Quiz 8

$(\ensuremath{\underline{I}})$ This is a preview of the published version of the quiz

Started: Dec 11 at 4:52pm

Quiz Instructions

Question 1	1 pts
A random forest is an ensemble learning method that attempts to lower the tra error of decision trees.	ining
⊖ True	
⊖ False	

Question 2	1 pts
In each round of AdaBoost, the misclassification penalty for a particular training	
observation is increased going from round $m{t}$ to round $m{t}+1$ if the observation wa	as
\bigcirc classified incorrectly by the weak learner trained in round t	
\bigcirc classified incorrectly by the full ensemble trained up to round t	
\bigcirc classified incorrectly by a majority of the weak learners trained up to round t	

In the multi-class SVM the objective function is

 $egin{aligned} \minrac{1}{2}\sum_k w_k^T w_k \ \mathrm{s.\,t.}\; w_{y_i}^T x - w_{k_i}^T x \geq 1 \end{aligned}$

There are some missing definitions of the symbols. Which of the following is true about them?

- \bigcirc **k** represents different class labels and k_i is the one that does not equal to y_i but the distance between its corresponding w_k and w_{y_i} is the largest.
- \bigcirc **k** represents different class labels and k_i is the one that does not equal to y_i but the distance between its corresponding w_k and w_{y_i} is the smallest.

 $igcar{}$ k represents different class labels and the k_i s are all the k that do not equal to y_i

igcap k represents different class labels and the k_i s range over all ks

Question 4

1 pts

During the lectures, it was mentioned that the 1 vs. All multi-class learning scheme is doing "local learning" and "global prediction". What is the most accurate interpretation of this among the following statements?

- This process is a boosting process, where the training process gets weak binary classifiers for each class and the predicting process assigns different weights to the weak classifiers and makes better decisions.
- O The training process only optimizes one label/classifier at each example without the consideration of other labels. The predicting process looks at all labels and makes the best decision.
- The training process can only converge to local optimums for each binary classifier. The predicting process looks at all labels and makes a prediction that is the global optimum of the optimization objective.
- Neither the training nor the prediction process considers all classes for each training example, but the prediction process is guaranteed to converge to a global optimum with respect to the learning objective.

Question 5	1 pts
The AdaBoost algorithm is guaranteed to assign the highest weight in the fina hypothesis to the weak learner that performs the best on the test set.	I
⊖ True	
⊖ False	

Quiz saved at 4:52pm	Submit Quiz