

# Boosting and Ensembles; Multi-class Classification and Ranking

Dan Roth danroth@seas.upenn.edu|http://www.cis.upenn.edu/~danroth/|461C, 3401 Walnut

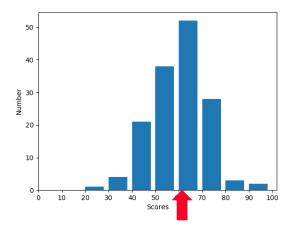
Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides available.



#### Midterm Exams

#### **Questions?**

- Max/Min 97.0/29.5
- Median 63.5
- Mean 61.6
- Std Dev: 12.3



419 – 519 (149 students)

- Midterms are on Gradescope.
- Solutions are available on the web site.
- Ask the TAs questions about the grading.

Class is curved; B+ will be around here

### Projects etc.

- Please start working!
- Come to my office hours at least once in the next 2 weeks to discuss the project. I will have longer office hours.

- HW3 is out.
  - There is a small part that you will be able to do only after today's lecture.

#### Where are we?

- Algorithms
  - DTs
  - Perceptron + Winnow
  - Gradient Descent
  - [NN]
- Theory
  - Mistake Bound
  - PAC Learning



- We have a formal notion of "learnability"
  - We understand Generalization
    - How will your algorithm do on the next example?
  - How it depends on the hypothesis class (VC dim)
    - and other complexity parameters
- Algorithmic Implications of the theory?

### Boosting

- Boosting is (today) a general learning paradigm for putting together a Strong Learner, given a collection (possibly infinite) of Weak Learners.
- The original Boosting Algorithm was proposed as an answer to a theoretical question in PAC learning. [The Strength of Weak Learnability; Schapire, 89]
- Consequently, Boosting has interesting theoretical implications, e.g., on the relations between PAC learnability and compression.
  - If a concept class is efficiently PAC learnable then it is efficiently PAC learnable by an algorithm whose required memory is bounded by a polynomial in n,  $size\ c$  and  $\log(\frac{1}{\epsilon})$ .
  - There is no concept class for which efficient PAC learnability requires that the entire sample be contained in memory at one time – there is always another algorithm that "forgets" most of the sample.

#### **Boosting Notes**

- However, the key contribution of Boosting has been practical, as a way to compose a good learner from many weak learners.
- It is a member of a family of Ensemble Algorithms, but has stronger guarantees than others.
- A Boosting demo is available at <a href="http://cseweb.ucsd.edu/~yfreund/adaboost/">http://cseweb.ucsd.edu/~yfreund/adaboost/</a>
- Example
- Theory of Boosting
  - Simple & insightful

#### **Boosting Motivation**

#### Example: "How May I Help You?"

[Gorin et al.]

 goal: automatically categorize type of call requested by phone customer

(Collect, CallingCard, PersonToPerson, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I
  musta rang the wrong number because I got the
  wrong party and I would like to have that taken
  off of my bill (BillingCredit)
- observation:
  - easy to find "rules of thumb" that are "often" correct
    - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard'"
  - hard to find single highly accurate prediction rule

#### The Boosting Approach

#### Algorithm

- Select a small subset of examples
- Derive a rough rule of thumb
- Examine 2nd set of examples
- Derive 2nd rule of thumb
- Repeat T times
- Combine the learned rules into a single hypothesis

#### – Questions:

- How to choose subsets of examples to examine on each round?
- How to combine all the rules of thumb into single prediction rule?

#### Boosting

 General method of converting rough rules of thumb into highly accurate prediction rule

#### **Theoretical Motivation**

- "Strong" PAC algorithm:
  - for any distribution
  - $\forall \delta, \varepsilon > 0$
  - Given polynomially many random examples
  - Finds hypothesis with  $error \leq \varepsilon$  with  $probability \geq (1 \delta)$
- "Weak" PAC algorithm
  - Same, but only for some  $\varepsilon \leq \frac{1}{2} \Upsilon$
- [Kearns & Valiant '88]:
  - Does weak learnability imply strong learnability?
  - Anecdote: the importance of the distribution free assumption
    - It does not hold if PAC is restricted to only the uniform distribution, say

### History

- [Schapire '89]:
  - First provable boosting algorithm
  - Call weak learner three times on three modified distributions
  - Get slight boost in accuracy
  - apply recursively

Some lessons for Ph.D. students

- [Freund '90]:
  - "Optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
  - First experiments using boosting
  - Limited by practical drawbacks
- [Freund & Schapire '95]:
  - Introduced "AdaBoost" algorithm
  - Strong practical advantages over previous boosting algorithms
- AdaBoost was followed by a huge number of papers and practical applications

#### A Formal View of Boosting

- Given training set  $(x_1, y_1)$ , ...  $(x_m, y_m)$
- $y_i \in \{-1, +1\}$  is the correct label of instance  $x_i \in X$
- For t = 1, ..., T
  - Construct a distribution  $D_t$  on  $\{1, ... m\}$
  - Find weak hypothesis ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with small error  $\varepsilon_t$  on D<sub>t</sub>:

$$\varepsilon_t = \Pr_D[h_t(\mathbf{x}_i) \neq y_i]$$

• Output: final hypothesis  $H_{final}$ 

#### Adaboost

Think about unwrapping it all the way to 1/m

- Constructing  $D_t$  on  $\{1, ... m\}$ :
  - $D_1(i) = 1/m$
  - Given  $D_t$  and  $h_t$ :

• 
$$D_{t+1} = D_t(i)/z_t \times e^{-\alpha_t}$$
 if  $y_t = h_t(x_t)$ 

$$D_t(i)/z_t \times e^{+\alpha_t}$$
 if  $y_i \neq h_t(x_t)$ 

$$= \frac{D_t(i)}{z_t} \times \exp(-\alpha_t y_i h_t(x_t))$$

where  $z_t$  = normalization constant and  $\alpha_t = \frac{1}{2} \ln\{ (1 - \varepsilon_t)/\varepsilon_t \}$ 

$$Z_t = \sum_{i} D_t(i) \exp(-\alpha_t y_i h_t(\mathbf{x}_i))$$

> 1; larger weight

Notes about  $\alpha_t$ :

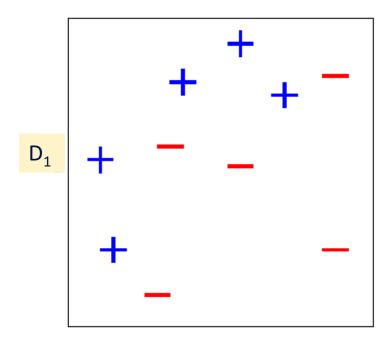
$$e^{+\alpha_t} = sqrt\left\{\frac{1-\varepsilon_t}{\varepsilon_t}\right\} > 1$$

Positive due to the weak learning assumption

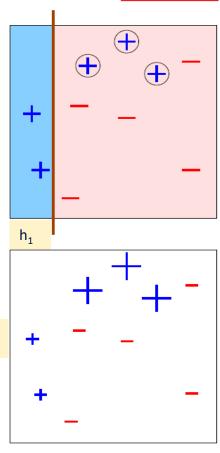
< 1; smaller weight

- ☐ Examples that we predicted correctly are demoted, others promoted
- Sensible weighting scheme: better hypothesis (smaller error) → larger weight

• Final hypothesis:  $H_{final}(x) = sign(\sum_t \alpha_t h_t(x))$ 



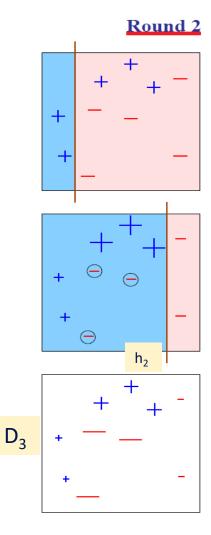
#### Round 1

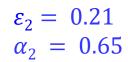


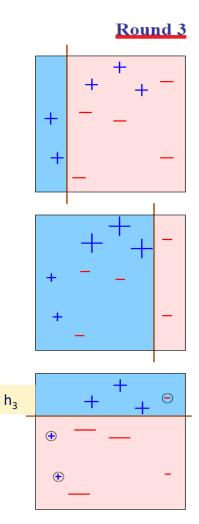
 $D_2$ 

$$\varepsilon_1 = 0.3$$

$$\alpha_1 = 0.42$$



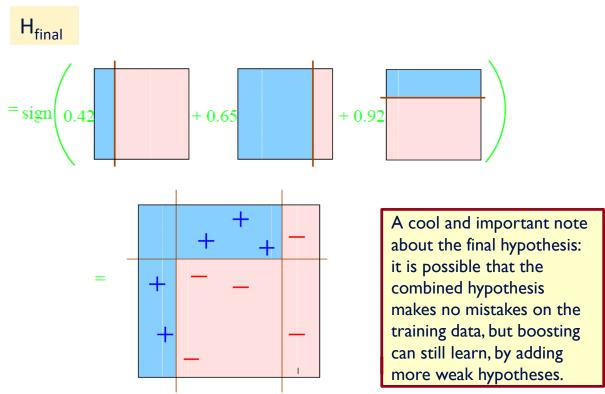




$$\varepsilon_3 = 0.14$$

$$\alpha_3 = 0.92$$

#### Final Hypothesis



17

### **Analyzing Adaboost**

- Theorem:
  - run AdaBoost
  - let  $\epsilon_t = 1/2 \gamma_t$
  - then

I. Why is the theorem stated in terms of minimizing training error? Is that what we want?

2. What does the bound mean?

training error
$$(H_{\text{final}}) \leq \prod_{t} \left[ 2\sqrt{\epsilon_t(1-\epsilon_t)} \right]$$

$$\epsilon_t (1 - \epsilon_t) = (1/2 - \Upsilon_t)(1/2 + \Upsilon_t)$$
  
= 1/4 -  $\Upsilon_t^2$ 

$$1 - (2\Upsilon_t)^2 \le \exp(-(2\Upsilon_t)^2)$$

$$=\prod\limits_t\sqrt{1-4\gamma_t^2}$$

$$\leq \exp\left(-2\sum_{t}\gamma_{t}^{2}\right)$$

Need to prove only the first inequality, the rest is algebra.

- so: if  $\forall t : \gamma_t \ge \gamma > 0$ then training error $(H_{\text{final}}) \le e^{-2\gamma^2 T}$
- adaptive:
  - does not need to know  $\gamma$  or T a priori
  - can exploit  $\gamma_t \gg \gamma$

# AdaBoost Proof (1)

Need to prove only the first inequality, the rest is algebra.

• Let 
$$f(x) = \sum_{t} \alpha_{t} h_{t}(x) \rightarrow H_{final}(x) = sign(f(x))$$

Step 1: unwrapping recursion

The final "weight" of the i-th example 
$$D_{final}(i) = \frac{\exp(-y_i \sum_t \alpha_t h_t(\boldsymbol{x}_i))}{\prod_t Z_t} \cdot \frac{1}{m}$$
$$= \frac{e^{-y_i f(\boldsymbol{x}_i)}}{\prod_t Z_t} \cdot \frac{1}{m}$$

# AdaBoost Proof (2)

- Step 2:  $training\ error(H_{final}) \leq \prod_t Z_t$
- Proof:

$$- H_{final}(x) \neq y \rightarrow yf(x) \leq 0 \rightarrow e^{-yf(x)} \geq 1$$
 The definition of training error 
$$= \frac{1}{m} \sum_{i} 1 \quad \text{if } y_i \neq H_{final}(x_i)$$
 
$$= \frac{1}{m} \sum_{i} 0 \quad \text{else}$$
 Always holds for mistakes (see above) 
$$\leq \frac{1}{m} \sum_{i} e^{-y_i f(x_i)}$$
 Using Step I 
$$= \sum_{i} D_{final}(i) \prod_{t} Z_t$$
 D is a distribution over the m examples 
$$= \prod_{t} Z_t$$

# AdaBoost Proof(3)

- Step 3:  $Z_t = 2 (\epsilon_t (1 \epsilon_t))^{\frac{1}{2}}$
- Proof:

By definition of Z,; it's a normalization term

 $Z_t = \sum D_t(i) \exp(-\alpha_t y_i h_t(\mathbf{x}_i))$  $D_t(i)e^{\alpha_t} + \sum_{i=1}^{n} D_t(i)e^{-\alpha_t}$ 

Why does it work? The Weak Learning **Hypothesis** 

A strong assumption due to

But – works well in practice

the "for all distributions".

The definition of  $\epsilon_t$ 

Splitting the sum to

"mistakes" and no-

mistakes"

$$i: y_i \neq h_t(x_i) \qquad i: y_i = h_t(x_i)$$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

The definition of  $\alpha_{\star}$ 

$$= 2 \left( \epsilon_t (1 - \epsilon_t) \right)^{\frac{1}{2}}$$

$$e^{+\alpha_t} = sqrt\left\{\frac{1 - \epsilon_t}{\epsilon_t}\right\} > 1$$

Steps 2 and 3 together prove the Theorem. The error of the final hypothesis can be

as low as you want.

### Boosting The Confidence (1)

- Unlike Boosting the accuracy  $(\varepsilon)$ , Boosting the confidence  $(\delta)$  is easy.
- Let's fix the accuracy parameter to  $\varepsilon$ .
- Suppose that we have a learning algorithm L such that for any target concept  $c \in C$  and any distribution D, L outputs h s.t.  $error(h) < \varepsilon$  with confidence at least  $1 \delta_{0}$ , where  $\delta_{0} = \frac{1}{q}(n, size(c))$ , for some polynomial q.
- Then, if we are willing to tolerate a slightly higher hypothesis error,  $\varepsilon + \gamma$  ( $\gamma > 0$ , arbitrarily small) then we can achieve arbitrary high confidence  $1 \delta$ .

## **Boosting The Confidence (2)**

- Idea: Given the algorithm L, we construct a new algorithm L' that simulates algorithm L times (k will be determined later) on independent samples from the same distribution
- Let  $h_1, \dots h_k$  be the hypotheses produced. Then, since the simulations are independent, the probability that all of  $h_1, \dots h_k$  have  $error > \varepsilon$  is as most  $(1 \delta_0)^k$ . Otherwise, at least one  $h_i$  is good.
- Solving  $(1-\delta_0)^k < \delta/2$  yields that value of k we need,  $k > (1/\delta_0) \ln(2/\delta)$
- There is still a need to show how L' works. It would work by using the  $h_i$  that makes the fewest mistakes on the sample S; we need to compute how large S should be to guarantee that it does not make too many mistakes. [Kearns and Vazirani's book]

# Summary of Ensemble Methods

- Boosting
- Bagging
- Random Forests

#### Boosting

- Initialization:
  - Weigh all training samples equally
- Iteration Step:
  - Train model on (weighted) train set
  - Compute error of model on train set
  - Increase weights on training cases model gets wrong!!!
- Typically requires 100's to 1000's of iterations
- Return final model:
  - Carefully weighted prediction of each model

CIS 419/519 Fall'19

### **Boosting: Different Perspectives**

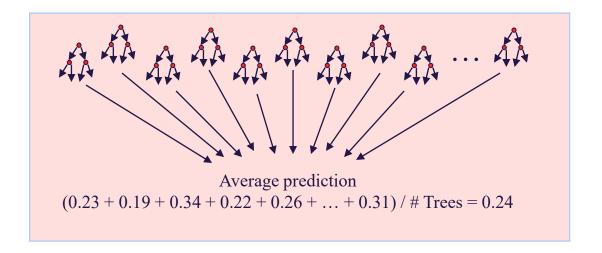
- Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)
  - Trades lower margin on easy cases for higher margin on harder cases
- Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 2000)
  - Tries to fit the logit of the true conditional probabilities
- Boosting is an equalizer (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)
  - Weighted proportion of times example is misclassified by base learners tends to be the same for all training cases
- Boosting is a linear classifier, over an incrementally acquired "feature space".

### Bagging

- Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor.
- The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class.
- The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets.
  - That is, use samples of the data, with repetition
- Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
- The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed then bagging can improve accuracy.

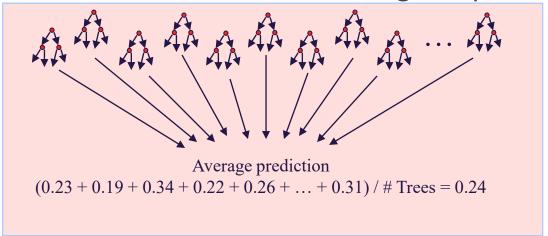
#### Example: Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample  $\rightarrow$  100 trees
- Average prediction of trees on out-of-bag samples



# Random Forests (Bagged Trees++)

- Draw 1000 + bootstrap samples of data
- Draw sample of available attributes at each split
- Train trees on each sample/attribute set  $\rightarrow 1000 + \text{trees}$
- Average prediction of trees on out-of-bag samples



#### So Far: Classification

- So far we focused on Binary Classification
- For linear models:
  - Perceptron, Winnow, SVM, GD, SGD
- The prediction is simple:
  - Given an example x,
  - Prediction =  $sgn(\mathbf{w}^T \mathbf{x})$
  - Where w is the learned model
- The output is a single bit

#### Multi-Categorical Output Tasks

- $\longrightarrow$  Multi-class Classification  $(y \in \{1, ..., K\})$ 
  - character recognition ('6')
  - document classification ('homepage')
  - Multi-label Classification  $(y \subseteq \{1, ..., K\})$ 
    - document classification ('(homepage,facultypage)')
  - Category Ranking  $(y \in \pi(K))$ 
    - user preference ('(love > like > hate)')
    - document classification ('hompage > facultypage > sports')
  - Hierarchical Classification  $(y \subseteq \{1, ..., K\})$ 
    - cohere with class hierarchy
    - place document into index where 'soccer' is-a 'sport'

### Setting

#### – Learning:

- Given a data set  $D = \{(x_i, y_i)\}_{1}^m$
- Where  $x_i \in \mathbb{R}^n$ ,  $y_i \in \{1, 2, ..., k\}$ .
- Prediction (inference):
  - Given an example x, and a learned function (model),
  - Output a single class labels y.

### Binary to Multiclass

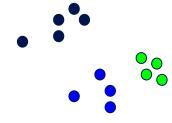
- Most schemes for multiclass classification work by reducing the problem to that of binary classification.
- There are multiple ways to decompose the multiclass prediction into multiple binary decisions
  - ✓ One-vs-all
  - ✓ All-vs-all
    - Error correcting codes
- We will then talk about a more general scheme:
  - Constraint Classification
- It can be used to model other non-binary classification schemes and leads to Structured Prediction.

#### One-Vs-All

- Assumption: Each class can be separated from all the rest using a binary classifier in the hypothesis space.
- Learning: Decomposed to learning k independent binary classifiers, one for each class label.
- Learning:
  - Let D be the set of training examples.
  - $\forall$  label l, construct a binary classification problem as follows:
    - Positive examples: Elements of D with label l
    - Negative examples: All other elements of D
  - This is a binary learning problem that we can solve, producing k binary classifiers  $w_1, w_2, ... w_k$
- Decision: Winner Takes All (WTA):
  - $f(x) = argmax_i \mathbf{w}_i^T \mathbf{x}$

#### Solving MultiClass with 1vs All learning

- MultiClass classifier
  - Function  $f: \mathbb{R}^n \rightarrow \{1,2,3,...,k\}$
- Decompose into binary problems





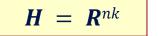
- Not always possible to learn
- No theoretical justification
  - Need to make sure the range of all classifiers is the same
- (unless the problem is easy)

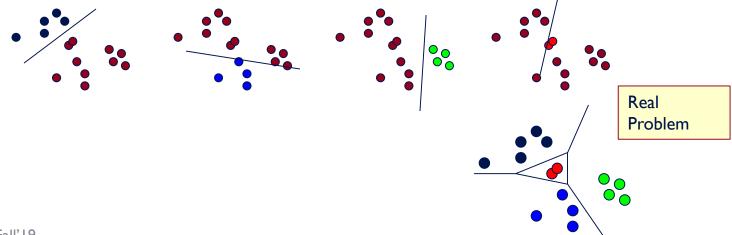
#### Learning via One-Versus-All (OvA) Assumption

• Find  $v_r$ ,  $v_b$ ,  $v_g$ ,  $v_v \in R^n$  such that

$$v_{r}.x > 0$$
 iff  $y = red$   $\otimes$   $v_{b}.x > 0$  iff  $y = blue$   $\checkmark$   $v_{g}.x > 0$  iff  $y = green$   $\checkmark$   $v_{y}.x > 0$  iff  $y = yellow$ 

• Classification:  $f(x) = argmax_i v_i x$ 





#### All-Vs-All

- Assumption: There is a separation between every pair of classes using a binary classifier in the hypothesis space.
- Learning: Decomposed to learning  $[k \ choose \ 2] \sim k^2$  independent binary classifiers, one corresponding to each pair of class labels. For the pair (i,j):
  - Positive example: all examples with label i
  - Negative examples: all examples with label j
- Decision: More involved, since output of binary classifier may not cohere. Each label gets k-1 votes.
- Decision Options:
  - Majority: classify example x to take label i if i wins on x more often than j (j = 1, ... k)
  - A tournament: start with  $\frac{n}{2}$  pairs; continue with winners.

### Learning via All-Verses-All (AvA) Assumption

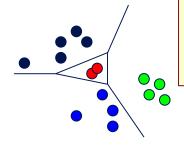
• Find  $v_{rb}$ ,  $v_{rg}$ ,  $v_{ry}$ ,  $v_{bg}$ ,  $v_{by}$ ,  $v_{gy} \in R^d$  such that

$$- v_{rb} x > 0 if y = red$$

$$< 0 if y = blue$$

$$-v_{rg} x > 0 \text{ if } y = red$$
  
 $< 0 \text{ if } y = green$ 

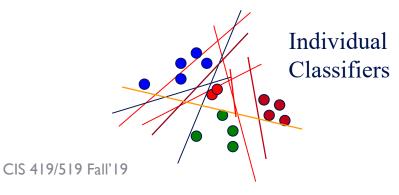
— ... (for all pairs)

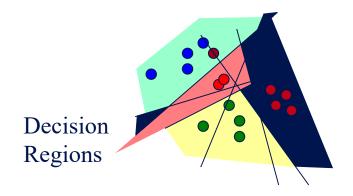


It is possible to separate all k classes with the  $O(k^2)$  classifiers

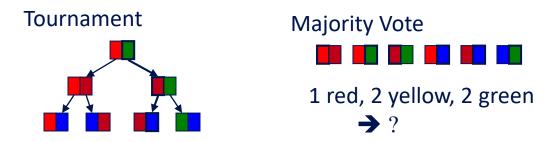
$$H = R^{kkn}$$

How to classify?





# Classifying with AvA



All are post-learning and might cause weird stuff

#### One-vs-All vs. All vs. All

- Assume m examples, k class labels.
  - For simplicity, say,  $\frac{m}{k}$  in each.
- One vs. All:
  - Classifier  $f_i$ :  $\frac{m}{k}$  (+) and  $\frac{(k-1)m}{k}$  (-)
  - Decision:
  - Evaluate k linear classifiers and do Winner Takes All (WTA):
  - $f(x) = argmax_i f_i(x) = argmax_i \mathbf{w}_i^T \mathbf{x}$
- All vs. All:
  - Classifier  $f_{ij}$ :  $\frac{m}{k}$  (+) and  $\frac{m}{k}$  (-)
  - More expressivity, but less examples to learn from.
  - Decision:
  - Evaluate  $k^2$  linear classifiers; decision sometimes unstable.
- What type of learning methods would prefer All vs. All (efficiency-wise)?

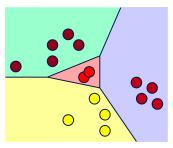
(Think about Dual/Primal)

## Problems with Decompositions

- Learning optimizes over local metrics
  - Does not guarantee good global performance
  - We don't care about the performance of the local classifiers
- Poor decomposition ⇒ poor performance
  - Difficult local problems
  - Irrelevant local problems
- Especially true for Error Correcting Output Codes
  - Another (class of) decomposition
  - Difficulty: how to make sure that the resulting problems are separable.



- Former has advantage when working with the dual space.
- Not clear how to generalize multi-class to problems with a very large # of output variables.



# 1 Vs All: Learning Architecture

- k label nodes; n input features, nk weights.
- **Evaluation:** Winner Take All
- Training: Each set of n weights, corresponding to the i-th label, is trained
  - Independently, given its performance on example x, and
  - Independently of the performance of label j on x.
- Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).
- However, this architecture allows multiple learning algorithms; e.g., see the implementation in the SNoW/LbJava Multi-class Classifier

Targets (each an LTU) Weighted edges (weight vectors)

### Another View on Binary Classification

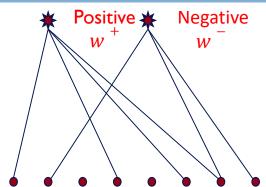
- Rather than a single binary variable at the output
- We extended to general Boolean functions
- Represent 2 weights per variable;
  - Decision: using the "effective weight",
     the difference between  $\boldsymbol{w}^+$  and  $\boldsymbol{w}^-$
  - This is equivalent to the Winner take all decision
  - Learning: In principle, it is possible to use the 1-vs-all rule and update each set of n weights separately, but we suggest a "balanced" Update rule that takes into account how both sets of n weights predict on example x

If 
$$[(\mathbf{w}^+ - \mathbf{w}^-) \cdot \mathbf{x} \ge \theta] \ne y$$
,  $\mathbf{w}_i^+ \leftarrow \mathbf{w}_i^+ r^{yx_i}$ ,  $\mathbf{w}_i^- \leftarrow \mathbf{w}_i^- r^{-yx_i}$ 

Can this be generalized to the case of k labels, k > 2?

We need a "global" learning approach



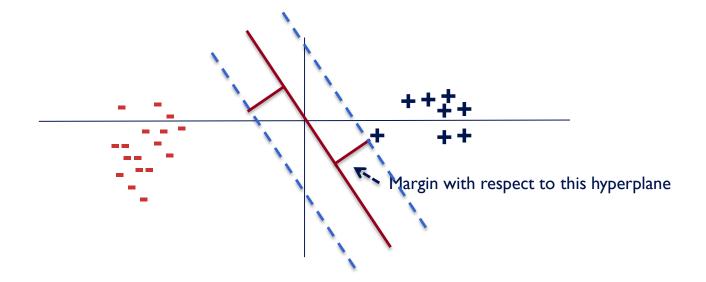


#### Where are we?

- Introduction
- Combining binary classifiers
  - One-vs-all ✓
  - All-vs-all ✓
  - Error correcting codes
- Training a single (global) classifier
  - Multiclass SVM✓
  - Constraint classification

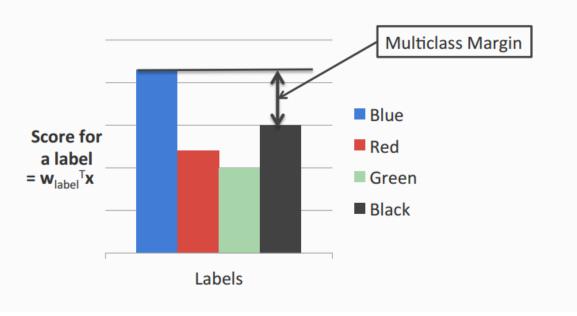
## Recall: Margin for binary classifiers

• The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.



## Multiclass Margin

Defined as the score difference between the highest scoring label and the second one



## Multiclass SVM (Intuition)

- Recall: Binary SVM
  - Maximize margin
  - Equivalently,

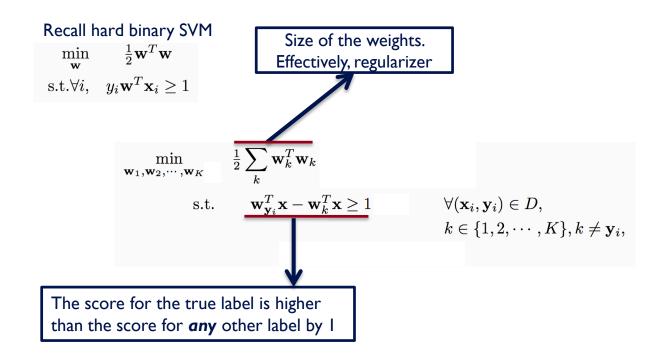
Minimize norm of weight vector, while keeping the closest points to the hyperplane with a score  $\pm 1$ 

- Multiclass SVM
  - Each label has a different weight vector (like one-vs-all)
    - But, weight vectors are not learned independently
  - Maximize multiclass margin
  - Equivalently,

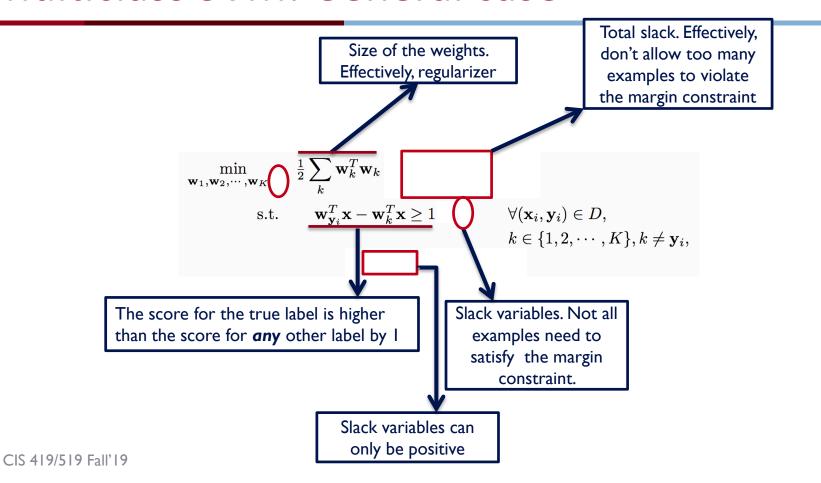
Minimize total norm of the weight vectors while making sure that the true label scores at least 1 more than the second best one.

CIS 419/519 Fall'19

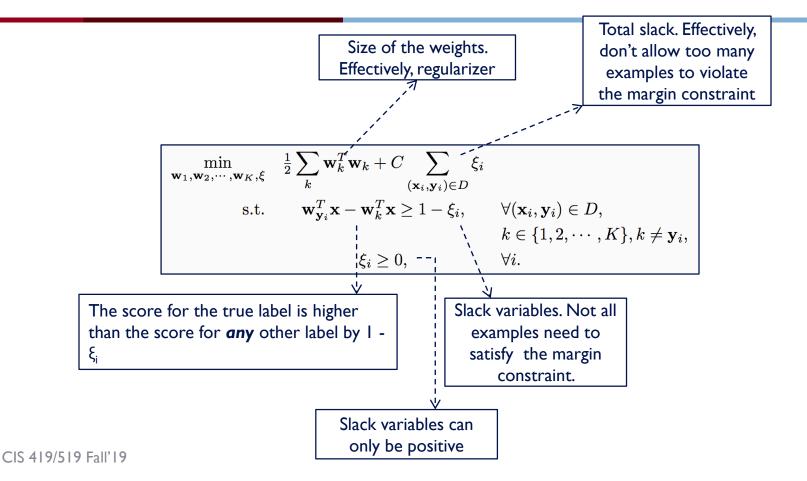
### Multiclass SVM in the separable case



#### Multiclass SVM: General case



#### Multiclass SVM: General case



#### Multiclass SVM

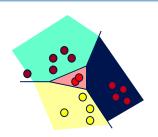
- Generalizes binary SVM algorithm
  - If we have only two classes, this reduces to the binary (up to scale)
- Comes with similar generalization guarantees as the binary SVM
- Can be trained using different optimization methods
  - Stochastic sub-gradient descent can be generalized
  - Try as exercise

## Multiclass SVM: Summary

- Training:
  - Optimize the "global" SVM objective
- Prediction:
  - Winner takes all
    - $argmax_i \mathbf{w}_i^T \mathbf{x}$



- Same as one-vs-all
- Why does it work?
  - Why is this the "right" definition of multiclass margin?
- A theoretical justification, along with extensions to other algorithms beyond SVM is given by "Constraint Classification"
  - Applies also to multi-label problems, ranking problems, etc.
  - [Dav Zimak; with D. Roth and S. Har-Peled]



#### **Constraint Classification**

- The examples we give the learner are pairs  $(x, y), y \in \{1, ... k\}$
- The "black box learner" (1 vs. all) we described might be thought of as a function of x only but, actually, we made use of the labels y
- How is **y** being used?
  - y decides what to do with the example x; that is, which of the k classifiers should take the example as a positive example (making it a negative to all the others).
- How do we predict?
  - Let:  $f_v(x) = \mathbf{w}_v^T x$
  - Then, we predict using:  $\mathbf{y}^* = argmax_{v=1,\dots,k} f_v(\mathbf{x})$
- Equivalently, we can say that we predict as follows:
  - Predict y iff  $\forall y' \in \{1, ..., k\}, y' \neq y \quad (\mathbf{w}_{y}^{T} \mathbf{w}_{y'}^{T}) \mathbf{x} \geq 0 \quad (**)$
- So far, we did not say how we learn the k weight vectors  $\mathbf{w}_{v}$  (y = 1, ... k)
  - Can we train in a way that better fits the way we predict?
  - What does it mean?

56

Is it better in any well defined way?

## Linear Separability for Multiclass

• We are learning k n-dimensional weight vectors, so we can concatenate the k weight vectors into

$$- \qquad \qquad \mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k) \in \mathbf{R}^{nk}$$

Notice: This is just a representational trick. We did not say how to learn the weight vectors.

- Key Construction: (Kesler Construction; Zimak's Constraint Classification)
  - We will represent each example (x, y), as an nk-dimensional vector,  $x_y$ , with x embedded in the y-th part of it (y = 1, 2, ... k) and the other coordinates are 0.

• E.g., 
$$x_y = (\mathbf{0}, x, \mathbf{0}, \mathbf{0}) \in \mathbf{R}^{kn}$$
 (here  $k = 4, y = 2$ )

• Now we can understand the *n*-dimensional decision rule:

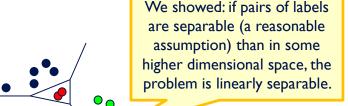
$$\forall y' \in \{1, \dots k\}, y' \neq y$$

$$\left(\boldsymbol{w}_{y}^{T}-\boldsymbol{w}_{y'}^{T}\right)\cdot \boldsymbol{x}\geq 0 \quad (**)$$

- Equivalently, in the nk-dimensional space
- Predict *y* iff

$$\forall y' \in \{1, \dots k\}, y' \neq y$$

$$\mathbf{w}^T \left( \mathbf{x}_{y} - \mathbf{x}_{y'} \right) \equiv \mathbf{w}^T \mathbf{x}_{yy'} \geq 0$$



- Conclusion: The set  $(x_{yy'}, +) \equiv (x_y x_{y'}, +)$  is linearly separable from the set  $(-x_{yy'}, -)$  using the linear separator  $w \in R^{kn}$ ,
  - We solved the voroni diagram challenge.

#### **Constraint Classification**

#### – Training:

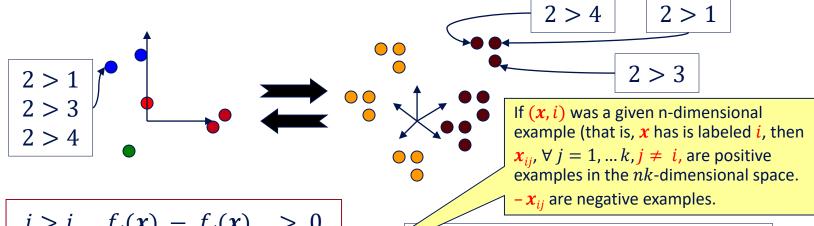
- We first explain via Kesler's construction; then show we don't need it
- Given a data set  $\{(\mathbf{x},y)\}$ , (m examples) with  $\mathbf{x} \in \mathbf{R}^n, y \in \{1,2,...k\}$  create a binary classification task (in  $\mathbf{R}^{kn}$ ):  $(\mathbf{x}_y \mathbf{x}_{y'}, +), (\mathbf{x}_y' \mathbf{x}_y, -), \text{ for all } y' \neq y \text{ } [2m(k-1) \text{ examples}]$  Here  $\mathbf{x}_y \in \mathbf{R}^{kn}$
- Use your favorite linear learning algorithm to train a binary classifier.

#### – Prediction:

• Given an nk dimensional weight vector w and a new example x, predict:  $argmax_v w^T x_v$ 

### Details: Kesler Construction & Multi-Class Separability

Transform Examples



$$i > j f_i(x) - f_j(x) > 0$$

$$w_i \cdot x - w_j \cdot x > 0$$

$$W \cdot X_i - W \cdot X_j > 0$$

$$W \cdot (X_i - X_j) > 0$$

$$W \cdot X_{ij} > 0$$

$$X_i = (\mathbf{0}, x, \mathbf{0}, \mathbf{0}) \in R^{kd}$$
 $X_j = (\mathbf{0}, \mathbf{0}, \mathbf{0}, x) \in R^{kd}$ 
 $X_{ij} = X_i - X_j = (\mathbf{0}, x, \mathbf{0}, -x)$ 
 $W = (w_1, w_2, w_3, w_4) \in R^{kd}$ 

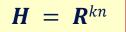
## Kesler's Construction (1)

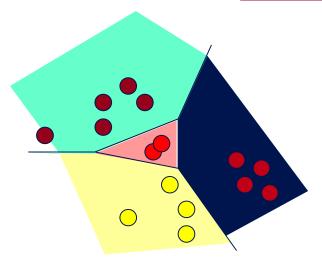
- $y = argmax_{i=(r,b,g,y)} w_i x$ -  $w_i, x \in \mathbb{R}^n$
- Find  $w_r, w_b, w_q, w_v \in \mathbb{R}^n$  such that

$$-w_{r}x > w_{b}x$$

$$-w_{r} x > w_{q} x$$

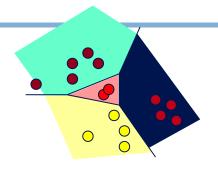
$$-w_r x > w_v x$$





# Kesler's Construction (2)

- Let  $w = (w_r, w_b, w_q, w_v) \in R^{kn}$
- Let  $\mathbf{0}^n$ , be the n-dim zero vector







- $w_r \cdot x > w_b \cdot x \Leftrightarrow w \cdot (x, -x, 0^n, 0^n) > 0 \Leftrightarrow w \cdot (-x, x, 0^n, 0^n) < 0$
- $w_r x > w_g x \Leftrightarrow w(x, 0^n, -x, 0^n) > 0 \Leftrightarrow w(-x, 0^n, x, 0^n) < 0$
- $w_r x > w_y x \Leftrightarrow w(x, \mathbf{0}^n, \mathbf{0}^n, -x) > 0 \Leftrightarrow w(-x, \mathbf{0}^n, \mathbf{0}^n, x) < 0$



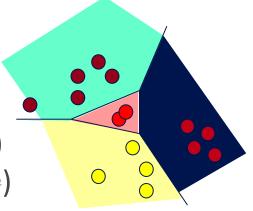
# Kesler's Construction (3)

Let

$$- w = (w_1, ..., w_k) \in \mathbb{R}^n \times \cdots \times \mathbb{R}^n = \mathbb{R}^{kn}$$

$$- x_{ij} = (\mathbf{0}^{(i-1)n}, x, \mathbf{0}^{(k-i)n}) - (\mathbf{0}^{(j-1)n}, -x, \mathbf{0}^{(k-j)n}) \in \mathbb{R}^{kn}$$

- Given  $(x, y) \in \mathbb{R}^n \times \{1, ..., k\}$ 
  - For all  $j \neq y$  (all other labels)
    - Add to  $P^{+}(x, y), (x_{yi}, 1)$
    - Add to  $P^{-}(x, y), (-x_{yj}, -1)$
- $P^+(x,y)$  has k-1 positive examples  $(\in R^{kn})$
- $P^{-}(x,y)$  has k-1 negative examples  $(\in R^{kn})$



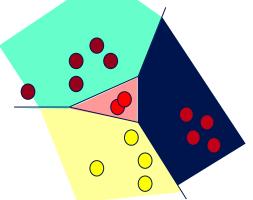
# Learning via Kesler's Construction

- Given  $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N) \in \mathbb{R}^n \times \{1, ..., k\}$
- Create

$$- P^+ = \cup P^+(\mathbf{x}_i, y_i)$$

$$- P^- = \cup P^-(\mathbf{x}_i, y_i)$$

• Find  $w = (\mathbf{w}_1, ..., \mathbf{w}_k) \in \mathbf{R}^{kn}$ , such that - w.x separates  $\mathbf{P}^+$  from  $\mathbf{P}^-$ 



- One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.
- To understand how to update the weight vector in the n-dimensional space, we note that

$$\mathbf{w}^T \mathbf{x}_{vv'} \geq 0$$
 (in the  $nk$ -dimensional space)

is equivalent to:

$$(\mathbf{w}_{y}^{T} - \mathbf{w}_{y'}^{T}) \mathbf{x} \ge 0$$
 (in the *n*-dimensional space)

## Perceptron in Kesler Construction

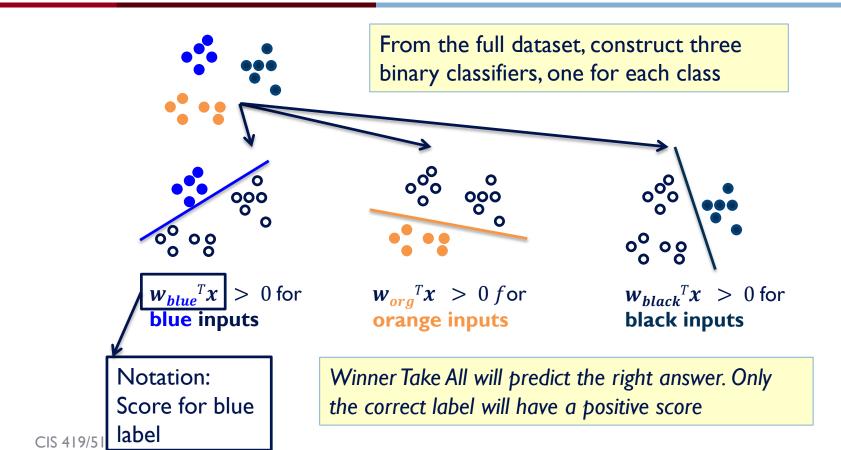
- A perceptron update rule applied in the nk-dimensional space due to a mistake in  $\mathbf{w}^T \mathbf{x}_{ij} \geq 0$
- Or, equivalently to  $(\mathbf{w}_i^T \mathbf{w}_i^T)\mathbf{x} \ge 0$  (in the *n*-dimensional space)
- Implies the following update:
- Given example  $(\mathbf{x}, i)$  (example  $\mathbf{x} \in \mathbb{R}^n$ , labeled i)  $\forall (i, j), i, j = 1, ...k, i \neq j$  (\*\*\*)
  - If  $(\boldsymbol{w}_i^T \boldsymbol{w}_j^T) \boldsymbol{x} < 0$  (mistaken prediction; equivalent to  $\boldsymbol{w}^T \boldsymbol{x}_{ij} < 0$ )
  - $w_i \leftarrow w_i + x$  (promotion) and  $w_j \leftarrow w_j x$  (demotion)
- Note that this is a generalization of balanced Winnow rule.
- Note that we promote  $w_i$  and demote k-1 weight vectors  $w_i$

### Conservative update

- The general scheme suggests:
- Given example (x, i) (example  $x \in \mathbb{R}^n$ , labeled i)
  - $\forall (i,j), i,j = 1, ...k, i \neq j$  (\*\*\*)
  - If  $(\boldsymbol{w}_i^T \boldsymbol{w}_i^T) \boldsymbol{x} < 0$  (mistaken prediction; equivalent to  $\boldsymbol{w}^T \boldsymbol{x}_{ij} < 0$ )
  - $w_i \leftarrow w_i + x$  (promotion) and  $w_j \leftarrow w_j x$  (demotion)
- Promote  $w_i$  and demote k-1 weight vectors  $w_i$
- A conservative update: (SNoW and LBJava's implementation):
  - In case of a mistake: only the weights corresponding to the target node *i* and that closest node *j* are updated.
  - Let:  $j^* = argmax_{j=1,...,k} \mathbf{w}_j^T \mathbf{x}$  (highest activation among competing labels)
  - If  $(w_i^T w_{j^*}^T) x < 0$  (mistaken prediction)  $- w_i \leftarrow w_i + x$  (promotion) and  $w_{j^*} \leftarrow w_{j^*} - x$  (demotion)
  - Other weight vectors are not being updated.

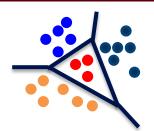
#### **Multiclass Classification Summary 1:**

#### **Multiclass Classification**



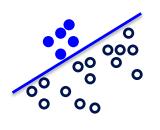
#### **Multiclass Classification Summary 2:**

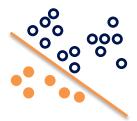
One-vs-all may not always work



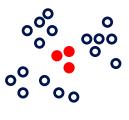
Red points are not separable with a single binary classifier

The decomposition is not expressive enough!









$$w_{blue}^T x > 0$$
 for blue inputs

$$w_{blue}^T x > 0$$
 for  $w_{org}^T x > 0$  for blue inputs orange inputs

$$w_{black}^T x > 0$$
 for black inputs

???

### Summary 3:

- Local Learning: One-vs-all classification
- Easy to learn
  - Use any binary classifier learning algorithm
- Potential Problems
  - Calibration issues
    - We are comparing scores produced by K classifiers trained independently. No reason for the scores to be in the same numerical range!
  - Train vs. Train
    - Does not account for how the final predictor will be used
    - Does not optimize any <u>global</u> measure of correctness
  - Yet, works fairly well
    - In most cases, especially in high dimensional problems (everything is already linearly separable).

68

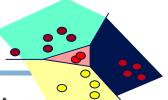
CIS 419/519 Fall'19

### Summary 4:

- Global Multiclass Approach [Constraint Classification, Har-Peled et. al '02]
  - Create K classifiers:  $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K$ ;
  - Predict with WTA:  $argmax_i \mathbf{w}_i^T \mathbf{x}$
  - But, train differently:
    - For examples with label i, we want  $\mathbf{w}_{i}^{T} \mathbf{x} > \mathbf{w}_{i}^{T} \mathbf{x}$  for all j
- Training: For each training example  $(x_i, y_i)$ :

```
\hat{y} \leftarrow \arg\max_{j} \mathbf{w}_{j}^{T} \phi(\mathbf{x}_{i}, y_{i})
if \hat{y} \neq y_{i}
\mathbf{w}_{y_{i}} \leftarrow \mathbf{w}_{y_{i}} + \eta \mathbf{x}_{i} \quad \text{(promote)}
\mathbf{w}_{\hat{y}} \leftarrow \mathbf{w}_{\hat{y}} - \eta \mathbf{x}_{i} \quad \text{(demote)}
\eta: \text{learning rate}
```

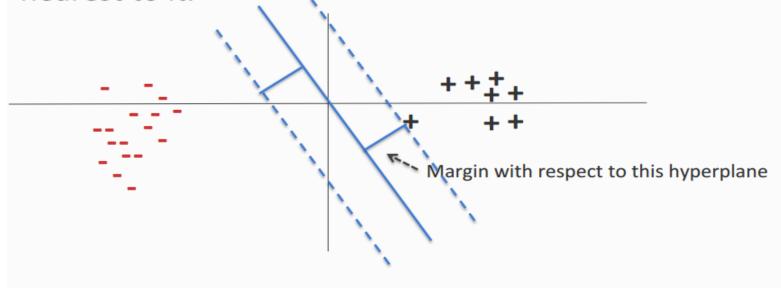
# Significance



- The hypothesis learned above is more expressive than when the OvA assumption is used.
- Any <u>linear learning algorithm</u> can be used, and algorithmic-specific properties are maintained (e.g., attribute efficiency if using winnow.)
- E.g., the multiclass support vector machine can be implemented by learning a hyperplane to separate P(S) with maximal margin.
- As a byproduct of the linear separability observation, we get a natural notion of a margin in the multi-class case, inherited from the binary separability in the nk-dimensional space.
  - Given example  $\mathbf{x}_{ij} \in \mathbf{R}^{nk}$ ,  $margin(\mathbf{x}_{ij}, \mathbf{w}) = \min_{ij} \mathbf{w}^T \mathbf{x}_{ij}$
  - Consequently, given  $\mathbf{x} \in \mathbf{R}^n$ , labeled i  $margin(\mathbf{x}, \mathbf{w}) = \min_i (\mathbf{w}_i^T \mathbf{w}_j^T) \mathbf{x}$

## Margin

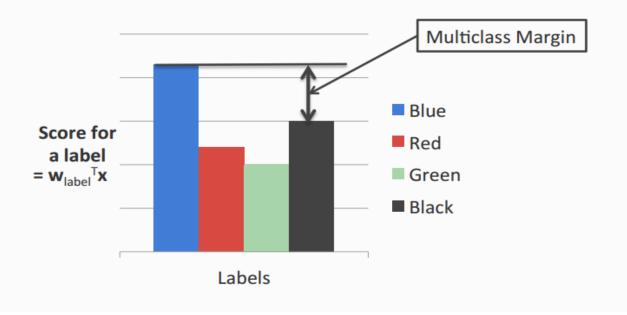
The margin of a hyperplane for a dataset is the distance between the hyperplane and the data point nearest to it.



CIS 419/519 Fall'19

## Multiclass Margin

Defined as the score difference between the highest scoring label and the second one



### **Constraint Classification**

- The scheme presented can be generalized to provide a uniform view for multiple types of problems: multi-class, multi-label, category-ranking
- Reduces learning to a single binary learning task
- Captures theoretical properties of binary algorithm
- Experimentally verified
- Naturally extends Perceptron, SVM, etc...
- It is called "constraint classification" since it does it all by representing labels as a set of constraints or preferences among output labels.

CIS 419/519 Fall'19

#### Multi-category to Constraint Classification

- The unified formulation is clear from the following examples:
- Multiclass

$$- (x, A) \Rightarrow (x, (A > B, A > C, A > D))$$

Multilabel

$$- (x, (A,B)) \Rightarrow (x, ((A > C, A > D, B > C, B > D))$$

Label Ranking

$$-(x, (5 > 4 > 3 > 2 > 1)) \Rightarrow (x, ((5 > 4, 4 > 3, 3 > 2, 2 > 1)))$$

- In all cases, we have examples (x, y) with  $y \in S_k$
- Where  $S_k$ : partial order over class labels  $\{1, ..., k\}$ 
  - defines "preference" relation ( > ) for class labeling
- Consequently, the Constraint Classifier is:  $h: X \longrightarrow S_k$ 
  - -h(x) is a partial order
  - h(x) is consistent with y if (i < j) ∈ y → <math>(i < j) ∈ h(x)

Just like in the multiclass we learn one  $\mathbf{w}_i \in \mathbf{R}^n$  for each label, the same is done for multi-label and ranking. The weight vectors are updated according with the requirements from

$$y \in S_k$$

(Consult the Perceptron in Kesler construction slide)

### Properties of Construction (Zimak et. al 2002, 2003)

- Can learn any  $argmax v_i \cdot x$  function (even when i isn't linearly separable from the union of the others)
- Can use any algorithm to find linear separation
  - Perceptron Algorithm
    - ultraconservative online algorithm [Crammer, Singer 2001]
  - Winnow Algorithm
    - multiclass winnow [ Masterharm 2000 ]
- Defines a multiclass margin
  - by binary margin in  $\mathbf{R}^{kd}$
  - multiclass SVM [Crammer, Singer 2001]



## Margin Generalization Bounds

#### Linear Hypothesis space:

$$-h(x) = argsort v_i \cdot x$$

- $v_i, x \in \mathbb{R}^d$
- argsort returns permutation of  $\{1, ..., k\}$



#### CC margin-based bound

$$- \gamma = \min_{(x,y) \in S} \min_{(i < j) \in y} v_i \cdot x - v_j \cdot x$$

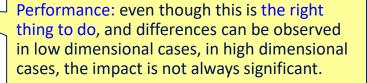
$$- err_D(h) \le \Theta\left(\frac{C}{m}\left(\frac{R^2}{\gamma^2} - \ln(\delta)\right)\right) \begin{vmatrix} m - \text{number of } \\ R - max_x ||x|| \\ \delta - \text{confidence} \end{vmatrix}$$

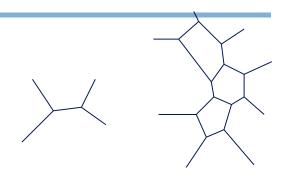
- m number of examples
- C average # constraints

## **VC-style Generalization Bounds**

- Linear Hypothesis space:
  - $-h(\mathbf{x}) = argsort \mathbf{v}_i \cdot \mathbf{x}$ 
    - $\mathbf{v}_i, \mathbf{x} \in \mathbf{R}^d$
    - *argsort* returns permutation of {1, ..., k}
- CC VC-based bound

$$err_D(h) \le err(S, h) + \theta \left\{ \frac{\left(kdlog\left(\frac{mk}{d}\right) - ln\delta\right)}{m} \right\}^{\frac{1}{2}}$$





- $\blacksquare$  *m* number of examples
- lack d dimension of input space
- lacksquare  $\delta$  confidence
- k number of classes

## Beyond MultiClass Classification

- Ranking
  - category ranking (over classes)
  - ordinal regression (over examples)
- Multilabel
  - x is both red and blue
- Complex relationships
  - x is more red than blue, but not green
- Millions of classes
  - sequence labeling (e.g. POS tagging)
  - The same algorithms can be applied to these problems, namely, to Structured Prediction
  - This observation is the starting point for CS546.

# (more) Multi-Categorical Output Tasks

- Sequential Prediction  $(y \in \{1, ..., K\}^+)$ 
  - e.g. POS tagging ('(NVNNA)')
    - "This is a sentence."  $\Rightarrow$  D V D N
  - e.g. phrase identification
  - Many labels:  $K^L$  for length L sentence
- Structured Output Prediction  $(y \in C(\{1, ..., K\}^+))$ 
  - e.g. parse tree, multi-level phrase identification
  - e.g. sequential prediction
  - Constrained by:
    - domain, problem, data, background knowledge, etc...