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Course Overview
– Introduction: Basic problems and questions
– A detailed example: Linear classifiers; key algorithmic idea
– Two Basic Paradigms:

» Discriminative Learning & Generative/Probabilistic Learning
– Learning Protocols: 

» Supervised; Unsupervised; Semi-supervised
– Algorithms

» Gradient Descent
» Decision Trees 
» Linear Representations: (Perceptron; SVMs; Kernels)
» Neural Networks/Deep Learning
» Probabilistic Representations (naïve Bayes)
» Unsupervised /Semi supervised: EM
» Clustering; Dimensionality Reduction

– Modeling; Evaluation; Real world challenges 
– Ethics 
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The class is recorded

Will be available on the web site
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CIS 419/519: Applied Machine Learning
• Monday, Wednesday: 10:30pm-12:00pm  On Zoom
• (My) Office hours: Mon 5-6 pm; Tue 12-1pm 
• 13 TAs
• Assignments: 5 Problems set (Python Programming)

– Weekly (light) on-line quizzes
• Weekly Discussion Sessions 
• Mid Term Exam (take home)
• [Project] (We’ll talk about it later)
• Final (take home)
• No real textbook:

– Slides/Mitchell/Goldberg/Other Books/Lecture notes /Literature

Registration for 
Class      

Go to the web site

Be on Piazza      

Started this week
TAs Office Hours also 

started

HW0 !!!
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https://www.seas.upenn.edu/%7Ecis519/fall2020/staff.html
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CIS 519: What have you learned so far?
• What do you need to know:

– Some exposure to:
• Theory of Computation
• Probability Theory
• Linear Algebra

– Programming  (Python)

• Homework 0 
– If you could not comfortably deal with 2/3 of this within a few hours, 

please take the prerequisites first; come back next semester/year.

Participate, Ask 
Questions
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 Applied Machine Learning

 Applied: mostly in HW

 Machine learning: mostly in class, quizzes, exams
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• Math Background
– We’ll add recitations to help with that. 
– Still, HW0 is your yard stick

• Computation
– We’ll provide guidelines

• Time Zones
– The vast majority of you are in “ok” 

times zones [ET-3,ET+12]. Please email 
if you are not.

• Additional time on exams
– Penn has standard ways to deal with it; 

ask me if you don’t know how to access 
it. [May not be needed, though]
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Key Comments From Survey 
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CIS 519: Policies
– Cheating

• No.  
• We take it very seriously.  

– Homework:
• Collaboration is encouraged
• But, you have to write your own solution/code.

– Late Policy: 
• You have a credit of 4 days; That’s it.

– Grading:
• Possible separate for grad/undergrads.
• 40% - homework; 35%-final; 20%-midterm; 5% Quizzes
• [Projects: 20%]  

– Questions? 

Class’ Web Page

Note also the Schedule 
Page and our Notes
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A: 35-40% ; B: 40% C: 20%

Past Grade Distribution

http://l2r.cs.uiuc.edu/%7Edanr/Teaching/CS446-14/info.html
https://www.seas.upenn.edu/%7Ecis519/fall2018/index.html
http://l2r.cs.uiuc.edu/%7Edanr/Teaching/CS446-14/info.html
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CIS 519 on the web
• Check our class website:

– Schedule, slides, videos, policies
• https://www.seas.upenn.edu/~cis519/fall2020/
• Sign up, participate in our Piazza forum:
• Announcements and discussions
• https://piazza.com/class/kec0q01gqceim
• Check out our team
• Office hours
• [Optional] Discussion Sessions
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https://www.seas.upenn.edu/%7Ecis519/fall2020/
https://piazza.com/class/kec0q01gqceim
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Today
• Introduce some key concepts in Machine Learning

– At a high level

• Representation
• Supervised Learning Protocol
• New Concepts:

– Instance Space
– Label Space
– Model
– A Hypothesis Space
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What is Learning?
– The Badges Game…

• This is an example of the key learning protocol: supervised learning
– First question: Are you sure you got it?

• Why?
– Issues:

• Prediction or Modeling?
• Representation
• Problem setting
• Background Knowledge
• When did learning take place?
• Algorithm
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https://www.seas.upenn.edu/%7Ecis519/fall2020/assets/lectures/lecture-0/game.html
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What is Learning?
– The Badges Game…

• This is an example of the key learning protocol: supervised learning
– First question: Are you sure you got it?

• Why?
– Issues:

• Prediction or Modeling?
• Representation
• Problem setting
• Background Knowledge
• When did learning take place?
• Algorithm
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https://www.seas.upenn.edu/%7Ecis519/fall2020/assets/lectures/lecture-0/game.html
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Training data

+ Naoki Abe
- Myriam Abramson
+ David W. Aha
+ Kamal M. Ali
- Eric Allender
+ Dana Angluin
- Chidanand Apte
+ Minoru Asada
+ Lars Asker
+ Javed Aslam
+ Jose L. Balcazar
- Cristina Baroglio

+ Peter Bartlett
- Eric Baum
+ Welton Becket
- Shai Ben-David
+ George Berg
+ Neil Berkman
+ Malini Bhandaru
+ Bir Bhanu
+ Reinhard Blasig
- Avrim Blum
- Anselm Blumer
+ Justin Boyan

+ Carla E. Brodley
+ Nader Bshouty
- Wray Buntine
- Andrey Burago
+ Tom Bylander
+ Bill Byrne
- Claire Cardie
+ John Case
+ Jason Catlett
- Philip Chan
- Zhixiang Chen
- Chris Darken
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The Badges game

• Conference attendees to the 1994 Machine Learning conference 
were given name badges labeled with + or −.

• What function was used to assign these labels? 

+ Naoki Abe - Eric Baum
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Raw test data

Shivani Agarwal
Gerald F. DeJong
Chris Drummond
Yolanda Gil
Attilio Giordana
Jiarong Hong

J. R. Quinlan
Priscilla Rasmussen
Dan Roth
Yoram Singer
Lyle H. Ungar
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Labeled test data

? Shivani Agarwal
+ Gerald F. DeJong
- Chris Drummond
+ Yolanda Gil
- Attilio Giordana
+ Jiarong Hong

- J. R. Quinlan
- Priscilla Rasmussen
+ Dan Roth
+ Yoram Singer
- Lyle H. Ungar
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Experiments with MLP
• MLP: Multi=Layer Perceptron (feed forward Neural Network)
• Architecture:

– 2 layers; 32 nodes in each layer.
• Learning:

– Loss function: Cross Entropy; optimizer: Adam
– Learning rate: 5e-4
– 500 epochs; batch size 16
– Tuning: only for epochs and learning rate. 

• Data:
– 234 train / 60 test
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Token based MLP model

Dan Roth

Dan Roth

input

tokens

0,0,0,1... 0,1,0,0...features

NN layers

vocab one-hot

Jane 1,0,0,0,...

... ...

Dan 0,0,0,1,...

...

Roth 0,1,0,0,...

Vocab-vector lookup

Fully connected layer

Nonlinear layer

Fully connected layer

Nonlinear layer

Predicted probabilities

Model Test Accuracy Training Accuracy

Token based MLP 58% 100%

T5-3B 52% 100%
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Character based MLP model

Dan Rothinput

tokens

0,0,0,1... 1,0,0,0...features

NN layers

vocab one-hot

a 1,0,0,0,...

... ...

d 0,0,0,1,...

...

z 0,0,0,0,...

Vocab-vector lookup

Fully connected layer

Nonlinear layer

Fully connected layer

Nonlinear layer

Predicted probabilities

d a ...

Model Test Accuracy Training Accuracy

Token based MLP 58% 100%

T5-3B 52% 100%

Char. based MLP 92% 100%

Char. based MLP 
with only 2nd

char as input

100% 100%
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What is Learning
– The Badges Game…

• This is an example of the key learning protocol: supervised learning
– First question: Are you sure you got it?

• Why?
– Issues:

• Which problem was easier?
– Yours or the conference attendees? 

• Representation
– Problem setting

• Background Knowledge
– When did learning take place?

• Algorithm: can you write a program that takes this data as input and predicts 
the label for your name?
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Other Examples
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Machine Learning

Traditional 
Programming

Rules

Data
Answers

Machine 
Learning

Answers

Data
Rules

Makes sense.
Use Machine 

Learning 

Sort these numbers in 
decreasing order

2, 4, 18, 1, 77, 0, 85

Does not make sense.
Do not use Machine 

Learning

(what are the risks if 
you do?)
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Output

𝑦𝑦 ∈ 𝒀𝒀
An item 𝑦𝑦

drawn from an 
output space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿
An item 𝒙𝒙

drawn from an 
input space 𝑿𝑿

System 
𝑦𝑦 = 𝑓𝑓(𝒙𝒙)

31

Supervised Learning

We consider systems that apply a function 𝑓𝑓( )
to input items x and return an output 𝑦𝑦 = 𝑓𝑓(𝒙𝒙).

Dan 
Roth +/-
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Supervised Learning

In (supervised) machine learning, we deal with 
systems whose 𝑓𝑓(𝒙𝒙) is learned from examples.

Output

𝑦𝑦 ∈ 𝒀𝒀
An item 𝑦𝑦

drawn from an 
output space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿
An item 𝒙𝒙

drawn from an 
input space 𝑿𝑿

System 
𝑦𝑦 = 𝑓𝑓(𝒙𝒙)
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Why use learning?
• We typically use machine learning when the function 𝑓𝑓(𝒙𝒙) we 

want the system to apply is unknown to us, and we cannot 
“think” about it. The function could actually be simple. 
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Output

𝑦𝑦 ∈ 𝒀𝒀

An item 𝑦𝑦
drawn from a 
label space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿

An item 𝒙𝒙
drawn from an 

instance space 𝑿𝑿

Learned Model
𝑦𝑦 = 𝑔𝑔(𝒙𝒙)

34

Supervised Learning

Target function
𝑦𝑦 = 𝑓𝑓(𝒙𝒙)

The space of all 
functions our 

algorithm “considers” 
is called the 

Hypothesis space.
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Supervised learning: Training
• Give the learner examples in 𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

• The learner returns a model g(𝒙𝒙)
Labeled Training 

Data
𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝒙𝒙1,𝑦𝑦1)
(𝒙𝒙2,𝑦𝑦2)

…
(𝒙𝒙𝑁𝑁,𝑦𝑦𝑁𝑁)

Learned 
model
𝑔𝑔(𝒙𝒙)

Learning 
Algorithm

𝒈𝒈(𝒙𝒙) is the model we’ll 
use in our application

( Dan Roth, +)

If 
(the…character of 
the …token is..) 
AND 
(the …. is…. ) 
then Negative. 
Otherwise,     

Positive.

An input 
example

An element in the 
instance Space
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Supervised learning: Testing
• Reserve some labeled data for testing

Labeled
Test Data
𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝒙𝒙𝒙1,𝑦𝑦𝒙1)
(𝒙𝒙𝒙2,𝑦𝑦𝒙2)

…
(𝒙𝒙𝒙𝑀𝑀,𝑦𝑦𝒙𝑀𝑀)
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Supervised learning: Testing

Labeled
Test Data
𝑫𝑫𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝒙𝒙𝒙1,𝑦𝑦𝒙1)
(𝒙𝒙𝒙2,𝑦𝑦𝒙2)

…
(𝒙𝒙𝒙𝑀𝑀,𝑦𝑦𝒙𝑀𝑀)

Test 
Labels
𝒀𝒀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑦𝑦𝒙1
𝑦𝑦𝒙2
...
𝑦𝑦𝒙𝑀𝑀

Raw Test 
Data
𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝒙𝒙𝒙1
𝒙𝒙𝒙2
…
𝒙𝒙𝒙𝑀𝑀
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• Apply the model to the raw test data
• Evaluate by comparing predicted labels against the test labels

Test 
Labels
𝒀𝒀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑦𝑦𝒙1
𝑦𝑦𝒙2
…
𝑦𝑦𝒙𝑀𝑀

Raw Test 
Data
𝑿𝑿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝒙𝒙𝒙1
𝒙𝒙𝒙2
…
𝒙𝒙𝒙𝑀𝑀
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Supervised learning: Testing

Learned 
model
𝑔𝑔(𝒙𝒙)

Predicted
Labels
𝑔𝑔(𝑿𝑿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑔𝑔(𝒙𝒙𝒙1)
𝑔𝑔(𝒙𝒙𝒙2)

…
𝑔𝑔(𝒙𝒙𝒙𝑀𝑀)
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Key Issues in Machine Learning
– Modeling

• How to formulate application problems as machine learning problems ?  How 
to represent the data?

• Learning Protocols (where is the data & labels coming from?) 
– Representation

• What functions should we learn (hypothesis spaces) ? 
• How to map raw input to  an instance space?

– Any rigorous way to find these? Any general approach?
– Algorithms

• What are good algorithms? 
• How do we define success? 

– Generalization vs. over fitting
• The computational problem
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Using supervised learning
– What is our instance space?

• Gloss: What kind of features are we using?
– What is our label space?

• Gloss: What kind of learning task are we dealing with?
– What is our hypothesis space?

• Gloss: What kind of functions (models) are we learning?
– What learning algorithm do we use?

• Gloss: How do we learn the model from the labeled data?
– What is our loss function/evaluation metric?

• Gloss: How do we measure success? What drives learning?
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Output

𝑦𝑦 ∈ 𝒀𝒀
An item 𝒚𝒚

drawn from a label 
space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿
An item 𝒙𝒙

drawn from an 
instance space X

Learned
Model

𝒚𝒚 = 𝑔𝑔(𝒙𝒙)

42

1. The instance space 𝑿𝑿

Designing an appropriate instance space 𝑿𝑿
is crucial for how well we can predict 𝑦𝑦.
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Instance Spaces
• What instance spaces would you consider? 
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Administration (9/14/20)
– HW0: please complete it. It’s mandatory (graded Pass/Fail)

– 1st quiz is out this week (Thursday night; due on Sunday night) 

– HW 1 will be released next week. 

– Questions?
• Please ask/comment during class.

– Feedback/Suggestions?

Are we recording? YES!

Will be available on the web site
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Output

𝑦𝑦 ∈ 𝒀𝒀

An item 𝑦𝑦
drawn from a 
label space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿

An item 𝒙𝒙
drawn from an 

instance space 𝑿𝑿

Learned Model
𝑦𝑦 = 𝑔𝑔(𝒙𝒙)

48

Last Time: Supervised Learning

Target function
𝑦𝑦 = 𝑓𝑓(𝒙𝒙)

The space of all 
functions our 

algorithm “considers” 
is called the 

Hypothesis space.
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Key Issues in Machine Learning
– Modeling

• How to formulate application problems as machine learning problems ?  How 
to represent the data?

• Learning Protocols (where is the data & labels coming from?) 
– Representation

• What functions should we learn (hypothesis spaces) ? 
• How to map raw input to  an instance space?

– Any rigorous way to find these? Any general approach?
– Algorithms

• What are good algorithms? 
• How do we define success? 

– Generalization vs. over fitting
• The computational problem
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Today
• We’ll go in more details into the concepts introduced last time

– Instance Space & Hypothesis Space
– (since we’ll keep, for the most part, the labels to be Boolean {Yes/No})

• We’ll begin to formalize
– Modeling and Representation

• We’ll see our first Learning Algorithm
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1. The instance space 𝑿𝑿
• When we apply machine learning to a task, we first need to define the instance 

space 𝑿𝑿.
• Instances 𝒙𝒙 ∈ 𝑿𝑿 are defined by features:

– Boolean features:
» Is there a folder named after the sender?   
» Does this email contain the word ‘class’? 
» Does this email contain the word ‘waiting’?
» Does this email contain the word ‘class’ and the word ‘waiting’?

– Numerical features: 
» How often does ‘learning’ occur in this email? 
» How long is the email? 
» How many emails have I seen from this sender over the last day/week/month? 

– Bag of tokens
» Just list all the tokens in the input

Does it add anything if 
you already have the 
previous two features?
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What’s 𝑿𝑿 for the Badges game?
– Possible features:

• Gender/age/country of the person?
• Length of their first or last name?
• Does the name contain letter ‘x’? 
• How many vowels does their name contain? 
• Is the n-th letter a vowel? 
• Height; 
• Shoe size 
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𝑿𝑿 as a vector space

• 𝑿𝑿 is an N-dimensional vector space (e.g. {0,1}N, ℝ𝑁𝑁 ) 
– Each dimension = one feature.

• Each 𝒙𝒙 is a feature vector (hence the boldface 𝒙𝒙).
• Think of 𝒙𝒙 = [𝑥𝑥1 … 𝑥𝑥𝑁𝑁] as a point in 𝑿𝑿 :

𝑥𝑥1

𝑥𝑥2
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Good features are essential
– The choice of features is crucial for how well a task can be learned.

• In many application areas (language, vision, etc.),  a lot of work goes into 
designing suitable features.

• This requires domain expertise.
– Think about the badges game 

• what if you were focusing on visual features? 
• Recall the two neural network examples: Token-based and Character-based

– We can’t teach you what specific features 
to use for your task.

• But we will touch on some general principles
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Output

𝑦𝑦 ∈ 𝒀𝒀
An item 𝑦𝑦

drawn from a label 
space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿
An item 𝒙𝒙

drawn from an 
instance space 𝑿𝑿

Learned 
Model

𝑦𝑦 = 𝑔𝑔(𝒙𝒙)

55

2. The label space 𝒀𝒀

The label space 𝒀𝒀 determines what kind of supervised learning 
task we are dealing with
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Supervised learning tasks I
– Output labels 𝑦𝑦 ∈ 𝑌𝑌 are categorical:

• Binary classification: Two possible labels
• Multiclass classification: 𝑘𝑘 possible labels
• Output labels 𝑦𝑦 ∈ 𝑌𝑌 are structured objects (sequences of labels, parse 

trees, graphs, etc.)
– Structure learning: multiple labels that are related (thus constrained)

Three events.  When 
classifying the temporal 
relations between them we 
need to account for the 
relations between them. 
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Output

𝑦𝑦 ∈ 𝒀𝒀
An item 𝑦𝑦

drawn from a 
label space 𝒀𝒀

Input

𝒙𝒙 ∈ 𝑿𝑿
An item 𝒙𝒙

drawn from an 
instance space 𝑿𝑿

Learned 
Model

𝒚𝒚 = 𝑔𝑔(𝒙𝒙)
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3. The model 𝑔𝑔(𝒙𝒙)

We need to choose what kind of model 
we want to learn
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A Learning Problem

𝑦𝑦 = 𝑓𝑓 (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4)
Unknown
function

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

Example 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑦𝑦
1 0     0     1     0     0

3 0     0     1     1     1
4          1      0     0     1     1
5 0      1    1     0     0
6 1      1    0     0     0
7 0      1     0     1    0

2 0     1     0     0     0
Can you learn this 

function? What is it? 



CIS 419/519 Fall’2020
61



CIS 419/519 Fall’2020
62

Hypothesis Space
Complete Ignorance: 
There are 216 = 65536 possible functions 
over four input features.

We can’t figure out which one is 
correct until we’ve seen every 
possible input-output pair. 

After observing seven examples we still
have 29 possibilities for 𝑓𝑓

Is Learning Possible?

Example 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑦𝑦

16   1     1     1     1      ?

1 0     0     0     0      ?

1     0     0     0      ?

1     0     1     1      ?
1     1     0     0       0
1     1     0     1      ?

1     0     1     0      ?
1     0     0     1      1

0     1     0     0      0
0     1     0     1      0
0     1     1     0      0
0     1     1     1      ?

0     0     1     1      1
0     0     1     0      0

2 0     0     0     1      ?

1     1     1     0      ?

 There are 𝒀𝒀 𝑿𝑿 possible 
functions 𝑓𝑓(𝒙𝒙) from the instance 
space 𝑿𝑿 to the label space 𝒀𝒀. 

 Learners typically consider only 
a subset of the functions from 𝑿𝑿
to 𝒀𝒀, called the hypothesis space 
𝑯𝑯.  𝑯𝑯 ⊆ 𝒀𝒀 𝑿𝑿
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Hypothesis Space (2)
Simple Rules: There are  only 16 simple conjunctive rules 
of the form   𝑦𝑦 = 𝑥𝑥𝑖𝑖 ∧ 𝑥𝑥𝑗𝑗 ∧ 𝑥𝑥𝑘𝑘

No simple rule explains the data. The same is true for simple clauses (disjunctions).

𝑦𝑦 = 𝑐𝑐

𝑥𝑥1 1100 0
𝑥𝑥2 0100 0
𝑥𝑥3 0110 0
𝑥𝑥4 0101 1
𝑥𝑥1 Λ 𝑥𝑥2 1100 0
𝑥𝑥1 Λ𝑥𝑥3 0011 1
𝑥𝑥1 Λ 𝑥𝑥4 0011 1

Rule                 Counterexample
𝑥𝑥2 Λ 𝑥𝑥3 0011 1
𝑥𝑥2 Λ 𝑥𝑥4 0011 1
𝑥𝑥3 Λ 𝑥𝑥4 1001 1
𝑥𝑥1 Λ 𝑥𝑥2 Λ𝑥𝑥3 0011 1
𝑥𝑥1 Λ 𝑥𝑥2 Λ𝑥𝑥4 0011 1
𝑥𝑥1 Λ 𝑥𝑥3 Λ𝑥𝑥4 0011 1
𝑥𝑥2 Λ 𝑥𝑥3 Λ𝑥𝑥4 0011 1
𝑥𝑥1 Λ 𝑥𝑥2 Λ 𝑥𝑥3 Λ 𝑥𝑥4 0011 1

Rule               Counterexample

1 0 0 1 0 0
2 0 1 0 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0
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m-of-n rules: There are 32 possible rules 
of the form “𝑦𝑦 = 1 if and only if at least 𝑚𝑚 of 

the following 𝑡𝑡 variables are 1”

{𝑥𝑥1} 3       - - -
{𝑥𝑥2} 2       - - -
{𝑥𝑥3} 1       - - -
{𝑥𝑥4} 7       - - -
{𝑥𝑥1,𝑥𝑥2} 2      3      - -
{𝑥𝑥1,𝑥𝑥3} 1      3      - -
{𝑥𝑥1,𝑥𝑥4} 6      3      - -
{𝑥𝑥2,𝑥𝑥3} 2      3      - -

variables         1-of 2-of 3-of 4-of variables         1-of 2-of 3-of 4-of
{𝑥𝑥2,𝑥𝑥4} 2      3       - -
{𝑥𝑥3,𝑥𝑥4} 4      4       - -
{𝑥𝑥1,𝑥𝑥2,𝑥𝑥3} 1      3       3      -
{𝑥𝑥1,𝑥𝑥2,𝑥𝑥4} 2      3       3      -
{𝑥𝑥1,𝑥𝑥3,𝑥𝑥4} 1   ∗ ∗ ∗ 3      -
{𝑥𝑥2,𝑥𝑥3,𝑥𝑥4} 1      5       3      -
{𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4} 1      5       3      3

Notation: 2 variables 
from the set on the left. 

Value: Index of the 
counterexample.

64

Hypothesis Space (3) Don’t worry, this function is 
actually a neural network…

Found a consistent hypothesis!

1 0 0 1 0 0
2 0 1 0 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0
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Is this Typical (1)?
• Language Models: https://nlp.biu.ac.il/~lazary/lms/

Same Training Data
(used differently)

Different Predictions

https://nlp.biu.ac.il/%7Elazary/lms/
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• Question Answering Models: https://cogcomp.seas.upenn.edu/page/demo_view/QuASE
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Is this Typical (2)?

Same Training Data
(used differently)

Different Predictions

https://cogcomp.seas.upenn.edu/page/demo_view/QuASE
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Views of Learning
• Learning is the removal of our remaining uncertainty: 

– Suppose we knew that the unknown function was an m-of-n Boolean function, then we 
could use the training data to infer which function it is.

• Learning requires guessing a good hypothesis class:  
– We can start with a very small class and enlarge it until it contains a hypothesis that fits 

the data.
– The hypothesis set selection could also happen due to algorithmic bias

• We could be wrong !
– Our prior knowledge might be wrong:   

• 𝑦𝑦 = 𝑥𝑥4 ∧ 𝑜𝑜𝑡𝑡𝑡𝑡 𝑜𝑜𝑓𝑓 𝑥𝑥1, 𝑥𝑥3 is also consistent 
– Our guess of the hypothesis space could be wrong  

• If this is the unknown function, then we will make errors when we are given 
new  examples, and are asked to predict the value of the function
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General strategies for Machine Learning
– Develop flexible hypothesis spaces:  

• Decision trees, neural networks, nested collections.
• Constraining the hypothesis space is done algorithmically

– Develop representation languages for restricted classes of functions:
• Serve to limit the expressivity of the target models
• E.g., Functional representation (n-of-m); Grammars;  linear functions; 

stochastic models; 
• Get flexibility by augmenting the feature space

– In either case:
• Develop algorithms for finding a hypothesis in our hypothesis space, that fits 

the data 
• And hope that they will generalize well



CIS 419/519 Fall’2020
71

Key Issues in Machine Learning
– Modeling

• How to formulate application problems as machine learning problems ?  How 
to represent the data?

• Learning Protocols (where is the data & labels coming from?) 
– Representation

• What functions should we learn (hypothesis spaces) ? 
• How to map raw input to  an instance space?
• Any rigorous way to find these? Any general approach?

– Algorithms
• What are good algorithms? 
• How do we define success? 
• Generalization Vs. over fitting
• The computational problem
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An Example: Context Sensitive Spelling
• I don’t know {whether, weather} to laugh or cry

How can we make this a learning problem?

• We will look for a function 
f: Sentences {whether, weather} 

• We need to define the domain of this function better.

• An option: For each word 𝑤𝑤 in English define a Boolean feature 𝑥𝑥𝑤𝑤 :  
[𝑥𝑥𝑤𝑤 = 1] iff 𝑤𝑤 is in the sentence

• This maps a sentence to a point in 0,1 50,000

• In this space:   some points are whether points, some are weather points

Learning Protocol?

Supervised? Unsupervised?

This is the Modeling Step

What is the hypothesis space? 

Input/Instance space? 
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Representation Step: What’s Good? 
• Learning problem: 

– Find a function that 
best separates the data

• What function?
• What’s best?
• (How to find it?)
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Representation Step: What’s Good? 
• Learning problem: 

– Find a function that 
best separates the data

• What function?
• What’s best?
• (How to find it?)

• A possibility: Define the learning problem to be:         
– A (linear) function that best separates the data

Linear = linear in the feature space
𝒙𝒙 = data representation; 
𝒘𝒘 = the classifier: a weight for each feature
(𝒘𝒘,𝒙𝒙, column vectors of dimensionality 𝑡𝑡)
The prediction: 𝑦𝑦 = sgn{𝒘𝒘𝑇𝑇𝒙𝒙}

sgn 𝑧𝑧 = 0 𝑡𝑡𝑓𝑓 𝑧𝑧 < 0;
1 otherwise

 Memorizing vs. Learning
 Accuracy vs. Simplicity

 The set of functions your 
algorithm can learn (hypotheses 
space) determines how the 
learned model will do. 

 Will do on what? 
 Impact on Generalization

𝒘𝒘𝑇𝑇 � 𝒙𝒙 = �
𝑖𝑖=1

𝑛𝑛

𝑤𝑤𝑡𝑡𝑥𝑥𝑡𝑡
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A Small Detour

• Let’s talk a bit about expressivity of functions
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Functions Can be Made Linear
• Data points are not linearly separable in one dimension
• Not separable if you insist on using a specific class of 

functions (e.g., linear)

𝑥𝑥
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Blown Up Feature Space
• But, we can change the way we represent the data
• Data are separable in < 𝑥𝑥, 𝑥𝑥2 > space

𝑥𝑥

𝑥𝑥2
 Key issue: Representation:

 what features to use.
 Computationally, can be 

done implicitly  (kernels) 
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Similar Idea in a Discrete Space: Exclusive-OR  (XOR)

• The function (𝑥𝑥1 ∧ 𝑥𝑥2) is linear (why?)
• But:

– (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (¬ 𝑥𝑥1 ∧ ¬ 𝑥𝑥2)
• Is not linear

• Note: this is a special case of a parity function.
• 𝑥𝑥𝑖𝑖 𝜖𝜖 {0,1}
• f(𝑥𝑥1, 𝑥𝑥2,…, 𝑥𝑥𝑛𝑛) = 1

iff ∑ 𝑥𝑥𝑖𝑖 is even

• This function is not linearly separable.

x1

x2
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Linear Functions

• 𝑓𝑓 𝒙𝒙 = sgn 𝒘𝒘𝑇𝑇 ⋅ 𝒙𝒙 − 𝜃𝜃 = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃}
• Many functions are Linear 

– Conjunctions (over 𝒙𝒙𝑇𝑇 = (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥5) ):
• 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥3 ∧ 𝑥𝑥5
• Dogs = have four legs AND Bark AND have a tails AND….

– A bit simplistic, but you get the point…

– Being a linear function means that 
• There is a set of weights (vector 𝒘𝒘) and a threshold 𝜃𝜃
• So that 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥3 ∧ 𝑥𝑥5 is 1 if and only if sgn 𝒘𝒘𝑇𝑇 ⋅ 𝒙𝒙 − 𝜃𝜃 = 1

All variables here are Boolean variables
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Linear Functions 
• 𝑓𝑓 𝒙𝒙 = sgn 𝒘𝒘𝑇𝑇 ⋅ 𝒙𝒙 − 𝜃𝜃 = sgn{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 − 𝜃𝜃}
• Many functions are Linear 

– Conjunctions:
• 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥3 ∧ 𝑥𝑥5
• 𝑦𝑦 = sgn 1 ⋅ 𝑥𝑥1 + 1 ⋅ 𝑥𝑥3 + 1 ⋅ 𝑥𝑥5 − 3 ;𝒘𝒘 = 1,0,1,0,1 𝜃𝜃 = 3

– Disjunctions
• Do it yourself

– At least m of n:
• 𝑦𝑦 = 𝑡𝑡𝑡𝑡 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2 𝑜𝑜𝑓𝑓 {𝑥𝑥1,𝑥𝑥3, 𝑥𝑥5}
• 𝑦𝑦 = sgn 1 ⋅ 𝑥𝑥1 + 1 ⋅ 𝑥𝑥3 + 1 ⋅ 𝑥𝑥5 − 2 ;𝒘𝒘 = 1,0,1,0,1 𝜃𝜃 = 2

• Many functions are not
– Xor: y = 𝑥𝑥1 ∧ 𝑥𝑥2 ∨ (¬ 𝑥𝑥1∧ ¬ 𝑥𝑥2)
– Non trivial DNF: y = (𝑥𝑥1 ∧ 𝑥𝑥2) ∨ (𝑥𝑥3 ∧ 𝑥𝑥4 ) 

• But can be made linear (it is linear if we invent new variables)
– 𝑧𝑧1 = 𝑥𝑥1 ∧ 𝑥𝑥2 and 𝑧𝑧2 = (¬ 𝑥𝑥1 ∧ ¬ 𝑥𝑥2)

• Since now: y = 𝑧𝑧1 ∨ 𝑧𝑧2

All variables here are Boolean variables
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Representation 
• The next few hidden slides provide a detailed explanation of 

feature generation in the discrete case.
• View
• We may discuss later
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Key Issues in Machine Learning
– Modeling

• How to formulate application problems as machine learning problems ?  How 
to represent the data?

• Learning Protocols (where is the data & labels coming from?) 
– Representation

• What functions should we learn (hypothesis spaces) ? 
• How to map raw input to  an instance space?
• Any rigorous way to find these? Any general approach?

– Algorithms
• What are good algorithms? 
• How do we define success? 
• Generalization Vs. over fitting
• The computational problem
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Third Step: How to Learn? 
– A possibility: Local search

• Start with a linear threshold function. 
• See how well you are doing.
• Correct
• Repeat until you converge.

– There are other ways that
do not search directly in the 
hypotheses space

• Directly compute the hypothesis
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Administration (9/16/20)
– 1st quiz is out this week (Thursday night; due on Sunday night) 

– HW 1 will be released next week. 

– Questions?
• Please ask/comment during class.

– Feedback/Suggestions?

Are we recording? YES!

Available on the web site
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Last Time
• The importance of a hypothesis space

– The need to make some assumptions of the 
function we are trying to learn

• Expressivity of 
functions and 
feature spaces

• And Linear functions
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Let’s assume that class of functions we 
learning (our Hypothesis class) is a class of 
linear functions in an N dimensional space. 
After we are presented with data 
𝒙𝒙,𝑦𝑦 𝑖𝑖 𝑖𝑖=1,𝑛𝑛 we will learn a function 𝒘𝒘

(because a linear function is defined by a 
weight vector). But there are many ways to 
learn it (and each algorithm might learn a 
slightly different 𝒘𝒘𝑇𝑇

Labels come with the training data. It’s 
part of the problem definition. (Think 
about the +/- associated with each 
name in the Badges problem)
Features are your decision as the person 
who models the problem as a learning 
problem.  HW1 will help with that. 

We did not. And in 
HW1 you will use 
other algorithms 
to learn a function 
for this data.
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Some Questions You Asked
• Any Text Book?

– Not Really
– Some options:

• Machine Learning by Tom Mitchell
• A Course in Machine Learning by Hal Daumé III
• Pattern Recognition and Machine Learning by Bishop

http://www.cs.cmu.edu/%7Etom/mlbook.html
http://ciml.info/
http://research.microsoft.com/en-us/um/people/cmbishop/prml/
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Third Step: How to Learn? 
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Third Step: How to Learn? 
– A possibility: Local search

• Start with a linear threshold function. 
• See how well you are doing.
• Correct
• Repeat until you converge.

– There are other ways that
do not search directly in the 
hypotheses space

• Directly compute the hypothesis
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A General Framework for Learning
• Goal: predict an unobserved output value 𝑦𝑦 ∈ 𝒀𝒀 based on an observed input 

vector 𝒙𝒙 ∈ 𝑿𝑿
• Estimate a functional relationship 𝑦𝑦 ~ 𝑓𝑓(𝒙𝒙) from a set  𝒙𝒙,𝑦𝑦 𝑖𝑖 𝑖𝑖=1,𝑛𝑛

– This is the blue separator we are after
• We will deal now with Classification: 𝑦𝑦 ∈ {0,1}

– (But, within the same framework can be used for 𝑦𝑦 ∈ {1,2, … , 𝑘𝑘} or Regression, y ϵ 𝑹𝑹)

• What do we want 𝑓𝑓(𝒙𝒙) to satisfy? 
– We want to minimize the Risk: 𝐿𝐿 𝑙𝑙 𝑓𝑓 𝑥𝑥 ,𝑦𝑦 = 𝐸𝐸𝑋𝑋,𝑌𝑌( [𝑓𝑓 𝒙𝒙 ≠ 𝑦𝑦])
– Where: 𝐸𝐸𝑋𝑋,𝑌𝑌 denotes the expectation with respect to the true distribution over XxY.

• In general, a loss function is a mapping 𝑙𝑙 : YxY R that measures how much the 
prediction of the current model is far from the desired prediction (the gold label)

Simple loss function: # of mistakes
[…] denotes an indicator function
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A General Framework for Learning (II)
• We want to minimize the Risk: 𝐿𝐿 𝑓𝑓 = 𝐸𝐸𝑋𝑋,𝑌𝑌( [𝑓𝑓 𝑋𝑋 ≠ 𝑌𝑌])
• Where: 𝐸𝐸𝑋𝑋,𝑌𝑌 denotes the expectation with respect to the true distribution.

• We cannot minimize this loss  (we don’t know the distribution)
• Instead, we try to minimize the empirical classification error. 
• For a set of training examples 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 𝑖𝑖=1,𝑚𝑚

• Try to minimize: 𝐿𝐿𝒙(𝑓𝑓()) = 1/𝑚𝑚 Σ𝑡𝑡 [𝑓𝑓(𝑥𝑥𝑖𝑖)≠𝑦𝑦𝑡𝑡] (𝑚𝑚=# of examples) 
– (Issue I: why/when is this good enough? Not now)

• This minimization problem is typically NP hard. 
• To alleviate this computational problem, minimize a new function – a convex upper bound of 

the (real) classification error function:
𝐼𝐼(𝑓𝑓(𝒙𝒙), 𝑦𝑦) = [𝑓𝑓 𝒙𝒙 ≠ 𝑦𝑦] = {1 𝑤𝑤𝑤𝑡𝑡𝑡𝑡 𝑓𝑓 𝒙𝒙 ≠ 𝑦𝑦; 0 𝑜𝑜𝑡𝑡𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡}

Side note: If the distribution over X ×Y is 
known, predict: 𝒚𝒚 = 𝒂𝒂𝒂𝒂𝒈𝒈𝒂𝒂𝒂𝒂𝒙𝒙𝒚𝒚 𝑷𝑷(𝒚𝒚|𝒙𝒙)
The best possible (optimal Bayes' error).
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Algorithmic View of Learning: an Optimization Problem

• A Loss Function 𝐿𝐿(𝑓𝑓 𝒙𝒙 ,𝑦𝑦) measure how far is the prediction f(x) 
from the desired y; 
– the penalty incurred by a classifier 𝑓𝑓 on example (𝒙𝒙,𝑦𝑦).

• There are many different loss functions one could define:
– Misclassification Error: (0-1 loss)
𝐿𝐿 𝑓𝑓 𝒙𝒙 ,𝑦𝑦 = 0 if 𝑓𝑓 𝒙𝒙 = 𝑦𝑦; 1 otherwise
– Squared Loss:
𝐿𝐿 𝑓𝑓 𝒙𝒙 ,𝑦𝑦 = 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 2

– Input dependent loss:
𝐿𝐿 𝑓𝑓 𝒙𝒙 ,𝑦𝑦 = 0 if 𝑓𝑓 𝒙𝒙 = 𝑦𝑦; 𝑐𝑐 𝒙𝒙 otherwise.

A continuous convex  loss 
function allows  a simpler 
optimization algorithm.

f(x) –y

L
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Loss

Here 𝑓𝑓(𝒙𝒙) is the prediction ∈ 𝑹𝑹
𝒚𝒚 ∈ {−𝟏𝟏,𝟏𝟏} is the correct value

0-1 Loss       𝐿𝐿(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = ½ (1− sgn(𝑦𝑦𝑓𝑓(𝒙𝒙)))
Log Loss        1/ln2 log(1 + exp{−𝑦𝑦𝑓𝑓(𝑥𝑥)})
Hinge Loss 𝐿𝐿(𝑦𝑦,𝑓𝑓(𝑥𝑥)) = max(0, 1 − 𝑦𝑦 𝑓𝑓(𝒙𝒙))
Square Loss 𝐿𝐿(𝑦𝑦,𝑓𝑓(𝑥𝑥)) = 𝑦𝑦 − 𝑓𝑓 𝒙𝒙 2

sgn 𝑧𝑧 = −1𝑡𝑡𝑓𝑓 𝑧𝑧 < 0
+1 otherwise

0-1 Loss :     z axis = 𝑦𝑦𝑓𝑓(𝒙𝒙)
Log Loss:       z axis = 𝑦𝑦𝑓𝑓(𝒙𝒙)
Hinge Loss: z axis = 𝑦𝑦𝑓𝑓(𝒙𝒙)
Square Loss: z axis  = (𝑦𝑦 − 𝑓𝑓(𝒙𝒙) + 1)
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Example

Putting it all together:
A Learning Algorithm
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Third Step: How to Learn? 
– A possibility: Local search

• Start with a linear threshold function. 
• See how well you are doing.
• Correct
• Repeat until you converge.

– There are other ways that 
do not search directly in the hypotheses space

• Directly compute the hypothesis
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Learning Linear Separators
(LTU=Linear Threshold Unit; a single layer neural network)  

𝑓𝑓(𝒙𝒙) = sgn {𝒘𝒘𝑇𝑇 � 𝒙𝒙- θ} = sgn {∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑡𝑡𝑥𝑥𝑡𝑡 - θ }
• 𝒙𝒙𝑇𝑇 = (𝑥𝑥1 , 𝑥𝑥𝟐𝟐, … , 𝑥𝑥𝒏𝒏) ∈ {0,1}𝑡𝑡

is the feature based 
encoding of the data point

• 𝒘𝒘𝑇𝑇 = (𝑤𝑤1 ,𝑤𝑤𝟐𝟐, … ,𝑤𝑤𝒏𝒏) ∈ 𝑹𝑹𝑛𝑛

is the target function. 
• θ determines the shift

with respect to the origin

w

θ
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Canonical Representation

𝑓𝑓(𝒙𝒙) = 𝑡𝑡𝑔𝑔𝑡𝑡 {𝒘𝒘𝑇𝑇 � 𝒙𝒙 - θ} = 𝑡𝑡𝑔𝑔𝑡𝑡{∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑡𝑡𝑥𝑥𝑡𝑡 - θ }

– Note: 𝑡𝑡𝑔𝑔𝑡𝑡 {𝒘𝒘𝑇𝑇 � 𝒙𝒙 - θ}  = 𝑡𝑡𝑔𝑔𝑡𝑡 {𝒘𝒘′𝑇𝑇 � 𝒙𝒙′} 
– Where: 

• 𝒙𝒙𝒙 = (𝒙𝒙,−1) and 𝒘𝒘𝒙 = (𝒘𝒘,𝜃𝜃)
– Moved from an 𝑡𝑡 dimensional representation to an (𝑡𝑡 + 1) dimensional 

representation, but now can look for hyperplanes that go through the 
origin. 

– Basically, that means that we learn both 𝑤𝑤 and θ
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• Our goal is to find a 𝒘𝒘 that 
minimizes the expected risk
𝑬𝑬 𝒘𝒘 = 𝑬𝑬𝑿𝑿,𝒀𝒀 𝑸𝑸(𝒙𝒙, 𝑦𝑦,𝒘𝒘)

• We cannot do it.  
• Instead, we  approximate 𝐸𝐸(𝒘𝒘)

using a finite training set of 
independent samples (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝒊𝒊)
𝑬𝑬(𝒘𝒘) ~ = ~ 1/𝑚𝑚 ∑𝟏𝟏, 𝒂𝒂

𝑄𝑄(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑡𝑡,𝒘𝒘)
• To find the minimum, we use a

batch gradient descent algorithm
• That is, we successively compute 

estimates 𝒘𝒘𝑡𝑡 of the optimal parameter vector 𝒘𝒘:

𝒘𝒘𝑡𝑡+1 = 𝒘𝒘𝑡𝑡 − ∇ 𝐸𝐸 𝒘𝒘 = 𝒘𝒘𝑡𝑡 − 1
𝑚𝑚
∑1, 𝑚𝑚

∇ 𝑄𝑄(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑡𝑡,𝒘𝒘)

The Risk (Err)  E: 
a function of w

108

General Learning Principle 

w

θ

The loss Q: a function of x, w and y

t here is “time” or 
“iteration” # 

To find a local 
minimum of a function 
using gradient descent, 
we take steps 
proportional to the 
negative of the 
gradient of the 
function at the current 
point.
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Gradient Descent
• We use gradient descent to determine the weight vector that minimizes

𝐸𝐸(𝒘𝒘) (= 𝐸𝐸𝑡𝑡𝑡𝑡 (𝒘𝒘)) ;
• Fixing the set 𝐷𝐷 of examples, E=Err is a function of 𝒘𝒘
• At each step, the weight vector is modified in the direction that produces the 

steepest descent along the error surface.
E(w)

w
w4 w3 w2 w1

To find a local 
minimum of a function 
using gradient descent, 
we take steps 
proportional to the 
negative of the 
gradient of the 
function at the current 
point.
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LMS: An Optimization Algorithm
• Our Hypothesis Space is the collection of Linear Threshold Units
• Loss function:       

– Squared loss: LMS  (Least Mean Square, L2)
– 𝑄𝑄(𝒙𝒙, 𝑦𝑦,𝒘𝒘) = ½ 𝒘𝒘𝑇𝑇 𝒙𝒙 – 𝑦𝑦 2

w

θ
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LMS: An Optimization Algorithm
• (i  (subscript) – vector component;    j  (superscript) - time; d – example #)

• Let   𝒘𝒘𝒋𝒋 be the current weight vector we have
• Our prediction on the d-th example 𝒙𝒙 is:

𝑂𝑂𝑑𝑑 = 𝐰𝐰(𝑗𝑗)𝑇𝑇 � 𝐱𝐱 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑡𝑡

• Let  𝑡𝑡𝒅𝒅 be the target value for this example
• The error the current hypothesis makes on the data set is:

𝐸𝐸(𝒘𝒘) = Err(𝐰𝐰𝑗𝑗) = 1
2
∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)2

Assumption: x ∈ Rn; u ∈ Rn is the target weight vector; the 
target (label) is td = 𝐮𝐮𝑇𝑇 � 𝐱𝐱 Noise has been added; so, possibly, 
no weight vector is consistent with the data.  
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Gradient Descent
• To find the best direction in the weight space 𝒘𝒘 we compute the gradient of E with respect 

to each of the components of

𝛻𝛻𝐸𝐸 𝒘𝒘 = [ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤2

, … 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑛𝑛

]

• This vector specifies the direction that produces the steepest increase in E;
• We want to modify 𝒘𝒘 in the direction of -𝛻𝛻𝐸𝐸 𝒘𝒘

• Where (with a fixed step size [learning rate] R):

𝒘𝒘𝑡𝑡 = 𝒘𝒘𝑡𝑡−1 + 𝛥𝛥𝒘𝒘
Δ𝐰𝐰 = -R 𝛻𝛻𝐸𝐸 𝒘𝒘

E(w)

w
w4 w3 w2 w1
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Gradient Descent: LMS
• We have: 𝐸𝐸(𝒘𝒘) = Err(𝐰𝐰𝑗𝑗) = 1

2
∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)2

𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

1
2 �
𝑑𝑑∈𝐷𝐷

𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 2 =

• Therefore:

=
1
2
∑𝑑𝑑∈𝐷𝐷

𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖

𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 2 =

=1
2
∑𝑑𝑑∈𝐷𝐷 2 𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 𝜕𝜕

𝜕𝜕𝑤𝑤𝑖𝑖

𝑡𝑡𝑑𝑑 − 𝒘𝒘𝑑𝑑 � 𝒙𝒙𝑑𝑑 =

=∑𝑑𝑑∈𝐷𝐷 𝑡𝑡𝑑𝑑 − 𝑜𝑜𝑑𝑑 −𝑥𝑥𝑖𝑖𝑑𝑑

Recall:
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Alg1: Gradient Descent: LMS
– Weight update rule: 

Δwi = 𝑅𝑅∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)𝑥𝑥𝑖𝑖𝑑𝑑
– Gradient descent algorithm for training linear units:

• Start with an initial random weight vector
• For every example d with target value td  do: 

– Evaluate the linear unit 𝑂𝑂𝑑𝑑 = 𝐰𝐰(𝑗𝑗)𝑇𝑇 � 𝐱𝐱 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑡𝑡

• Update w by adding Δwi to each component
• Continue until E below some threshold

This algorithm always converges to a local minimum of 𝐸𝐸(𝒘𝒘), for small enough steps. Here (LMS for linear 
regression), the surface contains only a single global minimum, so the algorithm converges to a  weight vector with 
minimum error, regardless of whether the examples are linearly separable.
The surface may have local minimum if the loss function is different.
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What Have We Done So Far?
• We wanted to separate Red point from Purple 

points
– With the goal of minimizing the number of 

mistakes
• It’s hard to do, so we decided to use a surrogate 

loss function (LMS) and use it to guide our 
search for a good linear separator

• The algorithm is guaranteed to minimize the 
LMS loss
– But, is it guaranteed to minimize the number of 

mistakes (0-1 loss) ? 
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LMS Loss and 0-1 Loss
• The data used here is a re-labeling of the Badges data

– (re-labaling is done since the original function was too easy)

LMS Loss (per example)
We knew that the loss will go 
down and converge.

The fact that it converges to 
0 is just since we used an 
expressive model (not a 
single layer neural network, 
a three layer one)

The 0-1 loss did not go to 0, 
so we are still making 
mistakes on this dataset.
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Alg1: Gradient Descent: LMS
– Weight update rule: 

Δwi = 𝑅𝑅∑d∈𝐷𝐷(𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑)𝑥𝑥𝑖𝑖𝑑𝑑
– Gradient descent algorithm for training linear units:

• Start with an initial random weight vector
• For every example d with target value td  do: 

– Evaluate the linear unit 𝑂𝑂𝑑𝑑 = 𝐰𝐰(𝑗𝑗)𝑇𝑇 � 𝐱𝐱 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑡𝑡

• Update w by adding Δwi to each component
• Continue until E below some threshold

This algorithm always converges to a local minimum of 𝐸𝐸(𝒘𝒘), for small enough steps. Here (LMS for linear 
regression), the surface contains only a single global minimum, so the algorithm converges to a  weight vector with 
minimum error, regardless of whether the examples are linearly separable.
The surface may have local minimum if the loss function is different.
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Alg 2: Incremental (Stochastic) Gradient Descent: (LMS)
• Weight update rule:

𝛥𝛥𝑤𝑤i = 𝑅𝑅 𝑡𝑡𝑑𝑑 − 𝑂𝑂𝑑𝑑 𝑥𝑥𝑖𝑖𝑑𝑑
• Gradient descent algorithm for training linear units:

– Start with an initial random weight vector
– For every example d with target value td  do:

» Evaluate the linear unit 𝑂𝑂𝑑𝑑 = 𝒘𝒘(𝑗𝑗)𝑇𝑇 � 𝒙𝒙 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖
(𝑗𝑗) 𝑥𝑥𝑡𝑡

» update 𝒘𝒘 by  incrementally by adding Δwi to each component  (update without summing 
over all data)

– Continue until E below some threshold 
• In general - does not converge to global minimum
• But, on-line algorithms are sometimes advantageous…

– Typically, not used as a complete on-line algorithm, but rather run in small batches. 
• Decreasing R with time guarantees convergence  

Dropped the averaging 
operation.

Instead of averaging the gradient of 
the loss over the complete training 

set, choose at random a sample 
(x,y) (or a subset of examples) and 

update wt
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Learning Rates and Convergence
• In the general (non-separable) case the learning rate 𝑅𝑅 must decrease to zero 

to guarantee convergence.
• The learning rate is called the step size. There are more sophisticated 

algorithms that choose the step size automatically and converge faster. 
– We will see versions of this algorithm as we go

• Choosing a better starting point also has impact. 

• The gradient descent and its stochastic version are very simple algorithms 
• But, almost all the algorithms we will learn in the class

– In particular, all the neural networks learning algorithms 
• Are gradient descent algorithms (with some bells and whistles) for 

different loss functions and different hypotheses spaces. 
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Computational Issues
– Assume the data is linearly separable.
– Sample complexity:

• Suppose we want to ensure that our LTU has an error rate (on new examples) 
of less than ϵ with high probability (at least (1 − 𝛿𝛿))

• How large does m (the number of examples) must be in order to achieve this? 
It can be shown that for 𝑡𝑡 dimensional problems:

𝑚𝑚 = 𝑂𝑂(1
𝜖𝜖

[ln 1
𝛿𝛿

+ 𝑡𝑡 + 1 ln 1
𝜖𝜖

])

– Computational : What can be said?
• It can be shown that there exists a polynomial time algorithm for finding  

consistent LTU (by reduction from linear programming). 
• [Contrast with the NP hardness for 0-1 loss optimization]
• (On-line algorithms have inverse quadratic dependence on the margin)
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Other Methods for LTUs
• Fisher Linear Discriminant:

– A direct computation method
• Probabilistic methods (naïve Bayes):

– Produces a stochastic classifier that can be viewed as a linear 
threshold unit.

• Winnow/Perceptron
– A multiplicative/additive update algorithm with some sparsity 

properties in the function space (a large number of irrelevant 
attributes) or features space (sparse examples)

• Logistic Regression, SVM…many other algorithms
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