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Are we recording? YES!

Administration (12/07/20)

. Remember that all the lectures are available on the website before the class
— Gooveritand be prepared

— A new set of written notes will accompany most lectures, with some more details, examples and, (when relevant) some
code.

Available on the web site

*  HW4is due today.

*  HWS5 isout; due 12/10 (last day of the semester).

— ltis mostly a summary of the material we covered this semester (with a focus on the second half) and will help you prepare for the
exam.

—  No programming.
—  We will give an extension until a few days before the exam.

*  We meet three time (Monday, Wednesday, Thursday) this week.

* The Finalison 12/18.
—  Similar style to the mid-term. Comprehensive, with emphasis on the material after the mid-term.
— 90 minutes. You can start it any time between 9am and 7:30 pm ET. Your 90 minutes will be measure from the time you start.
— Between 10:30-noon ET, most of the TAs will be on-board to respond to clarification questions. If possible, do it at that time.
—  There will be at least one TA available throughout the day to respond to clarification questions.
—  Communication will only be done via private Piazza posts.
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Projects

. CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage
— Teams will be of size 2-4
—  We will help grouping if needed

. There will be 3 options for projects.
- Natural Language Processing (Text)
- Computer Vision (Images)
- Speech (Audio)

* Inall cases, we will give you datasets and initial ideas
— The problem will be multiclass classification problems
— You will get annotated data only for some of the labels, but will also have to predict other labels
- 0-zero shot learning; few-shot learning; transfer learning

. A detailed note will come out today.
. Timeline:
— 11/11 Choose a project and team up
— 11/23 Initial proposal describing what your team plans to do
— 12/2 Progress report: 1 page. What you have done; plans; problems.
- 12/21 Final paper + short video
. Try to make it interesting!
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https://www.seas.upenn.edu/%7Ecis519/fall2020/cis519-fall20-projects.pdf
https://www.seas.upenn.edu/%7Ecis519/fall2020/project.html

So far...

* Bayesian Learning
— What does it mean to be Bayesian?
* Naive Bayes
— Independence assumptions
 EM Algorithm
— Learning with hidden variables
 Today:
— Representing arbitrary probability distributions

— Inference
* Exact inference; Approximate inference
— Learning Representations of Probability Distributions
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Unsupervised Learning

* Wegetasinput (n+ 1) tuples: (X, X,, ... X,,X;141)
* There is no notion of a class variable or a label.

* After seeing a few examples, we would like to know
something about the domain:

— correlations between variables, probability of certain events, etc.

* We want to learn the most likely model that generated the
data

— Sometimes called density estimation.
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Simple Distributions

* Ingeneral, the problem is very hard. But, under some assumptions on the

distribution we have shown that we can do it. (exercise: show it’s the most likely
distribution)

* Assumptions: (conditional independence given y)
- P(x|x,y) = P(x;|ly)Vi,j
* Can these (strong) assumptions be relaxed ?

 Can we learn more general probability distributions ?
— (These are essential in many applications: language, vision.)
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Simple Distributions

* Under the assumption P(x; |x;,y) = P(x;|y) V i,j we can compute the joint probability
distribution on the n + 1 variables
- P(y,x1, %2, . %) = p 1T P(xi] ¥)
* Therefore, we can compute the probability of any event:
— P(xy =0,x, =0,y =1) =
* More efficiently (directly from the independence assumption):
- P(x; = 0,x; =0,y =1) = P(x; =0,x, =0ly=1)p(y =1) =
- = P(x; =0ly=1D) P, =0ly=1)ply=1)

* We can compute the probability of any event or conditional event over the n + 1 variables.
7
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Representing Probability Distribution

 Goal: To represent all joint probability distributions over a set of random
variables X1, X5, ...., X,

 There are many ways to represent distributions.

— Atable, listing the probability of each instance in {0,1}"
* We will need 2™ — 1 numbers

 What can we do? Make Independence Assumptions

* Multi-linear polynomials
— Multinomials over variables

#- Bayesian Networks
— Directed acyclic graphs

 Markov Networks
— Undirected graphs
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Graphical Models of Probability Distributions

* Bayesian Networks represent the joint probability distribution over a set
of variables.

* |Independence Assumption: V x, x is independent of its non-descendants
given its parents

This is a theorem. To Y Z is a parent of x
prove it, order the nodes
from leaves up, and use the
product rule.

The terms are called CPTs
(Sl A R 157 Zy Z z <1 | P— P(X|Y,Z) = P(X]Y).
tables) and they completely e BTW, since independence is

define the probability symmetric, you can also show
distribution. X X X, that P(Z|Y,X) = P(Z]Y)

10
 With these c%(gclons the joint probability distribution is given by: w

I ]_[ P(xi|Parents(x,))

x is a descendant of y
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Bayesian Network

e Semantics of the DAG

— Nodes are random variables
— Edges represent causal influences
— Each node is associated with a conditional probability distribution

 Two equivalent viewpoints
— A data structure that represents the joint distribution compactly

— A representation for a set of conditional independence assumptions
about a distribution

CIS 419/519 Fall20
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Bayesian Network: Example

 The burglar alarm in your house rings when there is a burglary
or an earthquake. An earthquake will be reported on the

radio. If an alarm rings and your neighbors hear it, they will
call you.

e What are the random variables?

CIS 419/519 Fall’20 11



Bayesian Network: Example

If there’s an
earthquake, you'll
probably hear about
it on the radio.

How many parameters do we
have?!

How many would we have if
we had to store the entire
joint?

CIS 419/519 Fall20

Earthquake

An alarm can ring
because of a burglary
or an earthquake.

If your neighbors hear an
alarm, they will call you.
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How many independent parameters are needed to

represent a probability distribution over these 6 variables?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.
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Bayesian Network: Example

If there’s an
earthquake, you'll
probably hear about
it on the radio.

How many parameters do we
have?!

How many would we have if
we had to store the entire
joint?
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Earthquake

An alarm can ring
because of a burglary
or an earthquake.

If your neighbors hear an
alarm, they will call you.
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How many independent parameters are needed to

represent [P(E), P(R|E), P(A|E,B)] ?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.
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Bayesian Network: Example

P(R | E)

With these probabilities,
(and assumptions, encoded in
the graph) we can compute
the probability of any event
over these variables.

P(E) Earthquake P(B) Burglary
P(A | E, B)
Radio Alarm
P(M|A) P(JIA)
Mary John Calls
Calls

P(E,B,A,R,M,]) = P(E)P(B,A,R,M,] |E) =

= P(E)P(B)P(R|E,B)P(M,],A|E,B)
= P(E)P(B)P(R | E)P(M,]| A E,B) P(A| E, B)

= P(E)P(B) P(A,R,M,] |E,B) =

= P(E)P(B) PRR|E) P(M |A) P(J | A) P(A|E, B)

CIS 419/519 Fall20
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Computational Problems

e Learning the structure of the Bayes net
— (What would be the guiding principle?)

* Learning the parameters
— Supervised? Unsupervised?

* |nference:

— Computing the probability of an event: [#p complete, Roth'93, ’96]
* Given structure and parameters
* Given an observation (evidence) E, what is the probability of assignment Y?
— P(R=off,A=0off |E=¢e) =? (E,Y are sets of instantiated variables)

— Most likely explanation (Maximum A Posteriori assignment, MAP, MPE) [Np-Hard;
Shimony’94]

* Given structure and parameters

* Given an observation (evidence) E, what is the most likely assignment to Y?
* Argmax, P(Y =y |E =e) (Say,Y = (R,A))

* (E,Y are sets of instantiated variables)

CIS 419/519 Fall20
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Inference

* Inference in Bayesian Networks is generally intractable in the
worst case

 Two broad approaches for inference

— Exact inference

e Eg. Variable Elimination
— Approximate inference

* Eg. Gibbs sampling

CIS 419/519 Fall20
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Administration (12/09/20) Are we recordng! TES

Available on the web site

* Remember that all the lectures are available on the website before the class
— Goover it and be prepared

— A new set of written notes will accompany most lectures, with some more details, examples and,
(when relevant) some code.

*  HWS5 is out; due 12/10 (last day of the semester).

— Itis mostly a summary of the material we covered this semester (with a focus on the second half) and will help you
prepare for the exam. No programming.

—  An extension until Tuesday 12/15 — no additional slack day. This is a hard deadline.

*  We meet three time (Monday, Wednesday, Thursday) this week.

* The Finalis on 12/18.

— Similar style to the mid-term. Comprehensive, with emphasis on the material after the mid-term.

— 90 minutes. You can start it any time between 9am and 7:30 pm ET. Your 90 minutes will be measure from the time you
start.

— Between 10:30-noon ET, most of the TAs will be on-board to respond to clarification questions. If possible, do it at that
time.

— There will be at least one TA available throughout the day to respond to clarification questions.
— Communication will only be done via private Piazza posts.

CIS 419/519 Fall’20 20



Projects

. CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage
— Teams will be of size 2-4
—  We will help grouping if needed

. There will be 3 options for projects.
- Natural Language Processing (Text)
- Computer Vision (Images)
- Speech (Audio)

* Inall cases, we will give you datasets and initial ideas
— The problem will be multiclass classification problems
— You will get annotated data only for some of the labels, but will also have to predict other labels
- 0-zero shot learning; few-shot learning; transfer learning

. A detailed note will come out today.
. Timeline:
— 11/11 Choose a project and team up
— 11/23 Initial proposal describing what your team plans to do
— 12/2 Progress report: 1 page. What you have done; plans; problems.
- 12/21 Final paper + short video
. Try to make it interesting!
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Bayesian Network: Example

How many parameters do we
have?

How many would we have if we
had to store the entire joint on
6 variables, without any
independence assumptions?

With these probabilities,
(and assumptions, encoded in
the graph) we can compute
the probability of any event
over these variables.

CIS 419/519 Fall20

P(E) Earthquake
P(R|E)
Radio
P(M|A)
Mary
Calls

P(E,B,A,R,M,]) = P(E)P(B,A,R,M,] |E) =

P(J1A)

P(B) Burglary
P(A | E, B)
Alarm
John Calls

= P(E)P(B) P(A,R,M,] |E,B) =

= P(E)P(B)P(R|E,B)P(M,],A|E,B)
= P(E)P(B)P(R | E)P(M,]| A E,B) P(A| E, B)

= P(E)P(B) PRR|E) P(M |A) P(J | A) P(A|E, B)
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Tree Dependent Distributions

Directed Acyclic graph

— Each node has at most one parent

Independence Assumption:

— X isindependent of its non-descendants
given its parents

(x is independent of other nodes give
Z; v is independent of w given u;)

P(y,x1,%9,...x,) = p(y) 1_[ P(x;|Parents(x;))

Need to know two humbers for each
link: p(x|z), and a prior for the root

p(y)

CIS 419/519 Fall20

Y
P(y) P(s|y)
W Z

v P(x|z) r
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Tree Dependent Distributions

This is a generalization of naive Bayes. P(y) P(s|y)

Inference Problem:

— Given the Tree with all the associated probabilities, evaluate the
probability of an event p(x) ? w U Z S

P(x|z)
Px=1) =
= Px=1z=1P(z=1) + P(x=1z=0)P(z=0) O V x|é \ 4

Recursively, go up the tree:

P(z=1) = Now we have
=P(z=1ly=1)P(y=1)+P(z=1ly=0)P(y =0) everything in terms of

P(z=0) = the CPTs (conditional
=P(z=0ly=1)P(y=1) + P(z=0|y =0)P(y = 0) probability tables)

Linear Time Algorithm
P(y,x1,%9,...x,) =p(y) 1_[ P(x;|Parents(x;) )

CIS 419/519 Fall20 24



Tree Dependent Distributions .

* This is a generalization of naive Bayes. PG) P(sly)
* Inference Problem: o
w U
— Given the Tree with all the associated P(x|2)
probabilities, evaluate the probability of an ’ x ‘/ \
event p(x,y) ?
© Plx=1y=0) = Now we have
= P(x=1]y=0)P(y = 0) everything in terms of
* Recursively, go up the tree along the path from x to y: the CPTs (conditional
probability tables)
P(x=1]y=0) = z P(x = 1|y = 0,2)P(z|y = 0)
z=0,1

= Zzzo,1p(x = 1[z)P(z|y = 0)

CIS 419/519 Fall20
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Tree Dependent Distributions

This is a generalization of naive Bayes. P(y)

Inference Problem:

— Given the Tree with all the associated
probabilities, evaluate the probability of an

eventp(x,u) ?
— (No direct path from x to u)

Px=17,u=0) = Px=1lu=0)P(u=0)
Let y be a parent of x and u (we always have one)
Px=1lu=0)= 2y—01 P(x =1u=0,y)P(y|u = 0)

P(sly)

v X P(x|z)

Now we have
reduced it to cases
we have seen

= 2y=0,1 P(x = 1|y)P(y|u = 0)

CIS 419/519 Fall20
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Tree Dependent Distributions

— Inference Problem:

* Given the Tree with all the associated
CPTs, we “showed” that we can
evaluate the probability of all events
efficiently.

* There are more efficient algorithms

* The idea was to show that the inference
is this case is a simple application of
Bayes rule and probability theory.

CIS 419/519 Fall20

P(y) P(s|y)

w U Z

(x|2)
g X{sz\T

PO 30 -) = pO) | | PCxilParents(xi))

Things are not so simple in the general case,
due to cycles; there are multiple ways to “get”
from node A to B, and this has to be
accounted for in Inference.

Skip Inference
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Graphical Models of Probability Distributions

* For general Bayesian Networks
— The learning problem is hard

— The inference problem (given the network, evaluate the probability of a given
event) is hard (#P Complete)

Y P(y)

Z, Z, Z Z; || P(z3|y)

X10 X 25
P(x|zy,2,,2 25)

P(y,x1,%9,...x,) = p(y) 1_[ P(x;|Parents(x;) )
CIS 419/519 Fall’20 [




Variable Elimination

PCey g, ) = | | PCulParents(x)
i

* Suppose the queryis P(X,)
P(xl) — S“ P(xlleJ "'rxn)

P(x;) = 7 7 7 | AP(dearents(xi))

X2 X3 i

* Key Intuition: Move irrelevant terms outside summation and cache
intermediate results

CIS 419/519 Fall’20 29



Variable Elimination: Example 1
O O O

A B C

* We want to compute P(C)

P(C) = 2 2 P(A,B,C) = 2 2 P(A)P(B|A)P(C|B)
A B A B

— Z P(ClB) Z P(A)P(BlA) —> Let’s call this f,(B)
B A

— z P ( C | B) fA ( B) le ifr:;l ::eedn (instantiated and)
B

 What have we saved with this procedure?
— How many multiplications and additions did we perform?

CIS 419/519 Fall20
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Variable Elimination

 VE is a sequential procedure.
* Given an ordering of variables to eliminate

— For each variable v that is not in the query

* Replace it with a new function f,
— That is, marginalize v out

* The actual computation depends on the order

* What is the domain and range of f?
— It need not be a probability distribution

CIS 419/519 Fall20 31



Variable Elimination: Example 2

P(E) Earthquake P(B) Burglary
V'~ ~ V4 P(A|E,B)
Radio Alarm
P(R|E)
P(M|A) P 14)
What iS P(M,] | B)7 Mary John Calls
Calls
P(E,B,A,R.M,J)=

= P(E)- P(B)- P(R| E)- P(A| E, B)- P(M| A)- P(J | 4)

CIS 419/519 Fall'20
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Variable Elimination: Example 2

P(E,B,A,R,M,]) = P(E)-P(B)-P(RIE)-P(A|E,B) - P(M|A) - P(J|A)

P(M,],B = true) It is sufficient to compute the

P(M,]J|B = true) = P(B = true) numerator and normalize

Assumptions (graph;
joint representation)

P(M,],B = true) = z P(E,B = true,A,R, M, ]) | Elimination order R, A, E
E.AR

_ z P(E) - P(B = true)/PR|E) .P(A|E, B = true) - P(M|A) - P(J|4)
E,AR

To eliminate R

fa(E) = ) P(RIE)
R

CIS 419/519 Fall’20 33



Variable Elimination: Example 2

P(E,B,A,R,M,]) = P(E) - P(B) - P(R|E) - P(A|E,B) - P(M|A) - P(J|4)

P(M,],B = true) It is sufficient to compute the
P(B = true) numerator and normalize

P(M,J|B = true) =

P(M,],B = true) = z P(E,B = true,A,R,M,]) Elimination order A4, E
E,AR

- ZP(E) -P(B =true) - P(A|E, B = true) - P(M|A) - P(J|A) -|fr(E)
o To eliminate A

fr(E) = ZP(RIE) fa(E,M,)) = ZP(AIE;B = true) - P(M|A) - P(J|4)
R A
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Variable Elimination: Example 2

P(E,B,A,R,M,]) = P(E) - P(B) - P(R|E) - P(A|E,B) - P(M|A) - P(J|4)

P(M,],B = true) It is sufficient to compute the
P(B = true) numerator and normalize

P(M,J|B = true) =

P(M,],B = true) = z P(E,B = true,A,R,M,]) | Finally eliminate E
EAR

= ) P(E)- P(B = true) - fa(E,M.]) - fu(E)
E

Factors

—

fB)= ) PRIE)  fu(EM.J)= ) P(AIE,B = true) - P(M]4) - P(J|A)
R A
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Variable Elimination

* The order in which variables are eliminated matters
— In the previous example, what would happen if we eliminate E first?
* The size of the factors would be larger
 Complexity of Variable Elimination
— Exponential in the size of the factors

— What about worst case?
e The worst case is intractable

CIS 419/519 Fall20
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Inference

* Exact Inference in Bayesian Networks is #P-hard

— We can count the number of satisfying assignments for 3-SAT with a
Bayesian Network

* Approximate inference
— Eg. Gibbs sampling
— Skip

CIS 419/519 Fall20
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Approximate Inference

e Basicidea

— If we had access to a set of examples from the joint distribution, we
could just count. P(x)?

EIf (] ~ Zf(x(‘)) RN

— For inference, we generate instances from the joint and count

— How do we generate instances?

CIS 419/519 Fall20



Generating instances

 Sampling from the Bayesian Network
— Conditional probabilities, that is, P(X|E)
— Only generate instances that are consistent with E
* Problems?
— How many samples? [Law of large numbers]
— What if the evidence E is a very low probability event?

— Skip

CIS 419/519 Fall20
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Detour: Markov Chain Review

Generates a sequence of 4, B, C

Defined by initial and transition
probabilities
P(Xy) and P(Xp4q = 0| X, = J)

P;; : Time independent
transition probability
matrix

Stationary Distributions: A vector q is called a stationary distributiondt

being in state i

qj = z qlPl] q; : The probability of
i

If we sample from the Markov Chain repeatedly, the distribution over the
states converges to the stationary distribution

CIS 419/519 Fall'20
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Markov Chain Monte Carlo

* Qur goal: To sample from P(X| e)
* Overallidea:

— The next sample is a function of the current sample

— The samples can be thought of as coming from a Markov Chain whose
stationary distribution is the distribution we want

* Can approximate any distribution

CIS 419/519 Fall’20 41



Gibbs Sampling

* The simplest MCMC method to sample from
PX =xx,..x,|e)
e Creates a Markov Chain of samples as follows:
— Initialize X randomly

— At each time step, fix all random variables except one.

— Sample that random variable from the corresponding conditional
distribution

CIS 419/519 Fall20
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Gibbs Sampling

e Algorithm:
— Initialize X randomly
— lterate:
* Pick a variable X; uniformly at random
e Sample xi(t“) from P(xl-lxit), ...,xi(f)l xl.(i)l, ...,x,(f), e
. X,EHD = x,({Hl) for all other k

* Thisis the next sample

e XM x@  Xx® forms a Markov Chain
* Why is Gibbs Sampling easy for Bayes Nets?

— P(xilxgti), e) is “local”

CIS 419/519 Fall20
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Gibbs Sampling: Big picture

* Given some conditional distribution we wish to compute,
collect samples from the Markov Chain

* Typically, the chain is allowed to run for some time before
collecting samples (burn in period)

* So that the chain settles into the stationary distribution

* Using the samples, we approximate the posterior by counting

CIS 419/519 Fall’20 44



Gibbs Sampling Example 1

w

A B C

We want to compute P(C):
Suppose, after burn in, the Markov Chainis at A = true, B = false,C = false

Pick a variable - B

Draw the new value of B from

— P(B|A=true,C= false) = P(B|A =true)

— Suppose B*Y = true

Our new sampleis A = true,B = true,C = false
Repeat

CIS 419/519 Fall20
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Gibbs Sampling Example 2

P(R | E)

* Exercise: P(M,]J|B)?

CIS 419/519 Fall’20

P(E) Earthquake
Radio
P(M|A)
Mary
Calls

P(B) Burglary
P(A|E,B)
Alarm
PJ14)
John Calls
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Example: Hidden Markov Model

Transition probabilities Emission probabilities

* A Bayesian Network with a specific structure.
« X's are called the observations and Y's are the hidden states

» Useful for sequence tagging tasks — part of speech, modeling
temporal structure, speech recognition, etc

CIS 419/519 Fall’20 47



HMM: Computational Problems

* Probability of an observation given an HMM

— P(X| parameters): Dynamic Programming
* Finding the best hidden states for a given sequence
— P(Y | X, parameters): Dynamic Programming

* Learning the parameters from observations
— EM

CIS 419/519 Fall20
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Gibbs Sampling for HMM

° GoaI:Computing P(yl.X') Only these variables are

ce e ded b th
* |[nitialize the Y's randomly ?jfmetheerj:risv ey

° |te rate: blanket of Yi'

— Pickarandom Y, /

— Draw Y from P(Y,|Y;_1 Y41, X))
 Compute the probability using counts after the burn in period

Gibbs sampling allows us to introduce priors on the emission
and transition probabilities.

CIS 419/519 Fall’20 49



Bayesian Networks

* Bayesian Networks
— Compact representation probability distributions
— Universal: Can represent all distributions
* In the worst case, every random variable will be connected to all others
* Inference

— Inference is hard in the worst case
e Exact inference is #P-hard, approximate inference is NP-hard [Roth93,96]
* Inference for Trees is efficient
* General exact Inference: Variable Elimination

* Learning?

CIS 419/519 Fall20
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Tree Dependent Distributions

Learning Problem:

— Given data (n tuples) assumed
to be sampled from a tree-
dependent distribution

e What does that mean?

 Think about it as a Generative
model

— Find the tree representation of
the distribution.

e What does that mean?

Among all trees, find the most likely
one, given the data:

P(T|D) = P(D|T) P(T)/P(D)

CIS 419/519 Fall20

PO 3% 30) = PO | | PCilParents(x))

Y

P(y) P(s|y)

v X P(x|z) T
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Learning Problem:

— Given data (n tuples) assumed to be sampled
from a tree-dependent distribution

— Find the tree representation of the
distribution.
Assuming uniform prior on trees, the
Maximum Likelihood approach is to
maximize P(D|T),

Ty, = argmaxy P(D|T) = argmaxy P (xq, X5, ... Xp)
{x}

Now we can see why we had to solve the
inference problem first; it is required for
learning.

CIS 419/519 Fall20

Tree Dependent Distributions

P(y) P(s|y)
W Z
1% P(x|z) r
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Tree Dependent Distributions

* Learning Problem:

— Given data (n tuples) assumed to be sampled
from a tree-dependent distribution

— Find the tree representation of the distribution.
* Assuming uniform prior on trees, the Y

Maximum Likelihood approach is to
maximize P(D|T), PO) P(s|y)

Ty, = argmax; P(D|T) = argmaxT [lgy Pr(xy, Xz, ., Xp) =

= argmaxr [,y Pr(x;|Parents(x;)) w U &

Try this for naive Bayes v X P(x|2) T

Next we will look at some examples over 4 Boolean variables
* Note that when we talk about trees, they could have multiple shapes.

gl o E—y —
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“n ) Cp
How many independent parameters are needed to

represent a distribution over 4 Boolean variable?

4

3
16
15

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.
CIOD 917/0317 rail Lv



“n ) Cp
How many independent parameters are needed to

represent a tree dependent distribution over 4 Boolean

variables?

4

15

It depends on the shape of the tree
7

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.
CIOD 917/0317 rail Lv



Example: Learning Distributions

* Probability Distribution 1:

0000 0.1 00010.1 0010 0.1
0100 0.1 01010.1 0110 0.
1010 O

1100 0.05 1101 0.051110 0.05 1111 0.05
* Probability Distribution 2:

1000 O 1001 O

P(x,|x,)

Are these representations
of the same distribution?
Given a sample, which of
these generated it?

* Probability Distribution 3:

CIS 419/519 Fall'20

P(xy|x,)

0011 0.1
0111 0.1
1011 0
X4 |@| P(xy)
\ P(x;]x,)
P(x,|x,) \3{
X, Xz X3
P(x,) X,

Xy

%(xzmo o x,

P(x5]|x;) } X; 56




Example: Learning Distributions

* Probability Distribution 1:

0000 0.1 00010.1 0010 0.1
0100 0.1 01010.1 0110 0.1
1010 O
1100 0.05 1101 0.051110 0.05 1111 0.05

1000 O 1001 O

* Probability Distribution 2:

We are given 3 data points:
1011; 1001; 0100

Which one is the target
distribution?

P(x,|x,)

* Probability Distribution 3:

CIS 419/519 Fall'20

P(x4|x,)

0011 0.1
0111 0.1
1011 O
X4 |@| P(x,)
P(x,|x,) \ P(x;3]x,)
X1 — X2 X3 ‘
P(x,) X,

%(xzmo o X,

Xy

P(x5]|x;) } X; 57




Example: Learning Distributions

* Probability Distribution 1:
0000 0.1 00010.1 0010 0.1 0011 0.1
0100 0.1 01010.1 0110 0.1 0111 0.1
1000 0 1001 0 1010 O 1011 0

1100 0.051101 0.051110 0.051111 0.05

We are given 3 data
points:

1011; 1001; 0100
Which one is the target
distribution?

* Whatis the likelihood that this table generated the data?

CIS 419/519 Fall20
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"= "
What is the likelihood that the given dataset was sampled

from Distribution 1?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -.
CIOD 917/0317 rail Lv



Example: Learning Distributions

Probability Distribution 1:

0000 0.1 00010.1 0010 0.1 0011 0.1
0100 0.1 0101 0.1 0110 0.1 0111 0.1
1000 0 1001 0 1010 O 1011 0O
1100 0.051101 0.051110 0.051111 0.05

— P(1011|T) = 0

— P(1001|T) = 0.1
— P(0100|T) = 0.1
P(Data|Table) = 0

CIS 419/519 Fall20

We are given 3 data
points:

1011; 1001; 0100
Which one is the target
distribution?

What is the likelihood that this table generated the data?
P(T|D) = P(D|T) P(T)/P(D)
Likelihood(T) ~= P(D|T) ~ = P(1011|T) P(1001|T)P(0100]|T)
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Example: Learning Distributions

Probability Distribution 2:

What is the likelihood that the data was

sampled from Distribution 27?
Need to define it:
— P(x,=1)=1/2

P(x4|x,)

Xy

— plp=1lx, =0)=1/2 p(xs =1lx, =1)=1/2
- plx;=1[x,=0)=1/3 p(x; =1[x, =1)=1/3
- plx3=1lx,=0)=1/6 p(x3 =1[x, =1)=5/6

Likelihood(T) ~ = P(D|T) ~ =

) P(x,)
P(x,|x,)
X,

P(1011|T) P(1001|T)P(0100|T)

P(x5|x,)

5 10

1.1 2
— PQ1011|T) = p(xs = Dp(xy = 1|x, = Dp(xz = 0xy = Dplaz = 1|x, = 1) = 2%2%3% "2

— P(1001|T) =
—  P(0100|T) =

— P(Data|Tree) = 125/4 = 3
CIS 419/519 Fall’20

1 1
X =
2 2
1 1
__X_
2 2

2_5_ 10

72
10

72

376
2.5
376
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Example: Learning Distributions

Probability Distribution 3:

What is the likelihood that the data was

P(x4|x,) Azpﬁ) k X,

sampled from Distribution 27?
Need to define it:
— P(x,=1)=2/3

X4

- plxy=1x,=0)=1/3 p(x; =1lx, =1) =1
— ply=1x,=0)=1 p(x; =1lx, =1) =1/2
- plx3=1[x, =0)=2/3 p(xs =1[x, =1)=1/6

Likelihood(T) ~ = P(D|T) ~ =

P(x4) X4,

P(x;3]|x;)

P(1011|T) P(1001|T)P(0100|T)

2 12
— P(1011|T) = p(x4 = Dp(xy = 1|xy = Dp(x; = 0|x, = )p(x3 = 1|x, = 0) = 3 X 1X > X 3

— P(1001|T) =

_  P(0100|T) =
— P(Data|Tree) = 10/3%2°

CIS 419/519 Fall20

1 1
= - X -
2 2
1 1
= - X -
2 2

2 1 1
X = = —

376 36
1 5 5
376

72

Distribution 2 is the most likely

distribution to have produced the data.

O | N
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Example: Summary

e We are now in the same situation we were when we decided
which of two coins, fair (0.5,0.5) or biased (0.7,0.3)
generated the data.

e But, this isn’t the most interesting case.

* In general, we will not have a small number of possible
distributions to choose from, but rather a parameterized
family of distributions. (analogous to a coin withp € [0,1])

* We need a systematic way to search this family of
distributions.

CIS 419/519 Fall20
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Example: Summary

* First, let’s make sure we understand what we are after.

* We have 3 data points that have been generated according to our
target distribution: 1011; 1001; 0100
* What is the target distribution ?
— We cannot find THE target distribution.
* Whatis our goal?
— As before — we are interested in generalization —

— Given Data (e.g., the above 3 data points), we would like to know
P(1111) or P(11 **), P(*** 0) etc.

 We could compute it directly from the data, but....
— Assumptions about the distribution are crucial here

CIS 419/519 Fall20 64



Learning Tree Dependent Distributions

: Y
* Learning Problem: P(y)
| T PGly)
1. Given data (n tuples) assumed to
be sampled from a tree-dependent w U zZ \5

distribution

— find the most probable tree

1% X F P(x|z) T

representation of the distribution.

2. Given data (n tuples) Space of al

— find the tree representation that'—=_"F——
best approximates the distribution
(without assuming that the data is
sampled from a tree-dependent
distribution.)

Space of all Tree
Distributions

Target Distribution

Find the Tree closest

CIS 419/519 Fall20 to the target

Target Distribution
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Learning Tree Dependent Distributions

* Learning Problem: P(y) Y\
1. Given data (n tuples) assumed to be PGsly)
sampled from a tree-dependent W U VA \ S
distribution
— find the most probable tree PxID) T
representation of the distribution. 4 X F
2. Given data (n tuples) The simple minded algorithm for learning a
— find the tree representation that best | tre€ dependent distribution requires:
. he distributi (1) for each tree, compute its likelihood
approximates the distribution L(T) = P(D|T) =

(without assuming that the data is
sampled from a tree-dependent
distribution.)

= argmaxy HPT(xl,xz, oy Xn) =
{x}
= argmaxy [1,, Pr(x;|Parents(x;))
(2) Find the maximal one

CIS 419/519 Fall’20 66




1. Distance Measure

 To measure how well a probability distribution P is
approximated by probability distribution T we use here the
Kullback-Leibler cross entropy measure (KL-divergence):

P
D(P,T) = z P(x)log ng

* Non negative.
e D(P,T)=0iff Pand T are identical
* Non symmetric. Measures how much P differs from T.

CIS 419/519 Fall20 67



2. Ranking Dependencies

* Intuitively, the important edges to keep in the tree are edges (x--y) for
x,y which depend on each other.

* Given that the distance between the distribution is measured using the
KL divergence, the corresponding measure of dependence is the mutual
information between x and y, (measuring the information x gives about

y) >
B (x,¥)

* which we can estimate with respect to the empirical distribution (that is,
the given data).
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Learning Tree Dependent Distributions

 The algorithm is given m independent measurements from P.

* For each variable x, estimate P(x) (Binary variables —n numbers)
 For each pair of variables x, y, estimate P(x, y) (0 (n?) numbers)

* For each pair of variables compute the mutual information

* Build a complete undirected graph with all the variables as vertices.

* Letl(x,y) be the weights of the edge (x,y) //| -
* Build a maximum weighted spanning tree - ~

CIS 419/519 Fall20 63



Spanning Tree

* Goal: Find a subset of the edges that forms a tree that includes
every vertex, where the total weight of all the edges in the tree is
maximized

— Sort the weights

— Start greedily with the largest one.

— Add the next largest as long as it does not create a loop.

— In case of a loop, discard this weight and move on to the next weight.

* This algorithm will create a tree;
* Itis aspanning tree: it touches all the vertices.

* Itis not hard to see that this is the maximum weighted spanning
tree

« The complexity is 0(n? log(n))
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Learning Tree Dependent Distributions

 The algorithm is given m independent measurements from P.

* For each variable x, estimate P(x) (Binary variables —n numbers)
 For each pair of variables x, y, estimate P(x, y) (0 (n?) numbers)

* For each pair of variables compute the mutual information

* Build a complete undirected graph with all the variables as vertices.

2) |* LetI(x,y) be the weights of the edge (x, y) -
. . . . .
* Build a maximum weighted spanning tree

3) |* Transform the resulting undirected tree to a directed tree. —'<

— Choose a root variable and set the direction of all the edges away from it.

(1) |* Place the corresponding conditional probabilities on the edges.
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Correctness (1)

* Place the corresponding conditional probabilities on the edges.

* Given atree t, defining probability distribution T by forcing the
conditional probabilities along the edges to coincide with those
computed from a sample taken from P, gives the best tree
dependent approximation to P

 Let T be the tree-dependent distribution according to the fixed
tree t.

T(x) =[IT(x;|Parent(x;)) =[] P(x;|n (x;))

* Recall:

p
D(P,T) = Z P(x)log ng
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Correctness (1)

* Place the corresponding conditional probabilities on the edges.

 Givenatreet, defining T by forcing the conditional probabilities
along the edges to coincide with those computed from a sample

taken from P, gives the best t-dependent approximation to P
P(x)

D(P,T) = Z P@)log s = e ee of
x notation at the root

_ z P(x)log P(x) — Z P()log T(x) = &

= —H@ = ) P() ) log TCxln(x) =
x i=1

e When is this maximized?
— That is, how to define T (x;|n(x;))?

CIS 419/519 Fall20 /3



Correctness (1)

D(P,T)

z P(0)log 2 T( ) Z P(x)log P(x) — z P(x)log T(x) =
> P(xi|m(x;) log T (x;|m(x;)) takes
= —H(x) — Z P(x) z logT (x;|m(x;)) = its maximal value when we set:

= T(xi|m(x;)) = P(xy|m(x;))

To see this look at the difference:
2 P(xi|m(x;)) log P(x;|m(x;)) -
initi 2 P(xim(x;)) log T (x| (x;)) =
Definition OT =—H(x) - z Epllog T (x;|m(x:))] = = D(P(x;|m(x), T (i m(x))
expectation: This is non—negative, and equal to 0 only when T=P.

= —H(x) — Ep ) log T(x|(x)] = S
i=1

i;l
"L _H(o - ). D, PlumG) log TCxln(x)\=
i= 1 (xi,m(x1))

= —H(x) — z z P(n(xl))zP(xllﬂ(x)log T (x| (x:)

i=1m(x;)
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Correctness (2)

* Let I(x,y) be the weights of the edge (x, y). Maximizing the sum of the
information gains minimizes the distributional distance.

*  We showed that: D(P,T) = —H(x) — Z z P(x;,m(x;)) log P(x;|m(x;))

=1 (x;,7(x;))
P(x;, m(x;))
P(x;)P(m(x;))

P(x;, m(x;
PG e()log PGailn(x)) = P(io T(x)I0g 5ot w0+ Pk nx)log PCx)

e This gives:

* However:

log P(x;|n(x;)) = log + log P(x;)

D(P,T) = —H(x) — 21 1(x;,m(x;)) — 272, P(x;) log P(x;)
 1stand 3rd term do not depend on the tree structure. Since the distance is
non negative, minimizing it is equivalent to maximizing the sum of the edges
weights I(x,y) .

CIS 419/519 Fall'20



Correctness (2)

CIS 419/519 Fall20

Let I(x,y) be the weights of the edge (x, y). Maximizing the sum of the
information gains minimizes the distributional distance.

We showed that the T is the best tree approximation of P if it is chosen to
maximize the sum of the edges weights.

D(P,T) = —H(x) — XF I(x,m(x)) — X1, P(x;) log P(x;)

The minimization problem is solved without the need to exhaustively
consider all possible trees.

This was achieved since we transformed the problem of finding the best
tree to that of finding the heaviest one, with mutual information on the
edges.
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Correctness (3)

Transform the resulting undirected tree to a directed tree. (choose a root variable
and direct of all the edges away from it.)

— What does it mean that you get the same distribution regardless of the chosen
root? (Exercise)
This algorithm learns the best tree-dependent approximation of a
distribution D.

L(T) = P(DIT) = II; Py (x;|Parent(x;))
Given data, this algorithm finds the tree that maximizes the likelihood of
the data.

The algorithm is called the Chow-Liu Algorithm. Suggested in 1968 in the
context of data compression, and adapted by Pearl to Bayesian Networks.
Invented a couple more times, and generalized since then.
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Example: Learning tree Dependent Distributions

 We have 3 data points that have been generated according to the target distribution:
1011; 1001; 0100

* We need to estimate some parameters:

. P(A=1)=§, P(B=1)=§» P(Czl)zg)' P(D=1)=§

 Forthevalues 00, 01, 10, 11 respectively, we have that:

- P(A,B)=0;1/3; 2/3; 0 P(A,B)/P(A)P(B)=0; 3; 3/2; 0 I1(A,B) ~9/2
- P(A,C)=1/3;0;1/3; 1/3 P(AC)/P(A)P(C)=3/2; 0; 3/4; 3/2 I(AC)~15/4
— P(A,D)=1/3;0; 0; 2/3 P(A,D)/P(A)P(D)=3; 0; 0; 3/2 I(A,D)~9/2
- P(B,C)=1/3;1/3;1/3;0 P(B,C)/P(B)P(C)=3/4;3/2;3/2; 0 I(B,C)~15/4
- P(B,D)=0;2/3; 1/3;0 P(B,D)/P(B)P(D)=0; 3; 3/2; 0 I(B,D)~9/2

- P(C,D)=1/3; 1/3; 0; 1/3 P(C,D)/P(C)P(D)=3/2; 3/4; 0; 3/2 I(C,D)~15/4
* Generate the tree; place probabilities.

P(x,y)

I(x,y) = ZP x,vy)lo D
x,y) 2, x,y) gp(x)P(y)
’ B._.<
CIS 419/519 Fall’20 A c
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Learning tree Dependent Distributions

e Chow-Liu al

Example: Summary

* |n particular,
learns D. (w

 Lessis know
converge. (\

e Notice that
some event
to evaluate 1

* First, let's make sure we understand what we are after.
* We have 3 data points that have been generated according to our
target distribution: 1011; 1001; 0100
= What is the target distribution ?
— We cannot find THE target distribution.
* Whatis our goal?
— As before—we are interested in generalization —

— Given Data(e.g., the above 3 data points), we would like to know
P(1111) or P(11 =), P(*=+ 0) etc.

* We could compute it directly from the data, but....
— Assumptionsabout the distribution are crucial here

9519 Fall 19

54

o |ikelihood.
s algorithm

order for it to

obabilities of
ntend to use it

* One may ask the question: why do we need this structure ? Why

can’t answer the query directly from the data ?
 (Almost like making prediction directly from the data in the badges

problem)

CIS 419/519 Fall20
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Administration (12/10/20) Are we recording! YES!

Available on the web site

e Remember that all the lectures are available on the website before the class
— Goover it and be prepared

— A new set of written notes will accompany most lectures, with some more details, examples
and, (when relevant) some code.

* HWS5 isout; due 12/10 (last day of the semester).

— Itis mostly a summary of the material we covered this semester (with a focus on the second half) and will help
you prepare for the exam. No programming.

— An extension until Tuesday 12/15 — no additional slack day. This is a hard deadline.

* The Finalison 12/18.

— Similar style to the mid-term. Comprehensive, with emphasis on the material after the miq

— 90 minutes. You can start it any time between 9am and 7:30 pm ET. Your 90 minutes will be measure from the
time you start.

— Between 10:30-noon ET, most of the TAs will be on-board to respond to clarification questions. If possible, do
it at that time.

— Please open your video —if there are any technical issues, let me know.
— There will be at least one TA available throughout the day to respond to clarification questions.
— Communication will only be done via private Piazza posts.
CIS 419/519 Fall’20 80
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Projects

. CIS 519 students need to do a team project: Read the project descriptions and follow the updates on the Project webpage
— Teams will be of size 2-4
—  We will help grouping if needed

. There will be 3 options for projects.
- Natural Language Processing (Text)
- Computer Vision (Images)
- Speech (Audio)

* Inall cases, we will give you datasets and initial ideas
— The problem will be multiclass classification problems
— You will get annotated data only for some of the labels, but will also have to predict other labels
- 0-zero shot learning; few-shot learning; transfer learning

. A detailed note will come out today.
. Timeline:
— 11/11 Choose a project and team up
— 11/23 Initial proposal describing what your team plans to do
— 12/2 Progress report: 1 page. What you have done; plans; problems.
- 12/21 Final paper + short video
. Try to make it interesting!
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https://www.seas.upenn.edu/%7Ecis519/fall2020/cis519-fall20-projects.pdf
https://www.seas.upenn.edu/%7Ecis519/fall2020/project.html

CIS 419/519 Fall20

Review

= Applied Machine Learning
Applied: mostly in HW

Machine learning: mostly in class, quizzes, exams
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Learning Theory

° PAC Lea rn | ng Agnostic Learning

*  Assumeweare trying to learn a concept f usinghypothesesin i, but f ¢ H
In this case, our goal should be to find a hypothesish € H, with a small training arror:

O ccam ’S R azor Erre(h) 1 I{x € traiming — examples: f(x) = h{x)H

We want a guarantee thata hypathesis with a small trainingerror will havea good accuracy on unseen examples
Erg(h) = Pr[ fx) = hix)]
reD
We get a generalizationbound— 2 bound on how much will the true error £; deviatefrom the observed (training)

Consistent Learners Ly

Far any distribution ) generatingtrainingand testinstances, with probability atleast 1 — & over the chaice of the
trainingset of size m, [drawn |ID), forall he

Generalizing to “almost e

consistent” Loy e
 What does learnability depend

on ? Agnostic Learning

. . . * An agnostic learner
o From fl nlte hypotheSIS Spa Ce to — which makes no commitment to whether f isin H, and
« returns the hypothesis with least training error over at least the

i nfi n ite following number of examples m

* can guarantee with probability at least (1 — &) that its training

. H error is not off by more than & from the true error.
VC Dimension | :

Learnability depends on the log of the size of the hypothesis space

CIS 419/519 Fall20 a7
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SVMs

* Max Margin
— Relations to VC dimension
— Relationsto | |W] |
e Support Vectors Machines
— Hard SVM Optimization
— Soft SVM Optimization
— Regularization
— Dual and Primal
— Kernels
 BacktoSGD
— Relations to Perceptron
* Multiclass SVM
— Notion of margin

CIS 419/519 Fall’20

Margin of a Separating Hyperplane

« Aseparating hyperplane: wlx + b = () Dstancebetween

wix+b = +1land —1is 2/||wl|

What we did:

1. Consider all possible w with different
angles

2. Scalew such that the constraintsare
tight (clasets paints are on the +/-1
line)

. 3. Pick the one with largest

% margin/minimal size
x

Assumption: data is linearly separable
h Let (x, y,)beapointonwix b = 1
! Then its distance to the separating plane

. LI T ;
wix, +b=1 ify,=1 { Wx+b = Ois: Wl x, +b]/|[w]|
wix, +b< -1if y,=-1 LAwll
wix+b =10

o YW X+ b) 21 wix+bh =-1 -

Soft SVM (2)

+ Now, we want to solve: f

o twvsens N/
min cwiw+C¥ ‘

st S=1—ywix &§=0 vi

| In optimum,§; = max(0,1 — y; w™ x;) |

*  Which can be written as:
1 . .
min Ew’ w+ CZmax(U, 1—ywix).
w
i
* What is the interpretation of this?

IS 419/519 Fall20 i
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Boosting, Ensembles, Multiclass

 Weak vs. Strong Learnability T T —— -
* Notion of Error &
— Distribution dependent -
— Changing the distribution of the data “ W
— Adaboost: proof and why does it work JE
e Boosting, Bagging, & Random = ==
Forests
° M u |tiC|aSS Random Forests (Bagged Trees++)
* Draw 1000 + bootstrap samples of data
- 1 VS. a” « Draw sample of available attributes at each split

* Train trees on each sample/attribute set = 1000 + trees
- Al | VS a | | * Average prediction of trees on out-of-bag samp\es

— Global multiclass (SVM A% 080804 -
( ) \\\l///

Average prediction

CIS 419/519 Fall’20 8>



NNs and Deep Learning

Neural Networks
— Expressivity

— Non-linearity and differentiability

— Backpropagation
e Delta Rule

Convolutional Networks

Recurrent Neural Networks

— Embeddings

CIS 419/519 Fall’20

The Backpropagation Algorithm

+  Create 3 fully connected three layer network. Initialize weights.
+ Until all examples produce the correct output within € (or ather criteria)
For each example in the training set do;

1. Compute the network output for this example

2, Compute the error between the output and target value

5 = (ty — oo, (1- o)
1. Foreachoutput unit k, compute error term

G=oft-a) )
Kedownstream(j)
1. Fereach hidden unit, compute error term: Awy; — Rojx;
2. Updatenetwork weightswith Auw;;

End epoch

IS 419/519 Far1o 41

Convolutional Nets

Feature visualization of convelutional net trained on ImageMet
from [Zeiler & Fergus 2013]
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Generative Models, Naive Bayes

Learning Scenario

d BayeS RUIG P(RID) = P(D|K) P(h)/P(D)

. * The learner considers a set of candidate hypotheses H (models), and
® G t M d I attempts to find the most probable one h € H, given the observed
enerative viodels data.

* Such maximally probable hypothesis is called maximum a posteriori
hypothesis (MAP); Bayes theorem is used to compute it:

* Bayesian Learning Scenario| 1 —uom o —ome om0 o

= argmaxpey P(D|h) P(h)
— Examples - Recall: Naive Bayes, Two Classes

* Inthe case of two classes we have

* Bayesian Classifiers S

*  butsince

— Naive Bayes Py =149 =t =Py = 0
— Why does it work?

P(y; = 1]x) S —
4 1+ exp(—X; wix; +b)

 Which is simply the logistic {sigmoid) function used in the
+ neural network representation

y LogiStiC RegreSSion Logistic Regression (3) cEaE

*  Using the standard mapping to linear separators through the origin, we would like to minimize:
min XY log P(y = +1|x,w) = min X7 log[1 + exp(=y,(w'x; + b)]
. w
+  To get good generalization, it is common to add a regularization term, and the regularized logistics
regression then becomes:
min,, f(W) = %whw + C ngn +exp(—y,(wTx)].
Y
Regularization term X
Empirical loss

Where € is a user selected parameter that balances the two terms.
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Un/Semi-Supervised Learning: EM and K-Means

* Semi-Supervised

— Bootstrapping from a few
labeled examples

— Fractional Labels

* Expectation-Maximization
— Coin problem

— K-Means

CIS 419/519 Fall’20

Using Naive Bayes

*  For example, what can be done with the example (1000) ?
— We have an estimate for its label...

= But, can we use it to improve the classifier (that is, the estimation of the
probabilities that we will use in the future)?

* Option 1: We can make predictions, and believe them
— Orsome of them (based on what?)
*  Option 2: We can assume the example x = (1000) is a

Pulx) WWhat do we do ance

— An n-labeled example with probability Py we have these labels?

Py} We estimate the most likely parameters:
Fala)+ Polx) P, P(v); Plx|n), Pxilv)
That is, we run NB again

— A v-labeled example with probability

* Estimation of probabilities does not require working with integers!

CIS 419/519 Fall20 10

Summary: EM Algorithm (Coins)

Summary: K-Means Algorithms

.

We will assume (for a minute) that we know the parameters f, §, & and use it to estimate which Coin it
STEP 1 [Expectation Step): (Here h = h; )

Pl = P(Coin1|DF) = 7})(9['60;}:’)’_;’[6”{“1) -
_ & ph(1 = pymh
&ﬁli{‘l _ﬁ)?ﬂ—ﬂ+(‘| _r})qﬂtl _q))ﬂ—li

STEP 2: Maximization Step

dE A1 B i
- —<- lop = a biLiy
& 0
l ol _moh Ta-El
, (1-Pl=-—=1=0 i

7 — A R T-£h
Iterate
CIS 419/519 Fa 2

* GivenasetD = {x,..,x,}of data points, guess initial parameters
Ty e fe

« Compute (forall i, j) Difference-now we place

“fracsional” peints inte
chsters.
pyy s the fractional label

EXP[—ﬁ(xi = )%

piy = Elzyl =
L sk expl gk ()]
_ ZEiElzyla

S N P

* and a pew set of means: e
Recall: Standard K-Means clustering
- Guess k centers.
- Repeac
+ Place each pointin its
center; based on distance.
+ Re-estimate centers for

* repeat to convergence

each cluster.

Notice that this algorithm will find the best k means in the :
* Re-place poines

sense of minimizing the sum of square distance.

The hard EM algarithm
(thrasheld the distribution and

Sl AlaEe |wap the top apsian)




Representing Distributions
— Independence assumptions
— # of parameters

Tree Dependent Distributions
— Inference

— Most likely distribution

Bayesian Networks

Bayesian Network: Example

Haw many parameters do we
have?

Haw many wauld we have f we

had ta stare the ens
& variables. without any

independence assumpticns]

With these probabilities,
{and assumptions, encaded in

P(E.B.A.R.M.J) = P(E)P(B,ARM]|E) =
= P(E) P(B) P(A.R,M,] |E.B) =
= P(E)P(B)P(R| E.B)P(M,],A|E,B)
= P(E) P(B) P(R | E) P(M.f| A.E,B) P(A| E. B)
= P(E) P(B) P(R | E) P(M |4) P(J | A) P(A |E.B)

Example: Learning tree Dependent Distributions

‘We have 3 data points that have been generated according to the target distribution:
1011; 1001; 0100

We need to estimate some parameters:

s oPA=1=2 PE=1=1, P(C=1)=2), PO=1=2

3 3
* For the values 00, 01, 10, 11 respectively, we have that:

- PABRY=0, )3 /30 PAB)PAPIR)I =0, 3 3/2; 0 1(A,B) ~ 972
= PLACY = 1/3; 0 1/3; /3 P(A,CY/PLAP(C) = 3/2; 0; 3/4; 3/2 1(A.C) ~ 15/4
- PLAD)=1/%0; G 2/3  P(AD)PLAPD) = % 0; 0; 3/2 HA,D) ~9/2
- P(B.C) = 1/3; 1/3; 1/3:0  P(B,C)/P(BIP(C) = 3/4; 3/2; 3/2; 0 I(B,C) ~15/4
- P(B,D)=0; 2/3; 1/3;0  P(B,D)/P(B)P(D) = 0; 3; 3/2; 0 I8, D) ~9/2
— POE,DY) =13 13000 13 PG /PCIPOD) = 3/ 304 0 32 106, D) ~ 15/4

* Generate the tree; place probabilities.

Plxy)

Hzy) = ZP(r-y)’ﬂgP PG :: D
CI5 419/519 Fall20 A C
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Example: Learning Distributions

Are these representations

of the same distribution?
Given a sample, which of
these generated it?

* Probability Distribution 1:
0000 0.1 00010.1 0010 0.1 0011 0.1
0100 0.1 01010.1 0110 0.1 0111 0.1
1000 0 1001 0 1010 O 1011 0
1100 0.05 1101 0.051110 0.05 1111 0.05

+ Probability Distribution 2:

+ Probability Distribution 3:

CI5 419/519 Falr20
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