* HWI1 has been graded; should be released tonight.

* My office hours today: 5-5:30; 6-6:30
* My office hours tomorrow: as usual, 5-6

CIS 419/519 Fall’19
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Formulating Prediction Theory

* Instance Space X, Input to the Classifier; OutputSpaceY = {-1,+1}
 Making predictions with: h: X - Y

e D:Anunknown distributionover X X Y

* S:Aset of examples drawn independently from D; m = |[§|, size of sample.
Now we can define:

* True Error: Error) = P)reD[h(x) * Y]
Xy

Empirical Error: Errorg = (xE)rES[h(x) # y] = Ximlh(x;) # yi]

— (Empirical Error == Observed Error)
This will allow us to ask: (1) Can we describe/bound Errory given Errorg ?
. Function Space: C — A set of possible target concepts; targetis: f: X - Y
. Hypothesis Space: H — A set of possible hypotheses
This will allow us to ask: (2) Is C learnable?
— Isit possible to learn a given function in C using functions in H, given the supervised protocol?

CIS 419/519 Fall’19
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Requirements of Learning

e Cannot expect a learner to learn a concept exactly, since

— There will generally be multiple concepts consistent with the available
data (which represent a small fraction of the available instance space).

— Unseen examples could potentially have any label

— We “agree” to misclassify uncommon examples that do not show up in the
training set.

* Cannot always expect to learn a close approximation to the target
concept since

— Sometimes (only in rare learning situations, we hope) the training set will
not be representative (will contain uncommon examples).

 Therefore, the only realistic expectation of a good learner is that
with high probability it will learn a close approximation to the target
concept.
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Probably Approximately Correct

 Cannot expect a learner to learn a concept exactly.

A

 Cannot always expect to learn a close approximation to the target

concept

 Therefore, the only realistic expectation of a good learner is that with
high probability it will learn a close approximation to the target

concept.

* In Probably Approximately Correct (PAC) learning, one requires that
given small parameters € and §, with probability at least (1 — 9) a

learner produces a hypothesis with error at most ¢

 The reason we can hope for that is the Consistent Distribution

assumption.

CIS 419/519 Fall’'l9
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PAC Learnability

 Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H.
e (is PAClearnable by L using H if
— forall f € C,
— for all distributions D over X, and fixed 0 < ¢,0 < 1,
* L, given a collection of m examples sampled independently according to D
produces
— with probability at least (1 — 0) a hypothesis h € H with error at most ¢,
(Errorp = Prp[f(x) # h(x)]) where mis polynomialin1/¢€, 1/ 6, n and size(H)
e ( is efficiently learnable if L can produce the hypothesis in time
polynomialin1/¢,1/ 6, nand size(H)

CIS 419/519 Fall’19 25



We want a theory, so that we understand

PAC Le a rn a b i I ity (1) what observed performance says about future

performance, and
(2) what contributes to this (gap in performance) .

* We impose two limitations:
— Polynomial sample complexity (a condition on m; information theoretic constraint)
* Isthere enough information in the sample to distinguish a hypothesis h that approximate f ?

— Polynomial time complexity (a condition on the efficiency of L; computational
complexity)

* Is there an efficient algorithm that can process the sample and produce a good hypothesis h ?
 To be PAC learnable, there must be a hypothesis h € H with arbitrary small
error for every f € C. We generally assume H o C. (Properly PAC learnable if
H = ()
 Worst Case definition: the algorithm must meet its accuracy
— for every distribution (The distribution free assumption)
— for every target function f in the class C

CIS 419/519 Fall'|9 26



Occam’s Razor (1)

Claim: The probability that there exists a hypothesis h € H that
(1) is consistent with m examples and
(2) satisfies error(h) > ¢ (Error,(h) = Pr,.p[f(x) # h(x)])
is lessthan |H|(1— g)™.

Proof: Let h be such a bad hypothesis.
- The probability that h is consistent with one example of f is

Pryeplf(x) =h(x)] <1 —¢

- Since the m examples are drawn independently of each other,
The probability that h is consistent with m example of f is less than (1 — &)™

- The probability that some hypothesisin H is consistent with m examples

is less than |H|(1 — &)™
So, what is m? Note that we don’t need a true f for

this argument; it can be done with h,
relative to a distribution over X X Y.

CIS 419/519 Fall’'l9 27



Occam’s Razor (1)

 We want this probability to be smaller than 9, that is: What do we know now
about the Consistent
|H|(1—-¢)™ < 6 Learner scheme?

In(JH|) + min(1—-¢) < In(d)

2
(withe™ = 1—x+x7+---; e ™ > 1—x; - In(1 — &) < — g;gives a safer d)

1 1
m > —{In(|H]) +In <§>} We showed that a m-consistent
_ € hypothesis generalizes well
(gross over estimate) (err < g)

It is called Occam’s razor, because it indicates a preference towards small (The appropriate m is a function
hypothesis spaces. of |H|)

What kind of hypothesis spaces do we want ? Large ? Small ?
 To guarantee consistency we need H o C. But do we want the smallest H possible ?
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Why Should We Care?

 We now have a theory of generalization
— We know what the important complexity parameters are,

— We understand the dependence in the number of examples and in the size
of the hypothesis class.

 We have a generic procedure for learning that is guaranteed to
generalize well
— Draw a sample of size m.
— Develop an algorithm that is consistent with it.

— It will be good
* If m was large enough.

CIS 419/519 Fall'|9 29



Consistent Learners

 Immediately from the definition, we get the following general scheme for PAC learning:

* |Given a sample D of m examples

— Findsome h € H thatis consistent with all m examples
* We showed that if m is large enough, a consistent hypothesis must be close enough to f

* Check that mis not too large (polynomial in the relevant parameters) : we showed that the “closeness”
guarantee requires that

m >% (In|H| + In (%))

— Show that the consistent hypothesis h € H can be computed efficiently

* Inthe case of conjunctions

— We used the Elimination algorithm to find a hypothesis h that is consistent with the training set (easy to
compute)

— We showed directly that if we have sufficiently many examples (polynomial in the parameters), than h is
close to the target function.

We did not need to show it directly.
See above.
CIS 419/519 Fall’'l9 30



Examples

Conjunction (general): The size of the hypothesis space is 3"

— Since there are 3 choices for each feature (not appear, appear positively or appear
negatively)

1 1 1 1
m>={InG") +n(5)} =<3 +n(5))
(slightly different than previous bound)

If we want to guarantee a 95% chance of learning a hypothesis of at least 90%
accuracy, with n = 10 Boolean variable,

— m > (In(1/0.05) + 10in(3))/0.1 = 140.

If we goton = 100, this goes just to 1130, (linear with n)
but changing the confidence to 1% it goes just to 1145 (logarithmic with 0)
These results hold for any consistent learner.
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Why Should We Care?

 We now have a theory of generalization.
— We know what are the important complexity parameters

— We understand the dependence in the number of examples and in the size of the
hypothesis class

 We have a generic procedure for learning that is guaranteed to generalize
well.
— Draw a sample of size m.
— Develop an algorithm that is consistent with it.
— It will be good.

 We have tools to prove that some hypothesis classes are learnable and
some are not.

CIS 419/519 Fall'|9 32



K-CNF

. We will show that the class of K-CNF functions is PAC learnable.
- Here is an example of a member of this class of functions:

T
f= /\(zi1 VI, VeV )
i=1

. We will develop an Occam Algorithm (Consistent Learner algorithm) for a hidden f € k — CNF
. Draw a sample D of size m

. Find a hypothesis h that is consistent with all the examples in D

. Determine sample complexity:
fF=CACaAACpj e e . ;Ci=L VI V-V,
In(|k — CNF|) = 0(n*) ... .. ptem* (2n)k

(that is, log|H| is polynomial in n; remember that k is just a fixed number)

(1) Due to the sample complexity result h is guaranteed to be a PAC hypothesis, if we can use the m examples to learn
a consistent hypothesis.

How do we find the consistent hypothesis h?

CIS 419/519 Fall’'l9 33



K-CNF

r
=\ Vi veviy)
i=1

(2) How do we find the consistent hypothesis h?
Define a new set of features (literals), one for each clause of size k
y] = lil \Y liz V-V lik;j = 1,2, ...,le

 Use the algorithm for learning monotone conjunctions, over the new set of literals. We know that
the algorithm is efficient.

Example:n = 4, k = 2; monotone k-CNF
Yi=X1VXy Y2=X1VXz Y3=X1VXgy Ya=XaVX3 Ys5=XVXy Ye=X3VXy

e Original examples: (0000,[) (1010,0) (1110,0) (1111,
* New examples: (000000,0) (111101,70) (111111,1) (111111, )

Distribution?

CIS 419/519 Fall’19
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Negative Results — Examples

— Two types of non-learnability results:
— Complexity Theoretic

* Showing that various concepts classes cannot be learned, based on well-
accepted assumptions from computational complexity theory.

 E.g.:C cannot be learned unless P = NP
— Information Theoretic

* The concept class is sufficiently rich that a polynomial number of examples
may not be sufficient to distinguish a particular target concept.

* Both type involve “representation dependent” arguments.

* The proof shows that a given class cannot be learned by algorithms using
hypotheses from the same class. (So?)

— Usually proofs are for EXACT learning, but apply for the distribution free
case.

CIS 419/519 Fall'|9 39



Negative Results for Learning

 Complexity Theoretic:
— k-term DNF, fork > 1 (k-clause CNF, k > 1)
— Neural Networks of fixed architecture (3 nodes; n inputs)
— “read-once” Boolean formulas

— Quantified conjunctive concepts
* Information Theoretic:
— DNF Formulas; CNF Formulas

— Deterministic Finite Automata

— Context Free Grammars

We need to extend the theory in two ways:
(1) What if we cannot be completely consistent with the training data?
CIS 419/519 Fall'l9 (2) What if the hypothesis class we work with is not finite?
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Agnostic Learning

* Assume we are trying to learn a concept f using hypothesesin H, but f € H
* Inthis case, our goal should be to find a hypothesis h € H, with a small training error:

1
Errrg(h) = - |{x € training — examples; f (x) # h(x)}|

*  We want a guarantee that a hypothesis with a small training error will have a good accuracy on
unseen examples

Errp(h) = Prif(x) # h(x)]
X
* Hoeffding bounds characterize the deviation between the true probability of some event and its
observed frequency over m independent trials. Pr[p > Pemp +E] < e 2me’

— (p is the underlying probability of the binary variable (e.g., toss is Head) being 1; pep,yp is what we
observe empirically — empirical error)

CIS 419/519 Fall’19
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Agnostic Learning

*  Therefore, the probability that an element in H will have training error which is off by more than € can be
bounded as follows:
—2me?

Pr[Errpy(h) > Errpr(h) + €] < e

*  Doing the same union bound game as before, with & = |H|e‘2m£2 (from here, we can now isolate m, or
€)

e Wegeta —a bound on how much will the true error E, deviate from the observed
(training) error E .

*  For any distribution D generating training and test instances, with probability at least 1 —  over the
choice of the training set of size m, (drawn IID), for all he H

=

Error on the training data 5 Generalization: a function of the

lOngl + log (%) Hypothesis class size

E <E h) +
rrorp rrorpr(h) -

. See slide 76 in the On-line Lecture
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S U mm a ry (slide 76; On-line Lecture)

e Introduced multiple versions of on-line algorithms

* Most turned out to be Stochastic Gradient Algorithms
— For different loss functions

e Some turned out to be mistake driven

A term that forces
simple hypothesis

A term that minimizes error on the
training data

 We suggested generic improvements via:
— Regularization via adding a term that simple hypoth
- Jw) = 2, Q(z;,w) + AR; (W)
— Regularization via the Averaged Trick
* “Stability” of a hypothesis is related to its ability to generalize
— Animproved, adaptive, learning rate (Adagrad)

» Dependence on function space and the instance space properties.

* Now:
— A way to deal with non-linear target functions (Kernels)
— Beginning of Learning Theory.
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Agnostic Learning

* An agnostic learner

— which makes no commitment to whether f is in H, and

e returns the hypothesis with least training error over at least the
following number of examples m

* can guarantee with probability at least (1 — ¢) that its training
error is not off by more than & from the true error.

1 1
m > —{ln(lHl) + In (6>}

Learnability depends on the log of the size of the hypothesis space
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA

CIS 419/519 Fall’19
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA

* Will we be able to learn the Rectangle?

CIS 419/519 Fall’19
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Learning Rectangles

 Assume the target concept is an axis parallel rectangle
YA

 Will we be able to learn the target rectangle ?
 Can we come close ?

CIS 419/519 Fall’19
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Infinite Hypothesis Space

The previous analysis was restricted to finite hypothesis spaces

Some infinite hypothesis spaces are more expressive than others
— E.g., Rectangles, vs. 17- sides convex polygons vs. general convex polygons
— Linear threshold function vs. a conjunction of LTUs

* Need a measure of the expressiveness of an infinite hypothesis
space other than its size

 The Vapnik-Chervonenkis dimension (VC dimension) provides such
a measure.

* Analogous to |H|, there are bounds for sample complexity using
VC(H)
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Shattering
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Shattering

CIS 419/519 Fall’19

Linear functions are expressive
enough to shatter 2 points
(4 options; not all shown)
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Shattering

)

We say that a set S of examples is shattered
by a set of functions H if for every partition
of the examples in S into positive and negative
examples there is a function in H that gives
exactly these labels to the examples

CIS 419/519 Fall’19
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Linear functions are not expressive
enough to shatter |3 points
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Shattering

e We say that a set S of examples is shattered by a set of
functions H if for every partition of the examplesin S into
positive and negative examples there is a function in H that
gives exactly these labels to the examples

(Intuition: A rich set of functions shatters large sets of points)
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Shattering

e \We say that a set S of examples is shattered by a set of functions H if
for every partition of the examples in S into positive and negative

examples there is a function in H that gives exactly these labels to the
examples

(Intuition: A rich set of functions shatters large sets of points)
Left bounded intervals on the real axis: [0, a), for some real numbera > 0

EEEEE N
0 a
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Shattering

e We say that a set S of examples is shattered by a set of functions H if for
every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

(Intuition: A rich set of functions shatters large sets of points)
Left bounded intervals on the real axis: [0, a), for some real numbera > 0

 FE+E+ - -  FE+HE+ -
0 a 0 - a +

e Sets of two points cannot be shattered(we mean: given two points, you
can label them in such a way that no concept in this class will be
consistent with their labeling)

CIS 419/519 Fall’'l9
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Shattering

e We say that a set S of examples is shattered by a set of
functions H if for every partition of the examplesin S into
positive and negative examples there is a function in H that
gives exactly these labels to the examples

[ This is the set of functions (concept class) considered here ]

Intervals on the real axis: [a, b], for some real numbers b > a

"|+++++|--
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Shattering

e \We say that a set S of examples is shattered by a set of functions H if for
every partition of the examples in S into positive and negative examples
there is a function in H that gives exactly these labels to the examples

e Intervals on the real axis: [a, b], for some real numbers b > a

==, +++++ - - ==+t ++ 4+, -

a b + a - b +

* All sets of one or two points can be shattered but sets of three points
cannot be shattered
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Shattering

e We say that a set S of examples is shattered by a set of
functions H if for every partition of the examplesin S into
positive and negative examples there is a function in H that
gives exactly these labels to the examples

e Half-spaces in the plane:

CIS 419/519 Fall’'l9
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Shattering

e We say that a set S of examples is shattered by a set of functions H if for
every partition of the examples in S into positive and negative examples there
is a function in H that gives exactly these labels to the examples

.

form a convex
polygon... (if
not?)
2.If one point is
inside the convex
hull defined by
the other three...

(if not?) /

All sets of
three points?

* sets of one, two or three points can be shattered
but there is no set of four points that can be shattered
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VC Dimension: Motivation

e An unbiased hypothesis space H shatters the entire instance
space X, i.e, itis able to induce every possible partition on
the set of all possible instances.

e The larger the subset of X that can be shattered, the more
expressive a hypothesis space is, i.e., the less biased.

CIS 419/519 Fall’'l9
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VC Dimension

e We say that a set S of examples is shattered by a set of functions H if for every
partition of the examples in S into positive and negative examples there is a
function in H that gives exactly these labels to the examples

e The VC dimension of hypothesis space H over instance space X is the size of
the largest finite subset of X that is shattered by H.

Two steps to prOVing that VC (H) = : f Even if only one subset of this size does it! ]

e If there exists a subset of size d that can be shattered, then VC(H) > d
e If nosubset of size d + 1 can be shattered, then VC(H) < d + 1

VC(Half intervals) =1 (no subset of size 2 can be shattered)
VC(Intervals) = 2 (no subset of size 3 can be shattered)
VC(Half-spaces in the plane) =3 (no subset of size 4 can be shattered)

Some are shattered, but some are not ] 66
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Sample Complexity & VC Dimension

e Using VC(H) as a measure of expressiveness we have an Occam algorithm for
infinite hypothesis spaces.

e Given asample D of m examples, find some h € H that is consistent with all m examples

What if H
is finite?

. Then with probability at least (1 — &), h has error less than €. (that is, if m is polynomial we
have a PAC learning algorithm; to be efficient, we need to produce the hypothesis h efficiently.

e Assume that H shatters k examples.
e Notice that to shatter k examples it must be that: |H| > 2%, so
log(|H|) = VC(H)

CIS 419/519 Fall’'l9
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Learning Rectangles

* Consider axis parallel rectangles in the real plane
e CanwePAClearnit?

CIS 419/519 Fall’19
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Learning Rectangles

* Consider axis parallel rectangles in the real plane

e CanwePAClearnit?
(1) What is the VC dimension ?

CIS 419/519 Fall’19
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Learning Rectangles

* Consider axis parallel rectangles in the real plane

e CanwePAClearnit?
(1) What is the VC dimension ?

e Some four instance can be shattered

 (need to consider here 16 different rectangles) Shows that
VC(H) = 4

CIS 419/519 Fall’19
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Learning Rectangles

* Consider axis parallel rectangles in the real plane

Can we PAC learniit ?
(1) What is the VC dimension ?

Some four instance can be shattered and some cannot

(need to consider here 16 different rectangles)
Shows that VC(H) = 4
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Learning Rectangles

* Consider axis parallel rectangles in the real plan

e CanwePAClearnit?
(1) What is the VC dimension ?

* But, no five instances can be shattered

s

CIS 419/519 Fall’19
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Learning Rectangles

* Consider axis parallel rectangles in the real plan

e CanwePAClearnit?
(1) What is the VC dimension ?

 But, no five instances can be shattered
There can be at most 4 distinct
extreme points (smallest or largest
D along some dimension) and these
cannot be included (labeled +)

without including the 5th point.

* Therefore VC(H) = 4 . As far as sample complexity, this guarantees
PAC learnability.
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Learning Rectangles

* Consider axis parallel rectangles in the real plan

* CanwePAClearnit?
(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ?

CIS 419/519 Fall’19
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Learning Rectangles

* Consider axis parallel rectangles in the real plan

e CanwePAClearnit?
(1) What is the VC dimension ?
(2) Can we give an efficient algorithm ?

o Find the smallest rectangle that

. ° contains the positive examples
(necessarily, it will not contain any

negative example, and the hypothesis

is consistent.

Axis parallel rectangles are efficiently PAC learnable.

CIS 419/519 Fall’19

75



Sample Complexity Lower Bound

e Thereis also a general lower bound on the minimum number of examples
necessary for PAC leaning in the general case.

e Consider any concept class C such that V'C(C) > 2, any learner L and small
enough €, 6. Then, there exists a distribution D and a target function in C
such that if L observes less than

m = max[1 10g<1> (Ve(c) — 1) /32¢]

examples, then with probability at least §, L outputs a hypothesis having
error (h) > e.

* lIgnoring constant factors the lower bound is the same as the upper bound,
except for the extra log — factor in the upper bound.

CIS 419/519 Fall’'l9
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COLT Conclusions

« The PAC framework provides a reasonable model for theoretically analyzing the effectiveness
of learning algorithms.

 The sample complexity for any consistent learner using the hypothesis space, H, can be
determined from a measure of H’s expressiveness (|H|,VC(H))

 |fthe sample complexity is tractable, then the computational complexity of finding a
consistent hypothesis governs the complexity of the problem.

 Sample complexity bounds given here are far from being tight, but separate learnable classes
from non-learnable classes (and show what’s important). They also guide us to try and use
smaller hypothesis spaces.

 Computational complexity results exhibit cases where information theoretic learning is
feasible, but finding good hypothesis is intractable.

 The theoretical framework allows for a concrete analysis of the complexity of learning as a
function of various assumptions (e.g., relevant variables)
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COLT Conclusions (2)

 Many additional models have been studied as extensions of the
basic one:

—  Learning with noisy data

—  Learning under specific distributions

—  Learning probabilistic representations
—  Learning neural networks

—  Learning finite automata

—  Active Learning; Learning with Queries
—  Models of Teaching

 An important extension: PAC-Bayesians theory.

— In addition to the Distribution Free assumption of PAC, makes also an
assumption of a prior distribution over the hypothesis the learner can
choose from.
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COLT Conclusions (3)

 Theoretical results shed light on important issues such as the
importance of the bias (representation), sample and computational
complexity, importance of interaction, etc.

 Bounds guide model selection even when not practical.
* Alot of recent work is on data dependent bounds.
* The impact COLT has had on practical learning system in the last
few years has been very significant:
— SVMs;
— Winnow (Sparsity),
— Boosting
— Regularization
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