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CIS 519 Homework 2: Linear Classifiers
Handed Out: October 5, 2020
Due: October 19, 2020 at 11:59pm.

Although the solutions are my own, I consulted with the following people while working on this homework:

TODO (if applicable): ...

Preface
Feel free to talk to other members of the class in doing the homework. I am more concerned that you learn
how to solve the problem than that you demonstrate that you solved it entirely on your own. You should,
however, write down your solution yourself. Please include here the list of people you consulted with in
the course of working on the homework:
While we encourage discussion within and outside the class, cheating and copying code is strictly not
allowed. Copied code will result in the entire assignment being discarded at the very least.
Please use Piazza if you have questions about the homework. Also, please come to the TAs recitations and
to the office hours.
The homework is due at 11:59 PM on the due date. We will be using Gradescope for collecting the
homework assignments. You should have been automatically added to Gradescope. If not, please ask a TA
for assistance. Post on Piazza and contact the TAs if you are having technical difficulties in submitting the
assignment.
Here are some resources you will need for this assignment
(https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW2/hw2-materials.zip
(https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW2/hw2-materials.zip))

https://www.seas.upenn.edu/~cis519/fall2020/assets/HW/HW2/hw2-materials.zip
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Overview

About Jupyter Notebooks
In this homework assignment, we will use a Jupyter notebook to implement, analyze, and discuss ML
classifiers. Knowing and being comfortable with Jupyter notebooks is a must in every data scientist, ML
engineer, researcher, etc. They are widely used in industry and are a standard form of communication in ML by
intertwining text and code to "tell a story". There are many resources that can introduce you to Jupyter
notebooks (they are pretty easy to understand!), and if you still need help any of the TAs are more than willing to
help.

We will be using a local instance of Jupyter instead of Colab. You are of course free to use Colab, but you will
need to understand how to hook your Colab instance with Google Drive to upload the datasets and to save
images.

About the Homework
You will experiment with several different linear classifiers and analyze their performances in both real and
synthetic datasets. The goal is to understand the differences and similarities between the algorithms and the
impact that the dataset characteristics have on the algorithms' learning behaviors and performances.

In total, there are seven different learning algorithms which you will implement. Six are variants of the Perceptron
algorithm and the seventh is a support vector machine (SVM). The details of these models is described in
Section 1.

In order to evaluate the performances of these models, you will use several different datasets. The first two
datasets are synthetic datasets that have features and labels that were programatically generated. They were
generated using the same script but use different input parameters that produced sparse and dense variants.
The second two datasets are for the task of named-entity recognition (NER), identifying the names of people,
locations, and organizations within text. One comes from news text and the other from a corpus of emails. For
these two datasets, you need to implement the feature extraction yourself. All of the datasets and feature
extraction information are described in Section 2.

Finally, you will run two sets of experiments, one on the synthetic data and one on the NER data. The first set
will analyze how the amount of training data impacts model performance. The second will look at the
consequences of having training and testing data that come from different domains. The details of the
experiments are described in Section 3.

Distribution of Points
The homework has 4 sections for a total of 100 points + 10 extra credit points:

Section 0: Warmup (5 points)
Section 1: Linear Classifiers (30 points)
Section 2: Datasets (0 points, just text)
Section 3: Experiments (65 points)

Synthetic Experiment:
Parameter Tuning (10 points)
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Learning Curves(10 points)
Final Test Accuracies (5 points)
Discussion Questions (5 points)
Noise Experiment (10 points extra credit)

NER Experiment:
Feature Extraction (25 points)
Final Test Accuracies (5 points)

 Discussion Questions (5 points)𝐹1

Section 0: Warmup

Only For Colab

If you want to complete this homework in Colab, you are more than welcome to. You will need a little bit more
maneuvering since you will need to upload the files of hw2 to your Google Drive and run the following two cells:

In [1]: # Uncomment if you want to use Colab for this homework.
# from google.colab import drive
# drive.mount('/content/drive', force_remount=True)

In [3]: # Uncomment if you want to use Colab for this homework.
# %cd /content/drive/My Drive/Colab Notebooks/YOUR_PATH_TO_HW_FOLDER

Python Version

Python 3.6 or above is required for this homework. Make sure you have it installed.

In [ ]: # Let's check.
import sys
if sys.version_info[:2] < (3, 6): 
    raise Exception("You have Python version " + str(sys.version_info))

Imports and Helper Functions (5 points total)

Let's import useful modules we will need throughout the homework as well as implement helper functions for
our experiment. Read and remember what each function is doing, as you will probably need some of them
down the line.

Mounted at /content/drive 

/content/drive/My Drive/Colab Notebooks 
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In [ ]: # Install necessary libraries for this homework.
%pip install sklearn 
%pip install matplotlib 
%pip install numpy 

In [ ]: import json
import os 
 
import numpy as np
import matplotlib.pylab as plt
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import accuracy_score 
 
DATASETS_PATH = "datasets/"
NER_PATH = os.path.join(DATASETS_PATH, 'ner')
SYNTHETIC_PATH = os.path.join(DATASETS_PATH, 'synthetic')
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In [ ]: """
Helper function that loads a synthetic dataset from the dataset root (e.
g. "synthetic/sparse"). 
 
You should not need to edit this method.
"""
def load_synthetic_data(dataset_type): 
 
    def load_jsonl(file_path): 
        data = [] 
        with open(file_path, 'r') as f: 
            for line in f: 
                data.append(json.loads(line)) 
        return data 
 
    def load_txt(file_path): 
        data = [] 
        with open(file_path, 'r') as f: 
            for line in f: 
                data.append(int(line.strip())) 
        return data 
 
    def convert_to_sparse(X): 
        sparse = [] 
        for x in X: 
            data = {} 
            for i, value in enumerate(x): 
                if value != 0: 
                    data[str(i)] = value 
            sparse.append(data) 
        return sparse 
 
    path = os.path.join(SYNTHETIC_PATH, dataset_type) 
     
    X_train = load_jsonl(os.path.join(path, 'train.X')) 
    X_dev = load_jsonl(os.path.join(path, 'dev.X')) 
    X_test = load_jsonl(os.path.join(path, 'test.X')) 
 
    num_features = len(X_train[0]) 
    features = [str(i) for i in range(num_features)] 
 
    X_train = convert_to_sparse(X_train) 
    X_dev = convert_to_sparse(X_dev) 
    X_test = convert_to_sparse(X_test) 
 
    y_train = load_txt(os.path.join(path, 'train.y')) 
    y_dev = load_txt(os.path.join(path, 'dev.y')) 
    y_test = load_txt(os.path.join(path, 'test.y')) 
 
    return X_train, y_train, X_dev, y_dev, X_test, y_test, features
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In [ ]: """
Helper function that loads the NER data from a path (e.g. "ner/conll/tra
in").  
 
You should not need to edit this method.
"""
def load_ner_data(dataset=None, dataset_type=None): 
    # List of tuples for each sentence 
    data = [] 
    path = os.path.join(os.path.join(NER_PATH, dataset), dataset_type) 
    for filename in os.listdir(path): 
        with open(os.path.join(path, filename), 'r') as file: 
            sentence = [] 
            for line in file: 
                if line == '\n': 
                    data.append(sentence) 
                    sentence = [] 
                else: 
                    sentence.append(tuple(line.split())) 
    return data
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In [ ]: """
A helper function that plots the relationship between number of examples
and accuracies for all the models. 
 
You should not need to edit this method.
"""
def plot_learning_curves( 
    perceptron_accs, 
    winnow_accs, 
    adagrad_accs, 
    avg_perceptron_accs, 
    avg_winnow_accs, 
    avg_adagrad_accs, 
    svm_accs
): 
    """
    This function will plot the learning curve for the 7 different model
s.
    Pass the accuracies as lists of length 11 where each item correspond
s
    to a point on the learning curve.
    """ 
     
    accuracies = [ 
        ('perceptron', perceptron_accs), 
        ('winnow', winnow_accs), 
        ('adagrad', adagrad_accs), 
        ('avg-perceptron', avg_perceptron_accs), 
        ('avg-winnow', avg_winnow_accs), 
        ('avg-adagrad', avg_adagrad_accs), 
        ('svm', svm_accs) 
    ] 
     
    x = [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 1000
0] 
    plt.figure() 
    f, (ax, ax2) = plt.subplots(1, 2, sharey=True, facecolor='w') 
     
    for label, acc_list in accuracies: 
        assert len(acc_list) == 11 
        ax.plot(x, acc_list, label=label) 
        ax2.plot(x, acc_list, label=label) 
         
    ax.set_xlim(0, 5500) 
    ax2.set_xlim(9500, 10000) 
    ax2.set_xticks([10000]) 
    # hide the spines between ax and ax2 
    ax.spines['right'].set_visible(False) 
    ax2.spines['left'].set_visible(False) 
    ax.yaxis.tick_left() 
    ax.tick_params(labelright='off') 
    ax2.yaxis.tick_right() 
    ax2.legend() 
    plt.show()
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F1 Score (5 points)
For some part of the homework, you will use the F1 score instead of accuracy to evaluate how well a model
does. The F1 score is computed as the harmonic mean of the precision and recall of the classifier. Precision
measures the number of correctly identified positive results by the total number of positive results. Recall, on
the other hand, measures the number of correctly identified positive results divided by the number of all
samples that should have been identified as positive. More formally, we have that

where  is the number of true positives,  false positives and  false negatives. Combining these two
we define F1 as

You now need to implement the calculation of F1 yourself using the provided function header. It will be unit
tested on Gradescope.

Precision

Recall

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑃 𝐹𝑃 𝐹𝑁

F1 = 2 ⋅ Precision ⋅ Recall

Precision + Recall

In [ ]: def calculate_f1(y_gold, y_model): 
    """
    TODO: MODIFY 
    
    Computes the F1 of the model predictions using the
    gold labels. Each of y_gold and y_model are lists with
    labels 1 or -1. The function should return the F1
    score as a number between 0 and 1.
    """ 
    return None

Looking at the formula for the F1 score, what is the highest and lowest possible value?

In [ ]: def highest_and_lowest_f1_score(): 
    """
    TODO: MODIFY
    
    Return the highest and lowest possible F1 score
    (ie one line solution returning the theoretical max and min)
    """ 
    return None, None

Section 1. Linear Classifiers (30 points total)
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This section details the seven different algorithms that you will use in the experiments. For each of the
algorithms, we describe the initialization you should use to start training and the different parameter settings
that you should use for the experiment on the synthetic datasets. Each of the update functions for the
Perceptron, Winnow, and Perceptron with AdaGrad will be unittested on Gradescope, so please do not edit the
function definitions.

1.1 Base Classifier
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In [ ]: class Classifier(object): 
    """
    DO NOT MODIFY 
 
    The Classifier class is the base class for all of the Perceptron-bas
ed
    algorithms. Your class should override the "process_example" and
    "predict_single" functions. Further, the averaged models should
    override the "finalize" method, where the final parameter values
    should be calculated. 
    
    You should not need to edit this class any further.
    """ 
     
    ITERATIONS = 10 
     
    def train(self, X, y): 
        for iteration in range(self.ITERATIONS): 
            for x_i, y_i in zip(X, y): 
                self.process_example(x_i, y_i) 
        self.finalize() 
 
    def process_example(self, x, y): 
        """
        Makes a prediction using the current parameter values for
        the features x and potentially updates the parameters based
        on the gradient. Note "x" is a dictionary which maps from the fe
ature
        name to the feature value and y is either 1 or -1.
        """ 
        raise NotImplementedError 
 
    def finalize(self): 
        """Calculates the final parameter values for the averaged model
s.""" 
        pass 
 
    def predict(self, X): 
        """
        Predicts labels for all of the input examples. You should not ne
ed
        to override this method.
        """ 
        return [self.predict_single(x) for x in X] 
 
    def predict_single(self, x): 
        """
        Predicts a label, 1 or -1, for the input example. "x" is a dicti
onary
        which maps from the feature name to the feature value.
        """ 
        raise NotImplementedError
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1.2 Basic Perceptron (2 points)

We do this classifier for you, so enjoy the two free points and pay attention to the techniques and code written.

1.2.1 Description

This is the basic version of the Perceptron Algorithm. In this version, an update will be performed on the
example  if . The Perceptron needs to learn both the bias term  and the weight vector 
parameters. When the Perceptron makes a mistake on the example , both  and  need to be updated
using the following update equations:

where  is the learning rate.

1.2.2 Hyperparameters

We set  to 1, so there are no hyperparameters to tune.

Note: If we assume that the order of the examples presented to the algorithm is fixed, we initialize  and 
, and train both together, then the learning rate  does not have any effect. In fact you can show that, if 

 and  are the outputs of the Perceptron algorithm with learning rate , then  and  will be the
result of the Perceptron with learning rate 1 (note that these two hyperplanes give identical predictions).

1.2.3 Initialization

 and .

(𝐱, 𝑦) 𝑦( 𝐱 + 𝜃) ≤ 0𝐰
⊺ 𝜃 𝐰

(𝐱, 𝑦) 𝐰 𝜃

𝐰
new

𝜃new

← 𝐰 + 𝜂 ⋅ 𝑦 ⋅ 𝐱

← 𝜃 + 𝜂 ⋅ 𝑦
𝜂

𝜂

𝐰 = 0

𝜃 = 0 𝜂

𝐰1 𝜃1 𝜂1 /𝐰1 𝜂1 /𝜃1 𝜂1

𝐰 = [0, 0, … , 0] 𝜃 = 0
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In [ ]: class Perceptron(Classifier): 
    """
    DO NOT MODIFY THIS CELL 
 
    The Perceptron model. Note how we are subclassing `Classifier`.
    """ 
     
    def __init__(self, features): 
        """
        Initializes the parameters for the Perceptron model. "features"
        is a list of all of the features of the model where each is
        represented by a string.
        """ 
         
        # NOTE: Do not change the names of these 3 data members because 
        # they are used in the unit tests 
        self.eta = 1 
        self.theta = 0 
        self.w = {feature: 0.0 for feature in features} 
 
    def process_example(self, x, y): 
        y_pred = self.predict_single(x) 
        if y != y_pred: 
            for feature, value in x.items(): 
                self.w[feature] += self.eta * y * value 
            self.theta += self.eta * y 
 
    def predict_single(self, x): 
        score = 0 
        for feature, value in x.items(): 
            score += self.w[feature] * value 
        score += self.theta 
        if score <= 0: 
            return -1 
        return 1

For the rest of the Perceptron-based algorithms, you will have to implement the corresponding class like we
have done for Perceptron . Use the Perceptron  class as a guide for how to implement the functions.

1.3 Winnow (5 points)
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1.3.1 Description

The Winnow algorithm is a variant of the Perceptron algorithm with multiplicative updates. Since the algorithm
requires that the target function is monotonic, you will only use it on the synthetic datasets.

The Winnow algorithm only learns parameters . We will fix , where  is the number of features. When
the Winnow algorithm makes a mistake on the example , the parameters are updated with the following
equation:

where  and  are the th components of the corresponding vectors. Here,  is a promotion/demotion
hyperparameter.

1.3.2 Hyperparameters

For the experiment, choose .

1.3.3 Initialization

 and  (constant).

𝐰 𝜃 = −𝑛 𝑛

(𝐱, 𝑦)

← ⋅𝑤new
𝑖 𝑤𝑖 𝛼𝑦⋅𝑥𝑖

𝑤𝑖 𝑥𝑖 𝑖 𝛼

𝛼 ∈ {1.1, 1.01, 1.005, 1.0005, 1.0001}

𝐰 = [1, 1, … , 1] 𝜃 = −𝑛

In [ ]: class Winnow(Classifier): 
    def __init__(self, alpha, features): 
        # DO NOT change the names of these 3 data members because 
        # they are used in the unit tests 
        self.alpha = alpha 
        self.w = {feature: 1.0 for feature in features} 
        self.theta = -len(features) 
         
    def process_example(self, x, y): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
 
    def predict_single(self, x): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError

1.4 AdaGrad (10 points)
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1.4.1 Description

AdaGrad is a variant of the Perceptron algorithm that adapts the learning rate for each parameter based on
historical information. The idea is that frequently changing features get smaller learning rates and stable features
higher ones.

To derive the update equations for this model, we first need to start with the loss function. Instead of using the
hinge loss with the elbow at 0 (like the basic Perceptron does), we will instead use the standard hinge loss with
the elbow at 1:

Then, by taking the partial derivative of  with respect to  and , we can derive the respective graidents
(make sure you understand how you could derive these gradients on your own):

Then for each parameter, we will keep track of the sum of the parameters' squared gradients. In the following
equations, the  superscript refers to the th non-zero gradient (i.e., the th weight vector/misclassified
example) and  is the number of mistakes seen thus far.

For example, on the 3rd mistake ( ),  is the sum of the squares of the first three non-zero gradients (

, , and ). Then  is used to calculate the 4th value of the weight vector as follows.

On example , if , then the parameters are updated with the following equations:

Note that, although we use the hinge loss with the elbow at 1 for training, you still make the prediction based on
whether or not  during testing.

1.4.2 Hyperparameters

For the experiment, choose 

1.4.3 Initialization

 and .
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𝐰 = [0, 0, … , 0] 𝜃 = 0
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In [ ]: class AdaGrad(Classifier): 
    def __init__(self, eta, features): 
        # DO NOT change the names of these 3 data members because 
        # they are used in the unit tests 
        self.eta = eta 
        self.w = {feature: 0.0 for feature in features} 
        self.theta = 0 
        self.G = {feature: 1e-5 for feature in features}  # 1e-5 prevent
s divide by 0 problems 
        self.H = 0 
         
    def process_example(self, x, y): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
 
    def predict_single(self, x): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError

1.5 Averaged Models (15 points)
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You will also implement the averaged version of the previous three algorithms.

During the course of training, each of the above algorithms will have  different parameter settings for the 
 different updates it will make during training. The regular implementation of these algorithms uses the

parameter values after the th update as the final ones. Instead, the averaged version use the weighted
average of the  parameter values as the final parameter values. Let  denote the number of correctly
classified examples by the th parameter values and  the total number of correctly classified examples. The
final parameter values are

For each of the averaged versions of Perceptron, Winnow, and AdaGrad, use the same hyperparameters and
initialization as before.

1.5.1 Implementation Note

Implementing the averaged variants of these algorithms can be tricky. While the final parameter values are
based on the sum of  different vectors, there is no need to maintain all of these parameters. Instead, you
should implement these algorithms by keeping only two vectors, one which maintains the cumulative sum and
the current one.

Additionally, there are two ways of keeping track of these two vectors. One is more straightforward but
prohibitively slow. The second requires some algebra to derive but is significantly faster to run. Try to analyze
how the final weight vector is a function of the intermediate updates and their corresponding weights. It should
take less than a minute or two for ten iterations for any of the averaged algorithms. You need to think about
how to efficiently implement the averaged algorithms yourself.

Further, the implementation for Winnow is slightly more complicated than the other two, so if you consistently
have low accuracy for the averaged Winnow, take a closer look at the derivation.

𝐾 + 1

𝐾

𝐾

𝐾 + 1 𝑚𝑘

𝑘 𝑀
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= ∑
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𝑚𝑘

← ⋅
1

𝑀 ∑
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𝐾+1
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𝑘

← ⋅
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In [ ]: class AveragedPerceptron(Classifier): 
    def __init__(self, features): 
        self.eta = 1 
        self.w = {feature: 0.0 for feature in features} 
        self.theta = 0 
        """TODO: You will need to add data members here""" 
         
    def process_example(self, x, y): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
 
    def predict_single(self, x): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
         
    def finalize(self): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError

In [ ]: class AveragedWinnow(Classifier): 
    def __init__(self, alpha, features): 
        self.alpha = alpha 
        self.w = {feature: 1.0 for feature in features} 
        self.theta = -len(features) 
        """TODO: You will need to add data members here""" 
         
    def process_example(self, x, y): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
 
    def predict_single(self, x): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
         
    def finalize(self): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError
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In [ ]: class AveragedAdaGrad(Classifier): 
    def __init__(self, eta, features): 
        self.eta = eta 
        self.w = {feature: 0.0 for feature in features} 
        self.theta = 0 
        self.G = {feature: 1e-5 for feature in features} 
        self.H = 0 
        """TODO: You will need to add data members here""" 
         
    def process_example(self, x, y): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
 
    def predict_single(self, x): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError 
         
    def finalize(self): 
        """ TODO: IMPLEMENT""" 
        raise NotImplementedError

1.6 Support Vector Machines
Although we have not yet covered SVMs in class, you can still train them using the sklearn  library. We will
use a soft margin SVM for non-linearly separable data. You should use the sklearn  implementation as
follows:

from sklearn.svm import LinearSVC 
classifier = LinearSVC(loss='hinge') 
classifier.fit(X, y)

sklearn  requires a different feature representation than what we use for the Perceptron models. The provided
Python template code demonstrates how to convert to the require representation.

Given training samples , the objective for the SVM is the following:

subject to the following constraints:

𝑆 = {( , ), ( , ), … , ( , )}𝐱
1 𝑦1

𝐱
2 𝑦2

𝐱
𝑚 𝑦𝑚

||𝐰| + 𝐶min
𝐰,𝑏,𝝃

1

2
|2
2 ∑

𝑖=1

𝑚

𝜉𝑖

( + 𝑏) ≥ 1 −𝑦𝑖
𝐰

⊺
𝐱

𝑖 𝜉𝑖

≥ 0𝜉𝑖

for 𝑖 = 1, 2, … , 𝑚

for 𝑖 = 1, 2, … , 𝑚

In [ ]: """TODO: Create an SVM classifier"""
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Section 2. Datasets
In this section, we describe the synthetic and NER datasets that you will use for your experiments. For the NER
datasets, there is also an explanation for the features which you need to extract from the data.

2.1 Synthetic Data

2.1.1 Introduction

The synthetic datasets have features and labels which are automatically generated from a python script. Each
instance will have  binary features and are labeled according to a -of- -of-  Boolean function. Specifically,
there is a set of  features such that an example if positive if and only if at least  of these  features are active.
The set of  features is the same for the dataset (i.e., it is not a separate set of  features for each individual
instance).

We provide two versions of the synthetic dataset called sparse and dense. For both datasets, we set 
and . We set  for the sparse data and  for the dense data. Additionally, we add noise to
the data as follows: With probability  the label assigned by the function is changed and with probability 

 each feature value is changed. Consequently, the data is not linearly separable.

We have provided you with three data splits for both sparse and dense with 10,000 training, 2,000 development,
and 2,000 testing examples. Section 3 describes the experiments that you need to run on these datasets.

2.1.2 Feature Representation

The features of the synthetic data provided are vectors of 0s and 1s. Storing these large matrices requires lots
of memory so we use a sparse representation that stores them as dictionaries instead. For example, the vector 

 can be stored as {"x2": 1,"x6": 1}  (using 1-based indexing). We have provided you with
the code for parsing and converting the data to this format. You can use these for the all algorithms you develop
except the SVM. Since you will be using the implementation of SVM from sklearn, you will need to provide a
vector to it. You can use sklearn.feature_extraction.DictVectorizer  for converting feature-value
dictionaries to vectors.

2.2 NER Data
In addition to the synthetic data, we have provided you two datasets for the task of named-entity recognition
(NER). The goal is to identify whether strings in text represent names of people, organizations, or locations. An
example instance looks like the following:

   [PER Wolff] , currently a journalist in [LOC Argentina] , played with 
   [PER del Bosque] in the final years of the seventies in 
   [ORG Real Madrid] .

In this problem, we will simplify the task to identifying whether a string is named entity or not (that is, you don't
have to say which type of entity it is). For each token in the input, we will use the tag  to denote that token is
an entity and  otherwise. For example, the full tagging for the above instace is as follows:

𝑛 𝑙 𝑚 𝑛

𝑚 𝑙 𝑚

𝑚 𝑚

𝑙 = 10

𝑚 = 20 𝑛 = 200 𝑛 = 40

0.05

0.001

[0, 1, 0, 0, 0, 1]

𝙸

𝙾
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   [I Wolff] [O ,] [O currently] [a] [O journalist] [O in] [I Argentina] 
   [O ,] [O played] [O with] [I del] [I Bosque] [O in] [O the] [O final] 
   [O years] [O of] [O the] [O seventies] [O in] [I Real] [I Madrid] .

Given a sentence , you need to predict the I , O  tag for each word in the sentence. That
is, you will produce the sequence  where  { I , O }.

2.2.1 Datasets: CoNLL and Enron

We have provided two datasets, the CoNLL dataset which is text from news articles, and Enron, a corpus of
emails. The files contain one word and one tag per line. For CoNLL, there are training, development, and testing
files, whereas Enron only has a test dataset. There are 14,987 training sentences (204,567 words), 336
development sentences (3,779 words), and 303 testing sentences (3,880 words) in CoNLL. For Enron there are
368 sentences (11,852 words).

Please note that the CoNLL dataset is available only for the purposes of this assignment. It is
copyrighted, and you are granted access because you are a Penn student, but please delete it when you
are done with the homework.

2.2.2 Feature Extraction

The NER data is provided as raw text, and you are required to extract features for the classifier. In this
assignment, we will only consider binary features based on the context of the word that is supposed to be
tagged.

Assume that there are  unique words in the dataset and each word has been assigned a unique ID which is a
number . Further,  and  indicate the th word before and after the target word. The
feature templates that you should use to generate features are as follows:

Template Number of Features

 & 

 \& 

 \& 

Each feature template corresponds to a set of features that you will compute (similar to the features you
generated in problem 2 from the first homework assignment). The  feature template corresponds to 
features where the th feature is 1 if the third word to the left of the target word has ID . The  feature
template corresponds to  features where there is one feature for every unique pair words. For example,
feature  is a binary feature that is 1 if the word 1 to the left of the target has ID  and the first
word to the right of the target has ID . In practice, you will not need to keep track of the feature IDs. Instead,
each feature will be given a name such as " ".

𝑆 = , , … ,𝑤1 𝑤2 𝑤𝑛

𝑌 = , , … ,𝑦1 𝑦2 𝑦𝑛 ∈𝑦𝑖

𝑉

{1, 2, … , 𝑉 } 𝑤−𝑘 𝑤+𝑘 𝑘

𝑤−3 𝑉

𝑤−2 𝑉

𝑤−1 𝑉

𝑤+1 𝑉

𝑤+2 𝑉

𝑤+3 𝑉

𝑤−1 𝑤−2 𝑉 × 𝑉

𝑤+1 𝑤+2 𝑉 × 𝑉

𝑤−1 𝑤+1 𝑉 × 𝑉

𝑤−3 𝑉

𝑖 𝑖 &𝑤−1 𝑤+1

𝑉 × 𝑉

(𝑖 − 1) × 𝑉 + 𝑗 𝑖

𝑗

= the& = cat𝑤−1 𝑤+1
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In total, all of the above feature templates correspond to a very large number of features. However, for each
word, there will be exactly 9 features which are active (non-zero), so the feature vector is quite sparse. You will
represent this as a dictionary which maps from the feature name to the value. In the provided Python template,
we have implemented a couple of the features for you to demonstrate how to compute them and what the
naming scheme should look like.

In order to deal with the first two words and the last two words in a sentence, we will add special symbol "SSS"
and "EEE" to the vocabulary to represent the words before the first word and the words after the last word.
Notice that in the test data you may encounter a word that was not observed in training, and therefore is not in
your dictionary. In this case, you cannot generate a feature for it, resulting in less than 7 active features in some
of the test examples.

Section 3. Experiments (65 points total)

You will run two sets of experiments, one using the synthetic data and one using the NER data.

3.1 Synthetic Experiment (30 + 10 extra credit points)
This experiment will explore the impact that the amount of training data has on model performance. First, you
will do hyperparameter tuning for Winnow and Perceptron with AdaGrad (both standard and averaged versions).
Then you will generate learning curves that will plot the size of the training data against the performance. Finally,
for each of the models trained on all of the training data, you will find the test score. You should use accuracy to
compute the performance of the model.

In summary, the experiment consists of three parts

1. Parameter Tuning
2. Learning Curves
3. Final Evaluation

3.1.1 Parameter Tuning (10 points)

For both the Winnow and Perceptron with AdaGrad (standard and averaged), there are hyperparameters that
you need to choose. (The same is true for SVM, but you should only use the default settings.) Similarly to cross-
validation from Homework 1, we will estimate how well each model will do on the true test data using the
development dataset (we will not run cross-validation), and choose the hyperparameter settings based on these
results.

For each hyperparameter value in Section 1, train a model using that value on the training data and compute the
accuracy on the development dataset. Each model should be trained for 10 iterations (i.e., 10 passes over the
entire dataset).

TODO: Fill in the table with the best hyperparameter values and the corresponding validation accuracies.
Repeat this for both the sparse and dense data.



10/6/2020 hw2

localhost:8888/nbconvert/html/hw2.ipynb?download=false 22/29

Winnow Sweep

Sparse Dense

1.1

1.01

1.005

1.0005

1.0001

Averaged Winnow Sweep

Sparse Dense

1.1

1.01

1.005

1.0005

1.0001

AdaGrad Sweep

Sparse Dense

1.5

0.25

0.03

0.005

0.001

Averaged AdaGrad Sweep

Sparse Dense

1.5

0.25

0.03

0.005

0.001

𝛼

𝛼

𝜂

𝜂
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3.1.2 Learning Curves (10 points)

Next, you will train all 7 models with different amounts of training data. For Winnow and Perceptron with
AdaGrad (standard and averaged), use the best hyperparameters from the parameter tuning experiment.

Each of the datasets contains 10,000 training examples. You will train each model 11 times on varying amounts
of training data. The first 10 will increase by 500 examples: 500, 1k, 1.5k, 2k, ..., 5k. The 11th model should use
all 10k examples. Each Perceptron-based model should be trained for 10 iterations (e.g., 10 passes over the
total number of training examples available to that model). The SVM can be run until convergence with the
default parameters.

For each model, compute the accuracy on the development dataset and plot the results using the provided
code. There should be a separate plot for the sparse and dense data.

Note how we have included an image in markdown. You should do the same for both plots and include them in
the output below by running your experiment, saving your plots to the images folder, and linking it to this cell.

Sparse Plot

Sample

Dense Plot

Sample

3.1.3 Final Evaluation (5 points)

Finally, for each of the 7 models, train the models on all of the training data and compute the test accuracy. For
Winnow and Perceptron with AdaGrad, use the best hyperparameter settings you found. Report these
accuracies in a table.

We will run our models with [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 10000] examples.

In [ ]: sample_sizes = [500 * i for i in range(1, 11)] + [10_000]
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In [ ]: def run_synthetic_experiment(dataset_type='sparse'): 
    """
    TODO: IMPLEMENT 
    
    Runs the synthetic experiment on either the sparse or dense data
    depending on the data path (e.g. "data/sparse" or "data/dense").
    
    We have provided how to train the Perceptron on the training and
    test on the testing data (the last part of the experiment). You need
    to implement the hyperparameter sweep, the learning curves, and
    predicting on the test dataset for the other models.
    """ 
     
    X_train, y_train, X_dev, y_dev, X_test, y_test, features = load_synt
hetic_data(dataset_type) 
     
 
    # TODO: YOUR CODE HERE. Determine the best hyperparameters for the r
elevant models 
    # report the validation accuracy after training using the best hyper 
parameters 
         
     
    # TOOD: YOUR CODE HERE. Downsample the dataset to the number of desi
red training 
    # instances (e.g. 500, 1000), then train all of the models on the 
    # sampled dataset. Compute the accuracy and add the accuracies to 
    # the corresponding list. Use plot_learning_curves() 
         
     
    # TODO: Train all 7 models on the training data and make predictions 
    # for test data 
    # We will show you how to do it for the basic Perceptron model. 
    classifier = Perceptron(features) 
    classifier.train(X_train, y_train) 
    y_pred = classifier.predict(X_test) 
    acc = accuracy_score(y_test, y_pred) 
    print(f"Perceptron's accuracy is {acc}") 
 
    # YOUR CODE HERE: Repeat for the other 6 models. 
     
     

In [ ]: """
Run the synthetic experiment on the sparse dataset. For reference,
"synthetic/sparse" is the path to where the data is located.
Note: This experiment takes substantial time (around 15 minutes),
so don't worry if it's taking a long time to finish.
"""
run_synthetic_experiment('sparse')
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In [ ]: """
Run the synthetic experiment on the dense dataset. For reference,
"synthetic/dense" is the path to where the data is located.
Note: this experiment should take much less time.
"""
run_synthetic_experiment('dense')

Questions (5 points)

Answer the following questions:

1. Discuss the trends that you see when comparing the standard version of an algorithm to the averaged
version (e.g., Winnow versus Averaged Winnow). Is there an observable trend?

TODO: My answer to question 1 here

1. We provided you with 10,000 training examples. Were all 10,000 necessary to achieve the best
performance for each classifier? If not, how many were necessary? (Rough estimates, no exact numbers
required)

TODO: My answer to question 2 here

1. Report your Final Test Accuracies

TODO: Fill in the table

Model Sparse Dense

Perceptron

Winnow

AdaGrad

Averaged Perceptron

Averaged Winnow

Averaged AdaGrad

SVM

3.1.5 Extra Credit (10 points)

Included in the resources for this homework assignment is the code that we used to generate the synthetic
data. We used a small amount of noise to create the dataset which you ran the experiments on. For extra credit,
vary the amount of noise in either/both of the label and features. Then, plot the models' performances as a
function of the amount of noise. Discuss your observations.

TODO: Extra Credit observations
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3.2 NER Experiment: Welcome to the Real World (35 points)
The experiment with the NER data will analyze how changing the domain of the training and testing data can
impact the performance of a model.

Instead of accuracy, you will use your  score implementation in Section 0 to evaluate how well a model does.
Recall measures how many of the actual entities the model successfully tagged as an entity.

For this experiment, you will only use the averaged basic Perceptron and SVM. Hence, no parameter tuning is
necessary. Train both models on the CoNLL training data then compute the F  on the development and testing
data of both CoNLL and Enron. Note that the model which is used to predict labels for Enron is trained on
CoNLL data, not Enron data. Report the F  scores in a table.

3.2.1 Extracting NER Features (25 points)

Reread Section 2.2.2 to understand how to extract the features required to train the models and translate it to
the code below.

𝐹1

Precision

Recall

F1

=
#(Actually Entity & Model Predicted Entity)

#(Model Predicted Entity)

=
#(Actually Entity & Model Predicted Entity)

#(Actually Entity)

= 2 ⋅
Precision × Recall

Precision + Recall

1

1

In [ ]: def extract_ner_features_train(train): 
    """
    Extracts feature dictionaries and labels from the data in "train"
    Additionally creates a list of all of the features which were create
d.
    We have implemented the w-1 and w+1 features for you to show you how
    to create them.
    
    TODO: You should add your additional featurization code here.
    (which might require adding and/or changing existing code)
    """ 
    y = [] 
    X = [] 
    features = set() 
    for sentence in train: 
        padded = [('SSS', None)] + sentence[:] + [('EEE', None)] 
        for i in range(1, len(padded) - 1): 
            y.append(1 if padded[i][1] == 'I' else -1) 
            feat1 = 'w-1=' + str(padded[i - 1][0]) 
            feat2 = 'w+1=' + str(padded[i + 1][0]) 
            feats = [feat1, feat2] 
            features.update(feats) 
            feats = {feature: 1 for feature in feats} 
            X.append(feats) 
    return features, X, y
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Now, repeat the process of extracting features from the test data. What is the difference between the code
above and below?

In [ ]: def extract_features_dev_or_test(data, features): 
    """
    Extracts feature dictionaries and labels from "data". The only
    features which should be computed are those in "features". You
    should add your additional featurization code here.
    
    TODO: You should add your additional featurization code here.
    """ 
    y = [] 
    X = [] 
    for sentence in data: 
        padded = [('SSS', None)] + sentence[:] + [('EEE', None)] 
        for i in range(1, len(padded) - 1): 
            y.append(1 if padded[i][1] == 'I' else -1) 
            feat1 = 'w-1=' + str(padded[i - 1][0]) 
            feat2 = 'w+1=' + str(padded[i + 1][0]) 
            feats = [feat1, feat2] 
            feats = {feature: 1 for feature in feats if feature in featu
res} 
            X.append(feats) 
    return X, y

3.2.2 Running the NER Experiment

As stated previously, train both models on the CoNLL training data then compute the  on the development
and testing data of both CoNLL and Enron. Note that the model which is used to predict labels for Enron is
trained on CoNLL data, not Enron data.

𝐹1
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In [ ]: def run_ner_experiment(data_path): 
    """
    Runs the NER experiment using the path to the ner data
    (e.g. "ner" from the released resources). We have implemented
    the standard Perceptron below. You should do the same for
    the averaged version and the SVM.
    
    The SVM requires transforming the features into a different
    format. See the end of this function for how to do that.
    """ 
    train = load_ner_data(dataset='conll', dataset_type='train') 
    conll_test = load_ner_data(dataset='conll', dataset_type='test') 
    enron_test = load_ner_data(dataset='enron', dataset_type='test') 
 
    features, X_train, y_train = extract_ner_features_train(train) 
    X_conll_test, y_conll_test = extract_features_dev_or_test(conll_test
, features) 
    X_enron_test, y_enron_test = extract_features_dev_or_test(enron_test
, features) 
                  
    # TODO: We show you how to do this for Perceptron. 
    # You should do this for the Averaged Perceptron and SVM 
    classifier = Perceptron(features) 
    classifier.train(X_train, y_train) 
     
    y_pred = classifier.predict(X_conll_test) 
    conll_f1 = calculate_f1(y_conll_test, y_pred) 
 
    y_pred = classifier.predict(X_enron_test) 
    enron_f1 = calculate_f1(y_enron_test, y_pred) 
    print('Averaged Perceptron') 
    print('  CoNLL', conll_f1) 
    print('  Enron', enron_f1) 
     
    # This is how you convert from the way we represent features in the 
    # Perceptron code to how you need to represent features for the SVM. 
    # You can then train with (X_train_dict, y_train) and test with 
    # (X_conll_test_dict, y_conll_test) and (X_enron_test_dict, y_enron_
test) 
    vectorizer = DictVectorizer() 
    X_train_dict = vectorizer.fit_transform(X_train) 
    X_conll_test_dict = vectorizer.transform(X_conll_test) 
    X_enron_test_dict = vectorizer.transform(X_enron_test)

In [ ]: # Run the NER experiment. "ner" is the path to where the data is locate
d.
run_ner_experiment('ner')
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F1 Scores Table

TODO: report your values:

Model CoNLL Test F1 Enron Test F1

Averaged Perceptron

SVM

Questions (5 points)

Comment on the results:

1. Are the F  scores on CoNLL and Enron similar?

TODO: My answer to question 1 here

1. If they are dissimilar, explain why you think the F  score increased/decreased on the Enron data.

TODO: My answer to question 2 here

1

1

Submission Instructions
We will be using Gradescope to turn in both the Python code. You should have been automatically added to
Gradescope. If you do not have access, please ask the TA staff on Piazza.

There are three parts to the submission on Gradescope:

ipynb file: Submit this notebook (.ipynb). If you are using Google Colab, you will have to download it as an
ipynb file.
PDF: This notebook saved as a PDF. We will use this to see the overall structure of your homework and
code, and to check manual questions like the tables, plots, and your discussions. How should I convert this
notebook to PDF, you may ask? There are a few ways, but for simplicity print the Jupyter notebook and
Save as PDF.
Code: A hw2.py  file. We will use this to unit test and automate grading some parts of the homework. We
only need a few functions/classes from the whole notebook. In particular, to unit test we only need:

calculate_f1
highest_and_lowest_f1_score
Perceptron , Winnow , and AdaGrad  classes.

There are two ways to submit these pieces of code. You can either manually copy and paste these to a Python
file, or you can use Jupyter's Download as .py, and delete all unnecessary code.


